Toronto Metropolitan University
Nespoli_Gabriel_A.pdf (3 MB)

The neuroscience of groove: neural mechanisms marrying music and movement

Download (3 MB)
posted on 2021-05-24, 11:07 authored by Gabriel A. Nespoli
Music has a long history of being associated with movement synchronization such as foot-tapping or dance. These behaviours are easier with some music compared to others, and the reasons for this are not well understood. Groove is a quality of music that compels synchronous movement in the listener, and certain acoustic and musical features have been identified that contribute to a sense of groove.Neurons have been found to entrain to the beat of music. Combining these two ideas, it is reasonable to predict that neural populations involved in movement (i.e. premotor areas) would entrain more to high-groove than to low-groove music. This dissertation explores some of the psychological, musical and acoustic aspects of music that contribute to neural entrainment in premotor areas of the brain. Study 1 investigates the effects of feelings of groove on pre-motor entrainment, using stimuli that have been rated on extent of groove in a previous study. Study 2 investigates the musical feature of syncopation – which has previously been found to be associated with sense of groove – on extent of premotor entrainment and behavioural synchronization ability. Study 3 investigates the effects of acoustic features that have been found to be related to groove and movement synchronization such as event density and percussiveness. The pattern of results across all studies suggests that the complexity of the rhythms in the stimulus determines the extent of beat entrainment. Feelings of groove, however, are better characterized by “beat complexity”, which depends on a) the extent to which the listener perceives the beat, and b) the extent to which other rhythmic elements of the music compete with the beat. A network of brain areas integral to the perception of groove is proposed, where activation of premotor areas enables music to drive motor output.





  • Doctor of Philosophy


  • Psychology

Granting Institution

Ryerson University

LAC Thesis Type

  • Dissertation