
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2009

Texture classification using gene expression
programming
Fereshteh, Mahvarsayyad
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Mahvarsayyad, Fereshteh,, "Texture classification using gene expression programming" (2009). Theses and dissertations. Paper 1154.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/1154?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F1154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

Texture Classification

Using Gene Expression Programming

By

F ereshteh Mahvarsayyad

BEng, Shiraz University, 1996

A MEng Project

presented to Ryerson University

In partial fulfillment of the

requirements for the degree of

Master of Engineering

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2009

© F ereshteh Mahvarsayyad

~JHO t'ERTY Of
RYERSON UNIVERSITY LIBRARY

B \,30 b~o'

~~2-, p 3>
YV\~L{

JC'fl)

Declaration

I hereby declare that I am the sole author of this thesis or dissertation.

I authorize Ryerson University to lend this thesis or dissertation to other institutions or

individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis or dissertation by

photocopying or by other means, in total or in part, at the request of other institutions or

individuals for the purpose of scholarly research.

11

Abstract

In computer vision, segmentation refers to the process of subdividing a digital image into

constituent regions with homogeneity in some image characteristics. Image segmentation

is considered as a pre-processing step for object recognition. The problem of

segmentation, being one of the most difficult tasks in image processing, gets more

complicated in the presence of random textures in the image. This paper focuses on

texture classification, which is defined as supervised texture segmentation with prior

knowledge of textures in the image. We investigate a classification method using Gene

Expression Programming (GEP). It is shown that GEP is capable of evolving accurate

classifiers using simple arithmetic operations and direct pixel values without employing

complicated feature extraction algorithms [5]. It is also shown that the accuracy of

classification is related to the fact that GEP can detect the regularities of texture patterns.

As part of this project, we implemented a Photoshop plug-in that uses the evolved

classifiers to identify and select target textures in digital images.

111

Table of Contents

Introduction ... 1

2 Methods and Materials .. 4

2.1 GEP System ... 4

2.2 Learning Step - Generating Texture Classifiers .. 5

2.3 Recognition Step- Segmenting Textures ... 7

2.4 Analysing Texture Classifiers ... 8

2.5 Experimental Design 9

2.6 Training Data ... 10

3 Results ... 11

3.1 GEP Detecting Texture Patterns .. 11

3.2 Segmenting Greyscale Textures .. 13

4 Discussion 1 7

5 Conclusion and Future Work ... 20

6 Appendix A - Software .. 21

7 References ... 27

8 Glossary ... 28

9 Index .. 30

IV

List of Tables

Table l: Function Set 5

Table 2: Terminal Set 5

Table 3: GEP Parameters 6

Table 4: Test Conditions ... 13

Table 5: GEP vs. GP .. 16

v

List of Figures

Figure 1: Texture segmentation examples ... 1

Figure 2: Black and white textures .. 8

Figure 3: Input textures from Brodatz collection .. 10

Figure 4: Black and white classification results .. 12

Figure 5: D21 segmentation results; two textures, regular boundaries .. 14

Figure 6: D21 segmentation results; multiple textures, regular boundaries 14

Figure 7: D21 segmentation results; two textures, irregular boundaries 15

Figure 8: D21 segmentation results; multiple textures, irregular boundaries 15

Figure 9: Static Range Selection Method vs. Dynamic ... 17

Figure 10: Arithmetic Operations vs. Full Function Set ... 18

Figure 11: Increasing training dataset ... 18

Figure 12: Best Fitness and Average Population Fitness .. 19

Figure 13: Classifier Generator- Main Form ... 21

Figure 14: Classifier Generator - Set Training Data ... 22

Figure 15: Classifier Generator- Create Sub-Images ... 22

Figure 16: Classifier Generator- Set Parameters ... 23

Figure 17: Classifier Generator- Test Classifier .. 24

Figure 18: Classifier Generator- Save Best Individual .. 24

Figure 19: Photoshop - Texture Segmentation Plug-in ... 25

Figure 20: Photoshop- Launching Texture Segmentation ... 26

Figure 21: Photo shop- Segmenting Target Texture ... 26

Vl

List of Appendices

Appendix A - Software 21

Vll

1 Introduction

The goal of texture classification is to partition an unknown sample image into regions

that belong to one of a set of known texture classes. Texture classification belongs to the

wider problem domain of texture segmentation. In texture segmentation, the goal is to

simplify an image into something that is more meaningful and easier to analyze. The

image is divided into regions with homogeneity with respect to texture. Figure 1 shows

some texture segmentation results. When texture segmentation is supervised and prior

knowledge of textures in the image is available, the problem of texture segmentation is

simplified to texture classification.

Figure 1: Texture segmentation examples 1

1 Image sources from left:

http ://sidc.oma.be/EIT/OSTC2000/index.php

http://www .cs . washington .edu/homes/ lachesis/i mages/classes/vision ti nal/report.html

Segmentation is spontaneous and instantaneous in human visual system. Humans can

effortlessly partition a scene to foreground, background and objects. However, it is

extremely difficult to mimic the same performance with an artificial algorithm. Some of

the practical applications of image segmentation are: medical imaging, digital

photography, robotic vision, object identification, scene analysis, criminology and

security, geography (cartography), and multimedia access. Despite many potential

applications in the industry, the problem of texture segmentation remains unsolved. This

is mainly due to high computational complexity of many of the proposed texture

extraction algorithms. In addition, textures in the real world are often not uniform due to

changes in orientation, illumination, scale, and presence of environmental noise.

Reviewing the wide variety of human invented feature extraction algorithms is beyond

the scope of this pape?. In this research, we explore the possibility of using GEP [4] to

evolve feature extraction algorithms (hereinafter referred to as texture classifiers) out of

simple arithmetic operations and direct pixel values.

First introduced by Candida Ferreira in 2001 [4], GEP is a recently developed

evolutionary computation method for data analysis and knowledge discovery. Born from

Genetic Algorithms (GAs) [2] and Genetic Programming (GP) [3], GEP is an adaptive

search technique inspired by biological evolution. It uses procedures such as

reproduction, mutation, recombination, natural selection, and survival of the fittest. GEP

is both flexible at genetic operations due to its linear genotype and capable of retaining a

certain extent of functional complexity due to its phenotype as expression trees. Previous

research work has shown its powerful capabilities over a large range of domains.

However, there has been little attention paid to using GEP for solving image processing

problems. In this research, we extend the works of A. Song and V. Ciesielski [6]. We use

GEP instead of GP to produce texture classifier algorithms. One of the main goals is to

simplify and accelerate the evolution process.

2 Refer to the work ofTuceryan and Jain [5] to read about feature extraction techniques.

2

The aim of this study is to answer the following questions:

• How to represent texture classifiers in GEP?

• Is GEP capable of evolving human competitive classifier algorithms?

• Are GEP-evolved classifiers fast and accurate enough for practical use?

• Is the developed technique suitable for real-time purposes? In other words, can
GEP generate classifiers on the fly in an unsupervised texture segmentation
application?

• Are regularities in the patterns detected by GEP?

• Does GEP show any advantages compared to GP?

To provide satisfactory answers to the above research questions, we developed a software

application that uses GEP to generate classifiers for specific textures. The same

application also provides means to test the produced classifiers for segmenting images. In

order to prove the practicality of the method, we also implemented the segmentation

algorithm as a Photoshop plug-in. Refer to Appendix A for more details on the developed

software.

Our results show that GEP is able to generate fast and relatively accurate classifiers using

main arithmetic operations as the function set and only pixel values as the terminal set.

We exemplify real-time potentials of the developed technique by presenting the choices

that can keep the evolution time between 5-20 seconds. We analyse a few simple

classifiers that were generated by GEP for black and white textures and show how the

regularities of the patterns is detected. We also highlight the advantages of using GEP as

opposed to GP.

Next chapter provides details about our methodology. A summary of our experiments and

the results is presented in chapter 3. Chapter 4 analyses the results and provides

discussion about some of the choices we made to achieve the results. Finally, chapter 5

concludes the study and highlights some of the areas for further investigation and future

work.

3

2 Methods and Materials

The hypothesis we put forward is that we can use GEP to detect texture patterns and

generate fast and accurate classifier algorithms in real-time. We generally based our

system on the technique presented in [6]; however, we replaced GP with GEP, took

advantage of GEP features, and made a few simplifications to the base method to come

up with a fast and nimble system. For our input data we used the textures from Brodatz

album3
.

