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Abstract

The Neuroscience of Groove: Neural Mechanisms Marrying Music and Move-

ment

Doctor of Philosophy, 2018
Gabriel A. Nespoli

Psychology, Ryerson University

Music has a long history of being associated with movement synchronization
such as foot-tapping or dance. These behaviours are easier with some music
compared to others, and the reasons for this are not well understood. Groove is
a quality of music that compels synchronous movement in the listener, and cer-
tain acoustic and musical features have been identified that contribute to a sense
of groove. Neurons have been found to entrain to the beat of music. Combin-
ing these two ideas, it is reasonable to predict that neural populations involved
in movement (i.e., premotor areas) would entrain more to high-groove than to
low-groove music. This dissertation explores some of the psychological, musical,
and acoustic aspects of music that contribute to neural entrainment in premotor
areas of the brain. Study 1 investigates the effects of feelings of groove on pre-
motor entrainment, using stimuli that have been rated on extent of groove in a
previous study. Study 2 investigates the musical feature of syncopation—which
has previously been found to be associated with sense of groove—on extent of
premotor entrainment and behavioural synchronization ability. Study 3 inves-

tigates the effects of acoustic features that have been found to be related to

il



groove and movement synchronization such as event density and percussiveness.
The pattern of results across all studies suggests that the complexity of the
rhythms in the stimulus determines the extent of beat entrainment. Feelings of
groove, however, are better characterized by “beat complexity”, which depends
on a) the extent to which the listener perceives the beat, and b) the extent to
which other rhythmic elements of the music compete with the beat. A network
of brain areas integral to the perception of groove is proposed, where activation

of premotor areas enables music to drive motor output.
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The Neuroscience of Groove: Neural Mechanisms Marrying

Music and Movement

Music has a long history that is richly associated with movement. Mothers sing
to their infants with exaggerated facial expressions, members of a marching band
synchronize their steps, and concert-goers coordinate dance movements with the
music and one-another. Music can even compel movement, creating in a listener
the desire to move along. This quality of music—groove—is one that makes
music listening both enjoyable and motivating (Madison, 2006). Music becomes
a catalyst for synchronized movement, effortlessly bringing people together in
many ways. When mothers sing to their infants, they are coordinating voice
and facial expressions in a manner that invites the infant to increase attention
at specific moments in time. Marching songs can embolden an army, allowing
individual soldiers to feel strength in numbers and advance headlong into battle.
Enjoying a concert with others creates a sense of unity as everybody sways

together in synchrony.

Music provides an excellent temporal framework for synchronizing movements
(Repp, 2003). Several studies have investigated aspects of music that contribute
to groove (Davies, Madison, Silva, & Gouyon, 2013; Madison, Gouyon, Ullén, &
Hornstrom, 2011; Sioros, Miron, Davies, Gouyon, & Madison, 2014; Stupacher,
Hove, & Janata, 2016; Witek, Clarke, Wallentin, Kringelbach, & Vuust, 2014)
as well as its behavioural (Janata, Tomic, & Haberman, 2012) and neural (Stu-
pacher, Hove, Novembre, Schiitz-Bosbach, & Keller, 2013) consequences. Areas
of the brain related to movement, such as premotor cortex (PMC), have been
implicated in rhythm perception (Chen, Penhune, & Zatorre, 2008; Fujioka,
Trainor, Large, & Ross, 2012; Grahn & Brett, 2007), so it seems likely that
PMC activation is somehow involved with feelings of groove. Thus, studying
aspects of music that modulate PMC activity is of great importance for under-

standing how music can compel movement.

What is it about music that makes us want to move? Why is it sometimes

difficult to resist the urge to move when you hear music? In this dissertation,



I attempt to answer these questions by investigating the neural mechanisms in-
volved in the perception of groove and the manner in which they are influenced
by musical and psychoacoustic properties of music. Specifically, I describe a
mechanism by which the patterns of notes and the temporal structure inherent
in music can capitalize on neurons’ ability to entrain to periodic stimuli. If neu-
rons in motor-related brain areas become entrained, the motor system is primed
for synchronizing movement with the musical stimulus. I propose that this syn-
chronized motor activity is what elicits the desire to move. In three studies, I
investigated different aspects of music that contribute to groove—psychological,
musical, and acoustical—and how they might drive neural entrainment of motor-
related areas. First, I take a broad approach by investigating neural entrainment
in a collection of music that varies in its extent of groove (as rated by partici-
pants in a study by Janata, Tomic, and Haberman (2012)). Second, I explore
the musical feature of syncopation, and how these kinds of rhythms can con-
tribute to neural entrainment. Last, I assess acoustic features of music in order

to understand the optimal conditions for eliciting neural entrainment.

The Feeling of Groove

Colloquially, groove in music is when you cannot help but tap your foot along
with what you are hearing. Groove feels like a gentle and continuous push for-
ward, where the music grabs you and invites to pull you along. In a particularly
eloquent description, Roholt (2014) likens groove to the feeling of driving a car
on the freshly-packed grooves of snow left by rush-hour traffic after a heavy
snowfall: “You have some sense of the firmness and path of these grooves..as
you feel the car being pulled, pushed, and carried along” (p. 1). Madison (2006)

4

defines groove more explicitly as “wanting to move some part of the body in
relation to some aspect of the sound pattern” (p. 201). When asked to rate
various statements about the definition of groove, participants consistently en-
dorse statements containing words emphasizing movement and rhythm (e.g.,
move, dance, beat, rhythm) or compulsion (e.g., feel, make, want), such as “the

groove depends on the extent to which the music makes you want to move”



(Janata et al., 2012).

Music that is high in groove has been found to support behavioural synchro-
nization, such as the ability to accurately tap along to the beat of the music.
Janata et al. (2012) created a corpus of 148 musical excerpts (20 seconds in
duration) and had participants rate each excerpt on “the extent to which the
music ‘grooves’” (p. 5). Based on these groove ratings they selected a subset
of excerpts representing high-, mid-, and low-groove categories, and asked a
separate group of participants to tap along with each excerpt. When partic-
ipants were asked to tap along to the beat (i.e., isochronous' tapping), their
taps were more synchronized with the beat for high- than low-groove excerpts.
Additionally, when participants were given freedom to tap as they liked (i.e.,
free-form tapping), the periodicities present in their tapping were the same as
those present in the excerpt itself. This suggests that groove supports a person’s

ability to move along in synchrony with the music.

Janata et al. (2012) also video recorded participants during a no-tapping con-
dition, where they were instructed to simply listen to the music. Blind coders
rated these video-only recordings for spontaneous movement, which revealed
more spontaneous movement while listening to high-groove music. This sug-
gests that not only can groove support accurate behavioural synchronization,
it can compel movement. Participants could not help but move along to high-
groove music. Since these studies used natural music and not controlled auditory
sequences as stimuli, the results could be due to a variety of aspects of the music,
such as preference, syncopation, or presence of percussion. The following two
sections review evidence for how syncopation and acoustic properties of music

might be related to feelings of groove.

! An isochronous sequence is a rhythm consisting of notes that are equally-spaced in time,
such as a metronome.



Rhythm, Syncopation, and Groove

Music comprises notes of varying duration, creating temporal patterns called
rhythmic groups (London, 2012). Meter refers to the specific temporal context
within which rhythmic groups are produced and perceived. It consists of a main
underlying pulse (the beat), and subdivisions and groupings of the beat. These
subdivisions and groupings are conceptualized as nested levels of a metrical
hierarchy (Lerdahl & Jackendoff, 1983), as seen in Figure 1, (adapted from
Large & Kolen, 1994). Each level consists of a set of equally spaced beats, and
levels are related to one another by simple integer ratios (typically 2, 3, 4, 6, or
8). Points in time where many beat levels align are considered points of metrical
accent, and tend to co-occur with notes that are longer, louder, or more tonally
stable. When people tap their foot to music they are typically synchronizing

their taps with these metrical accents.

rest with accent ¢
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Figure 1. The notes of a rhythmic group can be organized into a metrical
hierarchy. Each row below the musical staff represents a unique metric level,
and points in time where many metrical levels align are points of metrical accent.
The third row represents the beat level or the level at which most people would
to the music. Events on the third row are perceived as more accented than
events on the second row, which are in turn perceived as more accented than
events on the first row. Metrical levels are related to one another by simple
integer ratios. Figure adapted from Large and Kolen (1994). Reprinted with
permission.

Oftentimes in music, the beat is implied rather than physically realized. For

example, the melody in Figure 1 does not have a note at all points of metrical



accent (i.e., the rest at the end of each bar), and yet a beat is still perceived
there (i.e., the continuation of the “subdivision by 2” metrical level). As such,
meter is best understood as serving a predictive function, guiding the listener in
developing expectancies about upcoming events. The sensation of rhythm arises
from the interaction between rhythmic groups and the meter (London, 2012).

Rhythm is a central aspect of the perception and production of music.

A rhythmic group can have many or few notes that align with the meter, creating
different amounts of congruence (or tension) between them, giving a rhythm its
characteristic feel. Syncopated rhythms are rhythms that are unexpected in
some manner. They tend not to have notes at points of metrical accent. As
such, a syncopated rhythm disrupts the expectancies that are created by the
underlying meter, making it more unpredictable. Moderate levels of this kind of
rhythmic complexity® have been found to increase feelings of groove (Sioros et
al., 2014; Witek et al., 2014) without compromising movement synchronization

(Witek et al., 2017), as compared with low levels of syncopation.

Acoustic Properties of Groove

Various acoustic features of musical stimuli have been previously associated with
groove. Madison et al. (2011) found that beat salience and event variability®
were both associated with groove ratings. Faster tempos have also been asso-
ciated with groove (Janata et al., 2012). By analyzing the corpus of musical
examples used in Janata et al. (2012), Stupacher et al. (2016) identified event
variability, spectral flux, and RMS* variability as features that were predictive
of groove ratings. Additionally, they found that songs with a drum kit differed

significantly from songs without a drum kit on all features studied, suggesting

2 Another measure of rhythmic complexity, joint audio entropy, has not been found to be
related to ratings of wanting to move (Witek et al., 2014).

3Event variability is called “event density” in Madison et al’s (2011) original article. See
the introduction of Study 3 for more details.

4RMS (root mean square) is a measure of the total energy present in a waveform. It is
calculated by (a) squaring each value in the waveform, (b) averaging the values at all time
points, and (c¢) taking the square root of the result.



a role of instrumentation.

Stupacher et al. (2016) also investigated the effects of frequency range on the
ability to accurately and consistently tap along with music. They experimen-
tally manipulated the frequency of the bass drum and the bass and asked par-
ticipants to tap along to the beat as synchronously as possible. They found
that tapping was less variable and more forceful when the bass instruments had
lower frequencies. Groove ratings were also higher for these excerpts, suggesting

a role of low-frequency energy.

Burger et al. (2012) used motion capture to elucidate the relationship between
acoustic features of music and spontaneous full-body movement. Participants
listened to 30-second excerpts of music and were asked to move in a way that
felt natural, and were encouraged to dance if they wanted. Correlation analyses
revealed that music with a clear pulse and with high percussiveness elicited
movements with low spatial variation®, indicating that participants’ movements
were simpler and exhibited fewer degrees of freedom. Temporal regularity—
movement at the same frequencies as the meter—was related to these features
as well as low-frequency spectral flux. In a second study, they found that pulse
clarity was related to regularity in movements of all body parts, whereas spectral
flux and percussiveness were more related to specific body parts such as the
head and hands (Burger, Thompson, Luck, Saarikallio, & Toiviainen, 2013). If
these acoustic features are characteristic of music that supports synchronous
movement, it seems likely that they would also be characteristic of music that

compels synchronous movement, as in groove.

5Spatial variation is a measure of the intrinsic dimensionality of a data set. More variables
are required to represent more complex data sets, and would thus be considered to have higher
spatial variation. For example, given a principle components analysis of some data, a measure
of spatial variation could be the number of components required to explain a certain amount
of variance.



Neural Entrainment to Music

Music is able to entrain the firing patterns of neurons, and many studies
have found that neurons entrain their firing to both isochronous (Arnal,
Doelling, & Poeppel, 2015; Fujioka et al., 2012; Nozaradan, Peretz, Missal,
& Mouraux, 2011; Snyder & Large, 2005) and non-isochronous (Nozaradan,
Peretz, & Mouraux, 2012; Nozaradan, Zerouali, Peretz, & Mouraux, 2015)
rhythms. These studies used various methods including electro- and magne-
toencephalography (EEG and MEG), transcranial magnetic stimulation (TMS),
and functional magnetic resonance imaging (fMRI). Features of the E/MEG
that have been investigated include the steady-state evoked potential (SSEP),
spectral activity in the beta and gamma frequency ranges, and inter-trial phase

coherence. These methods and results are presented in the following sections.

Steady-State Evoked Potential (SSEP)

Nozaradan et al. (2012, 2011, 2015) published a series of articles using a novel
method for studying spectral activity at beat-related frequencies in the EEG,
called the SSEP (see Nozaradan, 2014 for a review). To calculate the SSEP,
multiple trials are averaged together in the time domain in order to discard
non-phase-locked activity. A fast-Fourier transformation (FFT) is performed
on each channel® of EEG data and the spectra of all channels are averaged
together. The resulting averaged spectrum is then inspected at frequencies of

interest to determine the extent of entrainment.

In a first study, participants listened to a pure tone that had been amplitude
modulated to have a main pulse of 2.4 Hz (Nozaradan et al., 2011). In the EEG
there was a significant peak in the SSEP at 2.4 Hz (Figure 2, top panel), suggest-
ing that neural activity was being entrained by the stimulus. Participants were
also instructed to imagine duple or triple meter (i.e., by perceptually grouping

the beats in twos or threes). This resulted in additional peaks at frequencies

6A channel here refers to the time-series data from a single EEG electrode.



associated with these meters (Figure 2, middle and lower panels), suggesting
that the SSEP can capture entrainment that is endogenously generated. That
is, energy in frequencies associated with the imagined meter were not present in
the stimulus, and must have been generated by the neurons themselves. When

participants biased their perception of the stimulus, this was reflected in the
EEG.
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Figure 2. Steady-state evoked potentials. When participants listen to a periodic
stimulus with a beat rate of 2.4 Hz, there is a peak in the SSEP at 2.4 Hz (top
panel). When they imagine grouping beats in twos (1.2 Hz; middle panel) or
threes (0.8 and 1.6 Hz; bottom panel), corresponding frequencies are present in
the SSEP. Figure from Nozaradan et al. (2011). Reprinted with permission.

The SSEP is also sensitive to meter. When participants listened to rhythms
which contained more than one periodicity, the SSEP reflected this with peaks



at beat- and meter-related frequencies (Nozaradan et al., 2012). It is important
to note that the frequencies being considered here are not necessarily those that
are most prominent in the physical stimulus, but rather more “musical” ones
that would be used for finding the beat and tapping your foot. Interestingly,
SSEP activity at these frequencies was selectively enhanced, irrespective of the
spectrum of the stimulus. Thus, there does not seem to be a one-to-one mapping
between the spectrum of the stimulus and the SSEP, indicating that a sense of

beat and meter are (at least partly) endogenously generated.

The SSEP has also been found to track the beat and meter in natural music, and
this tracking is disrupted in the presence of contradictory rhythmic cues. Tier-
ney and Kraus (2014) played a pop song for participants with a superimposed
metronome that was either aligned with the beat or shifted away by 25%. Criti-
cally, there were only negligible differences in the spectra of the stimulus for the
on-beat and off-beat conditions. Neural entrainment to the beat frequency was
much reduced when the metronome was not aligned with the beat, despite the
fact that there was the same amount of energy in the stimulus at that frequency.
This suggests that neurons are not only entraining to the stimulus, but are also

sensitive to the metrical structure of the input.

Frequency Bands

While the SSEP only concerns relatively low frequencies (e.g., < 4 Hz), higher
frequency bands have also received some attention with regards to neural en-
trainment. M/EEG activity has long been categorized into different frequency
bands, defined loosely as follows: delta (< 4 Hz), theta (4-7 Hz), alpha (8-12
Hz), beta (13-30 Hz), and gamma (> 30 Hz). In auditory cortex, studies sug-
gest that these bands are hierarchically organized, whereby neural oscillations in
lower frequency bands (e.g., delta) can modulate the amplitude and excitability
of higher frequency bands (e.g., gamma; Lakatos et al., 2005). Thus, synchro-
nized neural firing at gamma frequencies becomes more likely at certain points

in time, due to the underlying delta oscillation. This system has been suggested



to underlie attentional selection, where rhythmic sensory streams can entrain
delta oscillations and modulate task performance (Lakatos, Karmos, Mehta,
Ulbert, & Schroeder, 2008).

To assess entrainment of different frequency bands, a time-frequency spectrum
(usually a wavelet analysis) is used to assess spectral changes over time. To
assess entrainment, the spectrum can be averaged across a specific range of
frequencies (such as 13-25 Hz, as in Figure 3 panel F), and the spectrum of
the result can be assessed at the beat frequency of interest. In beat perception
research, the frequency bands that have received the most attention are gamma
(Snyder & Large, 2005) and beta (Fujioka et al., 2012).

Using EEG, gamma-band activity calculated over fronto-central electrodes has
been found to synchronize with an isochronous sequence of loud and soft tones
(Snyder & Large, 2005). Additionally, phase-locked (evoked) gamma-band
peaks arrived late when a tone was omitted, whereas non-phase-locked (induced)
peaks remained synchronous with the meter (Zanto, Snyder, & Large, 2006).
This suggests that induced gamma-band activity indicates the prediction of the

temporal location of upcoming beats.

Using MEG, the modulation of beta-band activity has been found to synchronize
with isochronous sequences at various rates (Fujioka et al., 2012). Specifically,
there is a consistent decrease in beta-band power after each tone (Figure 3),
reaching a minimum at 200 ms post-stimulus onset. This decrease is followed
by an increase in power that peaks concurrently with the onset of the next tone,
regardless of the repetition rate. Beta-band activity is possibly of interest to
the current dissertation due to its association with movement (Engel & Fries,

2010).

TMS and Motor Cortex Excitability

Transcranial magnetic stimulation (TMS) has been used to investigate neural

response to rhythm. Using TMS, the primary motor cortex can be rhythmi-
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Figure 3. Beta-band entrainment to a metronome. Spectrogram of MEG activ-
ity while listening to an isochronous sequence at different rates (panels A-D).
Beta-band activity (13-25 Hz) decreases 200 ms after each note onset (panel F).
The increase in activity that follows is timed to the onset of the next beat. Red
arrows indicate note onsets. Figure from Fujioka et al. (2012). Reprinted with
permission.
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cally stimulated with an isochronous pulse while the participant is listening to
music. Electromyography (EMG) can then be used to measure peripheral mus-
cle activation corresponding to the region of stimulation in the motor cortex.
Stupacher et al. (2013) found that when the TMS pulses are presented on the
beat of the music, the resulting motor evoked potentials (MEPs) are greater
than when the pulses are presented off the beat. This suggests that neurons
may already be preparing to fire during on-beats, resulting in a large increase
in MEPs. By contrast, during off-beat TMS pulses neurons are not preparing
to fire, and so the increase in MEPs is not as large. This study also suggests a

role of the motor system in beat perception.

Localization

What parts of the brain are involved in neural entrainment to the beat of music
or other auditory stimuli? Auditory regions have been implicated, but also many
other regions including PMC, basal ganglia (BG), and visual regions (Escoffier,
Herrmann, & Schirmer, 2015; Fujioka et al., 2012; Grahn & Brett, 2007; Grahn
& Rowe, 2009). It is surprising in some respects that non-auditory regions would
be attuned to an auditory stimulus. One potential explanation is that if one
sensory modality detects some regularity in the world, other brain regions would
be interested in this so that they can interact with the world appropriately. For
example, motor cortex would need to know the temporal location of beats in

order to synchronize movements with it.

Grahn and Brett (2007) used fMRI to study the brain regions involved in the
perception of a beat in musical rhythm. They also measured participants’ abil-
ity to tap along with different rhythms, and found that performance was better
for rhythms that had a stronger sense of meter. These same rhythms elicited a
greater BOLD” response in the BG and SMA. Grahn and Rowe (2009) found

that the presence of a clear beat was associated with greater connectivity be-

"The blood oxygenation level dependant (BOLD) response is a measure of blood flow that
is measured via functional magnetic resonance imaging (fMRI).
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tween BG, PMC, and auditory cortex. While these studies were not able to
investigate entrainment of neural populations per se, it seems that beat percep-

tion recruits areas of the brain related to movement.

While fMRI work dominates the literature with regards to localization due to
its excellent spatial resolution, addressing the question of localized entrainment
requires a brain imaging technique that also has good temporal resolution. MEG
and spatial filtering (i.e., with a beamforming algorithm) have been used for this
purpose (Fujioka, Zendel, & Ross, 2010). For example, Fujioka et al. (2012)
used MEG to search for brain regions with beta-band oscillations that were
phase coherent with auditory cortex, and found the strongest coherence in the

cingulate gyrus, close to SMA.

With EEG, source analysis is becoming increasingly feasible with the advent
of high-density systems (i.e., 64+ channel recordings). Independent compo-
nents analysis (ICA) with dipole fitting can be used to localize activity mea-
sured via EEG (Makeig, Debener, Onton, & Delorme, 2004; Onton, Westerfield,
Townsend, & Makeig, 2006). ICA is a method of identifying the activity of
many sources whose activity has been linearly mixed onto a number of sensors
(Bell & Sejnowski, 1995). In the case of EEG, there are many sources of elec-
trical activity in the brain, whose activity is measured at all scalp electrodes in
different combination (Bell & Sejnowski, 1995; Makeig, Bell, Jung, & Sejnowski,
1996). ICA decomposes the sensor data into a number of possible independent
components (ICs) that model the time-series activity of possible independent
sources. To localize the ICs, a dipole model can be fit to its scalp topogra-
phy. Since brain sources are dipolar (Delorme, Palmer, Onton, Oostenveld, &
Makeig, 2012), ICs with well-fitting dipole models (i.e., dipole models with low
residual variance) are likely to originate from a single source in the brain. The
location of the center of the dipole model is considered to be the location of the

source of activity.

The validity of ICA rests on a few reasonable assumptions with respect to EEG,

namely that the sources are independent from one another, and that transmis-
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sion delays from the source to the sensor are negligible. Additionally the number
of ICs returned cannot exceed the number of sensors, but when the number of
sensors is high it has been shown that ICA can separate out the contributions
of dozens of maximally independent information sources (Makeig et al. (2004),
71 sensors). The accuracy of this method has been corroborated in EEG stud-
ies replicating sources found in functional magnetic resonance imaging (fMRI)
studies (McGarry, Russo, Schalles, & Pineda, 2012), as well as simultaneous
fMRI-EEG studies (Yin, Liu, & Ding, 2016).

Neural Mechanisms

Neural resonance theory (Large & Snyder, 2009; Large, Herrera, & Velasco,
2015) offers a potential mechanistic account of how neurons synchronize with
the beat. The theory posits that neurons act as frequency-tuned oscillators that
will automatically synchronize their firing with the incoming sensory stream.
Different neurons will entrain to different metrical levels, creating a neural rep-
resentation of the different patterns of oscillatory activity in the stimulus. Crit-
ical for the theory is that neurons are connected in multiple hierarchical levels,
where the firing of higher levels will automatically entrain (or resonate) to the
firing patterns in lower levels. At points of metrical accent, many neurons at
lower levels will be firing at the same time, and will give rise to stronger synchro-
nization at higher levels. In this way, a sense of the beat and the accompanying
meter can emerge as a natural consequence of the periodicities present in the

stimulus.

This representation of meter in higher-level neural populations can be considered
a “model” of the stimulus, different from the more “verbatim” representation
that is likely present in primary sensory cortices. As such, the brain can use
this model to make predictions about the stimulus, for example the temporal
location of future beats. This conceptualization bears some resemblance to pre-
dictive coding theory (Friston, 2010), which states that the brain creates internal

models of sensory input based on experience. By continually comparing the pre-
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diction with actual sensory input, the brain is able to evaluate its performance
and update the model accordingly. Thus, all sensory input is perceived in the
context of models which already exist based on one’s previous experiences with
similar stimuli. In the case of beat perception, rhythms will be perceived based
on the statistical regularities present in music (Vuust & Witek, 2014). For ex-
ample, since most Western music is in duple meter (where beats are grouped in
twos), an isochronous sequence without any physical metrical accents will often
be perceived as having a duple meter (Smith, Cuddy, & Upitis, 1994). It has
been proposed that duple meter may arise in many cultures as a function of
established internal models of locomotion which are constrained by bipedalism
(see Mithen (2005), pp. 150-154).

Because of the “automatic” nature of neural resonance, it seems likely that any
two networks in the brain could spontaneously fire together provided that a)
they are physically connected in some way and b) the preferred patterns of firing
are similar. Taken together with predictive coding, this suggests neural models
developed for one input source could resonate with input from another source.
PMC for instance, which is well-connected with auditory cortex (Zatorre, Chen,
& Penhune, 2007) and likely shaped by experience with locomotion, may have
a direct role in predicting auditory sensory input (Merchant, Grahn, Trainor,
Rohrmeier, & Fitch, 2015; Patel & Iversen, 2014). Put into a neural resonance
framework, existing oscillatory motor programs (e.g., for walking) that match
the auditory sensory input will increase the amplitude of their oscillation, which
will feed back to auditory regions to create a temporal expectancy for an up-
coming auditory events. What is interesting about this case is that a motor
program that ostensibly developed to support locomotion falls into the service

of auditory perception.

The Groove Pathway

Taken together, it seems possible to chart the pathway through the brain from

the sensation of music to the feeling of groove. Music enters the ear and is
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analyzed by the auditory system by synchronizing neural firing patterns with
the periodicities present in the rhythm and meter. These entrained oscillations
are the brain’s preliminary model of what it is sensing. Because this firing is
periodic, the oscillations begin to be generated endogenously and are thus able
to make predictions about how the music will continue to unfold. Based on the
rhythm and the implied meter, many nested oscillations at different frequencies
will exist, creating a unique periodic signature for this particular music. Other
systems in the brain that are accustomed to this pattern of oscillations will begin
to resonate with the signal as well, thus lending their expertise for modeling the

input and making predictions.

As previously mentioned, the idea that the motor system would be called upon
to aid with auditory prediction is not new (Patel & Iversen, 2014), and it seems
particularly well-suited to music. Humans are bipedal, so the motor plan for
walking is based on groupings of two, which matches with meters that are com-
monly found in music systems around the world (e.g., 2/4 or 4/4). Even when
the meter has groupings of three (e.g., triple meter, 3/4, 6/8), the underlying
subdivision is typically in two. Compound meters (e.g., 9/8), where the subdivi-
sion is also three, are exceedingly rare. The prevalence of the grouping by twos
in music may all relate back to the body and bipedalism. Thus, for the listener,
it would make sense to use this same motor system to aid with the perception

of music when listening.

When the motor system resonates with the input because there is an existing
motor program that is a good match, the brain is essentially running this pro-
gram as if it were preparing to move. This motor plan becomes part of the
internal model of the auditory input; the brain’s ability to move the body is
guiding and constraining its predictions about music. Different pieces of music
can engage the motor system in different ways and to different degrees. And
only when motor plans are sufficiently engaged could the body begin to feel a

pull towards fulfilling that plan and actually moving in accordance with it.
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Research Aims

The current dissertation investigated the effects of psychological, musical, and
acoustical features of music on neural entrainment of the motor system. Study
1 concerned the effects of groove on neural entrainment in PMC, using a subset
of stimuli that have been rated on amount of perceived groove (Janata et al.,
2012). Study 2 concerned the musical feature of syncopation, which is related
to a sense of groove (Witek et al., 2014). Clave rhythms with varying degrees of
syncopation were played for participants to investigate its effects on movement
synchronization and neural entrainment. Study 3 concerned acoustical features
of music that have been found to contribute to groove, and investigated their

effects on movement synchronization and neural entrainment.
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Study 1: Psychological Aspects of Music (Feelings of Groove)

The ability to perceive a beat in music is a relatively ubiquitous skill, whether
the rhythms are simple and on-beat or complex and syncopated. Neural oscil-
lations are thought to underlie this ability (M. J. Velasco & Large, 2011), and
studies using M/EEG have demonstrated neural entrainment to the beat fre-
quency of isochronous (Fujioka et al., 2012; Snyder & Large, 2005) as well as
complex (Nozaradan, Peretz, & Keller, 2016; Nozaradan et al., 2015) rhythms.
Similar evidence has also been found in infants, underscoring the ubiquity of the
propensity to develop the ability to perceive a beat in music (Cirelli, Spinelli,
Nozaradan, & Trainor, 2016; Honing, Ladinig, Hdden, & Winkler, 2009). One
proposed mechanism for neural entrainment to the beat is neural resonance
(Large & Snyder, 2009), which posits that neurons synchronize their firing with
periodicities present in the stimulus. In this way, the brain is able to generate a
model of the stimulus and make predictions about how the stimulus will unfold
over time. This neural entrainment also appears to be cross-modal, such that
auditory oscillations may entrain visual cortices, for example (Escoffier et al.,
2015). Thus, neural entrainment may be thought of as a global mechanism by

which the brain is able to make useful predictions about timing of future events.

Theories of predictive coding suggest that the brain creates a model of sensory
input, and that this model is used to generate predictions about future events
(Friston, 2010). The brain will work to match the incoming sensory information
with some existing model by maximizing the mutual information between them.
By continually comparing sensory input with the output of the model, the brain
is able to evaluate its performance, and any prediction errors may be used to
update the model (Vuust & Witek, 2014). In beat perception, motor planning
areas are thought to be involved in predicting the timing of future beats (Chen
et al., 2008; Patel & Iversen, 2014). Patel and Iversen (2014) propose that
motor planning regions draw on their experience with periodic movement (e.g.,
walking) by simulating these movements in an effort to predict future auditory

events. This would suggest that neural models of music and movement are
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similar, at least for music where a beat can be perceived.

Given the oscillatory nature of neurons and musical beats, the neural resonance
framework provides a plausible mechanism for communication between sensory
(i.e., auditory) and motor areas of the brain. In particular, the oscillatory
activity of a motor program that corresponds with the oscillatory activity in
auditory areas will increase via synchronization of neuronal populations. The
output from this motor program may then feed back to auditory areas to create

a temporal expectancy for a future auditory event.

Brain imaging work has found support for the idea that the motor system is
involved in beat perception. Using MEG, Fujioka et al. (2012) found that while
listening to isochronous sequences, power in the beta-band oscillated in a man-
ner that was synchronized with the stimulus. Using a beamforming localization
procedure, they found significant beta-band phase coherence between primary
auditory areas and supplementary motor area (SMA). Using fMRI, Grahn and
Brett (2007) found that rhythms that are easier to reproduce by tapping also

elicited more activity in motor planning areas such as SMA and BG.

If motor planning areas are activating certain motor programs while listening
to rhythms, it is also possible that this activation will prime movement that is
associated with that motor program. “Groove” is a high-level musical feature
referring to music that compels synchronous movement (Janata et al., 2012;
Madison, 2006; Witek et al., 2014). Consistent with this idea, Janata et al.
(2012) found that participants’ tapping was temporally aligned with the peri-
odicities present in a musical excerpt when the excerpt was considered high in
groove (as rated by a separate group of participants). This suggests that the
neural resonance of motor planning areas with auditory areas is greater when

it is driven by music that is high in groove.

Stupacher et al. (2013) found evidence in support of the notion that groove pref-
erentially engages the motor system. Participants listened to high- or low-groove
music while single-pulse TMS was applied over primary motor cortex either on-

beat or off-beat. This procedure elicits motor-evoked potentials (MEPs) in the
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corresponding muscles of the body, in this case the arm. Surface electrodes
on the arm were used to measure the magnitude of MEPs in response to the
TMS pulses. They found that MEPs were greater while participants listened to
high-groove music, suggesting that the motor system was preferentially engaged.
Thus, the potential effects of high-groove music may encompass primary motor
cortex as well as motor planning areas, preparing the body to move in a manner

that is temporally aligned with the stimulus.

The current study sought to extend the findings of Stupacher et al. (2013) by
investigating whether entrainment to the beat frequency in motor planning ar-
eas would differ for high- versus low-groove music. Musical excerpts varying in
amount of perceived groove (Janata et al., 2012) were presented to participants
while EEG data were recorded. EEG data were subjected to ICA to identify 1Cs
of activity. Next, dipole models were used to select ICs that were within regions
of interest (premotor, auditory, and visual cortices). Neural entrainment to the
beat frequency was measured for all ICs. It was predicted that premotor ICs
would entrain to the beat frequency of all stimuli, but show the greatest entrain-
ment for high—groove music and the lowest for low—groove music. Although we
did expect auditory and visual ICs to entrain to all stimuli, we did not predict

a difference in entrainment for music with different amounts of groove.

Methods
Participants

Eleven participants with self-reported normal hearing were recruited from the
Ryerson University psychology student participant pool. Based on self-report,
two were left-handed, three had perfect pitch, seven considered themselves mu-
sical, and six were musically active at the time of testing (playing or singing
in a group or on their own). They had an average of 7 years of musical expe-
rience with a range of 1 to 18 years. This study was approved by the Ryerson

Research Ethics Board and all participants completed informed consent prior
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to the study.

Based on the achieved effect size of previous work (n* = 0.62; Nozaradan et al.,

2011), a sample size calculation revealed that a n of four would be necessary.

Stimuli

Thirty pieces of music representing high- medium- and low-groove were selected
on the basis of ratings provided by Janata et al. (2012) Excerpts were restricted
to the first 30 seconds of each piece on the basis of previews available on the
iTunes Music Store (Apple, Inc.). The tempo of each excerpt was extracted
manually by the first author. Seven excerpts had tempi that changed over the
course of the excerpt and were thus excluded from analysis.® See Table 8 in

Appendix A for a complete list of the excerpts used.

Procedure

Participants were seated at a computer in a sound-attenuated chamber. Stim-
ulus presentation was controlled using Presentation software (Neurobehavioral
Systems) running on a PC. Excerpts were played over Logitech Z130 loudspeak-
ers in two blocks. Each block contained one presentation of each excerpt. The
order of presentation within blocks was individually randomized. Participants
pressed the “space” bar on the keyboard to initiate each excerpt. Participants

were asked to listen to each excerpt carefully but to refrain from moving.

EEG data were recorded using a 64-channel BioSemi ActiveTwo system and
were digitized at 512 Hz. Analyses were carried out using a combination of
custom MATLAB (version R2016a; The Mathworks, Inc.) scripts and EEGLAB
(version 13.5.4b; Delorme & Makeig, 2004).

Preprocessing and Independent Components Analysis. To improve the quality

8This was determined (unfortunately) after data had already been collected. Corrections
for the possibility of heterogeneity of variance are presented below.
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of the ICA decomposition, various preprocessing steps were executed (I. Win-
kler, Debener, Muller, & Tangermann, 2015). Low-frequency drift is a common
non-stationary artifact, which has the potential to detract from the reliability
and dipolarity of the ICs (Debener, Thorne, Schneider, & Viola, 2010). Low-
frequency drift can be removed with a high-pass filter at 1 Hz or above (L.
Winkler et al., 2015). However, since we were interested in beat frequencies
near 1 Hz, two preprocessing pipelines were necessary: one with a high-pass
filter at 1 Hz to obtain the ICA weights, and a second with a high-pass filter
at 0.1 Hz to obtain activity within each electrode. The ICA weights from the
first pipeline were then used with the preprocessed electrode activity from the

second pipeline in order to obtain IC activity that was free of low-frequency

drift.

For the first pipeline, raw EEG data were high-pass filtered at 1 Hz using the
EEGLAB function pop_eegfiltnew. Bad channels were identified using the
clean_rawdata plugin. This plugin works by first windowing the data into 1-
second non-overlapping windows. In each window, each channel is interpolated
based on all other channels, and this interpolation is correlated with the actual
data from that channel. If this correlation is lower than 0.8, the channel is
flagged for the given window. Any channel with flags in more than half of the
windows is rejected. Data were then rereferenced to the average, and line noise
was removed (pop_cleanline). Sections of data where no music was presented
(i.e., while entering responses on the computer) were removed (pop_epoch), and
the remaining data were subjected to the extended version of the Infomax ICA
(Bell & Sejnowski, 1995) as implemented in EEGLAB (pop_runica).

In the second pipeline, raw EEG data were high-pass filtered at 0.1 Hz. Channels
that were identified as bad in the first pipeline were removed. All other channels
were referenced to the average and epoched. Next, the ICA weights and sphering
matrices (i.e., EEG.icaweights and EEG.icasphere) obtained from the first
pipeline were used with the electrode data from the second pipeline to compute

IC activity.
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Regions of interest were defined based on Brodmann areas (BA): the PMC
region comprised BA6, the auditory cortex region comprised BA41, BA42, and
BA22, and the visual cortex region comprised BA17, BA18, and BA19. In order
to localize components with respect to these target brain regions, equivalent
dipole models were fit to each IC (pop_dipfit). ICs were not considered for
analysis if the residual variance of its corresponding dipole model was less than
15%. For each region of interest, an IC was selected if its Talairach coordinates
were within 8.66 mm® of the target brain region, using the Talairach Daemon
(Lancaster et al., 1997, 2000).

Entrainment Analysis. The following steps were implemented to determine ex-

tent of entrainment in each IC:

1. The activity in the two presentations of each excerpt was averaged in
the time domain (to reveal phase-locked activity) and subjected to a fast
Fourier transform with bin width of 0.0312 Hz.

2. The noise floor was removed from each bin by subtracting activity in the

surrounding bins as in Nozaradan et al. (2011).

3. The extent of entrainment was defined as the maximum value across the
eleven frequency bins centered on the beat frequency'®. A t-test was used
to ensure that this value was significantly greater than zero (i.e., that the

peak was above the noise floor).

For participants with multiple sources localized in the same region, only the
maximum entrainment value was subjected to analysis. For participants without
any sources localized to a given region, the entrainment value was set to zero

(i.e., no entrainment in that region).

9The localization procedure creates a 3D cube centered on the given Talairach coordinates.
The cube extends 5 mm on all sides resulting in a total size of 11 x 11 x 11 mm. The furthest
distance from the center of the cube to the edge (i.e., the corner of the cube) is 8.66 mm.

10The maximum was used instead of the mean because a) the stimuli were not computa-
tionally generated, so we cannot assume the tempo was perfectly consistent throughout each
excerpt, and b) the tempo was extracted manually for each excerpt and so we cannot assume
they are exact.
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Results

For the PMC region there were 2 participants for whom there was no IC found,
and for the auditory cortex region there were 5 participants. These cells were
assigned a value of zero. All remaining entrainment scores were significantly

above the noise floor (See Table 9 in Appendix A).

A one-way ANOVA with Brain Region (Premotor, Auditory, and Visual) as
the within-subjects factor revealed that the magnitude of entrainment differed
across brain regions (F(2,20) = 15.73, p < .001)"". Visual had the highest level
of entrainment (mean = 0.0266 nV) followed by Premotor (mean = 0.0168 1V)
and Auditory (mean = 0.0075 V). Because of the large differences in magnitude
of entrainment across brain regions the effect of groove category was assessed

using three one-way ANOVAs.

Groove Category had a significant effect in the Premotor Region (F(2,20) =
5.156, p = .015), wherein entrainment was greater for high-groove music (mean
= 0.0176 pV) and mid-groove music (mean = 0.0182 pV) than low-groove mu-
sic (mean = 0.0145 nV; Figure 4 a). Groove Category was not significant for
Auditory (F(2,20) = 1.533, p = .24; Figure 4 b) or Visual Regions (F(2,20) =
2.325, p = .12; Figure 4 ¢)."

To explore what features of music might contribute to entrainment, we ran a
series of correlations between the extent of entrainment and various acoustic
features previously found to modulate groove, specifically event density, beat
salience, tempo, and low-frequency spectral flux (Janata et al., 2012; Madison
et al., 2011; Stupacher et al., 2016). The only significant correlations involved

tempo. As illustrated in Figure 5, slower beat rates were associated with greater

"Mauchly’s test indicated that the assumption of sphericity had been violated (y?(2) =
0.474, p = .035), but Greenhouse-Geisser corrected p-values were still significant (¢ = 0.66,
p < .001). Additionally, an ANOVA with the zero entrainment values removed (i.e., treating
them as missing values) was also still significant (F(2,23) = 6.618, p = .0054).

12Mauchly’s test for each Brain Region was not significant, indicating that the assumption
of sphericity had been met. Additionally, ANOVAs were run with the zero entrainment values
removed (i.e., treating them as missing values), and all gave similar results as leaving them
in.
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Figure 4. Neural entrainment to the beat of natural music. (a) Neural entrain-
ment to the beat frequency in premotor cortex (BA6) was significantly greater
for high- and mid-groove songs than for low-groove songs. Entrainment in (b)
auditory (BA41, BA42, BA22) and (c) visual (BA17, BA18, BA19) cortices did
not differ across groove categories. Error bars represent standard error.

levels of entrainment in PMC (r =-.75, p < .001), Auditory (r =-.78, p < .001),
and Visual areas (r = -.80, p < .001)."

Discussion

The current study found evidence for increased neural entrainment to the beat
while listening to high- versus low-groove music. Importantly, this difference was
present in PMC and not in auditory or visual cortices, suggesting that groove
preferentially engages the motor system. This offers a potential neural basis for
previous behavioural studies which have demonstrated that high-groove music
elicits more synchronous tapping than low-groove music (Janata et al., 2012).
Consequently, I suggest that motor output may be better synchronized with
high-groove music relative to low-groove music because neural populations in
PMC are better-entrained.

Viewed through the lens of the predictive coding framework (Friston, 2010; Vu-
ust & Witek, 2014), increased synchronous firing of PMC during high-groove

music listening suggests that motor models are being prioritized somehow (over

13The correlations were also run separately within each participant. The median correla-
tions were -.43 for PMC (range -.27 to -.62), -.46 for Auditory (range -.21 to -.52), and -.36
for Visual (range -.16 to -.60).
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Figure 5. Correlation between neural entrainment and tempo. Neural entrain-
ment to the beat frequency was negatively correlated with the tempo of the
excerpt in all brain regions investigated. Slower beat rates were associated with
greater entrainment.
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visual models, for example). The extent to which motor models become en-
trained may reflect the extent to which the underlying neural architecture is
already wired for the periodicities in the stimulus. By extension, it seems pos-
sible that high-groove music compels movement because its rhythmic structure

is similar to that of programs that control and plan movement.

