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ABSTRACT 

Title of Project: 

A new Modulo Addition with enhanced scalable security against Algebraic Attack 

 

Project Submitted By: 

Min Hsuan Cheng, Master of Engineering, 2016 

Optimization Problems Research and Application Laboratory (OPR-AL) 

Electrical and Computer Engineering Department, Ryerson University 

 

In recent years, Algebraic Attack has emerged to be an important cryptanalysis method 

in evaluating encryption algorithms. The attack exploits algebraic equations between 

the inputs and outputs of a cipher to solve for the targeted information. The complexity 

of the attack depends on the algebraic degree of the equations, the number of 

equations, and the probabilistic conditions employed. Addition Modulo 2n had been 

suggested over logic XOR as a mixing element to better defend against Algebraic Attack. 

However, it has been discovered that the complexity of the traditional Modulo Addition 

can be greatly reduced with the right equations and probabilistic conditions. The 

presented work introduces a new Modulo Addition structure that includes an Input 

Expansion, Modulo Addition, and Output Compaction. The security of the new structure 

is scalable and user-defined as the new structure increases the algebraic degree and 

thwarts the probabilistic conditions. 
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1 Introduction 

1.1 Overview 

In the modern world, security plays a significant role in providing privacy in various 

activities in the society, such as: communications and storage of information. A piece of 

Information is secure when it can keep its privacy even in the hands of attackers. The 

study of how to keep information secure is then termed cryptography. The focus of 

cryptography is a broad research of various encryption schemes and functions. These 

schemes and functions provide different algorithms to encrypt, or hide, the targeted 

information. At the same time, they also present the corresponding algorithms to 

decrypt, or expose, the encrypted information. In general, cryptography can be broken 

down into three areas of studies: Symmetric Key Cryptography, Asymmetric Key 

Cryptography, and Hash Functions. In addition, a Protocol is a complex scheme that 

involves one or more of these areas in cryptography.  

Symmetric Key Cryptography, which is also referred to as Secret Key Cryptography, is a 

type of encryption algorithm that generally involves the use of a common key, shared 

between authorized parties. In other words, the key is kept secret to other non-involved 

parties and is only known to the involved parties. Also, the key is pre-determined by 

both parties without exposing the key to the public. The encryption algorithm, or cipher, 

in symmetric key cryptography can be generalized to two types: Block cipher and 

Stream cipher.  

Asymmetric Key Cryptography, which is also referred to as Public Key Cryptography, is 

a type of encryption algorithm that generally involves the generation and exchange of a 

key or a pair of keys between the authorized parties. Some of the process or parameters 

in generating the keys are known to the public; however, the scheme still provides 

security. Two of the most prominent algorithms in this area are RSA and Diffie-Hellman.  

Hash Functions, unlike the other two areas of cryptography, is an algorithm that 

provides uniqueness to a piece of information, or a fingerprint. It is not used as an 

encryption algorithm since it does not provide a corresponding decryption method. 
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However, it is often used in conjunction with Symmetric Key or Asymmetric Key 

cryptographic algorithms to form a security protocol. 

Cryptanalysis, in contrast, is a study of how to break or attack cryptographic algorithms. 

While newly proposed cryptographic algorithms can seem to be very complex and 

sound, cryptanalysis presents itself as an evaluation metric for the algorithms, in both 

theory and application. In fact, the evaluation of a cryptographic algorithm is always 

continuous, until new and better cryptanalysis methods prove the insecurity of the 

algorithm. Similar to cryptography, the study of cryptanalysis can be generally broken 

down to the same areas. However, it is possible that certain cryptanalysis algorithm can 

be extended to different areas.  

1.2 Motivation 

In this Project, a new cryptographic module is proposed. The new design creates a 

structure of expansion and compaction to encompass one of the elementary 

cryptographic modules, Modulo Addition. The structure is also scalable, as it can be 

customized to fit different algorithms. At the same time, the content of the structure 

can be substituted to more suitable functions if necessary. The resultant design is able 

to provide enhanced and scalable security against one of the cryptanalysis method – 

Algebraic Attack, and can be used as a building block in Symmetric Key Cryptography. 

1.3 Related Work 

Cryptographic functions that can improve security against Algebraic Attack have been 

studied over the years. Traditional Modulo Addition has been suggested over XOR to be 

used against Algebraic Attack in the field of cryptography. The effectiveness of using 

Modulo Addition to thwart Algebraic Attack has also been discussed in [6]. At the same 

time, Boolean functions that have high Algebraic Immunity have been studied in [1], [2], 

and [3]. S-Boxes that can guard against Algebraic Attack have also been studied in [4] 

and [5]. In contrast, the structure of expansion and compaction has not been studied as 

much. The form of expansion can be found in S-Boxes that provide more output bits 

than input bits. This type of S-Boxes has been studied in [7]. If the proposed design is 
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viewed like an S-Box as a whole, it resembles the type of S-Box that is key dependent. 

This type of S-Box has been seen in [22], [29], [30], [31], and [32], but same structure 

has not been seen. 

1.4 Report Organization 

The report is organized as the following: Chapter 2 provides preliminary concepts 

required to build up the proposed design. Chapter 3 discusses in detail the proposed 

design. Then, Chapter 4 presents the analysis of the new design while Chapter 5 

demonstrates the applications of the proposed design in stream ciphers. Chapter 6 

shows the results and analysis of the applications in Chapter 5 and discusses the 

limitations of the design. In Chapter 7, the usage of the proposed design in block cipher 

is discussed. Finally, Chapter 8 provides the conclusion and future possibilities.   
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2 Preliminaries 

In Chapter 2, the fundamentals of stream ciphers and block ciphers are given. Then, 

Algebraic Attack is explained in detail. The cryptographic component Addition Modulo 

2n is also explained with respect to Algebraic Attack. 

2.1 Stream Ciphers 

Stream cipher is a symmetric key cipher that encrypts information one piece at a time, 

typically one bit. The algorithm utilizes the secret key to generate a stream of key bits, 

or key stream, and adds the key stream to the input information, typically referred to as 

plaintext, to produce the encrypted output, typically called the ciphertext. To decrypt 

the ciphertext back to plaintext, the receiving party will use the same symmetric key 

with the same encryption algorithm, generate the same set of key stream, and add the 

key stream to the ciphertext. This set of operations work because the “addition” 

involved is performed as addition modulo 2, or XOR logic. Table 1 provides the truth 

table of the 2-input XOR logic, and Figure 1 demonstrates the stream cipher scheme.  

X Y Z = X ○┼  Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Table 1 - Truth Table of XOR logic 
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Figure 1 - Stream Cipher Scheme 

The security of a stream cipher is directly related to the security of the generated key 

stream. In general, the stream cipher can be seen as a pseudo random number 

generator with security. In other words, the next bit of the key stream cannot be 

predicted given the previous bits of the key stream when the secret key is unknown. The 

only way to create the same key stream is to obtain the secret key. Therefore, a secured 

stream cipher can be broken only by searching for the secret key. 

A typical stream cipher can be realized in the form of Linear Feedback Shift Registers 

(LFSR) but it is not secure because its period is predictable and breakable by algorithms 

such as Berlekamp-Massey algorithm [8]. As a result, the development of stream ciphers 

involves creative alterations to the LFSR. For example, a designer can use multiple LFSRs 

and combine the outputs to generate a key stream, or the clocking of the LFSR can be 

irregular. A famous stream cipher that utilizes the two concepts is A5 [9]. The secret key 

is used to initialize, typically along with another Initialization Vector, the bits or states in 

the LFSR. This way, the generated key stream is unique and can only be decrypted by 

the same key 

Many cryptanalysis methods exist for deciphering a stream cipher. The most basic 

attack is the Brute Force attack, which simply guesses the contents of the secret key. 

This attack is guarded by increasing the length of the secret key, which increases the 

Plaintext 

Stream 

Cipher 

Stream 

Cipher 

Ciphertext Plaintext 

K 

Key stream Key stream 
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number of combinations an attacker needs to guess. Time-Memory Trade-off attack is 

another common cryptanalysis method on stream ciphers. An attacker needs to pre-

compute and store fragments of key stream generated from certain states in the cipher, 

and compares the received key stream against the pre-computed ones. Once a match, 

or collision, happens, the secret state of the stream cipher is discovered. Fast 

Correlation attack is also a common attack. The cryptanalysis looks for correlation 

between the key stream and the LFSR bits. If the correlation is high, it is likely that the 

LFSR bit is equal to the key stream. Finally, the Distinguishing attack tries to distinguish 

the key stream from a random sequence and looks for biases in the key stream. If the 

key stream has a heavy bias towards 1 or 0, the key stream can be guessed [10].  

2.2 Block Ciphers 

Block cipher is another type of Symmetric Key Cryptography. Unlike stream ciphers, 

block ciphers process multiple bits of the plaintext, or a block of the plaintext, at once. 

The ciphertext is produced in blocks as well. To decrypt, the same secret key is used and 

the block cipher is run in reverse. Figure 2 illustrates the encryption and decryption 

operations.  

 

Figure 2 - Block Cipher Scheme 

The security of the block cipher lies in the difference between the plaintext and the 

ciphertext. The block cipher is secure only if the difference can be known by guessing 

Block 

Cipher Plaintext 

Reverse 

Block 

Cipher 

Plaintext Ciphertext 

K 

n n 
n n 
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the secret key. The design of the block cipher is slightly more involved than the stream 

cipher as the structure needs to be reversible. A block cipher can be constructed 

typically by utilizing one of the two structures: a Feistel Network or a Substitution 

Permutation Network (SPN). However, the security is provided by the series of 

operations that performs Substitution and Permutation. The series of operations is 

referred to as the round function. Substitution provides security by substituting one 

piece of information to another. Permutation provides security by swapping elements 

within a piece of information. Placing the round function in one of the two structures 

above will result in a block cipher. In general, a Feistel Network divides the input by half, 

feeds one half into the round function in the current round, and feeds the other half 

into the round function in the next round. The whole input will experience the round 

function as many times as the designer specified. On other hand, a SPN feeds the whole 

input into its round function in one round and feeds the result of the previous round 

into the round function again. Figure 3 illustrates the two structures. 

