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Abstract

Erin Kathleen McKenna Meger

Iterated Models for Social Networks

PhD in Mathematical Modelling and Methods, 2020

Ryerson University

We define two novel iterative models of social networks. The models are deterministic

processes that generate graphs over discrete time-steps, and the properties of these graphs

will be explored. The first model generalizes two known models: the Iterated Local Tran-

sitivity Model and the Iterated Local Anti-Transitivity Model. The Iterated Local Model

includes as input an infinite binary sequence that determines the way the graphs are con-

structed over time. These models each utilize the underlying graph structure in previous

time-steps. Subsequently, we define a model that is independent of the structure of the

graph at the previous time-step. The Iterated Global Model creates new adjacencies based

on subsets of vertices of a prescribed cardinality.

We prove complex network properties of the Iterated Local Model, such as the small-

world property and bad spectral expansion. We also present graph-theoretic properties of

the model, such as bounds on the chromatic number, domination number, and Hamiltonicity

properties. Analogously, for the Iterated Global Model, we prove both complex network and

graph-theoretic properties.
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CHAPTER 1

Complex networks and graph theory

1.1. Introduction

Over the last two decades, research in modelling complex networks has become of great

interest to mathematicians and theoretical computer scientists. The emergence of the study

of complex networks such as the web graph and on-line social networks has focused attention

on these large-scale graphs and their properties [4, 7, 11, 19, 20, 21, 24]. The theory

of complex networks analyzes graph-theoretic properties in real-world networks arising in

technological, social, and biological contexts.

In this thesis, we will begin by including an introduction to graph theory. This will

include all requisite background for future chapters. The study of complex networks was

preceded by the study of random graph models, so we will explore some of the influential

literature in the area. We include a discussion of the properties of complex networks that will

be examined throughout the rest of the thesis and present well-known models for complex

networks. We conclude with a summary of the thesis.

1.2. Graph theory

We define a graph G = (V,E) as a pair of a vertex set V = V (G), an edge set E = E(G)

containing pairs of vertices. The order of a graph G is |V (G)|, and its size is |E(G)|; when
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these are finite, then we say G is finite. We write uv if vertices u and v form an edge, and

say that u and v are adjacent, and we call them neighbours. We say that for a vertex, v, the

neighbour set of v, denoted N(v), is the set of all vertices adjacent to v. Additionally, we

use the notation N [v] to denote the set of N(v) ∪ {v}, called the closed neighbour set. We

say u and v are incident with the edge uv, and that u and v are endpoints of the edge uv.

The degree of v, denoted by degG(v), is the number of edges incident with v. The subscript

G may be omitted when there is no risk of confusion. Notice that degG(v) = |N(v)|. The

minimum degree of G is δ(G) = min{deg(v) : v ∈ V }, and the maximum degree of G is

∆(G) = max{deg(v) : v ∈ V }. A vertex that has degree zero is called an isolated vertex,

while a vertex adjacent to all others is called a universal vertex.

Graphs are often depicted by their drawings; see Figure 1.1.
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Figure 1.1. An example of a graph of order and size 4.

Unless otherwise stated, we only consider finite, simple graphs which exclude edges of

the form xx, called loops, or multiple edges between the same pair of two vertices. A graph
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is directed if each of its edges has an orientation, and we can consider the edge-set as a set

of ordered pairs of vertices rather than unordered pairs. Unless otherwise stated, we will not

consider directed graphs in this thesis.

We now recall the First Theorem of Graph Theory, which provides an elementary but

important relationship between the degrees and the size of a graph. The theorem and its

proof are folklore.

Theorem 1.1. If G = (V,E) is a graph, then

∑
u∈V

deg(u) = 2|E| .

Proof. Each edge is counted twice, once for each endpoint. �

The previous theorem indicates that all graphs have an even degree sum, since the number

of edges is always an integer. This gives the following corollary.

Corollary 1.2. In a graph, the number of vertices of odd degree is even.

A subgraph H of a graphG is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G). We say

a subgraph H is an induced subgraph of G when uv ∈ E(H) if and only if u and v ∈ V (H).