The relatively strong level of neural entrainment observed in visual cortex was
also somewhat unexpected. We might have expected greater levels of entrain-
ment in auditory over visual areas given that our stimuli were auditory. We
might have also expected greater levels of entrainment in PMC over visual ar-
eas because music compels movement. One possible explanation for the visual
advantage may be the scale of neuronal populations involved; the visual cor-
tex might simply have more neurons. Once entrained, the larger population of

neurons may lead to a stronger response regardless of the driving modality.

It was also found that entrainment in all regions was negatively correlated with
tempo, meaning that entrainment was greater for slower tempi. This is per-
haps unexpected, since slower songs do not tend to be associated with groove
(Janata et al., 2012). One possible explanation is that this is simply a result of
1/f noise, whereby the power of EEG has been found to decrease with increasing
frequency (Demanuele, James, & Sonuga-Barke, 2007). Another explanation is
that tempo has an influence on entrainment that is independent of groove, such
as a preferred entrainment rate. For example, Parncutt (1994) found that when
participants tapped along with rhythms at different tempi, the chosen tapping
rate tended to gravitate toward 1.4-1.6 Hz. Merchant et al. (2015) found opti-
mal neural synchronization in the putamen'* of monkeys at 1.25 Hz. This could
mean that neural entrainment is also greater at these frequencies irrespective
of the level of groove. Since the tempi of the current stimuli ranged from 1.08
to 2.67 Hz, it is possible that most of these excerpts are sufficiently faster than

is optimal for neural synchronization, resulting in the negative correlation.

The putamen is an area of the brain that has been implicated in beat perception (Chen
et al., 2008; Grahn & Brett, 2007).
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Conclusions

While ICA has traditionally been used for the removal of artifacts from electrode
data, the current study analyzed the waveforms of the components themselves.
Using dipole fitting we were able to localize these components, and were thus
able to compare time-series EEG data across different regions of the brain. Re-
sults showed that PMC preferentially entrain to high-groove music. In contrast,
auditory and visual cortices do not exhibit a preference for level of groove, sug-
gesting that this is specific to motor-related areas. This study provides a neural
basis for previous reports that a sense of groove is related to a desire to move

along with the music (Janata et al., 2012).

However, there are many aspects of music that might contribute to a sense
of groove, such as familiarity, preference, low-frequency energy (Stupacher et
al., 2016), or syncopation (Sioros et al., 2014; Witek et al., 2014). Study 2
investigates the effects of syncopation in particular. In addition to assessing its
influence on ratings of wanting to move, I also consider its influence on neural

entrainment of PMC and tapping performance.
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Study 2: Musical Aspects of Music (Syncopation)

Music can be a compelling thing to listen to, often making us want to move
along with the rhythm and synchronize our movements. Why is it that certain
rhythms create this desire more strongly than others? What is it about our
perception of these rhythms that is better-able to engage the motor system and
increase our desire to move along? One can imagine that in order to move
along with a rhythm, it must be sufficiently predictable. However, the most
predictable rhythm, a metronome, seems to create less of a desire to move
than would a more syncopated rhythm. If you ask musicians to play a melody
in a manner that maximizes groove (the desire to move), they will make the
rhythm of the melody more syncopated (Madison & Sioros, 2014). How does

syncopation compel movement?

Several studies have found that degree of syncopation and feelings of wanting
to move have an inverted-U relationship (Sioros et al., 2014; Witek et al., 2014),
where rhythms that are syncopated too little or too much result in a reduced
desire to move. Witek et al. (2014) collected drum breaks that varied in their
degree of syncopation, and found that participants’ highest ratings of “wanting
to move” occurred for rhythms that had a moderate degree of syncopation.
Sioros et al. (2014) adjusted the note onsets of simple piano melodies to be
more or less syncopated, and also found that moderate degrees of syncopation

elicited the highest groove ratings from participants.

One way of interpreting this pattern of findings is with regard to predictive
coding models (Vuust & Witek, 2014). Upon obtaining sensory input (hearing
a rhythm), the brain attempts to develop a model (the meter) with which to
predict how the rhythm will unfold. Some models could already exist in the
system, as would be the case for common rhythms in common meters such as
4/4 time (grouping beats in fours). If the model is not a perfect match to the
input (there is some prediction error), then the system will attempt to update
the model.
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Vuust and Witek (2014) suggest that this prediction error is what makes
moderately-syncopated rhythms induce the desire to move in a listener. For
rhythms with low syncopation the model perfectly fits the input and so there is
no prediction error. For rhythms with high syncopation the system is unable to
come up with a suitable model at all, and reverts to a “learning” mode where it
is attempting to create a new model. Once again, there is no prediction error,
since there is no model that is being compared to the input. At moderate
degrees of syncopation the system is able to come up with a model, but the
presence of syncopation leads to some prediction error. They suggest that
dance is an example of the body enacting and thus emphasizing the model, in
an attempt to minimize prediction error. By emphasizing the model a listener
is increasing neural and physical activity corresponding to the intended meter.
In a sense, you might say that by dancing, listeners are “forcing” themselves to
hear the rhythm with the intended meter. This is borne out quite clearly in
salsa dancing, where the steps of the dance are designed to coincide with the
strong beats of the meter, while the clave plays a rhythm that is syncopated
against the strong beats of the meter (Fitch, 2016).

Many studies have found evidence for the involvement of motor-related brain
areas in beat perception. Using fMRI, Grahn and colleagues (Grahn & Brett,
2007; Grahn & Rowe, 2009) have found that rhythms which have a regular meter
show more activation in motor-related areas of the brain, including PMC and
SMA. Similar localization results have been found using MEG, where beta-band
(15-30 Hz) activity seems to be related to beat perception (Fujioka et al., 2012;
Mayville et al., 2001). There are relatively few studies that have investigated
the neural underpinnings of syncopation perception per se, but many studies
have found evidence for neural entrainment to meter-related frequencies when
listening to rhythms (Nozaradan et al., 2012, 2011; Stupacher, Wood, & Witte,
2017).

During the perception of moderately-syncopated rhythms, predictive coding the-
ory suggests that the brain is updating an internal model of the meter. Where

might this model exist in the brain? Since moderately-syncopated rhythms are
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associated with higher ratings of groove and wanting to move, perhaps these me-
ter models exist in motor-related areas. Indeed, imaging evidence corroborates
the idea that these areas are involved in supporting the perception of rhythms
that can be modeled with musical meter (e.g., Grahn & Brett, 2007).

The current study aims to investigate the effects of syncopation on neural en-
trainment in motor-related areas of the brain. Participants were presented with
rhythms that have a low, moderate, or high degree of syncopation. They were
asked to listen-only and tap along in two separate blocks, and also to rate each
rhythm on how much it made them want to move along. Based on predictive
coding models (Vuust & Witek, 2014), there are a complex set of predictions
for the effects of low, moderate, and high degrees of syncopation on (a) feelings

of wanting to move, (b) tapping performance, and (c) neural entrainment.

For rhythms with a low degree of syncopation, predictive coding would suggest
that the brain is able to summon a model that perfectly fits the input. This
means that there would be very low prediction error, which should give rise to
lower ratings of wanting to move and good tapping performance. Neural en-
trainment should be evident at the beat frequency in auditory cortex. However,
on the basis of predictive coding, we might expect relatively weak entrainment
in PMC at the beat frequency. This is because rhythms with low syncopation
would be highly predictable and would thus have little use for a motor code to

predict upcoming beats.

For rhythms with a high degree of syncopation, predictive coding suggests that
the input is too complex and as such the system would not likely have a suitable
model to guide predictions. If no model is identified, there is no “prediction
error”, which should lead to lower ratings of wanting to move, poor tapping
performance, and negligible entrainment in PMC. Although I do expect auditory
cortices to still synchronize with the beat frequency, I predict that there should

be entrainment at many more metrical levels than for low degrees of syncopation.

For rhythms with moderate degrees of syncopation, predictive coding suggests

that the brain is able to model the input, but that it is not a perfect model, and
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so there is some error between the model and the input. This may prompt an
attempt to update the model based on the input. The desire to reconcile the
differences between the model and the input might create a drive to reinforce
one or the other. If the model in question resides in PMC, then a reasonable
course of action might be to move in accordance with the model. Thus, ratings
of wanting to move should be high. Since the brain is able to model the input,
tapping performance should still be good, and entrainment of the beat frequency
should be relatively high in PMC. I expect that entrainment in auditory cortices

should be comparable to that observed for other degrees of syncopation.

To summarize, the following predictions were made. For feelings of wanting
to move, results were expected to replicate Witek et al. (2014) and show an
inverted-U pattern, where moderate degrees of syncopation elicit the highest
ratings. For tapping performance, it was predicted that tapping variability
would be highest for high degrees of syncopation, and comparable for low and
moderate degrees of syncopation. For neural entrainment, it was predicted that
there would be no differences in auditory cortices across different degrees of
syncopation, but that there would be greater entrainment in PMC for moderate

degrees of syncopation.

Methods
Participants

Thirty-nine participants with self-reported normal hearing were recruited from
the Ryerson University psychology student participant pool. Based on self-
report, nine were left-handed, 11 had perfect pitch, 15 considered themselves
musical, and 13 were musically active at the time of testing (playing or singing in
a group or on their own). They had an average of 4 years of musical experience
with a range of 0 to 15 years. This study was approved by the Ryerson Research
Ethics Board and all participants completed informed consent prior to the study.
A power analysis based on the inverted-U results of Witek et al. (2014) with
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power fixed at .8 revealed that 17 participants would be necessary for this study.
Because this study was run in conjunction with Study 3 (which required 34
participants), it is possible that this study is overpowered. The calculated power

of the results from the same inverted-U analysis in this study was 0.99.

Stimuli

Stimuli'® consisted of six different rhythms, two each with low, moderate, and
high degrees of syncopation (Table 1). The two moderately-syncopated rhythms
were the Son and Rumba clave rhythms and were matched for number of note
onsets. The low and high syncopation degree rhythms consisted of modified
versions of the Son and Rumba clave rhythms that were either more “on-beat”
or more “off-beat”, respectively. The syncopation of each rhythm was quantified
using the syncopation index described by Longuet-Higgins and Lee (1984; Witek
et al., 2014). The syncopation index is calculated by first assigning a weight to
each note in a rhythm based on its position in the metrical hierarchy. The beat
level is assigned a value of 0, a subdivision by 2 is assigned a value of -1, and
so on. If the weight of a note is greater than the weight of the preceding note,
then the pair of notes is said to constitute a syncopation, with a value equal to
the difference between the two weights. The syncopation index of a rhythm is

taken as the sum of syncopation values for all pairs of notes.

The rhythms were generated using Cubase 9.0 and were played using a piano
timbre from the HALion Sonic SE sample library, playing a chord typically used
in jazz (Dsusl3). The beat frequency was also outlined during each excerpt
with an isochronous hi-hat sound, to ensure that participants would perceive
the rhythm with the intended meter. The tempo of each stimulus presentation
was randomized to be 1.5, 1.6, 1.7, 1.8, or 1.9 Hz (90, 96, 102, 108, or 114
beats per minute). This was done to avoid carry-over effects between trials,
where entrainment on a given trial might be affected by entrainment to the

same tempo on the previous trial. Regardless of the tempo, each rhythm was

155timuli were obtained from Tomas Matthews and Maria Witek
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played for 30 seconds.

Table 1. List of stimuli (Study 2)

Syncopation Syncopation
Rhythm Degree Index
Low 3 low 0
Low 6 low 0
Son Clave 3-2 moderate 4
Rumba Clave moderate 5
3-2
High 1 high 18
High 3 high 16

Procedure

Participants were seated at a computer in a sound-attenuated chamber. Stim-
ulus presentation was controlled using MATLAB (version R2017a; The Math-
works, Inc.), and excerpts were played over Logitech Z130 loudspeakers in two
counterbalanced blocks. In one block, participants were asked to simply listen
to each excerpt and to refrain from moving. In the other block, participants
were asked to tap along to the beat on a MIDI drum pad with whichever hand
they felt more comfortable. If the participant was unsure about how to do this,
it was demonstrated to them by the experimenter. In each block, each of the
six rhythms was played 5 times (once for each tempo) in random order, for a
total of 30 trials. Stimulus presentation was self-paced, and after each trial par-
ticipants were asked to answer the question “To what extent does this rhythm

make you want to move?” on a 7-point Likert scale.

Stimulus presentation was controlled with MATLAB (version R2017a; The
Mathworks, Inc.) running on a Windows computer. EEG data were recorded

on a separate Windows computer using a 128-channel BioSemi ActiveTwo sys-
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tem and were digitized at 512 Hz. Tapping data were recorded using a Roland
HPD-10 drum pad and Pro Tools 12.8.0 on a Macintosh computer running
OSX 10.11.6. Analyses were carried out using MATLAB (version R2017a; The
Mathworks, Inc.) on a Macintosh computer running OSX 10.12.6, and included
custom scripts, the EEGLAB Toolbox (version 14.1.1; Delorme & Makeig, 2004),
and MIDI Toolbox (Toiviainen & Eerola, 2016). Statistical analyses were car-
ried out in R (R Core Team, 2017). All task, analysis, and statistical scripts

are available online (https://github.com/gabenespoli/entrainment).

EEG Analysis. EEG data were preprocessed in two pipelines with different
high-pass filters in order to improve the quality of the ICA (Debener et al., 2010;
I. Winkler et al., 2015). For the first pipeline, raw EEG data were high-pass
filtered at 1 Hz using the EEGLAB function pop_eegfiltnew. Bad channels
were identified using the clean_rawdata plugin. This plugin works by first
windowing the data into 1-second non-overlapping windows. In each window,
each channel is interpolated based on all other channels, and this interpolation
is correlated with the actual data from that channel. If this correlation is lower
than 0.8, the channel is flagged for the given window. Any channel with flags
in more than half of the windows is rejected. Data were then rereferenced to
the average, and line noise was removed (pop_cleanline). Sections of data
where no music was presented (i.e., while entering responses on the computer)
were removed (pop_epoch), and the remaining data were subjected to the ex-
tended version of the Infomax ICA (Bell & Sejnowski, 1995) as implemented in
EEGLAB (pop_runica).

In the second pipeline, raw EEG data were high-pass filtered at 0.5 Hz. This
cutoff was chosen to be as high as possible without cutting off frequencies of
interest (i.e., groupings of two at a tempo of 1.5 Hz would be 0.75 Hz). Channels
that were identified as bad in the first pipeline were removed. All other channels
were referenced to the average and epoched. Next, the ICA weights and sphering
matrices (i.e., EEG.icaweights and EEG.icasphere) obtained from the first
pipeline were used with the electrode data from the second pipeline to compute

IC activity.
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Regions of interest were defined based on Brodmann areas (BA): the PMC
region comprised BA6, and the auditory cortex region comprised BA22, BA41,
and BA42. In order to localize components with respect to these target brain
regions, equivalent dipole models were fit to each IC (pop_dipfit). For each
region of interest, an IC was selected if its Talairach coordinates were within 8.66
mm'® of the target brain region (Lancaster et al., 1997, 2000) and the residual
variance of its corresponding dipole model was less than 15%. If a particular IC
was within 5 mm of both regions it was assigned to the closer region; if it was
the same distance from both it was assigned to both. The average location of

selected 1Cs is plotted in Figure 6.

Entrainment of each resulting IC was determined in the following way. First,
each IC was subjected to an FFT with a bin width of 0.0078 Hz. This bin
width allowed for averaging across a maximum of 5 bins centered on the target
frequency before it would begin to overlap with the neighbouring tempo. The
noise floor was removed by subtracting activity in the surrounding bins as in
Nozaradan et al. (2011). The extent of entrainment was defined as the mean
value of three bins centered on the target frequencies. Target frequencies were
meter-related, all having simple-integer ratio relationships with the beat rate.
They included one half of the beat rate (i.e., half-note level; grouping beats
in twos), the beat rate (quarter-note level), subdivision by two (eighth-note
level) and by 4 (sixteenth-note level). Entrainment values were then normalized
for each participant by dividing each value by the maximum value for that

participant.

Tapping Analysis. MIDI files were exported from Pro Tools and imported
into MATLAB using MIDI Toolbox (Toiviainen & Eerola, 2016). The onset
times of each tap were used to calculate a mean onset asynchrony for each trial
in the following way. First, each onset was matched to the beat time to which

it was closest. Then, the onset asynchrony was calculated as the difference

16The localization procedure creates a 3D cube centered on the given Talairach coordinates.
The cube extends 5 mm on all sides resulting in a total size of 11 x 11 x 11 mm. The furthest
distance from the center of the cube to the edge (i.e., the corner of the cube) is 8.66 mm.
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pmc (RV:7.37%; Tal:30,-1,46)
pmc (RV:7.34%; Tal:-36,-2,38)
aud (RV:10.87%; Tal:63,-23,8)
aud (RV:9.81%; Tal:-62,-20,6)

Figure 6. Talairach coordinates of selected 1Cs. Talairach coordinates for se-
lected ICs were sorted based on hemisphere and region, averaged across partic-
ipants, and plotted onto standardized MRI images. dark blue = premotor ICs;
light green = auditory ICs; pmc = premotor cortex; aud = auditory cortex; RV
= residual variance; Tal = Talairach; Line indicates the direction of the dipole.
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between each onset and its matched beat time. The standard deviation of these

differences was used as the measure of tapping variability.

Results

Analyses were run separately for ratings of wanting to move, tapping variabil-
ity, and neural entrainment. For each dependent variable, an ANOVA was
performed with Syncopation Degree (low, moderate, high) as a within-subjects

variable.

To test the hypothesis that moderately-syncopated rhythms elicit greater feel-
ings of groove than both low and high, an inverted-U analysis was also performed
(Witek et al., 2014) to test if a parabola would be a better fit to the data than
a linear model. For this analysis, each participant’s data were regressed against
the stimuli with the Syncopation Index (Longuet-Higgins & Lee, 1984) as the
predictor. Both linear and quadratic models were fit, and a one-way ANOVA
of the adjusted R? values was performed with Model (linear, quadratic) as the

within-subjects factor.

Ratings of Wanting to Move

A one-way ANOVA on participants’ ratings of wanting to move with Synco-
pation Degree (low, moderate, high) as the within-subjects factor revealed a
main effect of Syncopation Degree (F(2,76) = 129.2, p < .001). Post-hoc t-tests
revealed that all degrees of syncopation were different from one another, with
moderate getting the highest ratings (mean = 4.9; mean of low = 4.6; mean of
high = 2.4; Figure 7).

The inverted-U analysis revealed a main effect of Model (F(1,38) = 19.5, p
< .001), where the quadratic model had higher R?,; values (0.728) than the
linear model (0.654). This replicates Witek et al. (2014) who also found that a

quadratic model was a better fit for ratings of wanting to move when regressed
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against Longuet-Higgins and Lee’s (Longuet-Higgins & Lee, 1984) syncopation

index.
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Figure 7. Ratings of wanting to move. Participants’ ratings of wanting to
move were significantly higher for moderately-syncopated rhythms. Error bars
represent standard error. Asterisks represent p-values less than .001 (***)

Tapping Variability

A one-way ANOVA was run on participants’ tapping variability with the within-
subjects factor of Syncopation Degree (low, moderate, high). Tapping variabil-
ity was defined as the standard deviation of the onset asynchrony. There was a
main effect of Syncopation Degree (F(2,74) = 26.29, p < .001). Post-hoc t-tests
revealed that participants were more variable when tapping to rhythms with
high degrees of syncopation (mean = 0.16) than to rhythms with low (mean =
0.089; t(44.1) = -5.941, p < .001) or moderate (mean = 0.099; #(45) = -5.262,
p < .001) degrees of syncopation (Figure 8). The inverted-U analysis did not

reveal a significant difference between linear and quadratic modeling.
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Figure 8. Tapping variability. Participants were more variable when tapping
along to rhythms with high degrees of syncopation than low or moderate degrees
of syncopation. Error bars represent standard error. Asterisks represent p-
values less than .001 (***)
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Neural Entrainment

An omnibus ANOVA was run with Syncopation Degree (low, moderate, high),
Metric Level (half-, quarter-, eighth-, and sixteenth-note levels), and Brain Re-
gion (auditory, PMC) as within-subjects factors. There were significant main
effects of Syncopation Degree (F(2,76) = 5.903, p = .0041) and Metric Level
(F(3,114) = 122.2, p < .001). There was also a significant interaction between
Syncopation Degree and Metric Level (F(6,228) = 2.818, p = .011). There were
no main effects (F(1,38) = 0.8831, p = .35) or interactions involving Brain Re-
gion. As a result, entrainment values for the different regions were averaged

together for the rest of the analyses.

For Syncopation Degree, post-hoc t-tests did not reveal any significant differ-
ences between levels (Figure 9). This is likely due to the significant interaction,
reported below. The inverted-U analysis did not reveal a significant difference

between linear and quadratic modeling.
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Figure 9. Neural entrainment by syncopation degree. Error bars represent
standard error.

For Metric Level, it was found that all levels were significantly different from

one another (all p-values were less than .001; Figure 10).
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Figure 10. Neural entrainment by metric level. Error bars represent standard
error. Asterisks represent p-values less than .001 (**%*)

To investigate the interaction, t-tests were performed between the levels of Syn-
copation Degree separately for each Metric Level (Figure 11). For the quarter-
note (beat) level, moderate degrees of syncopation (mean = 0.153) elicited less
neural entrainment than low (mean = 0.185; #(72.4) = 1.658, p = .1), with
marginal significance. For the eighth-note level, low degrees of syncopation
(mean = 0.129) elicited significantly greater neural entrainment than high (mean
= 0.100; t(67) = 2.28, p = .026).

The inverted-U analysis was carried out for each metric level separately, but

none revealed a significant difference between linear and quadratic modeling.

Discussion

For ratings of wanting to move, moderate levels of syncopation elicited the
highest ratings, which replicates previous work (Sioros et al., 2014; Witek et al.,
2014). Unlike rhythms with low and high degrees of syncopation, the brain’s
attempt to model the rhythm is associated with some prediction error. This

prompts the system to reconcile the differences between the model and the input
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Figure 11. Neural entrainment by metric level and syncopation degree. Error
bars represent standard error. Asterisks represent p-values less than .05 (*) and
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by reinforcing the model. If the model resides in premotor areas of the brain,

then a desire to reinforce the model could involve a greater desire to move.

Ratings of wanting to move were also higher for low compared to high degrees of
syncopation. While this was not expected, it can be interpreted with regard to
the predictive coding framework. At low degrees of syncopation, the brain is able
to draw on a reliable model of the input that it can use to predict the location of
upcoming beats (as evidenced by the low tapping variability to these rhythms).
At high degrees of syncopation, there is no such reliable model. The higher
ratings for low degrees of syncopation might suggest that the model resides in
motor areas, and that hearing the rhythm elicits some neural resonance there
that gives rise to an increased desire to move. And since there is no prediction

error, this desire is less than for moderately-syncopated rhythms.

For tapping performance, variability was worse for highly syncopated rhythms
and better for both low and moderate degrees of syncopation, which is in line
with the hypotheses based on predictive coding. Rhythms for which the brain is
able to draw on an existing model elicit the best tapping performance, because a
reliable prediction can be made about the temporal location of upcoming beats.
For rhythms which are too complex, the brain does not have an existing model

and cannot make good predictions.

For neural entrainment it was predicted that auditory and premotor regions
would have different patterns of response across different degrees of syncopation,
but this was not the case. Both regions seemed to exhibit greater entrainment
for low versus high degrees of syncopation. One possible explanation is that
higher entrainment is related to how well the brain’s model fits the input. Lower
degrees of syncopation are relatively easier to model, and thus give rise to greater

entrainment.

The significant interaction of syncopation degree with metric level was partic-
ularly revealing and tells a more complicated story. At the beat level, neural
entrainment seems to be suppressed for moderate degrees of syncopation. This

was unexpected; why does entrainment at the beat level go away when there is
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some prediction error (and when feelings of wanting to move are highest)? There
are at least two potential explanations for this pattern. First, participants were
instructed not to move while listening. Suppressing overt movement at least
means preventing neural firing that would cause muscles to contract. If this
neural firing comprises a model in PMC, then activation of this model should
be suppressed as well. Since the model likely consisted of the beat frequency,
this resulted in less neural entrainment at that frequency. In a sense, partici-
pants were told that their internal model for moderate degrees of syncopation
should not be reinforced. This finding speaks to the embodied nature of groove,
suggesting that activating a premotor model, desiring to move, and actually
moving are very much integrated with one another when it comes to perceiving
certain thythms. When perceiving a rhythm that defies the expectancies of a
meter, the brain attempts to understand the rhythm by updating and reinforc-
ing its internal model of the meter. This would involve strengthening relevant

motor plans, perhaps by executing them by moving.

Another possible explanation has to do with the mechanics of updating an
internal model. Greater neural entrainment means that many neurons are syn-
chronously firing at a specific frequency. If this synchronous firing is considered
the “model”, and this model is being activated (i.e., is firing), you would ex-
pect to see greater neural entrainment at that frequency. This would be the
expected result if the model matched the input very well (e.g., for low degrees
of syncopation). However, if this model is a close-but-not-perfect match for the
input, and is in the process of being “updated”, it seems possible that there
would be some desynchronization at this frequency as the brain attempts to
reorganize the model. This mechanistic account focusing on destructive inter-
ference of endogenous rhythms is reminiscent of the manner in which mu-band
desynchronization has been interpreted under movement observation conditions
(McGarry et al., 2012).

The pattern of neural entrainment at the eighth-note level, however, seems
to behave more similarly to participants’ tapping performance, where lower

degrees of syncopation elicited greater entrainment. Subdivisions of the beat
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are represented at the eighth-note level (for the low-syncopation stimuli), and
subdividing the beat has been found to reduce tapping variability (Repp, 2010).
So this enhanced entrainment at the eighth note level may be related to accuracy

of movement synchronization.

It was also found that neural entrainment decreases with increasing metric level,
where metric levels representing larger groups of notes elicit greater entrainment
than subdivisions. It is established that the power of the EEG signal tends to
display this 1/f behaviour, where the magnitude of spectral activity decreases
with increasing frequency (Demanuele et al., 2007), so in some sense this is
not unexpected. However, if different populations of neurons are synchronizing
their firing to the different metrical levels present in the stimulus, then points
of metrical accent would likely involve more neurons firing and greater EEG

activity at that frequency.

Conclusions

The current study replicates previous work where moderate degrees of synco-
pation elicit greater feelings of wanting to move (Sioros et al., 2014; Witek et
al., 2014). It also finds that tapping variability is lower for both low and mod-
erate degrees of syncopation. This is interpreted as the brain being able to use
an existing, suitable model for predicting the auditory input. Neural entrain-
ment was not found to be greater in PMC for moderate degrees of syncopation.
Instead, entrainment at the beat frequency was found to be lower. It is sug-
gested that this is either because a) participants were instructed to refrain from
moving, and are therefore suppressing the reinforcement of the model and the
desire to move, or b) the model is being updated, and this is associated with a

desynchronization of activity.
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Study 3: Acoustic Aspects of Music

What are the physical properties of a sound signal that would drive entrainment
of PMC neurons? There are at least two areas of work relating to neural entrain-
ment that investigate acoustic features of music that could help select relevant
features: subjective evaluation of groove and sensorimotor synchronization stud-
ies. Both of these literatures have identified important acoustic features, and
are thus a useful place to draw insight as to what features might be relevant to

PMC entrainment.

A sense of groove is traditionally defined as music that creates a desire to move in
a listener (Madison, 2006), and has been linked to increased neural excitability
of the motor system (Stupacher et al., 2013). Participants’ ratings of groove
have been found to correlate with certain acoustic features (Madison et al., 2011;
Stupacher et al., 2016); among these are beat salience, event variability, RMS

variability, and low-frequency spectral flux.

Beat salience (Madison et al., 2011) or pulse clarity (Lartillot, Eerola, Toiviainen,
& Fornari, 2008) is a feature indexing how easily a listener can perceive the
underlying rhythmic pulse of a piece of music. This feature is calculated by first
applying an onset detection function, such that subsequent analyses can focus on
note onsets instead of the whole acoustic signal. This is usually accomplished
by filtering the signal with a bank of non-overlapping filters, rectifying, and
down-sampling. The resulting onset velocity curve is a time-varying signal that
contains peaks at purported note onsets. To calculate beat salience, the onset
signal is subjected to an autocorrelation function to assess the extent to which
it repeats itself. By focusing on the autocorrelation at lags that are related to
the beat frequency, an estimate can be obtained for the extent to which the

signal emphasizes the underlying metric structure.

The strength of the underlying pulse has been associated with both ratings of
groove and movement synchronization with music. In a study investigating the

phenomenology of groove, participants noted that a sense of groove depends on
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a strong underlying beat (Janata et al., 2012). Songs with drums and bass—
instruments that tend to define rhythmic structure in an unequivocal manner—
tend to elicit higher groove ratings from participants (Stupacher et al., 2016).
Beat salience and pulse clarity have also been found to correlate with groove
ratings (Madison et al., 2011).

FEvent variability (Madison et al., 2011) is also determined by first establishing
the onset velocity curve of the signal. Then, the variance of this curve is com-
puted per beat. This metric is considered a convenient proxy for the variability
of notes at the sub-beat level, and is sensitive to the fact that relative onset
amplitudes may differ across time.'” Event variability has been found to be a
good predictor of participants’ groove ratings (Madison et al., 2011; Stupacher
et al., 2016).

Root mean square (RMS) variability is a feature relating to the variability in the
intensity and loudness of the signal. It is calculated by first squaring all values
in the signal, taking a sliding window average, and finally taking the square
root. The standard deviation of the resulting time-varying RMS waveform is
then computed as a measure of variability. While RMS variability has been

found to correlate with groove ratings, RMS has not (Stupacher et al., 2016).

Spectral flux is a measure of moment-to-moment differences in the spectrum of
a sound signal, and is often calculated separately for different frequency bands.
Flux in low-frequency bands (i.e., between 0 and 200 Hz) has been correlated
with groove ratings (Stupacher et al., 2016). The authors also note that the
songs which received the highest groove ratings tended to have drums, includ-
ing a (low frequency) kick drum. ERP work has also suggested that lower fre-
quencies are associated with superior timing perception in music (Hove, Marie,

Bruce, & Trainor, 2014). Stupacher et al. (2016) experimentally manipulated

1"Event variability is called “event density” in Madison et als (2011) original article. “Event
variability” is used here instead because a) it can be distinguished from Lartillot and Toivi-
ainen’s (2007) event density, where peaks in the onset velocity curve are simply counted per
unit time, and b) it better-characterizes what is actually being described in the signal. In
a study comparing the two features, event variability, but not even density, was found to
predict participants’ groove ratings (Stupacher et al., 2016).
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the frequency of the bass drum in their stimuli, and found that lower frequencies

were associated with higher groove ratings.

The ability to tap along with a rhythm has been linked to the extent of neural
entrainment to the beat frequency (Nozaradan et al., 2015). Strong endogenous
neural entrainment has also been found to correlate with tapping performance
and rhythmic prediction abilities (Nozaradan et al., 2016). Thus, acoustic fea-
tures that aid in sensorimotor synchronization might also drive neural entrain-

ment.

Work on acoustic features and movement have implicated a similar set of fea-
tures. Burger et al. (2012) used motion capture to investigate movement reg-
ularity when participants were asked to move along with music. They found
that the regularity of the underlying pulse (pulse clarity; Lartillot et al., 2008)
and low-frequency flux (i.e., between 0 and 200 Hz) was significantly correlated
with movement regularity. Lower frequencies have also been associated with

less variable and more forceful tapping (Stupacher et al., 2016).

Percussiveness is another feature that has been related to movement regularity
(Burger et al., 2012, 2013). This feature is calculated as the average slope of
the onsets of each note event (mirattackslope in MIR Toolbox). A steeper
average slope would mean shorter onset for each note, which may in turn fa-
cilitate synchronization. Interestingly, percussiveness has been associated with
synchronization of specific body parts such as the head and hands, whereas
other features (like pulse clarity) were associated with movement of the whole
body (Burger et al., 2013).

The purpose of Study 3 was to identify acoustic features that could predict
PMC entrainment at the beat frequency. Participants listened to drum rhythms
and a) rated them on the extent to which it made them want to move, b)
tapped along, and c) passively listened while EEG was recorded. To achieve
this, three different approaches were taken. First, a multiple linear regression
model was used to model the rating data using acoustic features that have been

previously implicated. This model was then applied to the neural entrainment

49



data to assess how well these features would predict entrainment. Next, the
same procedure was carried out on the tapping data, using a slightly different
set of features that have been implicated in the tapping literature. Finally, an
exploratory analysis was done, whereby all previously discussed features were

entered into a stepwise regression as a means of variable selection.

Methods
Participants

Thirty-nine participants with self-reported normal hearing were recruited from
the Ryerson University psychology student participant pool. Based on self-
report, nine were left-handed, 11 had perfect pitch, 15 considered themselves
musical, and 13 were musically active at the time of testing (playing or singing in
a group or on their own). They had an average of 4 years of musical experience
with a range of 0 to 15 years. This study was approved by the Ryerson Research
Ethics Board and all participants completed informed consent prior to the study.
A power analysis based on correlation analyses from previous studies (Burger et
al., 2012; Stupacher et al., 2016) revealed a large effect size (f* = .60), indicating

that a sample size of 34 would be necessary.

Stimuli

Stimuli consisted of drumbeats that were created in Garageband (version 10.2.0
on macOS Sierra 10.12.6) using the virtual drummer interface. This interface
uses sliders to modify the intensity and complexity of default drum patterns.
A total of thirty rhythms were created, each using a different default pattern,
and were modified to achieve a relatively wide range of pulse clarity and beat
salience. Rhythms were restricted to use only the kick drum, snare drum, and
closed hi-hat (MIDI notes C1, D1, and F#1, respectively), and were quantized
to the 64th note grid. Each rhythm was exported as a .wav file at five different
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tempos (90, 96, 102, 108, and 114 bpm; 1.5, 1.6, 1.7, 1.8, and 1.9 Hz) using
the “Deep Tech” electronic drum kit in Garageband. Regardless of the tempo,
each rhythm was played for 30 seconds. This resulted in a total of 150 stimulus

tokens.

Acoustic features were extracted from all stimuli using MATLAB R2017a (The
Mathworks, Inc.). Beat salience and event variability were extracted using
the Shakelt Rhythm Descriptors code obtained from Madison et al. (2011).
MIR Toolbox (Lartillot & Toiviainen, 2007) was used to extract the remaining
features: pulse clarity (mirpulseclarity function), RMS variability (mirrms,
then compute standard deviation), percussiveness (mirattackslope), and sub-
band flux (mirfilterbank and mirflux) in the following bands: 0-50 Hz, 50-100
Hz, 100-200 Hz, 200-400 Hz, 400-800 Hz, 800-1600 Hz, 1600-3200 Hz, 3200-6400
Hz, 6400-12800 Hz, and 12800-22050 Hz.

Procedure

Participants were seated at a computer in a sound-attenuated chamber. Stim-
ulus presentation was controlled using MATLAB (version R2017a; The Math-
works, Inc.), and excerpts were played over Logitech Z130 loudspeakers in two
blocks. In one block, participants were asked to simply listen to each excerpt and
to refrain from moving. In the other block, participants were asked to tap along
to the beat on a MIDI drum pad with whichever hand they felt more comfort-
able. If the participant was unsure about how to do this, it was demonstrated
to them by the experimenter. In each block, each of the 30 drum patterns were
played in random order. The tempo of each trial was random, but the same
drum pattern-tempo pairings were used for both blocks. Stimulus presentation
was self-paced, and after each trial participants were asked to answer the ques-
tion “To what extent does this rhythm make you want to move?” on a 7-point

Likert scale.

Stimulus presentation was controlled with MATLAB (version R2017a; The

Mathworks, Inc.) running on a Windows computer. EEG data were recorded
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on a separate Windows computer using a 128-channel BioSemi ActiveTwo sys-
tem and were digitized at 512 Hz. Tapping data were recorded using a Roland
HPD-10 drum pad and Pro Tools 12.8.0 on a Macintosh computer running
OSX 10.11.6. Analyses were carried out using MATLAB (version R2017a; The
Mathworks, Inc.) on a Macintosh computer running OSX 10.12.6, and included
custom scripts, the EEGLAB Toolbox (version 14.1.1; Delorme & Makeig, 2004),
and MIDI Toolbox (Toiviainen & Eerola, 2016). Statistical analyses were car-
ried out in R (R Core Team, 2017). All task, analysis, and statistical scripts

are available online https://github.com/gabenespoli/entrainment.

EEG Analysis. EEG data were preprocessed in two pipelines with different
high-pass filters in order to improve the quality of the ICA (Debener et al., 2010;
[. Winkler et al., 2015). For the first pipeline, raw EEG data were high-pass
filtered at 1 Hz using the EEGLAB function pop_eegfiltnew. Bad channels
were identified using the clean_rawdata plugin. This plugin works by first
windowing the data into 1-second non-overlapping windows. In each window,
each channel is interpolated based on all other channels, and this interpolation
is correlated with the actual data from that channel. If this correlation is lower
than 0.8, the channel is flagged for the given window. Any channel with flags
in more than half of the windows is rejected. Data were then rereferenced to
the average, and line noise was removed (pop_cleanline). Sections of data
where no music was presented (i.e., while entering responses on the computer)
were removed (pop_epoch), and the remaining data were subjected to the ex-
tended version of the Infomax ICA (Bell & Sejnowski, 1995) as implemented in
EEGLAB (pop_runica).

In the second pipeline, raw EEG data were high-pass filtered at 0.5 Hz. Channels
that were identified as bad in the first pipeline were removed. All other channels
were referenced to the average and epoched. Next, the ICA weights and sphering
matrices (i.e., EEG.icaweights and EEG.icasphere) obtained from the first
pipeline were used with the electrode data from the second pipeline to compute

IC activity.
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Regions of interest were defined based on Brodmann areas (BA): the PMC
region comprised BA6, and the auditory cortex region comprised BA22, BA41,
and BA42. In order to localize components with respect to these target brain
regions, equivalent dipole models were fit to each IC (pop_dipfit). For each
region of interest, an IC was selected if its Talairach coordinates were within 8.66
mm'® of the target brain region (Lancaster et al., 1997, 2000) and the residual
variance of its corresponding dipole model was less than 15%. If a particular IC
was within 5 mm of both regions it was assigned to the closer region; if it was
the same distance from both it was assigned to both. The average location of

selected 1Cs is plotted in Figure 12.

Entrainment of each resulting IC was determined in the following way. First,
each IC was subjected to an FFT with a bin width of 0.0078 Hz. This bin
width allowed for averaging across a maximum of 5 bins centered on the target
frequency before it would begin to overlap with the neighbouring tempo. The
noise floor was removed by subtracting activity in the surrounding bins as in
Nozaradan et al. (2011). The extent of entrainment was defined as the mean
value of three bins centered on the target frequencies. Target frequencies were
meter-related, and all had simple-integer ratio relationships to the beat rate.
They included one half of the beat rate (i.e., half-note level; grouping beats in
twos), the beat rate (quarter-note level), subdivision by two (eighth-note level)
and by 4 (sixteenth-note level). Entrainment values were then normalized by

dividing each value by the maximum value for that participant.

Tapping Analysis. MIDI files were exported from Pro Tools and imported
into MATLAB using MIDI Toolbox (Toiviainen & Eerola, 2016). This returns
an onset time, a duration, and an intensity for each tap. For each trial, average
duration and average intensity of taps was obtained by averaging the respective
values for all taps on that trial. The onset times were used to calculate a mean

onset asynchrony for each trial in the following way. First, each onset was

18The localization procedure creates a 3D cube centered on the given Talairach coordinates.
The cube extends 5 mm on all sides resulting in a total size of 11 x 11 x 11 mm. The furthest
distance from the center of the cube to the edge (i.e., the corner of the cube) is 8.66 mm.
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pmc (RV:5.81%; Tal:27,-10,47)
pmc (RV:7.04%; Tal:-41,-4,36)
aud (RV:10.34%; Tal:65,-18,6)
aud (RV:9.47%; Tal:-62,-22,9)

Figure 12. Talairach coordinates of selected ICs. Talairach coordinates for
selected ICs were sorted based on hemisphere and region, averaged across par-
ticipants, and plotted onto standardized MRI images. dark blue = premotor
ICs; light green = auditory ICs; pmc = premotor cortex; aud = auditory cor-
tex; RV = residual variance; Tal = Talairach; Line indicates the direction of the
dipole.
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matched to the beat time to which it was closest. Then, the absolute difference
between each onset and its matched beat time was calculated, and the average

of these differences was considered the mean onset asynchrony.

Feature Selection. While a number of acoustic features have been found to
relate to groove ratings and movement regularity, there is no such literature
that exists for neural entrainment. To identify acoustic features that might be
related to PMC entrainment, the following two methods were used. First, fea-
tures previously found to correlate with groove ratings or tapping performance
were selected for the two models. To avoid multicollinearity, a feature was re-
moved if a) it was significantly correlated with another feature with a coefficient
greater than .7, and b) it was less correlated with the dependent measure than
the other feature. The resulting features were then used in a multiple linear re-
gression model to predict Ratings of Wanting to Move and Tapping Variability,
respectively. These same two models were then used to predict PMC entrain-
ment. Second, a more exploratory approach was taken by selecting features via
correlation with PMC Entrainment. All of the previously-mentioned features
that were highly-correlated with PMC Entrainment were entered into a multiple

linear regression model.

Results
Model of Ratings of Wanting to Move

Feature selection. Acoustic features that have been identified in previous work
to be related to groove ratings (Madison et al., 2011; Stupacher et al., 2016) were
selected for use in the model: beat salience, event variability, RMS variability,
and low-frequency spectral flux (specifically in the 0-50, 50-100, and 100-200
Hz sub-bands). These features were correlated with one another (Table 10 in
Appendix B) and highly-correlated features were removed. This resulted in Flux
0-50, Flux 50-100, and RMS Variability being removed from the model.

Modelling ratings. Participants’ ratings of wanting to move from both EEG
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and tapping blocks were averaged together and entered into a multiple linear
regression with Beat Salience, Event Variability, and Flux 0-50 (Table 2). A
marginally-significant regression equation was found (F(3,26) = 2.314, p = .099,
R? = .211). Beat Salience was a marginally-significant predictor, whereby Rat-

ings of Wanting to Move increased with decreasing Beat Salience.

Table 2. Ratings model using acoustic features

Feature 15} t D

Beat Salience -0.3471 -1.749  .0927
Event Variability 0.3516 1.533 .13
Flux 100-200 Hz  0.1491 0.7199 .47

Modelling entrainment. The same features were then entered into a multiple
linear regression with PMC entrainment at the beat frequency as the dependent
variable. A marginally-significant regression equation was found (F'(3,26) =
2.393, p = .091, R* = .216). Event Variability was a significant predictor,

whereby entrainment decreased with increasing event variability (Figure 13).

Table 3. Ratings model applied to premotor entrainment to the beat.

Feature 15} t D

Beat Salience 0.01159 0.0586 .95
Event Variability -0.5432 -2.377 .025*
Flux 100-200 Hz 0.2487 1.205 .23

Model of Tapping Variability

Feature selection. For movement synchronization, previous work has found
that pulse clarity, percussiveness, and low-frequency flux (especially in the 0-
50, 50-100, and 100-200 Hz sub-bands) are related to regularity of movement

56



0.20-

0.16 -

0.12-

Premotor Entrainment (normalized)

0.25 0.30 0.35 0.40
Event Variability

Figure 13. Event variability and PMC entrainment. PMC entrainment to the
beat was negatively correlated with event variability (r = -.41, p = .023).

(Burger et al., 2012; Stupacher et al., 2016). These features were correlated
with one another (Table 11 in Appendix B) and highly-correlated features were
removed. This resulted in Flux 0-50 and Flux 50-100 being removed from the
model.

Modelling Tapping. Using these variables in a linear model to predict tapping
variability, a significant regression equation was not found (F(3,26) = 2.259, p
= .10, R* = .207). Percussiveness was a significant predictor, whereby tapping
variability increased (i.e., performance got worse) with increasing Percussiveness.
Indeed, Percussiveness was significantly correlated with Tapping Variability (r

= -39, p = .035).

Table 4. Tapping variability model using acoustic features

Feature o] t P

Pulse Clarity 0.2364 1.293 .20
Percussiveness -0.3729 -2.131 .042*
Flux 0-50 Hz 0.1479 0.81 42

57



Modelling entrainment. This model was then applied to PMC entrainment
at the beat frequency. The regression equation was not significant (F(3,26) =
1.462, p = .24, R* = .144). Percussiveness was a marginally-significant predictor,

whereby PMC entrainment increased with increasing Percussiveness.

Table 5. Tapping model applied to PMC entrainment to the beat.

Feature I} t P

Pulse Clarity  0.1082 0.5698 .57
Percussiveness 0.3597 1.979 .0587
Flux 0-50 Hz  -0.05386 -0.2839 .77

Model of PMC Entrainment

Feature selection. As an exploratory analysis to see what features might
be related to neural entrainment, all the previously-mentioned features were
entered into a correlation table (Table 12 in Appendix B). The features that
were most-correlated with PMC Entrainment were Event Variability (r = -.41,
p = .023) and Percussiveness (r = .36, p = .054). These two features were also

not correlated with one another (r = .055, p = .77).

Modelling entrainment. Event Variability and Percussiveness were then en-
tered into a fixed regression model with PMC Entrainment as the dependent
variable. The model was found to be significant (F(2,27) = 6.197, p = .0060, R?
= .315), whereby PMC Entrainment increased with decreasing Event Variability

and increasing Percussiveness.

Table 6. Premotor entrainment model using acoustic features

Feature 15} t D

Event Variability -0.4346 -2.723 011*
Percussiveness 0.3796 2.379 .024*
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Figure 14. Percussiveness and PMC entrainment. PMC entrainment to the
beat was marginally correlated with Percussiveness (r = .36, p = .054).

Discussion

The current study found that some acoustic features previously associated with
feelings of groove and movement synchronization are also related to neural en-
trainment in PMC. Specifically, event variability, which characterizes the vari-
ability of note onsets, was negatively correlated with PMC entrainment, and
percussiveness, characterized by a steeper slope of the amplitude envelope for
note onsets, was positively correlated with PMC entrainment. A signal that
has more variable note onsets likely means that the rhythm is more complex
and unpredictable. This would make it more difficult to entrain to the beat
frequency. By contrast, the steeper attack slope that characterizes high percus-
siveness would support the predictability of a rhythm, since note onsets would

be marked more precisely in time.

These observations may be understood from the perspective of predictive coding
models as applied to feelings of groove (Vuust & Witek, 2014). This theory
posits that the brain draws on existing internal models in an attempt to describe

the auditory input and predict upcoming beats. When the internal model is an
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imperfect match for the input, the resulting prediction error is used to update
the model. Input that is too simple or too complex would not be associated
with any prediction error, because the internal model is either a good match
or is nonexistent. In terms of neural activity while attempting to model the
metric structure of a complex rhythm, entrainment is expected to decrease as

the system tries to reconcile its model with the input.

If higher levels of event variability increase the complexity of a rhythm, then
the current pattern of results would be expected. However, if event variability
became too high, stimuli should theoretically fail to activate any existing models,
leading to an inverted-U relationship. A similar inverted-U relationship has been
documented between syncopation and PMC entrainment (Witek et al., 2014).
It seems unlikely that any of the stimuli in the current study were complex

enough to reveal the other half of this theoretical function.

The finding that beat salience seemed to be negatively related to ratings of
wanting to move was unexpected, as this is the opposite relationship that has
been found in previous work (Madison et al., 2011). One possible explanation
is that beat salience displays an inverted-U relationship with groove, and these
stimuli only represent moderate and high beat salience, while other studies
using natural music represented low and moderate beat salience. The stimuli
used here were drumbeats that were homogeneous, and the beat was very easy
to perceive in all excerpts. In contrast, Madison et al. (2011) used natural music
in many different rhythmic styles (e.g., jazz, Indian, West African). Excerpts
low in beat salience were likely rhythmically complex, making it difficult to

perceive a beat.

Conclusions

The current study finds that beat salience is related to the desire to move, albeit
in the opposite direction from previous work (Madison et al., 2011). However,
given the differences in stimuli between the two studies, it is likely that each

study represents a different half of an inverted-U relationship between beat
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salience and groove. The current study also replicates previous work on move-
ment synchronization where percussiveness is related to less variability when
moving along to the beat of music (Burger et al., 2012, 2013). Greater PMC
entrainment was elicited for drum patterns that had low event variability and
high percussiveness, suggesting that acoustic features related to groove and

movement are also related to entrainment.
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General Discussion

This dissertation investigated aspects of music that drive the entrainment of
neurons in motor areas of the brain. In three studies, it described some of the
psychological, musical, and acoustic aspects of music that contribute to PMC
entrainment. In Study 1, songs that elicited greater feelings of groove also
elicited greater entrainment in PMC. In Study 2, rhythms with moderate degrees
of syncopation seemed to elicit less entrainment at beat-related frequencies in
PMC and auditory cortex. In Study 3, drum patterns with greater variability in
their onset signals were predictive of less entrainment in PMC, whereas steeper
onset slopes were predictive of more. Taken together, these studies offer a unique
perspective on the neural dynamics of listening to music, and offer new insights

regarding how music can drive the desire to move.

Music provides a formidable temporal framework with which to synchronize
movement. Simply listening to music has been found to elicit PMC activation
(Chen et al., 2008), suggesting a neural substrate for movement synchroniza-
tion. Rhythms with regular temporal structure have been found to facilitate
synchronization as well as PMC activation (Grahn & Brett, 2007). Music that
facilitates movement synchronization has also been associated with groove or
the desire to move (Janata et al., 2012). Thus, it was hypothesized that greater
populations of neurons in PMC would synchronize their firing under conditions

of high-groove.

It is important to note, however, that while the increased BOLD response
found in previous studies implies that more neurons are firing in a particular
region, fMRI cannot provide any indication regarding whether they are firing
synchronously. More neurons may be firing in PMC during beat perception,
but whether they are entrained cannot be ascertained. Source localization using
tools with superior temporal resolution such as EEG provide a unique oppor-
tunity to study simultaneously the location and temporal dynamics of neural
processing. While the spatial resolution of 128-channel EEG is far inferior to

that of fMRI, existing fMRI work can guide our expectations about where ac-
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tivity should be localized during certain tasks.

Beat Complexity

While Study 1 of this dissertation found more neural entrainment while listening
to high-groove music, Studies 2 and 3 found [less entrainment to rhythms under
conditions that have been associated with high-groove such as syncopation and
event variability. Here I offer a unifying framework for interpreting this pat-
tern of findings that involves a consideration of stimulus complexity across the
studies. Based on predictive coding theories (Vuust & Witek, 2014), rhythms
that are too low or too high in complexity do not elicit any prediction error,
because the correspondence between the model and the input is either excellent
or nonexistent. Rhythms of medium complexity elicit some prediction error

because the system can only partially model the input.

There are many ways to measure the complexity of a rhythm or musical stimulus,
some of which have been investigated in this dissertation such as syncopation,
event variability, and percussiveness. Premotor cortices are active when listen-
ing to beat rhythms (Chen et al., 2008; Grahn & Brett, 2007), and presumably
the active motor programs are those which will aid in predicting the auditory
input (Patel & Iversen, 2014). How the complexity of the stimulus affects the
entrainment of these motor programs likely has some influence on feelings of
groove. I consider beat complexity to be the extent to which a rhythm creates
tension with these pre-existing motor programs. That is, beat complexity in-
creases with thythm complexity as long as the listener is able to maintain a beat
(i.e., as long as there is a compatible motor program). For higher rhythm com-
plexity, beat complexity drops off because a beat is no longer being perceived.
Table 7 summarizes the various stimuli in this dissertation in terms of beat
complexity. Categorized in this way, all stimuli map well onto the inverted-U
relationship with groove that has been previously-reported (Sioros et al., 2014;
Witek et al., 2014), and unifies the pattern of results seen across the three stud-

ies. In the section that follows, results will be reconsidered from the perspective
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of beat complexity.

Table 7. Beat complexity

Beat Complexity  low high low
Rhythmic low medium high
Complexity

Feelings of low high low
Groove

Movement high medium low
Synchronization

Premotor high medium low
Entrainment

Studies’ Stimuli mid groove) 1 (low groove)

1(

1(
2 (low sync.) 2 (mid sync.) 2 (high sync.)"
3 (low event 3 (

var.)

In Study 1, mid- and high-groove excerpts tended to have more salient temporal
structure, and low-groove excerpts usually did not have drums, which made it
more difficult to find the beat. Low-groove excerpts from this collection of
stimuli are also more difficult to synchronize with when tapping along (Janata
et al., 2012). In terms of being able to model the metric structure, it was likely
too complex or undefined to elicit the activation of an existing model. Thus,

entrainment to the beat was lower for these low-groove excerpts.

In Study 2, neural entrainment to the beat seemed to be highest for low degrees
of syncopation and lowest for moderate degrees. This is somewhat perplexing

in that moderate levels of syncopation have previously been associated with

9For the highly-syncopated rhythms in Study 2, neural entrainment seemed to be greater
than this table would suggest. This was likely due to the rhythmic hi-hat that was part of
these stimuli.
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the highest ratings of wanting to move (Sioros et al., 2014; Witek et al., 2014)
and also the greatest prediction error (Vuust & Witek, 2014). The reduced en-
trainment found with moderate syncopation may have arisen due to the relative
complexity involved in finding the beat. For high degrees of syncopation, we
would expect higher beat complexity and less neural entrainment, but this did
not seem to be the case in Study 2. One possible explanation is that listeners
chose to focus their attention on the hi-hat, which clearly outlined the beat in
all conditions. In this case, highly-syncopated stimuli would in fact be relatively
low in beat complexity. By comparison, focusing on the hi-hat while discarding
other aspects of the rhythm may have been more challenging in the moderate
syncopation condition because the two rhythms were more compatible with one

another, but not as compatible as for low syncopation.

In Study 3, PMC entrainment to the beat was lowest for high levels of event
variability in the drum patterns. Higher event variability can be thought of as
higher complexity, meaning that the brain’s ability to model the stimulus be-
comes reduced. The stimuli here were all drum beats with very salient metrical
structure, and there were not any rhythms that deliberately pushed against the
intended meter (as was the case for moderately-syncopated stimuli in Study 2).
As a result, it seems likely that the range of event variability in these stimuli
consisted only of low- and medium-complexity categories. If this were the case,
it would be predicted that drum patterns with even greater event variability

would elicit lower ratings of groove.

The tapping results from Studies 2 and 3 can also be interpreted with regard to
complexity, where participants are more variable when tapping along to higher
complexity rhythms. Predicting the temporal location of upcoming beats and
note onsets in a complex rhythm is difficult, so it makes sense that the ability
to tap along in time be worse. If the beat is more obvious, then it is easier to
synchronize movement. This was the case for Studies 2 and 3, and has been
found previously for the stimuli in Study 1 (Janata et al., 2012). Together with
the entrainment findings, it seems that high complexity rhythms give rise to less

PMC entrainment and also less regular motor output. This fits with previous
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fMRI work finding premotor BOLD response to rhythms that participants were
better at tapping along to (Grahn & Brett, 2007).

Endogenous Oscillations

There are rich connections between PMC and the BG that facilitate the coor-
dination and execution of action. So, some of the PMC effects here may have
their origins there. The BG have been found to be active during both the
perception and production of musical rhythms (Kung, Chen, Zatorre, & Pen-
hune, 2013). Greater BG activity (particularly in the putamen®) have been
specifically associated with perceiving rhythms which have a beat (Grahn &
Brett, 2007), suggesting a role of these structures in synchronizing movement
with music. Rhythms which elicited greater BG activity also afforded superior
tapping performance (Grahn & Brett, 2007). When the BG are compromised,
as in Parkinson’s disease, it has been proposed that the corresponding disrup-
tion of the basal ganglia-thalamo-cortical motor circuit (DeLong, 1990) causes
a decreased ability for voluntary movement. This suggests that the BG may be
involved in the endogenous generation of oscillatory activity used to coordinate
music and movement. As part of this circuit, the putamen receives projections
from PMC, and has direct projections onto brainstem nuclei involved in motor
output®'. Motor plans activated in PMC can effect movement via this circuit,
but overt movement does not seem to be necessary for BG activity (Kung et al.,

2013).

Using synchronization-continuation tasks®’, increased activity in the putamen
and SMA has been found during the continuation phase of these tasks (Lewis,
Wing, Pope, Praamstra, & Miall, 2004), suggesting that these structures are

implicated in the generation of endogenous oscillations. Beta-band activity has

20The putamen is a structure in the dorsal striatum of the BG.

21The putamen has direct projections onto the internal segment of the globus pallidus and
the substantia nigra pars reticulata, which are both involved in motor output.

22In a synchronization-continuation task, the participant synchronizes movements (usually
tapping) with a stimulus (e.g., a metronome), and continue the movement after the stimulus
has stopped.
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been suggested to facilitate oscillatory communication between brain regions
(Merchant et al., 2015), and both human and animal work have suggested a
role for the beta-band in the endogenous generation of temporal prediction in
isochronous sequences (Bartolo, Prado, & Merchant, 2014; Fujioka et al., 2012).
Local field potential (LFP) recordings in monkeys have revealed that different
neural populations in the putamen code for different durations of time intervals
(Bartolo et al., 2014).

It is important to remember that groove is likely a difficult thing to experi-
ence to its full potential without actually moving when you feel the desire to
move. The experiments presented here all asked participants to sit still, so
that movement artifacts would not disrupt the EEG recording. This means
that these studies may have been reducing the amount of groove felt by partic-
ipants. Indeed, increased activity in PMC is seen during tapping tasks (Chen
et al., 2008; Nozaradan et al., 2015). It has been suggested that syncopation,
where metrically-important beats are left empty, invites the listener to move on
these empty beats as a way of “filling in” the rest of the meter (Witek, 2017).
This “embodiment” of the rhythm (Burger et al., 2013) may increase feelings of

groove beyond passive listening.

The Groove Pathway

Taken together with previous work, I propose a cortical “groove pathway”, con-
sisting of a set of brain areas, that when activated will elicit the desire to move
along with music. First, sound enters the ear and is converted into a pattern
of neural firing based on the movement of the basilar membrane. Neurons in
auditory cortex begin to synchronize with this pattern of firing. Organized as
a bank of frequency-tuned oscillators, populations of neurons begin to entrain
to the oscillatory structure of the sound input. Of particular interest here are
lower frequency oscillations corresponding to the amplitude envelope at the
beat level and related frequencies. The complexity of the input does not matter

here; auditory areas should entrain well to any kind of input, regardless of its
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structure.

Depending on the structure of the auditory firing pattern, connected brain ar-
eas with matching neural architectures may begin to synchronize their firing as
well. The extent to which this occurs is dependent on the specific connectiv-
ity and firing patterns of the neurons there, so they will only resonate if the
auditory firing pattern is sufficiently similar. In the case of PMC, its connec-
tivity and firing patterns are presumably tuned for body movements—such as
walking and talking—that all have a particular timing structure. For example,
walking involves timing the neural firing of motor neurons to activate the mus-
cles of two legs as they take turns stepping. The higher-order structure of this
pattern of firing is similar to music, where, for example, the repetition of two
notes would lead to a duple pattern. Synchronization of auditory and motor
neural populations has been suggested to be done via beta- and gamma-band
oscillations (Merchant et al., 2015), which have been previously implicated in
beat perception (Fujioka et al., 2012; Snyder & Large, 2005).

The extent to which the premotor model is a good match with input will de-
termine the extent of entrainment in PMC. A good match would result in high
entrainment to the beat, whereas no match would not elicit any. A partial
match could still drive the entrainment of a motor model, but would involve
some prediction error between them, and an attempt would be made to recon-
cile this. Vuust and Witek (2014) propose that one way to do this is to actually
move the body in accordance with the model in an attempt to minimize pre-
diction error. In a sense, the brain is attempting to increase entrainment of its
model by involving primary motor and proprioceptive neurons. This drive to
minimize prediction error by emphasizing the beat with the body is the feeling
of groove. While it is beyond the scope of this dissertation, the positive feeling
that people experience when they “groove” to the music may arise as a function
of minimizing prediction error. If we think of the brain as a prediction machine
(Friston, 2010), then grooving to the music can be thought of as the brain lever-
aging its various modalities in order to achieve its mission to model the world

around it. The brain’s reward systems have been suggested to play a role here
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(Vuust & Witek, 2014).

The degree of mismatch between the model and the input has an inverted-U
relationship with the desire to emphasize the model. When the model almost
fits the input, the reaction is to emphasize the model in order to make it fit.
This model could reside anywhere in the brain and involve any combination of
systems, depending on the input. Phenomenologically, the activation of these
systems is experienced as a desire to carry out those programs. In groove, this
model resides with systems that control movement of the body, which means

that emphasizing the model entails neural firing that enacts movement.

Limitations and Future Directions

In studies 2 and 3, trials were not repeated (at least not at the same tempo),
which precluded an evoked analysis where trials were first averaged together
in the time-domain before assessing entrainment. Averaging together in the
time domain restricts the analysis to phase-locked activity (Snyder & Large,
2005), and this is the method used in other work assessing steady-state evoked
potentials (SSEPs) in response to rhythmic stimuli (Nozaradan et al., 2011).
Because tempo was controlled, repeating trials at the same tempo would not
have been feasible as experimental sessions would have run far too long. A
future study could drop the tempo control and assess SSEPs instead of localized
entrainment. Doing so would provide a valuable complement to the current

work.

An important limitation of using ICA with EEG is that sources of activity
below the surface of the cortex (e.g., BG activity) are not well-resolved. This
means that I[CA will not often return a reliable IC that is localized to the BG.
This makes it difficult to probe the entire proposed groove network using EEG.
fMRI methods are not susceptible to this limitation, but as previously discussed
they do not have the temporal resolution to be able to assess entrainment.
However, whole-brain computational modelling using fMRI allows one to study

the effective connectivity of different regions during a task, making it possible

69



to investigate how seemingly disparate brain regions might operate in tandem.
Combining data and results from all of these methods will likely be necessary
to elucidate this network further. Studies involving EEG and fMRI recordings

of the same participants and stimuli would be particularly informative.

In Parkinson’s Disease (PD), cell death in the BG makes voluntary movement
difficult, but direct auditory-motor links provide an alternative way of driving
the motor system. Patients who have difficulty walking are able to walk with
improved pace and stride length when they walk along to the beat of the music
(Thaut & Abiru, 2010). The extent to which auditory areas are able to drive
the motor system likely depends on many factors to do with the choice of mu-
sic. Systems exist for aiding music selection based on the optimal tempo for
a particular person, the strength of the beat, and individual preferences (Li et
al., 2010). Investigating these and other aspects of music with respect to their
ability to drive PMC entrainment could offer insight into this treatment and
help to optimize it. Additionally, since there is cell death in the BG in PD, it
provides a unique opportunity to further elucidate the role of the BG in the
perception of groove. The BG seem necessary for beat perception (Merchant et
al., 2015), but whether they or other brain regions are necessary to feel groove

remains an open question.

Music provides an excellent temporal framework for synchronization, and also
a unique opportunity to study the temporal dynamics of neural processing. It
is becoming apparent that endogenous oscillatory activity in the brain is an im-
portant mechanism for communication between brain regions (Buzsaki, 2006).
How might the results presented here generalize to other domains? Speaking
is another very rhythmic activity that humans engage in, and there are great
public speakers who can command a crowd with the timbre and timing of their
voice, in much the same way as a great singer. Neural oscillations have been
proposed to be involved in speech processing (Giraud & Poeppel, 2012; but see
Obleser, Herrmann, & Henry, 2012). Moreover, like music, speech has a tempo-
ral structure that lends well to the firing patterns of existing neural architecture,

and provides an opportunity for a stimulus to be a partial match for an existing
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model. Just like syncopation creates groove, it seems likely that the phrasing
and timing of a speech could focus a listener’s attention to specific points in
time, giving the speaker an opportunity to emphasize or de-emphasize certain
words depending on the intended message or effect. By leveraging the expertise
of the motor system, a listener may be more attuned to these timing patterns

and be better able to understand what is being said.

Conclusion

The current dissertation investigated how aspects of music that elicit feelings
of groove can drive neural entrainment. It was found that groove is related
the extent of entrainment to the beat in premotor areas of the brain. Results
across three studies suggest that neural entrainment is related to the rhythmic
complexity of the musical stimulus, where higher degrees of complexity result
in less entrainment. However, while groove has been found to relate to acoustic
and rhythmic complexity, I propose “beat complexity” as way of describing the
pattern of behavioural and neural results in research on groove. At optimal lev-
els of beat complexity, groove ratings are highest and premotor entrainment to
the beat is reduced, as the brain attempts to reconcile the differences between
rhythm and meter. I suggest that the compulsion to move is a natural conse-
quence of this process, whereby the system attempts to emphasize the model
by moving along with it. These results add to the existing literature on rhythm
perception and neural entrainment by offering a mechanism by which feelings

of groove can originate.
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Appendix A

Table 8. List of stimuli (Study 1)

Groove Groove Tempo

Song Artist Rating Category (Hz)

Superstition Stevie Wonder 108.7  high 1.667

It’s A Wrap (Bye, Bye) FH1 (Funky Hobo #1) 105.9  high 1.533

Flash Light Parliament 105.1  high 1.767

Lady Marmalade LaBelle 102.5  high 1.917

Up for the Downstroke = The Clinton 102.4  high 1.583
Administration

Mama Cita Funk Squad 101.6  high 1.583

(Instrumental)

Music Leela James 101.1  high 1.633

If T Ain’t Got You Alicia Keys 98.7  high 2

Sing, Sing, Sing Benny Goodman and His 97.4  high 1.8
Orchestra

In the Mood Glenn Miller and His 96.9  high 2.733
Orchestra

Summertime Ella Fitzgerald and Louis 67.9  mid
Armstrong

What a Wonderful Louis Armstrong 66.4  mid 1.233

World

How High the Moon Ella Fitzgerald 65.2  mid 1.883

(1st take)

Squeeze

The Child Is Gone
Run / Immortal
Freedom of the Road
Can’t Let Go

Robert Randolph and the
Family Band

Fiona Apple

Beth Hart

Martin Sexton

Lucinda Williams
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63.4  mid 1.95

62.3  mid 1.083
60.8  mid 1.917
59.7  mid 2.45
58.9  mid 1.583



Song

Artist

Groove Groove Tempo

Rating Category (Hz)

Down With Love
The Girl From
Ipanema

Space Oddity

Ray Dawn Balloon
Druid Fluid

Flandyke Shore
Citi Na GCumman

Dawn Star
Fortuna

Beauty of the Sea
Sweet Thing

Hymn for Jaco

Blossom Dearie
Astrud Gilberto, Joao
Gilberto, and Stan Getz
David Bowie

Trey Anastasio

Yo-Yo Ma, Mark
O’Connor, and Edgar
Meyer

The Albion Band
William Coulter and
Friends

Dean Magraw

Kaki King

The Gabe Dixon Band
Alison Brown

Adrian Legg

57  mid 2.333
57  mid 2.15

38.7 low 2.267
38.5 low 2.767
38.1 low 1.95

36.5 low 1.5
35.2 low
34.8 low
32.6 low
32.1 low 1.9
30.9 low
29.3 low

Note. Excerpts were selected based on the groove ratings from Janata et al.

(2012). Excerpts without a marked tempo were removed during analysis due to

having a tempo that was not consistent throughout the excerpt.

Table 9. List of included data (Study 1)

Participant Premotor Cortex  Auditory Cortex Visual Cortex
1 N/A 2.09E-12 7.57E-11
2 N/A N/A 8.24F-14
3 3.53E-18 9.04E-16 2.15E-12
4 1.51E-15 2.05E-14 2.73E-13
) 9.07E-15 1.43E-12 2.46E-11
6 1.96E-09 6.85E-10 1.55E-14
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Participant Premotor Cortex Auditory Cortex Visual Cortex

7 4.98E-18 N/A 9.30E-16
8 59.31E-13 N/A 1.47E-14
9 2.94E-14 2.78E-15 1.08E-17
10 5.66E-17 N/A 4.47E-17
11 1.40E-13 N/A 3.34E-11

Note. This table lists p-values for t¢-tests of whether spectral peaks were sig-
nificantly above the noise floor for each participant and brain region. A value
of N/A indicates that no component was localized to the given region, thus
an entrainment value of 0 was assigned. There were no cases of a component
that was localized to a region but did not have its spectral peaks of interest

significantly above the noise floor.
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Appendix B

In all tables, asterisks represent p-values less than .001 (***) .01 (**), .05 (*),
and .1 (1).

Table 10. Correlations of acoustic features for the ratings model.

Event RMS Flux Flux

Wanting Beat Varia- Varia- 0-50 50-100
to Move Salience bility bility Hz Hz

Wanting

to Move

Beat -0.19

Salience

Event 0.28 0.43*

Varia-

bility

RMS 0.25 -0.01 0.49%*

Varia-

bility

Flux 0-50  0.21 0.00 0.27 0.74%**

Hz

Flux 0.24 0.01 0.31% 0.76%** 1.00%**

50-100 Hz

Flux 0.317 0.03 0.50%* 0.83%H* 0.86%** (.88%**

100-200 Hz
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Table 11. Correlations of acoustic features for the tapping model

Flux
Tapping Pulse Percuss- Flux 50-100
Varia-bility Clarity iveness 0-50 Hz Hz

Tapping
Variab-ility
Pulse Clarity 0.21

Percussi- -0.39* -0.05

veness

Flux 0-50 Hz 0.09 -0.29 -0.02

Flux 50-100 0.06 -0.29 0.03 1.00%**

Hz

Flux 100-200 0.00 -0.18 0.24 0.86%**  (.88***
Hz

Table 12. Correlation table of acoustic features and premotor entrainment to
the beat.

Flux
PMC Event RMS Flux  50-
Entrain- Beat Pulse Varia- Percuss- Varia-  0-50 100
ment SalienceClarity bility iveness bility  Hz Hz

PMC

Entrain-

ment

Beat -0.21

Salience

Pulse 0.11 0.14
Clarity
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Flux
PMC Event RMS Flux  50-
Entrain- Beat Pulse Varia- Percuss- Varia-  0-50 100
ment SalienceClarity bility iveness bility  Hz Hz

Event -0.41*%  0.43*  0.22

Varia-

bility

Percuss- 0.367 -0.09 -0.05 0.06

iveness

RMS 0.02 -0.01  -0.02 0.49**  0.27

Varia-

bility

Flux -0.09 0.00 -0.29 0.27 -0.02  0.74%F*

0-50 Hz

Flux -0.10 0.01 -0.29 0.31% 0.03 0.76%**  1.00%**
50-100

Hz

Flux -0.02 0.03 -0.18 0.50**  0.24 0.83%** (.86%** ().88%**
100-200

Hz
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