It is worth noting that, the position of and the operation on the key varies according to 

different designs. In fact, a key schedule is generally required to derive round keys from 

the secret key. The round keys can be mixed, typically through XOR logic, with the input 

or the results from one round, before going into the next round. The mixing of the 

secret key makes the ciphertext unique such that the same key needs to be used for 

decryption. 

Similar to stream cipher, many cryptanalysis methods for block cipher exist. Other than 

the Brute Force method, Linear cryptanalysis [11] and Differential cryptanalysis [12] are 

the most popular. Linear cryptanalysis uses an input mask and an output mask to try to 

uncover correlation between the plaintext and the ciphertext. If a pair of mask is found 

to have high probability, then this pair of mask can be used to guess the certain bits in 

the secret key. Differential cryptanalysis attempts to find plaintext pairs with a certain 

difference that have a high probability of generating ciphertext pairs with a certain 

difference. The difference can be used to uncover some of the secret key bits.  
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Figure 3 - Generic Feistel Network and SPN 

2.3 Algebraic Attack 

Algebraic Attack was first introduced in [13] and [14] to break public key scheme and 

later applied on stream ciphers and block ciphers [15], [16], and [17]. The attack focuses 

on formulating multivariate polynomial equations between the inputs and outputs with 

low algebraic degree. Multivariate polynomial equations are polynomial equations with 

more than one variable. Monomials are terms in the equations made up of variables of 
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various degrees. The algebraic degree is the largest degree a monomial has in a 

multivariate polynomial equation. The biggest difference between the Algebraic Attack 

and other traditional attacks, such as linear and differential cryptanalysis, is that the 

formulae between the inputs and the outputs are true with probability close to or equal 

to one. In other words, traditional cryptanalysis methods are probabilistic. As a result, 

the attacker would only need to solve the equations, given enough samples, to 

completely decipher an encryption algorithm. In recent years, techniques of solving 

multivariate polynomial equations have become an active area of research [41] [17] [42] 

[43]. However, it is possible for an attacker to estimate the complexity of solving the 

system of equations and this will be shown later in this section. Two issues arise when 

an attacker attempts to solve the system of equations. First, in a system of multivariate 

equations, it is common to have more variables than equations. As a counter, an 

attacker would try to uncover equations that use the same set of variables but are 

independent from the existing set of equations. The result of this provides the attacker 

an overdefined system of equations and the attacker is able to solve the system. The 

second issue is related to the complexity of solving the equations. The system of 

equations is more difficult to solve when the algebraic degree of the equations becomes 

higher and when the equations become denser. A dense equation has many monomials 

whereas a sparse equation uses less terms. An experienced attacker may need an 

additional step before attempting to solve the system of equations. The step involves 

multiplying carefully chosen variables to the existing equations to create lower-degree 

additional independent equations. In general, Algebraic Attack can be summarized in 

three steps:  

1. Formulate equations between inputs and outputs 

2. Create additional independent equations with lower algebraic degree 

3. Solve the system of equations 
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The advancement of Algebraic Attack has attracted a lot of attention in the 

cryptographic community. As in traditional cryptanalysis methods, a metric has been 

suggested to define the resistance of a cryptographic module against Algebraic Attack.  

DEFINITION 1: Algebraic Immunity is defined as the minimum algebraic degree in the 

system of equations [18].  

Even though the Algebraic Immunity is not completely sufficient to describe the 

resistance against Algebraic Attack, as discussed in [19], it nevertheless provides a good 

indication. Various have been done to develop Boolean functions that provide high 

Algebraic Immunity as discussed in Chapter 1, so that these functions can be utilized in 

creating secure cryptographic components. 

The complexity of solving Algebraic Attack has been explored in [15] and [17]. It can be 

generalized into a linearization problem with Gaussian reduction. For a generic stream 

cipher that consists of one or more known Linear Feedback Shift Registers (LFSR) and a 

known nonlinear output combiner function, R multivariate equations can be formed 

between the output bit and the states in the LFSR. Let N be the number of variables in 

the states and D be the algebraic degree of the equations. Then, the number of 

monomials of degree ≤ D can be calculated as: 

     
 

 
 

 

   

 

The complexity of solving this system is directly related to T and the number of samples 

required equals to the number of equations, R. Therefore, to form an overdefined 

system of equations, R > T samples are required.  

In addition, the calculation of complexity is slightly different in the case of a block 

cipher. The round function of a generic block cipher contains a nonlinear Substitution 

Box (S-Box) and one or more layers of linear permutations. As the permutations are 

typically linear, the equations of interest lie in the S-Box. In particular, an S-Box 
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transforms its input variables           to output variables           , using a 

vectorial Boolean function. The number of monomials with an algebraic degree ≤ D in 

the set of equations that describe the function can be calculated as:  

     
   

 
 

 

   

 

The number of equations is determined by forming a matrix M of size      , in which 

the rows are all the input combinations and the columns are the monomials. The rank of 

the matrix M is the smaller of the row and column dimensions and is typically 2n. Finally, 

the number of equations R is: 

                 

The complexity of solving this system of equations is defined as: 

   
  

     
 

As mentioned before, the advantage of Algebraic Attack is that the equations 

formulated have a probability equal or close to one.  The equations with probabilities 

close to one are referred to as conditional equations [20]. These equations, in practice, 

are formulated by the experienced attacker while analyzing the specific cipher. The 

conditional equations are beneficial to the attacker because the number of equations 

has increased and the complexity of solving has decreased. Evidently, the cost of these 

equations is the multiplication of the complexity and the probability.  

2.4 Modulo Addition 2n 

In cryptography, Addition is typically carried out with modulo 2n, and is used for 

“Mixing”, which mixes information from one source into the other by the means of 

summation. It is widely used in both block ciphers, such as CAST [21], TWOFISH [22], and 

MARS [23]; and stream ciphers, such as SOBER-t32 [24], SNOW2.0 [25], and ZUC [26]. 

Though an elementary operation, Modulo Addition offers better security than a XOR 

operation because it is partly nonlinear. XOR is a linear operation because it is a Boolean 
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function with inputs that are assumed to have algebraic degrees of 1. In contrast, 

Modulo Addition is partly nonlinear because of the potential of having a carry. Also, 

each sum bit is considered. This can be seen from the general equations described in [6] 

and below. The symbol + is used to denote addition in GF(2), which means XOR, and the 

symbol ┼  is used to denote Modulo Addition 2n. It should be noted that in 

cryptography, a single Modulo Addition typically has no carry-in.  

         

 
 
 
 
 

 
 
 
 

        

           

 
 
 

             

 
 
 

                   

     

 

 
 
 
 
 

 
 
 
 

       

                     

                                          
 
 
 

                               

   

   

        

 

     

     

          

One can view the Modulo Addition as an S-Box, with input variables X and Y and 

output variable Z, and evaluate its Algebraic Immunity, using Definition 1. The minimum 

degree of this set of equation is 1; however, if one substitutes the carry variables with X 

and Y variables, the algebraic degree is much more than 1. The author in [19] has made 
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this observation and come up with another definition to better describe the immunity of 

this type of cryptographic component.  

DEFINITION 2: The Describing Degree is the minimum degree D such that the S-Box 

is entirely defined by equations of degree at most D.  

Then, the author developed a new set of equations that defines the Modulo Addition 

with a Describing Degree of 2. In other words, the Modulo Addition can be defined by 

set of quadratic equations as in (3).  

        

             

                               
 
 

                                             
 
 

                                                   

    

Furthermore, the author is able to create additional independent equations and the 

number of equations has totaled to     . The complexity of solving this “S-Box” can 

then be calculated using the method described in the previous section. An example 

calculation for Addition Modulo 232 is shown here:  

    
    

 
 

 

   

     

             

   
   

     
    

   
    

     
    

   
 

        

It is worth noting that odd-number Modulo Addition is not considered in this report. 
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2.5 Conditional Properties of Modulo Addition 

Conditional equations for generic S-Box are studied in [20] and the idea can be 

applied in a similar manner to Modulo Addition. The goal of using conditional equations 

in Algebraic Attack as mentioned before is to either lower the algebraic degree of the 

equations or create more independent equations. Both can be achieved by exploiting 

the carry bits in the Modulo Addition. As a result, the cost is directly related to the 

probability of carries in a traditional Modulo Addition. The probability of carries can be 

generalized in (4) and is also demonstrated in [6]. As the number of bits increases in the 

addition, the probability of a carry occurring approaches 
 

 
. Note that the inputs are 

assumed to be uniformly distributed.  

               

 
         

 

 
 
 

 
 

 

 
          

                  
 

 

  

 
 
 

 
 
         

 

 
 
 

 
 
 

 
 

 

 
 
 

 
 
 

 
 

 

 
 
 

 
 
 

 
 

 

 
 
 

 
 
 

 
 

 

 
    

          
             
             
             

 

                    
 

 

  

 
             

     

                   

     

2.5.1 Condition 1: No carries 

The conditional properties of Modulo Addition are first explored in [27], and then 

expanded in [19]. The simplest condition is for the addition to have no carries at all, and 

this will completely linearize the equations in (3), as each output variable becomes the 

addition of the two input variables in GF(2). In other words, the linearized equations 

hold with probability equal to 1 and the complexity of solving the equations is reduced. 
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One can also treat these linearized equations as new conditional equations added on 

top of the existing equations in (3). As the number of equations increases, the solving 

complexity decreases. This approach can be applied to other conditional properties that 

will be described below. At the same time, the attacker needs to consider the cost of 

this condition happening and that is the probability of all carries being equal to 0. For a 

32-bit Modulo Addition, this probability can be calculated using (4) and is equal to 

                  .  

2.5.2 Condition 2: Output Characteristics 

A less obvious condition utilizes the output characteristic of Modulo Addition, that is, 

when the output is     , or in binary terms, all 1’s. This characteristic is convenient 

because, through deduction, no carry exists in this scenario when the carry-in is 0. Here, 

the equations are again linearized with probability 1. The associated cost of this 

occurring is when the two inputs are of opposite polarity, meaning they are either 0 and 

1 or 1 and 0. In digital logic, this input pairing is referred to as Propagate [28]. The table 

below lists out the terms describing different input pairings.  

Input 1 Input 2 Term 

0 0 Kill 

0 1 Propagate 

1 0 Propagate 

1 1 Generate 

Table 2 - Terms for Input Pairings 

The probability of all input pairs being Propagate for an n-bit addition is: 

 
 

 
 
 

 
 

 

 
 
 

 
       

A natural expansion of this output characteristic is to have K consecutive 1’s in the least 

significant bits in the output. This will linearize at least K equations and potentially 
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linearize the equations describing the remaining     bits. Evidently, this potential also 

has an associated cost, or probability.  

2.5.3 Condition 3: Input Characteristics 

Moreover, there are three input characteristics one can utilize to help linearize the 

equations. First, the output equals to one of the inputs when the other input is simply 0. 

Second, the output equals to one of the input –    when the other input is     . The 

last characteristic requires one of the inputs to be the Two’s Complement of the other 

input. Two’s Complement form is regularly used to in digital logic to perform subtraction 

and it transforms a number by complementing the number in the binary form and then 

adding the binary form by 1. For example:  

                                                      

      . 

The output of this input pairing in Modulo Addition will always be 0. The distribution of 

carry bits in this scenario is as follows: There will be no carries from the least significant 

bits of the output to the first (1, 1) pair in the inputs. The rest of bits in the output all 

have carries. Therefore, if one of the inputs only has its most significant bit as a 1 and 

the other input is the former’s Two’s Complement, the sum from the Modulo Addition 

will generate no carries. All of the input characteristics discussed above can help 

linearize the equations and create more independent equations. Also, they all have the 

same cost, which is a probability of    .  

The proposed design will aim to increase the difficulty to utilize these conditional 

properties of Modulo Addition and the complexity of solving the equations. 
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3 A New Addition Modulo 2n 

The proposed design is a new type of cryptographic component that provides user-

defined scalable security against Algebraic Attack. Figure 4 depicts the general block 

diagram of the design. The 3 components include: Input Expansion, Modulo Addition, 

and Output Compaction. Figure 5 specifies the symbol that will be used to describe the 

new design. 

 

Figure 4 - Block diagram of old and new Modulo Addition 

 

Figure 5 - Symbol of the new design 

3.1 Input Expansion 

The Input Expansion,      , is a function that expands a single input bit into a 2m-bit 

string based on an n*m-bit control string KI. In this case, n specifies the number of bits 

in the Modulo Addition while m is a user defined parameter. Typically, the n*m-bit 

control string is generated from the internals of a cipher. As the parameter m increases, 

┼ 

X(xn-1,…,x1,x0) 

Y(yn-1,…,y1,y0) 

┼  

= 

Z(zn-1,…,z1,z0) 

New Addition Modulo 2n Old Addition Modulo 2n 

X(xn-1,…,x1,x0) Y(yn-1,…,y1,y0) 

X’(x’n-1,…,x’1,x’0) Y’(y’n-1,…,y’1,y’0) 

Input Expansion based on KIx and KIy 

┼  

= 

Z’(z’n-1,…,z’1,z’0) 

Z(zn-1,…,z1,z0) 

Output Compaction based on KO 
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the expanded input becomes longer. The actual expansion function is flexible; meaning, 

the relationship between the input and the expanded input can also be user defined. 

For example, the relationship can be some arithmetic operation that grows 1 bit into 2m 

bits, or it can be a collection of Boolean functions, like an S-Box. Listed below is general 

description of input and output variables before and after applying the Input Expansion 

function. 

                                          

                                                          

                                                                         

                                             

          
        

   
 
                                                  

    
               

        
 
           

           
    

 
    

 
           

    
 
     

          
   

     
 
   

 
                                                

    
               

      
   

      
     

           
  

   
  

   
           

  
   

  
  

     

The equation below provides an example of the function FIN. This equation is chosen 

to give an arithmetic relationship between the inputs and output so that it is easily 

scalable. As mentioned before, this function can be substituted with other user-defined 

functions. Table 2 demonstrates the truth table when the user defines m to be 3. 

                   
                   

              
                              

xi 
KIXi 

x’i7 x’i6 x’i5 x’i4 x’i3 x’i2 x’i1 x’i0 
KIXi2 KIXi1 KIXi0 
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xi 
KIXi 

x’i7 x’i6 x’i5 x’i4 x’i3 x’i2 x’i1 x’i0 
KIXi2 KIXi1 KIXi0 

0 0 0 0 1 1 1 1 1 1 1 0 

0 0 0 1 1 1 1 1 1 1 0 1 

0 0 1 0 1 1 1 1 1 0 1 1 

0 0 1 1 1 1 1 1 0 1 1 1 

0 1 0 0 1 1 1 0 1 1 1 1 

0 1 0 1 1 1 0 1 1 1 1 1 

0 1 1 0 1 0 1 1 1 1 1 1 

0 1 1 1 0 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 0 0 1 

1 0 0 1 0 0 0 0 0 0 1 0 

1 0 1 0 0 0 0 0 0 1 0 0 

1 0 1 1 0 0 0 0 1 0 0 0 

1 1 0 0 0 0 0 1 0 0 0 0 

1 1 0 1 0 0 1 0 0 0 0 0 

1 1 1 0 0 1 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 

Table 3 - Truth table of (5) when M = 3 

When using (5) as the Input Expansion function, it is suggested to set m ≥ 2 because 

when      , the expanded input will repeat itself. 

3.2 Addition Modulo 2n*w 

The second component of the design takes the expanded inputs and performs 

Modulo Addition. Nevertheless, the number of additions has increased as the inputs are 

expanded from {0,1}n → {0,1}n*w. The addition still follows the formulae in (1), (2), and 

(3). The sum can be generalized by the equation similar to (3) as below. 
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It is worth noting that the carry-out generated by each output block, such as z’0, 

becomes the carry-in of the next block, such as z’1. 

3.3 Output Compaction 

The final component is a function that compresses    to  , i.e. {0,1}n*w →{0,1}n, based 

on a    -bit output control string KO. In particular, the Output Compaction uses a 

2m:1 MUX and the select lines are provided by KO. The below equations define the 

variables involved in this function. 

                          

                                                      

                        
 
                                          

Equation (7) gives an algebraic expression for the sum of products form of a MUX 

function.  

         
 
            

   

   

     
 
        

   

   

                           

An example with m = 3 is provided below: 
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4 Analysis of the Proposed Design 

In this chapter, the proposed design is analyzed with respect to Algebraic Attack.  

4.1 Probability of Carries and Conditional Properties of Modulo Addition in 

the New Design 

In (4), the probability of carries in a traditional Modulo Addition is defined. The 

probability of carries in the new design can be analyzed in a similar way. The Input 

Expansion function described in (5) is not only chosen to be scalable, but also 0-1 

balanced. One can view the Input Expansion function as a collection of Boolean 

functions, or a vectorial Boolean function. Each expanded input variables is the result of 

a {0,1}m+1 →{0,1}1 Boolean function and is 0-1 balanced as the function outputs the same 

amount of 0 and 1. In other words, the probability of each Boolean function producing a 

0 or a 1 is uniformly distributed. This coincides with the assumption made when 

calculating the probability of carries in (4). The probability of carries in the new design 

can then be defined as below.  
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                     ; w =    

In both (4) and (8), the probability of carry approaches ½  as the number of bits in the 

modulo addition increases.  

4.1.1 Condition 1: No Carries 

The attacker may try to use the conditional properties of Modulo Addition to 

linearize this part of the equations. However, the attacker would discover that the 

Output Compaction function is lossy, i.e., the attacker cannot derive all of   
  from    

even if the output control bits are given. In other words, the MUX function is not 

reversible. Nonetheless, if somehow the attacker is able to obtain   
 , the conditional 

properties for Modulo Addition should still be analyzed. For the equations to have no 

carries at all, the probability has now roughly become                .  

4.1.2 Condition 2: Output Characteristics 

For the condition where every bit of the sum is a 1, it is required that the expanded 

input pair needs to be all Propagate. This implies that, the two m-bits input control 

string for each input pair,              , need to be the same. This is because the Input 

Expansion function will generate no carries only under this condition. The probability of 

this condition is                     , or an increase of    . The derivation is 

shown below. 
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4.1.3 Condition 3: Input Characteristics 

The conditions of one of the inputs being all 0 or all 1 in binary form do not happen in 

this Input Expansion function. However, it is possible for the expanded inputs to be 

Two’s Complement of each other. The probability is derived below. 
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4.2 Complexity of Solving the New Design 

The proposed design, similar to Modulo Addition, can be viewed as an S-box, and its 

algebraic degree can be evaluated. This “S-Box” performs the transformation of 

{0,1}2n+3nm → {0,1}n. It can also be seen as key dependent, as its values and operations 

are dependent on the input and output control bits. In order to evaluate the complexity 

of solving the new design, the algebraic degree of the components in the new design 

should be studied. For the Input Expansion function, each expanded input variable is a 

result of a Boolean function. The algebraic degree of a Boolean function can be 

determined from its Algebraic Normal Form (ANF). This form expresses a Boolean 

function using addition in GF(2), or XOR logic. An algorithm is provided in the figure 

below to transform the Truth Table of a Boolean function to its Algebraic Normal Form.  

 

Figure 6 - The ANF Algorithm 

Table 4 provides an example of using the ANF algorithm to obtain the Algebraic 

Normal Form of the targeted Boolean function. The ANF of the Boolean function is: 1 ○┼  

KIx1KIx0 ○┼  xi. 

xi KIx1 KIx0 f(xi, KIx1, k g(xi, KIx1, Comments 

The ANF Algorithm 

1. Consider a Boolean function f with n variables: f(xn-1,…,x1,x0) 
2. Let g be a Boolean function with the same n variables: g(xn-1,…,x1,x0) 
3. Set g(xn-1,…,x1,x0) = f(0,…,0,0) 
4. Let k = 1 to 2n-1, and its binary expression is defined as: k = b1 + b22 + b32

2 + … + 
bn2n-1, do: 

a. If g(bn,…,b1,b0) ≠ f(bn,…,b1,b0) 

b. Set g(xn-1,…,x1,x0) = g(xn-1,…,x1,x0) ○┼     
   

    

5. Return ANF(f) = g(xn-1,…,x1,x0) 
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KIx0) KIx0) 

0 0 0 1  1 g = f(0,0,0) 

0 0 1 1 1 1 g(k) = f(k) 

0 1 0 1 2 1 g(k) = f(k) 

0 1 1 0 3 
1 ○┼  

KIx1KIx0 
g(k) ≠ f(k) 

1 0 0 0 4 

1 ○┼  

KIx1KIx0 ○┼  

xi 

g(k) ≠ f(k) 

1 0 1 0 5  g(k) = f(k) 

1 1 0 0 6  g(k) = f(k) 

1 1 1 1 7  g(k) = f(k) 

Table 4 - Example of ANF Algorithm 

4.2.1 Algebraic Degree of Input Expansion 

The algebraic degree for each expanded input variables is the monomial with the 

largest degree in its Algebraic Normal Form. When the user defines the input control bit 

parameter m, the algebraic degree is defined to be m as well. This can be seen in the 

derivations shown in Table 5 and 6. On the other hand, it is quite intuitive that each 

expanded variable depends on the combination of all m bits in the input control string. 

Xi ANF Algebraic Degree 

x’i0 KIx1 ○┼  KIx0 ○┼  KIx1KIx0 ○┼  xi 2 

x’i1 1 ○┼  KIx0 ○┼  KIx1KIx0 ○┼  xi 2 

x’i2 1 ○┼  KIx1 ○┼  KIx1KIx0 ○┼  xi 2 

x’i3 1 ○┼  KIx1KIx0 ○┼  xi 2 

Table 5 - ANF of Input Expansion m = 2 

Xi ANF Algebraic Degree 

x’i0 KIx0 ○┼  KIx1 ○┼  KIx1KIx0 ○┼  KIx2 3 
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○┼  KIx2KIx0 ○┼  KIx2KIx1 ○┼  

KIx2KIx1KIx0 ○┼  xi 

x’i1 
1 ○┼  KIx0 ○┼  KIx1KIx0 ○┼  

KIx2KIx0 ○┼  KIx2KIx1KIx0 ○┼  xi 
3 

x’i2 
1 ○┼  KIx1 ○┼  KIx1KIx0 ○┼  

KIx2KIx1 ○┼  KIx2KIx1KIx0 ○┼  xi 
3 

x’i3 
1 ○┼  KIx1KIx0 ○┼  KIx2KIx1KIx0 

○┼  xi 
3 

x’i4 
1 ○┼  KIx2 ○┼  KIx2KIx0 ○┼  

KIx2KIx1 ○┼  KIx2KIx1KIx0 ○┼  xi 
3 

x’i5 
1 ○┼  KIx2KIx0 ○┼  KIx2KIx1KIx0 

○┼  xi 
3 

x’i6 
1 ○┼  KIx2KIx1 ○┼  KIx2KIx1KIx0 

○┼  xi 
3 

x’i7 1 ○┼  KIx2KIx1KIx0 ○┼  xi 3 

Table 6 - ANF of Input Expansion m = 3 

Table 7 tabulates a quick comparison of the input algebraic degrees. 

 
Input to traditional 

Modulo Addition 

Input to Modulo Addition 

in the new design 

Algebraic Degree 1 m 

Table 7 - Comparison of Input Algebraic Degrees 

4.2.2 Algebraic Degree of Modulo Addition 

After the algebraic degree is obtained for the Input Expansion component, the 

degree of the Modulo Addition component is required. Using the quadratic equations in 

(3), the algebraic degree is at least m. This can be realized from the “linear” equation for 

the least significant bit addition, which is a linear combination, or XOR, of two degree m 

equations. At this point, it can already be seen that the combination of Input Expansion 
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and Modulo Addition increases the Algebraic Immunity to m, compared to 1 before. 

Nonetheless, the describing degree is more of the concern as discussed in the earlier 

section. Therefore, the maximum algebraic degree in the set of equations needs to be 

uncovered. Equation (3) limits the describing degree to two times the degree of the 

linear equation because its largest degree comes from the multiplication of two degree-

1 variables. In other words, the quadratic equations have a degree of      . In this 

case, the “linear” equation has a degree of m; therefore, the quadratic equations have a 

degree of       . The describing degree has effectively been increased. An 

example is listed below. 

              

                       

                                                   
 
 

                                                                 

 

                    

        
             

                         
 
 

                         

 

It is important to note that, the use of quadratic equations is valid only when the 

attacker is able to access the internal sums, or   . The attacker can also define   as extra 

variables in the S-Box so that the equations can be used; however, this method may not 

be beneficial, as the number of variables will increase.  

The Modulo Addition component can also be described by equations (1) and (2); in 

particular, the algebraic degree is dominated by (2). With careful inspection, it can be 

observed that the algebraic degrees of equations defining the traditional Modulo 

Addition are 1 for    and     for   . This makes sense because the more significant the 
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carry bit is, the more dependent it is on the previous input bits. The derivation is shown 

below. 

                  

                                 

                                               

                         

Similarly, the algebraic degrees of equations defining the Modulo Addition 

component in the new design are m for      and             for              

                      . An Example is also shown below. 

                        

                                                  

  
     

     
  

   
     

     
  

    
   

 
  

    
     

  
    

   
 
  

  

           

  
     

     
  

   
        

  
     

  
   

       
 
          

         
          

       
 
        

        

   

   

          

   

     

                 

A comparison of degrees using different methods between the traditional Modulo 

Addition and the new design is given in Table 8. 

 
Sum of traditional Modulo 

Addition 

Sum of Modulo Addition in 

the new design 

Algebraic Degree using (3)          
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Algebraic Degree using (1) 

and (2) 

             

          

              

         

          

           

      

Table 8 - Comparison of Modulo Addition Degrees 

4.2.3 Algebraic Degree of Output Compaction 

Finally, the algebraic degree of the Output Compaction component needs to be 

determined. Again, the Output Compaction function is a user defined 2m:1 MUX 

function and the ANF of a MUX function can be obtained from the ANF algorithm. The 

algebraic degree of the function is     when the inputs to the MUX all have degree 1. 

This is intuitive as the MUX output is generated from using all select lines to select the 

desired input. In fact, equation (7) can be used as the ANF of the MUX function and the 

algebraic degree can be immediately discovered to be    . In addition, the algebraic 

degree can still be derived by using the ANF algorithm described above and the result is 

the same. Examples of ANF of different MUX functions are provided in the table below. 

 ANF Algebraic Degree 

M = 2 

Zi = z’i0 ○┼  z’i0KOi0 ○┼  z’i0KOi1 

○┼  z’i0KOi1KOi0 ○┼  z’i1KOi0 ○┼  

z’i1KOi1KOi0 ○┼  z’i2KOi1 ○┼  

z’i2KOi1KOi0 ○┼  z’i3KOi1KOi0 

3 

M = 3 

Zi = z’i0 ○┼  z’i0KOi0 ○┼  z’i0KOi1 

○┼  z’i0KOi1KOi0 ○┼  z’i0KOi2 ○┼  

z’i0KOi2KOi0 ○┼  z’i0KOi2KOi1 

○┼  z’i0KOi2KOi1KOi0 ○┼  

z’i1KOi0 ○┼  z’i1KOi1KOi0 ○┼  

z’i1KOi2KOi0 ○┼  

4 



31 
 

z’i1KOi2KOi1KOi0 ○┼  z’i2KOi1 

○┼  z’i2KOi1KOi0 ○┼  

z’i2KOi2KOi1 ○┼  

z’i2KOi2KOi1KOi0 ○┼  

z’i3KOi1KOi0 ○┼  

z’i3KOi2KOi1KOi0 ○┼  z’i4KOi2 

○┼  z’i4KOi2KOi0 ○┼  

z’i4KOi2KOi1 ○┼  

z’i4KOi2KOi1KOi0 ○┼  

z’i5KOi2KOi0 ○┼  

z’i5KOi2KOi1KOi0 ○┼  

z’i6KOi2KOi1 ○┼  

z’i6KOi2KOi1KOi0 ○┼  

z’i7KOi2KOi1KOi0 

Table 9 - Example ANF of MUX functions 

4.2.4 New Design Complexity 

In Table 10, the final algebraic degree of the new design is combined and compared 

with the traditional Modulo Addition. Using Definition 1 in Chapter 2, the Algebraic 

Immunity has increased from 1 to 2m, displaying an increase of 2m. Similarly, the 

Describing Degree has increased     to             , showing an increase of 

roughly 2m. It can also be seen that the degree is scalable according to user definition.  

 
Traditional Modulo 

Addition 
New Modulo Addition 

Algebraic Degree of Input 1 m 

Algebraic Degree of 

Addition using (1) and (2) 
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Algebraic Degree of Output -     

Total 
      

           

            

          

             

          

Table 10 - Comparison of Algebraic Degree 

In Table 11, the complexity of the traditional Modulo Addition and the new design is 

compared. Equation (3) is used to calculate the complexity of the traditional Modulo 

Addition, and the calculation has been done in earlier chapter as well. The complexity of 

the new design using equations (1) and (2) becomes very high. An attacker would 

definitely try to uncover other possible methods to reduce the algebraic degree of the 

new design. Such case is explored in the next section. 

 Traditional Modulo 

Addition 

Using (3) 

New Modulo Addition 

Using (1) and (2) 

Number of Input Variables           

Number of Output Variables     

Number of Extra Variables 0 0 

Number of Equations            

Number of Monomials     
   

 
 

 

   

     
       

 
 

            

   

 

Complexity    
   

     
    

         
     

 

Table 11 - Comparison of Complexity 
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4.2.5 Corner Case Analysis 

Instead of solving directly using the equations and algebraic degrees derived before, 

an attacker can rely on probabilistic properties to solve the new design. In other words, 

conditional properties of the new design can be used. For the Input Expansion, it can be 

observed that if the m-bit control strings are known, the expanded inputs largely 

depend on the input or the complement of the input. Furthermore, if all m-bit control 

strings are 0, the expanded inputs are going to equal to the complement of the input 

and the least significant bit of the expanded input is simply the input. This condition 

greatly lowers the degree of the subsequent Modulo Addition component. In fact, the 

highest degree of adding the first 2m bits of expanded input is 2 while the lowest degree 

of this addition resides in the least significant bit and is only 1. However, the degree of 

adding the subsequent 2m bits of expanded input becomes higher and can be 

generalized to     for the      bits in the expanded input bits of the ith input bit. 

The degree of adding the least significant bit in the expanded input bits of the ith input 

bit is    . The below table demonstrates the derivation when m is defined to be 2.  

Xi, Yi, Zi ANF (KI = 0) Algebraic Degree 

x’00 x0 1 

x’01 1 ○┼  x0 1 

x’02 1 ○┼  x0 1 

x’03 1 ○┼  x0 1 

y’00 y0 1 

y’01 1 ○┼  y0 1 

y’02 1 ○┼  y0 1 

y’03 1 ○┼  y0 1 

z’00 x’00 ○┼  y’00 = x0 ○┼  y0 1 

z’01 
1 ○┼  x0 ○┼  1 ○┼  y0 ○┼  x0 y0 = 

x0  ○┼  y0 ○┼  x0 y0 
2 



34 
 

z’02 

1 ○┼  x0 ○┼  1 ○┼  y0 ○┼  (1 ○┼  

x0)( 1 ○┼  y0) ○┼  (1 ○┼  x0 ○┼  1 

○┼  y0)(1 ○┼  x0 ○┼  1 ○┼  y0)(x0 

○┼  y0) = 1 ○┼  x0  ○┼  y0 ○┼  x0y0 

2 

z’03 

1 ○┼  x0 ○┼  1 ○┼  y0 ○┼  (1 ○┼  

x0)( 1 ○┼  y0) ○┼  (1 ○┼  x0 ○┼  1 

○┼  y0)(1 ○┼  x0 ○┼  1 ○┼  y0)(1 

○┼  x0)( 1 ○┼  y0) ○┼  (1 ○┼  x0 

○┼  1 ○┼  y0)(1 ○┼  x0 ○┼  1 ○┼  

y0)(1 ○┼  x0 ○┼  1 ○┼  y0)(x0 ○┼  

y0) = 1 ○┼  x0  ○┼  y0 ○┼  x0y0 

2 

x’10 x1 1 

x’11 1 ○┼  x1 1 

y’10 y1 1 

y’11 1 ○┼  y1 1 

z’10 

x1 ○┼  y1 ○┼  (1 ○┼  x0)( 1 ○┼  y0) 

○┼  (1 ○┼  x0 ○┼  1 ○┼  y0)(1 ○┼  

x0 ○┼  1 ○┼  y0 ○┼  z’03) = x1 ○┼  

y1 ○┼  x0y0 

2 

z’11 

1 ○┼  x1 ○┼  1 ○┼  y1 ○┼  x1y1 ○┼  

(x1 ○┼  y1)( x1 ○┼  y1 ○┼  z’10) = 

x1 ○┼  y1 ○┼  x1y1 ○┼  x1x0y0 ○┼  

y1x0y0 

3 

Table 12 - Input Expansion and Resultant ANF for m = 2 and KI = 0 

The scalability of the algebraic degree has been reduced; however, the degree of the 

sum is still equal or greater than     or 2, which are the degrees of the sum in the 

traditional Modulo Addition calculated using different equations. 
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The attacker would also observe that the degree can be greatly lowered in the Output 

Compaction function if the m-bit control strings are all 0’s. The degree is simply 1 in this 

case. This can be easily derived from equation (7) and table 9. As a result, if all input and 

output control bits are 0’s, the degree of each output variable is strictly dependent on 

the combined degree of Input Expansion and Modulo Addition. Under this specific 

condition, the overall system has a degree of     .  

This corner case scenario can be avoided as the goal is to avoid having all input and 

output control bits to be 0 simultaneously. One can use one string of control bits for one 

input and the complement of the same string for the other input. There are also many 

other ways to generate the control strings within a cipher, such as in [21], [22], and [32]. 

Furthermore, the cost associated to this condition is      for all control bits to be 0, 

because the probability of such corner case occurring is       . Table 13 provides a 

comparison of complexity between the traditional Modulo Addition and the corner case 

of the new design. 

 Traditional Modulo 

Addition 

Using (3) 

New Modulo Addition 

Corner Case 

Number of Input Variables           

Number of Output Variables     

Number of Extra Variables 0 0 

Number of Equations            

Algebraic Degree 2   

Condition Cost 0      

Number of Monomials     
   

 
 

 

   

     
       

 
 

 

   

 

Complexity    
   

     
 

        

 
         

     
 

Table 13 - Comparison of Corner Case Complexity 
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Overall, the new design has provided a better and scalable security against Algebraic 

Attack by improving the algebraic degree to at least  , increasing the number of 

monomials, and adding a conditional cost of     . 
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5 Applications of the New Design 

In this chapter, a toy example is given to demonstrate the effect of the new design. 

Then, the proposed design is applied to two stream ciphers. The overviews of the two 

stream ciphers are given, and the application is discussed. The results are explained in 

the next chapter. 

5.1 Toy Example 

In the toy example, a simple 3-bit cipher is employed. The unencrypted input P is fed 

into a traditional Addition Modulo 23, along with the secret key K, to generate the 

encrypted output C. This cipher is refereed as Cipher A. Then, the traditional Modulo 

Addition is replaced by the new design and this is referred as Cipher B. The input and 

output control strings are termed KIp, KIk, and KO and are assumed to be supplied by 

some other sources that have uniform probability. Also, m is defined to be 2 for 

simplicity. The two ciphers are illustrated in the below figure.  

 

Figure 7 - Toy Example Block Diagram 

A quick analysis can be provided to show the difference in algebraic degree between 

the two ciphers. Note that + is used to denote XOR operation. For Cipher A: 

         

              

                            

P C 

K 

┼  

Cipher A 

K KIk KO 

┼ P C 

KIp 

Cipher B 
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The Algebraic Immunity of this set of equations is 1 whereas the Describing Degree is 3. 

The attacker would then attempt to solve this set of equations to obtain the secret key K. 

At the same time, the conditional properties mentioned in Chapter 2 can be used. Both 

the probabilities of output characteristic and input characteristic are 2-3. Similarly, for 

Cipher B: 

                                                        

              

                                                         

                                                          

                                                           

                                                               

                                                            

                         

                                                          

                                                          

                                                             

                                                      

                                                            

                                         

 
 
 
 

Only the equations describing the least significant bit of the output of Cipher B is 

shown here. However, the increase in algebraic degree can already be seen. The 

minimum degree has increased to 4, or 2m, in this set of equations. The maximum 

degree in this set is 10. This corresponds to the summary in Table 10. At the same time, 
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the probability of the conditional properties can be calculated using the equations 

described in Chapter 4. Specifically, the output characteristic has a probability of 

             whereas the probability of the corner case is 2-18. As a result, the 

complexity of Algebraic Attack against Cipher A has been increased by employing the 

new design.  

5.2 Application on Stream Ciphers with Linear Feedback 

The targeted stream cipher belongs to a classical type of stream cipher that typically 

employs shift registers with nonlinear feedback and a linear output combiner function. 

This type of stream cipher is used very often as a pseudo-random number generator and 

encryption algorithm in resource constrained environment. The targeted stream cipher 

is Bivium, which is a subset of Trivium. Trivium is one of the finalists in the ECRYPT 

stream cipher project for hardware specific stream ciphers [33]. The specification of 

Bivium and the application of the new design will be described.  

5.2.1 Overview of Bivium 

In [34], Trivium is introduced as a hardware efficient stream cipher. It consists of 

three shift registers of lengths 93, 84, and 111. It operates in the initialization mode, 

which utilizes an 80-bit secret key and an 80-bit initialization vector, and the key stream 

generation mode, which is capable of generating up to 264 output bits. In addition, 

Trivium can be truncated into a smaller stream cipher, Bivium. Bivium has two variants, 

Bivium A and Bivium B, and both variants use two shift registers of lengths 93 and 84. 

The operational modes, the length of secret keys, and the length of initialization vector 

are the same as Trivium. The stream cipher of interest in Bivium B and its operations are 

described and illustrated in the figures below. It is worth noting that the secret key and 

the initialization vector are loaded in the LFSRs for initialization. Also, as mentioned in 

Chapter 2, the unencrypted message input will be mixed with the key stream generated 

from the stream cipher to form the encrypted output. This general procedure is true for 

other stream cipher applications in this chapter as well. 
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Figure 8 - Operation of Bivium B 

Bivium B – Initialization Mode 

1st LFSR → (S1, S2, …, S92, S93) 

2nd LFSR → (S94, S95, …, S176, S177) 

Secret Keys → (K1, K2, …, K79, K80) 

IV → (IV1, IV2, …, IV79, IV80) 

(S1, S2, …, S92, S93) = (K1, K2, …, K79, K80, 0, 0, …,0) 

(S94, S95, …, S176, S177) = (IV1, IV2, …, IV79, IV80, 0, 0, …,0) 

For i = 1 to 4*177, do: 

t1 = S66 ○┼  S93 ○┼  S91S92 ○┼  S171 

t2 = S162 ○┼  S177 ○┼  S175S176 ○┼  S69 

(S1, S2, …, S92, S93) = (t2, S1, …, S92) 

(S94, S95, …, S176, S177) = (t1, S94, …, S176) 

End for 

 

Bivium B – Keystream Generation Mode 

For i = 1 to N, do: 

t1 = S66 ○┼  S93 

t2 = S162 ○┼  S177 

zi = t1 ○┼  t2 

t1 = t1 ○┼  S91S92 ○┼  S171 

t2 = t2 ○┼  S175S176 ○┼  S69 

(S1, S2, …, S92, S93) = (t2, S1, …, S92) 

(S94, S95, …, S176, S177) = (t1, S94, …, S176) 

End for 
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Figure 9 - Block Diagram of Bivium B 

5.2.2 Application of the New Design in Bivium B 

The new design will replace the linear output combiner function and the user defined 

parameter m is selected to be 4. The number of control bits is             . As 

mentioned before, there are many ways to select the control bits; however, three 

conditions are used in the selection process. First, the control bits will be coming from 

the states in the shift registers so that no extra work is required to generate the control 

bits. Second, the states will be chosen using the Full Positive Difference Set (FPDS). The 

FPDS means that the difference between any two stages in the set is distinct. In other 

words, the difference between any two numbers in a set of numbers should be distinct. 

The FPDS is considered as it provides better resistance to correlation attack [35][36]. In 

addition, it is shown in [37] that states between S91 and S176 appear more often in the 

algebraic formulation between the states and the output bits. Therefore, the third 

condition for choosing the control bits is to limit the states to be less than S91. Finally, 

the control bits will be supplied by the three sets: (S16, S50, S70, S84), (S3, S8, S14, S30), 

S93 
S66 S91 

S92 

Z 

S162 

S177 

S175 

S176 

S171 
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and (S11, S23, S41, S54). The operation of the new Bivium B is described in Figure 10. 

Figure 11 illustrates the block diagram of Bivium B with the new design. 

 

Figure 10 - Operation of New Bivium B Application 

 

New Bivium B – Key stream Generation Mode 

For i = 1 to N, do: 

t1 = S66 ○┼  S93 

t2 = S162 ○┼  S177 

KIx = S16 | S50<<1 | S70<<2 | S84<<3 

KIy = S3 | S8<<1 | S14<<2 | S30<<3 

Ko = S11 | S23<<1 | S41<<2 | S54<<3 

T1_ext = Input Expansion (t1, KIx) 

T2_ext = Input Expansion (t2, KIy) 

Sum = Modulo Addition (T1_ext, T2_ext) 

zi =Output Compaction (Sum, Ko) 

t1 = t1 ○┼  S91S92 ○┼  S171 

t2 = t2 ○┼  S175S176 ○┼  S69 

(S1, S2, …, S92, S93) = (t2, S1, …, S92) 

(S94, S95, …, S176, S177) = (t1, S94, …, S176) 

End for 
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Figure 11 - Application of New Design in Bivium B 

In table 14, first 10 bits of the resultant key stream of the application is shown. The 

intermediate steps of the new design are also tabulated. The secret key and initialization 

vector are chosen at random and are used in both old Bivium B and the new application. 

They are provided as: 

                         

                          

The 10 bits of key stream from the old Bivium B and the application is provided below: 

             

              

xi KIxi x’i yi KIyi y’i z’i KOi z’ 

0 1100 1110111111111111 1 0000 0000000000000001 1111000000000000 1010 0 

0 1000 1111111011111111 1 1110 0100000000000000 0011111011111111 1011 1 

S93 
S66 S91 

S92 

S162 

S177 

S175 

S176 

S171 

 

┼ Z 
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1 0011 0000000000001000 0 1111 0111111111111111 1000000000000111 0011 0 

0 1101 1101111111111111 1 0001 0000000000000010 1110000000000001 1110 1 

0 0100 1111111111110111 0 1001 1111111011111111 1111110111101110 0011 1 

1 1000 0000000100000000 1 0100 0000000000010000 0000000100010000 0101 0 

0 0111 1111111101111111 1 0100 0000000000010000 1111111110001111 1110 1 

1 1001 0000000100000000 0 1010 1111110111111111 1111111011111111 0100 1 

1 1100 0001000000000000 0 1111 0111111111111111 1000111111111111 0000 1 

0 1001 1111110111111111 0 1111 0111111111111111 0111110111111110 0110 1 

Table 14 - Output from New Bivium B Application 

The analysis of this application will be explained in detail in the next chapter. 

5.3 Application on Stream Ciphers Using Combiners with Memory 

In this section, the new design is applied to a type of stream cipher that uses shift 

registers with nonlinear feedback and an output combining function that contains 

memory registers. This type of stream cipher is also used widely as pseudo random 

number generator or encryption algorithm. In particular, the targeted stream cipher 

would be SNOW2.0. An overview of SNOW2.0 is provided and the application of the 

new design is described. 

5.3.1 Overview of SNOW2.0 

In [25], a linear feedback shift register (LFSR) based stream cipher named SNOW2.0 is 

proposed. It consists of a length 16 LFSR over GF(232); in other words, there are 16 

elements in the LFSR, and each element consists of a 32-bit word. This type of stream 

cipher is based on the idea of a general word-oriented summation generator [8]. The 

feedback polynomial is defined by                                . In 

simpler terms, the feedback polynomial is the XOR combination of the 0th element (S0) 

multiplied by α, the 2nd element (S2), and the 11th element (S11) divided by α. A Finite 

State Machine (FSM) is also used in conjunction to produce the key stream. The FSM 
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consists of two 32-bits registers R1 and R2. The value of R2 is determined by feeding the 

value of R1 through a set of AES S-Boxes and the AES Mix Column operation. The value 

of R1 comes from performing Addition Modulo 232 between R2 and S5. Finally, the key 

stream output comes from adding S15 and R1, XOR the result with R2, and XOR again 

with S0. The operation of the stream cipher begins with a key initialization step that 

initializes the 16 elements and the 2 registers with the aid of the 128-bit secret key and 

128-bit initialization vector. Then, the cipher is clocked to produce a 32-bit key stream. 

Each clock will update the FSM and then the LFSR. Figure 12 shows the block diagram of 

the setup.  

 

Figure 12 - Block Diagram of SNOW2.0 [25] 

5.3.2 Application of the New Design in SNOW2.0 

The new design is used to replace the two traditional Modulo Additions in SNOW2.0. 

In this application, m = 3 is used. This means that for each addition, 288 control bits are 

used, and a total of 576 bits are required. The supply of the control bits come from 
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utilizing the state S14 the following way: For each bit of the first input X, the 3 input 

control bits will be the least significant three bits of the 3-bit circular left shifted S14. 

Therefore, KIX0 = (S142, S141, S140) and KIX1 = (S1431, S1430, S1429). In contrast, for each 

bit of the second input Y, the 3 input control bits will be the least significant three bits of 

the 3-bit circular right shifted and inverted S14. Let S14’ denote the bit-wise inverted 

S14, then KIY0 = (S14’2, S14’1, S14’0) and KIY1 = (S14’5, S14’4, S14’3). The output control 

bits is provided by the least significant three bits of the 3-bit circular right shifted S14, 

namely, KO0 = (S142, S141, S140) and KO1 = (S145, S144, S143). This control bit setup can 

at least guarantee that the input control bits for the first bit of both inputs will not be 0 

simultaneously. Figure 13 shows the block diagram of the new design while Figure 14 

and 15 list out the detailed operations. 

 

Figure 13 - Application of New Design in SNOW2.0 

St+14 



47 
 

 

Figure 14 - Operation of the New SNOW2.0 

 

New SNOW2.0 

New Modulo Addition: 

 X_ext = Input Expansion (X, S14) 

 Y_ext = Input Expansion (Y, S14) 

 Sum = Modulo Addition (X_ext, Y_ext) 

 Z = Output Compaction (Sum, S14) 

Return Z 

FSM Update: 

 F = New Modulo Addition (S15, R1, S14) 

 F = F^R2 

 R = New Modulo Addition (R2, S5, S14) 

 R2 = SBox (R1) 

 R1 = R 

 Return F 

LFSR Init: 

 V = (S0*α)^(S11/ α)^S2^F 

 For i = 1 to 16 

  S(i) = S(i+1) 

 S15 = V 

LFSR Key Stream: 

 V = (S0*α)^(S11/ α)^S2 

 For i = 1 to 16 

  S(i) = S(i+1) 

 S15 = V 
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Figure 15 - Operation of the New SNOW2.0 Continued 

An example is given in the below table to demonstrate the internal steps of applying 

the new design on S15 and R1 during the generation of the first output key stream. The 

secret key used is                                    and the 

initialization vector used is                                   . This is one of 

New SNOW2.0 

Initialization Mode: 

1
st

 LFSR → (S0, S1, …, S14, S15) 

Secret Keys → (K0, K1, K2, K3) 

IV → (IV0, IV1, IV2, IV3) 

S0 = K0^0xFFFFFFFF, S1 = K1^0xFFFFFFF, S2 = K2^0xFFFFFFFF, S3 = K3^0xFFFFFFFF, S4 = K0 

S5 = K1, S6 = K2, S7 = K3, S8 = K0^0xFFFFFFFF, S9 = K1^0xFFFFFFFF^IV3 

S10 = K2^0xFFFFFFFF^IV2, S11 = K3^0xFFFFFFFF, S12 = K0^IV1, S13 = K1, S14 = K2, S15 = K3^IV0 

R1 = 0, R2 = 0 

For i = 1 to 32: 

 F = FSM Update (S15, S14, R1, R2) 

 LFSR Init (F, S) 

End For 

 

Key Stream Generation Mode: 

FSM Update (S15, S14, R1, R2) 

LFSR Key Stream (S) 

For i = 1 to N: 

 F = FSM Update (S15, S14, R1, R2) 

 Z = F^S0 

LFSR Key Stream (S) 

End For 
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the test vector listed in the original design. At this specific timeframe       

           ,                , and                 . 

xi KIxi x’i yi KIyi y’i z’i c’i KOi z’ 

1 001 00000010 0 110 10111111 11000001 0 110 1 

1 010 00000100 0 100 11101111 11110011 0 101 11 

0 100 11101111 0 100 11101111 11011110 1 011 111 

1 010 00000100 1 100 00010000 00010101 0 101 0111 

0 110 10111111 0 100 11101111 10101110 1 001 10111 

0 010 11111011 1 110 01000000 00111100 1 101 110111 

0 010 11111011 1 110 01000000 00111100 1 101 1110111 

0 110 10111111 0 100 11101111 10101111 1 001 11110111 

1 110 01000000 0 110 10111111 00000000 1 001 011110111 

0 110 10111111 1 101 00100000 11100000 0 001 0011110111 

1 110 01000000 0 010 11111011 00111011 1 001 10011110111 

0 010 11111011 1 011 00001000 00000100 1 101 010011110111 

0 101 11011111 1 010 00000100 11100100 0 010 1010011110111 

1 000 00000001 0 010 11111011 11111100 0 111 11010011110111 

0 101 11011111 0 010 11111011 11011010 1 010 011010011110111 

1 100 00010000 0 010 11111011 00001100 1 011 1011010011110111 

1 100 00010000 1 011 00001000 00011001 0 011 11011010011110111 

0 101 11011111 0 011 11110111 11010110 1 010 111011010011110111 

1 101 00100000 0 010 11111011 00011100 1 010 1111011010011110111 

0 101 11011111 1 111 10000000 01100000 1 010 01111011010011110111 

1 101 00100000 1 010 00000100 00100101 0 010 101111011010011110111 

0 100 11101111 1 101 00100000 00001111 1 011 1101111011010011110111 

0 101 11011111 0 001 11111101 11011101 1 010 11101111011010011110111 

0 010 11111011 1 001 00000010 11111110 0 101 111101111011010011110111 

0 001 11111101 0 001 11111101 11111010 1 110 1111101111011010011110111 

0 011 11110111 1 001 00000010 11111010 0 100 11111101111011010011110111 

1 001 00000010 0 101 11011111 11100001 0 110 111111101111011010011110111 

1 001 00000010 1 101 00100000 00100010 0 110 0111111101111011010011110111 

0 011 11110111 0 001 11111101 11110100 1 100 10111111101111011010011110111 

0 011 11110111 1 101 00100000 00011000 1 100 110111111101111011010011110111 

1 011 00001000 0 011 11110111 00000000 1 100 0110111111101111011010011110111 

1 011 00001000 1 101 00100000 00101001 1 100 00110111111101111011010011110111 

Table 15 - Example Output from the New SNOW2.0 
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The output of the new design becomes           , whereas the result of the original 

Modulo Addition is           . Also, the first output key stream of the new design 

becomes 0x91CC022F while the original key stream is           .  
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6 Application Results and Analysis 

In this chapter, the results from the applications in Chapter 5 are analyzed. At the 

same time, limitations of the new design are discussed. 

6.1 Analysis of New Bivium B 

To begin Algebraic Attack on the original Bivium B, the adversary needs to formulate 

the relationship between the states and the output. Two methods can be used to 

achieve this. The first method simply uses all the states as variables and this requires 

177 variables. During each clock, the states can be updated using these variables and 

the feedback values t1 and t2 can also be described with these variables as well. In 

addition, the output is the linear combination of t1 and t2 and can be described with the 

177 variables. It can be observed that the output equation has an algebraic degree of 1 

during the first 66 clock cycles. In other words, the first feedback value, which has an 

algebraic degree of 2 because of the AND logic, will be propagated to the output after 

66 clock cycles. As the clock cycle increases, the degree of the output increases. For 

each clock cycle, one equation is generated; therefore, this formulation uses 177 

variables with n equations for n clock cycles.  

The second approach aims at lowering the algebraic degree of the overall equations. 

This is accomplished by introducing two new variables at every clock cycle. The two new 

variables are used to represent the feedback value, which includes the degree 2 AND 

logic. As a result, two new equations are generated to describe the two new variables 

and the equations always have an algebraic degree 2. The output equation will be 

limited to degree 1 because the new variables successfully hide the higher degree 

relationship. Overall, there are          variables and 3n equations for n clock cycles. 

In [37], the authors have successfully simulated the attack by using the first method and 

have had to guess 56 variables in 320 clock cycles. For the second method, 56 variables 

are also required to be guessed and 2000 clock cycles are needed.  
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Replacing the output linear combiner function of Bivium B with the new design 

increases the algebraic degree of the equations and the number of variables required to 

guess. As deducted in the earlier chapter, the output algebraic degree with the new 

design can be generalized to             . In this case, the parameter m is 4 and 

the output is only 1 bit; therefore, the algebraic degree with the new design is at least 

68. The degree is 68 under the assumption that the degree of the inputs to the new 

design is kept at 1. In other words, this can be achieved by using the second method 

described above. If the first method is used, the degree is 68 for the first 66 cycles and 

increases as the cipher progresses.  

Moreover, the adversary may try to exploit the corner case scenario for the new 

design. The corner case relies on all control bits being 0’s. The algebraic degree of the 

output equations will be the same as the old Bivium B using both methods because the 

effect of the control bits on the algebraic degree is revoked. The adversary can analyze 

the new system and determine the variables that appear more frequently in 

constructing the control bits. Then, those variables would be guessed on top of the 56 

variables guessed before. Otherwise, the attacker could simply guess 12 bits with 

probability of 2-12 or wait for the corner case to occur with the same probability. The 

corner case requires all control strings to be 0’s, and the algebraic degree falls back to 

the same as the original design. Table 16 gives a summary of the analysis of the new 

Bivium B. 

 
Bivium B 

(Method 1) 

Bivium B 

(Method 2) 

New Bivium 

B (Method 1) 

New Bivium 

B (Method 2) 

Algebraic Degree ≥ 1 1 
≥     

         

     

         

Equations n (for n clocks) 3n n 3n 

Variables 177        177        

Variables Guessed 56 56 ≥ 56 ≥ 56 

Corner Case - - 2-12 2-12 
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Probability 

Corner Case 

Algebraic Degree 
  ≥ 1 1 

Table 16 - Result Analysis of New Bivium B 

6.2 Analysis of New SNOW2.0 

In [27] and [19], two methods have been used to linearize the quadratic equations 

formed by Modulo Addition. First, the attacker tries to fix all the carries to 0 for two 

Modulo Additions in 17 consecutive clock cycles. The probability of this occurring is 

calculated to be    
         

       , which is closed to exhaustive search 2-576. In this 

case, the exhaustive search is defined to be finding the initial states of the cipher, which 

includes 16 32-bit states and 2 32-bit registers. With the new design, the probability of 

fixing the carry becomes           , where      . If       is used, the probability 

of fixing all carries to 0 in order to linearize one set of Modulo Addition equations 

becomes                     and much is larger than exhaustive search.  

Secondly, the attacker tries to manipulate the output characteristics of Modulo 

Addition to linearize the algebraic equations. In particular, 9 consecutive values of the 

register R1, which comes from summing the values of the register R2 and state S5, are 

fixed. The desired output values from the summation are                   

                                                             . Due 

to the nature of the LFSR used in the cipher and the structure of the cipher, this 

condition requires fixing the values in 9 states: S5, S6, S7, S8, S9, S10, S11, S12, and S13. 

The probability of the 9 states being fixed is in general          or 2-288. This method 

proves to be better than the first method; however, it is not the case when the new 

design is applied. As discussed in the earlier chapter, exploiting the output 

characteristics becomes implausible because Output Compaction function is lossy. In 

other words,        or       does not guarantee that there is no carries or that all 

carries exist in the Modulo Addition. In the case where the attacker still wants to fix the 

output to all 1’s, the probability is         as mentioned in the earlier chapter. The 
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probability then becomes 2-128. In addition, to fix the output to all 0’s, the probability is 

           . In this case, the probability becomes                ≈ 2-205. For a total of 9 

consecutive cycles, the total probability becomes                      . 

The adversary may wish to utilize the corner case scenario by fixing all the control bits. 

In theory, 3nm bits need to be fixed and that will give a probability of           for 9 

consecutive cycles. In this application; however, all the control bits come from the state 

S14. This means that the probability has now become               , which is the 

same as the probability of the second method. It is important to note that the corner 

case does not completely linearize the new design. The lowest algebraic degree has 

become 1 and the highest degree is 32 as discussed in table 13. More importantly, the 

corner case will not happen on the LSB of the output because the input control strings 

for the LSBs of the input pair cannot be simultaneously 0. This is due to the control 

string generation mechanics. As a result, the corner case is not applicable. The table 

below provides a comparison of the two methods in the old SNOW2.0 and the new 

SNOW2.0. 

 SNOW2.0 New SNOW2.0 

Method 1: Fix Carries to 0 2-248 2-4216 

Method 2: Fix Consecutive 

Outputs 
2-288 2-1768 

Corner Case - NA 

Table 17 - Result Analysis of New SNOW2.0 

6.3 Limitations of the New Design 

6.3.1 Speed 

Speed is a limitation of the new design in both software and hardware as more 

operations are added to the targeted cipher. In the software scenario, there are n times 

more additions occurring compared to only 1 addition happening for an n-bit Modulo 

Addition. Moreover, the carries need to propagate to the next block when n > 1. There 
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are also 2n Input Expansions and n Output Compaction. Control bits generation is 

required as well. In terms of software implementation, the Input Expansion function can 

be implemented as a look-up table if the user-defined parameter m is known ahead of 

time. This would consume less time, though more memory, compared to other 

implementations. Also, if the expanded input is less than 32 bits, it is possible to lump all 

the additions into one, as the expanded input can be held in one integer variable. In the 

applications in Chapter 5, the all functions are implemented using mainly bit-level shift 

operation. This method is scalable but takes up more time. The time required to 

perform the new design may be too small to be measured in a software scenario. 

Therefore, the time is measured by using the first application in Chapter 5. This is a good 

example because the input data width is only 1 bit. In the below table, Bivium B is used 

to compare the time added when different values of m are used. The application is 

carried out in C++ and 1000000 samples are used for averaging. It can be seen that, at 

least 4.7% of extra time is required to produce a single key stream bit when the new 

design is applied. 

 Time (ns) % Increase 

M = 0 697.3212 - 

M = 2 730.081 4.7% 

M = 3 761.2814 9.1% 

M = 4 781.6614 11% 

M = 5 796.4611 14.4% 

Table 18 - Software Performance Comparison 

It is worth noting that, the user-defined parameter can be increased to more than 5. 

However, the expanded input will be longer than 32 bits and will not be held in one 

integer variable. In that case, FOR loops may be added and integer-overflow check may 

be required. The time required may vary depending on different implementations. It is 

up to the user to decide the tradeoff between time and security.  
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The speed limitation of the new design in hardware can be estimated. A gate is 

assumed to be a generic 2-input XOR gate. The gate delay is the time required for the 2-

input XOR gate to obtain the correct output value. As a result, the delay can be 

estimated in unit of gates and by counting the number of gates needed. An example is 

given below. 

    ○┼    ○┼    ○┼    

                                             

The Input Expansion function produces an ANF for each expanded input bit. The 

maximum number of gates in this set of expression is     , which can be deduced by 

studying table 5 and table 6. This is the longest delay and also the delay of the Input 

Expansion function. Note that the gates required to determine each term is ignored; in 

other words, each term is assumed to be a direct input. Since the Input Expansion 

function for each input pair can be carried out in parallel, the delay in total is at least 

     for an n-bit design. 

