Toronto Metropolitan University
Browse

A new Modulo Addition with enhanced scalable security against algebraic attack

Download (1.44 MB)
thesis
posted on 2021-05-23, 17:03 authored by Min Hsuan Cheng
In recent years, Algebraic Attack has emerged to be an important cryptanalysis method in evaluating encryption algorithms. The attack exploits algebraic equations between the inputs and outputs of a cipher to solve for the targeted information. The complexity of the attack depends on the algebraic degree of the equations, the number of equations, and the probabilistic conditions employed. Addition Modulo 2n had been suggested over logic XOR as a mixing element to better defend against Algebraic Attack. However, it has been discovered that the complexity of the traditional Modulo Addition can be greatly reduced with the right equations and probabilistic conditions. The presented work introduces a new Modulo Addition structure that includes an Input Expansion, Modulo Addition, and Output Compaction. The security of the new structure is scalable and user-defined as the new structure increases the algebraic degree and thwarts the probabilistic conditions.

History

Language

English

Degree

  • Master of Engineering

Program

  • Electrical and Computer Engineering

Granting Institution

Ryerson University

LAC Thesis Type

  • Thesis

Year

2016

Usage metrics

    Electrical and Computer Engineering (Theses)

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC