Toronto Metropolitan University
Browse
- No file added yet -

Kalman filtering for dynamic motion and model estimation

Download (10.31 MB)
thesis
posted on 2021-05-23, 12:57 authored by Randal Schumacher.
The fundamental task of a space vision system for rendezvous, capture, and servicing of satellites on-orbit is the real-time determination of the motion of the target vehicle as observed on-board a chaser vehicle. Augmenting the architecture to incorporate the highly regarded Kalman filtering technique can synthesize a system that is more capable, more efficient and more robust. A filter was designed and testing was conducted in an inertial environment and then in a more realistic relative motion orbital rendezvous scenario. The results indicate that a Dynamic Motion Filter based on extended Kalman filtering can provide the vision system routines with excellent initialization leading to faster convergence, reliable pose estimation at slower sampling rates, and the ability to estimate target position, velocity, orientation, angular velocity, and mass center location.

History

Language

English

Degree

  • Master of Applied Science

Program

  • Mechanical and Industrial Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Year

2006

Usage metrics

    Mechanical and Industrial Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC