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Multiscale interactome analysis
coupled with off-target drug
predictions reveals drug
repurposing candidates for human
coronavirus disease
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The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug
therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus
SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory
infections to the common cold. We developed a computational approach to identify new antiviral
drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of
human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and
involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based
experimental assessment reveals several clinically-relevant drug repurposing candidates predicted
by the in silico analyses to have antiviral activity against human coronavirus infection. In particular,
we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several
coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as
IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.

Human coronaviruses have emerged as significant agents in serious human disease, highlighting the need for
rapid development of therapeutics. Recently, the severe acute respiratory syndrome (SARS) coronavirus-2
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(SARS-CoV-2) has caused a pandemic with > 125 M individuals infected and over 2.5 M deaths globally'. Prior
to this, the related human coronaviruses SARS-CoV-1 and Middle East Respiratory Syndrome coronavirus
(MERS-CoV) were responsible for outbreaks of severe human coronavirus disease with significant mortality>>.
Additional human coronaviruses including NL63, OC43, and 229E elicit milder disease such as the common
cold*, although more severe human diseases related to these viruses have been reported’. Human coronaviruses
thus represent an important family of related viruses that impact human health worldwide with new therapies
for these agents urgently needed. The recent emergence of SARS-CoV-2 variants of concern®” indicates that
therapeutic strategies with broad antiviral activity to human coronaviruses are a high priority.

SARS-CoV-2, SARS-CoV-1 and NL63 enter cells by using their Spike (S) outer protein, which interacts with
angiotensin converting enzyme 2 (ACE2) on host cells®!!, while 229E and OC43 depend on host cell aminopepti-
dase N and glycosaminoglycans, respectively'>!*. In addition, other host cell receptors contribute to SARS-CoV-2
entry, such as neuropilin-1'*!>. The coronavirus-bound receptor protein(s) enter cells via clathrin-mediated
endocytosis'®!” or other membrane traffic mechanisms'®, after which the viral RNA genome undergoes replica-
tion and expression of viral proteins, leading to assembly of viral progeny at a specialized ER-derived coronavirus
replication organelle!. This is followed by coronavirus release to the extracellular milieu by a mechanism involv-
ing lysosomal exocytosis®, allowing spread of the viral particles to nearby cells*"?2.

Human coronavirus cellular entry, replication, assembly and egress depend on a wide range of host cell
proteins and functions. For SARS-CoV-2, 26 viral proteins were found to interact with 332 host cell proteins,
spanning a range of functions including membrane trafficking, centrosome structure and function, membrane
transport, DNA replication and stress granule formation®. This viral protein interactome provides a rich source
of information from which to identify host proteins that are functionally important for viral entry and replication
and thus may serve as antiviral drug targets. Infection studies have also demonstrated conserved host-protein
interaction patterns across different coronaviruses, suggesting that some host proteins can be targeted for broader
antiviral activities**-?. The virus/host protein interactome and the identification of proteins functionally required
for viral entry and replication of common cold coronaviruses may reveal important novel pan-human corona-
virus antiviral drug targets.

Antivirals targeting SARS-CoV-2 such as remdesivir have modest clinical benefits?’, indicating a need for
more effective antivirals to complement anti-inflammatory therapy approaches for the treatment of COVID-19.
As the timeline for development of new drugs is~ 10 years®®, and given the current dire need for effective antiviral
agents, the identification of new drugs with antiviral activity cannot provide antiviral therapies in time to address
the current pandemic. Drug repurposing is a preferred method for developing rapid response therapies?®?, as
it prioritizes the identification of additional drugs that can be repurposed as antivirals.

Repositioning of approved drugs can be achieved either by repurposing for a related disease, repurposing of a
target with a known drug for another indication, or repurposing of a drug for a novel target by taking advantage
of off-target interactions. The relative prevalence of the three approaches reflects the balance of their relative
feasibility and broadness of their applicability. The disease-centric approach, while the most direct and the most
common, representing 59% of repositioning successes®, suffers from a more narrow generalizability in the
disease space, as exemplified by the modest utility of repurposing of antivirals described above. Target-centric
repurposing, while having the potential for broader application as a less direct approach, is less common since
discovery of a novel link between a target and a disease is a rare finding. Even if such a link is discovered, the
generalizability of the target-centric approach is limited by the drug-target coverage in the human proteome: as
0f 2019, only 667 of the roughly 20,000 human proteins (~3%) are directly targeted by FDA- approved drugs®'.
For that reason, drug-centric repurposing, as the least direct methodology, offers access to a much broader range
of repurposing opportunities. However, since it is aimed at finding novel, off-target drug-target interactions, and
therefore relies on the fundamental understanding of structural information about both the drug and the target,
it has been the least prevalent repositioning approach, representing only 6% of the successes™.

Successful drug repurposing discoveries to date with either of the three approaches have been largely acciden-
tal or hypothesis-driven®?. Computational approaches, however, provide an alternative opportunity to identify
repurposing candidates that may have been overlooked. These hypothesis-free strategies reference broad data
sources to identify new protein targets, identify new compounds for a pre-selected target, or pair phenotypic
signatures of a disease state with drug actions®. Notably, multiscale interactome approaches combine known
relationships between disease, biological pathways, genes, proteins, and other -omic data to predict new potential
indirect relationships®. Furthermore, when those interactomes are built into Graph Convolutional Networks
(GCN), they offer a systematic, Machine-Learning (ML) based approach to model the value of each relationship
in the network empirically based on their intrinsic properties*>*®. Such models can be applied to the target-centric
repurposing approach. ML models that provide predictions for drug-targets interaction, on the other hand, and
are capable of cross-screening libraries of clinically relevant compounds with large sets of proteins, can assist
with the drug-centric repurposing programs®’.

In this study, we aimed to exploit the therapeutic potential of approved drugs by taking advantage of both the
directness of the target-centric and the broader potential of the drug-centric repurposing approaches by com-
bining GCN-based multiscale host-viral interactome approaches for target discovery with off-target interaction
predictions from the PolypharmDB database®” to shortlist clinically-relevant repurposing candidates for screen-
ing in coronavirus infectivity assays. This specific combination of approaches was selected to simultaneously
explore a variety of mechanistically-informed host-based targets in a focused phenotypic driven experiment. In
contrast, a single-target virtual screen would require a prior target validation stage or risk having no observed
activities upon experimental testing. The proposed approach maximizes the diversity of targets and compounds
explored to increase the likelihood of a bioactive discovery in an experimentally efficient manner.

We then examine the effectiveness of these predictions using a combination of human coronavirus entry
and infection assays. We reveal several compounds that have antiviral activity, in particular capmatinib, a drug
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Figure 1. Three methods of selecting top drug candidates based on the GCN and MatchMaker prediction.
Twenty-six drugs were selected for experimental testing by applying the predictions made by Node2Vec/GCN
and MatchMaker models using three different methods. For Method 1, ten drugs were selected directly from
top 60 drugs that were predicted to be most proximal to COVID-19 based on the GCN alone. For Methods 2
and 3, first, ten human protein targets were selected from the list of top 100 proteins that are most proximal to
COVID-19 based on the GCN prediction. Following that, for Method 2, 14 drug candidates were selected from
top ten top ranking PolypharmDB (i.e., 10,224 drugs from DrugBank® screened against 8525 human proteins;
see Materials and Methods) candidates for each protein (i.e. ten single-target panels resulting in 100 candidates
in total). For Method 3, nine out of the top 25 ranking PolypharmDB candidates for the ten-targets panel were
selected as candidates, seven of which were already present in the list of candidates selected with Method 2.
Please see Table 1 and Materials and Methods for further details.

known to inhibit the receptor tyrosine kinase MET. Notably, we find that capmatinib has potent anti-human
coronavirus activity in a MET-independent manner. Further, we find novel roles for human proteins such as
IRAK1/4 in supporting human coronavirus infection.

Results

A total of 26 drug repurposing candidates for SARS-CoV-2 were identified using three separate approaches
involving a multiscale interactome GCN and the PolypharmDB drug repurposing database®, as described in
Fig. 1 and in “Materials and Methods”. Drugs assert their function by binding to proteins and regulating biological
pathways. Therefore, we first constructed a multiscale interactome network to represent the known relation of
1661 drug molecules, 17,660 human proteins, 9,798 functional pathways and finally the 26 expressed proteins
from SARS-CoV-2. This representation enables fine grained analysis on the probable drugs and protein targets
for COVID-19, based on the assumption that the targets interacting with the viral protein nodes on the network
are more likely to play a role in the potential treatment. Thus, we proposed a combined approach of node2vec
and GCN to learn and generate the node embeddings in the multi-scale network. The embedding is optimized
in an unsupervised manner to the objective that related nodes on the network should have higher embedding
similarity (see Materials and Methods). All embeddings are then sorted by the proximity to the COVID-19
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Method I: Drug-target GCN | query for 10 single GCN- Method 3: PolypharmDB query for one
analysis target panels 10 GCN-targets panel
Drug Target Drug Target Drug Panel of Targets
UGGT?2, SDF2,
NLRX1, MOGS,
Bucladesine PRKACA Bortezomib IRAK4 Anidulafungin ?giﬁé{v[’ IRAKY,
CD46, LILRA3,
and CHPF2
Cinnarizine CACNAIC | Cefotiam TARS2 Capmatinib
Doxycycline | PADI4 Dapagliflozin UGGT2 Bortezomib
Eflornithine SLC25A21 | Degarelix CD46 Dapagliflozin
Flucytosine DNMT1 Fosamprenavir | ADAM15 Fosamprenavir
Glyburide ABCA1 Gentamicin HEPACAM | Glipizide
Nelarabine POLA1 Glipizide ADAM15 Palbociclib
Opicapone COMT Palbociclib IRAK4 Streptozocin
Otilonium CACNAIC | Polidocanol MOGS Tofacitinib
Simvastatin ITGB2 Saquinavir CD46
Streptozocin HEPACAM
Sugammadex MOGS
Telithromycin | CD46
Tofacitinib IRAK4

Table 1. Drugs that were selected for testing using three methods based on GCN analysis and MatchMaker
predictions. Top 26 drug candidates were selected based on GCN and MatchMaker predictions as described in
Fig. 1 and in Materials and Methods. Cefotiam, under Method 2, was selected from the list of 10 top ranking
candidates for TARS2, which was among the top 100 human proteins predicted to be associated with COVID-
19 through target-only GCN analysis, but was not prioritized in the initial selection of top 10 targets described
above. Drug candidates that were selected using Method 3 and were also predicted by Method 2 are shown in
grey font and italics.

node. When first reviewing proximity distances between COVID-19 and human targets, very few had known
small molecule modulators, which is an expected limitation of the target-centric drug repurposing strategy. To
overcome the sparsity of drug-target interaction in the network, additionally, we further applied the drug-centric
approach: off-target predictions for relevant low-data targets were retrieved from the PolypharmDB database.
PolypharmDB is a database of precompiled all-by-all Drug Target Interaction (DTI) predictions performed by
the MatchMaker deep-learning engine, for 8535 human proteins with 10,244 clinically-tested small molecules
(see Materials and Methods).

For Method 1, a target-centric approach, the top 10 drug candidates were selected among the 60 drugs with
the highest proximity scores to COVID-19, as determined by the GCN approach. For Method 2, a drug-centric
approach, 14 candidates were selected among single-target PolypharmDB hits for protein targets with high prox-
imity scores to COVID-19 as determined by the GCN approach. For Method 3, an extension of the drug-centric
approach, the final two candidates were selected with a variation on Method 2, which prioritizes compounds
with multiple predicted interactions to GCN-identified SARS-CoV-2 targets. The compounds selected using all
three methods are summarized in Table 1.

Since this approach generates numerous potential hits for further validation, we chose to use a system that
could be widely used and scalable without restricted access to BSL3 laboratories, as required for monitoring of
SARS-CoV-2 infection. This method may bias the identification of drug compounds with pan-human coronavirus
antiviral activity, rather than compounds with selective antiviral activity towards SARS-CoV-2. Thus, to examine
whether the 26 selected compounds exhibit antiviral activity, we established a cell culture-based immunofluores-
cence (IF) screening system using the 229E human alphacoronavirus, based on detection of the 229E S protein.
This assay was designed to allow ~ 100% of control cells to express the S protein following 48 h of infection,
allowing robust detection of antiviral activity as reduction of S protein abundance. We validated this IF assay
by treating 229E-infected cells with the nucleoside analogue prodrug remdesivir*” (Fig. S1), showing that this
BSL2-based screening system allows for the safe and straightforward identification of novel antiviral compounds.

Using this assay, we identified four putative antivirals within the 26 predicted hits (4/26, ~ 15%) that reduced
S protein abundance following 229E infection by at least 50% (Fig. 2) with no apparent cytotoxicity. Treatment
with palbociclib and anidulafungin caused partial attenuation of 229E infection, while treatment with capmatinib
or polidocanol resulted in nearly 100% inhibition of 229E infection. Based on our in silico framework, these
four compounds were predicted to target several host proteins, each with potential novel and noncanonical roles
in supporting coronavirus infection (Table 1). Interestingly, palbociclib, capmatinib and anidulafungin were
predicted to target IRAK4, either as a primary target or by a polypharmacology panel. Another compound, bort-
ezomib, was also predicted to target IRAK4, however cytotoxicity prevented further analysis of this compound.

We focused further investigation into the role of capmatinib as a potential antiviral therapeutic against
human coronavirus disease, given its robust impairment of 229E infection in the IF assay. Capmatinib is an
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Figure 2. Screening of predicted compounds identifies capmatinib and other drugs as host-targeted
compounds with antiviral activity against human coronaviruses. Graph depicting mean + SE and individual
measurements of 229E Spike protein expression as measured by IF assay upon incubation with drugs as per
Table S4. Results are expressed as mean 229E Spike expression relative to the DMSO vehicle (control) condition.
(bottom) Representative images showing S protein expression (magenta) or DAPI (cyan) of the DMSO vehicle
(control) or capmatinib (10 pM) treated conditions. Scale, 100 um. Also shown are structures of palbociclib,
polidocanol, capmatinib and anidulafungin, compounds that showed antiviral activity.

orally-available inhibitor of the receptor tyrosine kinase (RTK) MET, and is used in the clinic for the treatment
of MET-amplified non-small cell lung cancer®®; however, our analyses predict that capmatinib may have antiviral
activity due to inhibition of targets other than MET.

To further characterize the antiviral activity of capmatinib on human coronaviruses, we developed several
complementary cell-based assays to probe the different aspects of infection by several different human corona-
viruses, including 229E, OC43, and NL63. Noteworthy, capmatinib treatment impaired 229E viral replication
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Figure 3. Capmatinib has a broad range of antiviral activity against human coronaviruses. (A) Quantification of 229E Spike
protein abundance in MRC-5 cells treated with increasing doses of capmatinib in the IF assay (48 h infection), as mean +SE

(n=3) expressed relative to DMSO (vehicle) control. *P<0.05 relative to control (B) (left) Representative images of 229E plaques
observed in MRC-5 cells treated with 10 uM capmatinib or DMSO (vehicle) for 6 days. (right) Quantification of viral titer from the
DMSO (vehicle) control or capmatinib plaque assays, expressed as PFU/mL. *P<0.05 relative to control (C). (left) Representative
images of NL63 plaques observed in LLC-MK2 treated with 10 uM capmatinib or DMSO (vehicle) control for 5 days. (right)
Quantification of NL63 PFU/mL in LLC-MK2 cells treated with the indicated doses of capmatinib. *P<0.05 relative to control

(D). Relative NL63 N protein RNA abundance 3 days post-infection in LLC-MK2 cells treated with 10 uM capmatinib relative to
DMSO (vehicle) control. *P<0.05 relative to control, n=3 experimental replicates. E (left) Representative images of OC43 plaques
observed in LLC-MK2 cells treated with 10 uM capmatinib or DMSO (vehicle) for 5 days. (right) Quantification of OC43 PFU/mL
in LLC-MK2 cells treated with capmatinib or DMSO (vehicle) control. *P<0.05 relative to control.
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in a dose-dependent manner, with concentrations as low as 1.0 pM resulting in significant attenuation of 229E S
protein abundance following infection (Fig. 3A). The ability of capmatinib to impair viral replication was further
confirmed using a plaque-forming unit (PFU) assay in MRC-5 cells. 229E infection of control cells resulted in
the formation of distinct, large circular plaques indicating cytopathic effect (CPE) (Fig. 3B). In contrast, cap-
matinib treatment resulted in reduced total number and size of individual plaques; viral quantification revealed
that capmatinib treatment resulted in a>50% decrease in viral production compared to control. Importantly,
this method for viral quantification is based entirely on total plaque number and does not consider plaque size,
thus, these results likely represent an underestimate of the antiviral effects of capmatinib, given the differences
in plaque morphology between control and treatment groups (Fig. 3B).

To determine the breadth of the antiviral effects of capmatinib, we measured whether capmatinib also exhib-
ited antiviral activity for other BSL2 human coronavirus infections, including OC43 and NL63. We adapted our
MRC-5/229E plaque assay protocol for infection of LLC-MK2 cells with the alphacoronavirus NL63, which
like SARS-CoV-2 depends on ACE2 for infection®. Treatment of LLC-MK2 cells with increasing concentra-
tions of capmatinib resulted in a dose-dependent decrease in NL63 PFU with minimal cytotoxicity observed at
5 days post-infection (dpi), with > 70% reduction in PFU at 10 uM capmatinib (Fig. 3C). Consistent with results
obtained with the PFU assay, QRT-PCR analysis showed that capmatinib attenuated NL63 N RNA abundance
by approximately 50%, measured at 3 dpi (Fig. 3D). We also established a PFU assay based on the infection of
LLC-MK2 cells with human betacoronavirus OC43. Treatment of OC43-infected LLC-MK?2 cells with capmatinib
resulted in a nearly 50% reduction in viral particles (Fig. 3E). As with our results obtained in the MRC-5/229E
model, capmatinib treatment reduced both plaque number and the overall size of the plaques, indicating that
our quantification of PFU/mL likely underestimated the actual antiviral effect of the drug. Taken together, our
results from 3 different human coronaviruses and cell-based assays of coronavirus infection demonstrate that
capmatinib has a broad range of antiviral activity against human coronaviruses.

We next explored the mechanism of the antiviral action of capmatinib. To determine whether the potent
antiviral activity of capmatinib was due to its canonical role as a MET inhibitor, we compared the effects of
capmatinib with another distinct MET inhibitor, AMG-337 that has similar in vitro IC;;<1 nM for MET as
capmatinib®*°. We first treated NL63-infected LLC-MK2 cells with capmatinib or an equimolar amount of
AMG-337. As expected, capmatinib treatment greatly attenuated CPE as measured by PFU (Fig. 4A). In contrast,
AMG-337 treatment, while similarly tolerated by the cells, did not result in an appreciable reduction in PFU.
Similar results were observed in OC43-infected LLC-MK2 cells and 229E-infected MRC-5 cells; AMG-337 treat-
ment had no effect on PFU in either case (Fig. 4B and Fig. S2). Capmatinib, but not AMG-337 was also effective
at reducing 229E S protein abundance in the IF assay (Fig. 4C).

Spike-pseudotyped viral inhibition assays also demonstrate the ability of capmatinib to interfere with certain
aspects of viral infection. SARS-CoV-1 and SARS-CoV-2 pseudoviruses (PsV) require human ACE2 for cell
entry*!. Incubation of HeLa cells stably expressing ACE2 (HeLa-ACE2 cells) with capmatinib showed a potent
inhibition of infection of both SARS-CoV-1 or SARS-CoV-2 PsV with half-inhibitory concentrations (ICs,) of
14.1£0.2 and 26.0 £ 0.1 uM, respectively (Fig. 4D). In contrast, treatment with concentrations of AMG-337 up
to the mM range had no appreciable effect on PsV neutralization (Fig. 4D). Both compounds displayed minimal
cytotoxicity in HeLa cells (Fig. S3). Together, these results indicate that capmatinib exhibits human coronavi-
rus antiviral activity by inhibiting a target other than MET. Moreover, the pseudotyped virus assay selectively
monitors virus uptake and reporter gene delivery, suggesting that capmatinib inhibits early stages of virus entry.

We next sought to gain insight into the possible mechanism by which capmatinib exhibits human coronavirus
antiviral activity. Based on MatchMaker, capmatinib was predicted to exhibit off-target interactions with IRAK4
and other protein targets (Table 1), which are part of pathways (e.g. interleukin-1 receptor) that have been broadly
implicated in mediating SARS-CoV-2 infection and COVID-19 disease*>*. In addition, our in silico analyses
also predicted palbociclib and anidulafungin as binders of IRAK4, and as these drugs also demonstrated antiviral
activity (Fig. 2), this suggests that IRAK4 may be an important novel drug target for human coronavirus infection
and that capmatinib and other drugs may exhibit antiviral activity by novel action on IRAK4.

IRAK4 (Interleukin-1 receptor-associated kinase 4) is a serine/threonine kinase that forms part of the myddo-
some complex (consisting of MyD88 and other IRAK kinases) to transduce signals from Toll-like receptors
(TLRs) or interleukin receptors**~*. In canonical myddosome signal transduction, activation of membrane
TLRs results in recruitment of the adaptor protein MyD88 and its associated IRAKs. MyD88-bound IRAK4
recruits and phosphorylates additional IRAK kinases, such as IRAK1 and IRAK2, which can then dissociate
from the myddosome and trigger a signaling cascade involving subsequent TRAF6 and TAK-1 activation**-.
These signaling events ultimately result in activation of the transcription factors NF-kB and MAPKs, which
together contribute to the innate immune response to pathogens. Importantly, IRAK4 exhibits some functional
redundancy with the related kinase IRAK1*, which led us to consider inhibition of IRAK1 and IRAK4 as an
antiviral mechanism for human coronavirus infection.

We examined the effect of JH-I-25, a dual specific IRAK1 and IRAK4 inhibitor with no clinical relevance
with IC;, values of 9.3 nM and 17.0 nM*® respectively, on human coronavirus infection. Treatment of LLC-
MK2 cells with JH-I-25 (10 uM) greatly reduced CPE in cells infected with OC43 (Fig. 4F). Similar results were
obtained with the IF assay in MRC-5 cells infected with 229E (Fig. 4G). To verify that our results were specific
to the combined inhibition of IRAK1 and IRAK4, we silenced both using siRNA gene silencing. In concord-
ance with results obtained from the JH-I-25 experiments, combined silencing of IRAK1 and IRAK4 attenuated
229E S protein abundance (Fig. 4H). Consistent with a role for IRAK1/4 in coronavirus infection, inhibition of
p38 MAPK, known to be activated downstream of IRAK1/4*, also impaired coronavirus infection (Fig. S4).
Taken together, these data demonstrate that the effects of combined IRAK1/4 inhibition recapitulate the effects
of capmatinib, as predicted by our in silico analyses.
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Figure 4. The antiviral activity of capmatinib is not attributed to its canonical role as an inhibitor of MET. (A)
(left) Representative images of plaques in LLC-MK2 cells treated with 10 uM capmatinib, 10 uM AMG-337, or
DMSO (vehicle) control and infected with NL63 for 5 days and (right) quantification of NL63 viral titer, shown
as mean PFU £ SE (n =3 with 3 technical replicates per experiment). (B) (left) Representative images of plaques
in LLC-MK?2 cells treated with DMSO (vehicle) control, 10 uM capmatinib, or 10 uyM AMG-337, and infected
with OC43 and (right) quantification of OC43 viral titer shown as mean PFU + SE (n=3 with 3 technical
replicates per experiment). (C) (left) Representative images from IF assay of MRC-5 cells treated with 10 uM
capmatinib or AMG-337 and infected with 229E. (right) Quantification of 229E S protein expression (20 images
per condition, n=3). (D) Representative neutralization curves from n=>5 independent experiments showing

the relative antiviral activity of capmatinib vs. AMG-337 in pseudovirus assays performed with the SARS-
CoV-1 and SARS-CoV-2 Spike protein. (E) Structures of capmatinib and AMG-337. (F) (left) Representative
images of plaques in LLC-MK2 cells treated with 10 uM JH-I-25 and infected with OC43 for 5 days and (right)
quantification of the OC43 viral titer shown as mean PFU + SE (n=3 with 3 technical replicates per experiment).
(G) (left) Representative images from MRC-5 cells treated with 10 pM JH-I-25 and infected with 229E for

2 days and (right) quantification of 229E Spike protein expression (10 images per condition, n=3). H (left)
Representative images of MRC-5 cells transfected with IRAK1/4 siRNA or control and infected with 229E for

2 days. (right) Quantification of 229E Spike protein expression shown as mean + SE, expressed relative to DMSO
(vehicle) control (n=3). *P <0.05.

Discussion

Computational analysis and antiviral protein target predictions. In silico drug repurposing
approaches have the innate advantage of accessing very large collections of information to uncover indirect
associations that may have been otherwise overlooked. While the target-centric methodologies provide a more
direct opportunity for drug repurposing, they are limited due to the overwhelming majority of human proteins
not being targeted by existing small molecule drugs. The drug-, or structure-centric methodologies, on the other
hand, while limited by the physicochemical properties of available approved drugs, provide access to a broader
range of human targets. In this study, we addressed these challenges simultaneously by both exploring the tar-
gets with known approved drugs and searching for previously unappreciated modulators of undrugged targets
among approved drugs. To that end, we paired two ML approaches designed for target-identification and drug-
target interaction predictions, demonstrating the viability of an in silico first repurposing workflow, coupled
with robust bioactivity assays.

We integrated drug-target interactions, proteins and functional pathways in a multiscale interactome network.
Based on the assumption that drugs take effect by binding to proteins and regulating pathways, the multiscale
interactome traces the biological processes of available treatments via the interactions across proteins, functional
pathways, drugs and the target disease, COVID-19. To capture this process, our approach used biased random
walks and a Graph Convolutional Network (GCN) to model the correlations of nodes of multiple types and build
embeddings for each drug, protein and pathway. The GCN module refines the protein and drug embeddings by
further aggregating the relations in the network. GCN has been reported to be capable of encoding both graph
structure and node features very efficiently. The model has a sequence of non-linear filter layers which aggre-
gates the information of every node’s vicinity, making it effective to learn both local and global relations from
lower to higher layers. The GCN embeddings were optimized in an unsupervised manner to encode the direct
and indirect relations in the multiscale interactome. Then by ranking the proximity between the embeddings of
candidate proteins to the target disease, the GCN model determined the potential efficacy of drugs or protein
targets for this disease.

Matchmaker, PolypharmDB, and drug repurposing.  The multiscale interactome GCN unveiled mul-
tiple plausible viral-host targets for repurposing leads. Rather than subjecting a single protein to a target-centric
computational screen, the subsequent screening stage maximized diversity in both targets and their putative
binders. Repurposing targets prioritized by the GCN were cross-referenced to PolypharmDB, a precompiled
database of off-target interaction predictions between 8525 human proteins and 10,244 small molecule com-
pounds with prior clinical evaluation. This approach contrasts sharply with disease-centric or target-centric
approaches, which make up the overwhelming majority (~90%) of drug repurposing studies*. Evidence that
capmatinib’s antiviral activity is driven by interactions other than its known target MET is provided by the lack
of antiviral activity of AMG-337, another potent inhibitor of MET RTK (Fig. 4A-E). AMG-337 s is chemically
distinct from capmatinib, which likely drives its differential polypharmacology.

Criteria were set to maximize the diversity of compound and target selection for downstream evaluation.
The recognition that polypharmacology may play a role in effective therapeutics motivated the evaluation of
multiple targeted agents, leading to the nomination of capmatinib and other compounds for testing. Underap-
preciated polypharmacology may play a larger role in the activity of small molecule drugs; a study investigating
oncology medications found for several drugs investigated that on-target interactions were inconsequential for
drug activity, with off-target effects driving efficacy™. Alternatively, the use of multiple targets as separate or as
combined objectives may have contributed to the success of this investigation simply by providing more pos-
sibilities for favorable outcomes. However, since few compounds are evaluated per presumed target and since
these are mostly based on off-target interaction predictions, negative results obtained through this process are
unable to inform on the involvement of their respective proteins on cell infectivity. Nonetheless, there may be
broader opportunities within a drug-centric approach for drug repurposing, where validated therapeutic targets
can be linked to small molecule drugs through approaches like PolypharmDB.
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To that end, several other groups have used cell-based drug screening or computational approaches to identify
drug repurposing candidates for COVID-19 (reviewed by*'~>*). Our approach, which uses a unique computa-
tional pipeline for identification of clinically-relevant drugs followed by experimental testing using a broad range
of coronaviruses, is complimentary to these approaches. We are encouraged that our approach identified several
compounds/families of drugs that have also been identified and tested for their ability to inhibit coronavirus
infection in vitro, including polidocanol** and anidulafungin®>°. We also identified additional drugs including
capmatinib and palbociclib, which to our knowledge have not been previously reported as having antiviral activity
for human coronavirus infection. This may reflect certain advantages to our method, which considered > 10,000
clinically-relevant drugs, which may allow identification of molecules not considered in smaller-scale screens.

Capmatinib as an antiviral drug for COVID-19 and other human coronavirus diseases. Cap-
matinib was developed as a MET RTK inhibitor for the treatment of various MET-amplified tumors®’. The MET
proto-oncogene encodes an RTK that serves as the receptor for hepatocyte growth factor (HGF). A number of
small-molecule MET inhibitors have recently been developed and are currently undergoing clinical trials to
determine their efficacy in reducing cancer morbidity and mortality>®*. The availability of data on the safety of
MET inhibitors in the clinic, and in particular capmatinib, provides support for this strategy of drug repurposing
via polypharmacology.

We observed that capmatinib exhibited antiviral activity in the low micromolar range. Indeed, using the
SARS-CoV-2 and SARS-CoV-1 pseudotype virus infection assay, we determined that the IC, for capmatinib
for neutralization of infection was 14.1 0.2 and 26.0+ 0.1 uM, which is in the range reported for action of other
drugs targeting SARS-CoV-2 infection when tested in Vero and Calu-3 cells in culture, including remdesivir®.
Hence, capmatinib should be considered as a candidate for therapeutic testing in further preclinical and clinical
trials for the treatment of human coronavirus diseases, including COVID-19. In addition, while we have not
tested the action of capmatinib against SARS-CoV-2 variants that have emerged in 2021%7, the broad antiviral
activity that capmatinib exhibits against 5 genetically different human coronaviruses (229E, OC43 and NL63
live virus infection and SARS-CoV-1 and SARS-CoV-2 pseudotyped virus assays) suggests that capmatinib may
hold promise in broadly treating SARS-CoV-2 variants of concern, or other variants that may arise from further
antigenic drift as well as other emerging viruses. To our knowledge, this is the first demonstration of antiviral
activity of capmatinib in cell-based coronavirus infection assays. While this manuscript was in preparation, other
computational approaches predicted binding of capmatinib to the SARS-CoV-2 S protein, viral proteases, RNA-
dependent RNA polymerase and/or viral endoribonuclease®-*. While our analysis indicates that capmatinib may
act by targeting IRAK signaling, and we find a novel requirement for IRAK1/4 in supporting human coronavirus
infection, the mechanism of antiviral action of capmatinib warrants further investigation in future studies.

Novel role for IRAK signaling in supporting human coronavirus infection. Myddosome signaling
is considered an essential component of the innate immune response to bacterial PAMPs, and loss of function
mutations in IRAK4 or MyD88 results in a primary immunodeficiency syndrome associated with a dramatic
increase in susceptibility to specific pyogenic bacterial infections®*’. In contrast, MyD88 and IRAK4 may have
distinct roles in response to other pathogens, as their perturbation often does not impact susceptibility to some
viral, fungal, protozoal, or other infectious agents®*-%. Notably, MyD88 perturbation contributes to coronavirus
infection and symptom severity in animal models®®. However, whether and how human coronaviruses may
engage TLR and IRAK signals during infection remains poorly understood. While IRAK1 and 4 are broadly
expressed, in single-cell datasets deposited in the covid19atlas, IRAK1 and IRAK4 appear highly expressed in
Secretory3 cells in the bronchial epithelial dataset”. Interestingly, Secretory3 cells have the highest expression of
ACE2 as compared to other cell types in the primary human bronchial epithelial cell dataset, consistent with a
role for IRAK1/4 in supporting coronavirus infection.

Our results from two different human coronaviruses and two different host cell lines suggest that human
coronavirus infection requires IRAK1 and/or IRAK4. We focused our studies on concomitant perturbation of
IRAK1 and IRAK4, given the redundancy that has been reported between these kinases in some contexts’’. Con-
sistent with our results, another study performed an analysis of phosphorylated sequences within host cells and
predicted activation of IRAK4 within 15 min of infection of Vero cells with SARS-CoV-2, and also revealed that
a different inhibitor of IRAK1/4 impaired SARS-CoV-2 infection’. Together with the results presented here, this
suggests that IRAK1/4 may contribute a non-canonical function to support human coronavirus infection. Recent
work has also established that modulation of IRAK4 dependent immune responses is crucial for mounting an
appropriate immune response during SARS-CoV-2 infection, supporting this observation”.

As such, therapeutic modulation of IRAK signaling, and perhaps also that of TLRs and MyD88, may be a
useful strategy for treatment of patients with COVID-19. In fact, a phase II clinical trial is ongoing to probe the
use of the IRAK4 selective inhibitor PF-06650833 to treat COVID-19 patients with acute respiratory distress
syndrome’. Supporting the role of this signaling pathway in the progression of the disease, obese individuals
have increased TLR/MyD88 signaling that may predispose them to severe COVID-19 symptoms’.

In this study, we use multiple methods involving a multiscale interactome GCN and the PolypharmDB drug
repurposing database to identify new drug targets and drug repurposing candidates for the treatment of human
coronavirus disease. We also provide evidence that several drug molecules predicted by this method have pre-
viously unknown antiviral activity against human coronavirus infection, in particular capmatinib. Further, we
identify IRAK1/4 as new and unexpected coronavirus drug targets, required for coronavirus infection. This work
highlights the potential of this computational approach, but it is important to note that additional pre-clinical
and clinical testing is required before conclusions can be made about efficacy of treatment coronaviruses diseases
in humans. Nonetheless, this indicates that the methods described herein are a novel and powerful approach for
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the rapid identification of new therapeutic strategies to identify antiviral drugs and could also be applied more
widely for novel therapeutic intervention to other classes of disease.

Methods

Materials. Viruses. 229E and OC43 coronaviruses were obtained from the American Type Culture Col-
lection (ATCC) (ATCC VR-740™ and ATCC VR-1558™). NL63 coronavirus was kindly provided by Dr. Scott
Gray-Owen (University of Toronto). Original viral stocks were stored at -80°C until use and all subsequent viral
stocks were produced from the original parental stocks.

Cell lines. MRC-5 (lung fibroblast) cells were obtained from ATCC (ATCC CCL-171™). CoronaGrow LLC-
MK?2 (kidney epithelial) cells, a subclonal line of parental LLC-MK2 cells were obtained from VectorBuilder Inc.
(Chicago, IL, Cat. No. CL0004). HEK293T cells expressing the full-length SARS-CoV-2 spike (BEI NR52310)
were obtained from BEI Resources (Manassas, VA). HEK-293 T cells expressing the SARS-CoV-2 spike were
kindly provided by S. Pohlmann (Leibniz Institute for Primate Research, Gottingen, Germany). HeLa-ACE2
cells were kindly provided by D.R. Burton (The Scripps Research Institute).

Multiscale Interactome. A combined host-pathogen multiscale interactome was assembled by augment-
ing a pre-constructed, base human network with viral-host protein-protein interaction data. The base multi-
scale interactome network consisting of drug-protein interactions (8,568), human protein—protein interactions
(387,626) and protein-pathway interactions (22,545) was retrieved from Ruiz et al.**, which aggregates data from
multiple primary sources’®®¢. An additional 332 experimentally-derived, viral-host protein-protein interac-
tions were added to adapt the network for SARS-CoV2 repurposing®. Then for a given viral protein that inter-
acts with human proteins, we investigated the pathways in which these human proteins are involved. We added
direct connections between viral proteins and the retrieved human functional pathways. In our experiments,
adding direct connections between viral proteins and human pathways shows significant improvement in per-
formance. Lastly, COVID-19 was introduced as a final entity to the multiscale interactome network and linked
to all SARS-CoV-2 proteins. The multiscale interactome was represented as a graph G=(V, E), where individual
proteins, pathways and drugs form vertices (V) and interactions form the edges (E).

The goal of our approach is to learn meaningful embeddings of the nodes in the multiscale interactome
network so that we can predict drug candidates or protein targets using these embeddings. To propose a proper
embedding function, naively, we can introduce the bias of graph homophily, i.e. drugs/targets that connect to
the viral protein via the shortest paths are the most likely to be effective. This is reflective of the assumption that
drug effects propagate along the biological network to treat diseases. However, non-homophily relations can be
equally important—for example, a protein can be a promising target if it is involved in several important related
pathways, although it may not be directly connected to viral proteins. To address this challenge, we use graph
convolutional networks to learn this hierarchy of complex relations from the interactome data.

Graph convolutional network. To prepare the Graph Convolutional Network (GCN), initial node
embeddings were generated using Node2Vec¥. The return parameter p and “in-out” parameter ¢, in Node2Vec
were set to 0.25 in order to balance global and local views of the random walk process®, which helped capture
the aforementioned homophily and non-homophily relations. The embedded dimensions size D was set to 64
and node2vec was applied to the multiscale interactome graph G to convergence. The Node2vec output was an
embedded matrix H, € RXP, where K = |V|is the number of nodes, and each row in H, is the learned repre-
sentation for the corresponding node.

These embeddings were used as the initial input feature layer, H?, in our GCN model. The model consists of
stacked multiple Graph Convolution and each one of them is defined by Eq. 1%. In this model, a is the activa-
tion function ReLU, A = A + Iy is a transformation of the multiscale interactome adjacency matrix (A4) with
the additional self-associating nodes (identity matrix Iy), H” and W representing layer-specific feature vectors
and trainable weights, while D is a diagonal degree matrix defined by Djj = 3 _; Ajj.

HM) =4 (D’%Af)’%HU) W(l)> 1)

The adjacency matrix A € RKKin Eq. 1 is generated by the edges E in the multiscale interactome. Each element
in A is either the connection weight or zero if there is no connection.
T
The output features of the last layer H @ = [hEL) , hSL), R hg)] are then normalized to produce the final
embedding for each node.
o

)

"]

To train the GCN model, we first compute cosine similarity between the embeddings of all nodes, s;j = h!'h;
and use a diffusion loss inspired by Liu et al.*¥’ to train the model parameters with gradient backpropagation,

o

Lisy) = = (si = £)
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where o > 0, and f3 is a predefined threshold and set to 0.25 in this work.
The idea of the loss function is to cluster embeddings of relevant nodes in the multiscale network and separate
those irrelevant embeddings conversely. This effect can be observed from the derivative of L:

OL(sy)
o5y =—u (s,J ﬁ).

Therefore similarity values larger than threshold f3 are encouraged and embeddings of relevant nodes will
cluster. Conversely, the loss function also diverges the embeddings of irrelevant nodes in the network even further
away. Finally, we train the model for fixed 20 epochs and obtain the updated embeddings h; for each node. The
final embeddings were then saved for further computation.

Lastly, the proximity values (i.e. cosine similarities) from COVID-19 to each drug and each human protein
present in the multiscale interactome were calculated and ranked to identify direct repurposing candidates and
plausible targets (see section “Compound Selection”). Source code for generating the proximity values is made
available at https://github.com/bowang-lab/gcn-drug-repurposing.

Drug-target interaction predictions. To identify small molecule drug candidates for host-based targets
proposed by the GCN with few or no known binders, we looked up Drug Target Interaction (DTI) predictions in
PolypharmDB?. PolypharmDB is a drug-repurposing database of pre-computed drug-target interaction predic-
tions, evaluated by using the 2020Q2 beta release of MatchMaker®®. Matchmaker is a deep learning model that
predicts interaction of a small molecule drug/binding site pair using paired structural features of the drug with
the 3D structural features of the protein binding sites. MatchMaker models with positive training examples com-
plexes obtained by threading drug-target interaction (DTI) data®® onto 3D structures of protein-ligand binding
sites obtained from the Protein DataBank®’> and SwissModel®®, on the basis of chemical similarity®. Negative
training examples are obtained by random shuffling of positive DTI pairs, and models are trained on progressive
thresholds of increasing stringency in accordance to the confidence in the source DTI and in the selection of
representative 3D structures®.

The compound screening library consists of 10,244 small molecule drugs, retrieved from DrugBank® on
February 19th, 2020. The library excluded compounds with fewer than four carbon atoms, or whose SMILES
chemical structure was unable to be parsed by RD-KIT (Release_2018_09_1) RDKit: Open-source cheminfor-
matics; http://www.rdkit.org)®>. The screening set includes 2118 approved drugs, 2242 drugs in clinical trials
and 5547 molecules in preclinical development or nutraceuticals.

The protein screening library represents 29,290 pockets from 8525 human proteins obtained by the PDB??
(retrieved January 2018) and SwissModel®® database (Retrieved June 2018). Specifically, pockets correspond to
binding sites of drug-like molecules observed as cocrystalized ligands in the PDB source files, or superimposed
ligands from template structures from SwissModel source files. Drug-target interaction pairs were evaluated using
all combinations of small molecule drugs and available binding site structures. Individual human proteins were
ranked on the basis of their top-scoring pockets. Additional details related to the construction of PolypharmDB
and screening libraries are available from Redka et al. 2020%.

Compound selection.  Small molecule repurposing candidates were selected from three methods combin-
ing the GCN network and PolypharmDB (Fig. 1) approaches. For each method, a systematic selection criterion
was applied, as described below, to maximize the diversity of assayed compounds and to ensure the relevance
of the hit to the infectivity-based assays, its availability, and repurposing appropriateness. Selected drugs for all
three methods are provided in Table 1.

For Method 1, a target-centric drug repurposing approach, compounds were selected from the top 60 drug
candidates suggested directly by the GCN, on the basis of their network distance to COVID-19. Since the GCN
input multiscale interactome contained a broad variety of drugs, the following criteria were applied to reduce
the number of candidates from 60 to 10 compounds:

1. Non-small molecule drugs, such as recombinant proteins were eliminated (e.g., peginterferon alfa-2b);
Only one candidate was chosen if multiple drugs shared the same protein in the final node of the path to
COVID-19 (e.g., only top scoring flucytosine was chosen from a total of 4 candidates connected to DNMT1);

3. Candidates that were a part of networks involved with the cytokine storm, adaptive immunity, or lympho-
cyte response were not selected (e.g., chloramphenicol connected to CD55, CD4-positive, alpha-beta T cell
cytokine production node was not selected);

4. Natural amino acids (e.g., L-asparagine) and non-drug like compounds (e.g., urea and calcium chloride)
were not selected;

5. Only FDA approved candidates were selected.

Once 10 compounds were selected in the order of their network distance to COVID-19, the selection process
was completed corresponding to the last compound having a rank of 40.

Methods 2 and 3, drug-centric repurposing approaches, combined the GCN for viral-host target selection
and PolypharmDB to predict small molecule binders for the proposed targets. Target selection was performed
by ranking human proteins in accordance with their GCN proximity scores to COVID-19. The top 100 human
proteins of 17,660 represented in the network were considered in the selection process. From those 100 pro-
teins, 66 were eliminated because they were missing from the proteome included in PolypharmDB. Out of the
remaining 34 proteins, 11 proteins were eliminated because the descriptions of their functions on Uniprot or
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GeneCards contained terms associated with the stages of the viral infection that were outside the scope of the
infectivity-based assay in MRC-5 human lung fibroblast cells used in this study: lymphocyte response, cytokine
storm, natural killer cell cytotoxicity, immune synapse formation, T-cell or B-cell response. The remaining 23
proteins were manually curated to prioritize 10 proteins that were most likely to be associated with the different
stages of the viral cycle, such as attachment and entry, translation, replication, assembly, or release, based either
on the description of their function or previous reports. Those selected ten proteins were as follows: UGGT?2,
SDF2, NLRX1, MOGS, HEPACAM, IRAK4, ADAM15, CD46, LILRA3, and CHPF2. Another set of 5 proteins
out of 23 proteins had functions with a potential of being involved in the viral infection of lung fibroblasts, and
therefore those proteins were reserved as a supplemental list of targets if insufficient predicted binders were found
for the primary list of 10 targets. That supplemental list of targets was as follows: TARS2, GOLGA3, MDNI,
THUMPD?2, ZBTB37. The remaining 8 of 23 proteins were removed from consideration.

Following the selection of the primary list of 10 targets, Methods 2 and 3 diverge in their compound selec-
tion process. For Method 2, the top ten ranking FDA-approved small-molecule repurposing candidates for each
protein (i.e. 10 single-target panels; a total of 100 candidates) were filtered to 13 compounds, as described below.
For Method 3, top 25 ranking FDA-approved small-molecule candidates for a single multi-target polypharma-
cological panel that included all 10 proteins (i.e., a single 10-targets panel) were analysed to yield 2 additional
compounds that were distinct from those that were already selected by Method 2. The analysis of the latter was
based on the weighted aggregate score of all targets. Since both lists of 100 and 25 top ranking compounds were
already filtered to contain only small molecules and FDA-approved drugs, for both methods, the compounds
were further selected by following these criteria:

1. The compound is predicted to be interacting with the target by MatchMaker, in addition to having a high
rank relative to the proteome;

2. 'The compound is drug-like (i.e., natural compounds and endogenous ligands, natural amino acids, urea,
metal chelators were excluded);

3. Tracer compounds or topical medications were not selected;

4. Duplication of the class of drug and its indication was minimized (e.g., only two antivirals out of 9 candidates,
and only one sodium glucose co-transporter-2 inhibitor out of 3 candidates in the list of top 100 by Method
1 were selected);

5. 'The number of targets from the primary list of 10 represented in the final selection was maximized (i.e., select
one candidate per target screen first, but if some targets did not result in any compounds with a significant
probability of interaction predicted by MatchMaker, then select additional compounds from the supplemental
list of targets; as a result, some targets are represented 2—3 times in Table 1).

Following the criteria described above, 13 compounds out of 100 were selected by Method 2, and 9 com-
pounds out of 25 were selected by Method 3. However, 7 of the repurposing candidates were common to com-
pounds from Method 2, resulting in only 2 unique compounds (see Table 1). An additional compound scored
highly for the supplemental targets of interest and was nominated to be included in the testing panel given its
predicted performance and the distinct target mechanism (Table 1).

Cell culture and human coronavirus propagation. For propagation of cell lines for use in coronavirus
infection experiments, cells were maintained in a standard tissue culture incubator maintained at 37 °C with 5%
CO,. For infection of cells and propagation of coronaviruses, cells were maintained in a standard cell culture
incubator maintained at 33 °C with 5% CO,. This temperature was determined to support optimal propagation
of human coronaviruses and yielded higher viral titers than preparations of the virus grown at 37 °C.

MRC-5 and LLC-MK2 cell lines were maintained in growth medium, consisting of Minimum Essen-
tial Medium Eagle (MEM), with Earle’s salts, L-glutamine and sodium bicarbonate (Sigma Aldrich Cat. No.
M4655) and supplemented with 10% heat-inactivated fetal bovine serum (FBS, ThermoFisher Scientific Cat. No.
10082147) and 1X penicillin-streptomycin (P/S, ThermoFisher Scientific Cat. No. 15070063). For all experiments
involving coronavirus infection, cells were maintained in infection medium, which is the same as growth medium,
except the concentration of heat-inactivated FBS was 2%. For plaque assays, cells monolayers were overlaid with
plaque media, consisting of 2 x MEM Temin’s modification, no phenol red (ThermoFisher Scientific Cat. No.
11-935-046), 2% heat-inactivated FBS, 1 x P/S, and mixed 1:1 with pre-warmed 0.6% agarose (ThermoFisher
Scientific Cat. No. 16500-500). Alternatively, see Table S1 for specific formulations of culture media.

Propagation of human coronaviruses was performed based on suppliers’ instructions. Briefly, MRC-5 or
LLC-MK?2 cells were grown to 90% confluence in a T75 tissue culture flask in standard growth medium. Cell
monolayers were washed 2 x with infection medium prior to infection. Cell monolayers were infected with 229E
(MRC-5 cells), OC43 (LLC-MK2), or NL63 (LLC-MK2) at a MOI of 0.01 in a total volume of 4 mL infection
medium for 2 h adsorption at 33 °C with 5% CO,. Following viral adsorption, unbound virus was aspirated, and
cell monolayers were washed 2 x with infection medium, and then 12 mL fresh infection medium was added.
Flasks were then placed back in the 33 °C incubator for a period of 2-4 days depending on the coronavirus
strain to achieve maximal viral titer. To harvest the virus, supernatant was collected in a 15 mL conical tube and
centrifuged at 1000 x g for 10 min to pellet cell debris. Viral stocks were stored as single use aliquots at — 80 °C.
Viral concentration of new preparations of viral stocks were measured by PFU assay.

Immunofluorescence detection of 229E infection. Briefly MRC-5 human lung fibroblast cells
(seeded on glass coverslips) were infected with 229E at a MOI of 0.01 in the presence of drug (1-10 uM) or
vehicle control for 1 h at 33 °C and 5% CO,. Following incubation, excess unbound virus was removed, and
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cells were incubated in fresh infection medium with drugs for an additional 48 h. This time point was chosen
because it was initially determined to result in infection of ~100% of control cells and thus provided a baseline
for examination of antiviral activity. This time point was also chosen because the infected cells remained in a
virtually intact monolayer with minimal CPE—extensive CPE could lead to sampling errors and could be con-
founded with potential cytotoxic effects of the drugs. Drugs that caused signs of cytotoxicity (identified by DAPI
staining) were excluded from further analysis as they confounded interpretation of potential antiviral effects in
the IF assay.

For the IF protocol, cells infected with coronaviruses were washed 2 x with PBS (with Mg?* and Ca*") and then
immediately fixed for 1 h with 4% paraformaldehyde. This was followed by 15 min treatments with: 0.15% glycine,
0.1% triton X-100, and 3% bovine serum albumin with PBS washes in between each step. 229E S protein was
detected with treating the cells with 100 pL (1:50 dilution) of the mouse anti-229E S protein antibody 9.8E12°7
by the inverted drop technique for 1 h at room temperature. Following primary antibody incubation, cells were
washed and treated with AlexaFluor488-conjugated anti-mouse secondary antibody (1:1000 dilution) (Cedar-
lane Labs Cat. No. 115-545-003) and DAPI (1 pg/mL) for 1 h at room temperature. Following another wash,
coverslips were mounted on glass slides with DAKO mounting media (Agilent Technologies Cat. No. $3023) and
then incubated at room temperature overnight to solidify. Slides were visualized on an inverted microscope by
widefield epifluorescence (Leica DMi8 microscope, Andor Zyla 4.2-megapixel camera, run by Quorum WaveFX
by Metamorph software). For each IF experiment, a total of 10-20 randomly chosen fields were selected in the
DAPI channel for acquisition of the 229E S protein with a 10 x objective lens. Images were quantified by measur-
ing the total fluorescence signal using Image]J software (National Institutes of Health, Bethesda, MD)®®.

Human coronavirus plaque assays. All coronavirus plaque assay protocols were adapted from previ-
ously described methods for measuring viral concentration using PFU assays®'%!. Briefly, cells were grown to
confluency on 6-well tissue culture plates and then infected with serially diluted virus in a volume of 300 uL
for 1 h adsorption at 33 °C with 5% CO,, with gentle agitation every 15 min. Following adsorption, unbound
virus was removed, and cells were washed 2 x with infection media and then overlaid with plaque media. In
experiments involving the testing of potential antiviral compounds, drugs were added to the infection media
during adsorption and to the plaque media. Following an incubation period of several days to establish CPE (see
below for virus-specific information), cells were fixed with 10% neutral buffered formalin overnight, followed by
removal of the agarose plug and counterstaining with 1% crystal violet solution to visualize the plaques. For all
plaque assays, each condition was performed in technical triplicates.

229E: Confluent monolayers of MRC-5 cells were grown on 6-well tissue culture plates and infected with seri-
ally diluted 229E virus. After washing away unbound virus, the cells were overlaid with a semi-solid agarose
medium to restrict the spread of virus to adjacent cells. After 5-7 days incubation, cells were fixed and stained
to quantify the number of plaques in each well.

NL63: NL63 viruses were propagated in the monkey kidney epithelial cell line LLC-MK2, which has been
reported to support NL63 production'®. Confluent monolayers of LLC-MK2 cells were grown on 6-well plates
and infected with serially diluted NL63 virus. After washing away unbound virus, the cells were overlaid with
a semi-solid agarose medium to restrict the spread of virus to adjacent cells. After 4 days incubation, cells
were fixed and stained to quantify the number of plaques in each well.

0OC43: We determined that OC43 viruses could be readily propagated in LLC-MK2 cells, similar to NL63
viruses. Confluent monolayers of LLC-MK2 cells were grown on 6-well plates and infected with serially
diluted OC43 virus. After washing away unbound virus, the cells were overlaid with a semi-solid agarose
medium to restrict the spread of virus to adjacent cells. After 4 days incubation, cells were fixed and stained
to quantify the number of plaques in each well.

gRT-PCR detection of NL63. LLC-MK?2 cells seeded on 6-well tissue culture plates were infected with
NL63 at a MOI of 0.01 for a 1 h adsorption period in the presence of 10 pM capmatinib in a volume of 300
uL. Following viral adsorption, cells were washed 2 x with infection media and then 500 pL fresh media/drug
was added to the cells for a 3-day incubation period. To extract total NL63 RNA, 1 mL TRIzol™ Reagent (Ther-
moFisher Scientific) was added directly to the samples (cells + supernatant) and cells were lysed by scraping.
Total RNA was purified using the Direct-zol™ RNA Miniprep Kits (Zymo Research, Irvine, CA) according to
manufacturer’s instructions. Reverse transcription and qPCR were performed in a one-step reaction using Luna
Universal One-Step RT-qPCR (NEB, Ipswich MA) according to manufacturer’s instructions. RT-qPCR reac-
tions were performed on a CFX96 thermal cycler (Bio-Rad, Mississauga, ON). Experiments were performed
with at least 2 technical replicates to monitor variation between wells, no template/no RT controls, and melt
curves. Reactions were performed at a final volume of 20 pL with 20 ng input RNA and a primer concentration
of 500 nM. All results were normalized to GAPDH RNA levels and to the infected, non-drug treated condition.
Relative change in NL63 RNA was calculated using the 2724 method'®. A minimum of 3 experimental repli-
cates were used to assess NL63 Nucleocapsid RNA using previous established primers'®. For a complete list of
qPCR primers see Table S2. For thermal cycler conditions see Table S3.

siRNA transfection. siRNA transfection was performed by two individual transfections at 72 h and 48 h
prior to infection or other experimental manipulation, respectively. Briefly, MRC-5 cells were grown to 40%
confluency before the first round of transfection. On the day of transfection, cells were placed in fresh growth
medium. A transfection master mix was made in Opti-MEM (ThermoFisher Cat. No. 31985070) by diluting
stock siRNA solutions to a final concentration of 50 nM and 6.3 uL Lipofectamine RNAIMAX transfection
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reagent (ThermoFisher Cat. No. 13778030) per well of a 6-well tissue culture dish. Cells were transfected for 4 h
before switching to fresh growth medium. For a list of siRNA sequences see Table S2.

Pseudotyped virus particle assay. SARS-CoV-2 pseudotyped viruses (PsV) were prepared using an
HIV-based lentiviral system as previously described!! with few modifications. Briefly, PsVs were produced by
transfection of human kidney HEK293T cells with the full-length SARS-CoV-2 spike (BEI NR52310) or SARS-
CoV-1 spike (kindly provided by S. Pohlmann, Leibniz Institute for Primate Research, Gottingen, Germany).
Cells were co-transfected with a lentiviral backbone encoding the luciferase reporter gene (BEI NR52516), a
plasmid expressing the Spike (BEI NR52310) and plasmids encoding the HIV structural and regulatory pro-
teins Tat (BEI NR52518), Gag-pol (BEI NR52517) and Rev (BEI NR52519). After 24 h at 37 °C, 5 mM sodium
butyrate was added to the media and the cells were incubated for an additional 24-30 h at 30 °C. Next, the PsV
particles were harvested, passed through 0.45 um pore sterile filters and finally concentrated using a 100 K Ami-
con (Merck Millipore Amicon-Ultra 2.0 Centrifugal Filter Units).

Neutralization was determined in a single-cycle neutralization assay using HeLa-ACE2 cells (kindly pro-
vided by D.R. Burton; The Scripps Research Institute). To that end, 50 pL of twofold serial dilutions of the small
molecules were incubated with 10,000 cells/well seeded the day before (100 uL/well) for 1 h at 37 °C. After 1 h
incubation, 50 uL of PsVs was added to each well and incubated for 48 h-60 h in the presence of 10 ug/mL of
polybrene (Sigma Aldrich, TR-1003-G). Infection levels were inferred from the amount of luminescence in rela-
tive light units (RLUs) after adding 50 uL Britelite plus reagent (PerkinElmer) to 50 pL of media containing cell
(i.e. after removing 130 puL/well to account for evaporation). After 2 min incubation, the volume was transferred
to a 96-well white plate (Sigma-Aldrich) and the luciferase intensity was read using a Synergy Neo2 Multi-Mode
Assay Microplate Reader (Biotek Instruments). Two to three biological replicates with two technical replicates
each were performed. Culture media was prepared by supplementing DMEM media with 2% inactivated FBS
and 50 pg/ml of gentamicin. ICs, values were calculated using Prism.

In order to confirm that the reduced infection was not related to cell toxicity, HeLa-ACE2 cell viability upon
incubation with serial dilutions of the small molecules was assessed. 10,000 cells/ well of pre-seeded HeLa-ACE2
cells were co-cultured with twofold serial dilutions of the small molecules at 37 °C for 48 h-60 h under the same
conditions as in the neutralization assay. Cell viability was monitored by adding 50 pL of CellTiter-Glo 2.0 rea-
gent (Promega) to 200 pL of media containing cells. After 10 min incubation, 100 pL volume was transferred to
a 96-well black plate (Sigma-Aldrich) to measure luminescence in relative light units (RLUs) using a Synergy
Neo2 Multi-Mode Assay Microplate Reader (Biotek Instruments).

Drug library. Unless indicated otherwise, all compounds were purchased from MedChemExpress (Mon-
mouth Junction, NJ) and were reconstituted according to manufacturer’s specifications. A complete list of com-
pounds is provided in the Table S4. All compounds were reconstituted to stock concentrations of 1-10 mM and
frozen in individual aliquots at — 80 °C until use.

Statistical analysis. All statistical analysis for biological experiments were performed with GraphPad
Prism 9 software using student t-tests when comparing two conditions (Figs. 3B,D,E, 4B,E,EG, S2A) or one-way
ANOVA with Tukey post-hoc test when comparing multiple conditions (Figs. 3A,C, 4A,C, S4).

Data availability

Datasets generated during and/or analysed during the current study are available from the corresponding authors
on reasonable request, including the ranks and scores of compounds screened using the commercial PolyP-
harmDB for all targets of interest identified within the manuscript, licensed from Cyclica Inc.
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