We use the notation G[S], where S ⊆ V (G) to represent the subgraph of G induced by the

set of vertices S. We demonstrate this concept in Figure 1.2. On the left, the graph G has

vertices V (G) = {1, 2, 3, 4} and on the right, we see the subgraph induced by {2, 3, 4}. A

subgraph H is spanning in G if V (H) = V (G).
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Figure 1.2. An example of an induced subgraph.

A graph G is a clique if G contains all possible edges between its vertices. The complement

of a graph G = (V,E) is G = (V, {xy : xy /∈ E}). An independent set is the complement

of a clique; that is, a set of vertices with no edges between them. A graph G = (V,E) is

called k-partite if V can be partitioned into k independent sets. If k = 2, then we say G is

bipartite. Two sets A,B ⊆ V (G) are said to partition the vertex set whenever A∪B = V (G)

and A ∩B = ∅.

A path on k + 1 vertices is an ordered set of vertices {v0, v1, . . . vk} such that each vi is

adjacent to vi+1 and vi 6= vj for all i 6= j; a cycle on k vertices is a path on k + 1 vertices

with v0 = vk and vi 6= vj for all i 6= j. The path of order n is denoted by Pn. We use the

notation Cn for a cycle of order n. We say a graph G is connected whenever there exists a

path between u and v for all u, v ∈ V (G). The components of a graph G are the maximal

connected induced subgraphs of G, with respect to set inclusion.

The length of a shortest path in G between u and v is called the distance between u and

v, denoted by distG(u, v). When the graph in which we are finding the distance is clear from

context, we will omit the subscript. The diameter of G is determined as follows.
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diam(G) = max{dist(v, w) : v, w ∈ V (G)}

The radius of a graph is the largest integer r such that every vertex has at least one

vertex at a distance r. For all graphs G the radius is at most the size of the diameter.

The depicted graph G, in Figure 1.3, diam(G) = 4, distG(a, h) = 4,, distG(c, d) = 2, and

the radius is 2. A shortest path between two vertices may not exist whenever the graph is

not connected, in which case we use ∞ to denote their distance.

a

b cd

e f

g

h

Figure 1.3. A simple graph used to illustrate diameter and distance.

For a positive integer k, a graph G is k-connected if there does not exist a set of k − 1

vertices whose removal disconnects the graph. A cut-vertex is one whose removal disconnects

the graph. Note that a graph is 1-connected precisely when it contains a cut-vertex.

We say that two graphs, say G and H, are isomorphic, written G ∼= H, if there is a

bijection f : V (G) −→ V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). See

Figure 1.4 for two isomorphic graphs.
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Figure 1.4. Two graphs isomorphic to the well-known Petersen graph.

A connected graph with no cycle is a tree. The next theorem characterizes trees and is

included for completeness, the proof of which can be found in the literature [23].

Theorem 1.3. The following are equivalent.

(1) The graph G is a tree.

(2) The graph G is connected and |E(G)| = |V (G)| − 1.

(3) There is a unique path between every pair of vertices in G.

1.2.1. Graph Parameters. We close this section with a brief sampling of important

graph parameters that will be discussed throughout the thesis, but particularly in Chapter

4. Let G = (V,E) be a graph. We call S ⊆ V a dominating set for G if for all v /∈ S, there

exists w ∈ S such that vw ∈ E. The minimum cardinality of all dominating sets in G is

denoted γ(G), and is called the domination number of G.

To colour a graph, we assign a colour from the set {c0, c1, . . . , ck} to each vertex. A

proper colouring is achieved when no two neighbouring vertices have the same colour. The

chromatic number of a graph G, denoted by χ(G), is the minimum number of colours required

to achieve a proper colouring of G. If G can be coloured using at most k colours, then we say
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that G is k-colourable. The maximum order of a clique in G is called the clique number of G,

denoted by ω(G). The maximum order of an independent set in G is called the independence

number of G, denoted by α(G).

We consider the graph G in Figure 1.5. The set {a, e} is a dominating set, and is, in

fact, the smallest dominating set; hence, the domination number of this graph is two. The

chromatic number is χ(H) = 3 and ω(G) = 3. By inspection, the maximum order of an

independent set is two.

a b

cd

e

Figure 1.5. An example of graph parameters

A Hamilton path is a path P in G such that each vertex of G is visited along the

path exactly once. A Hamilton Cycle is a Hamilton path that has its final vertex as its

initial vertex. If a graph G has a Hamilton cycle, then we say the graph is Hamiltonian.