2.1 GEP System

There are two steps involved in the texture classification process: the learning step and

the recognition step. In the learning phase, the goal is to build a model that describes each

class of texture present in the training data. In the recognition phase, the texture content

of the unknown sample is first described with the same texture description method as

produced in the first step. The textural features of the sample are, then, compared to those

of the training images and the sample is assigned to the category with the best match.

We developed a software application which implements both steps. Refer to Appendix A

for details about the application.

The next two sections drill into the details of the abovementioned steps.

3 Published in 1966, this collection has become a standard database in texture analysis studies:

http://www. ux. uis.no/~tranden/brodatz . htm I

4

2.2 Learning Step- Generating Texture Classifiers

As the first step to the classification process, we use GEP to extract texture features and

generate classifier algorithms. GEP individuals (chromosomes) are constructed from the

function set and terminal set, as listed in Table 1 and Table 2 respectively.

Function

+

*

I

Description

Arithmetic addition

Arithmetic subtraction

Arithmetic
multiplication

Arithmetic division

Table 1: Function Set

Name Description

Pixel[x, y] Pixel value at location (x, y)

Table 2: Terminal Set

Each individual is evaluated to a real number, which is then translated to class labels.

This study focuses on binary classification, which means the output of a classifier is

interpreted either as class A (target texture) or class B (non-target textures). There are

several ways to divide the range of real numbers that are returned by the classifiers to

represent different class labels. In this research, we examined static and dynamic range

selection methods introduced by T. Loveard and V. Ciesielski [7].

In the static method, we divide the range of real numbers to negative and positive values

and associate positive values with target texture (class A) and negative values with non

target textures (class B). In the dynamic method, however, we allow each chromosome to

dynamically determine a separate set of ranges for class boundaries. In the latter, a subset

of the training data is used to record values for each class and divide the infinite range of

real numbers into regions corresponding to class boundaries [7].

We started with the full function set as proposed by Song and Ciesielski, which includes

logical operations IF,<=,>=,=, and BETWEEN, as well as main arithmetic operations.

We later reduced the function set to arithmetic operations only.

5

We used the simple definition for the fitness function as proposed in [6], which measures

the success rate of each individual:

Number of Successes TP +TN . . . f = = x 100%, where TP 1s the number of true positives,
Tot~ Tot~

TN is the number of true negatives and Total is the total number of training cases.

The runs consisted of 50 generations with population size 256. We used single gene

chromosomes with head length 500. The termination criteria were 100% correct

classification or completion of the specified number of runs {typically 10) for 50

generations. Table 3 shows the rest of GEP parameters used in this study.

Parameter

Number of generations

Population size

Gene head length

Number of genes

Value

50

256

500

Linking function N/ A

Mutation rate 0.01

One-point recombination rate 0.2

Two point recombination rate 0.5

Gene recombination rate 0.1

IS transposition rate 0.1

IS elements length 1 ,2,3

RIS transposition rate 0.1

RIS elements length 1 ,2,3

Gene transposition rate 0.1

Error 0%

Table 3: GEP Parameters

6

2.3 Recognition Step- Segmenting Textures

Segmentation is traditionally done using three groups of techniques: 1) edge-based; 2)

pixel-based; and 3) region-based. In edge-based techniques, regions are classified by

identifying edges between them. An edge can be thought of as pixel locations of abrupt

changes. Pixel-based techniques focus on the greyscale or color value of individual

pixels. The region-based techniques focus on the continuity of a region in the image.

Most of the classic edge and pixel based algorithms are not effective in detecting

segments in texture images with randomness. Since those techniques rely on pixel

information, they identify local texture patterns as edge areas. We used the region-based

technique that is proposed by Song and Ciesielski to implement a Photoshop plug-in as a

proof-of-concept application. In this method, the unknown image is analysed in small

windows, the same size as the training sub-images (16 by 16). Each window is classified

and assigned with a label using the classifier produced in the training step. The window is

then moved a few pixels in such a way that the windows always overlap. In fact, the more

the windows overlap, the more accurate the segmentation results will be. In our

experiment, we moved the window 2 pixels at a time. Once the entire image is scanned

and all windows are classified, each pixel is assigned a class label based on a voting

mechanism. For example, if a pixel falls more within windows that are classified as class

A, the pixel is labelled as class A. Pixels that belong to equal number of windows from

both classes are voted randomly.

