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Abstract: Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance
Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report
the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identi-
fication), a technique that can also detect transient associations. We identified 474 high-confidence
CFTR proximity-interactors, 57 of which have been previously validated, with the remainder repre-
senting novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was
markedly different from its wild type counterpart, with numerous alterations in protein associations
categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508
interactome in cells treated with Orkambi identified several interactions that were altered as a result
of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP,
in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion
impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected
the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further
mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.

Keywords: CFTR interactions; CFTR modulators; cystic fibrosis; Orkambi; theratyping; protein
trafficking; chaperones

1. Introduction

Cystic fibrosis (CF) is a fatal inherited disease caused by mutations in CFTR that lead
to varying clinical manifestations and severity [1,2]. The Cystic Fibrosis Transmembrane
Conductance Regulator (CFTR) protein resides at the apical membrane of epithelial cells
and functions as an ion channel that mediates the flux of chloride and bicarbonate ions [3,4].
Despite the development of therapeutic regimens, patient quality of life remains limited and
even the most successful compounds do not achieve wild type (WT) level conductance [5,6].
The ∆F508 deletion mutation accounts for the majority of the CF population, making
up approximately 70% of all patients, although its prevalence varies depending on the
geographical origin of the patients [7,8]. ∆F508-CFTR is a class II mutation known for its
trafficking defect caused by misfolding and ER retention and degradation [8]. In 2015,
ivacaftor-lumacaftor (Orkambi) was approved for use in patients aged 12 years or higher
and homozygous for the ∆F508 mutation and was recently extended to include those aged
6–11 years old [7,9]. Orkambi is a combination treatment consisting of a small molecule
corrector compound (VX-809, lumacaftor) that promotes protein stability and forward
trafficking [10], and a small molecule potentiator (VX-770, ivacaftor) that promotes the
open state of the channel [10]. Ivacaftor (Kalydeco) is also approved for use on its own
for the treatment of for CF patients aged four months or older with a gating variant [7].
Orkambi is associated with a variable clinical response [11,12].
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The CFTR protein interaction network, and how it may be modulated by treatment, is
poorly understood. This knowledge may help to guide theratyping efforts and provide co-
targeting strategies for improving precision drugs that target CFTR alone [13]. To this end,
proximity-dependent biotin identification (BioID) was used to characterize the interactomes
of the WT and ∆F508-CFTR. BioID allows for the capture of ‘neighbourhood’ proteins in
the context of a living cell and provides data that are complementary to more established
techniques such as affinity purification mass spectrometry (AP-MS) but with the added
benefit of enriching for low affinity interactions and avoiding post-lysis artefacts [14]. The
N-terminus of each construct was fused with a mutant form of an E. coli biotin conjugat-
ing enzyme, BirA R118G (BirA*) [14]. BirA* activates free biotin to the highly reactive
intermediate biotinyl-5′-AMP, which covalently reacts with lysine residues in proximal
proteins within a ~10 nm radius surrounding each protein of interest, or “bait” [15]. Most
human cells do not express de-biotinylase, therefore the biotinylation of proximal proteins
is a permanent reaction, and the labelling over 16 h (approximately the length of a cell
cycle), allows for the amplification of signal from these cycling interactions [14]. Since
the biotin ‘tag’ is covalently attached, the cells can endure lysis under harsh buffer condi-
tions to efficiently solubilize all membranes and organelles. These proximal proteins, or
“prey”, can then be captured and isolated using streptavidin linked to sepharose beads and
identified by mass spectrometry [14]. It has been suggested that over half of the variation
observed in lung function could be due to non-CFTR modifier genes, highlighting the need
to better understand the WT CFTR interactome and how it changes in response to drug
treatment [16]. Using BioID, we identified known and unknown associations in the WT
CFTR and ∆F508-CFTR interactomes, as well as those that are modulated in ∆F508-CFTR
upon exposure to Orkambi treatment.

2. Results
2.1. BioID Identifies a Proximity Interactome for WT CFTR

FLAG-BirA*-CFTR WT and mutant fusion constructs were expressed in HEK293
Flp-In T-REx cells [17]. Each CFTR open reading frame was cloned in-frame with an
N-terminal FLAG-BirA*. The system enables tetracycline-inducible expression of the
transgenes expressed at a single copy (from the same Flp Recombination Target containing
locus) through a Flp-mediated recombination event. Endogenous CFTR levels in this cell
line are likely to be very low, as indicated by RNAseq data [18].

Upon tetracycline induction (Supplementary Figure S1a), the FLAG-BirA*-CFTR
fusion protein (~200 kDa) colocalized with the plasma membrane (PM) marker Na/K
ATPase (Figure 1a). CFTR-dependent chloride efflux was assessed in these cells using the
fluorometric imaging plate reader membrane depolarization (FLIPR) assay. This assay has
been extensively used to assess functional responses of CFTR by detection of rapid changes
in membrane potential [19]. The spike in fluorescence observed after the addition of the
cAMP agonist forskolin (Fsk) in cells expressing FLAG-BirA*-CFTR (Figure 1b) is similar
to what has been observed with WT CFTR [20]. The increase is related to FLAG-BirA*-
CFTR activity as it is completely inhibited upon the addition of a specific CFTR inhibitor
(inh-172) [21]. Furthermore, uninduced cells that do not express the fusion construct do
not respond to forskolin and inh-72, respectively (Figure 1b). The BirA* is attached to
the N-terminus of CFTR with a flexible linker to mitigate interference of the BirA* on
CFTR processing and interactions. The FLAG-BirA*-CFTR fusion is able to retain its ability
to localize to the PM and perform chloride efflux, and was therefore selected for BioID
implementation. Similarly sized N-terminal GFP and YFP-fusions of CFTR have been
utilized to report on CFTR trafficking and function previously [21,22].
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Figure 1. GO enrichment analysis of plasma membrane localized FLAG-BirA*-CFTR. (a) Immuno-
fluorescence images of FLAG-BirA*-CFTR supplemented with tetracycline and biotin, for 24 h. 
Staining was performed with fluorophore-conjugated streptavidin (green), anti-FLAG (red), and 
Na+/K+ ATPase (blue) as a plasma membrane marker. FLAG-BirA*-CFTR is seen to be localizing at 
the plasma membrane and high levels of biotinylation are only detected in conditions supplemented 
with biotin. (b) The cells were treated with the tetracycline for 24 h before FLIPR functional assay. 
CFTR was stimulated using Fsk. CFTR-mediated depolarisation of the plasma membrane was de-
tected as an increase in fluorescence following which CFTRinh-172 was added to inactivate CFTR. 
(c) Network representation of BioID data from HEK293 T-REx cells, with “known interactor” (Bi-
oGRID) highlighted in green. There are a total of 474 high confidence ‘preys’ with a BFDR ≤ 0.01. 
Preys categorized using Gene Ontology (GO) enrichment for key cellular components or functions. 
List of genes in GO annotation map can be found in Supplementary Dataset S1. 

Figure 1. GO enrichment analysis of plasma membrane localized FLAG-BirA*-CFTR. (a) Immunoflu-
orescence images of FLAG-BirA*-CFTR supplemented with tetracycline and biotin, for 24 h. Staining
was performed with fluorophore-conjugated streptavidin (green), anti-FLAG (red), and Na+/K+
ATPase (blue) as a plasma membrane marker. FLAG-BirA*-CFTR is seen to be localizing at the
plasma membrane and high levels of biotinylation are only detected in conditions supplemented with
biotin. (b) The cells were treated with the tetracycline for 24 h before FLIPR functional assay. CFTR
was stimulated using Fsk. CFTR-mediated depolarisation of the plasma membrane was detected
as an increase in fluorescence following which CFTRinh-172 was added to inactivate CFTR. (c) Net-
work representation of BioID data from HEK293 T-REx cells, with “known interactor” (BioGRID)
highlighted in green. There are a total of 474 high confidence ‘preys’ with a BFDR ≤ 0.01. Preys
categorized using Gene Ontology (GO) enrichment for key cellular components or functions. List of
genes in GO annotation map can be found in Supplementary Dataset S1.
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The proximity interactome for WT CFTR comprised 474 high confidence proxim-
ity interactors (BFDR ≤ 0.01). Statistically enriched Gene Ontology (GO) categories in-
cluded Vesicle Mediated Transport (67; GO:0016192), Cell Adhesion (28; GO:0007155),
Scaffold (13; PC00226), Plasma Membrane (109; GO:0005886), and Transporter Activity (49;
GO:0005215) [23]. Fifty-seven previously validated CFTR-interactors were identified (Bi-
oGRID database; Figure 1c and Supplementary Dataset S1) and 22 additional proximity in-
teractors overlapped with manually curated meta-analyses that collated 179 CFTR predicted
interactors from several high-throughput screens [24–26]. Additionally, 33, 27, 17 and 38 of
our high-confidence proximity interactors were also seen in AP-MS studies performed in
bronchial epithelial [8,27,28] or HEK293 [29] cells, respectively (Supplementary Figure S1b
and Supplementary Dataset S2).

Previously validated CFTR interactors in our dataset included: both isoforms of a
Na+/H+ exchanger regulatory factor (NHERF or SLC9A3R1/2) which anchors CFTR to
the actin cytoskeleton through a multiprotein complex [30,31]; Golgi Associated PDZ Addi-
tionally, Coiled-Coil Motif Containing (GOPC) also known as the CFTR-associated ligand
(CAL) [32]; and the integral membrane protein Lemur Tyrosine Kinase 2 (LMTK2), which af-
fects CFTR activation [33]; Ubiquitin Specific Peptidase 19 (USP19), which rescues ∆F508del-
CFTR when overexpressed [34] and Golgi Reassembly Stacking Protein 2 (GORASP2),
which mediates unconventional CFTR trafficking [35] (Supplementary Dataset S1). No-
tably, all 10 subunits of the Endoplasmic Reticulum Membrane Protein Complex (EMC)
were identified as high confidence proximity interactors with FLAG-BirA*-CFTR. The EMC
is an insertase that chaperones the co-translational membrane insertion and folding of
multipass membrane proteins (Supplementary Figures S1c and S3c) [36].

Since BioID provides a history of proximal associations of the tagged protein over ap-
proximately the length of a cell cycle, we could manually curate the known or predicted lo-
calizations of several identified preys to demarcate the trafficking route of CFTR as it is pro-
cessed and enters into vesicular pathways to, and from, the PM (Supplementary Figure S1c).
Pairwise comparison with a recent large scale BioID dataset comprising 192 representa-
tive baits from all major cellular compartments [37] revealed that FLAG-BirA*-CFTR prey
profiles most closely resemble that of a PM-localized, membrane trafficking bait protein
(Supplementary Figure S2a).

2.2. ∆F508-CFTR Interactome and Profiling of Orkambi Response

Upon tetracycline induction, FLAG-BirA*-∆F508-CFTR protein did not traffic to the
PM (Figure 2a,b), and chloride efflux activity was low in FLAG-BirA*-∆F508-CFTR express-
ing cells (Figure 2c). The increase in fluorescence observed after the addition of forskolin
(~50% less than FLAG-BirA*-CFTR cells) was unaffected by the addition of inh-172, and
was also observed in the uninduced line, suggesting that this was not due to CFTR activity
(Figure 2c).
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Figure 2. GO enrichment analysis of intracellularly localized FLAG-BirA*-∆F508-CFTR. (a,b) Immuno-
fluorescence images of FLAG-BirA*-∆F508-CFTR without (a) or with (b) 1 µg/mL tetracycline, and sup-
plemented with 50 µM biotin for 24 h. Labelling was performed with fluorophore-conjugated streptavi-
din (green), anti-FLAG (red), and Na+/K+ ATPase (blue) as a plasma membrane marker. (c) The cells 
were treated with the tetracycline for 24 h before FLIPR functional assay (see Materials and Methods). 
CFTR was stimulated using Fsk, and the CFTR-dependent activity was determined by sensitivity to 
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Figure 2. GO enrichment analysis of intracellularly localized FLAG-BirA*-∆F508-CFTR. (a,b) Im-
munofluorescence images of FLAG-BirA*-∆F508-CFTR without (a) or with (b) 1 µg/mL tetracycline,
and supplemented with 50 µM biotin for 24 h. Labelling was performed with fluorophore-conjugated
streptavidin (green), anti-FLAG (red), and Na+/K+ ATPase (blue) as a plasma membrane marker.
(c) The cells were treated with the tetracycline for 24 h before FLIPR functional assay (see Materials
and Methods). CFTR was stimulated using Fsk, and the CFTR-dependent activity was determined by
sensitivity to CFTRinh-172 (Inh). The peak changes in fluorescence to CFTR agonists were normal-
ized relative to the baseline fluorescence (∆F/F0). (d) WT CFTR interactome filtered ‘preys’ with a
BFDR ≤ 0.01. Preys categorized using Gene Ontology (GO) enrichment for key cellular components
or functions. The thickness of the border represents an increasing average peptide count. The node
colour reflects the log 2-fold change (log2FC) from WT to the normalized ∆F508 mutant condition.
The darker red nodes represent greater negative fold change. The darker green nodes represent
greater positive fold change. (e) Using the same colour scheme as in (d), categorized preys comparing
WT to ∆F508-CFTR + MG132 condition were coded according to log2FC and enriched GO terms.
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At the ER, CFTR is subject to extensive quality control mechanisms—due to the
∆F508-CFTR folding defect, it results in premature degradation of up to 99% of the mu-
tant protein [8,38]. Treatment with proteasome inhibitor carbobenzoxy-Leu-Leu-leucinal
(MG132) [39] presumably stabilized the mutant bait protein, as we detected ~2× higher
levels of self-labelled BirA*-∆F508-CFTR peptides in BioID experiments, as assessed by
mass spectrometry (Supplementary Figure S3b). BioID was performed on FLAG-BirA*-
∆F508-CFTR expressing cells in the absence or presence of MG132, and these interactomes
constituted 63 and 260 high confidence interactors, respectively (Figure 2d,e and Figure S4).
For comparison to the WT CFTR BioID, we normalized the ∆F508-CFTR dataset using
average bait spectral counts (Supplementary Figure S3b), and this normalized ∆F508-CFTR
interactome constituted 626 high confidence interactors (Supplementary Table S7). GO en-
richment analysis indicated a significant reduction in interactions with proteins categorized
as PM-localized or with assigned functions at the cell surface (Figure 2d,e). By contrast,
a gain of interactors for untreated and MG132 treated interactomes was observed in the
GO categories: Cellular Response to Stress (238 and 165; GO:0033554), Protein Folding
(45 and 6; GO:0006457), Endoplasmic Reticulum (28 and 27; GO:0005783), and Chaperone
(31 and 11; PC00072) (Figure 2d,e; Supplemental Dataset S6) [23]. These category con-
stituent changes were not impacted by normalization, as similar trends were seen in the
non-normalized ∆F508-CFTR interactome (Supplementary Figure S3a). Correspondingly,
pairwise comparison with 192 BioID baits representing all major cellular compartments
reveals that the ∆F508-CFTR bait profile overlaps most with membrane chaperone proteins
in the ER tagged at their cytosolic, but not lumenal domains (Supplementary Figure S2b).
Additionally, 165 preys categorized under ‘Cellular Response to Stress’ formed the bulk
of the gain of interactors due to MG132 addition and included several components of the
proteasome machinery (Figure 2e and Supplementary Dataset S4). Several previously vali-
dated CFTR interactions were lost or decreased upon mutation in our dataset. We detected
loss of the CFTR- NHERF-1 interaction in the ∆F508 interactome, which has also been
previously reported [31]. CFTR, when normally trafficked, accumulates in clathrin coated
vesicles and in early endosomes [30]. Strikingly, 21 preys associated with clathrin coat
machinery (GO:0030136) in the CFTR interactome were not detected in the ∆F508-CFTR
counterpart (Supplementary Dataset S3).

BioID interactomes for ∆F508-CFTR in Orkambi-treated cells (in the absence or pres-
ence of MG132) constituted 127 (531 normalized) and 290 high confidence proximity
interactors, respectively (Supplementary Dataset S7). Notably, we detected 45 (253 nor-
malized) and 43 ‘restored’ interactions (untreated or MG132 treated, respectively), with
Orkambi treatment of ∆F508-CFTR, which were present in the WT CFTR interactome,
and enriched in GO categories associated with PM and function in cell surface activi-
ties (Figure 3a,b, Supplementary Dataset S6, S3a and S5). Additional ‘restored’ interactors
included: Calumenin (CALU), a CFTR chaperone with decreased expression in cells ex-
pressing ∆F508-CFTR, but which can be reversed by rescuing-CFTR trafficking to the
PM [40,41]; Synaptosome Associated Protein 23 (SNAP23), which binds to CFTR and in-
hibits its activity in the presence of Syntaxin 1A (STX1A) and is thought to regulate CFTR
gating at the PM [42]; a soluble N-ethylmaleimide-sensitive factor attachment receptor
(SNARE) protein, syntaxin 6 (STX6), which localizes to the trans-Golgi network where it
interacts with CFTR via the PDZ domain-containing protein, GOPC, to form a functional
complex [43]; and STIP1 Homology and U-Box Containing Protein 1 (STUB1) is among
several proteins that facilitate the ubiquitination of misfolded CFTR [44].
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Figure 3. GO enrichment analysis of FLAG-BirA*-∆F508-CFTR after exposure to Orkambi. (a) 
Manually curated GO-enrichment analysis of proximity interactors considered significantly Figure 3. GO enrichment analysis of FLAG-BirA*-∆F508-CFTR after exposure to Orkambi. (a) Man-
ually curated GO-enrichment analysis of proximity interactors considered significantly gained or
lost upon exposure to Orkambi combination therapy (3 µM VX-809 + 1 µM VX-770). The thickness
of the border represents an increasing average peptide count. The darker green nodes represent a
larger increase in normalized spectral counts associated with the prey. List of genes in GO anno-
tation map can be found in Supplementary Dataset S1. (b) GO-enrichment analysis of proximity
interactors considered significantly gained or lost upon exposure to MG132 and Orkambi combina-
tion therapy (3 µM VX-809 + 1 µM VX-770). List of genes in GO annotation map can be found in
Supplementary Dataset S1.
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2.3. Comparison of CFTR and ∆F508-CFTR Interactomes Reveal Orkambi Responsive and
Non-Responsive Interactions

A notable finding was that all 10 EMC subunits were detected as high confidence proxim-
ity interactors in both the WT and mutant interactomes (Figure 4a and Figures S1c and S3c).
The EMC complex has been implicated in the biogenesis of CFTR [45], but has not been
detected in previous interactomic studies. We next focused on a subset of preys for which
spectral counts were significantly changed after treatment with Orkambi in the ∆F508-
CFTR dataset and suggest these to be candidates for further study and highlight sev-
eral here (Figure 4b). The changes we observed were likely not due to differences in
expression of the bait proteins, as the trends are present in raw or normalized datasets
(Supplementary Figure S3a,d). Notably, the knockdown of several proteins (FAU, ANXA11,
GALK1, SEC22B, SLC25A1, UBE2EI) in this subset has been shown to rescue ∆F508-CFTR
functional activity, with little effect on WT CFTR [46]. Consistent with this, our data
indicates that all six of these prey spectral counts are specifically elevated in the ∆F508
interactome, and attenuated by Orkambi addition (Figure 4b). Depletion of COPB2 (COPI
Coat Complex Subunit Beta 2), also known as beta-COP, has been shown to impair CFTR
trafficking to the PM and it is speculated that ∆F508-CFTR is a COPI cargo for retrograde
transport to the ER [47]. OCLN (Occludin) is a tight junction protein, and its transcript lev-
els are reduced in CFTR knockout mice [48]. Additionally, associations with the planar cell
polarity components VANGL1/2 have implications for the apical polarity of CFTR, airway
development, and disease [49]. Stress-induced phosphoprotein 1 (Stip1) is among several
proteins that modulate ∆F508-CFTR folding and PM density [50]. VAMP-Associated Pro-
teins (VAPA/B) have been suggested to regulate CFTR biogenesis in the ER [51]. Syntaxin
5 (STX5) overexpression has been shown to stimulate unconventional trafficking of core-
glycosylated ∆F508-CFTR to the PM [35]. Syntaxin-17 (STX17), a SNARE protein, interacts
with CFTR [52] and the loss of the CFTR-STX17 interaction impairs bacterial clearance and
could play a critical role in infectious diseases among CF patients. Syntaxin-12 (STX12) and
STX6 form a SNARE complex that regulates transport between late endosomes and the
trans-Golgi network. These preys have also been identified as interactors of STX17 [53].
Overexpression of Syntaxin 18 (STX18) has been shown to generate more ER exit sites
(ERES) [54]. ERES facilitate the formation and function of COPII complexes [55]. Response
to STX18 overexpression could potentially increase the abundance of COPII complexes,
which may in turn promote ∆F508-CFTR exit from the ER [55,56].
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Figure 4. Trends within the proximity interactomes for WT and ∆F508-CFTR. (a) BioID network of
ER Membrane Protein Complex (EMC). All 10 EMC subunits were identified in each of the 5 WT and
∆F508-CFTR datasets. Bait and edges are colour-coded as indicated in the legend. Edge thickness is
proportional to total peptide counts. (b) Normalized spectral abundance dot plot displaying selected
prey profiles across different baits along with corresponding SAINT scores. Displayed is a snapshot
of preys that have changes in abundance from ∆F508 and/or Orkambi exposed conditions, and with
or without MG132. Preys highlighted in red are known modifiers of ∆F508 CFTR [46]. (c) Volcano
plot of significance versus log2FC on the y and x axes, respectively, comparing biotinylated proteins
identified in ∆F508 + MG132 vehicle to Orkambi exposed conditions. Preys marked in red have
higher spectral counts in the ∆F508 + MG132 condition from Figure 2e illustrating preys enriched
in GO categories for ER, chaperone, protein folding, and cellular response to stress. (d,e) Displayed
dot plot is a subset of the enriched mutant preys in GO categories for ER, chaperone, protein
folding, and cellular response to stress, that show no or marginal (d), or significant (e) response to
Orkambi treatment.

To select for candidates that could be involved in the processing, stabilizing or folding
functions of the ∆F508-CFTR mutant baits, we focused on preys that belonged to the GO
categories that we defined earlier (Cellular Response to Stress, Protein Folding, Endo-
plasmic Reticulum, and Chaperone; Figure 2e). These were mapped on a volcano plot
according to their spectral fold change (or lack thereof) upon Orkambi treatment in the
presence of MG132 (Figure 4c), and several are highlighted here in dot plots (Figure 4d,e).
Considering the subset of ∆F508-CFTR preys which do not appear to change in spectral
counts upon Orkambi treatment concomitant with proteasome inhibition (Figure 4d), these
may represent interactions that may be co-targeted to improve the efficacy of this drug.
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For example, BAG5 and BAG6 proteins appear to selectively associate with the ∆F508
mutant, and these associations persist with Orkambi (Figure 4d). To date, six human
Bcl2-associated athanogene (BAG 1–6) proteins have been identified and previous work
has shown that the knockdown of BAG1 and BAG3 leads to the functional correction of
∆F508-CFTR [57]. BAG2 stimulates the chaperone-assisted maturation of CFTR by inhibit-
ing the ubiquitin ligase activity of CHIP [58]. Only BAG 1–3 have been characterized with
respect to the nature of their interaction with CFTR in both its WT and mutant state. BAG5
and BAG6 similarly have been shown to exhibit Hsp70-inhibitory activity, however, their
relationship with CFTR has not been studied [57]. A second example from this group is
Stromal Interaction Molecule 1 (STIM1; Figure 4d). Elevated intracellular Ca2+ levels can
lead to the lack of functional CFTR in airway epithelial cells [59]. Store-operated Ca2+

entry is an essential mechanism for regulating Ca2+ homeostasis driven by the interaction
between STIM1 and Calcium Release-Activated Calcium Modulator 1 (ORAI1) [60]. CFTR
forms a molecular complex with transient receptor potential canonical 6 (TRPC6) which
is lost in CF leading to an influx of TRPC-6 dependent Ca2+ through ORAI1 [61]. The
Orkambi non-responsive association we observe between STIM1 and ∆F508-CFTR could
be of physiological relevance, since decreased Ca2+ levels have also been associated with
the correction of ∆F508-CFTR [62]. A third example is Sarco/Endoplasmic reticulum Ca2+

ATPase (SERCA) 2; also known as ATP2A2 (Figure 4d). CALU modulates the expression of
SERCA pump activity in non-CF and CF bronchial epithelial cells [42]. Enhanced SERCA
pump activity has been shown to increase ER retained Ca2+ and has been correlated with
a decreased interaction between SERCA2 and ∆F508-CFTR compared to WT CFTR [42].
This is another association that is non-responsive to Orkambi and may be a candidate for
further examination to enhance functional rescue of ∆F508-CFTR.

We also note the subset of Orkambi-restored interactions of ∆F508-CFTR that would be
candidates for further study (Figure 4e and Figure S4). Solute Carrier protein family 30A9
(SLC30A9) is a nuclear receptor coactivator involved in the transcriptional regulation of
Wnt-responsive genes [63]. Wnt signalling has been shown to be impaired in CFTR mutants
but can be restored when WT CFTR is overexpressed [64]. We also detect higher spectral
counts of the sequestosome 1 (SQSTM1) protein with ∆F508-CFTR, which are reduced upon
Orkambi treatment (Figure 4e). Recent work has shown that defective ∆F508-CFTR leads
to small ubiquitin like-modifier (SUMO)ylation activation of tissue transglutaminase (TG2),
resulting in proteasome degradation and accumulation of SQSTM1 [65]. Correspondingly,
the depletion of SQSTM1 can favour the trafficking of ∆F508-CFTR protein to the epithelial
cell surface [66], which parallels our findings here.

Our data also show that PSMA3, PSMA5, PSMB2, PSMB4, and PSMB5 (all subunits of
the 20S core proteasome complex) are found preferentially associated with ∆F508-CFTR
upon MG132 treatment (Figure 4e), and these interactions are attenuated upon Orkambi
treatment (Figure 4e). This observation is consistent with an earlier finding that chaperone
association with ∆F508-CFTR is attenuated by VX-809 [67]. It has been reported that Hsp40
co-chaperones, referred to as J proteins, interact with CFTR during its initial translation
stages [68]. DNAJ proteins may serve as pro-degradation components of the quality
control machinery and of ∆F508 specifically [68] (Supplementary Figure S3d). We therefore
surveyed all co-chaperone DnaJ (Hsp40) and Hsp70/90 chaperone members in our dataset
(Supplementary Figure S5a). Previously characterized DnaJ members DJA1 and DJA2 were
identified in our datasets (Supplementary Dataset S5) and have been previously reported to
promote folding of CFTR but display contradictory functions which could be due to their
differences in binding to CFTR [69]. In addition to these, we detect two other members of
this family, DNAJA3 and DNAJA4 (Figure 4e and Figure S5a). Overall, we note a striking
increase in chaperone associations with the ∆F508-CFTR bait, as compared to the WT, which
is consistent with the stabilizing function of this protein family [68]. Additionally, Orkambi
attenuates ∆F508 mutant associations in 18 of 24 chaperones (Supplementary Figure S5a),
which is consistent with previous corrector data [67]. Interestingly the presence of MG132
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abrogates the normal effect of Orkambi on Hsp chaperone associations in many Hsp 70/90
family members, but unequally in Hsp 40 members (Supplementary Figure S5a).

2.4. Proximity Interactions That Affect Trafficking and/or Function of CFTR

A key criterion for successful CF therapy is the restoration of an adequate steady state
concentration of functional CFTR on the surface of airway cells. It is therefore important
to characterize candidate interactors with respect to CFTR levels at the PM and on CFTR
channel conductance activity. Our BioID data show the presence of VAMP-Associated
Proteins (VAPA/B) and Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP) in all WT and
∆F508-CFTR datasets (Figures 4b and 5a). VAPs have been proposed to regulate CFTR
biogenesis in the ER [49]. NOS1AP is a direct interactor of NOS1, which has been associated
with CF disease phenotypes [70,71]. Notably NOS1AP association with WT CFTR was
altered in the mutant bait, and restored in the presence of Orkambi (Figure 5a). In addition,
no association with ∆F508-CFTR was detectable in the presence of MG132. Conversely,
VAPB association with ∆F508-CFTR was enhanced by MG132, and Orkambi had a marginal
effect regardless of MG132 status (Figure 5a).
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Figure 5. Proximity interactions affect PM density and function of CFTR. (a) Dot plot of normalized
prey spectral counts and relative abundance across baits for NOS1AP and VAPB. (b) Western blots
showing levels of WT CFTR and VAPB in control or siRNA treated cells, with GAPDH or α-tubulin as
a loading control. Reference molecular weight markers are indicated on the right of each blot. (c) Left
panel: Representative grayscale micrographs of CFBE mCherry-Flag-WT-CFTR cells illustrate nuclear
(DAPI), surface CFTR (FLAG) and total CFTR (mCherry) fluorescence levels, with a psuedocoloured
merge image. Bar = 10 µm. Right panel: Representative grayscale micrographs of single fields of cells
for each channel after 96 h siRNA knockdown as indicated (Control; siVAPB, siNOS1AP and siCFTR,
respectively). Micrographs are scaled equally for each channel. Bar = 20 µm. (d) Quantification of
Surface CFTR (left panel), Total CFTR (middle panel) levels, and Surface:Total ratios (right panel) for
each knockdown. Values are normalized to the control and shown as the mean of three experiments
with >300 cells counted for each experiment. Error bars denote standard error, ** denotes p < 0.01
with Student’s t-test. (e) Representative traces of control, siNOS1AP, or siVAPB-treated cells assayed
for CFTR-dependent chloride efflux using FLIPR (see Materials and Methods). Fsk was added to
stimulate CFTR and deactivated with CFTRinh-172.

To determine the importance of CFTR’s interaction with these candidates, we knocked
down CFTR (siCFTR), NOS1AP (siNOS1AP), and VAPB (siVAPB) in the well characterized
CFBE reporter cell line (Figure 5b) [72–74]. The reporter comprises a FLAG epitope tag on
an extracellular loop region of CFTR and a fluorescent mCherry moiety located on the cyto-
plasmic side under an inducible promoter (Figure 5c) [73]. The double-tagged constructs
allow for the simultaneous readout of the total protein expressed in the cell and the fraction
at the PM. This allows us to estimate traffic efficiency based on ratiometric parameters that
normalize for different expression levels of the reporter (see Materials and Methods). After
expression induction of mCherry-Flag-WT-CFTR, cells were fixed and imaged to measure
the total CFTR and CFTR at the PM (‘surface’) using a custom-written MATLAB script that
determines pixel intensity values in the corresponding channels for each cell, as well as a
surface:total ratio (see Materials and Methods; Figure 5c,d). As a control, treatment with
siCFTR significantly decreased (~70–80%) the total and surface fluorescence CFTR reporter
signal (Figure 5c). Treatment with siNOS1AP did not significantly alter the levels of total
or surface mCherry-Flag-WT-CFTR, or the surface:total ratio, suggesting no major effect
on trafficking (Figure 5d). By contrast, siVAPB knockdown significantly reduced (p < 0.01)
surface CFTR levels by ~30% while not significantly altering total mCherry-Flag-WT-CFTR
levels, as reflected in the lower normalized surface:total ratio (Figure 5d).

Inducible FLAG-BirA*-CFTR HEK293 cells were treated with siNOS1AP and siVAPB
to assess their impact on CFTR conductance using the FLIPR assay (see Materials and
Methods). This strategy also allows for quantifying the role of individual genes in af-
fecting CFTR function by inducing CFTR expression only after the gene of interest has
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been knocked-down. Representative traces of WT CFTR-dependent chloride efflux were
generated from control, siNOS1AP, and siVAPB conditions (Figure 5e). Both siNOS1AP
and siVAPB-treated cells exhibited a significant decrease (~50% and ~80% of control, re-
spectively) in forskolin-stimulated CFTR activity.

3. Discussion

The BioID results established a comprehensive proximity interactome for WT CFTR as
well as ∆F508-CFTR in vehicle, MG132, and Orkambi exposed conditions. A significant
number of our high-confidence proximity preys in the WT dataset were established CFTR
interactors (e.g., NHERF1, NHERF2, GOPC/CAL, LMTK2, USP19, GORASP2) [24]. When
compared with a recent large scale BioID dataset comprising representative baits from all
major cellular compartments [37], the CFTR BioID profile largely resembles that of PM
anchored proteins such as KRAS but also membrane trafficking proteins such as ARF6 and
RAB35 (Supplementary Figure S2a). Measurements of the endocytic rate of surface CFTR
show that over 50% is internalized over a ten-minute period [75], so a large fraction of the
CFTR pool actively cycles in transport routes that culminate in its steady state localization
both intracellularly and at the cell surface. The N-terminal tagged Flag-BirA*-CFTR fusion
likely adopts the predicted topology of CFTR as a multipass membrane protein with both
its N and C termini facing the cytosol. Therefore, it is able to access cytosolic pools of
biotinyl-AMP to label vicinal trafficking proteins that participate in its biosynthetic route.
Recent work has identified the EMC as playing a vital role in the biogenesis of multipass
transmembrane proteins containing destabilizing features, thereby alleviating the choice
between function and stability [46]. Our data shows that all 10 EMC subunits were detected
as proximity interactors in both WT and mutant interactomes, suggesting a critical role for
CFTR biosynthesis. In a yeast phenomic model of ∆F508-CFTR, mutant CFTR biogenesis
is impaired upon knockdown of the EMC [76]. EMC protein subunits have not been
detected by AP-MS in prior studies likely due to the differences in interaction methodology.
A number of factors could influence detectability in AP-MS, including the efficiency of
solubilization of membrane inserted proteins or the degree of stability of the interaction.
Our BioID data thus compliments the known AP-MS CFTR interaction landscape to include
such associations, which may not be preserved post cell-lysis.

The mutant Flag-BirA*-∆F508 CFTR proximity profile demonstrates a marked reduc-
tion in preys associated with the PM or those involved in transporter activity and vesicle-
mediated transport. By contrast, there is a significant gain of the preys corresponding to
cellular response to stress, protein folding, endoplasmic reticulum, and chaperone classes.
Our analysis of the CFTR and ∆F508 interactomes is consistent with the model that the
trafficking defect caused by the ∆F508 deletion of CFTR leads to the dysregulation of a net-
work of protein interactions needed for CFTR folding, trafficking to the PM, and enhances
premature degradation [8]. The ∆F508-CFTR prey profile resembles several endoplasmic
reticulum (ER)-membrane localized, cytoplasmic facing baits (Supplementary Figure S2b).
Strikingly, there is little prey overlap with a C-terminally BirA* tagged ER protein (LRRC59)
where the BirA* moeity is lumenal, but large overlap with its N-terminal tagged coun-
terpart, where the BirA* is tagged to a cytosolic domain. We hypothesize that a (small)
portion of BirA*-∆F508 is inserted into the ER membrane where BirA* can access cytosolic
biotinyl-AMP pools, while the remainder is rapidly degraded by the ER quality control ma-
chinery. Consistent with this notion, treatment with Orkambi reveals significant restoration
in preys associated with PM trafficking and function and which also overlap with our WT
CFTR dataset. A large fraction of the chaperone, stress, and folding cohort of interactions
of ∆F508 is also attenuated upon Orkambi treatment, thus partially resembling the WT
state (Supplementary Figure S5a). In addition, several restored preys were found to be
previously characterized interactors of CFTR (e.g., CALU, SNAP23, STX1A, STX6, GOPC,
CLTC, STUB1; Supplementary Figure S5b). In general, since BioID integrates the proximal
associations of a bait protein over an entire cell cycle [14], the size of the interaction space re-
vealed by BioID versus AP-MS approaches can be difficult to compare directly [17,37,77,78].
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Nevertheless, consistent with data from AP-MS interactomes of CFTR [8,27–29], we see
a larger proximity interaction network for ∆F508-CFTR compared to WT CFTR, with the
majority of ∆F508 interactors associated with protein folding and proteostasis pathways.
Likewise, we also detect loss of several of these interactors upon corrector treatment, which
results in a net smaller interactor count [28,29]. Overall, our BioID data therefore supports
the existing interactomics model that off-pathway ∆F508 interactions consist of destabilized
folding and degradation machinery [8], while standard WT interactions are PM trafficking
and recycling related. Altogether, these findings are validative of our experimental strategy.

Proximity interactors of ∆F508-CFTR may be candidates for co-targeting with corrector
drugs to improve the efficacy of rescue. A number of candidates that could play a role
in ∆F508-CFTR rescue were identified (Figure 4). Notably, individual proteostasis and
chaperone family member associations of ∆F508-CFTR were largely attenuated by Orkambi
treatment (Supplementary Figure S5a), consistent with previous interactomic data [28,29].
However, the results from MG132 treated ∆F508-CFTR interactomes indicate that corrector
drug effect on these associations may be context dependent, according to the sub-type
specificity of the chaperone and the proteasomal activity. This supports the idea [79] that
co-inhibiting chaperone function in ∆F508 mutants may enhance corrector efficacy.

VAPB and NOS1AP were identified as candidate CFTR modulators, and through the
combination of FLIPR and membrane trafficking assays, we were able to assess channel
function and surface delivery defects, respectively. VAPB knockdown results in a signifi-
cantly reduced surface delivery and channel efflux of CFTR, and while we cannot at present
rule out a direct effect on channel activity, our simplest interpretation is that reduced
concentration of CFTR at the cell surface is the primary defect here. VAPB is an ER and
Golgi-localized membrane anchored protein that participates in vesicle trafficking and
regulates tethering at ER-contact sites via FFAT motifs of a number of lipid and proteosta-
sis pathway components [49]. VAPB has been previously shown to inhibit degradation
of ∆F508-CFTR by sequestering cytosolic degradation machinery [49], and in our study,
∆F508-CFTR association with VAPB is enhanced upon proteasome inhibition by MG132.
We propose that VAPB knockdown results in increased targeting of the peripheral pool
of CFTR to the proteasome, resulting in reduced surface levels and lower channel efflux.
By contrast, NOS1AP knockdown decreases channel activity without affecting the surface
levels of CFTR. Based on its reported function, NOS1AP and the associated nitric oxide
(NO) Synthase 1 may act as CF modifiers, and possibly activate intracellular cAMP to im-
pinge on CFTR channel function [70,80–82]. The NOS1AP association with ∆F508-CFTR is
augmented by Orkambi treatment, and undetectable in MG132 treated cells. Thus, it is less
likely to occur with proteasome associated pools of ∆F508 CFTR destined for degradation.
We propose that NOS1AP associates with corrector accessible CFTR, possibly at the PM,
where it may regulate channel activity. Further studies will be aimed at characterizing these
associations in more detail and categorizing other candidates in these functional assays.

Despite the many benefits of using BioID to identify novel interactors, some limitations
exist in this study. Firstly, due to the nature of ∆F508-CFTR retention in the ER and
its rapid degradation by the quality control machinery, there may be less bait protein
available (Supplementary Figure S3b). This may lead to a higher false negative rate
of detection of preys in the ∆F508-CFTR dataset. This was partially mitigated by the
use of MG132 in this study, and provided an additional comparison set from which to
discriminate altered associations reliably. Secondly, our proximity profiles were generated
in engineered HEK293 cells, an established cell model that has been extensively used
for BioID analyses [17,37,77,78]. This cell line expresses very low levels of endogenous
CFTR and is therefore routinely used to express heterologously expressed CFTR constructs.
Unlike bronchial epithelial lines which can be suitable in vitro models for the human airway
and for CF studies [73], these lines do not form apically differentiated epithelia and may not
express several transcripts relevant to CF. However, CFTR interactome data generated in
HEK293 cells (also in [29]) can be investigated further in more tissue-specific models, such
as the CFBE lines we have employed here. That we have identified numerous previously
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validated CFTR interactors/regulators is proof of the utility of this approach. Future work
would entail the use of orthogonal methods and CF cell lines to functionally validate and
expand our dataset. The interactomes that we have generated can serve as a starting
point for hypothesis driven studies for examining the modulation and dynamics of CFTR
interactions. In conclusion, our work supports the continued use of BioID to study CFTR
biology and suggests that it may also be effective in identifying important interactions in a
variety of combinations of CF mutations and CFTR modulator drug contexts.

4. Materials and Methods
4.1. Cell Culture and Reagents

Cells were maintained in modified Eagle’s medium (DMEM) supplemented with
10% FBS, 100 g/mL penicillin/streptomycin at 5% CO2 at 37 ◦C. HEK293 T-REx cells
were stably transfected with tetracycline-inducible pcDNA5 FRT/TO BirA-R118G—FLAG
(BirA*FLAG) expression vectors, expressing ∆F508-CFTR.

4.2. Immunofluorescence and Immunoblotting

The following primary antibodies were used for IF experiments: mouse anti-FLAGm2
(Sigma Aldrich, Oakville, ON, Canada; at 1:500) and rabbit Na/K ATPase (Abcam, Cam-
bridge, UK; at 1:1000). Streptavidin-488 (Abcam, Cambridge, UK; at 1:500) was used to
detect biotinylated proteins in IF experiments and Streptavidin-HRP (Bio-Rad, Hercules,
CA, USA; 1:5000) was used to detect biotinylated protein in immunoblotting experiments;
both without a secondary antibody. Secondary antibodies used for IF were all obtained
from Invitrogen, used at 1:1000, and include: Alexa Fluor 488 donkey anti-mouse and Alexa
Fluor 647 donkey anti-rabbit (Invitrogen, Burlington, ON, Canada).

4.3. Proximity Dependent Biotinylation

BioID and mass spectrometry were conducted according to the protocol from Coy-
aud et al. (Mol. Cell. Proteomics 2015) [83]. Cells were grown in five 15 cm cell culture
dishes until 70% confluence. Cells were incubated for 24 h in complete media supple-
mented with 1 µg/mL tetracycline (BioShop, Burlington, ON, Canada) and 50 µM biotin
(BioShop, Burlington, ON, Canada) 8 h post initial induction. Cells were lysed, sonicated
twice for 10 s at 35% amplitude (Sonic Dismembrator 500; Fisher Scientific, Waltham, MA,
USA) and centrifuged at 16,000 rpm (35,000× g) for 30 min at 4 ◦C. Supernatants were
passed through a Micro Bio-Spin Chromatography column (Bio-Rad 732-6204, Hercules,
CA, USA) and incubated with 30µL of high-performance streptavidin-packed beads (GE
Healthcare, Chicago, IL, USA) for 3 h at 4 ◦C on an end-over-end rotator. Beads were
collected (2000 rpm, 2 min) and washed six times with 50 mm ammonium bicarbonate
(pH8.3). Beads were then treated with L-1-Tosylamide-2-phenylethyl chloromethyl ketone
(TPCK)-treated trypsin (Promega, Madison, WI, USA) for 16 h at 37 ◦C on an end-over-
end rotator. Another 1 µL of TPCK-trypsin was added and incubated in a water bath at
37 ◦C for 2 h. Supernatants were lyophilized and stored at 4 ◦C for downstream mass
spectrometry analysis.