Determining whether a graph has a Hamilton cycle is a deep problem within structural graph

theory, and many problems remain open [23].

1.2.2. Asymptotic notation. We finish the section with asymptotic notation. Let

f(n) and g(n) be two functions whose domain is some fixed subset of R, and assume that
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g(n) > 0 for all n. We say that f is of order at most g, written f(n) = O(g(n)), if there

exist constants A > 0 and N > 0 such that for all n > N, we have that

|f(n)| ≤ A|g(n)|.

We say that f is of order at least g, written f(n) = Ω(g(n)), if there exist constants A > 0

and N > 0 such that for all n > N ,

f(n) ≥ Ag(n).

We say that f is of order g, written f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)).

We say that f is of order smaller than g, written f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0.

The function f is of order larger than g, written f(n) = ω(g(n)) if

lim
n→∞

f(n)

g(n)
=∞.

Finally, f is asymptotically equal to g, written f(n) ∼ g(n) or f(n) = (1 + o(1))g(n), if

lim
n→∞

f(n)

g(n)
= 1.
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1.3. Complex networks

The study of complex networks is an emerging field in discrete mathematics and theoret-

ical computer science. Models of these networks may be used to predict the structure and

evolution of protein-protein interaction networks, on-line social networks, and the web graph

[14, 19]. These networks have four key properties: they are large scale, evolve over time,

have power law degree distributions, and satisfy the small-world property [13]. An early

stochastic network model was the Erdős-Rényi random graph [2, 7, 13, 12]. Erdős-Rényi

random graphs fell short when it came to studying complex networks; with high probability,

these graphs exhibit a binomial degree distribution rather than a power law degree distri-

bution. Early complex networks were designed using the premise of preferential attachment

[3, 6, 13]. Recently, two new deterministic models, the Iterated Local Transitivity (ILT)

model and the Iterated Local Anti-Transitivity (ILAT) model, were introduced with the aim

of simulating social networks [9, 10].

In thIS thesis, we will build upon the ILT and ILAT models and study complex networks

using new deterministic methods. Each of the ILT and ILAT models separately examines

the ideas of transitivity and anti-transitivity. These models are a mathematical reflection of

the folkloric adages “friends of friends are more likely friends” and “the enemy of my enemy

is my friend.” The model we describe in Chapter 3 will incorporate both transitivity and

anti-transitivity sequentially over discrete time-steps.
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1.3.1. Complex Networks and Their Properties. There is no precise definition of

a complex network as they are real-world graphs that are constantly evolving. However,

there are four key properties that most researchers agree upon: large-scale, evolving over

time, power-law degree distribution, and small-world property [7, 13].

In this more heuristic context, large-scale depends on the type of network we are consider-

ing. For instance, the web graph has trillions of vertices, whereas protein-protein interaction

networks have thousands of vertices [7]. Both of these networks are considered to be complex

networks. Networks that evolve over time are those which exhibit the creation, and possibly

the deletion, of vertices over time. This is also seen in some network models such as the

ACL Preferential Attachment model that will be discussed subsequently.

In complex networks, we observe that there are many vertices of low degree and only a

few vertices of high degree. This property can also be found among social networks such as

Facebook [7].

The parameter Nk,G is number of vertices of degree k in G. For simplicity, suppose that

|V (G)| = t. Hence, Nk,G is an integer in the interval [0, t]. The degree distribution of G is

the sequence (Nk,G : 0 ≤ k ≤ t). We say that the degree distribution of G follows a power

law if for each degree k, we have as follows for a fixed real constant β > 1.

Nk,G

t
∼ k−β, (1)
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Informally, G has many vertices of low degree, and a non-negligible number of high degree

vertices. Such distributions are sometimes called heavy-tailed distributions, since the real-

valued function f(k) = k−β exhibits a polynomial rather than exponential decay to 0 as k

tends to infinity. We say that β is the the power law exponent. If G possesses a power law

degree distribution, then we say G is a power law graph. Observe that if we take logarithms

on both sides of (1), then the relationship is expressed as

log(Nk,G) ∼ log(t)− β log(k).

Hence, in the log-log plot, we obtain a straight line with slope −β. In the web graph,

power law degree distributions were reported in Broder et al. [11]. Power laws have also

been reported in social networks such as Twitter and in certain biological networks [7].

The fourth property for complex networks we discuss is the small-world property. Small-

world networks have low distance and high local clustering. To make this more precise, we

define the average distance of a graph G as follows:

L(G) =
W (G)(|V (G)|

2

) , where W (G) =
∑

u,v∈V (G)

distG(u, v)

The term W (G) is called the Wiener index, which is the sum of all distances between all

pairs of vertices. We will use the notation G[NG(x)] to represent the subgraph of G induced

by the set of vertices in the neighbourhood of x. The clustering coefficient of G is defined

by
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C(G) =
1

|V (G)|
∑

x∈V (G)

c(x), where c(x) =

∣∣E(G[NG(x)]
)∣∣(

deg(x)
2

)
Note that L(G) and C(G) are rational numbers in [0, 1]. For a graph G of order n to

satisfy the small-world property, we require that L(G) = O(log log n) or diam(G) = O(log n),

and that C(G) be larger than the clustering coefficient of a binomial random graph with the

same average degree. We will discuss binomial random graphs further in Subsection 1.3.2.

There are two additional properties that are also explored when discussing complex

networks, which have been demonstrated in many applications of complex networks, but

were not originally included in the four main properties [7, 13, 14, 16, 17]. These are

densification and bad spectral expansion.

We say a complex network densifies if the limit of the ratio of edges to vertices is un-

bounded [17]. Since complex networks evolve over time, we use Gt to denote the particular

graph at time t [7, 9, 10].

lim
t→∞

|E(Gt)|
|V (Gt)|

→ ∞

The adjacency matrix of a graph, G is a matrix representation of the edges. We consider

each row and column in the matrix to represent each of the vertices V (G) = {v1, ..vn}

and there is a 1 in the entry aij of the matrix whenever vertex vi and vj are adjacent.

The spectral expansion of a graph is the difference between the first two eigenvalues of the

12



adjacency matrix. In many real-world complex networks, the gap between these eigenvalues

is quite large. This is known as bad spectral expansion [16].

One goal when studying complex networks is to simulate many or all of these properties,

and thus we will consider them for each model defined in this thesis.

1.3.2. Graph Models. We will begin by discussing the Erdős-Rényi model for gener-

ating random graphs. Let 0 ≤ p ≤ 1 and let Ω be the family of all graphs on n vertices. To

every graph G ∈ Ω we assign a probability measure:

P({G}) = p|E(G)|(1− p)(
n
2)−|E(G)|.

We denote this probability space by G(n, p). The space G(n, p) is often referred to as the

binomial random graph or Erdős-Rényi random graph. Note also that this probability space

can informally be viewed as a result of
(
n
2

)
independent coin flips, one for each pair of vertices

u, v, where the probability of success is equal to p. We also observe that if p = 1/2, then

P({G}) = 2−(n2) for any graph G on n vertices. Observe that p = p(n) may be a function of

n, but we restrict p to a constant value in this brief survey of the topic.

Binomial random graphs are not appropriate models for simulating complex networks,

despite the fact they exhibit quite short distances [13]. In fact, we will often compare models

to binomial random graphs especially in the case of clustering and densification. We note

that the proofs of the following theorems are a part of folklore and may be found in the
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literature [2, 7]. An event An in a probability space holds asymptotically almost surely or

a.a.s. if P(An)→ 1 as n→∞.

Theorem 1.4. For fixed p ∈ (0, 1), a.a.s. G in G(n, p) has diameter 2.

Despite the conclusion of Theorem 1.4, the degree distribution of G(n, p) is binomial and

not power law as we require for complex networks.

Theorem 1.5. A.a.s. for G in G(n, p), the degree of a vertex v in G equals

pn+O(
√
pn log n) = (1 + o(1))pn

1.3.3. Preferential Attachment Models. The first model of complex networks we

will examine is the preferential attachment or PA model, discovered by Barabási and Albert

in 1999 and made rigorous in 2001 by Bollobás, Riordan, Spencer, and Tusnády [6, 3].