7

2.4 Analysing Texture Classifiers

One of the goals of this study was to find out whether GEP is able to detect pattern

regularities in the textures.

In order to conduct this part of the study, we generated simple binary (black and white)

textures (Figure 2) and test data as in [8].

xxxx~xxxxxxx~
t I _I

t 1 1

,xxxxxxxxx,xxxxx,

! I : I I r- r
xxxxxxxxxxxxxx

l- 1 , 1 , L l f ~ 1

xxx'x'xxxxxxxx'xx
{. 't'

Figure 2: Black and white textures;

from left: horizontal texture, horizontal pixel pattern,

vertical texture, and vertical pixel pattern

8

2.5 Experimental Design

The objective of the experiments was to benchmark our GEP system against the GP

based technique developed by Song and Ciesielski. Our goal was to simplify the system

as much as possible and speed up the evolution process in preparation for real-time

applications. We explored four avenues for this purpose as listed in the following

subsections.

• Range Selection Method

Two range selection methods were considered: 1) Static and 2) Dynamic [7].

• Function Set

We experimented with the full function set as in [6] as well as the limited function set

which excluded logical operations.

• Terminal Set

We examined the effect of including random values as part of the terminal set as

proposed in [6].

• Size of Training Data

In order to minimize the training time, collections of training data with different number

of files were considered.

9

2.6 Training Data

Brodatz textures were used as input data in our project. These images are greyscale

pictures of rather complex textures. We focused on D21, D24, D34 and D57 textures

(Figure 3).

I I I • • , ~ ' f o I , I I • I• It 1 •• • tr ' o •

11 < 1 .fl o l tot I 1 • 1 • 1•1 • •t Ill

• • • • · • • · • • • •••• • •• • ,II
1 ••· • • .1 I li o l • II • · 81 • 1 1 • 1

' ' ' ' ' ' ' ' ' ' • • • 1 ' 1 1 1 • · 1 ' 1 I I
• I II '.II ' a 1 I I o I I • I I • I • I 1 t
t l ' t .t f • I · 1 I 1•1• I • I ' I J I I
· • , , , , , , , ,,, . , ••• • • t.1 • t

oil f • I I · I I I I • I •I edit • I t •i• l ····· ,,,
•• t •• I I · II f I . .. II • I • I I to.

• f l •• • t · t • l I A t:llt t 1 11

4 •• • • • ••• • • • •• • • • • • • • • • • I • • I I I · . t I •I I • • I · II I i I I

1 • 1 I t • l I · • · • lot I I 11 1 e

Figure 3: Input textures from Brodatz collection;

from left to right: 021 , 024, 034 and 057

The training dataset consisted of 16 by 16 cut outs (sub-images) from the original texture

images. In order to classify each texture against the other three, we only needed 99 sub

images from the target texture (class A) and the same number of sub-images from other

textures combined (33 each). This is another contributing factor to the speed of the

evolution process and an advantage over 2000 sub-images used by Song and Ciesielski.

10

3 Results

3.1 GEP Detecting Texture Patterns

Using only addition and subtraction operations as the function set, it takes literally no

time (less than 10 milliseconds) for GEP to produce simple and short classifiers with

perfect accuracy (1 00% fitness) for black and white patterns (Figure 2). The following

classifiers are examples of GEP results:

((Pixel[3,1]+(Pixel[l,l]-Pixel[2,1]))-Pixel[O,l])

((Pixel[0 , 2] -(Pixel[0 ,0]-Pixel[2,1]))-Pixel[2 ,3])

As shown in the pattern sketches in Figure 2, the horizontal texture has one row of black

pixels (pixel = 0) followed by three rows of white pixels (pixel = 255) and the vertical

texture has one column of black pixels (pixel = 0) followed by three columns of white

pixels (pixel= 255).

It can be seen that each classifier correctly involves at least 4 pixels and work based on

the pixels in four consecutive rows or columns. This confirms the fact that GEP is

capable of recognizing texture patterns.