4.4. Experimental Design and Statistical Rationale

Four BioID runs were conducted on FlagBirA*-CFTR WT and mutant lines. These
four runs consisted of two technical replicates (n = 2) from two biological replicates (n = 2;
total n = 4). Control runs of a BioID analysis conducted on the corresponding fractions on
cells expressing the FlagBirA*-tag alone were used for comparative purposes. Replicates
were completed for FlagBirA*-CFTR in vehicle control (0.1% DMSO) conditions. Replicates
were completed for FlagBirA*-∆F508- CFTR in both vehicle control (0.1% DMSO) and
drug exposed (3 µM VX-809 + 1 µM VX-770) conditions, in the presence or absence of
the proteasome inhibitor, MG132. Data were analyzed using the trans-proteomic pipeline
via the ProHits 5.0.2 software suite. Proteins identified with an iProphet cut-off of 0.9
were analyzed using SAINT Express v. 3.6.1 [83] to identify high confidence interactors
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(MSV000088626). BioID datasets were highly reproducible. All replicates for each condition
were tested for correlation and ensured to have an average R2 value > 0.9 before proceeding
with the analysis (Supplementary Figures S6–S10). Proteins identified that scored above a
Bayesian False Discovery Rate (BFDR) of 1% were considered high confidence interactors.
Normalization of prey spectral counts was implemented using bait spectral counts for each
condition when comparing datasets (Supplementary Figure S3b). Proximity interactors
considered significantly gained or lost upon exposure to combination therapy had to
achieve a log2-fold change (log2FC) ± 1.0. The logarithmic ratio of protein intensities
between two samples and the negative logarithmic p-values of the Student’s t-test obtained
from biological replicates between samples were calculated for volcano plot analysis.
Volcano plot compared biotinylated proteins identified in ∆F508 + MG132 vehicle to
Orkambi exposed conditions illustrating preys enriched in GO categories for ER, chaperone,
protein folding, and cellular response to stress. Preys marked in red have lower spectral
counts in the ∆F508 + MG132 + Orkambi condition (log2FC < −0.4). Preys marked in green
have higher spectral counts in the ∆F508 + MG132 + Orkambi condition (log2FC < 0.4).

4.5. CFTR Channel Function in CFTR expressing HEK293 Cells

CFTR FLAG-BirA* fusions were expressed in HEK293 Flp-In T-REx cells and were
seeded in 96-well plates (Costar, Corning). After 24 h tetracycline induction, cells were
then loaded with blue FLIPR membrane potential dye dissolved in chloride-free buffer
(136 mM sodium gluconate, 3 mM potassium gluconate, 10 mM glucose, 20 mM HEPES,
pH 7.35, 300 mOsm, at a concentration of 0.5 mg/mL) for 30 min at 37 ◦C. CFTR function
was determined using BioTek Synergy HTX Multi-Mode Reader at 37 ◦C. After establish-
ing a baseline fluorescence read (excitation 530 nm/emission 560 nm) for 3 min, CFTR
was stimulated using Forskolin (Fsk) (10 µM, MedChemExpress, Princeton, NJ, USA).
CFTR-mediated depolarization of the plasma membrane was detected as an increase in
fluorescence following which the CFTR inhibitor, CFTRinh-172 (10 µM, MedChemExpress,
Princeton, NJ, USA) was added to inactivate CFTR. The changes in fluorescence to CFTR
agonist were normalized relative to the average baseline fluorescence (∆F/F0) [84].

4.6. SiRNA KD of Candidate Interactors

CFTR siRNA was purchased from Ambion (Austin, TX, USA) and designed to target
CFTR. Previously validated VAPB siRNA [85] was kindly provided by Dr. Peter Kim’s
laboratory (Toronto, ON, Canada). siRNAs were transfected at 20 nM using RNAiMAX
(Invitrogen/Thermofisher, Burlington, ON, Canada) and following the manufacturers’
instructions. After 48 h, CFTR expression was induced by supplementing the media with
1 µg/mL tetracycline, and cells were used in downstream assays after an additional 24 h.

4.7. Surface Expression Assay and Image Analysis

After siRNA transfection, CFBE mCherry-Flag-WT-CFTR cells were seeded on custom
patterned coverslips [86]. After 72 h, extracellular Flag-tags were immunostained in non-
permeabilized cells. After culture medium removal, cells were washed once in ice cold
PBS and incubated 45 min on ice with anti-FLAGm2 antibody. Then, cells were washed
3 times with ice cold PBS, incubated 10 min with 4% PFA on ice and transferred to room
temperature for the remaining staining procedure. Cells were washed with PBS and
incubated 30 min with Alexa Fluor 488 donkey anti-mouse before mounting onto glass
slides. Fluorescence images were acquired on an automated DeltaVision Microscope with a
60× 1.4NA objective and 2× 2 binning (GE Healthcare). For every well, 25 fields of Z-stacks
encompassing 8 µm were deconvolved, projected and exported as 16-bit TIFF images prior
to analysis. On average, each field sampled 25–40 cells. Using the MATLAB image analysis
toolbox, we estimated dark noise and background using demarcated regions in several
images from each dataset. The background was calculated using the most populated
pixel bin from histograms of these regions (for each channel), and subtracted from the
corresponding channels. For every field, each channel was thresholded using a stringent
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cutoff (7× and 20× over background for the ‘surface’ and ‘total’ channels, respectively)
to select only pixels corresponding to cellular contents, and all other pixel values were
discarded from subsequent calculations. The mean thresholded pixel intensity for each
channel was then calculated. The ratio of surface:total was calculated by dividing the
two background-subtracted and thresholded ‘surface’ and ‘total’ channels for every field,
thereby generating 25 ratios for each set. All imaging experiments were performed three
times and displayed similar trends. The mean and standard error of three experiments is
plotted (Figure 5d). MATLAB scripts are available upon request.

4.8. BioInformatics and Data Visualization

Gene Ontology (GO) enrichments were performed using PANTHER Classification
system v.16.0. The CFTR dataset included all proteins defined in the SAINT output file.
Known interactions for CFTR were downloaded from BioGRID77 (version 4.4.203). The
networks were generated using Cytoscape79 version 3.8.0. Dot plots were generated
using ProHits-viz78 [87] Quantitation is encoded using the color gradient representing
control-subtracted spectral counts (capped at 20), with relative spectral counts across baits
represented by node size. Border colour is encoded by BFDR value (black ≤ 0.01; blue
≤ 0.05; light blue > 0.05). Prey profiles were compared to the curated BioID dataset of
192 cellular markers [37] and the Jaccard Distances between datasets were exported for
analysis. Interactors for which no meaningful function or localization was found via protein
databases [88] were removed.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23052442/s1.
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