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A B S T R A C T   

Water diffusion anisotropy in the human brain is affected by disease, trauma, and development. Microscopic 
fractional anisotropy (μFA) is a diffusion MRI (dMRI) metric that can quantify water diffusion anisotropy in
dependent of neuron fiber orientation dispersion. However, there are several different techniques to estimate μFA 
and few have demonstrated full brain imaging capabilities within clinically viable scan times and resolutions. 
Here, we present an optimized spherical tensor encoding (STE) technique to acquire μFA directly from the 2nd 
order cumulant expansion of the powder averaged dMRI signal obtained from direct linear regression (i.e. 
diffusion kurtosis) which requires fewer powder-averaged signals than other STE fitting techniques and can be 
rapidly computed. We found that the optimal dMRI parameters for white matter μFA imaging were a maximum 
b-value of 2000 s/mm2 and a ratio of STE to LTE tensor encoded acquisitions of 1.7 for our system specifications. 
We then compared two implementations of the direct regression approach to the well-established gamma model 
in 4 healthy volunteers on a 3 Tesla system. One implementation used mean diffusivity (D) obtained from a 2nd 
order fit of the cumulant expansion, while the other used a linear estimation of D from the low b-values. Both 
implementations of the direct regression approach showed strong linear correlations with the gamma model (ρ =
0.97 and ρ = 0.90) but mean biases of − 0.11 and − 0.02 relative to the gamma model were also observed, 
respectively. All three μFA measurements showed good test-retest reliability (ρ ≥ 0.79 and bias = 0). To 
demonstrate the potential scan time advantage of the direct approach, 2 mm isotropic resolution μFA was 
demonstrated over a 10 cm slab using a subsampled data set with fewer powder-averaged signals that would 
correspond to a 3.3-min scan. Accordingly, our results introduce an optimization procedure that has enabled 
nearly full brain μFA in only several minutes.   

1. Introduction 

Diffusion MRI (dMRI) can noninvasively acquire information about 
the microstructural characteristics of biological systems by probing the 
displacement of water molecules in tissue [1,2]. Microstructural features 
that affect the apparent diffusion rate of water include cell size, shape, 
density, orientation, and the presence of membranes and barriers; thus, 
dMRI has found use in the study of neurological diseases that alter tissue 
microstructure [3–6]. 

The most commonly used dMRI technique is diffusion tensor imaging 
(DTI) [7], in which dMRI data is fitted to the diffusion tensor model to 
estimate metrics such as the mean diffusivity (D) and fractional 
anisotropy (FA). DTI represents the dMRI signal as being entirely 
characterized by Gaussian diffusion [8], implicitly meaning the 

logarithm of the dMRI signal is assumed to depend on the b-value up to 
the first order in the cumulant expansion [9]. However, diffusion in 
tissues is too complex to be fully represented by Gaussian diffusion at 
high b-values [10], and characterizing the”non-Gaussian” signal pro
vides more information about the underlying tissue [11–13]. Diffusion 
kurtosis imaging (DKI) was developed to capture the effects of non- 
Gaussian diffusion by expanding the dMRI signal using cumulants up 
to second order in b-value [14]. Generally, DKI has been shown to be 
more sensitive than DTI towards quantifying microstructural changes 
that result from disease [15–17]. 

Non-Gaussian diffusion can be attributed to a number of sources 
including isotropic kurtosis from polydisperse diffusion tensors with 
different mean diffusivities, anisotropic kurtosis from diffusion tensors 
dispersed among multiple orientations, time-dependent diffusion [18], 
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and microscopic kurtosis from restricted diffusion and microscopic 
structural disorder [12,18–20]. Unfortunately, both DTI and DKI are 
unable to distinguish between true microstructural changes and neuron 
fiber orientation dispersion, reducing their specificity to disease in brain 
regions containing crossing or fanning axons [21,22]. While DTI does 
not consider the effects of kurtosis at all, DKI cannot differentiate be
tween any of the different sources of kurtosis without imposing as
sumptions about the underlying tissue [14,23]. 

In recent years, efforts have been made to develop dMRI techniques 
that can quantify water diffusion anisotropy independent of orientation 
dispersion [24,25]. Microscopic anisotropy (μA) is an anisotropy metric 
that is independent of both reference frame and orientation dispersion, 
and microscopic fractional anisotropy (μFA) is a normalized variation of 
μA that additionally aims to remove the dependence on compartment 
size [26]. There are multiple techniques to compute μFA, which can be 
categorized into: (1) methods that involve the use of linear tensor 
encoding (LTE) sequences [27–29], (2) methods that utilize double 
diffusion encoding (DDE) [30], and (3) methods that use nonconven
tional continuous gradient waveforms such as spherical tensor encoding 
(STE) [22,25,31–33]. 

LTE methods utilize models to decouple microstructural properties 
from mesoscopic tissue orientation [34]. These techniques require prior 
knowledge or estimates of tissue properties such as the axonal volume 
fraction or the intracellular radial diffusivity [34] but are highly 
accessible because LTE sequences are commonly used in both DTI and 
DKI. Generally, anisotropy can be estimated by acquiring LTE signals 
across multiple directions and b-shells and fitting the powder-averaged 
signals to a constrained model such as the spherical mean technique 
(SMT) model [28,29]. Recently, Henriques et al. showed that μFA esti
mations using LTE are inaccurate compared to ground truth anisotropy, 
suggesting the techniques are not robust or do not sufficiently describe 
the underlying microstructure [34]. 

DDE techniques to estimate μA and μFA use two independent 
diffusion-encoding pulse vectors in succession to probe the correlation 
of water diffusion in different directions [24,35–38]. DDE can distin
guish between microstructural properties and orientation dispersion 
without imposing modeling constraints [30,35], likely making the 
technique more robust and accurate than LTE techniques by eliminating 
the possibility of assumption misestimation. Furthermore, the clinical 
viability of DDE μFA imaging was demonstrated in a preliminary study 
of multiple sclerosis (MS) patients at 3 T with a 5 min scan time and 3 
mm isotropic resolution [39], and the minimalistic sampling scheme 
used in that work was further validated [40]. While DDE is a promising 
technique, it has some limitations. Due to the use of two consecutive 
diffusion-encoding pulses separated by a mixing time, DDE sequences 
require longer TEs than standard LTE sequences to achieve equal b- 
values. Furthermore, a twice-refocused implementation is required to 
avoid biases due to concomitant fields [41,42], further increasing the 
TE. A notable example of a DDE technique to estimate μFA is correlation 
tensor imaging (CTI) [19]. 

Techniques that utilize nonconventional diffusion-encoding wave
forms probe unique q-space trajectories that provide additional infor
mation about tissue microstructure beyond the capabilities of LTE. In 
STE-based methods, signal variance due to non-Gaussian diffusion is 
characterized into two sources: isotropic variance arising from poly
dispersity in mean diffusivity, and anisotropic variance arising from 
microscopic anisotropy [22]; a general assumption underlying these 
techniques is that LTE signal depends on both isotropic and anisotropic 
variance while STE signals depend only on isotropic variance (i.e., time 
dependent diffusion and microscopic kurtosis are ignored). STE-based 
μFA protocols use unique waveforms to acquire single-shot STE diffu
sion weighted signals [25,43]. Though more TE-efficient than DDE, STE 
waveforms can potentially introduce time-dependent effects due to 
varying spectral content over the different gradient channels [43]. 
Furthermore, STE-based techniques assume that the dMRI signal 

contains only Gaussian compartments, which is an approximation that 
more advanced techniques like CTI avoid [19]. Some examples of 
techniques that use STE acquisitions to estimate μFA and other param
eters are the gamma model, in which the inverse Laplace transform of 
the gamma distribution is fitted to powder averaged dMRI signals from 
LTE acquisitions and STE acquisitions [22,44], and direct linear 
regression of the cumulant expansion of the diffusion signal [32,45,46]. 

The application of μFA imaging to clinical research is appealing due 
to the unique insight it may provide into brain microstructure; for 
example, preliminary studies have found that μFA can better distinguish 
between different types of brain tumors than FA and other MRI metrics 
[22] and that it provides improved delineation of MS lesions over FA as 
well as unique contrast compared to T1- and T2-weighted imaging [39]. 
The parameter’s insensitivity to orientation dispersion is advantageous 
over FA in the study or diagnosis of neuropathology in brain regions 
containing crossing or fanning fibers. However, μFA generally requires 
long scan times that are not clinically feasible, especially when used in 
conjunction with other imaging techniques that are required in the 
clinical workflow. Other demonstrations of μFA that have achieved 
shorter scan times did so at the cost of resolution [39,47], producing μFA 
maps with poorer resolution than typical FA maps acquired with DTI. To 
maximize scan efficiency, it is essential to understand the optimal pa
rameters required to measure μFA and use this information to design 
rapid protocols. To our knowledge, no comprehensive assessment of the 
optimal choices of b-value and relative numbers of LTE and STE ac
quisitions have been performed. 

The aims of this work were to optimize a protocol for acquiring μFA 
within a clinically viable scan time of <5 mins using the linear regres
sion approach, and to demonstrate the feasibility of this method by 
comparing it to the highly cited gamma model. We investigated the 
optimal b-values and ratio of STE to LTE acquisitions for the estimation 
of μFA in white matter and combined these findings with two imple
mentations of direct linear regression to enable the acquisition of full- 
brain, 2 mm isotropic resolution μA and μFA maps in vivo within a 
3.3 min scan time and a 2-min computation time. Estimates of μFA using 
direct approaches strongly correlated with the gamma model in white 
matter regions (ρ ≥ 0.9), and all approaches exhibited high test-retest 
reliability (ρ ≥ 0.77). 

2. Theory 

2.1. μFA estimation 

The normalized signal intensity of powder-averaged dMRI acquisi
tions of a multi-component system, assuming negligible time-dependent 
diffusion, can be represented by the cumulant expansion [25]: 

ln
(

S
S0

)

= − Db +
μ2

2
b2... (1)  

where S is the powder-averaged signal, S0 is the mean signal with no 
diffusion encoding, b is the b-value, and μ2 is the second central moment 
or variance of diffusivity. Lasic et al. [25] define the microscopic frac
tional anisotropy in terms of the scaled difference in variance between 
powder-average LTE and STE acquisitions: 

μFA =
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∆μ̃2 =
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where μ2
LTE and μ2

STE are the second terms in the cumulant expansions of 
powder-averaged LTE and STE acquisitions, respectively. Using eq. (1) 
up to the second cumulant term, the powder-averaged LTE and mean 
STE signals can be represented as: 
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SLTE = S0e− Db+
μLTE

2
2 b2 (4)  

SSTE = S0e− Db+
μSTE

2
2 b2 (5) 

If it is assumed that the only sources of kurtosis are dispersion in size 
and orientation of diffusion tensors, then the diffusion coefficient D will 
be equal between LTE and STE [22]. By assuming D is the same between 
LTE and STE signals acquired at the same b-value, eqs. (4, 5) can be 
substituted into eq. (3) to provide an estimate of the scaled difference in 
variance that notably does not depend on the non-diffusion weighted 
signal S0: 

∆μ̃2 =
2ln(SLTE/SSTE)

D2b2 (6) 

Substituting eq. (6) into eq. (1) provides an estimate of the μFA [46]: 
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Microscopic anisotropy is defined here based on the difference in 
signal between LTE and STE dMRI acquisitions, similar to the equation 
used in DDE protocols [36]: 

μA =
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By ignoring the third and higher order cumulant terms in deriving 
eqs. (4, 5), μA can be estimated from a single b-shell, reducing scan time; 
however, ignoring the higher cumulants comes with the cost of poten
tially introducing a bias to the measurement [48]. μFA can then be 
expressed in terms of μA by substituting eq. (8) into eq. (7): 

μFA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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(9)  

2.2. Diffusion coefficient estimation using the diffusion kurtosis model 

Explicitly enforcing that the diffusion coefficient D is the same be
tween LTE and STE acquisitions causes the minimum number of powder- 
averaged samples required to estimate the four unknowns in eqs. (4, 5), 
S0, D, μ2

LTE and μ2
STE, in a joint least squares estimation to be only four 

(with at least one non-zero b-value sampled for each of LTE and STE). 
For example, a protocol could contain LTE and STE acquisitions at a 
single high b-value (e.g., 2000 s/mm2), plus either STE or LTE acquisi
tions at two smaller b-values (e.g., STE at b = 0 and STE at b = 1000 s/ 
mm2). Contrary to previously proposed approaches, both STE and LTE 
would not be required in each shell using this joint estimation approach. 
Then, μA2 could be estimated from μ2

LTE and μ2
STE using eq. (3), and μFA 

estimated from eq. 9. This approach will be referred to as “joint linear 
regression”. Alternatively, μA2 could be estimated directly from the STE 
and LTE acquisitions at the highest b-value (e.g., 2000 s/mm2) using eq. 
(8) while D could be estimated using a linear fit over the low b-values (e. 
g., LTE at b = 0 and LTE at b = 1000 s/mm2). Ignoring kurtosis in the 
estimation of D may introduce a bias, but this approach is extremely 
computationally efficient which may improve clinical relevance. This 
will be referred to as “simplified regression”. 

2.3. μA optimization 

To optimize a protocol for μA and μFA, sequence parameters that 
maximize the ratio of the mean measurement to its standard deviation 
can be evaluated, similar to the approach used to determine optimal 
parameters for diffusivity measurements [49]. Using standard error 

propagation [50], the signal-to-noise ratio (SNR) of a μFA image 
generated using eq. (9) can be related to the variance in μA2 and D, with 
μFA image quality increasing with reduced variance in μA2 and D 
measurements. It is expected that μA2 will generally have much higher 
variance than D because it depends only on the highest b-shell data (eq. 
(8)), which has the lowest SNR. Thus, we will focus on the optimization 
of μA2 as a surrogate for the optimization of μFA. The SNR of a μA2 image 
can be expressed as (Appendix): 
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where nLTE is the number of LTE directions acquired, nSTE is the number 
of STE averages acquired, SLTE and SSTE are the powder-averaged signals 
of the LTE and STE images, respectively, and σ is the mean image noise. 
Given that μA2/σμA2 is maximized when nSTE/nLTE = SLTE/SSTE (see Ap
pendix), and that SLTE and SSTE are dependent on b-value, the optimal 
protocol parameters (b and nSTE/nLTE) can be determined using eq. (10). 

Eqs. (4, 5) can be substituted into eq. (10), and assuming all STE and 
LTE acquisitions are performed with the same TE: 
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Eq. (11) reveals that the SNR depends on TE(b) by an exponential 
prefactor. Note that the TE is a function of the b-value, as higher b-value 
acquisitions will require longer TEs. 

3. Methods 

Two sets of MRI scans were performed on two sets of volunteers for 
this work. The study was approved by the Institutional Review Board at 
Western University and informed consent was obtained from each 
volunteer prior to scanning. The first set of scans (3.1) consisted of LTE 
and STE acquisitions over a wide range of b-values and was acquired to 
provide the signal data needed to optimize μA using eq. (10). The second 
set of scans (3.2, 3.3) performed test-retest measurements with a 
comprehensive sequence that allowed for μFA mapping using the 
gamma model, joint linear regression (section 2.2), and simplified linear 
regression (section 2.2). The various dMRI sequences and data subsets 
are summarized in Table 1 and are described in detail below. 

3.1. Sequence optimization 

MRI scans were performed in 4 healthy volunteers (2 female and 2 
male, mean age 22.4 ± 1.7 years) on a 3 T Prisma whole-body MR 
system (Siemens Healthineers) with 80 mT/m strength and 200 T/m/s 
slew rate. Multiple b-shell diffusion data were acquired in a single scan 
using LTE and STE sequences: 6 image volumes were acquired at b = 0 s/ 
mm2, and 6 LTE directions and 6 STE averages were acquired at b-values 
between 500 and 3500 s/mm2, in increments of 500 s/mm2. The STE 
sequence was designed to avoid net phase accumulation from concom
itant fields by using trapezoidal gradient schemes that are symmetric 
about a 180◦ pulse (Fig. 1) [41], while a standard pulsed gradient spin 
echo sequence was used for LTE acquisitions [1]. The other parameters 
were TE/TR = 125/8700 ms, FOV = 192 × 192 mm2, 2 mm isotropic 
resolution, 45 slices, rate 2 GRAPPA, 2 averages, and total scan time =
29 min. Images were processed using Gibbs ringing correction and Eddy 
current correction with FSL Eddy [51]. 

A region of interest (ROI) across multiple slices was manually 
selected in the frontal WM for each patient and used to measure the 
mean LTE signal and mean STE signal at each b-value. A joint regression 
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was performed on the mean LTE and STE signal data to fit the curves to 
eq. (1) up to the third cumulant, with the assumption that D is the same 
in LTE and STE acquisitions. The best-fit cumulant expansions for each 
of the 4 volunteers were averaged and used together with eq. (10) to 
determine the optimal b-value and optimal ratio of LTE to STE acqui
sitions in a μA protocol. In evaluation of eq. (10), the T2 decay constant 

was assumed to be 80 ms to approximate WM at 3 T [52]. These SNR 
calculations assume the same total number of acquisitions at each b- 
value, with only the ratio of nSTE/nLTE acquisitions changing. 

3.2. Comprehensive acquisitions 

A comprehensive 113 acquisition dMRI protocol was used to acquire 
the data to compare μFA volumes generated with different methods. 4 
healthy volunteers (2 female and 2 male, mean age 28.0 ± 6.6 years) 
were imaged at 3 T with a 9-min dMRI scan with TE/TR = 94/4500 ms. 
The scan consisted of 3, 3, 15, 6, and 22 LTE directions and 6, 6, 10, 10, 
and 27 STE averages at b = 100, 700, 1000, 1400, and 2000 s/mm2, 
respectively, as well as 5 averages at b = 0 s/mm2. These directions were 
chosen to enable retrospective splitting of the data into the subsets 
described below. The other parameters were FOV = 220 × 220 mm2, 2 
mm isotropic resolution, 48 slices, and rate 2 in-plane parallel imaging 
combined with rate 2 simultaneous multislice (SMS). Volunteers were 
also scanned using T1-weighted MPRAGE with 1 mm isotropic resolu
tion. After removing each volunteer from the MR scanner for a period of 
5–10 min, a repeat measurement was performed using only the dMRI 
protocol. Data from these acquisitions is available online [dataset] [53]. 

Two separate post-processing pipelines were performed on the data 
to acquire two different data sets: a “noisy” data set that omitted 
denoising to test the effects of using an optimized vs. suboptimal ratio of 
STE to LTE scans to compute μA, since denoising is a non-linear opera
tion that invalidates the assumptions used in the derivation of eq. (10), 
and a denoised data set to compare the μFA approaches described in 
section 2.2 to the gamma model. All the diffusion MRI data was pro
cessed using Gibbs ringing correction and FSL Eddy [51], and PCA 
denoising [54] was performed prior to these corrections for the denoised 
data set. 

The T1-weighted anatomical volumes were segmented into WM and 
grey matter (GM) masks using FMRIB’s Automated Segmentation Tool 
(FAST) [55] and were registered to the denoised dMRI volumes using 

Table 1 
Summary of MRI sequences and data subsets for in vivo acquisitions.   

Sequence optimization Comprehensive 

TE/TR (ms) 125/8700 94/4500 
Slices 45 axial 48 axial 
Parallel Imaging R = 2 in-plane R = 2 in-plane, 2 SMS (4 total) 
Resolution (mm3) 2 × 2 × 2 2 × 2 × 2 
Diffusion scheme 0 s/mm2 (6 LTE) 

500 s/mm2 (6 LTE + 6 STE) 
1000 s/mm2 (6 LTE + 6 STE) 
1500 s/mm2 (6 LTE + 6 STE) 
2000 s/mm2 (6 LTE + 6 STE) 
2500 s/mm2 (6 LTE + 6 STE) 
3000 s/mm2 (6 LTE + 6 STE) 
3500 s/mm2 (6 LTE + 6 STE) 

0 s/mm2 (5 LTE) 
100 s/mm2 (3 LTE + 6 STE) 
700 s/mm2 (3 LTE + 6 STE) 
1000 s/mm2 (15 LTE + 10 STE) 
1400 s/mm2 (6 LTE + 10 STE) 
2000 s/mm2 (22 LTE + 27 STE)   

Data subsets  
Optimization validation (no denoising) – Suboptimal subset 

100 s/mm2 (3 LTE + 6 STE) 
700 s/mm2 (3 LTE + 6 STE) 
1400 s/mm2 (6 LTE + 10 STE) 
2000 s/mm2 (16 LTE + 6 STE) 
Standard subset 
100 s/mm2 (3 LTE + 6 STE) 
700 s/mm2 (3 LTE + 6 STE) 
1400 s/mm2 (6 LTE + 10 STE) 
2000 s/mm2 (6 LTE + 16 STE) 

Model comparisons (denoised) – Standard subset 
*Same as standard subset above 
Simplified subset 
100 s/mm2 (3 LTE) 
1000 s/mm2 (15 LTE) 
2000 s/mm2 (16 LTE + 22 STE) 

Minimalistic sequence (denoised) – 100 s/mm2 (3 STE) 
1000 s/mm2 (6 STE) 
2000 s/mm2 (16 LTE + 18 STE)  

Fig. 1. Schematic representation of the spherical tensor encoding gradient 
waveforms. Diffusion encoding blocks have been inserted on both sides of a 
180◦ pulse in all three gradient directions to acquire an STE diffusion MRI 
signal. Implicit gradient reversal due to the 180◦ pulse has been applied. 
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symmetric diffeomorphic and affine transforms with ANTS software 
(https://github.com/ANTsX/ANTs) [56]. The retest noisy and denoised 
volumes were also registered to the respective test volumes using a rigid 
transform with ANTS. 

To validate eq. (10), the noisy dMRI data was split into two 56-acqui
sition subsets to represent a standard protocol that approximately 
complies with our optimization results and a suboptimal protocol that 
does not comply. The standard protocol was based on a rapid sequence 
proposed by Nilsson et al. [47] and included 3, 3, 6, and 6 LTE directions 
and 6, 6, 10, and 16 STE averages at b = 100, 700, 1400, and 2000 s/ 
mm2. The suboptimal protocol consisted of the same acquisitions with 
one exception: the ratio niso/nlin at the b = 2000 s/mm2 shell was 6/16 
instead of 16/6, a suboptimal ratio (see 4.1). The 6 direction subset of 
LTE acquisitions used an icosahedral sampling scheme [47], and the 16 
direction subset was distributed using electrostatic repulsion [57]. 
Notably, no denoising was applied to these data subsets. 

To compare linear regression to the gamma model, the denoised 
dMRI data was split into two subsets with each containing 56 acquisi
tions. The standard subset, to be used to compare the gamma model 
versus joint linear regression (section 2.2), used the rapid sequence by 
Nilsson et al. described above [47]. An additional subset, referred to 
herein as the “simplified subset”, included 22 STE averages at b = 2000 
s/mm2 and 3, 15, and 16 LTE directions at b = 100, 1000, and 2000 s/ 
mm2 (56 total acquisitions), and was designed to investigate whether a 
single b-shell to compute μA2 (b = 2000 s/mm2) can be added to a DTI 
acquisition (b = 100, 1000 s/mm2) to enable μFA imaging using the 
simplified regression approach described in section 2.2. The b = 1000 
and 2000 s/mm2 LTE shells were determined separately from each other 
using electrostatic repulsion. 

An additional subset of the comprehensive scan containing 43 ac
quisitions was used to demonstrate the potential scan time advantage of 
the linear regression technique. This “minimalistic subset” contained 16 
LTE directions at b = 2000 s/mm2 and 3, 6, and 18 STE averages at b =
100, 1000, and 2000 s/mm2, respectively, and would have required only 
3.3 min of scan time. 

3.3. Analysis 

To validate eq. (1), the SNR of μA2 was compared between the 
standard and suboptimal subsets of the noisy dMRI data by first esti
mating μA2 at b = 2000 s/mm2 in both the test and retest volumes for 
each volunteer. Then, the test-retest coefficients of variance (CoVs) of 
the standard and suboptimal volumes across all volunteers were 
compared as a surrogate of SNR. 

For model comparisons with the denoised data, the powder-averaged 
STE and LTE signals vs. b-value were fitted to the diffusion kurtosis 
model using a joint non-negative least squares method assuming 
consistent D between STE and LTE, and μFA was computed using eq. (2) 
(μFAjoint). μFA was also estimated using Nilsson et al.’s Multidimen
sional diffusion MRI software [58] (https://github.com/markus-nilsso 
n/md-dmri) to fit the diffusion-weighted signals to the gamma model 
(μFAgamma). μFA maps were generated for each volunteer using these 
two methods in the standard subset of data. 

Additionally, μFA was estimated using eq. (9) in the simplified subset 
by decoupling μA2 and D (μFAsimp): μA2 was estimated at b = 2000 s/ 
mm2 using the direct cumulant method (eq. (8)) while D was estimated 
by fitting the b = 100 and 1000 s/mm2 LTE data to the DTI model using 
FMRIB’s DTIFIT tool. 

The μFA maps from the different methods and subsets were then 
compared in WM using Bland-Altman plots and voxelwise scatter plots, 
and Pearson correlation coefficients were computed between each 
technique. To test the repeatability of the measurement techniques, 
Bland-Altman plots were generated for each patient to compare the 
initial and repeat μFA volumes and Pearson correlation coefficients were 
computed between initial and repeat μFA maps. 

The minimalistic subsets were used to generate full-brain μFA maps 

using the joint regression approach (section 2.2), and the repeatability of 
this measurement technique was assessed using the methods described 
above. The maps generated using these subsets were not compared to the 
gamma model as they contained too few b-shells for gamma model fitting. 

4. Results 

4.1. Sequence optimization 

The logarithm of the powder-averaged WM dMRI signal as a function 
of b-value, averaged across all volunteers, is shown in Fig. 2. As expected 
[22], the departure from monoexponential signal decay was greater in 
the LTE than STE signal curve due to the mesoscopic orientation of 
tensors. Fig. 3 shows the variation in μA2/σμA2 with b-value and the ratio 
of nSTE/nLTE assuming a fixed total number of acquisitions (nSTE + nLTE). 
For any given b-value, the optimal nSTE/nLTE was computed to be equal 
to the ratio of the powder averaged signals, SLTE/SSTE, at said b-shell. The 
highest μA2/σμA2 occurred when the b-value was 2000 s/mm2, for which 
the optimal nSTE/nLTE was approximately 1.7. However, a wide range of 
dMRI parameter configurations yielded an SNR above 95% of the 
optimal parameters for μA2 SNR. 

A significant drop off in SNR occurred for nSTE/nLTE < 1, suggesting 
that image quality is maximized when the number of STE acquisitions is 
greater than or equal to the number of LTE acquisitions. The suboptimal 
dataset is located in this region where the SNR sharply decreases, while 
the standard data set is in the high SNR region that varies slowly. Using 
the powder averaged STE and LTE WM signal data from the noisy data 
subset at b = 2000 s/mm2 across all volunteers along with eq. (10), the 
SNR of μA2 in the suboptimal subset was predicted to be 87% of the SNR 
of μA2 in the standard subset. Analysis of the test and retest μA2 volumes 
revealed a CoV of 22.94% in the standard measurement and a CoV of 
25.78% in the suboptimal measurement, yielding an experimentally 
acquired SNR ratio of approximately 89% (since CoV is analogous to 
SNR− 1) which is comparable to the value of 87% predicted by eq. (10). 
Example μA2 images estimated using the standard and suboptimal sub
sets are depicted in Fig. 4. 

Fig. 2. Logarithm of the diffusion MRI signal vs. b-value in frontal white 
matter. The plot shows the powder-averaged signal from a manually prescribed 
region of interest across four volunteers as measured with linear tensor 
encoding and spherical tensor encoding (black and blue circles, respectively), 
while the lines show the third order cumulant model fit. Also depicted are the 
standard deviations across the volunteers. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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4.2. Comparison between different μFA techniques 

Example μFAgamma and μFAjoint maps computed from the standard 
subset, as well as μFAsimp maps computed from the DTI subset, are 
depicted in Fig. 5. A sample slice from the raw data, acquired at b =
2000 s/mm2, is depicted in Supplementary Fig. S1. μFA was observed to 
be qualitatively consistent across the different techniques and data 
subsets and image quality was comparable between them. Notably, μFA 
and μA were observed to be negligible in regions containing only CSF, 
such as in the lateral ventricles, where diffusion is expected to be 
isotropic. 

Scatter plots and Bland-Altman plots comparing WM μFA using the 
three different estimation approaches in all volunteers are presented in 
Fig. 6. Strong linear correlations were observed in the scatter plots 
comparing each volume, with respective Pearson correlation co
efficients of 0.97 (μFAgamma vs. μFAjoint), 0.90 (μFAgamma vs. μFAsimp), 
and 0.90 (μFAjoint vs. μFAsimp). Relative to μFAgamma, the mean WM 
biases in the other volumes were − 0.11 (μFAjoint) and − 0.02 (μFAsimp). 

4.3. Analysis of repeatability 

Bland-Altman plots comparing the test and retest μFA volumes across 
all volunteers revealed no biases in repeat measurements (Fig. 7). The 
Pearson correlation coefficients between the test and retest μFA maps 
were 0.83 (μFAgamma), 0.79 (μFAjoint), and 0.84 (μFAsimp). 

4.4. Minimalistic sequence 

Sample μFA, μA2, and LTE and STE variance maps generated using 
the minimalistic data subsets are depicted in Fig. 8. Bland-Altman plots 
comparing the test and retest volumes (not depicted) revealed no biases 
between the measurements, a CoV of 5%, and a Pearson correlation 
coefficient of 0.77, demonstrating strong evidence of repeat measure
ment reliability. 

5. Discussion 

Microscopic anisotropy mapping has been gaining popularity in 
neuroimaging studies because it provides a marker of tissue microstruc
ture independent of orientation dispersion. The aims of this work were 

two-fold: (1) to determine the optimal dMRI parameters (b-value and 
nSTE/nLTE) needed to maximize image quality for a given scan time or 
number of acquisitions and use this information to design a rapid pro
tocol with <5 min scan time, and (2) to compare the linear regression- 
based μFA techniques described in this work against the gamma model. 
The first aim was achieved by directly estimating μA2 from the cumulant 
expansion of powder-averaged LTE and STE acquisitions and then esti
mating the SNR of μA2 using standard error propagation theory. The 
optimal b-value of 2000 s/mm2 falls within the optimal range for DDE 

Fig. 4. Example μA2 images acquired with the standard (left) and suboptimal 
(right) subsets of the data without denoising. Lower image quality is observed 
in the right case, with some irregular features highlighted by the yellow circles. 
Images were acquired with rate 2 in-plane parallel imaging combined with rate 
2 simultaneous multislice. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Simulated μA2 SNR in white matter as a function of the b-value and the 
ratio of STE to LTE acquisitions (nSTE/nLTE). Though the maximum SNR 
occurred when b = 2000 s/mm and nSTE/nLTE = 1.7 (marked by an ‘X’), a wide 
range of parameters yielded SNRs greater than 95% of the maximum SNR, 
suggesting that there is flexibility in parameter choice when designing a pro
tocol. Notably, a significant drop off in SNR occurred for nSTE/nLTE < 1, sug
gesting that image quality is maximized when the number of STE acquisitions is 
greater than or equal to the number of LTE acquisitions. 
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methods; Ianus et al. found that b-values between 2000 and 3000 s/mm2 

are optimal for single-shell DDE estimations of μA because lower b-values 
result in noisy images while higher b-values result in large biases [36]. 
The optimal nSTE/nLTE (SLTE/SSTE) is somewhat intuitive as STE images 
typically have lower signal than LTE images due to the more rapid signal 
decrease with b-value. Notably, a steep drop-off in SNR with nSTE/nLTE 
ratios below 1 was observed. These optimization findings were validated 
by the test-retest CoV ratio between the standard and suboptimal data 
sets agreeing with the SNR ratio predicted by eq. (10). Notably, these 

findings are complementary to recommendations for the minimal num
ber of LTE directions to avoid rotational variance [59] and for optimized 
STE waveforms to minimize the TE [60]. The second aim was achieved by 
acquiring all the data necessary for all the different μFA volumes in a 
single acquisition, mapping μFA from different subsets of data, and per
forming voxelwise comparisons on the maps. Notably, the linear 
regression approaches described in section 2.2 yielded comparable reli
ability and strong correspondence with the gamma method when a 
maximum b-value of 2000 s/mm2 was used. 

Fig. 5. Example μFA images from one volunteer. Images were acquired using the gamma model with the standard subset (left), joint linear regression with the 
standard subset (center), and simplified linear regression (i.e., D computed from DTI using only b-values of 100 and 1000 s/mm2) (right). Comparable image quality 
is observed for the three methods. Images were acquired with rate 2 in-plane parallel imaging combined with rate 2 simultaneous multislice. 
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The μFA imaging techniques proposed in this work are suitable for 
use in clinical research due to the relatively minimalistic acquisition 
protocols needed to estimate μA2 and μFA. Furthermore, μFA compu
tation time in the standard subset only took approximately 2 min per 
volume using joint regression and was virtually instantaneous for 

simplified regression. When designing a rapid protocol to acquire μFA 
images using linear regression, the authors recommend using the 
following steps: (1) acquire enough LTE acquisitions at the highest b- 
value (e.g. 2000 s/mm2) to ensure rotational invariance in the powder- 
averaged signal [59], (2) acquire as many STE acquisitions as possible 

Fig. 6. Voxelwise correlations between μFA estimates acquired using different techniques in white matter (left) and Bland-Altman plots depicting biases between the 
methods in white matter (right): (a) μFAgamma vs. μFAjoint, (b) μFAgamma vs. μFAsimp, and (c) μFAjoint vs. μFAsimp. The dashed red line and solid black line in each of the 
scatter plots represent the identity and regression lines, respectively. The solid black line in the Bland-Altman plots represents the mean bias, and the dashed grey 
lines represent the ±1.96 standard deviation lines. 
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within the scan time limitation to bring the ratio of nSTE/nLTE as close to 
the optimal value (1.7 in this work) as possible, without going below 
nSTE/nLTE = 1 to avoid sharply decreasing SNR (Fig. 3), and (3) acquire 
STE acquisitions at 2–3 lower b-shells for curve fitting. The minimalistic 
sequence serves as an example of how this procedure can be used to 
develop a rapid imaging protocol. In designing this protocol, we first, 
decided to include 16 LTE acquisitions at b = 2000 s/mm2 to ensure 
rotational invariance. Next, we opted for 18 STE acquisitions at b =
2000 s/mm2 to achieve an nSTE/nLTE ratio of 1.125. Finally, we included 
3 and 6 STE acquisitions at b = 100 and 1000 s/mm2, respectively, for 
curve fitting, which resulted in a total acquisition time under 3.3 min. 
Note that post-processing was performed on this subset after separating 

it from the rest of the data. Notably, if the number of slices, resolution, 
and use of parallel imaging for this protocol was set to be the same as the 
rapid protocol proposed by Nilsson that required 3 min [47], the scan 
time would have been 2.3 min. Additionally, the joint regression 
approach requires fewer low b-value acquisitions, which allows for more 
LTE directions at the highest b-value and potentially results in less error 
from rotational variance [59]. Nevertheless, this protocol demonstrates 
that the LTE variance (and thus the linear kurtosis) can be estimated 
from a set of data containing only one LTE shell and three STE shells 
when D is assumed to be the same between LTE and STE acquisitions. 

In this study, biases were observed in the regression μFA WM maps 
relative to the measurements produced by the gamma model. The 
μFAjoint metric had a mean bias of − 0.11 compared to μFAgamma, while 
the μFAsimp metric was biased against μFAgamma by a modest − 0.02. We 
suspect that the most likely causes of this discrepancy between the 
techniques are the differences between the models used to fit the data: 
the implementation of the gamma model used in this work utilizes a soft 
Heaviside function to constrain the fit to more heavily use the lower b- 
values, similar to the DTI fit for D in μFAsimp. Accordingly, strong cor
respondence was observed between μFAgamma and μFAsimp. Using a full 
kurtosis fit to estimate D resulted in lower μFA values in the μFAjoint 
volume, which reveals a potential bias in the other two methods that 
results in physically implausible μFA values that are greater than 1 (see 
Fig. 7). That said, μFA computed from the eq. (2) approach could also be 
biased to lower values because the cumulant expansions of the powder- 
averaged signals were limited to the second order (eqs. (4, 5)), ignoring 
the effects of higher order terms. Using the mean WM signal data across 
all volunteers from the sequence optimization dataset (Table 1, Fig. 2) 
revealed that the second order kurtosis model fit using b-values up to 
2000 s/mm2 underestimated μFA by up to 9.3% compared to a third 
order fit using b-values up to 3500 s/mm2. A previous study that used 
DDE to estimate μA at a single b-value in six different microstructural 
models [36] reported an underestimation of the metric when acquired at 
a single b-shell; to remove this bias, the use of a multiple b-shell 
approach utilizing a higher order cumulant expansion of the dMRI signal 
can be considered. 

Qualitatively, the biases between the different volumes did not have 
a significant impact on the images as contrast between structures or 
regions and image quality appeared similar in all the maps. Additionally, 
voxel-wise comparisons between the maps showed strong linear re
lationships in WM regions, evidence that the biases between the 
different techniques are likely scalar or constant. We propose that each 
of the techniques described in this work may be suitable for use in 
clinical research under the caveat that studies assessing multiple pa
tients or assessing patients longitudinally should use the same protocol 
and technique to avoid biases. 

There are several limitations potentially affecting the accuracy of 
this study. The STE sequence used in this work utilizes different gradient 
waveforms in each diffusion-encoding direction, probing each at slightly 
different diffusion times and over different trajectories in q-space and 
potentially giving rise to orientational biases [18]. Given the small 
microstructural length scales in WM (<10 μm), the long diffusion time 
regime is likely an appropriate assumption for all 3 waveforms, though 
future studies may still wish to powder average STE data acquired using 
different gradient directions. This potential bias is not expected to have 
impacted our optimization findings or comparisons between regression 
and the gamma model because they all used identical waveforms. Also, a 
slightly reduced minimum TE could likely have been achieved with 
optimized STE waveforms [60], but we implemented a simpler version 
that can be easily computed online on the scanner. While this may have 
a slight impact on the optimal b-value, the optimal ratio of STE to LTE 
acquisitions had no dependence on TE. 

A relatively low number of LTE directions were acquired at b = 2000 
s/mm2 in the standard data subsets, which may have slightly reduced 
the accuracy of the measurements by introducing a directional depen
dence to the powder-averaged signal [47]. This would not have affected 

Fig. 7. Bland-Altman plots assessing the test-retest reliability of μFA estimates 
acquired using different techniques in white matter. The solid black line rep
resents the mean bias, and the dashed grey lines represent the ±1.96 standard 
deviation lines. 
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comparisons between μFAjoint and μFAgamma, but the μFAsimp volume 
was computed with more acquisitions at b = 2000 s/mm2, which may 
have slightly advantaged measurements of reliability from that volume 
against the others.  

1. The regression technique described herein makes the assumption 
that the dMRI signal arises only from multiple Gaussian components, 
which is violated when time-dependent diffusion is not negligible or 
when microscopic kurtosis is non-vanishing [18]. This potential 
confound may warrant the use of advanced techniques such as CTI, 
even at the expense of a longer TE, to yield μFA estimations without 
these assumptions [19]. 

6. Conclusion 

In conclusion, we have demonstrated an optimized linear regression 
technique based on the diffusion kurtosis model that enabled full-brain 
mapping of μFA in a clinically relevant 3.3 min scan time at 3 T. Two 
implementations of the proposed direct approach were validated against 
the gamma model, and an approach to determine the optimal maximum 
b-value and ratio of STE to LTE acquisitions was proposed and validated. 

Compared to other μFA techniques involving the use of nonconventional 
pulse sequences, the direct method described herein requires fewer b- 
shells (and, thus, fewer total directions). Though additional work is 
necessary to establish the roles of μA and μFA imaging in clinical 
research settings, the ability to rapidly probe these measurements in 
vivo opens the door for exploration into their abilities to assess neuro
degeneration and other pathologies. 
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Fig. 8. Example μFA, μA2, and LTE and STE variance maps acquired using eq. 2 in a subsampled data set: The acquisition comprised of 16 LTE directions at b = 2000 
s/mm2 and 3, 6, and 18 STE directions at b = 100, 1000, and 2000 s/mm2, respectively. This direction scheme corresponds to a total scan time of approximately 3.3 
min with 220 mm × 220 mm × 96 mm coverage at an isotropic 2 mm resolution. All images were normalized to a maximum pixel value of 1. Images were acquired 
with rate 2 in-plane parallel imaging combined with rate 2 simultaneous multislice. 
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Appendix A. Signal to noise ratio of μA2 estimation 

The variance of μA2 (σ2
μA2 ), assuming equal noise in STE and LTE images and that there is no covariance between the two acquisition types, can be 

approximated using the error propagation equation. Propagating error from eq. (8) yields: 
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where σ is the noise in an STE or LTE diffusion-weighted MR image, b is the b-value, nLTE is the number of LTE directions acquired, nSTE is the number of 
STE averages acquired, and SLTE and SSTE are the mean signals in LTE and STE acquisitions, respectively. The SNR of a μA2 image or volume (SNRμA2 ) 
can be estimated as the μA2 metric divided by its standard deviation: 
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(A.2) 

Substituting eqs. (8) and (A.1) into (A.2) yields eq. (10): 
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To determine the optimal ratio of nLTE/nSTE as a function of the mean LTE and STE signal at a single b-value, we can express eq. (A3) in terms of only 
nLTE and nSTE, replacing most other terms with the constant C. We can also confine the total number of acquisitions to an integer value, N, and replace 
nSTE with N-nLTE to reduce the number of unknown variables in the formula. The resulting expression is: 
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The maxima and minima of eq. (A.3) can be calculated by solving for the roots of the derivative of the SNR equation: 
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The roots of (A.4) are nLTE = NSSTE/(SSTE - SLTE) and nLTE = NSSTE/(SSTE + SLTE), the prior of which is not realizable because nLTE would be negative 
if SSTE < SLTE. Rearranging the latter yields the optimal ratio of STE to LTE acquisitions: 
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Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mri.2021.04.015. 
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