11

Figure 4 illustrates the results of classifying horizontal texture. Both regular and irregular

boundaries have been perfectly handled by the classifier. The pictures on the left show

the original images and, on the right, are segmentation results. In the output images, class

B pixels were eliminated by setting their value to black.

Figure 4: Black and white classification results;

the target is horizontal texture

12

3.2 Segmenting Greyscale Textures

In this section some of the texture segmentation results from our study are presented. All

experiments were conducted using a PC with Pentium M processor 1.50 GHz, 2 GB

RAM and Windows XP SP3.

The test database consisted of 250 by 250 greyscale images that were created using D21,

D24, D34 and D57 textures from Brodatz album. The images include a variety of cases

such as two textures, multiple textures and regular and irregular boundaries. Although the

results are only captured and presented for D21 classification, similar results were

observed using the classifier for other textures.

The results presented in the following sections were captured in the conditions as listed in

Table 4.

Setting

GEP parameters

Function set

Terminal set

Range selection method

Class A

Class B

Training dataset

Sub-image size

Sliding step size

Classifier fitness

Value

As listed in Table 3

Main arithmetic operations only

Pixel values only

Static

D21 texture

D24, D34 and D57 textures

99 class A+ 99 class B

16 by 16

2 pixels

91.5%

Table 4: Test Conditions

The pictures on the left show the original images and, on the right, are segmentation

results. In the output images, class B pixels were eliminated by setting their RGB value to

black.

13

1 Two textures, regular boundaries

Figure 5: D21 segmentation results;

two textures, regular boundaries

Image Size Segmentation Time

250 by 250 2.184 sec

2 Multiple textures, regular boundaries

Figure 6: D21 segmentation results;

multiple textures, regular boundaries

Image Size

250 by 250

Segmentation Time

2.266 sec

14

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

3 Two textures, irregular boundaries

Figure 7: D21 segmentation results;

two textures, irregular boundaries

Image Size Segmentation Time

250 by 250 2.546 sec

4 Multiple textures, irregular boundaries

Figure 8: D21 segmentation results;

multiple textures, irregular boundaries

Image Size Segmentation Time

250 by 250 2.732 sec

15

Table 5 compares our GEP-based method with the GP-based technique proposed by Song

and Ciesielski.

GEP GP

of training data files 198 2000

Range selection method Static Dynamic

Function set Arithmetic Arithmetic and
operations only logical operations

Terminal set Pixel values only Pixel values and
Random (-1,1)

Maximum # of functions 100 700

Maximum evolution time 20 sec Unknown

Segmentation time < 3 sec < 3 sec

Table 5: GEP vs. GP

16

4 Discussion

Our experiments proved that dynamic range selection method, being considerably more

demanding on computational resources, provides very little benefit over simple static

range selection method. As shown in Figure 9, compared to static method, it takes almost

twice the time to generate a comparable classifier with the dynamic range selection

algorithm.

100

80

60

40

20

0

Fitness(%)
Evolution Time

(sec) Function Count

Figure 9: Static Range Selection Method vs. Dynamic

• Static

Dynamic

Another simplification we made was reducing the function set to ma1n arithmetic

operations. The decision was made based on the fact that logical operators provided little

advantage in the system. In fact, they increased the size and complexity of the individuals

which led to unnecessary computational complexity, greater resource consumption and

slower evolution process. Figure 10 illustrates the abovementioned fact. Limiting the

function set to main arithmetic operations (Table 1), we managed to produce simple and

short individuals with satisfactory classification results (above 90% fitness). Maximum

number of functions in the fittest individual did not exceed 100, which is quiet an

advantage over 700 functions in GP-based classifiers [6].

17

300

250

200

150

100

50

0

Fitness(%) Evo ution
Time (sec)

Function
Count

• Arithmetic Onl y

Arithmetic & logi cal

Figure 10: Arithmetic Operations vs. Full Function Set

Figure 11 illustrates the fact that the GEP-based technique is capable of generating

satisfactory results with limited training data. Increasing the number of training cases

neither improved the accuracy of the classifier (fitness value) nor simplified the best

evolved algorithm (function count), while it did increase the evolution time.

100

90

30

70

60

50

40

30

20

10

0 *-------r-----~------~

Fitness {CJ-)) E'Jolurion Function

Time (sec) Count

• 99 Class A + 99 Class B

198 Class A+- 198 Class B

Figure 11: Increasing training dataset

18

Figure 12 shows the progression of average fitness of the population and the best

individual in a typical run. The average fitness curve confirms the presence of genetic

material in the population.

100

90

11:1 80 11:1
Q.)
c
~
IJ....

70

60

50
0

Statistics

10 20

Generations

30

Best Fitness ----e.
Average Fitness

50

Figure 12: Best Fitness and Average Population Fitness

19

5 Conclusion and Future Work

In this study we used GEP to extract texture features and produce classifier algorithms

out of simple arithmetic operations and direct pixel values.

We managed to evolve classifiers for Brodatz textures with acceptable accuracy and

speed. In fact, we used the resultant classifiers in a Photoshop plug-in to demonstrate its

commercial applicability.

GEP showed superior performance compared to the GP-based method presented by Song
and Ciesielski:

• The algorithm used:

1. less training data (198 images compared to 2000);

2. simpler range selection method (static vs. dynamic);

3. limited function set (arithmetic operations vs. arithmetic and logical
operations);

4. and, only direct pixel values as terminal set as opposed to pixel values and
random (-1, 1).

• The classifiers produced by GEP were also smaller compared to the GP-based
classifiers (100 vs. 700 functions).

• GEP-based classifiers for Brodatz textures were evolved in as little time as 5-20

seconds. However, since the evolution time in the GP-based technique is not

mentioned by Song and Ciesielski, the results cannot be compared.

We also confirmed the fact that GEP is capable of recognizing pattern regularities in

textures.

The quick evolution process (5-20 seconds) suggests the practicality of the developed

technique for real-time applications such as unsupervised texture segmentation.

This study focuses on greyscale and binary (black and white) images. However, it can

easily be extended to colour images. Moreover, the technique that is developed is a

supervised segmentation method, which in future works could be transformed into a more

generic segmentation mechanism.

20

6 Appendix A - Software

Two pieces of software were developed for this research: 1) A C# Windows application

to generate texture classifiers and 2) A Photoshop plug-in written in C++ to use the

generated classifiers and segment unknown images in the Photoshop environment.

1 Classifier Generator

The application was developed in Microsoft Visual Studio 2005 and using C# language.

It compiles to a single executable file (.exe) and requires no installation. Once the .exe is

executed, the main form is displayed (Figure 13). Use menu "Settings > Training

Data ... " to load the training data (Figure 14), which are collections of sub-images cut out

of the original texture image.

~ Cla.ssifier Generator

Iools ~ettin95

- Best individual with fitness [89.5] was found in Run 1n0. Generation #42. total evolution time: 12.636 sec.

l(Pixel(12.2)~ixel(6.11))-(Pi-1(7 .11 H(Pn;~l{l3.9)+-Pl~1.2D/(P;;_~5.l2V(Pixel(1 0.3)1Pixel(13.7))))))
I
I

I

1

I L ________ . _

Statistics for Run #10

2~0 1-m= lutf111u& -- -~·

200

~ 1 ~0

ti
~
~ 100

10

--~naoct

20

Statistic a

30

Generations
~0 60

~~(sJ Completed; Total-run tim~= 95.71 2 sec; Initialization tim;-:5-:-731 s~T ot~l evoltA"ion time= 85:3 s~~ { otal Ul ti; e " (4J !
,sec ;

-~-----·~ - -- - ----

Figure 13: Classifier Generator- Main Form

21

The fittest individual
generated across runs .

Statistics of the current run

Current status and
timing information

lmageSize: ~~ BY [16 ~~ Pixels

Training Files:

ClassA: j C:\Trai~D~t~!~g_et _

Range Selection F~es: -

Cl~ss A : Target T eMt'-'e

Class 8: Other T eld'-'es

-----~ ----_________________] 0
_ __ -~___.0 I

c1assA: ~~~~~-----· -----· _jO ;
Class B: [C:\Training Data\RangeB ----------------~--------J [J '

.QK I I .Cancel

Figure 14: Classifier Generator- Set Training Data

The application provides a tool to generate sub-images for training the system. Use menu

"Tools> Create Sub-Images ... " for this purpose (Figure 15).

Source I mage: @3iou-rce-T;,-;du-re~s\0~~21~.b=mp==---------·----------~ [J
Sub lrMge Size:

Slidi'lg Seed:

S~di'lg Method: 0 Horizontal 0 Vertical

Number of Samples: fioo ~
Destination Folder: ~T rainifl9_1?_~~ Tar~--------~--------·----------] [J
Name Prefix: IT arge~ =.J

OK J(Cancel

Figure 15: Classifier Generator- Create Sub-Images

22

The rest of the parameters are set to default values, so that as soon as the training data is loaded,

you can start the evolution process. In order to modify default parameters, use menu "Settings >

Parameters ... " (Figure 16).

' Number of Runs: [1°=- vi Mut~tion r~te: ,0.051 --El -,
1 Number of Generations: [50 ~I 1 0 ne-point recombination rate: @.20 t...: 11 . :£1 1 - '

Population Size: 1256 - -m Two-point recombination rate: [il50 ~~

f500 =oil '' Gene recombin~tion r~e: [o~ ~~ Gene Head Length:
~--- ~~ 'I

Maximum Error(%~ ~ ~ ' IS transposition rate: @io_ oo]
i

Number of Genes: 11 ~· ~I
· IS element lengths: [123 _,

Linking Function: !Addition EJ IRS transposition rate: [~ o . ~j

RIS element lengths: ~:2,3 .=!
Function Set

0 Addition (+} 0 Subtraction H
I Gene transposition rate: @:~ o m

0 Multiplic~on (x} 0 Division (/} - I

D IF D <• 1 RMge Selection Method: 0 St~tic

D >= D == 0 Dynamic

D Between .Q.K I I ~ancel

Figure 16: Classifier Generator- Set Parameters

The application provides a utility tool to perform segmentation ustng an evolved

classifier (Figure 17). Use menu "Tools > Test Classifier. .. " to launch the tool. By

default, it uses the fittest individual in the latest run, if any. Alternatively, you could load

a previously saved classifier (.xml file).

23

-----1[]
------- ' ...

SublmageSize : 16 by 16pixels

S~ding Seed: @ ~~ Pixels Class~ication Time : 2.8 seconds

Class~y >

Save Output As... J [Close

Figure 17: Classifier Generator- Test Classifier

In order to save the fittest individual in the latest run, use menu "Tools > Save Best

Individual. .. " (Figure 18). The classifier is saved in XML format and can be used as

input to the Photoshop plug-in to perform segmentation (Figure 20).

g Classifier Generator -"' -"' """ ·.·if ".... "' """" ~- ·~ - 1

, .1.. ools] Settings

Create Sub Images ...
] was found in Run #1 . Generation

Test Classifier ... ~----:----- ---------·-
2.3))-~2.11))-Pixel[12.5])

_f Save Best Individual. . . l

Figure 18: Classifier Generator- Save Best Individual

24

2 Segmentation Plug-in

The plug-in was developed using Photoshop CS SDK and in C++ language. It compiles

to .8bs file. In order to install the plug-in, exit Photoshop, if running, and copy the .8bs

file to the Plug-in folder for Photoshop (e.g. C:\Program Files\Adobe\Photoshop

CS\Plug-Ins\Adobe Photoshop Only\Filters).

Once Photoshop is started, the plug-in shows up under the "Select" menu (Figure 19).

Figure 19: Photoshop- Texture Segmentation Plug-in

To be able to use the plug-in, you would need a classifier file (.xml), which can be

produced using the Classifier Generator application (see previous section). Use menu

"Select > Ryerson University > Segment Texture ... " to specify the classifier and

segmentation accuracy (Figure 20) and launch segmentation. Once the dialog is

dismissed, the segmentation algorithm (refer to section 2.3; page 7) is performed and the

pixels which belong to the target texture are selected as a region (Figure 21). The

resultant selection can be used in the Photoshop environment just like a native selection

region to perform tasks such as move, cut, copy, paste, form layers, etc.

25

-.., r ~ - - - -
Segment Texture.

.....

Classifier:

Accuracy: @ High (1-pixel sliding)

0 Medium (2-pixel sliding)
0 Low (3-pixel sliding)

..,

Figure 20: Photoshop - Launching Texture Segmentation

Figure 21: Photoshop- Segmenting Target Texture

26

r--uR]
I Cancel J

7 References

1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, 2002.

