posted on 2021-05-24, 10:37authored byFereshteh Mahvarsayyad
In computer vision, segmentation refers to the process of subdividing a digital image into constituent regions with homogeneity in some image characteristics. Image segmentation is considered as a pre-processing step for object recognition. The problem of segmentation, being one of the most difficult tasks in image processing, gets more complicated in the presence of random textures in the image. This paper focuses on texture classification, which is defined as supervised texture segmentation with prior knowledge of textures in the image. We investigate a classification method using Gene Expression Programming (GEP). It is shown that GEP is capable of evolving accurate classifiers using simple arithmetic operations and direct pixel values without employing complicated feature extraction algorithms. It is also shown that the accuracy of classification is related to the fact that GEP can detect the regularities of texture patterns. As part of this project, we implemented a Photoshop plug-in that uses the evolved classifiers to identify and select target textures in digital images.