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ABSTRACT

KALMAN FILTERING FOR DYNAMIC MOTION
AND MODEL ESTIMATION

Master of Applied Science, 2006, Randal Schumacher

School of Graduate Studies, Ryerson University

The fundamental task of a space vision system for rendezvous, capture, and servicing of
satellites on-orbit is the real-time determination of the motion of the target vehicle as
observed on-board a chaser vehicle. Augmenting the architecture to incorporate the
highly regarded Kalman filtering technique can synthesize a system that is more capable,
more efficient and more robust. A filter was designed and testing was conducted in an
inertial environment and then in a more realistic relative motion orbital rendezvous
scenario. The results indicate that a Dynamic Motion Filter based on extended Kalman
filtering can provide the vision system routines with excellent initialization leading to
faster convergence, reliable pose estimation at slower sampling rates, and the ability to

estimate target position, velocity, orientation, angular velocity, and mass center location.
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1 Introduction

1.1 Progress in Autonomous Satellite Capture

Currently a number of enabling technologies are being used to design and test systems for
rendezvous, capture, and service of satellites on-orbit. Designed to be operational in a
semi-autonomous or fully autonomous mode, these systems often rely heavily on
computer vision. With the launch of the Air Force Research Lab’s XSS-11 Flight Mission
in early 2005 and the planned launch of the DARPA Orbital Express Mission, depicted in
Figure 1-1, it is apparent that the space community is moving to develop highly capable

unmanned space robotic systems.

Figure 1-1: DARPA Orbital Express Concept [1]

At the heart of these on-orbit rendezvous, capture, and servicing systems is computer
vision as described in [2-5]. In this thesis, the term vision system will be used to mean any
sensor-algorithm system combination that produces a static ‘snapshot’ of the pose that is
not dynamic model based. Examples include the Iterative Closest Point (ICP) — Stereo
Camera combination in [3], the Bounded Hough Transform (BHT)/ICP - Lidar Scanner

combination in [2] and [5], and other such combinations.
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The fundamental task of these systems is the real-time determination of the motion of the
target vehicle as observed on-board a chaser vehicle. Although typically these systems
have been designed to use vision-based estimation as a stand-alone process, recent
studies have looked to exploit the highly regarded Kalman filtering technique to add a
propagation/prediction capability into the system architecture to synthesize a system that
is more capable, more efficient and more robust. The potential benefits of such a Hybrid

Pose/Motion Estimation System include:

e Better initialization of vision system routines, faster convergence, less
computation.

e Reliable vision system pose estimation at slower sampling rates due to the
propagation inherent in the filter.

e Simultaneous estimation of target mass properties: mass center location, principal
inertia ratios, principal axis directions.

e Incorporation of “measurement slew” effects into the filter to compensate for time

delay in measurement processing.

One such hybrid architecture as described in [6] involves essentially three distinct
subsystems for the target motion estimation system: i) kinematic data fusion, to fuse
sensory data into a coarse estimate of target pose; ii), Kalman filtering, to filter these
coarse estimates and obtain the full target dynamic state and inertial parameters; and iii)
shape estimation, used to build a probabilistic map of the target shape based on the
filtered output. This hybrid of computer vision techniques and optimal estimation
techniques is likely to produce a system that is more accurate and robust than a typical

stand-alone vision system architecture.

In this thesis, the focus is on the design and performance of a reliable Kalman filter for
such a hybrid pose/motion estimation system. As such, the details of the computer vision
and sensor components are outside of the scope of this document. From the stand-point of

the filter, the measurement may come from any vision system combination imaginable as
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long as it provides the filter a measurement of the target pose and/or motion. This Hybrid

Pose/Motion Estimation System is depicted in Figure 1-2.

Hybrid Pose/Motion Estimétion System

Pose
Measurement

Pose Estimate
{Initial Condition)

il

Pose Estimate
(Propagated )

Motion Propagation / Dynamics

Pose R vy
Measurement Estimation

~

Z, X()

== Kalman Filter Sub-System -
v

Inertia Properties
Estimate

Figure 1-2: Hybrid Pose/Motion Estimation System Interaction

As the Kalman filter sub-system design is central to the hybrid architecture a concise

literature review is presented of the various Kalman filtering implementations in the

following section.
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1.2 Literature Review

A brief review of general high-level Kalman filtering techniques is presented, followed
by the important and problematic Kalman filtering techniques as applied to attitude

determination.

1.2.1 Kalman Filtering — General Techniques

The Kalman filter is an optimal recursive data processing algorithm [7]. It was originally
developed as a tool in linear estimation theory, but its extension to nonlinear problems
was first introduced for application in the Apollo missions by Schmidt et al [8]. This
extended Kalman filter (EKF) is basically a linearized version of the original formulation
where a re-linearization occurs about each current best state estimate before covariance
propagation and measurement update. Therefore, as soon as the new state estimate has
been made, a new and better reference state trajectory is incorporated into the estimation

process. A general procedure for the Kalman filtering algorithm is shown in Appendix A.

In theory, the standard Kalman filter recursion is the optimal solution to linear filtering
problems perturbed by Gaussian white noise and the standard EKF recursion is a near-
optimal solution to nonlinear filtering problems perturbed by white Gaussian noise.
However, in application, the standard recursions ca.n be prone to numerical difficulties. In
fact, a modified implementation of the filter known as a Square-Root Kalman filter was
used for the Apollo spacecraft navigation filters [7]. The covariance in the state estimate
error, P, has generated the most numerical difficulty over the past 40 years. For instance,
as described by Maybeck [7], although it is theoretically impossible for the covariance
matrix to have negative eigenvalues, such a condition can result due to numerical
computation using finite word-length. These ill-conditioned problems are often noted
when: i) the measurements are very accurate; or ii) a linear combination of state vector
components is known with great precision while others are nearly unobservable [7]. To

help alleviate the numerical problems inherent in the standard Kalman filter formulations,
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a number of alternative reformulations have been developed over the years. Figure 1-3

shows a sample of the different implementations available.

Kalman Filtering Methods* -

i
d

e oy e 4
g .
(= U — J— -
; ‘

Non Linear
Technique
o
l
it
4
1]
1]

Specific implementation
!
]
i

— U-DFactorized |,
Form * This is not a complete listing of
all available methods

Figure 1-3: Listing of current Kalman Filtering Methods

In [7] a review of the relative computational efficiency of the alternative
implementations is given (KF/ EKF types only) and it is suggested that the Bierman-
Thornton U-D Factorized Form is possibly the most advantageous of the KF/EKF
alternatives. It is also suggested that the approach to filter design should be to design and

tune the KF/EKF types using the Conventional Form, but then implementing one of the

more numerically stable forms for real-time operation.

A new breed of Kalman filtering for nonlinear problems was introduced in the mid-
1990s. This is the so-called Unscented Kalman Filter (UKF) developed by Julier and
Uhlmann [9, 10]. The motivation behind the UKF was that in some nonlinear cases it is

easier to approximate a Gaussian distribution than it is to approximate an arbitrary
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nonlinear function. The UKF uses a deterministic sampling approach to capture the mean
and covariance estimates with a minimal set of sample points [11]. Furthermore, as
outlined by Julier and Uhlmann [10], it is argued that the EKF has two main drawbacks

in practice:

i) Linearization can produce highly unstable filters if the assumptions of local
linearity is violated, and,
ii) The derivation of the Jacobian matrices is nontrivial in most applications and

can often lead to significant implementation difficulties.

Depending on the application, the UKF has often been shown to out-perform the EKF as

seen in [10-13], but at a greater computational cost.

1.2.2 Kalman Filtering for Spacecraft Attitude Estimation

An application sub-category of Kalman filtering with almost an equally large variety of
techniques in the literature has been Kalman filtering for spacecraft attitude estimation.
Over 35 years ago the earliest known publication for this application was presented by
Farrel [14] as mentioned in a recent paper by Markley [15]. A fundamental issue in the
literature has been how best to parameterize the attitude of the rigid body for estimation.
Although a three-parameter set is attractive since it has as many parameters as there are
degrees of freedom, Stuelpnagel [16] proves mathematically that “no three-parameter set
can be both global and nonsingular”. As mentioned by Hughes [17], at least four
parameters are required to treat all orientations uniformly. Thus, a four or more parameter
set is required for treating attitude in an absolute sense. However, if it is anticipated that a
certain rotation region will not be encountered, then a three-parameter set is fine as long
as its inevitable singularity region is not entered [17]. Thus, a three-parameter set can be
appropriate when dealing with small rotations as in the case of attitude deviations from a

particular reference attitude. There is general agreement in the literature to adopt the
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Rotation Matrix (also called the Direction Cosine Matrix (DCM) or Attitude Matrix) as

the universal parameterization that specifies the orientation of a rigid body [17, 18].

The key paper produced by Lefferts, Markley, and Shuster [8] provides an excellent
historical survey of the various parameterizations and methodologies used up to 1981.
The formulation in [8] uses the quaternion parameterization of attitude explicitly
throughout the derivations. As noted, advantages of this parameterization are that the
quaternion has: i) prediction equations that are treated linearly; ii) a representation that is
free from singularities (i.e. avoiding gimbal-lock such as that found in a Roll-Pitch-Yaw
(RPY) sequence); and iii) the rotation matrix is algebraic in the quaternion components
(no transcendental functions). However, the lack of independence in the four quaternion
components leads to the constraint that the quaternion have unit norm. According to [8],
this constraint results in the singularity of the covariance matrix of the quaternion state
which led to the “The Body-Fixed Covariance Representation” to circumvent this
difficulty. The approach used in [8] to avoid the singularity of the covariance matrix is to
represent P by a matrix of smaller dimension. This approach later became known as the
Multiplicative Extended Kalman Filter (MEKF) as it treats the reset operation that is
implicit in the standard EKF as an explicit step so that the a posteriori estimate of the
attitude is handled correctly (i.e. maintains orthonormality as an equivalent DCM). As
described by Markley [15], the basic idea of the MEKF is to compute an unconstrained
estimate of some three-component attitude deviation parameterization such as the small

rotation vector, 0, while using the correctly normalized four-component quaternion,

q, , to provide a globally nonsingular attitude representation.

The EKF has performed admirably in the majority of attitude determination applications
[19], but poor performance or even divergence due to the linearization implicit in the
EKEF has lead to other developments in spacecraft attitude estimation. A listing of the
various nonlinear filtering implementations for attitude estimation is shown in Figure 1-4.
Of all the methods it remains the case that the EKF in the form known as the MEKF has

been the method of choice for the vast majority of applications [19]. Its performance will
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generally not be sufficient only in cases that have highly nonlinear dynamics /

measurements models or those that lack decent initial estimates of the state.

Nonlinear Filtering Implementations for Attitude Estimation *
[d Extended QUEST- TwoSwp Unacerted -
Orthogonel Preckcive Nonlnesr Adegtine
2 :‘m red e i Particle Fiters Atiucke Fter Fitering Obssrvers Methods
3 f ! ‘
3, : " [Unscersed | | i
D ] B = 4 4 Y
(o] Mutickatve | I Recursim
7 e | QUEST | Genetc
A EXF | Extended ¥ Qumemin
T | e
‘ Baclwarde-
t-»!  Smoothing
E i EXF
g - EJG-U-
g :
= i [ iraerinced
g —p  Kalmen
: Fiber
B
»
* This is not a complete listing of
all available methods

Figure 1-4: Listing of Nonlinear Filtering Implementations for Attitude Estimation [19]

A}

In cases where the performance of the EKF is not sufficient, the UKF methods or “sigma-
point filters” [19] serve as an attractive alternative. As mentioned in the literature, they
are especially attractive when it is difficult or impossible to compute analytic partial
derivatives of the dynamics or measurement models. The backwards-smoothing EKF has
also been shown to work in cases where the EKF has failed but generally has not been
competitive with a well-designed sigma-point filter due to its extra computational burden
[19]. Particle filters can be used when the density function of the random variables to be
estimated are non-Gaussian, but this method is computationally expensive. The QUEST
(QUaternion-ESTimator) methods are all suboptimal compared to the standard EKF
implementations but are often used for contingency designs or as simple analysis tools

[19]. The Two-Step Attitude Estimator, Orthogonal Attitude Filter, Predictive Filter, and
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Nonlinear Observers have future potential applications but have been limited to academic
studies thus far. The Adaptive methods are useful when system parameters (such as

vehicle inertia properties) are not well known or during cases where spacecraft anomalies

may occur [19].

1.2.3 Objective

In this thesis, the emphasis is on key feature inclusion and general performance validation
of a filter for use in a hybrid pose/motion estimation system as described in Section 1.1.
The work, as presented, shall be easily adapted to any modern KF implementation. Since
the vision system component in the hybrid architecture will already be computational
demanding, achieving a filter design that is balanced in terms of performance and
computational efficiency is desirable. In this study, the focus is on the design of an
extended Kalman filter for this purpose and the assessment of its performance via

simulation.



2 Theoretical Background

2.1 Assumptions

In studying the performance characteristics of a dynamic motion filter for use in a hybrid
pose/motion estimation system several prominent assumptions have been made [20].

These include:

i) The target body is assumed to be passive with external actions arising from
the environment only (often negligible depending on orbital characteristics).

ii) A reliable estimate of the chaser vehicle position and orientation is always
available.

iii) Position and orientation measurements of the target body relative to the chaser
are available as a discrete-time signal, presumed to have been produced by a
vision system.

iv) A body inertia model of the target body is available that is assumed to be

accurate, although the precise center of mass location is unknown.

The goal of this study is to demonstrate the performance of a dynamic motion filter based
on an extended Kalman filter implementation. Design of the dynamic motion filter will
be progress in three distinct parts. The translational motion estimation of the target body
is coupled to the rotational motion estimation. First, a multiplicative extended Kalman
filter will be designed to provide a near-optimal estimated of the rotational state of the
target body. Second, the state will be augmented to additionally provide a near-optimal
estimate of the translational state of the target body and this dynamic motion filter will be
tested in a simple inertial simulation environment. Finally, the dynamic motion filter will
be tested in an orbital environment where the states will be augmented to emphasize

relative motion for a rendezvous and docking scenario.

10
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In this study, effects not considered are as follows:

i) Target body flexible motion, or motion due to internal variations of inertia -
the target body is assumed rigid.
ii) Partial or “smeared / delayed” measurements of target body motion by the

chaser vehicle.

iii)  Self-induced actions by the target body (thrust, magnetorquers, reaction
wheels, etc).

1v) Uncertainty in the second moment of inertia.

2.2 Rotational and Translational Body Kinematics

2.2.1 Reference Frames In General

As outlined by Hughes [17], a reference frame consists of an origin location and a set of
three non-coplanar basis vectors. The most predominantly used set of reference vectors is
the dextral orthonormal triad (i.e. right-handed, mutually perpendicular, and of unit
length) called a Cartesian reference frame. The orientation of any vector vy can be
specified with respect to any reference frame of interest # by the three direction cosines

between vand the reference vectors of & . Similarly, one can define the orientation of
one frame Z with respect to a second frame % by the three basis vectors of

projected onto % . A notational device that is handy when dealing with multiple

reference frames is the vectrix. From Hughes [17], it is stated that “a vectrix has a split

personality, possessing simultaneously the characteristics of both a vector and a matrix”.

Therefore, the elements of the vectrix % corresponding to reference frame % are the

basis vectors in a column matrix,

11
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The orientation of one frame £ can be defined with respect to a second frame 4% using

vectrices,
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This gives the well known Rotation Matrix parameterization (or DCM) between the two
frames. The rotation matrix C,, transforms the components of a vector expressed in
frame £ , to the components of that same vector in frame £ . This can be written as,

r,=C,r, (2.3)

The opposite transformation can be done using the transpose of C,, since it is an

orthonormal matrix, ,

r,a = C:ar,b = Cabr,b (2'4)
From (2.2), it is easily seen that C,, can be written instead as,
Cba = I:ia,b S,a,b ia,b:l (25)

where the columns represent the basis vectors of the frame # expressed in frame £ .

12
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2.2.2 Problem-Specific Reference Frames

In this study, the dynamic motion filter is formulated and tested separately for both a
simple inertial environment and an accelerated orbital environment. Reference frames
relevant to both contexts are shown in Table 2-1. A graphical representation of these
frames in the context of motion about some abstract inertial reference is shown in Figure
2-1. A graphical representation of these frames in the context of orbital motion about the

Earth is shown in Figure 2-2.

13
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Inertial and Related Frames

F The Generic Inertial Frame.
% Geocentric Equatorial Frame.

= A specific non-rotating Earth centered inertial frame
f/; Reference Orbital-Periapsis Frame.

=  Shares origin with %

* z-axis aligned with reference orbit normal: Z , =n,

* x-axis aligned with reference orbital periapsis direction: X, =p.
fpv Chaser Orbital-Periapsis Frame (if orbital plane different from fp. )-
‘9‘;[ Target Orbital-Periapsis Frame (if orbital plane different from :'f;. )-
Z Reference Orbital-Nadir Frame.

* Origin located at position r,

= z-axis local downward (nadir)

= y-axis in negative orbit normal direction

The Chaser Vehicle Frames
Z Chaser Vehicle Body Frame.
Z Chaser Pose Measurement Frame.
= The frame in which the pose of the target body is directly
estimated. Measurement errors are directly specified in this
reference frame.
The Target Body Frames
jg Target Geometry Frame.
= The frame that is observed and measured by a vision system in
Z,
F Target Mass Center Frame.

= A frame parallel to fg but placed at the target mass center

Z Target Principal-Axis Frame.

= A frame in which the first moment and cross second moments of
inertia are zero

Table 2-1: Specific Reference Frames for the Dynamic Motion Filter Study

14
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Figure 2-1: Inertial Environment Reference Frames
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Equatorial Plane

Figure 2-2: Orbital Environment Reference Frames
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2.2.3 General Orientation and Parameterizations

By way of [21], a generic notation @, is used to describe the orientation of some
reference frame & relative to another reference frame & . If a third frame &£ is

involved the orientation of & relative to & can be found using ®,, such that,
0, =0,00, 2.6)

This generic form can be used and manipulated without resorting to any specific
parameterization. As an example of a specific numerical representation, (2.6) can be

represented in terms of the DCM parameterization as,

c,=C,C, @.7)

ca

When only two reference frames such as & and & are involved, C,, can be simply

a

referred to as C. As is well known, there are other specific parameterizations that can

represent a rotation © . These include:

i) Euler’s Axis and Angle, {4, ®}

ii) The Rotation Vector, ® = ®a
iit) Euler Angle Sets such as the standard Roll-Pitch-Yaw, {¢,6,y}

. P . (D).
iv) Euler Parameters, {77 =cos —2- , €=sIn -5 a

These can all be related back to the “base” parameterization (i.e., the DCM) by the

following relations,

C = C(@a,®) = cos(®)1 + (1 —cos(P))aa” —sin(P)a* (2.8)

17
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T X
C=C(®)=cos(DP)1+(1 —cos(@))%— —sin(®) % (2.9)

1 0 0|8 0 —s@|| cw sy O
C=C(4,60,)=C,@AC,OC,¥) =0 cp sp|[0 1 0 ||-sw cp 0|@210)
0 —sp cop||s@ O cO 0 0 1

C=C@,8)=* —£"e)1+2ee” =27 2.11)

In this study, the DCM or the quaternion is used to describe the rate of change of

orientation.

In terms of the DCM, the differential equation for the time evolution of the attitude is,
C, =-o;C, (2.12)

where 0, =,;, is the angular velocity of a body frame & relative to an inertial frame

& , expressed in the body frame & .

2.2.4 Euler Parameter Vector (Quaternion) Description of Orientation

As per [21], a 4x1 column matrix is defined to represent the Euler parameter vector,

o

q= ["] =| % (2.13)
& 4,
q3

18
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and refer to it as the “quaternion” as a shorthand name. The normalization condition is

then,

q'q=1 | (2.14)

and the identity quaternion is indicated by

qo = (2.15)

o O O -

Symbolically, it is possible to introduce consecutive rotations with the quaternion as,
9;=9,9q, (2.16)
with the rotation of q, followed by q,. Numerically, this is implemented by
q; ==(q,)q, (2.17)
or (preserving the “forward order”):

q, =2(q,)q, (2.18)

with the coefficient matrix constructs = and Z defined as:

=) =|" - | |4 % & % 2.19)
- A * % —4 9 9
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4 —q

= | ! |9 9
E@= <=

g nl+g 9, 4,

43 —q;

—4,
—q;
9
9

—q;
9,
-4,
9

(2.20)

See [21] for more information regarding the Euler parameter vector.

To describe the rate of change of orientation in terms of the quaternion the differential

equation is,

1=qO0

or, expressed in a format suitable for computation,

4=E(@)q=Z(q)0 = Q2(q)»

with the additional constructs defined as,

0
o=|1 |

—Q©

2
—q,
1| -€" 1| q
Q=< =5
2| gl+e*| 2| g
—q,

2.21)
(2.22)
(2.23)
—q;
K (2.24)
—q,
9o

For a more detailed discussion of the various attitude parameterizations that can be used

to represent @, see [21, 22].
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2.3 Motion Equations for a Rigid Body

The dynamic equations for a rigid body # is developed from Newton-Euler laws as

derived in Hughes [17]. It is assumed below that the vectors and vector expressions have
their components expressed in a general body-fixed frame, % . In the following
derivation the frame &% is not assumed at the center of mass nor is it assumed that it is a

principal-axis (mass centered) frame.

The translational and absolute angular momentum rates of change are given as (where o

is defined as some point of interest fixed in f,, ),

D =-—@,p+f
p=—ab (2.25)
h,=-wh-vip+g,
where the translational and absolute angular momentum are given as,
=mv,—c'®
=1V, =€ (2.26)
h,=cv,+Jo,
After some manipulation with (2.25) and (2.26), the standard results are found:
mv,—c'®, +mo,v, —w,co, =f 2.27)
v, +Jo, +cCo,v, +aJo, =g,
or in matrix form as,
X . X X X v f
L ST e
c J @, cCw, (D;,J W, g,
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with the associated variables and parameters described in Table 2-2.

Target Body Dynamics Notation

m The total mass of the rigid body 2 .

r Location of a point in the rigid body /% .

c= |rdm The first moment of inertia of .

J= —Ir"r"dm The second moment of inertia of % .

f=f, The total of all external forces acting on J2, expressed in & .

g=g, The total of all external forces torques on 2, expressed in .7b .

v, =V, =V,, | The body inertial velocity of J, expressed in 7.

©, =0,, | The body inertial angular velocity of /2, expressed in & .

Table 2-2: Target Body Dynamics Notation

For this study, it is sufficient to simulate the motion of the target body in a mass center
frame, & . In this case £ is the same as & , and the dynamic motion equations of
(2.27) then simplify to,

mv, +mo,v, =f (2.29)
Io, +olo, =g

since at the mass center ¢ =0 and denoting the body inertia J =1 which is conventional

in the literature when explicitly using a mass-center frame, & . As noted in [20], if the
body velocity is expressed directly in an inertial frame, & , rather than a body frame,
f/; , then Newton’s law “F=ma” is realized in the translational motion equation,

mv,; =f;

. (2.30)
Io, +olo, =g
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2.3.1 Motion/Relative Motion in the Orbital Context

In an orbital environment about the Earth, the motion of the body mass center is governed

by the equation of perturbed orbital motion for a rigid object,

F=--2f+0a (2.31)

where the first term on the RHS of (2.31) represents the standard %{,2 gravity law with

the applied force acting along the radial direction £, and the second term on the RHS of

(2.31) accounting for any non-Keplerian acceleration.

As shown in Figure 2-2, in this study the orbital motion of three distinct positions are
specified corresponding to the target satellite mass center, chaser satellite mass center,
and a reference orbital position. The target satellite is considered to be in free orbit,

assumed mostly Keplerian but not perfectly. Its equation of motion is given by,

i =—Le} 4oa (2.32)

—-C 2 -
RC

with the small acceleration da, = &f, accounting for any non-Keplerian motion. The

chaser spacecraft is assumed roughly co-orbiting with the target with possibly gentle

thrust/torque applied during the proximity operations. Its equation of motion is given by,

i =—o ¢ +5a (2.33)

-V 2 -
Rv

with the small acceleration Ja, =F, + &f, accounting for any maneuvering action and
non-Keplerian motion, respectively. A reference orbital position, denoted by L., is

introduced and is governed by perfect Keplerian motion of the form,
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i.=—to g, (2.34)

At this position, r, is the origin of a reference orbital-nadir frame, ."I: , and maintains a
fixed attitude with respect to the local nadir and orbit normal directions associated with

.7p_ . The relative position of the chaser or target from the reference orbit is given as,
r,=r,—r, (2.35)

where i is used generically to associate any particular object being considered.
2.4 The Modified EKF Procedure for Attitude Filtering

The most widespread implementation of the EKF for spacecraft attitude estimation, the
Multiplicative Extended Kalman Filter (MEKF), parameterizes the global attitude ® with
a unit quaternion q, while employing a three-component representation for the attitude
deviation 8@ [15] . In this section, the three-component parameterization of the attitude

deviation is discussed explicitly using the small rotation vector, 0.
Originally formulated using the quaternion parameterization explicitly [8], the basic idea

of the MEKEF is to describe the true orientation ®@ as the rotational sum of a reference

orientation ® ; and a small rotational deviation 6@, as given by,
0=0,9/0 (2.36)

The filter then performs an unconstrained estimate of a three-component attitude
deviation parameterization 0 corresponding to 0@ , with a correctly normalized

quaternion q, being used as the parameterization of ® , about which the attitude
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deviation is defined [15]. Although an EKF is traditionally thought to have only two
steps: i) time propagation; and ii) measurement update, one must be more careful for the

MEKEF during the measurement update and explicitly define an additional sub-step called

the reset step.

In the following, the use of the superscripts “-” and “+” indicate the estimate just before

and just after the measurement update at time 1, , respectively. For example, the
shorthand notation &, has the same meaning as a(f;) (i.e. the a priori estimate at time

t).

In the MEKEF, the continuous-time propagation is arranged such that 6; =0, meaning

that the reference orientation is the best estimate of the true quaternion prior to

incorporation of the measurement at ¢, . During the discrete measurement update the filter
estimates a finite value of the three-component attitude deviation 6{ . As this occurs the

reference orientation still retains its pre-update value @, such that it is no longer the
optimal estimate of the body orientation. The reset step then corrects this by passing the

updated information in é: to a post-update reference orientation ©,,;, and resetting the

estimate of 0 to zero [15].

The general orientation description of (2.36) can be written symbolically in terms of the

DCM or quaternion as,

C=C,, ®5C(0)

(2.37)
q=q,; ©q(0)
or written in their “workable” matrix and quaternion algebraic format,
C=0C(0)C,_,
- (2.38)
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The best estimate of the true orientation as processed in the reset step can be seen

symbolically in terms of the DCM or quaternion as,

C:ef,k = C:ef,k @ JC(éZ)

o (2.39)
q;f,k =q D 5‘1(9:)

As discussed by Markley [15], the reset step is implicit in the standard EKF where the

true state x is the sum of a reference state x_, and a small error k,
X, = Xpop HK; (2.40)

During the measurement update in the standard EKF, an updated estimate of the error is

formed,
K, = K, + Ak, (2.41)

where Ag, is the correction resulting from the measurement update. The reset operation

that implicitly (shown explicitly here) moves the update information from the error state
to the full state estimate is seen as,
+

Xperx = Xppx + K —Kj =X, + AK, (2.42)

Since orientation is not strictly additive in the sense of (2.42), the reset operation must be

treated explicitly using the symbolic rotational sum operator, ©.
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2.4.1 Attitude Deviation Representation

As mentioned, in this thesis, a unique three-component representation is defined in terms
of the small rotation vector @ description in [23]. The attitude deviation in (2.37) can be

defined in terms of the quaternion as,

| 1—10’0
oq0)=—| B (2.43)
K| 1
-0
2
where K is,
K= (1+i04] (2.44)
64
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3 Procedure

In this thesis, the complete solution was designed and tested in three successive stages, as
depicted in Figure 3-1. First, the filter was designed and tested to estimate angular motion
only in an inertial environment. Second, the filter state was augmented to include
translational states and tested in an inertial environment. Finally, the filter state was
augmented to include relative orbital motion and tested in an orbital environment. For the

complete implementation details of each stage please refer to Appendix B, Appendix F,

and Appendix H, respectively.

STAGE 2:
Dynamic Motion and Model Estimation
(Dynamic Motion Fiiter)

S T T

Ty . ey

STAGE 3:
Dynamic Motion and Model Estimation
(Dynamic Motion Fitter)

NS B R G

Y P

Figure 3-1: Design and Testing Stages
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3.1 Modeling/Simulation Tools

Testing of the EKF algorithms was conducted by building the truth models in Simulink.
Because the rotational and translational dynamics of the target body are only coupled
when the translational motion is considered, one can build the environment for the
Attitude MEKEF initially and then augment the state to the dynamic motion filter which
incorporates the translational part for the full motion and model estimation. All EKF
algorithms and related functions were written in C and integrated into the testing
environment using C MEX S-functions. See the Matlab documentation for specifics

related to the C MEX S-function interface [24].

3.2 Attitude Estimation in an Inertial Context

3.2.1 Inertial Attitude Dynamics Truth Model

For the attitude dynamics truth model, Euler’s rotational motion equation (expressed in a

CoM Body-Frame) is implemented,
Io, +olo, =g, (3.1

The acting torques can be partitioned as g,,, = 8,.un + 8aiswn - FOI the truth model, the

target object is assumed to be rigid and basically in free motion with only small external

disturbance torques acting on the body such that g,,, = g,...,- The model was verified
using standard tests such as the constant energy check in the case of g, =0, the
orthonormality check of the DCM (C,,C};, =1) or constraint check of the quaternion
(q"q=1), etc. All tests verified that the rotational dynamics truth model was behaving as

expected.

29



Procedure

3.2.2 Inertial Attitude Dynamics Filter Model

Again, for the attitude dynamics filter model, Euler’s rotational motion equation

(expressed in a CoM Body-Frame) is implemented,
Io, +oJo, =g, (3.2)

The acting torques can be partitioned as g, = 8,.... + 8aius - FOI the filter model the

target object is assumed to be rigid and basically in free motion with only small external
disturbance torques acting on it. Since only small non-deterministic external disturbance
torques are assumed to be acting on the body the filter model propagates the torque free

case with g, =g...., =0 (since the expectation of the disturbances is zero mean).

3.2.3 Inertial Attitude Measurement Model

Part of the direct output of the vision system will be a measurement of the target

orientation fg relative to the measurement frame ."f,'n , whose orientation is assumed to

be known relative to the chaser vehicle frame & ., The chaser vehicle frame is assumed

absolutely know relative to the inertial frame & . Working in the inertial environment it
is assumed that the measurement frame errors 6C,,, are applied as follows:

6,-0,060,,=0, 06, =0,8(0, ©350, ) (3.3)

where the nota;ion is described in Table 3-1.
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Generic Attitude Measurement Notation

0, The orientation of the target geometry frame relative to the inertial
frame.
e A measurement of the target geometry frame orientation relative to the

inertial frame.

0, The known orientation of the pose measurement frame relative to the

inertial frame.

(:‘)mg The measurement of the target orientation in the measurement frame.
0, The true target orientation in the measurement frame.
60,, The small rotational deviation between ©,, and @, .

Table 3-1: Generic Attitude Measurement Notation (Inertial Context)

As specified in [20], it is assumed that the x-axis basis direction of fim forms the bore-

sight of the imaging system and as such local RPY errors of the attitude measurement can

be specified as follows:

80, — Cppy (59,56,5y) (3.4)

To match the performance of a typical pose instrument for the application, the roll error
expectation is expected to be less than that of the pitch and yaw errors. The expectation
of the pitch and yaw errors are assumed equivalent in this study. For the pose instrument
model the measurement accuracy is arbitrarily assumed to be similar to that presented in
[6]. The measurements entering the filter (four co-operative sensors case) have a mean
attitude error of 0.852 deg. It is assumed in this study that a vision system upstream of the
filter can produce similar accuracy or better. No detailed description is found as to the
exact meaning of this attitude accuracy in [6] (on each RPY axis, norm of errors, etc.) so

it is assumed in this study that it is associated with the size of the attitude error, 60, . If
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60, was parameterized in terms of the associated rotation vector the norm of the

attitude error would be given as,

If [[®@e,)| = ¢ (3.5)

and the mean or expected value is,

E[{]=~0.852 deg (3.6)

For the purpose of generating a simple attitude measurement noise model that is

comparable to the measurement accuracy used in [6], the following is done:

i) Assume,
l®@o, )l = ¢ (€X))
and
o9 X
®(60,,)=| 60 |=|x, (3.8)
o] |x
ii) As noted above, the roll error is expected to be less than the yaw and pitch

errors. Arbitrarily specify dy =00 =3¢ .

iii) Also assume,

E[(6p-59)* =0,
E[(66-68) |=0; (3.9)
E[(Sy -6y =0}
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and the RPY errors are assumed zero mean.

iv) Then,

1050, )| = \a+5 -+ =657+ 56 + 6

= /80" +(306)* + (36p)° (3.10)
=196 =1

So, 6¢=0.2294

and assume this particular d¢ represents the standard deviation in roll error.

V) The noise 60, is simulated as follows:
a. Generate {d¢,6,0y} noise that is zero mean Gaussian with standard
deviations O, Oy, and o, -
b. Convert {3¢,36,y} to 6C,, to output the actual measurement in the

DCM parameterization,

¢ =C,w)=¢C,c,=6C,C,C, =5C,C,(t) (3.11)

gm " mi gm ™~ gm ™~ mi gm=g

3.2.4 Inertial Attitude Measurement Covariance

Recall equation (3.4) above. As noted in [20], these small angles can be collected

together as a small rotation vector,

o
00, =| 66 (3.12)
7%
It is assumed that the covariance of this small rotation vector is specified and defined as,

33



Procedure

cov 8, = E{60,607 } =R, , (3.13)

However, to be used by the filter, this small rotation vector is manipulated to get the
transformed error vector specified in the “reference” body frame (the moving reference

frame at each filter sampling time),
80, =C,,98, =(C,C,,) 8, (3.14)
Note the relationship between the measurement and the small rotation vector,

=0e=—0 (3.15)

From this the measurement covariance for the filter is the projection of the measurement

frame error covariance into the current estimate of the reference body frame,

rel 6,m ref,m

Ry, = E{sede"} =%E{6ﬂmf50ﬂ}=%cmk cr (3.16)

where '
Crefm = C;f,kC:u' (3.17)

The values selected to populate Rg ,, are detailed in Section 4.1.2.
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3.3 Motion Estimation in an Inertial Context

3.3.1 Inertial Translational Dynamics Truth Model

In addition to the attitude dynamics truth model described in Section 3.2.1, for complete
motion estimation, a simple translational dynamics truth model is added by simulating

Newton’s motion equations (expressed in inertial space),

my,, =f, (3.18)

o

 “known

The acting forces can be partitioned as £, =f, . +f, .. For the truth model the target

object is assumed to be rigid and basically in free motion with only small external

disturbance forces acting on the body such that f, =f, . . The mass center offset from
the target Geometric Frame is constant and therefore f,, . =0. The model was verified

using standard tests such as the constant energy check in the case of f, =0, and other

simple tests to verify that the translational dynamics truth model was behaving as

expected.

3.3.2 Inertial Translational Dynamics Filter Model

Similarly, in addition to the attitude dynamics filter model described in Section 3.2.2, for
complete motion estimation a simple translational dynamics filter model is added by

simulating Newton’s motion equations (expressed in inertial space),

mv,;; =f; (3.19)

The acting forces can be partitioned as £, =f, .+, - For the filter model the target

is assumed to be basically in free motion with only small external disturbance forces

acting on it. Since only small non-deterministic external disturbance forces are assumed
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to be acting on the body, the filter model propagates the force free case with

f, =f ..o =0 (since the expectation of the disturbances is zero mean).

3.3.3 Translational Measurement Model

As noted in [20], at discrete times ¢, , the imaging system of the chaser vehicle returns a
measurement of the target’s position and orientation. In the inertial testing environment,
this corresponds to the measurement set r,; and @, . The pose measurement frame & is

the frame in which the pose of the target is directly estimated (by possibly a camera or
lidar instrument). In this frame, the uncertainty associated with the pose measurement

sensor is directly defined.

The pose measurement sensor provides to the filter a measurement of the target pose,

f'g and (:),, . Referring to Figure 2-1, the following relations can be specified,
(3.20)

In words, the position measurement (produce by the vision system) is an estimate of the

Geometry frame fg origin relative to the pose measurement frame %, origin, expressed
in the pose measurement frame %, . Again, the relationship between £, and & is exactly

known. Referencing this measurement back into the inertial reference frame £ ,

F=r+C'F 3.21)

g v mi~ gm,m

T _ — T T
where C,; =C, =C,C, .
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For the actual simulated noise model (3.20) is emulated. The noise in the sensor, n

can be captured by generating normally distributed random numbers multiplied by the

sigma values expected for that particular instrument. Then during every measurement,

P =y + AT (3.22)

gm,m gm,m

where Ar,, . is zero mean and Gaussian. In this study a simple approach will be used to
simulate the noise and select sigma values for Ar,, , based on the assumed distance from

the target, || r, ||, applicable over a specified interval. A representative sensor

m,m
arrangement is given in [6], and sensor accuracy results are presented as a mean error (in

terms of % target size). The author in [6] assumes [|r,,,, [| = 10 m. For an equivalent

m,m

distance from the target it is assumed that the vision system produces a relative Cartesian

position measurement, F,, , , with errors that are zero mean and standard deviations on

m,m

all axes of 5 cm.

Since any true sensors (such as cameras or LIDAR equipment) incorporated into a vision
system would have an accuracy that is a function of the distance away from the target, a
more sophisticated approach would be to generate these noise values using the approach

in [25] where the Ar values are driven by the range and bearing of the target from the

sensor instrument.

3.3.4 Translational Measurement Covariance

The measurement noise covariance for the translational motion filter is,
gmm [~ rm

cov dr,,,, =E {§rgm'mé’rT } =R (3.23)

Projecting into the reference inertial frame,
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— T
Jr, gmi Cmi Jr, gm,m

3.24
R, = E{or,, o0 ) = E{c;,.ar [CT.5x, . ]T} -C'R_C 629

gm,m 8 r,m ~mi
The values selected to populate R, are detailed in Section 4.2.2.

3.4 Motion Estimation in an Orbital Context

3.4.1 Orbital Dynamics Truth Model

Again, in addition to the attitude dynamics model described in Section 3.2.1, for motion
estimation it is possible to add the orbital dynamics model by propagating the center of
mass of each body (chaser and target) using the perturbed two-body orbital motion form

for each,
f=—-%§+(5§ (3.25)

The numerical solution is typically resolved in the inertial Geocentric Equatorial Frame,
&, . However, in the present study the scope is restricted to the simplified case where

both the chaser and target remain unperturbed such that the orbital motion evolves as the
analytical solution to Keplerian motion. Under this assumption it is possible to

incorporate da # 0 if required using an osculating orbit formulation or restricting such

acceleration to being impulsive [20]. Since the filter will deal with relative motion, a

reference orbit is defined whose position is located by ., at which a Reference Orbital-

Nadir Frame resides, Z . This reference orbit motion is assumed circular and governed

by
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(3.26)

The frame of interest to express these quantities in is the Reference Orbital-Nadir Frame,

Z . Each object relative to the reference orbit is described by r} =r, —r.. The situation

is shown in Figure 3-2. As described in [20], a cylindrical coordinate description for the

position of each object (chaser and target) is used, with respect to the Reference Orbital

Periapsis Frame, .9';_ . In general the chaser, target, and any reference orbital-nadir frame

could all be out of plane with one another but these cylindrical coordinates are

reflected/projected in the common reference orbital periapsis frame, %, . The object

cylindrical variables and relative cylindrical variables are described in Table 3-2.

Cylindrical Coordinates/Relative Coordinates Notation

R, Orbital radius of the object reflected in the Reference Orbital-Periapsis
Frame, £, .
9 Angular position of the object in fp. from the reference periapsis.
Vi Out-of-plane position of the object in 37,,. , defined in the negative orbit-
normal direction.
r,=R,—R. | Differential orbital radius reflected in %, .
6, =9 -7, | Differential angular position in the reference orbital-plane.
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Figure 3-2: Position vector relations in Orbital Context

The relationships between the cylindrical variables are shown in Figure 3-3 with a view
looking in the negative orbit-normal direction, —i , from above the plane of the

Reference Orbital-Periapsis Frame, .ff;' .

40



Procedure

Figure 3-3: Cylindrical Coordinates relations in Reference Orbital-Periapsis Frame
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From Figure 3-3, it is easily seen that the relative position coordinates (cylindrical)

between the chaser and target are specified as

r=r,
9=6,-9, (3.27)
y

3.4.2 Orbital Dynamics Filter Model

As developed in [20], the filter uses an equation of small relative motion to relate the

relative motion between the target mass center and the chaser mass center. The system is

assumed to be expressed in & and can be implemented in direct Cartesian-like form as

r 0 1 1 To
[V]_[-Qz(ﬁ’ 3227) 203" ][] H[&] (3.28)

where y=[0 1 O]T ,2=[0 1 O]T and &a accounts for un-modeled orbital influences

including any maneuvering thrust applied by the chaser. As mentioned earlier, in this
study maneuvering is not considered and Ja is assumed to consist of process noise only.
As discussed in [20], in Cartesian-like form the states of '(3.28) are really comprised of

small motion relative cylindrical coordinates of the form

F'R.e'
r=| y

-r

R (3.29)

v=|

|7 |
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The orbital truth model and approximate relative form for the filter were verified to be
correctly implemented by using standard tests from analytically predictable Keplerian

motion.

3.4.3 Relative Orientation Measurement Model

For the relative orientation measurement we have the following generic relation,

0, =0, 00,00, (3.30)

where the notation is described in Table 3-3.

Generic Attitude Measurement Notation

mg The true target orientation in the measurement frame.

The known measurement frame orientation in the chaser vehicle.

my

o The dynamically specified chaser vehicle orientation in the geocentric

equatorial frame.

(O The dynamically simulated target vehicle orientation in the geocentric

equatorial frame.

Table 3-3: Generic Attitude Measurement Notation (Orbital Context)

Again, as specified in [20], it is assumed that the x-axis basis direction of #, forms the

bore-sight of the imaging system and as such local RPY errors of the attitude

measurement can be specified as follows:

60, — C,,,(09,00,0y) (3.31)
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To match the performance of a typical pose instrument for the application, the roll error
expectation is expected to be less than that of the pitch and yaw errors. The expectation

of the pitch and yaw errors are assumed equivalent in this study.

Note that all parameters for the injected noise are identical to those as specified in
Section 3.2.3 and will not be repeated for brevity. The measurement is generated as

follows:

¢,,=4c,C, =3C, C,oCr, (3.32)

gm~gm gm"g®

3.4.4 Relative Orientation Measurement Covariance

As seen in Section 3.2.4, we have the following relation:

op
80, =| 56 (3.33)
oy

It is assumed that the covariance of this small rotation vector is specified and defined as

covde, = E{60,60]] =R, (3.34)

However, since the applied measurement is the axis-part of the Euler parameters

quaterion,
Zg = o8 (3.35)

and noting the following relationship between the measurement and the small rotation

vector,
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Zg, =0e=~—0 (3.36)
The applied measurement covariance is then defined as:

Ry, = E{Sese’} =%E{6950T} =%cmk cr (3.37)

e.m~gm

where
C,.=C,Cho (3.38)

The values selected to populate Rg ,, are detailed in Section 4.3.2.

3.4.5 Relative Position Measurement Model

The pose measurement sensor provides to the filter a measurement of the relative position
of the Target Geometry Frame origin relative to the Chaser Vehicle Frame origin,

expressed in the Reference Orbital-Nadir Frame. In symbols, this is Cpo- However, the

physical measurement is of the form,

+n (3.39)

gmm — l.gm.m noise

N
|

In words, the position measurement (produce by the vision system) is an estimate of the

Geometry frame .9; origin relative to the pose measurement frame Z, origin, expressed

in the pose measurement frame & .

The physical relative position measurement is simulated by first extracting r,, o from the

truth model. It is related to the chaser and target vehicles by,
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Foo =Fpo~Tno (3.40)
with the following relations for the RHS of (3.40),
T

rg.@ = rc.@ _Cbrcg,g (3.41)

rm,@ = rv,@ - C:rmv.v
Note, all quantities on the RHS of (3.41) are either generated by the truth model or

specified during initialization. The quantity r,, , is then converted to the measurement

frame using the following relation,

r gm,m = Cmvcveargm.Q (3.42)

To emulate (3.39) the noise in the sensor, n can be captured by generating normally

noise ?

distributed random numbers multiplied by the sigma values expected for that particular

instrument. Then during every measurement,

r,__=r,_+Ar (3.43)

gm,m gm.m gm,m

where Ar,, , is zero mean and Gaussian. In this study, a simple approach will be used to
simulate the noise and select sigma values for Ar,, , based on the assumed distance from

the target, || r, I, applicable over a specified interval. A representative sensor

m,m
arrangement is given in [6], and sensor accuracy results are presented as a mean error (in-
terms of % target size). To maintain consistency with Section 3.3.3, it is assumed that the

vision system produces a relative Cartesian position measurement, f,,, , , with errors that

m,m

are zero mean and standard deviations on all axes of 5 cm.
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Finally, for conversion to the applied measurement used by the filter (namely, £, ,), the
following relationship is noted,
ng.o = C()@C: (rmv.v + Civigm,m ) (3.44)

3.4.6 Relative Position Measurement Covariance

The measurement noise covariance associated with the relative position measurement is:

cov or,, , = E{ér,, or7 1=R_, (3.45)
Projecting into the Reference Orbital-Nadir FrameJ‘Z ,
— T T _
§rgv,0 - C()@Cv Cmv5rgm.m - Comé‘rgm,m
(3.46)

gv,0 gm.m g r.m ~om

R, =E{or, o1, |=E {Comﬁr [Cvmér - ]T} =C,R,,C"

The values selected to populate R, ,, are detailed in Section 4.2.2.

3.4.7 Additional Tracking Frame

As described in [20] and shown in the equations of Appendix H, an additional orbital-
nadir frame is defined called the “tracking frame”, :?; , associated with the angular
position of the chaser vehicle in the plane of the reference orbit. This frame can be seen

in both Figure 3-2 and Figure 3-3. The relationship between % and £ is,

cosd, 0 sin6,
C,=| O 1 0 (3.47)
—sind, 0 cos6,
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This frame was introduced since the target-from-chaser relative cylindrical coordinates T
are mostly related to r_, expressed in this tracking frame % . The general output

equation used in the filter measurement update,

h.(x.0)=r,, =r,,~CCir,, (3.48)
is rewritten as,
rgv,o = C;orcv.l) - C0$C17)' l‘cg,g (3 '49)
where r_, , is computed from T and R, as follows:
(R,+r)siné 0 (R,+r)siné
o= Xty |=| 0 |= yo+y (3.50)

—(R,+r)cos@| |—-R, R, —(R,+r)cos@
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4 Preliminary Design and Testing

4.1 Attitude Estimation (Inertial Context)

4.1.1 Simulation Setup

The simulation setup to design and test the Attitude MEKF is made up of the inertial truth
model as outlined in Section 3.2.1, the attitude measurement model as outlined in Section
3.2.3, and the Attitude MEKF written in C code and integrated into the
MATLAB/Simulink environment through a C MEX S-function. The Attitude MEKF
implementation is described in detail in Appendix B, where the small rotation vector is
used as the attitude deviation representation in the reset step. For the reference
orientation, the quaternion parameterization is preferred over the DCM parameterization

in this study for the following reasons:

i) The quaternion, q,, is carried in the S-function state vector rather than the
DCM, C,; . This reduces the size of the overall S-function state vector.

ii) Since the vector part of the measured error quaternion, €, , is used during the
update, using the quaternion q,, reduces the number of parameterization

conversions (q — C,C — q, etc.) within the filter algorithm.

The top-level of the simulation testbed used to design and test the Attitude MEKF is

shown in Figure 4-1.
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States =[q] xdot = [qdot] =[12 2 ® q)
[0] [odot] = Mg, ,- '] ]
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Figure 4-1: Top-Level inertial testbed for Attitude MEKF design and testing

There are many variables and parameters associated with the Attitude MEKF and the
simulation testbed. To assess the performance of the Attitude MEKEF, a baseline setup is
established. Selection of the initialization variables and parameters should be chosen such
that they represent a realistic scenario for the application being studied. All relevant

variables and parameters for the baseline setup can be seen in Appendix C.

4.1.2 Covariance Specification and Filter Tuning

The noise covariance matrices, namely Qg and Ry ,, , must be properly specified and

tuned to achieve an acceptable numerical performance for a specified structure (i.e.,

totally specified except for Py, and the time histories of Qg and Ry ,, ). Although the

Py, matrix is key in determining the initial transient performance of the filter, the
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primary concern is on finding an optimal balance between the time histories of

Qe and Ry, , as they dictate the stead)y-state performance of the filter [7].

The author initially became aware of the importance of covariance specification and filter

tuning while conducting an initial test of the Attitude MEKF. For this initial test, both
Qg and Rg,, were selected such that they corresponded exactly to the simulated

process and measurement noise wg and vg , . If no disturbance excitation is considered
and Qg . =0, the result is shown in Figure 4-2 with the slow divergence of the filter as

the roll error becomes arbitrarily large as time progresses, albeit unknown to the filter.

This sort of performance is clearly unacceptable.

State 1 Emor bounds as per P* and “Filter” State 1 Error, o, (est) and A4

T mpn;p-ﬂod ‘o
Fitter propegeted
—
(1% B
- - P — —— e e e =]
™ v//
i, \ ]
s )
\/\/\ ,
10 \/ A
15 \/\\ / \\/ /\
. \ A
% 1000 2000 3000 4000 o0 6000 7000 8000 9000 10000
Time, ¢ [sec)

Figure 4-2: Roll error of é:ef in an Attitude MEKF withQg . =0

The problem with this divergent case was improper noise covariance specification and

filter tuning. As expected, if Qg . =0, in essence it is assumed that “we have complete

confidence that our dynamic system model within the filter is true”, which is obviously
false, and the filter essentially operates open-loop ignoring any measurements once

Qe =0 pulls the Kalman gain K, down to negligible levels.
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For more information on why proper specification of Qg . and R4, is required for

acceptable Attitude MEKF performance, see Appendix D. According to the latter

reference, the balancing of Qe and Rq , is often determined experimentally using

automatic search methods or by manual calculation. In this study, the tuning process

starts by choosing process noise covariance matrices based on the simulated noises

injected into the system, then varying Qg . and R, Via a parametric sweep through a

range of values.

For the Attitude MEKEF, the tuning procedure is as follows:

iii)

vi)

The baseline setup is used for all variables and parameters to freeze the

truth/estimator structure (all specified except Py, Qg . and R, ).
Pg, is set diagonal with all off-diagonal elements set to zero. The diagonal

elements used are those in the baseline setup indicating that moderate

uncertainty exists about the initial filter state estimate, ie,o .
Rg ,, is set diagonal with all off-diagonal elements set to zero. The diagonal
elements were initially set to match the noise v, in the measurement

process. .

Q.. is set diagonal with all off-diagonal elements set to zero. An arbitrarily

small value of (2x107* N.m)* was initially used for all diagonal elements to
force the filter to pay attention to measurements over time.

The diagonal values of Qg . and Ry ,, are modulated via a parametric-sweep

until the Jocal best performance is found in the range of the sweep.

The local best performance is assessed by running each Qq . and Ry,

combination for a fixed but lengthy simulation time until either steady-state

performance is achieved or divergence is apparent.
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vii)  The Qg and Ry ,, combination that gives the local best performance is that

which has the lowest value of the sample mean of the norm of the attitude

CITOrS.

Since O, =0, ®JO, or in terms of the DCM, C, = dC*C;,, then the actual a

True

posteriori attitude error is,

SCt=C.C-.T @.1)

8 ref
This can be converted to a three-parameter set such as the rotation vector
®(S5C") 4.2)

and the norm || ®(5C") || can be found during each filter sampling interval, T,. The
sample mean of this norm || ®(JC")|| can be found over the entire simulation interval.
Let & =||®(S5C")||, and n is the total number of filter samples k. The sample mean of the

norm of the attitude errors is then,

E =4 4.3)

and the Qg . and R, combination in the range of all Qg . and Ry ,, combinations

considered that gives,

E =i (4.4)

min
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is selected to give the local best performance.

A more robust method such as a Genetic Algorithm that searches for a global best

combination of Qg and Ry ,, for a specified truth/estimator structure could be used.

This was the methodology in [26], but the local search technique described above is
acceptable for the present study. The output of this search is the local best

Qo and Ry, combination as shown in Appendix E.

4.1.3 Filter Performance Evaluation

In the inertial environment the MEKEF state scope is:

X =Xg =[ % :I 4.5)

@,

with the states defined in Table 4-1. The measurement as viewed by the filter is related as
follows:

Zg, =E, (4.6)

The output vector used in the state update equation is as follows:

1(1
=hg(x,H)=g=—|—0 : 4.7
Yo =hg(x,1)=¢ K(Z) @7
where
K= |1+—¢" (4.8)
64 ’
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MEKTF State Notation

q,

The “body-frame inertial orientation” parameterized as the quaternion as

an alias for the common orientations of the Geometry Frame &% and
Mass-Center Frame £ . (Recall that £ is defined, for convenience, to

have the same orientation as % , hence C_, =1).

Small rotation vector parameterization to describe the attitude deviation.

The “body-frame inertial angular velocity” expressed in the Body

Frame, which is again an alias for the common inertial angular velocity

of the Geometry Frame % and the Mass-Center Frame £ . (i.e. the

A

vectors ®,; = ®,; =@, and column matrices ®,,, =@, , =0, have

equivalent numerical values. ®,;, is often abbreviated as®, ).

MEKF Measurement Notation

Vector part of the quaternion from measured orientation deviation.

Table 4-1: MEKF Notation (Inertial Context)

The measurement sensitivity Jacobian is as follows:

1 .
He, = I:E 1, : 03x3] 4.9)
3x6

Using the baseline setup case, the following results indicate that the Attitude MEKF

performs relatively well. Quantifying the error similar to [12], the norm of the attitude

errors are shown in Figure 4-3. After some initial transient behavior, the filter settles to a

norm of the attitude errors within 1 deg on average.
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Figure 4-3: Norm of Attitude Errors (Baseline Setup)

The a posteriori attitude errors in terms of a RPY sequence, RPY(5C"), vs. time are

shown in Figure 4-4. Similar to the performance assessments used in [27], the 1-sigma
covariance bounds are plotted along with the true error to assess whether the filter is
performing as well as it “believes” it is performing. Integration of the Gaussian
probability density function, to find the distribution function, indicates that there is a 68%
probability that the Gaussian random variable is with one standard deviation (£o ) of the
mean, 95% probability it is within two standard deviations of the mean, and 99%
probability that it is within three standard deviations of the mean [27]. Figure 4-3
indicates the filter’s representation of its own errors match reality as indicated by the fact
that the true errors are within the covariance bounds (o ) approx. 68% of the time. In
Figure 4-5, it is seen that the angular rate errors are within approx. 0.01-0.02 deg/s and

the filter’s covariance in the state estimate error represents reality well.
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Figure 4-4: Attitude Errors parameterized as RPY (Baseline Setup)
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Figure 4-5: Body-Rate Errors (Baseline Setup)
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Additional testing to check the integrity of the filter is as follows:

1. First, using the same basic baseline setup it is expected that if the

- measurement noise covariance matrix, Ry, , is relatively small then the

filter assumes the measurements are “near-perfect” and should more or

less discard any information coming from its embedded dynamic model.
2. Second, if the filter’s dynamic model is slightly off in its representation of

the target’s second moment of inertia matrix, I, it should still do a decent

tracking job from the inclusion of measurement feedback (assuming the

filter noise covariance has been specified such that Qg , #0).

INTEGRITY TEST 1

With the same basic setup as per Appendix C, the measurement noise covariance matrix

is modified to put nearly total confidence in the measurements,

5 00
Re,=| 0 ‘f” 0 | where &, = 5, =0, =le-6deg (4.10)
0 0 g7}

With this modification, the filter behaves as expected with large values in K, , meaning

the weighting is heavily biased towards the measurement. This can be seen in Figure 4-6
with the a posteriori estimates being very noisy and mostly overlapping the measured

values.
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Figure 4-6: Attitude MEKF Integrity Test 1 — Near Perfect Measurement Behavior
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INTEGRITY TEST 2

With the same basic setup as per Appendix C, only the filter’s representation of the target
inertia matrix is modified by adding/subtracting 1% of the minor axis inertia to all

principal inertias,

1462 0.0 0.0 1467 0.0 0.0
I=[ 00 790 00| and I=| 0.0 785 0.0| kg.m? (4.11)
0.0 00 511 00 0.0 516

As seen in Figure 4-7, the filter does a decent job of estimating the attitude given that it is
working with an incorrect inertia model of the target and the inertias are not being
estimated online. Future work beyond the scope of this study is to add the inertia to the
state so that it can be estimated online since in practical applications the inertia would be

initialized in the filter with some uncertainty.

Absolute State Emor (Attitude) in RPY, RPY(;SC") where RPY(5C*)= RPY(C C )
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Figure 4-7: Attitude MEKF Integrity Test 2 — Uncertain Filter Inertia Model
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Next, to partially characterize the robustness of the Attitude MEKF, a small sample
Monte-Carlo Analysis is performed involving approx. 300 simulations where the initial
filter estimates of attitude and body-rates are varied from the true initial attitude and

body-rates. This was performed as follows:

i) The truth model variables and parameters were those specified in Appendix C.

ii) The filter initial estimates are determined in the following manner:

First, uniformly distributed random numbers are generated that are bounded between -1

and 1. Specifying these upper and lower bounds, x, =—1 and x, =1, the random number

is given as,

x=x+(x, —x)xrand() (4.12)

where rand() is the standard Matlab uniformly distributed pseudo-random number
function. The bounded random number is then multiplied by an amplitude factor that acts
as the max allowable size of the error from the truth. For this study, the max allowable
filter initialization error size factor was incremented for attitude and body-rates as

follows,

Ag =06, =AV,.. in the interval [0,50] deg 413
A, () = AD, () = DD, gy, in the interval [0,1] deg/s (4.13)
The initial attitude estimate conditions were specified using
¢ ¢ A@,., X(x, +(x, —x)xrand())
6| =|6| +| A6, x(x+(x,—x)xrand()) (4.14)
74 Ve AV X(x, +(x, —x)xrand())

=t

The initial body-rate estimate conditions were specified using
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@x a)bx Aa)bx(mi”‘) ><(xl +(xu _xl)xrand()) A
@, | =l@,| + AG, (s X(x, +(x, —x)xrand()) 4.15)

Belo LDl | AG, ey X (%, +(x, — X)X rand ()

The results of the small sample Monte-Carlo Analysis are shown in the scatter plot in
Figure 4-8. Each case was simulated for 10,000 seconds (170 minutes, or about 1.5
orbits at 500 km altitude). To condense the amount of information displayed, only the
size of the initial attitude and body-rate errors are displayed on the abscissa and ordinate.
The vertical axis normal to the abscissa, and ordinate indicates the average size (mean) of
the attitude errors over the entire interval simulated. Performance was arbitrarily
categorized as convergent if the mean of the norm of attitude errors was 2 deg or less.
These cases are indicated by a “red” dot, e . Cases with a mean of the norm of attitude
errors beyond this threshold are indicated by a “black” dot, . Although this only
displays insights into how well the filter can handle errors in its initial estimates for the

dynamically evolving baseline case, it gives a rough order of magnitude of filter

robustness to initialization errors. Beyond initialization errors of || JRPY || =35 deg and
| Ao, || =1deg/s it is shown that convergence below 2 deg mean norm attitude error is
sparse.
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Figure 4-8: Attitude MEKF Robustness to Initial Estimate Errors

Similar to the results found in [28], in the top 3-D plot in Figure 4-8, certain cases of

initialization result in unacceptable performance with large steady state error or divergent
values as seen by the size of the mean of || RPY(SC")||. In light of this, it may be
possible to improve performance if other state variable measurements are available
(target body-rates inferred by the vision system), further tuning of the filter for a better
combination of Qg and Ry, , or other ad hoc improvements. Since the performance is
only acceptable within the bounds of the linear approximation implicit in the EKF, the
tedious procedure of tuning Qg . and Rg ,, may give some improvement in performance,

although a high-order implementation such as the Unscented Kalman Filter (UKF) for
spacecraft attitude estimation outlined in [12] should also be considered.
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4.2 Motion Estimation (Inertial Context)

4.2.1 Simulation Setup

The simulation setup to design and test the dynamic motion filter is made up of the
inertial truth models as outlined in Section 3.2.1 and Section 3.3.1, the measurement
models as outlined in Section 3.2.3 and Section 3.3.3, and the dynamic motion filter
written in C code and integrated into the MATLAB/Simulink environment through a C
MEX S-function. The dynamic motion filter implementation used in the inertial context

is described in detail in Appendix F.

The top-level of the simulation testbed used to design and test the dynamic motion filter

is shown in Figure 4-9.

I

Aftitude
Measurement Model
Truth "actual® orientation
&= 6
Truth *actual® body rates,
TatgetBody Y
Truth Attitude Dynamics Model
Terminatort .
C_mi_0
Constant
Time_cont
Clodk w(body frame)t
Time_KF Dynamic Motion Filter
Cloddt w(body frame)X2
4

Simple Transtational
System

Figure 4-9: Top-Level Inertial Simulation testbed for Dynamic Motion Filter testing
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There are many variables and parameters associated with the dynamic motion filter and
the simulation testbed. To assess the performance of the dynamic motion filter, a baseline
setup is established. All relevant variables and parameters for the baseline setup can be

seen in Appendix C and Appendix G.

4.2.2 Covariance Specification and Filter Tuning

A discussion regarding covariance specification and filter tuning was presented in
Section 4.1.2 and Appendix D. To avoid redundancy, the results are simply presented of a

manual tuning effort for the dynamic motion filter in finding the local best combination

of Q,, and R, . Additionally, the same local combination of Qg and Rg ,, is used that

was associated with the orientation states as discussed in Section 4.1.2.

Again, the tuning process starts by choosing process noise covariance matrices based on

the simulated noises injected into the system, then varying Q, . andR_, viaa

parametric sweep through a range of values.

A much simplified version of the tuning procedure used in Section 4.2.2 is used here:

i) The baseline setup is used for all variables and parameters to freeze the

truth/estimator structure (all specified except P,,, Q.. and R ).

ii) P_, is set diagonal with all off-diagonal elements set to zero. The diagonal
elements used are those in the baseline setup indicating that there is moderate
uncertainty about the initial filter state estimate corresponding to the position

r, and quite confident about the other initial state estimates.

iii) R, , is set diagonal with all off-diagonal elements set to zero. The diagonal

elements are initially set to match the noise characteristics v, , in the

measurement process.
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iv) Q.. is set diagonal with all off-diagonal elements set to zero. An arbitrarily

small value of (1x10™ N.m)” is used for all diagonal elements to force the
filter to pay attention to measurements over time.

V) The diagonal values of Q,, and R_,, are modulated via a parametric-sweep

until the local best performance is found in the range of the sweep.

vi)  The local best performance is assessed by running each Q,, and R, ,,

combination for a fixed but lengthy simulation time until either steady-state
performance is achieved or divergence is apparent.

vii)  The Q,. and R, ,, combination that gives the local best performance is that

which has the lowest value of the sample mean of the norm of the position

€rrors.

The actual a posteriori position error is,

Arf =r -t (4.16)

and the norm || Ar;' ||, can be found during each filter sampling interval, T,. The sample
mean of this norm || Ar; ||, can be found over the entire simulation interval. Let

% =Il Ar; ||, and n is the total number of filter samples k. The sample mean of the norm

of the position errors is then,

7. == 4.17)

and the Q, . and R_,, combination in the range of all Q.. and R, combinations

considered that gives
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7, =kl (4.18)

min
is selected to give the local best performance.

Since setting the diagonal elements of R, to match the noise v, , in the measurement

process gave excellent results, this parameter was not modulated. Only a few iterations

were performed by modulating Q, . and the local best Q, . and R, , combination are the

values shown in Appendix G.

4.2.3 Filter Performance Evaluation

In the inertial environment, the dynamic motion filter state scope is,

x=[x°}= : (4.19)

with the states defined in Table 4-2. The measurement as viewed by the filter is related as
follows,

z, =[E" (fq")] (4.20)

e

The output vector used in the state update equation is the following,

PROPERTY OF
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LA

T
i~ G Fee

where,
K=, /1 g (4.22)
64 .
Dynamic Motion Filter State Notation

Xo Rotational partition of the dynamic motion filter state.

X, Translational partition of the dynamic motion filter state.

q, The “body-frame inertial orientation” parameterized as the quaternion as
an alias for the common orientations of the Geomefry Frame .7g and
Mass-Center Frame £ . (Recall that £ is defined, for convenience, to
have the same orientation as % , hence C,=1).

0 Small rotation vector parameterization to describe the attitude deviation.

0,, The “body-frame inertial angular velocity” expressed in the Body
Frame, which is again an alias for the common inertial angular velocity
of the Geometry Frame £ and the Mass-Center Frame £ . (i.e. the
vectors ©, £ 0, =@, and column matrices ®,;, =@ g = O, have
equivalent numerical values. ®,,, is often abbreviated as ®, ).

., The inertial position of the Mass-Center Frame £ origin, expressed in
an inertial frame & .

Vi The inertial velocity of the Mass-Center Frame & origin, expressed 1n
an inertial frame % .

L The mass-center offset or target satellite mass center location relative to

the Geometry-Frame %, origin, expressed in the Geometry-Frame % .
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Dynamic Motion Filter Measurement Notation

&, Vector part of the quaternion from measured orientation deviation.

Dn-"

Measured inertial position of the Geometry-Frame .7g origin, expressed

in an inertial frame & .

Dynamic Motion Filter Qutput Notation

Yo Rotational partition of the output vector.
Y. Translational partition of the output vector.
C, The rotation matrix between  and % , where & defines the same

orientation of the target Geometry-Frame & and Center-of-Mass Frame

Z.

c

Table 4-2: Dynamic Motion Filter Notation (Inertial Context)

The translational state is coupled to the rotational state through its dependence on the
target reference attitude estimate. This can be seen in the measurement sensitivity

Jacobian as follows,

1
g - ohx.t) _[He.,]_ -1 000 o 4.23)
=7 | = = .
ox . H, x
Hloich, 01 0 -C)

where CT, = C” " is coupled to the translational states.

Using the baseline setup cases of Appendix C and Appendix G, the following results
indicate that the dynamic motion filter performs well. In this preliminary section, only the
results of the translational states are shown. The norm of the position errors are shown in
Figure 4-10. After some initial transient behavior, the filter settles to a norm of the

position errors within 2 cm.
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Figure 4-10: Norm of Inertial Position Errors (Baseline Setup)

The a posteriori position errors vs. time are shown in Figure 4-11. The figure indicates
that the filter’s own representation of its errors match reality as indicated by the fact that
the true errors are within the covariance bounds (o) approx. 68% of the time. In Figure
4-12, it is seen that the velocity errors are within approx. 0.01 cm/s and the filter’s

covariance in the state estimate error represents reality well.
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Figure 4-11: Position Errors vs. Time (Baseline Setup)
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Figure 4-12: Velocity Errors vs. Time (Baseline Setup)

The CoM offset errors vs. time can be seen in Figure 4-13 and the norm of the CoM

offset errors in Figure 4-14.
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Figure 4-14: Norm of CoM Offset Errors (Baseline Setup)

Note that the y and z components of the estimated I in Figure 4-13 are good but the x

component is hovering around the lower edge of the covariance bounds. This may

indicate that additional filter tuning is required or that a possible observability issue
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exists. However, the covariance in the state estimate error, P is well behaved in that it

does not grow arbitrarily large. The behavior of the translation state and attitude state will
be further investigated in Section 5 when the dynamic motion filter is fully assessed in an
inertial simulation test environment and then in a more realistic orbital simulation test

environment.

4.3 Motion Estimation (Orbital Context)

To emulate the relative motion of the chaser vehicle and target vehicle during a
rendezvous proximity operation, a representative scenario of the relative motion is
required. The hybrid pose/motion estimation system is assumed to be utilized when the
distance from chaser-to-target is approximately 100m or less. In all cases, it is expected
that the chaser is approaching the target from behind in roughly the same orbital plane.
Therefore, a Hohmann transfer scenario is used to generate the representative relative

motion for simulation testing. Figure 4-15 shows the basic Hohmann scenario,

Figure 4-15: Hohmann Transfer for Relative Motion Scenario
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Assume the chaser transfer ellipse has the following perigee/apogee altitudes,

h, =500 km
’ (4.24)
h, =500.04 km
with the following properties,
r + r,
Apransior = —2 5 - =6878.02 km
a 3
Tansier = 277, |28 = 5676.836 sec (4.25)
He
T}/2Transrer = 2838.418 sec
The mean motion of the target is,
o.=a,= |22 =0.0011068062 rad/s = 3.8049 deg/min (4.26)
,'c('
During T, (180 deg swoop) the target moves through
2 ransier
Aa=aw.T, = 3.141578950 =179.99921489 deg (4.27)
2 ransier

To “near perfectly” dock with the target, the chaser should have an initial starting phase

of (just behind of the target)

@ =180—Aa =~ 0.000785106 deg (4.28)
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The orbital elements related to the relative motion Hohmann transfer scenario are seen in

Table 4-3.

~ ORBITAL SCENARIO CHARACTERISTICS = =~ """~

REFERENCE O-N

TARGET CHASER
FRAME

h, = 500.04 km h, = 500.04 km h, = 500 km
h, = 500.04 km h, = 500.04 km h, = 500.04 km
Q= 153.4 deg Q= 1534 deg Q= 1534 deg

i= 36.7 deg i= 36.7 deg i= 36.7 deg
w= 0.0deg w= 0.0deg o= 0.0deg
l,= 0.000785106 deg I,= 0.000785106 deg l,= 0.0deg

Table 4-3: Relative Motion Hohmann Transfer Scenario Initialization

4.3.1 Simulation Setup

The simulation setup to design and test the dynamic motion filter is made up of the truth

models as outlined in Section 3.2.1 and Section 3.4.1, the measurement models as

outlined in Section 3.2.3 and Section 3.4.5, and the dynamic motion filter written in C

code and integrated into the MATLAB/Simulink environment through a C MEX S-

function. The dynamic motion filter implementation used in the orbital context is

described in detail in Appendix H.

The top-level of the simulation testbed used to design and test the dynamic motion filter

is shown in Figure 4-16.
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Figure 4-16: Top-Level Orbital Simulation testbed for Dynamic Motion Filter testing

There are many variables and parameters associated with the dynamic motion filter and
the simulation testbed. To assess the performance of the dynamic motion filter a baseline
setup is established. All relevant variables and parameters for the baseline setup can be

seen in Appendix C and Appendix L.

4.3.2 Covariance Specification and Filter Tuning

For the dynamic motion filter in the orbital context, the covariance specification and filter
tuning procedure remains identical to that outlined in Section 4.2.2. Only a few iterations

were performed by modulating Q, . , and the local best Q,  and R, , combination are

the values shown in Appendix L.
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4.3.3 Filter Performance Evaluation

In the orbital environment, the dynamic motion filter state scope is,

0,
W, 5
Xq _
X =[ ] =| TF (4.29)
xr —
\4
chx-x

with the states defined in Table 4-4. The measurement as viewed by the filter is related as
follows:

z, = [a"f‘gq")] (4.30)

r

gv,0

The output vector used in the state update equation is as follows:

g e S I

h_(x,t) y
r r\“* gv.o T T
Cﬁorcv.ﬂ - C()G)Cb rcg.g

where,
1
K=,|1+—86 (4.32)
64
Dynamic Motion Filter Notation

Xo Rotational partition of the dynamic motion filter state.
X, Translational partition of the dynamic motion filter state.
q, The “body-frame inertial orientation” parameterized as the quaternion as
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an alias for the common orientations of the Geometry Frame .73 and
Mass-Center Frame £ . (Recall that £ is defined, for convenience, to

have the same orientation asZ ,hence C_ =1).

Small rotation vector parameterization to describe the attitude deviation.

The “body-frame inertial angular velocity” expressed in the body frame,

which is again an alias for the common inertial angular velocity of

Geometry Frame % and Mass-Center Frame £ . (i.e. the vectors
o, U 0, =, and column matrices ©,,, =@, ., =0, have equivalent

numerical values. w,;, is often abbreviated as, ).

I
<

The small relative cylindrical coordinates Cartesian-like vector-matrix of

the target relative to the chaser, expressed in the Reference Orbital-Nadir

Frame £ .

<]

The small relative cylindrical coordinates Cartesian-like vector-matrix

rates of the target relative to the chaser, expressed in the Reference

Orbital-Nadir Frame £ .

c8.8

The mass-center offset or target satellite mass center location relative to

Ve .« . . f-'
the Geometry-Frame % origin, expressed in the Geometry-Frame 5.

Dynamic Motion Filter Measurement Notation

Vector part of the quaternion from measured orientation deviation.

Measured position of the Geometry-Frame J‘; origin relative to the
Chaser Vehicle Frame £ origin, expressed in the Reference Orbital-

Nadir Frame £ .

Dynamic Motion Filter Output Notation

Yo

Rotational partition of the output vector.

e

Translational partition of the output vector.

The rotation matrix between % and % , where & defines the same
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orientation of the target Geometry-Frame .98' and Center-of-Mass Frame

Z.

c

Position of the target Mass-Center Frame £ origin relative to the

Chaser Vehicle Frame £ origin, expressed in the Tracking Frame % .

C,. The rotation matrix between %, and £ .

o

C,. The rotation matrix between # and % .

Table 4-4: Dynamic Motion Filter Notation (Orbital Context)

The translational state is coupled to the rotational state through its dependence on the
target reference attitude estimate. This can be seen in the measurement sensitivity

Jacobian as follows:

H _ah(xk,t,,) _ He.k
oo | | H,
- ) 7
—2—1 0 0 0 0
_ (4.33)
-
(—R"—+r—)cos¢9 0 -sin@
- R,
C,oCLr,, 0 Ci 0 1 0 0 -C,C.,
Msinﬂ 0 cos@
- g R‘ - -

where CZ, =CZ,~ is the coupling term.

Using the baseline setup cases of Appendix C and Appendix I, the following results
indicate that the dynamic motion filter performs well. In this preliminary section, only the

results of the translational states are shown. The simulation is run for 3000 seconds, just

beyond the point of intersection between the target and chaser at T, ftrst In Figure
2

4-17, the true and a posteriori estimate of the relative cylindrical coordinates is shown,

along with the error in the relative cylindrical coordinates estimate in Figure 4-18. The
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radial and out-of-plane errors are within 1-2 cm. The angular error is almost negligible.
The norm of the position errors in Cartesian-like form are shown in Figure 4-19. After
some initial transient behavior, the filter settles to a norm of the Cartesian-like position

errors within 3-4 cm.

Truth vs. Filter Model (Relative Cylindrical Co-ord)
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Figure 4-17: Relative Cylindrical Coordinates Baseline Case

Error in Relative Cylindrical Coordinates vs. Time
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Figure 4-18: Relative Cylindrical Coordinate Errors vs. Time (Baseline Setup)
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nomm of Ar,, vs. Time
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Figure 4-19: Norm of Cartesian-like Position Errors (Baseline Setup)

The a posteriori relative position errors vs. time in Cartesian-like form are shown in
Figure 4-20. The figure indicates the filter’s own representation of its errors match reality
as indicated by the fact that the true errors are within the covariance bounds (+o°)

approx. 68% of the time.
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Relative Position Error and Estimated Covariance, Ar, and +io
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Figure 4-20: Relative Cartesian-like Position Errors vs. Time (Baseline Setup)

The CoM offset errors vs. time can be seen in Figure 4-21 and the norm of the CoM
offset errors in Figure 4-22. Again, the true CoM offset errors are within the covariance
bounds (+o°) approx. 68% of the time.

CoM Offset Error and Estimated Covariance, arg, and tlo

0.1 - T T T
X or
E ~ v
_0'1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
0.1 = T T T T
E ]
S of e e
2
3
-0.1 i ! 1 L L {
0 500 1000 1500 2000 2500 3000
0.1 T T T
E | A
e tand _— -~
3 w/m SanSE
_0‘1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Time, t [sec]

Figure 4-21: CoM Offset Errors vs. Time (Baseline Setup)
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Figure 4-22: Norm of CoM Offset Errors (Baseline Setup)

The behavior of the complete dynamic state will be further investigated in Section 5
when the dynamic motion filter is fully assessed in the orbital simulation test

environment.
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5 Dynamic Motion Filter Results

In this section, the performance of the dynamic motion filter is assessed in an inertial

environment and in an orbital environment.
5.1 Dynamic Motion Filter Performance - Inertial Environment

In the inertial environment, the dynamic motion filter state scope is,

0,
' @Dy 5
Xg
X = =| r,, ¢.1)
xr
vci i
| Teg.g |

The measurement as viewed by the filter is related as follows:

. = [e (fqo] 52

Te

The output vector used in the state update equation is as follows:

1(1
|Ye|_ hg (x,7) e -—-(—-9)
L)) -

r

where,
K-Jl+——1—0“ (5.4)
2 .
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All variables of the above equations were previously defined in Table 4-2 of Section

4.2.3 and will not be re-defined for brevity. A graphic of the inertial operating

environment for dynamic motion filter testing is shown in Figure 5-1.

Figure 5-1: Inertial Environment Frames and Vectors

To assess the performance of the dynamic motion filter in the inertial environment, a

number of simulations are run with random but bounded truth initial conditions, {x,},

and random but bounded error in the filter initial conditions, {Ax, =X, —X,} . Each

sample simulation will be run for a sufficiently long period of time to assess the
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occurrence of good performance (convergence within a specified level), bad performance

(convergence above a specified level), and divergence.

Similar to Section 4.1.3, the robustness of the dynamic motion filter is assessed in an
inertial environment by running approx. 100 simulations where the initial filter estimates

of attitude and body-rates are varied from the true initial attitude and body-rates.

Again, uniformly distributed random numbers are generated that are bounded between -1

and 1. Specifying these upper and lower bounds x, =—1 and x, =1, the random number

is given as,
X =x+(x, —x)xrand() 3.5)

where rand() is the standard Matlab uniformly distributed pseudo-random number
function. The bounded random number is then multiplied by an amplitude factor that acts
as the max allowable size of the error from the truth. For this study, all truth model

parameters (I, m, etc) and filter covariance parameters (P,,Q_,R ) are held constant.

Variables that differ from Appendix C and Appendix G are specified as follows:

The initial attitude estimate conditions are specified using,

¢ ¢ Ag, o % (%, +(x, = x,)x rand())
6| =|6| + a6, x(x,+(x, —x)xrand()) | deg (5.6)
¥ Vo | AW X (% +(x, —x)xrand())

=0

where the deviations from true attitude are bounded by Ag,, =A6,. =Ay, =15 deg.

The initial body-rate estimate conditions are specified using,
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@, @y AB, (nay % (%, + (%, = x,)xrand 0)
B, | =|@, | +|A®, uyx (% +(x,~x)xrand() | deg/s (5.7)
@, o L@, | [ A0 ey X (% +(x, —x)x rand())

where Aw, ) = A, () = AD, 10y = 0.1 deg/s. Furthermore, it is assumed that the

target will be in a relatively docile motion state such that it is possible to dock with. The

true target initial motion is specified as,

@y, 1.0
», | =|0.1x (x,+(x, —x,)xrand() | deg/s (5.8)
o, | 0.5x(x, +(x, —x;)x rand())

The initial inertial position estimate conditions are specified using,

;.:'" ';"x Ar’-‘x(max) X (xl + (xu - xl) X rand())
".:"y = r, + Arc,,(max) >((xl +(xu _xl)xrand()) m (5.9)
Ac' 1=0 rcz =0 Ar“x(mﬂx) x (xl + (xu =X ) X rand())

where Ar, .o =Ar, o =Ar, .,=5m. Similarly, the initial inertial velocity estimate

Cy cy ¢, (max)

=Av

¢, (max)

=Av

¢, (max)

conditions are specified with A = (0.1 m/s, and the initial CoM

Ve, (max)

Ar, =0.005 m.

€g.8, (max)

=Ar,

offset estimate conditions are specified with Ar,, 2.8, (max)

gxmax) =
To collapse the performance information into a compact format, the norm or size of the

errors for each simulation case is shown. Performance related to the orientation state
estimate, X, is presented in Figure 5-2 displaying the mean of the norm of the attitude

errors and the mean of the norm of the body-rate errors for each simulation case.

Performance related to the translational state estimate, X, , is presented in Figure 5-3

displaying the mean of the norm of the position errors and the mean of the norm of the

CoM offset errors for each simulation case.
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Figure 5-2: Average Error performance for the Rotational State Estimate
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Figure 5-3: Average Error performance for the Translational State Estimate

During the simulations, it was noticed that the attitude estimation performance, éb , was
very dependent on how well the filter was estimating the body-rates, @, . For example,
Figure 5-4 shows the attitude errors in terms of the RPY parameterization for Case 50
and Case 10. Since the body-rate estimates of case 50 (“black” line —) are the worst of
the entire batch, its attitude estimates have much larger “peaks and troughs” when
compared to Case 10 (“blue” line —) which is doing a good job of inferring body-rates.

This behavior is expected since the body-rates drive the attitude motion. If the vision
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system could also provide rough estimates (measurements) of the target body-rates to the

filter the entire performance of the system would likely be enhanced.
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Figure 5-4: Effect of Body-Rate Estimation Performance on Attitude Estimation

The estimation performance of a typical case (Case 25) is shown in Figure 5-5, Figure

5-6, Figure 5-7, Figure 5-8, and Figure 5-9. For Case 25 the random error generation

produced the following initial filter estimates,

é 0 4 10.98
O =|0|deg and 0t =|11.67 | deg
v, |0 p| 1461
1.0 0.9361
Oy =| -0.09 |deg/s and @, =|-0.1797 |deg/s
0.0706 0.1174
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-49.15 -45.514

Loy=| 139 [m and £, =|14572 |m
-68.147 -63.342
0.19 0.2471

Veemoy=| 034 | m/s  and ¥, =|-0.4073| m/s
0.3172 0.3838
0.05 0.0469

-0y =|005|m and £ ., =|0.0514| m
0.0 0.0017

A [deg] A¢ [deg]

Ay [deg]

2
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Figure 5-5: Typical Attitude Error Performance (Case 25)
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Figure 5-6: Typical Body-Rate Error Performance (Case 25)
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Figure 5-7: Typical Inertial Position Error Performance (Case 25)
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Figure 5-8: Typical Inertial Velocity Error Performance (Case 25)
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Figure 5-9: Typical CoM Offset Error Performance (Case 25)

As can be seen in Figure 5-5, the roll error, Ag, is bounded but not ideal in matching

with the filter’s covariance representation of the roll error. This indicates that additional

effort should be spent tuning the filter to find a better combination of the noise
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covariance matrices, Qg . and Ry ,, , or upgrade to a more robust implementation such as

the noise-adaptive filter to estimate the best combination on-line [29].
5.2 Dynamic Motion Filter Performance - Orbital Environment

In the orbital environment, the dynamic motion filter state scope is,

6b
Wy, 5
X Dbip
x=[ °]= rd (5.15)
xl' —
A\
_rcg.g R

The measurement as viewed by the filter is related as follows:

z, —_-[é"f'sq")] (5.16)

rg" 0

The output vector used in the state update equation is as follows:

1(1
|ye|_ hg (x,1) | e —(—0)
B L e

8v,0

where,

K= ,/1+61—494 (5.18)

All variables of the above equations were previously defined in Table 4-4 of Section

4.3.3 and will not be re-defined for brevity.
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A close-up graphic of the relative orbital operating environment for dynamic motion filter

testing is shown in Figure 5-10.

z
-8
a

Figure 5-10: Orbital Environment Frames and Vectors

To assess the performance of the dynamic motion filter in the orbital environment, a

small set of simulations are run with random but bounded truth initial conditions, {xo} ,

and random but bounded error in the filter initial conditions, {Ax, =%, —x,} . Each

sample simulation will be run for 3000 seconds which is a small time beyond the chaser-

to-target intersection in the representative Hohmann transfer scenario.
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Similar to Section 4.1.3 and Section 5.1, the robustness of the dynamic motion filter is
assessed in an orbital environment by running a number of simulations where the filter
initial state estimates are varied from the true initial states. The same randomized
initialization procedures outlined in Section 4.1.3 and Section 5.1 are used here and will

not to recited for brevity.

For this study, all truth model parameters (I, m, etc) and filter covariance parameters
(P,,Q,,R,) are held constant. Variables that differ from Appendix C and Appendix I are

specified as follows:

The initial attitude estimate conditions are specified using,

¢ ¢ A@,. X(x,+(x, = x)xrand())
6| =|6| +| A6, x(x+(x—x)xrand()) | deg (5.19)
78 Vg | AW X(x+(x, —x,)xrand())

where the deviations from true attitude are bounded by Ag,, = A6, =Ay, . = 10 deg.

The initial body-rate estimate conditions are specified using,

@, o, A, (nay X(x, +(x, —x)xrand())
@, | =\ | F| AD X(x, +(x, —x;)xrand()) | deg/s (5.20)

2 di=0 a)bz 1=0 Aa)b,(rmx)x(x["'(xu —x,)Xrand())
where A®, .y = Ad, () = A, (nary = 0-1 deg/s. Furthermore, it is assumed that the

target will be in a relatively docile motion state such that it is possible to dock with. The

true target initial motion is specified as,
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@, 1.0
@, | =|0.1x(x +(x, —x)Xrand()) | deg/s (5.21)
, | 0.5%(x, +(x, —x)xrand())

z dr

The initial relative position estimate conditions are specified using,

. I, AT, oy X (x, +(x, —x)xrand())

P | =1y | | Al an X (%, +(x, —x)Xrand()) | m (5.22)

0 N SR ., X(x, +(x, —x)xrand())
where Ar, g = AL, (may = Al gy = 5 M. Similarly the initial relative velocity estimate
conditions are specified with Av_ . = AV, (g = AV, (= 0.1 m/s, and the initial CoM
offset estimate conditions are specified with Ar,, . .o =A%y o ay = AT ¢ nay = 0.005 m.

The performance of the dynamic motion filter is displayed similar to [27] where 5 sample
runs are displayed on the plots including the baseline case. Note the baseline case is
indicated by a solid “blue” line, while the additional sample runs are indicated by
dashed/dashed-dot lines. For Figure 5-11 to Figure 5-18, the line styles are defined in
Table 5-1.

Baseline Case

------- Random Case 1
— — Random Case 2
— - — -Random Case 3
— — Random Case 4

Table 5-1: 5 Sample Run Line Style Definitions

From the sample simulations shown in Figure 5-11, it can be seen that the attitude

portion of the dynamic motion filter is sensitive to the accuracy of the initial estimates.
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The random sample case 4 in “cyan” was initialized with the most accurate body-rate

estimate, "Aé),, (t= 0)" ~0.024 deg/s , along with an accurate attitude estimate.

norm of RPY(5C") vs. Time
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IRPY(5C")|| [deg]
[4,]
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Figure 5-11: Norm of Attitude Errors (5 Sample Runs)

The a posteriori attitude errors in terms of a RPY sequence, RPY(5C"), vs. time are
shown in Figure 5-12. For these sample runs the figure indicates that the filter’s
representation of its own errors match reality as indicated by the fact that the true errors
are within the covariance bounds (+o) approx. 68% of the time. In Figure 5-13, it is seen
that the angular rate errors corresponding to these cases are within approx. 0.01-0.02

deg/s and the filter’s covariance in the state estimate error represents reality well.
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Aftitude Error and Estimated Covariance, ARPY and +/-o
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Figure 5-12: Attitude Errors parameterized as RPY (5 Sample Runs)
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Figure 5-13: Body-Rate Errors (5 Sample Runs)

The relative position errors represented in cylindrical coordinates are shown in Figure
5-14. The filter does an excellent job of tracking the relative position of the target as seen
by the radial and out-of-plane errors bounded within 2 ¢cm and angular errors within a

fraction of a degree. Expressing the relative position errors in terms of there Cartesian-
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like form in the reference orbital-nadir frame, the error magnitude is bounded within 3

cm. -
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Figure 5-14: Relative Cylindrical Coordinate Errors vs. Time (5 Sample Runs)
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The a posteriori position errors vs. time expressed in Cartesian-like form are shown in
Figure 5-16. The figure indicates that the filter’s own representation of its errors match - .
reality as indicated by the fact that the true errors are within the covariance bounds (+o°)
approx. 68% of the time.
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Figure 5-16: Relative Cartesian Position Errors vs. Time (5 Sample Runs)

The CoM offset errors vs. time can be seen in Figure 5-17 and the norm of the CoM
offset errors in Figure 5-18. Again, the true CoM offset érrors are within the covariance
bounds (£o°) approx. 68% of the time. For the sample runs shown, the magnitude of the
CoM offset error is bounded within 0.6 cm as seen in Figure 5-18.
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CoM Offset Error and Estimated Covariance, Moo and +/-¢
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Figure 5-17: CoM Offset Errors vs. Time (5 Sample Runs)
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Figure 5-18: Norm of CoM Offset Errors (5 Sample Runs)

As mentioned in Section 5.1, during the orbital scenario simulations, it was noticed that
the attitude partition of the filter is less robust to initialization errors than the relative

translation partition but the entire state will be affected since the two partitions are
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coupled. Even larger values of Ar,,,, in (5.22) were tested (=10 m error) and the filter

did an excellent job of estimating the relative motion. However, large initialization errors
in attitude and body-rates beyond the thresholds mentioned in Section 4.1.3 caused
delayed and even no convergence of the filter states. If the vision system could also
provide rough estimates (measurements) of the target body-rates to the filter, the entire
performance of the system would likely be enhanced and the dynamic motion filter

would be more robust against initialization errors in the orientation states.
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6 Conclusions and

Recommendations

Using the computationally efficient extended Kalman filtering technique, a dynamic
motion filter was designed and tested for use in a hybrid pose/motion estimation system
to assist an orbital rendezvous vision system in its motion estimation duties. Specifically,
the results shown in Section 5 indicate that a dynamic motion filter can provide the vision
system routines with excellent initialization leading to faster convergenc, reliable pose
estimation at slower sampling rates, and the ability to estimate target position, velocity,

orientation, angular velocity, and mass center location.

Although the filter performs well with moderately accurate initialization, it was

particularly sensitive to initialization errors in the target body-rates, @, , a similar finding

in [12] and [28]. This lack of robustness to initialization errors is likely due to the first-
order approximation implicit in the EKF formulation as described in the literature. Also,
particular attention should be made to the subtlety in covariance specification and tuning
of the nonlinear attitude partition of the filter. Issues and techniques are covered in

Appendix D.

Future work should focus on: i) augmenting the state for the addition of inertia
parameters (inertia components, principal directions) and recognition of dynamic effects
to differentiate them; ii) implementation of “advanced” formulations (SRKF, UKEF, etc.)
as required for viability and/or computational stability and efficiency; and iii) testing with
real data. The filter can then be introduced into the hybrid pose/motion estimation system

to compliment the vision system in its motion estimation duties.
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Appendix A Kalman Filtering -

Implementation Overview

For Kalman filtering, the physical situation of most common interest in aerospace
applications is a hybrid one:
e System dynamics are continuous in time

e Measurements are processed at discrete points in time

discrete
measurement
update
fHee, ) RS (A1 E (Y
P PR P
Tt t t

| continuous time propaqgation |

Figure A-1: Implementation Process Step [30]

Where a discrete time measurement is processed, there is a discontinuity in the estimate,

the estimate error, and the error covariance matrix.
In the diagram above, the superscript "-" is used to indicate values before incorporating
the measurement at a measurement time (a priori) and the superscript "+" to indicate

values after incorporating the measurement at a measurement time (a posteriori).

A graphical overview of the typical interaction between a real system and the Kalman

filter is shown in Figure A-2.
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Real System Dynamics

-Estimator/Observer L

' Z, Meas

Kalman Filter

*Propagate State

* Propagate State Covariance
* Compute Kalman Gain

* Update State Esimate

* Update State Covariance

5( . Estimaled State -

Known Input/Excitation, f

Figure A-2: Overview of Kalman filter with Real System Interaction [31]

Below, the basic extended Kalman filtering equations are shown that can be found in any
standard text including [7, 27, 29, 32]. Although not shown below, there are a variety of
equivalent formulations in both discrete-time and continuous-time that have numerical

advantages over the standard formulations.

A.1 Procedure: Time Propagation

After processing the measurement at #,_, , one acquires the estimate X;_, and the

estimation error covariance matrix P,:_, .
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The filter operates open loop until the next measurement point at £, . In this interval

the system dynamics are described by a differential equation. In general the true and filter

interpretations of the system motion will be given by,

() =£(x(8),u(r), w(1),p(1),1)

A (A.1)
x(r) =£(x(1),u(),0,r)

and it is noted that since we do not know the process noise input w(t), we express the
filter dynamics equation with the expectation of w(t) (namely, E [w(t)] =0). The

estimate, i:_, , is the mean of the distribution of x conditioned on all the measurements

processed up to that point. The estimated error is zero mean. To preserve the error
unbiased until the next measurement, the estimate can be driven with the mean or

expectation of the system dynamics.

The propagation step can be taken by integrating the following differential equations

x=f (X(2),u(t),t) > where = X(t,_)) =X,

P=FP+PF +LQ.L" — where — P(, ) =P;, B2
More explicitly, the general propagation of the system takes on the form
State Estimate Propagation
% =%+ f f(X(7),u(z),7)dt (A3)
Covariance Estimate Propagation
P =P+ -[':. [F(T)P(T) +P(D)F (1) +L(0)Q,(r)L' (z')] dt (A4)
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The matrices that comprise the error covariance derivative P(t) are generally partial

derivative Jacobian matrices evaluated at the current best estimate of the variables X and

u for a non-linear system of the form in (A.1). These include,

F(r)= if x(7),u(7),7) (A.5)
ox

X=X

(A.6)

L(7)= if x(7),u(7),w(7),7)
ow

This will make a non-linear system appear linear over short time intervals. The state
propagation can be accomplished by directly applying a numerical routine. An

established algorithm such as the classical fourth-order Runge-Kutta method can be used

for the numerical propagation.
A.2 Procedure: Measurement Update

At the next measurement point, ¢,, one has the a priori estimate, X}, it's error covariance

matrix, P, , and a new measurement of the general form,
z, =h(x,u,t)+v, (A7)

where the noise, v, , is an unbiased, independent sequence of random variables

associated with measurement noise.

The update and gain equations are given in discrete-time as follows,
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Filter Gain Computation

K, =P;HI[H,P;H] +R, ]’
where

H, =§ax—h(x(t),t)

x=X;

State Estimate Update

%, =%, +K, [zk —h()‘(k,uk,tk)]

Covariance Estimate Update

P; =[1-KH, |P;
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Appendix B Attitude Estimation
Filter Equations (MEKF)

The implementation of the MEKF is summarized as follows:

B.1 Initial Conditions

Attime ¢, ...

qu,o = Q. ()
@, =@, (1)
P, =P(,)
é; =0 by definition

(B.1)

NOTE: the ‘~’ (tilde) under the variable is used to indicate “The Error Attitude State” to
avoid confusion with the ‘~’ (tilde) atop a variable that indicates a measurement.

The many different states are specified as,

The Reference Attitude State

Qe (B.2)
X (t,) =[ ‘-‘}
b,k
The Error Attitude State
0, (B.3)
Xe(t,) =
o\ |:‘Db,k :|
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The S-function Attitude State

o
Xo.x
% A
Xo.x

' (B.4)
— +
Xgs-func (i) =| Poyx
Py,

| Qres |

The following steps implement the filter...

B.2 Propagating the State Estimate

Integrate starting from §;,,,, and &;,_, to get 4, and &;,.

The propagation is carried out using the following equations of motion,

1=q®B=E(®@)q=E(q)® (B.5)
o, =1"[ g, -0, 1o, ] (B.6)
where, as defined earlier,
O 1]
O= (B.7)

and

b9 ~9 —49 G
n -’ :|= 4@ b 95 9 (B.8)
9H —495 9 q,

B 9 —49 4
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The acting torques in (B.3) can be partitioned as g, , =g, .oun + 8aiu, - HOWeVer, for the
filter propagation the dynamics can be driven with only known inputs such that

gext = gknown *

In terms of the reference state estimate, X(t,),

% =%+ [ H{/e()u(),7hde (B.9)
And you get,
(f'j"" (B.10)
Wy ¢

Regarding the a priori estimate of the attitude error state, 6; =0 by definition.

B.3 Extrapolating the State-Error Covariance

Propagate the covariance using the form,

P, =P + f [F(T)P(T) +P(0)F (1)+L(1)Q, (r)L] (1)] dr (B.11)

where,

(B.12)

F(7) =—Z—’-f (x(7),u(7),7)
ox

X=X

(B.13)

L(7)= if (x(7),u(7),w(7),7)
ow

x=X

or alternatively extrapolate the covariance using the form,
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P = (Dk-lplctl(p:—l +Q,, (B.14)

where the state transition matrix, ®,, is the Taylor-series expansion of e,

22 33
D, =1+F7;+F 4 +FT~‘
2! 3!

(B.15)

The discrete process noise covariance matrix, Q, , can be computed from the continuous-

time process noise spectral density matrix, Q. , from the following [27],
Q. =['®,,(LQL e (1)dr (B.16)

The discrete-time form will be less computationally expensive but generally less
accurate.

For the particular dynamic motion filter state in the inertial context one can often derive
explicit expressions for the Jacobians, State Transition matrix, and Process Noise
Covariance matrix.

JACOBIAN F
To evaluate the Jacobian derivatives associated with @ , the following relationship is
noted: [33]

: 11
0=|1+—0"+—0"0" |5 17
[ 2 12 ] @ ®.17)

where dw is the relative angular velocity from the reference orientation q, to the net

orientation q, . The following can be written:

N 1 X 1 XX
9=[1+50 +- 00 :I((o—é’Ccom,) (B.18)
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By applying the approximation,

5C = 5C(0) =1-6" +—;-e*e*

the following relation exists, valid to second-order,

é=[1+19*+—1-9*9*](m—(1—0"+le"e*)comf)
2 12 2

To first-order in the small 0,

'58:_1= ; + [m’,:ﬁ" 20%w ]——(o ——[mmrﬂ" 9"0)"]
and
00 .
amz=1+'§9

(B.19)

(B.20)

(B.21)

(B.22)

However, when implemented according to the MEKF procedure, the expressions are

evaluated such that =0 and ®, = o, hence the much simpler forms,

0
F
and
30
=1
do,
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The complete Jacobian for F = % is as follows:
.4
P
Fe of[]1 | 00" do;
x' |da, oo,
0" do!

B —0r
|0 I'[de,)-(@D]

JACOBIAN L

%
T
L= af[T] _| %8 |_
ow' | da,
og”
STATE TRANSITION MATRIX ®
@, ~1+FT,

1

PROCESS NOISE COVARIANCE MATRIX Q,

|

Q. =['®, ,(ILQU®] (1)dz

B.4 The Measurement and Output Equation

The measurement comes in as C, and is converted to — q, .
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To compute the measurement error covariance we must convert from §;, to > C,, .

ﬁk = ﬁ;f.k © §ﬁk
5(1/: = ﬁ;f.k @ (ik
J‘Alk =E(q, )‘i;r.k

Then, extract the & part of the corresponding Euler parameters...

g, < 04,

and compute the measurement error covariance

R, CT

1
Re.k =—Cref.m e,m ref,m
4
where

— (- T
C f m _Cmf.kcmi

re

is the current estimate of the measurement-frame to body-frame rotation matrix.

The measurement as viewed by the filter is related as follows,

Zg, =¥

The output vector used in the state update equation is as follows,

1(1
=h,(x,t)=e=—|—0
Yo o(X,t)=¢ K(2 )
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where

K= ,/1+gl‘:9“ (B.35)

The linearized version used in the gain and covariance calculations is derived as follows,

dhg(x,,1,)| [ah (x,,t,) Ohg(X,,t )]
H=6kk = O\ Mk O\ Motk (B36)
.k ox’ =i, 00" 80),,T
From
£= -1—(1 0) (B.37)
K\2
it is found....
ohg(x,,t,)
—— =0 B.38
o~ (B.38)
ohg(x,,t,) 1
—a 2t =1 B.39
20" 2 (B-39)
Therefore,
1 .
Hg, =[_13x3 : 03;;3] (B.40)
2 3x6

B.5 Calculating the Filter Gain

Standard form is

K, =P;H[H,P;H] +R, ]’ (B41)
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B.6 The (Relative) State Estimate

For the state update,

So,

A+ A- A=
Xox =Xg +Kg[zg —hg(X(,1,)]

o |0 L(1a
Xox = &, +Ke[Ze, X Eek |

B.7 Update of the State Error Covariance

Shown here is the standard Joseph form often used for computation.

P’ = [I—Kka]P,: [I_Kka ]T +K,R,K,"

B.8 Reset of the Absolute Orientation State

(B.42)

(B.43)

(B.44)

The reference orientation is moved along with the current (relative) state estimate.

Build a proper rotation matrix from the small rotation vector. The quaternion is used for
this because they are easy to normalize.

b =@;)"é;

1(. 14
oh, =—| 1-— @42
Tk K( 8 ")
1(14
58, =—| —6*
K K(2 "J
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where,
l “4
K= 1+a §0k (B.48)

Assembled this is,

. [on
5q,(0;) =[ 52"] (B.49)
k

then

q;f,k = Q;r.k ® 5‘1k (é:)

: e (B.50)
q:ef.k =E(dq, (7)) Grer
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Appendix C Attitude Initialization

Baseline Setup

 EKF TESTING INITIALIZATION REFERENCE TABLE

TEST REFERENCE NO. Baseline Setp

Filter Type: MEKF

Filter Sampling Interval: KALMAN_DT_SAMPLE = 1.0

[sec]

Propagation Type: State Estimate (RK4 Solver) / Covariance (Discrete P, =® P/ ®, +Q,)

Number of Steps: State Estimate (20) / Covariance (20)

Update Type: MEKF (with Joseph Form)

Total Simulation Time: 10000 [sec]

Numerical value

Symbol Numerical value Symbol
{9.6,y),. | (00,0} deg {6,60,¥} {10,0,0} deg
at (¢=0) |EULERO= at (t=0) EULERO_ref =
1 0.99619
0 0.087156
q. (%) 0 G (1) 0
0 0
,(1,) wx = 1.0 * DEG; (’{)b(to) wx_est = 1.0 * DEG;
wy = 0.0 * DEG; wy_est = 0.1 * DEG;
wz = 0.5 * DEG; wz_est = 0.5 * DEG;
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W_ 0= W_0_est=
0.017453 0.017453
0 0.0017453
0.0087266 0.0087266
0 KFilter INIT STATE =
Xo(to)=| ° 0
Xellp) =
W, 0
0
)
0.017453
0.0017453
0.0087266
I >> INERTIA i >> INERTIA
(2™ Mom. | INERTIA = (2 Mom. Inertia) INERTIA =
Inertia)
1462 0 0 1462 0 0
0 790.89 0 0 790.89 0
0 0 511.56 ) 0 511.56
Py (1)) 6‘9, =10 deg
Gy, =10 deg
G, =10 deg
G, =5 degls
G, =5 deg/s
5'@ =5 deg/s
KFilter_P0 =
0.030462 0 0 0 0 0
0 0.030462 0 0 0 0
0 0 0.030462 0 0 0
0 0 0 0.0076154 0 0
0 0 0 0 0.0076154 0
0 0 0 0 0 0.0076154
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Vo O ,(s=0.2294 deg Re.., Oy, = Oy =6.0deg
(asso?xated O, (9= 0.6882 deg (associated with &v(o,) = ay(g) =6.0 deg
with 50 ) )
= mg A — A
50,,.3) Oy, = 0.6882 deg av(o:) =0,y)= 6.0 deg
KFilter_Rm =
0.0027416 0 0
0 0.0027416 0
0 0 0.0027416
Weo 8aiswry = 1€-5 Num Qe,c 0'\'3,(5,‘): (3.2e-3*(N.m)% s
associated A
(asso Brey=(3.2e-3) (Nm). s
with )
6% . =(3.2e-3)*(N.m)% s
gdisturb ) w(g,) . . .
KFilter_Qc =
1.024e-005 0 0
0 1.024e-005 0
0 0 1.024e-005
ohg[] 1 .
He, = er Ho,=|Z1, : 05,
aX 2 3x6
KFilter_H =
0.5 0 0 0
0 0.5 0
0 0 0.5
_ML [ [0
° ow’ e |
KFilter_L =
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0 0 0
0.00068401 0 0
0 0.0012644 0
0 0 0.0019548
o[ .
F, =—2 -@, 1
0= 5,7 b 313

0, i I'[U&,)-&1]

C..(t)

C_mi0=

S O -
oS = O

- O O
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Appendix D Filter Tuning Literature
Review

An Extended Kalman Filter (EKF) can be a near-optimal estimator if implemented
correctly. However, to achieve acceptable performance the filter must be properly tuned
to avoid poor performance or even divergence. The following provides excerpts and
recommendations from various literature sources found during the author’s search

regarding poor EKF performance and divergence.

The author is definitely not the first to encounter poor performance or even divergence
during initial testing of an EKF. Some have even chosen to develop there own methods
due to frustration with the EKF. In a recent paper Julier and Uhlmann , the creators of the

Unscented Kalman Filter (UKF), state the following,

“The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for nonlinear
systems. However, more than 35 years of experience in the estimation community has shown that it is
difficult to implement, difficult to tune, and only reliable for systems that are almost linear on the time scale

of the updates. Many of these difficulties arise from its use of linearization.” [34]

However, despite the pessimism in the above quotation, Markley a co-inventor of one of
the most successful implementations of the EKF applied to attitude determination,
namely the Multiplicative Extended Kalman Filter (MEKF), conducts a lengthy survey of

various nonlinear attitude filtering methods and reports [19],

“Although the new approaches surveyed here have been shown to have some advantages, it is wise to apply

the old adage “if it ain’t broke don’t fix it” to the standard extended Kalman filter, which has proved its

worth on a multitude of spacecraft missions.”

123



Appendix D

D.1 Poor Performance and Filter Divergence

From page 467 of [18] the phenomenon of filter divergence is stated as,

“A Kalman filter achieves a steady state when the corrections to the state vector reach a consistent level
and when the error covariance matrix is stable. Divergence occurs when the estimated state moves away
from the true state. This is a common problem associated with Kalman filters. The most frequent causes of
Kalman filter divergence are linearization errors, cumulative roundoff and truncation errors, modeling

errors, and unknown noise statistics.”

In [18] it is stated that linearization problems can be reduced by local iteration or more
frequent selection of observations. Numerical problems may be partially solved by using
a different but theoretically equivalent filter implementation such as the U-D

Factorization implementation. Problems associated with noise statistics,

“may be solved after extensive testing with both simulated and real data. Proper filter response will only
result when the appropriate balance between the state noise and measurement noise covariance matrices is
found.”

The state noise and measurement noise covariance matrices mentioned above are

precisely,Q and R . Reference [18] goes on the say,

“If, for example, state noise has been underestimated with respect to observation noise, the state estimation
procedure will become less and less sensitive to the observation residuals. Divergence could then result
even though the filter may have reached a steady state. Alternatively, if observation noise has been

underestimated, the state estimation procedure may be incorrectly influenced by the observation errors.”
In another reference, [32], the following definition is given,

“Filter divergence is often explained in terms of the calculated covariance matrix, the assertion being that
this matrix becomes unrealistically small and results in placing unreasonable confidence in the estimates.

Consequently, the filter gain is reduced and subsequent measurements are effectively ignored.”

124



Appendix D

The author in [32] then goes on to further classify two different types of divergence,

“In some cases of divergence, the true error converges to a finite value; this is known as an Apparent
Divergence. True Divergence represents the most critical type of divergence in filter design. This type of
divergence means that the true error becomes arbitrarily large as time increases while the estimated error

converges to a finite value.”
Maybeck [35] shows an example of poor EKF performance and notes the following,

“The preceding example revealed a bias error in the state estimate produced by an extended Kalman filter.
This is very characteristic of extended Kalman filters, and it is due to the neglected higher order effects
inherent in trying to exploit linear perturbation concepts. The more pronounced the nonlinearities are in a
given application, the more seriously one can expect performance to be degraded by this effect. This can be
compensated to some degree by “tuning” the filter such that its internally computed error variances match

the true mean squared errors as indicated in a Monte Carlo performance analysis.”

The importance of balancing the state noise and measurement noise covariance matrices

(Q and R) or proper “tuning” of the filter will be explored in the next section.

A multitude of other references explore the KF and EKF divergence problems, these can

be seen in [36-44].

D.2 Filter Tuning

Assuming the effects of numerical round-off and truncation are not an issue, the literature
is exploted to find out how to attain a balancing of the state noise and measurement noise

covariance matrices (Q and R) such that acceptable filter performance is achieved.

From Maybeck [7],

“The basic objective of filter tuning is to achieve the best possible estimation performance from a filter of
specified structural form, i.e. totally specified except for Py and the time histories of Q and R .....Thus,

the tuning process can be considered a numerical optimization problem.... Manual “optimization” is more
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prevalent in practice. Basically, the P0 matrix is the determining factor in the initial transient performance

of the filter, where the Q and R histories dictate the longer term ( “steady state” if time-invariant system

and stationary noise models apply) performance and time duration of transients. ”

One might purpose that these noise covariance matrices (Q and R ) be based on the
magnitude of physical or “actual” noise being injected into the system. Although the
latter statement is often a starting point, simply using Q and R to match the “actual”
noise injected into the system can often give poor performance. From Maybeck, the

tuning should start by [7],

“.. it can be solved by automatic search methods or by manual calculation: using physical insights to
propose changes in the noise covariances, and continuing to vary them until the performance no longer

improves.”

This is discussed further in [45],

“..whether or not we have a rational basis for choosing the parameters, often times superior performance

(statistically speaking) can be obtained by tuning the filter parameters Q and R ”

and in [46],

“The magnitude of the noise in an EKF is therefore extremely difficult to estimate. It is therefore surprising
that the issue of learning noise terms remains largely unexplored in the literature. A notable exception is
the filter tuning literature.... when choosing the noise parameters for an EKF, we are interested in
choosing parameters that lead to the EKF outputting accurate state estimates, rather than necessarily

choosing the noise parameters that most correctly reflects each measurement’s true variance..”

D.3 Why Process Noise Q is Required

In [27], a useful discussion is found regarding why process noise covariance Q is

required,
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“... setting the process noise to zero eventually causes the filter to stop paying attention to new
measurements (i.e., filter bandwidth is reduced or the filter gain is too small for incorporating more

measurements). In other words, a zero process noise [covariance] extended Kalman filter eventually goes

to sleep!™

As mentioned above though, achieving a balanced Q with respect to R for acceptable
performance is not a simple selection task. The authors in [27] re-iterate that of Maybeck

by stating,

“Although the amount of process noise [covariance] to use is often determined experimentally, a good
starting point is that the amount of process noise that a Kalman filter requires should reflect our estimate

of our lack of knowledge of the real world.”
Another discussion regarding the process noise covariance Q is given in [32],

“The increased noise covariance offsets modeling errors and improves filter stability. As noted in previous

examples, if Q = 0, then the Kalman gain may approach zero and thus not use any additional

measurements in the state propagation equation. The effect of Q > 0 causes P > 0. In other words, a
nonzero lower bound implies a nonzero Kalman gain. An increase in the error estimate and poor

performance will be the effects of an arbitrary selection of Q > 0.

The authors in [26] go so far as to approach that selection of Q and R by using a genetic

algorithm.

D.4 General Recommendations

Finding a balance between Q and R is an essential step for a properly operating EKF.
From the general recommendations in the literature this tuning process should starting by
choosing noise covariance values based on physical insights, then varying them in an

automatic or manual search until acceptable performance is achieved.
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Appendix E Q and R Parametric
Sweep for Attitude MEKF

Count | Sim Length Qc |(Rm(DEG)|max(dPHI)| mean(dPHI) | std(dPHI)
1 5000(2.00E-04( 2.00E+00 17.1399 7.9622 4.1535
2 5000 2.00E-04{ 4.00E+00 18.8632 7.9632 4.5584
3 5000( 2.00E-04{ 6.00E+00 10.9405 4.7325 2.6884
4 5000| 4.00E-04{ 2.00E+00 11.2964 3.9294 2.4517
5 5000(4.00E-04{ 4.00E+00 13.2316 6.1598 3.1605
6 5000| 4.00E-04( 6.00E+00 9.5755 4.2258 2.2879
7 5000|6.00E-04| 2.00E+00 9.6422 3.0674 2.0212
8 5000| 6.00E-04{ 4.00E+00 10.1298 3.8554 2.2767
9 5000| 6.00E-04{ 6.00E+00 7.2882 3.4316 1.6988

10 5000( 8.00E-04{ 2.00E+00 9.2645 2.5117 1.9536
11 5000| 8.00E-04{ 4.00E+00 8.709 3.0779 1.9175
12 5000( 8.00E-04| 6.00E+00 6.0565 2.5128 1.319
13 5000| 1.00E-03( 2.00E+00 9.496 1.8512 1.7831
14 5000( 1.00E-03| 4.00E+00 7.9157 2.7173 1.7489
15 5000/ 1.00E-03| 6.00E+00 5.3813| - 1.9431 1.13
16 5000| 1.20E-03| 2.00E+00 21.234 4.3971 3.971
17 5000( 1.20E-03| 4.00E+00 7.8127 2.4528 1.6015
18 5000( 1.20E-03| 6.00E+00 4.8159 1.8139 1.0734
19 5000( 1.40E-03| 2.00E+00| 179.6538 55.8276| 48.9333
20 5000( 1.40E-03| 4.00E+00 8.2093 2.3851 1.7851
21 5000| 1.40E-03| 6.00E+00 4.5125 1.728 1.0205
22 5000| 1.60E-03| 2.00E+00{ 179.9632 63.5071 51.6025
23 5000| 1.60E-03| 4.00E+00 7.3961 2.0192 1.5455
24 5000| 1.60E-03| 6.00E+00 4.3973 1.55655 0.968
25 5000( 1.80E-03| 2.00E+00 179.964 63.5401 50.8256
26 5000( 1.80E-03( 4.00E+00 7.398 1.8091 1.5814
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27 5000| 1.80E-03| 6.00E+00 4.8306 1.5191 0.9436
28 5000|2.00E-03| 2.00E+00| 179.7765 64.6716 49.511
29 5000|2.00E-03| 4.00E+00 7.6446 1.4453 1.3431
30 5000| 2.00E-03| 6.00E+00 4.9993 1.5079 1.0549
31 5000|2.20E-03| 2.00E+00| 179.9046 67.3235 48.647
32 5000|2.20E-03| 4.00E+00 7.922 1.3029 1.3065
33 5000/2.20E-03| 6.00E+00 4.4178 1.4401 0.9974
34 5000(2.40E-03( 2.00E+00| 179.8547 70.2664| 48.0122
35 5000|2.40E-03| 4.00E+00{ 18.7148 4.76 4.2549
36 5000| 2.40E-03| 6.00E+00 4.464 1.2739 0.9011
37 5000|2.60E-03| 2.00E+00| 179.9311 70.3012| 51.4278
38 5000|2.60E-03| 4.00E+00| 72.3863 10.1476] 12.3909
39 5000|2.60E-03| 6.00E+00 4.4072 1.2192 0.8532
40 5000{2.80E-03| 2.00E+00| 179.9266 84.2329] 54.9036
41 5000{2.80E-03| 4.00E+00| 179.8486 53.0863 50.409
42 5000} 2.80E-03| 6.00E+00 4.5071 1.014 0.8763
43 5000 3.00E-03| 2.00E+00{ 179.9722 70.5392| 48.4778
44 5000| 3.00E-03| 4.00E+00| 179.9507 59.9652| 52.0924
45| . - 5000| 3.00E-03 6.00E+00f -  4.6158| - -0.8822 0.6967
46 5000 3;20‘E-03 2.00E+00 179.88 66.9261 47.9108
47 5000|3.20E-03| 4.00E+00] 179.975 60.5226| 53.6801
48| -5000{3.20E-03| 6.00E+00|  ~4.7337 '0.8192 - 0.73
49 5000| 3.40E-03| 2.00E+00 179.9531 67.5224 46.9753
50 5000|3.40E-03| 4.00E+00| 179.8988 62.3684| 49.9891
51 5000| 3.40E-03| 6.00E+00 5.4736 1.4107 1.1753
52 5000| 3.60E-03| 2.00E+00| 179.9776 77.649] 50.4929
53 5000|3.60E-03| 4.00E+00[ 179.9211 62.6333] 51.2863
54 5000 3.60E-03| 6.00E+00{ 21.6635 4.7163 4.7077
55 5000} 3.80E-03| 2.00E+00[ 179.8586 66.437| 45.6328
56 5000| 3.80E-03| 4.00E+00/ 179.8628 63.5019| 50.6609
57 5000| 3.80E-03| 6.00E+00 81.013 12.1591 16.1123
58 5000/ 4.00E-03| 2.00E+00| 179.8445 66.4018| 45.1449
59 5000|4.00E-03| 4.00E+00| 179.8835 63.8828 49.733
60 5000|4.00E-03| 6.00E+00[ 124.4769 17.6316| 24.4158
61 5000{4.20E-03| 2.00E+00| 179.9614 66.4861 44.633
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62

5000

4.20E-03

4.00E+00

179.9759

64.2983

49.2177

63

5000

4.20E-03

6.00E+00

70.029

10.7697

13.4077
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Appendix F Dynamic Motion Filter

Equations - Inertial Context

The implementation of the dynamic motion filter (in an inertial context) is summarized as
- follows:

F.1 |Initial Conditions

Attime 1, ....

The Absolute Filter State
[6,(0) ]
», (0
of”( ) (F.1)
X, =X(t,)=| E.(0)

v.(0)
(V)

cg.g 7 ]

The Internal Filter State
6,(0)
. @, (F.2)

X, =X(t)=| £.(0)
v.(0)
Lf"S 8 (0)_
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The S-function State

X5 func () =

where 0, =0 by definition .

Next...

P

A

| Aref,k |

At ]
Xi
A -

Xy
+
P,

F.2 Propagating the State Estimate

Integrate starting from x;_, to get x;

The propagation is carried out using the following equations of motion,

where, as defined earlier,

and

_ q - (
d)b
x=f(x,u,w,t)=| £, |=
vC
_.fs,u
0
o=
)
- = q
=(q)=[” =l
g nl-g¢ q,
q;

132

E(m)q
I [gm -mb"lmb]
vC
Y

m

0
-4 49 —4;
9 49 9
=4 9 4
Q% —49 9

(F.3)

(F.4)

(F.5)

(F.6)
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The acting forces and torques in (F.1) can be partitioned as £, =foun s and

own

8ext = Binown T Baisurs - HOWever, for the filter propagation the dynamics are driven with

only known inputs such that g, =g, .. and f, =f_ . .

In terms of the reference state estimate, X(z,),

R =%+ f £{R[z(-)]u(z), 7}dr

F.3 Extrapolating the State-Error Covariance

Propagate the covariance using the form,

P, =P, + [ [FOP@+P@OF (+L@Q. (DU (7) |dr

where,

F(7) =if (x(7),u(7),7)
ox

X=X

L(7)= if (x(7),u(7),w(7),7)
ow

x=X

or alternatively extrapolate the covariance using the form,

P =0, P/:-lq):-l + Qlc-l

ope . . . . FT.
where the state transition matrix, @, , is the Taylor-series expansion of &',
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22 33
D, =1+F1}+F L +FT’
2! 3!

+.... (F.12)

The discrete process noise covariance matrix, Q, , can be computed from the continuous-
time process noise spectral density matrix, Q, , from the following [27],

Q= f’qh-. (DLQL'®,,(7)dr (F.13)

The discrete-time form will be less computationally expensive but generally less
accurate.

For the particular dynamic motion filter state in the inertial context one can often derive
explicit expressions for the Jacobians, State Transition matrix, and Process Noise
Covariance matrix.

JACOBIAN F

To evaluate the Jacobian derivatives associated with 0 , the following relationship is

noted: [33]

0= 1+19"+ioxex 0w (F.14)
2 12

where d is the relative angular velocity from the reference orientation q,; to the net

orientation q,. The following can be written:

é=[1+%ﬂx+-l-1§9x9x](m—é'€mmf) (F.15)

By applying the approximation,

6Cz§C(0)=1—0"+%0"0" (F.16)
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the following relation exists, valid to second-order,

1
1426+~ 00 || [ 1-0* + Loo" :
[ S0+ ][m( 9+209)mmJ (F.17)

To first-order in the small 0,

]

B o Lops Lo -awe]-Lay Lo -an] @

and

20 1
—=1+—-0" (F.19)
do, 2

However, when implemented according to the MEKF procedure, the expressions are

evaluated such that § =0 and ®, =0, hence the much simpler forms,

20

'-a-e—r- = —O):(er (F20)
and
00
— 7= 1 (F.21)
b

of[] .

X

The complete Jacobian for F =
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JACOBIAN L

0 00 90 o6 06
00"  dw; or] dv. oOr,
9o, b, b, o, o,
00"  dw, or] dv. oOr.
_Of[] | OK or, or, or, or,
ToxT | 907 dw; o] o ol
v, v, ov. v, v,
00" do, or, ov. oOr,,
of,, Of,, Of., b,  Of.
| 00" dw, o] dv, Or,,
[~ 1 00 0]
0 I'[do)-(@D] 0 0 0
=l 0 0 010
0 0 0 00
| 0 0 00 0_|5x15
[ 96 96 |
w o
o, Jb, [0 0 ]
og"  ofT )
L=af[-]= of, oL, _[o o
ow’ og" of” 0 1 .
v, v, m
og"  of” 0 0 | .
Oy Oy
| dg"  ofT
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STATE TRANSITION MATRIX ®

@, =~1+FT, (F.24)

PROCESS NOISE COVARIANCE MATRIX Q,

Q= ['®, (@LQU @ (1) (F25)

F.4 The Measurement and Output Equation

The measurement provided to the filter includes the farget pose information in the form
Cg andfT,.

The measurement as viewed by the filter is related as follows,

T

7, = [E" (fsq")] (F.26)

The output vector used in the state update equation is as following,

1(1
y=[y*’]=[h9(x”)]=[ ¢ ]: —E(Ee) (F.27)
h (x,t) r .

& _
c,i

where,

K= ,/1+le“ (F.28)
64
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The linearized version used in the gain and covariance calculations is derived as follows,

ohg(x,.1,)
H T
Hk = ah(xkr,tk) =[ 6.k = aX (F.29)
ax X=X, H"k al'|r (xk ’ tk )
axT
The partition related to the orientation is...
H - ohg(x,,t,) OJhg(x,,t,) OJhg(x,,t,) Ohg(x,,%) Jhg(X,,t,) (F.30)
ok a0" do," o[ or, " or,
From,
1(1
e=—|—0 F.31
1(30) GED
the following is found....
ohg(x,,t,) OJhg(x,,t,) Jhg(x,,t,) Jhg(x,,t,)
or, [ or, [ or, do,” (F32)
ahe(x,c,t,c)_l1 (F.33)
00" 2 ’
For the partition related to the translation ...
oh (x,,t,) oh_(x,,t,) oh(x,,t) oh(x,,t) oh.(x,,t)
H,= r\ Rk Tk r\Tko Tk r\Tk Tk r\ %ok r\ %%k F.34
nt [ 00" dw,’ or, or, or, " E34
From,
rg.i = rc.i _C:rcg,g (F.35)
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the follow relations are found....

oh, (x;.1,) _ 1
or,;
oh_(x,,t,)
el el) o
or, ;"
oh (x,,t,) _ T
T b
or,, .
oh_(x,.t,) N
W;—_k- = Cfefrcg'g
3h, (X, _
do,”

Finally, all assembled the linearized measurement sensitivity matrix is given by,

oh(x,,t,)
H - k>"k
g ox” i,
=—H9.k
_Hr.k
(ohy(x,.1,) dhg(x,,t,) Ohg(x,.t) Ohg(x,t) Ohg(X.,t,)
00" dw,’ or,” o, or,
| Oh.(x..t,) Oh.(x..t) Oh.(x,,5) 9h.(x.5) Oh (x,1)
00" do, or,” o, [ or, .
i 000 o
=l 2
cleX, 010 -C
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F.5 Calculating the Filter Gain

Standard form is

K, =P H][HPH]+R, | (F.42)

where R, is composed of the following,

Rg, 0

with the assumption that vg , and v, are not correlated.

Note that,
1
RO,k = Z Cref,mRO.mCLf,m (F44)
where
Clefm = ér—ef,kC:u' (F.45)
and
R, =C.R,,C, (F.46)

F.6 The Update of the State Estimate

For the state estimate update,
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8: = 8; +Kk [Zk _h(ﬁ;»tk )]

0

&
S N (F.47)
X, = L +Kk[zk _h(xk ’tk)]

A

A/

c

A

chg'g Jk

F.7 Update of the State Error Covariance

Shown here is the standard Joseph form often used for computation.

Pk+ = [I—Kka]P,: [I_Kka ]T +KkRkKkT (F.48)

F.8 Reset of the Absolute Orientation State

The reference orientation is moved along with the current (relative) state estimate.

Build a proper rotation matrix from the small rotation vector. The quaternion is used for
this because it is easy to normalize.

g2 =(6;)"6; (F.49)
. 1 14
o, =E(l_§9"2) (F.50)
1(1,
68, =—| =6; F.51
K K(Z ") E>1)

where,
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K=, f1+6—14 56}
Assembled this gives,

5, (07) =[§Z:]
then

ﬁ:ef.k =G, © 4, (GZ)
(Al:-ef.k =&(4q, (62)) (|
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Appendix G Translational
Initialization Baseline Setup

(Inertial)

KF TESTING INITIALIZATION REFERENCE TABLE

TEST REFERENCE NO. Baseline Setup

Filter Type: KF
Filter Sampling Interval: KALMAN_DT_SAMPLE= 1.0  [sec]

Propagation Type: State Estimate (RK4 Solver) / Covariance (P, =® P, +Q,)

Number of Steps: State Estimate (20) / Covariance (20)

Update Type: KF (with Joseph Form)

Total Simulation Time: 10000 [sec]

:

st M S R i ‘ﬁm{ v i TN 0¥
Symbol Numerical value Symbol Numerical value
[15;0;5] m [20;5;1] m
rc ( to) RC_VEC_O = f‘c ( to) RC_VEC_O_EST =
15 20
5
1
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v, (t,) |[0.2;0;0] m/s v.(t,) [0.1;0;0] m/s
Vc_VEC_0= Vc_VEC_0_EST =
0.2 0.1
0 0
0 0
T, (%) |[0.05:0.050.0] m £, () [0.048;0.052;0.001] m
rcg g = r cg_g _EST =
0.05 0.048
0.05 0.052
0 0.001
m MMASS = m mMMASS =
(Mass, (Mass, kg)
kg) 100 100
P (t,) O, =10m
O, =10m
&Rc_ =1.0m
3y, = 0.01 m/s
By, = 0.01 m/s
Gy, =0.01 m/s
G, =001m
G, =00Im
G, =00lm
KFilter_P0 =
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0  0.0001 0 0 0 0 0
0 0 0 0  0.0001 0 0 0 0
0 0 0 0 0  0.0001 0 0 0
0 0 0 0 0 0  0.0001 0 0
0 0 0 0 0 0 0  0.0001 0
0 0 0 0 0 0 0 0 0.0001

&
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Ve | 0,,=005m R, 8,,=005m
0, =005m 8, =0.05m
0, =005m 8, =0.05m
KFilter_Rm =
0.0025 0 0
0 0.0025 0
0 0 0.0025
We o | s =O N Q.. 8sy= (5e-4P N s
iated o
(associate Grsy= (5e-4) (NY. s
with
A2
i) G gy = ey’ MY s
KFilter_Qc =
2.5e-007 0 0
0 2.5e-007 0
0 0 2.5¢-007
C,.(t,) C_mi_0=
1 0 O
0 1 O
0 0 1
T
rg=
14.95
-0.05
5
L, (to) r,= rg - C:xirgm.m

Irv=
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4.95
-0.05
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Appendix H Dynamic Motion Filter
Equations — Orbital Context

The implementation of the dynamic motion filter (in an orbital context) is summarized as

follows:

H.1 Initial Conditions

Attime 1, ....

The Absolute Filter State

[4,(0) ]

®,(0)

%, =%(t,)=| T(0)
v(0)

£ (0)

c8.8 4

(H.1)

The Internal Filter State
[ 6,(0) |
@,(0)
X, =X(1) = ?(0)
v.(0)
O]

(H.2)
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The S-function State

~ . -
%, (H.3)
Xsfunc () =| B¢ '
P
Qe
where 6; =0 by definition .
Next...
H.2 Propagating the State Estimate
Integrate starting from x;_, to get X
The propagation is carried out using the following equations of motion,
(q] [ E(@)q
@, I [g-(ob"lmb]
x=f(x,u,w,)=| T |= % (H.4)
V| |-y -322T )T +2Q.5°T
[Tegee i 0 i
where, as defined earlier,
0
T=|1 (H.5)
and
9 ~9 9 9
T
- —€ 494 9% 495 9
E(q) = [" =l T (H.6)
g nl-¢g Q@ 95 99 G
% 9 9 4

148



Appendix H

The acting torques in (H.1) can be partitioned as g,,, = 81noun + Baisurs - HOWeVer, for the

filter propagation the dynamics are driven with only known inputs such that g, =g, ...

Note that the use of,

[z] [—QZ(“? 27 2Ql.y ]ﬂ m[&'] (H7)

is based on the small relative motion from cylindrical coordinates as derived in [20]. In
(H.7) note that §=[0 1 O]T ,2=[0 1 O]T and da accounts for un-modeled orbital

influences including any maneuvering thrust applied by the chaser. As mentioned earlier,
in this study maneuvering is not considered and Ja is assumed to consist of process

noise only.

In using the direct Cartesian-like vector approach, essentially the states associated with T
and V are,

=R.0
X, =y
Xy =-r
. (H.8)
x, =R0
Xs=Yy
Xy =—F
In terms of the reference state estimate, X(¢,) ,
=%+ [ f{){z(-)Lu(o),7}dr (H.9)
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H.3 Extrapolating the State-Error Covariance

Propagate the covariance using the form,

P, =P/, + f‘ [F(T)P(T) +P(D)F (1) +L(1)Q, (1')LT(T):| dr

where,

F(7)= if x(D),u(7),7)
ox

X=X

L(7) = £ (x(D),u(2), w(2),7)
ow

x=X

or alternatively extrapolate the covariance using the form,

P = (I)k—lPI:-lq)Z-l +Q,,

where the state transition matrix, @, , is the Taylor-series expansion of e,

F2]:2 F3];3
S g s

®, =1+FT, +—= e
21 3!

(H.10)

(H.11)

(H.12)

(H.13)

(H.14)

The discrete process noise covariance matrix, Q, , can be computed from the continuous-

time process noise spectral density matrix, Q,_, from the following [27],

Q.= ['®, ,OLQU®], (1)dr

(H.15)

The discrete-time form will be less computationally expensive but generally less
accurate. For this particular dynamic motion filter state in the orbital context often one
can derive explicit expressions for the Jacobians, State Transition matrix, and Process

Noise Covariance matrix.
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JACOBIAN F

To evaluate the Jacobian derivatives associated with @ , the following relationship is
noted: [33]

6:[1+10*+le*e’< Sw (H.16)
2 12

where do is the relative angular velocity from the reference orientation q,, to the net

orientation q,. The following can be written:
N 1 X 1 XX
O=[1+50 +—150 0 }(m—5€mmf) (H.17)

By applying the approximation,

6C=06C(0)=1-0" +-;—0"0" (H.18)

the following relation exists, valid to second-order,
. 1 « 1 XX X 1 XX
0={1+—0"+—070 co—(l—ﬁ +—00" (o (H.19)
2 12 2

To first-order in the small 0,

aé 1 X 1 XX X _ X 1 X 1 X X X _ X
aT=—5mb+E[mb9 ~20 mb]-am,ef—l—z[mmfe ~200% | (H20)

and
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00 1
=1+—0" H.21
do, 2 (H21)

However, when implemented according to the MEKF procedure, the expressions are

evaluated such that =0 and ®, =, , hence the much simpler forms,

a0 y
W=%mf (H.22)
and
00
=1 H.23
do! (H-23)
. of[] .
The complete Jacobian for F = s is as follows:
X
[ 06 90 26 96 3 |
00" dwo, OF IV odry,
Jo, OJv, Jv, JB, IO,
00" Jdo, or voor,
po O] _ r or r r or
T ox’ | 90" dwo, OF oV or,
00" do, OJF IV or
al..ckvk al..CR'R al..fﬁvg al.-c‘kvg ai‘t‘){.ll
| 0" do, oF oV Or,, |
(H.24)
[ o 1 0 0 0
0 I'[(o,)-(@n)] 0 0 o
=10 0 0 1 0
0 0 —Ql(§9" -322") 2Q.5° 0
L 0 0 0 0 0]
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JACOBIAN L
ERER

W, O,
dog’ o0a"
Lo of] _ or or

ow’ | og" oa’
ov oV
og" 0a”

(H.25)

l
]
[ —

8.8 -8

og" 0a" |

STATE TRANSITION MATRIX ®

@, , =1+FT, (H.26)

PROCESS NOISE COVARIANCE MATRIX Q,

Q.= [ 0, ,(ILQL ] (7)dr (H.27)

H.4 The Measurement and Output Equation

The measurement as viewed by the filter is related as follows,

z, =[8"f§q“)] (H.28)

T,

The output vector used in the state update equation is as following,

i o S B

h_(x,?) r
r r\% 14474 T T
Cﬂorcv,o - C0®Cb rcg,g
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where,

K= 1+a 6* (H.30)

The linearized version used in the gain and covariance calculations is derived as follows,

ohg(X,,t,)
oh(x,,t,) Hg, ox’
H — ik Si? £.5¢ 24 = ’ = H-31
¢ axT x=X; |: Hr'k ahr (xk ’ tk ) ( )
ox’

The partition related to the orientation is...

Hek=|:ahe(xk,tk) ahe(xk’tk) ahe(xk9tk) ahe(xk’tk) ahe(xk’tk) (H.32)

07 30, o’ T ar_ T

Cg'g

From,

= —(— 0) ' (H.33)

it is found that....

ohg(x,,t,) _dhg(x,,t,) Jhg(x,,t,) _dhg(X,,t)
= : = = =0 H.34
or’ or’ or, do,” (L34

ohg(x,,t,) 1
—e Tk - H.35
20" 2 (H.35)

For the partition related to the translation ...
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_|9h(x,1)  Oh,(x,1) Oh,(X.f) Oh.(x,,5) Oh.(x,.t)

r.k aer ambT aFT a-l;-r arcg'gr (H36)
From,
=Cir.,—C,oCr H
rgv.o ﬂorcv.ﬂ 0® brcg.;: ( 37)
it is found that....
(—Ii"--—*-r—)cos 6 0 -siné
h
Bt o 1 0 (H.38)
(R"T-H) sin@ 0 cosé
__ahrg_’rj; 4 o (H.39)
oh_(x,,t,) T
___a_T =-C,,C/ (H.40)
rCE'S
oh _(x,,t
—L%_k) = COGBC:;frcg.g (H'4 1 )
§_h..2‘)(mx+tk)-_-0 (H.42)
b

Finally, all assembled the linearized measurement sensitivity matrix is given by,
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oh(x,,t,)
H, = axkr ‘
4 =—H6,k
_Hr.k
[9hy(x,,t,) ohg(x,,t,) Ohg(x,,t,) ohg(X,.t) ohg(x,,2,)
L de,” ar’” or’ or, "
7| 8h.(x,,t,) oh,(x,.t,) oh (x,.t) oh (x.t) oh.(X,.t)
00" do,” oF" or” or,,”
l1 0 0 0 0
2
Mcosé) 0 -sind
= R,
C,oChr, 0 Ch 0 1 0 | 0 —CoCT
(R,+r) .
L -Tsme 0 cosH_ (H.43)

H.5 Calculating the Filter Gain
Standard form is

K, =P/H][H,PH +R, | (H.44)

where R, is composed of the following,

R, = Roi 0 H.45)
. 0 R"-" 6x6 H

with the assumption that v, and v_, are not correlated.

Note that,

R,, =-‘1;cng c (H.46)

e,m~gm

where
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C,,=C.eCho (H.47)
and

R, =C,R,, CI (H.48)

om="r.m —om

where

C,,=C,Cl,Cl (H.49)

H.6 The Update of the State Estimate

For the update of the state estimate,

%, =%, +K, [z, -h(X,1,)]

0
@,
atr | 2- . (H.50)
x;=| T | +K,[z, -h(x,,t,)]
_fc—g'g Jdk
H.7 Update of the State Error Covariance
Shown here is the standard Joseph form often used for computation.
P’ =[1-KH,]P;[1-KH,] +K,R, K, (H.51)

H.8 Reset of the Absolute Orientation State

The reference orientation is moved along with the current (relative) state estimate.
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Appendix H

Build a proper rotation matrix from the small rotation vector. The quaternion is used for

this because it is easy to normalize.

g; = ®;)";

where,

Assembled this gives,
n on
6 9+ = k
q,(6,) [ &J

then

ﬁ;f,k =G, ®q, (éZ)
dLe, =E(5q,(0))) g,
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Appendix | Translational

Initialization Baseline Setup
(Orbital)

KF TESTING INITIALIZATION REFERENCETABLE

TEST REF EREN CE NO Bdseline Setup

Filter Type: KF

Filter Sampling Interval: KALMAN_DT_SAMPLE = 1.0

[sec]

Propagation Type: State Estimate (RK4 Solver) / Covariance (P, = ®, P/ ®, +Q,)

Number of Steps: State Estimate (20) / Covariance (20)
Update Type: KF (with Joseph Form)

Total Simulation Time: 10000 [sec]

Neal l Symbol Numerical value
[94.25; 1.41; -40.0] m [99.25;-5;-35] m
Loy o(fo) (1)
i, () | [-0.077; 1.73; 1.06] m/s %(,0) [0.022; -0.10; 0.099] m/s
r., () [0.05;0.05;0.0] m ... ()

[0.048;0.052;0.001] m
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Appendix I

r cg g = r cg g EST =
~0.05 0.048
0.05 0.052
0 0.001
P (t,) 6, =10m
Tev(y) =1.0m
() =10m
. 0.5 m/s
. 0.5 m/s
Vot 0.5 m/s
re, = 0.1m
O',Cy =0.1m
6, =0.1m
KFilter_P0 =
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0.25 0 0 0 0
0 o' o 0 0.25 0 0 0
0 0 0 0 0 0.25 0
0 0 0 0 0 0 001 0 0
0 0 0 0 0 0 0 00l 0
0 0 0 0 0 0 0 0 001
\ 0, =005m R, . ,,=0.1'm
0, =005m 5, =01m
0, =005m G, =0.1m
KFilter_Rm =
0.01 0 0
0 0.01 0
0 0 001
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Appendix I

w

r

(associated
with

da)

da=0 m/s’

Gy = (Se-4) (mis'y. s
Gy = (5e-4) (mis'). s

Gos,y = (Se4) (mis'y. s

KFilter_Qc =
2.5e-007 0 0
0 2.5e-007 0

0 0 2.5e-007
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Appendix J Software Design

The Kalman filter algorithms were developed in basic ANSI C code and simply called
within the C-MEX S-function framework. The software design as described below

assumes dependence on the Simulink C-MEX S-function framework for tasks such as
initialization, output, and update (memory between calls) using the following interface

functions: (in their order of execution)

mdlInitializeConditions()
mdlOutputs()
mdlUpdate()

A more generic software design not utilizing these built in functions, but rather using

global variables, etc. could be implemented if needed for real-time applications.

Z, Meas

Kalman Filter ,

* Propagate State - A
* Propagate State Covariance w X  Edti

. O Kalnan Qo , Estimated State

* Update State Estimate
* Update State Covariance

Known Input/Excitation , f

Figure J-1: Filter Inputs, Outputs, and Internal Processes

The basic software architecture is described in more detail in the following sections.

J.1 File Structure

The entire KalmanShell package is made up of multiple source and header files. The full

list of project files can be seen in Figure J-2.
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Appendix J

3 Attitude_Transformations.c | C++
@ Attitude_Transformations.h i C++
8 KalmanFil.c ‘ o
a KalmanFilt.h fc++
A KalmanShell.c o 1!
&) MatiixDefs.h : c++ E
B matmath.c !c++ |
B matmath.h 1 {;c++ :
4] NRdefsh i = ;
] NRfuncs.c j CH++ !
B user_derivs_fcns.c ;c++ ,
[3) user_derivs_fens.h I<:+<l'
B user_type_and_sizes.h : €0++
: i

Figure J-2: Project Files

J.2 .c File Structure

The basic source file structure is outlined in Figure J-3. Various compile/link script

options are also shown in Figure J-3.

J.3 .h File Structure

The basic header file dependency is outlined in Figure J-4.

J.4 Functions

A complete listing of the functions, their return type (if any), the function argument

types, and file for which the function is defined can be seen in Figure J-5.
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Appendix J

SOURCE FILE STRUCTURE: Dynamic Motion Filter v1.0

* “main” type of source fie

* based on C-MEX S-function framework

KalmanShell.c

* additional source files

Attitude_Transformationsc

matmath.c

user_derivs_fons.c

KalmanFitt.c

NRfuncs.c

BHEES SRS

TMEX complle an

2
v

deriv
o

Figure J-3: .c File Structure and Compile/Link Scripts
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Appendix J

HEADER FILE STRUCTURE: Dynamic Motion Filter v1.0

Include Hierarchy — Header Files

LEVEL 2

user_desivs_fons.

KaimanShel.c
KalmanF.c:

user_derivs_fens.

NRfuncs.c

matmath.c

KalmanFi.c:
Attiude_Transformations.

user_detivs_fcns.c

NRfuncs.c

matmath.c

KalmanFi.c
Attitude_Transformations.

Alttude_Transfopiations.c
KalmanShel

LJ
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LEVEL 1

The fite “user_type_and_sizes.h" is the
highest-level requirement that defines the
type of data precision required and all
global MACROS for the specific task at
hand

Figure J-4: .h File Structure



Appendix J

TNaina’ e
% augment_output{fu) void e
updat : _elem *, - - - ad 5,
o gg} to _;:g:]t\,é;(m] vod j(m_dern -:T;_e::n ..J;f::n _:“J;f::n "Jﬂ_elem *m_elem*.. 'KalmanFitc
@ DCM_to_EPV_DJM(tu) m [m_elem *m_elem ) ) KamanFitc
@ DCM_to_EPV_HUGHESfu) vaid {m_elem *m_elem *} Altitude_Transfomations.c
@ DCM_to_EPV_MATLAB(fu) void (m_elem™.m_elem ] W_Tlmfamaﬁom,c
@ DCM_to_RPYIfu) ‘void (m_elem **m_elem *) Attiude_Transfomations.c
g derivs{fu) oid (m_elem **.m_elem *) Attitude_Transformations.c
discrete_pminus{| D [m_eiem.m_elem - Altitude_Transformations.
@ discrete_0k() “ Yod (m_elem =-m ﬁmm” [Lm_elem =.m_eiem =... user_derivs_fens.c °
% d°_id:o;'am ok{fu] vou [m_elem **m_elem ™.m_elem *m_ek \_elem “.m_elem ~.m.. KalmanFit.c
@ EPV_to_DCM(t) o {m_slem m_slem ~sm_sem ~m.som _elemn_elen ) KakmanFitc
® EuePaamyec_construct(fu) void (m_elem *.m_elem =) - n_ciem ™) user_derivs_fcns.c
@ EuePaanyec Invifu) o (m_elem *.m_elem “.int) Attitude_Transformations.c
g force_symmetry{fu) :g: (m_elem "m_elem "int) matmath.c
i (m_elem ™ = matmath.
G et o o i s~ 3 anatic
o  kalman effu) void m dem";n-dem - '“Lm.fnt ) NRfuncs.c
& hobopdsct) oo s s~ o " okn=] Koo
B vabencpop vod Pyrifeigesieigrliopesiidgrili el g
@ kaiman o0agatef vod '[m.elem '_m_ele . o~ Q—m"m_elem"] KalmanFit.c
P mat adal:dde[fu] void {m_elem ';n-elem .m_elem :vmd (*)0.void (*)Lint.m_elem,.. KalmanFitc
D mat_ ) ‘void (m_elem ™m_ dm m_elem ™'m_elem *"m_elem ".m_elem .. KaimanFitc
§ meemnts R o
L u o X _elem =it |
id = .
g m:_mf:}] ,:;d ::—:: "i_]dem *intint) pratnaihc
L ooid fm_ .
mat f m_elem ™" - e matmath.
e TR B e Ayt i
@ mal'ub(f ot void (m.elem b ;n-d " ! an.-"-*‘M] matmath.c
4 md:hms:()fu) vod (m_elem --,{dﬁ J:;t:n ":,:*:ﬂ matmath.c
g mat_anspase_ () s gl e maimath.c
vt / m_elem ™ - I ‘matmath
Q et e e mematc
& miscoalot) v {SimStruct ) KainenShel.c
@ mdiniiskzeSizes(fu) : [SimStruct 1 KaimanShel.c
@ mdOutputs(fu) vmd (SimStruct %) KalmanShell.c
@ mdStarifu) ;:2: [SmStruct *ini_T) KaimanShel.c
@ mdTeminate(fu) fvoid (SimStruct *) KalmanShel.c
$ mdUpdateifu) e (SimStruct ) KalmanShell.c
@ meas_cov_projection(fu) [ (SimStruct %int_T) KaimanShel.c
@ mex_print_matrix{fu) wvod {m_elem ™.m_elem ™ m_elem ™ KalmanShel.c
© mex_pint_vectoi(fu) voud {char *m_elem =.intint) om ™m_clem ™) KalmanFit.c
@ nenffu) (youd (char *m_elem *nt) matmath.c
& print_matinu) void feharl) ’ matmath.c
% print_vector{fu) t::: ’:CM * m_elem =,int,int) NRfuncs.c
pythagifu) : char *m_elem “.int matmath.c
< Quatemion_to_DCM(fu) ;::;:bm {m_elem.m_elem) ) matmath.c
@ quatemion_construct{fu) void [m_elem "m_elem =) ' NRfuncs.c
@ Reset Absote_State_DCM(fu)  'void (m_elem "m_elem .int) Attitude_Transformations.c
g Hm'_Abdee_Sue-Elk,p . void {m_elem *m_elem *.m_elem =] matmath.c
rkd(fu) - T [m_elem *m_elem *m_elem *) -C
D kM ivou (m_elem n KalmanFit.
$ sy i den s delndtn et
@ k4_paalelfu) 'vod . clom ™m_ slem " _elem.m_elem,m_elem [Lvoid ("}.. KakmanFik.c
& lkdt_l'lﬂfu] void [m_elem [lm-eletn [Lint m-'gm _elem,m_elem **,void (*))... KalmanFit.c
@ tkdumb_MEKF(fu vod {m_elem [Lint.m_elem m_elem,m_elem,m_elem [Lvoid (")lLm.. KalmanFit.c
& rkdumb mm]l void (m_elem u"memﬂmmﬂ-qu(:m*mum_am[ﬂ KakmanFit.c
% tk_paralel MEKF(fu) ol o o i s sl ors Y o o . Yotmanine
: i {m_elem [Li RS ! 'm_elem.. KalmanFik.
% ::wﬂ::moe matixfu) m_clem lm_.ﬁ)ﬂmn'e'emm""m"““"d (Mim_skem [ sem. KaimanFiLc
@ s chooe.yecal o Cigriiiprmiiiead matmath.c
sqr_diag_matrix_irv{f v m_elem "m_elem it matmath.c
% sta«a_mv_d,ﬁvsm Y ;"v:g (m_elem *=m_elem = ;‘m matmath.c
updat ) el L - matmath.
® ::::;\p(fu) ot vmd :::eg{n;i‘:m :T; e::n .""':-:;m‘m :Jn_e!em * m_elem ™) ’use(_dai:s_lcmc
@ TL_meas_cov_projection(| void (m_elem *=int.int,m, e‘; C - m_elem %) KalmanFi.c
& veaddi) ) {youd (m_elem " m_elem ™ m Lim.giom Zn_shen ) NRfuncs.c
2 vec.cow{h): voud (m_elem *m “elem * JTLdem.",m_gem *.m_elem ) KalmanFit.c
<> : youd e L een ) ‘matmath
vec_sublfu) void Im elem*m elem *intl c
: (m_elem *m_elem *m_elem *int) matmath.c
matmath.c

Figure J-5: Complete function listing
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