2. J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 197 5.

3. J. R. Koza, et al., Genetic Programming Ill: Darwinian Invention and Problem Solving,
Morgan Kaufmann, 1st edition, 1999.

4. C. Ferreira, "Gene Expression Programming: A New Adaptive Algorithm for Solving
Problems", Complex Systems, Vol. 13, issue 2, pp. 87-129, 2001.

5. M. Tuceryan and A. K. Jain, "Texture Analysis", The Handbook of Pattern Recognition
and Computer Vision (2nd Edition), by C. H. Chen, L. F. Pau, P. S. P. Wang, pp. 207-
248, World Scientific Publishing Co., 1998. (Book Chapter)

6. A. Song and V. Ciesielski, "Fast texture segmentation using genetic programming"
Evolutionary Computation, 2003. CEC '03. The 2003 Congress on volume 3, Vol. 3,
pp.2126- 2133, 2003.

7. T. Loveard and V. Ciesielski, "Representing classification problems in genetic
programming", Evolutionary Computation, 2001. Proceedings of the 2001 Congress on
Volume 2, Vol. 2, pp. 1070- 1077, 2001.

8. A. Song, A., et al., "Texture classifiers generated by genetic programming", Evolutionary
Computation, 2002. CEC '02. Proceedings of the 2002 Congress on Volume 1, Vol. 1, pp.
243-248, 2002.

27

8 Glossary

B

Brodatz textures A collection of greyscale texture images published in 1966. This

collection has become a standard database in texture analysis studies.

c

Chromosome A GEP individual which is a candidate solution to the problem at hand.

Class A The label associated with the target texture.

Class B The label associated with non-target textures.

Classifier An algorithm evolved by GEP, which is able to classify certain texture, a GEP

chromosome.

D

Dynamic range selection In this method each chromosome is allowed to dynamically

determine a separate set of ranges for class boundaries as opposed to the fixed ranges that

are chosen in a static range selection method that all GEP individuals must adhere to.

E

Edge Pixel locations of abrupt changes in the image.

Edge-based segmentation One of the three groups of segmentation techniques. In this

method segments are classified by identifying the edges between them. The other two

categories are pixel-based and region-based methods.

F

Feature Extraction The process of defining a mathematical model to represent a random

texture.

28

G

Gene Expression Programming A new evolutionary algorithm that evolves computer

programs to solve variety of problems.

GEP See Gene Expression Programming.

p

Pixel-based segmentation One of the three groups of segmentation techniques. In this

method segments are identified based on the greyscale or color value of individual pixels.

The other two categories are edge-based and region-based methods.

R

Region-based segmentation One of the three groups of segmentation techniques. In

this method segments are identified based on the continuity of the regions in the image.

The other two categories are pixel-based and edge-based methods.

s

Static range selection In this method, the range of real values that the GEP individuals

are evaluated to is divided into negative and positive numbers. Positive numbers are

associated with class A texture while negative numbers are associated with class B

texture(s).

Sub-image A small cut out from the texture image that is used as training data.

T

Texture segmentation In texture segmentation, the image is divided into regions with

homogeneity with respect to texture.

Texture classification In texture classification, an unknown sample image is partitioned

into regions that belong to one of a set of known texture classes.

29

9 Index

Applications, 2

Brodatz, 10

Classification, iii, 1, 4, 5, 6, 12, 13, 17,

28,30

Dynamic range selection, 5, 17

Evolution, 2, 10, 17, 20, 24

Evolutionary computation, 2

Fitness function, 6

Function set, 5, 11, 17, 20

Gene Expression Programming, i, iii, 28,

30

30

Genetic Programming, 2, 28

GEP, iii, 2, 3, 5, 6, 8, 11, 20, 29, 30

GEP parameters, 6

GP, 2, 3, 17,20

Photoshop plug-in, iii, 7, 20, 22

Range selection method, 20

Segmentation, iii, 1, 2, 7, 12, 13, 14, 15,

21,24,25,26,28,29,30

Software, vii, 22

Static range selection, 17, 29

Terminal set, 5, 20

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2009

	Texture classification using gene expression programming
	Fereshteh, Mahvarsayyad
	Recommended Citation