The Modulo Addition can be implemented in hardware using various topologies and 

one of the simplest methods is the Carry-Ripple Adder. In this topology, the Generate 

and Propagate signals are generated for each input bit pair. Both can be roughly 

estimated to be using a single gate. When counting the delays, it can be observed that 

all the individual Generate and Propagate signals are carried out at the same time. As a 

result, only 1 gate delay requires to be counted. The carry-ripple logic is determined by 

the group Propagate logic and group Generate logic. The group Propagate logic requires 

logic ANDing of multiple individual Propagate signals and the previous carries. This can 

be estimated to roughly     gates for an n-bit adder. The group Generate logic 

requires logic ORing of the group Propagate signal and the individual Generate signal. 

This is roughly 1 gate and      gates for an n-bit adder. In total, the delay is      for 

an n-bit carry-ripple logic. Finally, another delay is added from the sum of the most 

significant bit. This is carried out with multiple single XOR gates in parallel; therefore, 

only 1 gate delay is needed. In summary, the Carry-Ripple Adder provides a delay of 
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            gates. For the addition of two expanded inputs, the delay is 

extended to                . 

The delay of the Output Compaction function can be estimated easily. Using the SOP 

form of the MUX function described in equation (7), the number of gates required is 

    . For an n-bit design, the total delay of the Output Compaction function is still 

     as more than one MUX can be used in parallel.  

In summary, the total delay of the new design in hardware is estimated to be: 

                           

Table 18 provides a summary of the estimation. 

 Delays (Number of Gates) 

Input Expansion      

Modulo Addition      

Output Compaction      

Total             

Table 19 - Hardware Delay Estimation 

It is worth noting that, this calculation is based on the availability of all required 

resources. If the hardware resources are limited and they need to be re-used, the delay 

will change and more than one clock cycles will be required, when using a pipelined 

design. Architectural synthesis can be used to determine the optimized tradeoff 

between delay and resources [38].  

6.3.2 Area 

Continuing from the discussion above, the other limitation of the new design is the 

resource. The number of gates that will be used can be roughly estimated in a similar 

fashion as above. Since the maximum number of gates in the input expansion function is 

    , the total number of gates used for a block of expanded input can be 

        . The assumption here is that each expanded input bit uses the      
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gates. Therefore, for two n-bit inputs, the area required for the Input Expansion function 

is           .  

For the adder, one gate is needed for producing the Generate or Propagate signal for 

each input bit pair. As a result, there are total      gates for the expanded inputs. 

Similarly, for the group Generate and Propagate signals, there are        gates in 

total. Finally, single bit addition is carried out in the form of a single XOR gate. Therefore, 

there will be     gates for summation. As a whole, the Modulo Addition consumes 

                       gates. 

The MUX uses roughly      gates for each block. As a result, for an n-bit design, 

the estimated number of gates used is: 

                                            

Table 19 provides a summary of area estimation of the new design: 

 Number of Gates 

Input Expansion            

Modulo Addition        

Output Compaction         

Total                   

Table 20 - Hardware Area Estimation 

The number of gates that may be used is provided above; however, it is without any 

optimization. Since the new design is scalable, the user-defined parameter m can be 

optimized to fit in the specific resource constrained environment. The selection and 

optimization techniques are open.  
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7 The Use of New Design in Block Cipher 

In previous Chapters, the new design is applied to stream ciphers. One may wonder 

whether the new design can be applied in a block cipher as well. One of the major 

differences between a generic stream cipher and a generic block cipher is that the 

cryptographic functions used in stream cipher do not need to be reversible. As 

mentioned in Chapter 2, this is because the stream cipher encrypts a plaintext by first 

generating a key stream and then mixing the key stream with the plaintext. The 

receiving end only needs to generate the same amount of key stream to reverse the 

mixing, or to decrypt, the ciphertext. On the other hand, the block cipher makes 

changes to the plaintext directly to produce the ciphertext. To decrypt, the receiving 

end needs to run the block cipher in reverse.  Therefore, the question of the 

applicability of the new design in block cipher can be answered by finding out whether 

the new design can be run in reverse.  

During decryption in the block cipher, the receiving end has knowledge of the output, 

all the control bits, and one of the inputs. Naturally, the decryption should follow the 

order of Output Compaction, Modulo Addition, and Input Expansion. The Output 

Compaction function as discussed in Chapter 3 is lossy. Even with the knowledge of the 

output and the output control bits, only n bits out of 2nm bits can be recovered. This is 

not useful because there are many combinations of expanded inputs that can arrive to 

the same n bits. Therefore, a different approach is needed.  

7.1 Encryption in Block Cipher 

Uniqueness is needed in the recovered bits from the reverse Output Compaction 

function. This can be achieved on the encryption side by leaving trails in the output. A 

characteristic in addition is utilized and the below table is used for explanation.  

Case Input 1 Input 2 
Previous 

Carry 
Sum 

SUM ○┼  

Previous 

Carry 
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A 0 0 0 0 0 

B 0 1 0 1 1 

C 0 0 1 1 0 

D 0 1 1 0 1 

E 1 0 0 1 1 

F 1 1 0 0 0 

G 1 0 1 0 1 

H 1 1 1 1 0 

Table 21 - Characteristic of Addition 

When looking at the sum only, more than one possible input combination can occur. For 

example, when sum is 0, both case A and case D are possible. Keep in mind that, in the 

decryption scenario, one of the inputs is known. Therefore, if one input is 0, cases from 

E to H are not valid. When two inputs are fixed, like in case A and C, only one possible 

carry is valid. Therefore, case A and C cannot be considered together. Similarly, both 

case B and C are possible when the sum is 1. One may discover that in both case A and D, 

or case B and C, the previous carry is different. To distinguish the inputs from the sum, 

the sum can be XORed with the previous carry. As a result, in the last column of table 17, 

case A and D are now different. The same applies to case B and C.  

As a result, the new design needs to XOR the previous carry bit with the sum bit to 

leave a trail for decryption. In fact, the result of the “addition” simply becomes the XOR 

of the two input bits.  

7.2 Decryption in Block Cipher 

Now that the ciphertext has a clue, the known output control string will locate the 

position of each ciphertext bit in the corresponding sum. As mentioned before, each 

ciphertext bit is chosen from a 2m-bit sum, which is the result of adding two expanded 

inputs. Also, for each pair of expanded inputs, one of the inputs and the two input 

control strings are known. Since the ciphertext bit is a XOR of two bits, located by the 

output control string, in the expanded inputs, the bit in the unknown expanded input is 
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just another XOR of the ciphertext bit and the bit in the known expanded input. Refer to 

Table 1 for the truth table of a XOR. This process can be explained below: 

                                                 

                                              

                            

     ○┼                    ○┼     

Once the corresponding bit in the unknown expanded input is known, the real input 

can be obtained by checking the output control string against the input control string for 

the unknown expanded input. When the input control string is fixed, there are only two 

possible expanded inputs and they are the complement of each other. Also, the polarity 

of the input is reflected only at the position specified by the input control string. Other 

bits in the expanded input are of opposite polarity. Therefore, if the output control 

string, which specifies the position of the deciphered bit, is the same as the input 

control string for the unknown expanded input, the real input has the same polarity 

with the corresponding bit. Otherwise, the real input has the opposite polarity.  

In summary, the procedure for encryption and decryption in the block cipher can be 

seen below. 
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Figure 16 - Encryption and Decryption of New Design in Block Cipher 

7.3 Limitations of the New Design in Block Cipher 

The application of the new design in a generic block cipher is quite different from the 

case in stream cipher. One extra step is required in the encryption phase while a 

different set of logic is required in the decryption phase. This is mainly due to the lossy 

nature of the Output Compaction function. However, some drawbacks have been 

exposed. 

Performance and resource requirements are challenged when the new design is used 

in a block cipher. The time for the extra steps and logic required for encryption and 

Encryption: 

Known: Two inputs, two input control strings, and output control string 

1. Input Expansion (Two Inputs, Two input control strings) 

2. Modulo Addition 

3. Leave Trails 

a. Sum ○┼  Previous Carry Based on output control string 

4. Output Compaction 

 

Decryption: 

Known: One input, two input control strings, output control string, and ciphertext 

For i = 1 to N for N-bit ciphertext: 

1. Input Expansion (One input, input control string of known input) 

2. Corresponding bit = Ciphertext bit ○┼  Expanded input bit 

a. Based on output control string 

3. If( input control string of unknown input == output control string ) 

a. Unknown input bit = Corresponding bit 

4. Else 

a. Unknown input bit = ~Corresponding bit 

End For 
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decryption are added on top of the time to perform the three functions: Input 

Expansion, Modulo Addition, and Output Compaction. Similarly, extra hardware is 

required. 

The algebraic degree has also been compromised in this case. As mentioned before, 

leaving the trails means simply XORing the two expanded input bits. The added 

algebraic degree from the previous carry bit in the Modulo Addition is cancelled out. 

The algebraic degree of the final output only contains the degree of the Input Expansion 

and the Output Compaction. From Chapter 4, this can generalized to       . 

Though it is much lower than the case in stream cipher, it is still better than the 

traditional Modulo Addition.     

 

  



64 
 

8 Conclusion 

8.1 Summary 

In this Project, a new design is proposed. It consists of a user-defined scalable 

structure of expansion and compaction that can increase the operational complexity but 

still keep the data width of the design. The structure utilizes a scalable Input Expansion 

function, a Modulo Addition, and a scalable Output Compaction function. The functions 

used in this design are chosen to be scalable. An algebraic degree of        

         for an n-bit design is produced while the degree of the corner case is n, with 

an added cost of 2mn. Another advantage of the design is that the functions can be 

substituted to achieve other objectives as long as they provide expansion or compaction. 

The new design can be easily applied in a stream cipher as two case studies are provided 

and analyzed. The application in block cipher is also discussed. Speed and Area are 

limitations of the new design. In software, an extra 4.7% of the original run time is 

needed to produce a single key stream bit. In hardware, the delay in speed is estimated 

using gate delays while the extra resource required is estimated by counting the number 

of extra gates. Overall, the proposed design provides a new module in cryptography that 

can help defend against Algebraic Attack. 

8.2 Future Work 

Future work may include the optimization of the user-defined parameter under 

different performance and resource constraints. Also, the realization of the design in 

software and hardware can be optimized as well. Other functions can be developed to 

substitute the existing functions in the Input Expansion and Output Compaction 

functions to provide different or extra cryptographic features. Meanwhile, further 

Algebraic cryptanalysis may be done to discover the possibility of creating extra 

independent equations with lower degrees [39] [40].  
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