As input, we fix m ∈ N. The model generates graphs randomly over discrete time-steps,

indexed by non-negative integers t ≥ 0. At time-step t = 0, we add a single edge.

In the time-step t+ 1, we add m edges from a new vertex vt+1 to existing vertices vs to

form the graph Gt+1. The edge vt+1vs is added with probability

degGt(vs)

2(mt+ 1)
.

Note that we tacitly use here Theorem 1.1, as the number of edges at time-step t is mt+ 1.

We refer to this as the PAm model. The term “preferential attachment” has to do with
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the fact that vertices of higher degree are more likely to gain new neighbours in further

time-steps; thus, the higher the degree of vs, the more likely vt+1vs is an edge. In this

model we do not restrict to simple graphs and may exhibit multiple edges. The PA model

generates graphs with power law degree distributions and the small-world property, as the

next theorems demonstrate.

Theorem 1.6 ([6]). For all m ≥ 0, and for any non-negative integer k satisfying 0 ≤

k ≤ t1/15 for time-step t in the PAm model, we have that a.a.s.

Nk,t

t
=

1 + o(1)

k3
,

where Nk,t is the number of vertices of degree k at time-step t.

Theorem 1.7 ([5]). For all m ≥ 0, the diameter of the PAm model graph at time-step t

is a.a.s.

(1 + o(1))
log t

log log t
.

We reference one additional model, referred to as the Aiello-Chung-Lu or ACL PA model.

It is named after William Aiello, Fan Chung, and Linyuan Lu, who discovered the model in

2001 [1, 13].

As input, we fix p ∈ (0, 1). At time-step t = 0, the initial graph G0 consists of a single

vertex with a loop. A vertex-step is defined by adding a new vertex v and an edge uv where

u is chosen from existing vertices by preferential attachment. An edge-step adds an edge uv,
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where u and v are existing vertices both chosen by preferential attachment. To form the

graph Gt+1 from Gt, take a vertex-step with probability p and an edge-step with probability

1− p. We refer to this model as the GACL(p) model.

By definition, the number of vertices in the ACL PA model is a random variable. Using

the Chernoff bounds, it can be shown that |V (Gt)| is concentrated around its expected value

1 + pt [2].

The ACL model a.a.s. generates power law graphs, as the next theorem demonstrates.

We denote the Gamma function by Γ [12], defined originally by Bernoulli to generalize the

factorial to complex numbers. We will use the following definition [12].

Γ(z) =

∫ ∞
0

xz−1e−xdx

Theorem 1.8 ([13]). In GACL(p),

lim
t→∞

E
(
N1,t

t

)
=

2p

4− p
,

and for all k > 1,

lim
t→∞

E
(
Nk,t

t

)
=

2p

4− p

Γ(k)Γ
(

2 + 2
2−p

)
Γ
(
k + 1 + 2

2−p

)
= O

(
k−(2+ p

2−p)
)
.
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A concentration result for the ACL model can be derived using generalized martingale

inequalities [13]. This result, together with Theorem 1.8 proves rigorously that GACL(p)

generates graphs with power law degree distributions, with power law exponent β = 2+ p
2−p .

Observe that by choosing p appropriately, the power law exponent can be any real number

2 ≤ β ≤ 3.

1.4. Summary of the thesis

The first chapter motivated the discussion on complex network models and gave back-

ground on graph theory and properties of complex networks. In Chapter 2, we will provide

background on the Iterated Local Transitivity model and the Iterated Local Anti-Transitivity

model.

The new Iterated Local Model (ILM) will be introduced in Chapter 3, where we will

prove results pertaining to its complex network properties. We will show that ILM graphs

satisfy the small-world property and densification. The spectral gap will be discussed and

it will be shown that the model has bad spectral expansion as found in real-world social

networks. Chapter 4 will focus on the structural, graph-theoretic properties of ILM graphs

that we discovered, including distance properties, domination properties, and Hamiltonicity.

The novel theoretical results presented in Chapters 3 and 4 were published in [8].

In Chapter 5, we will define the Iterated Global Model (IGM). This model is independent

of the original graph structure, unlike ILM graphs, and relies on subsets of vertices to generate

new graphs. We will prove that graphs generated by a type of IGM called the half-model
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exhibits densification, and we will investigate domination and distances in this model. The

final chapter recaps the main results and ends with open problems.
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CHAPTER 2

Iterated Transitive and Anti-Transitive Models

2.1. Introduction

In the last decade, two deterministic models of complex networks of particular interest

to this thesis were introduced: the Iterated Local Transitivity (ILT) model and the Iterated

Local Anti-Transitivity (ILAT) model [9, 10]. Consider a social network where friendships

have positive edge signs and adversarial relations have negative edge signs. A triad is a set

of three vertices in a signed network. A triad is said to be balanced if the product of the

edge signs is positive. Structural balance theory states that these networks seek to balance

all triads [14, 24]. The ILT and ILAT models were designed with balanced triads in mind.

Throughout this chapter, t will be a non-negative integer. We first define the Iterated

Local Transitivity model.

Definition 2.1. Given a graph G0 as input, to form graph Gt in time-step t we clone

each vertex x, by adding a new vertex x′ and adding edges from x′ to each vertex in the

closed neighbour set of x in the previous iteration of the graph, NGt−1 [x]. We call x the

parent of x′.

The idea here is that x′ carries the link structure of x. Note that the set of clones forms

an independent set. As time progresses, the graph is evolving yet always maintains some
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structure from the original graph. We next depict the time-steps t = 1, 2, 3, and 4 of the

ILT model with the input graph G0 = C4 from [9] in Figure 2.1.

Figure 2.1. An example of the first four time-steps of the ILT model, where
the initial graph is G0 = C4, from [9].

We next consider the Iterated Local Anti-Transitivity model introduced in [10]. This

model builds on similar ideas from the ILT by replacing the notion of transitivity with anti-

transitivity ; instead of clones, we add anti-clones with edges to each non-neighbour of the

parent.

Definition 2.2. Given a graph G0 as input, to form graph Gt in time-step t we anti-

clone each vertex x, by adding a new vertex x∗ and adding edges from x∗ to each vertex not
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in the closed neighbour set of x in the previous iteration of the graph, V (Gt−1)\NGt−1 [x].

We call x the parent of x∗.

Observe that we do not include the edge from x to x∗. For an example, we show the

time-steps t = 1, 2, 3, 4 of the ILAT model with the input graph G0 = C4 from [10] in

Figure 2.2.

We focus on these two models for complex networks, specifically designed for simulating

social networks. Both models are applicable to settings where there is some form of dupli-

cation of vertices [9, 10, 21]. These network models are deterministic and are based on the

principles of transitivity and anti-transitivity, as described below in Sections 2.2 and 2.3,

respectively.

2.2. Iterated Local Transitivity

We summarize salient results on the ILT model [9]. We write degt(x) for the degree of

a vertex x at time-step t. The following elementary but important recurrences govern the

degrees of vertices in the ILT model. We include this and several other proofs from the

original paper for completeness and to give a flavour of the model [9].

Theorem 2.1 ([9]). If Gt is a graph generated by the ILT model at time t ≥ 0, then we

have that

degt+1(x) = 2degt(x) + 1, (2)

degt+1(x
′) = degt(x) + 1. (3)
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Figure 2.2. An example of the first four time-steps of the ILAT model, where
the initial graph is G0 = C4, from [10].

Proof. For equation (2), consider a vertex x that exists in Gt. Each neighbour of x in

Gt is still a neighbour of x in Gt+1, and each neighbour of x in Gt now has a clone that is

adjacent to x in Gt+1. There is also an edge between x and its clone, so our final result for

the degree of x in Gt+1 is degGt+1
(x) = 2degGt(x) + 1.
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For equation (3), consider a clone, say x′, in Gt+1. For every neighbour of x, there

is one edge from x′ to each neighbour. There is also the edge xx′. Thus, we find that

degGt+1
(x′) = degGt(x) + 1. �

We now provide a theorem on the size and order of graphs generated by the model.

Theorem 2.2 ([9]). For the ILT graph Gt with t > 0, if nt = |V (Gt)| and et = |E(Gt)|,

then

nt = 2tn0 and et = 3t(e0 + n0)− nt.

Proof. In each time-step, we are doubling the number of vertices. Hence, we have that

nt = 2nt−1 = 2tn0.

To show that et = 3t(e0 + n0)− nt, we use induction on t ≥ 0. The base case follows by

inspection when t = 0. We proceed with the inductive step, and assume the equation holds

for some t. At time-step t + 1, consider how we add new edges to Gt. There is a new edge

for each previously formed edge xy in Gt, which gives et edges. For each edge xy, we have

an edge x′y and an edge y′x, which adds 2et edges to the size of Gt+1. Finally, there is a new

edge from each vertex x to its clone x′, contributing nt vertices to the size. In summation

we have:

et+1 = et + 2et + nt = 3et + nt.
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Applying the induction hypothesis, we obtain that

et+1 = 3(3t(e0 + n0)− nt) + nt

= 3t+1(e0 + n0)− 2nt = 3t+1(e0 + n0)− nt+1,

and this concludes the proof. �

Recall from Chapter 1 that a graphGt with et edges and nt vertices satisfies a densification

power law if there is a constant a ∈ (1, 2) such that et is proportional to nat . Such a is called

the densification exponent. In particular, the average degree grows to infinity with the order

of the network, in contrast to the preferential attachment model, which generates graphs with

constant average degree [6]). Densification power laws were reported in several real-world

networks, such as a physics citation graph and the internet graph at the level of autonomous

systems [17].

The ILT model exhibits a densification power law. Define the volume of Gt by

Volt =
∑

x∈V (Gt)

degt(x) = 2et.

Note that the average degree of Gt equals Volt/nt.

Theorem 2.3 ([9]). For t > 0, the average degree of Gt equals

(
3

2

)t(
Vol0
n0

+ 2

)
− 2.
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Observe that Theorem 2.3 supplies a densification power law with densification exponent

a = log 3
log 2
≈ 1.58.

The proof of Theorem 2.3 follows directly from the following Lemma 2.4, since the average

degree of Gt is Volt/nt.

Theorem 2.4 ([9]). For t > 0,

Volt = 3tVol0 + 2n0(3
t − 2t).

In particular, et = 3t(e0 + n0)− nt.

Proof. By (2) and (3), we have that

Volt+1 =
∑

x∈V (Gt)

degt+1(x) +
∑

x′∈V (Gt+1)\V (Gt)

degt+1(x
′)

=
∑

x∈V (Gt)

(2degt(x) + 1) +
∑

x∈V (Gt)

(degt(x) + 1)

= 3Volt + nt+1. (4)

Hence, by (4) for t > 0,

Volt = 3Volt−1 + nt

= 3 (3Volt−2 + nt−1) + 2tn0

= 32Volt−2 + 3 · 2t−1n0 + 2tn0

= 3tVol0 + n0

(
t−1∑
i=0

3i2t−i

)
= 3tVol0 + 2n0(3

t − 2t),
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where the third equality follows by summing a geometric series. �

The next theorem demonstrates that in the ILT model graph, the average distance is

bounded by a constant and converges. This suggests that ILT graphs satisfy the small-world

property. For the distance between two vertices x and y in Gt, we write distt(x, y).

Theorem 2.5 ([9]). Let x and y be vertices in Gt with t > 0. We then have that

distt+1(x
′, y) = distt+1(x, y

′) = distt+1(x, y) = distt(x, y),

and

distt+1(x
′, y′) =


distt(x, y) if xy /∈ E(Gt),

distt(x, y) + 1 = 2 if xy ∈ E(Gt).

Proof. We prove that distt+1(x, y) = distt(x, y). The proofs of the other equalities are

analogous [9], so they are omitted in our exposition. In the ILT model we do not delete any

edges, the distance cannot increase after a “cloning” step occurs.

Hence, distt+1(x, y) ≤ distt(x, y). Suppose for a contradiction that there is a path P ′

connecting x and y in Gt+1 with length k < distt(x, y). Hence, P ′ contains vertices not in

Gt. Choose such a P ′ with the least number of vertices, say s > 0, not in Gt. Let z′ be a

vertex of P ′ not in Gt, and let the neighbours of z′ in P ′ be u and v. We then have that

z ∈ V (Gt) is adjacent to u and v. Form the path Q′ by replacing z′ by z. But then Q′ has

length k and has s− 1 many vertices not in Gt, which supplies a contradiction. �

We now present a theorem on average distance in the ILT model.
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Theorem 2.6 ([9]). For the ILT model graph Gt with t > 0, we have that

L(Gt) = 2 ·
4t
(
W (G0) + (e0 + n0)

(
1−

(
3
4

)t))
4tn2

0 − 2tn0

.

Proof. We derive a recurrence forW (Gt) as follows. To computeW (Gt+1), there are five

cases to consider: distances within Gt, and distances of the forms distt+1(x, y
′), distt+1(x

′, y),

distt+1(x, x
′), and distt+1(x

′, y′). The first three cases contribute 3W (Gt) by Lemma 2.5. The

fourth case contributes nt. The final case contributes W (Gt) + et (the term et comes from

the fact that each edge xy contributes distt(x, y) + 1).

We then have that

W (Gt+1) = 4W (Gt) + et + nt

= 4W (Gt) + 3t(e0 + n0).

Hence,

W (Gt) = 4tW (G0) +
t−1∑
i=0

4i
(
3t−1−i

)
(e0 + n0)

= 4tW (G0) + 4t(e0 + n0)

(
1−

(
3

4

)t)
,

and this completes the proof. �
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Diameters are constant in the ILT model, and this will be discussed and proven in a more

general context in Chapter 4. The ILT model also generates graphs with high clustering

coefficients, as we expect in the small-world property. The clustering coefficient of the graph

at time-step t generated by the ILT model is estimated and shown to tend to 0 slower than

a binomial random graph G(n, p) with the same average degree, as the following theorem

demonstrates as proved in [9].

Theorem 2.7 ([9]).

Ω

((
7

8

)t
t−2

)
= C(Gt) = O

((
7

8

)t
t2

)
.

Observe that C(Gt) tends to 0 as t → ∞. If we let nt = n (so t ∼ log2 n), then this gives

that

C(Gt) = nlog2(7/8)+o(1).

In contrast, for a random graph G(n, p) with average degree pn = Θ((3/2)log2 n) = Θ(nlog2(3/2)),

which is comparable to the above for Gt, has clustering coefficient p = Θ(nlog2(3/4)) which

tends to zero much faster than the previously mentioned C(Gt).

2.3. Iterated Local Anti-Transitivity

We now summarize results and proofs on the ILAT model from the literature [10]. In a

graph G with vertex v, the co-degree of v, written codeg(v), is |V (G)|−deg(v). The following
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theorem gives the basic recurrence on degrees in the ILAT model. As in the previous section,

we write degt(x) for the degree of x in Gt.

Theorem 2.8 ([10]). Let Gt be a graph generated by the ILAT model at time-step t. Fix

x ∈ V (Gt) and let nt = |V (Gt)|. We have the following.

(1) degt+1(x) = nt − 1.

(2) degt+1(x
?) = nt − degt(x)− 1.

Proof. For item (1), note that for all non-neighbours of x, the anti-clone of the non-

neighbour in time-step t + 1 will have an edge to x. Therefore, neighbours of x and the

non-neighbours of x together yield the following formulas:

degt+1(x) = degt(x) + codegt(x)

= degt(x) + (nt − degt(x)− 1)

= nt − 1.

For item (2), since x? is incident to all the non-neighbours of x, we have that

degt+1(x
?) = codegt(x) = nt − degt(x)− 1,

and this completes the proof. �

The following lemma sets up a recursive formula for the volume, and hence, the number

of edges.
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Theorem 2.9 ([10]). For t ≥ 0 we have that

Volt+1 = 2n2
t − 2nt − Volt.

In particular, we have that et+1 = n2
t − nt − et.

Proof. We derive that

Volt+1 =
∑

u∈V (Gt+1)

degt+1(u)

=
∑

u∈V (Gt+1)

degt(u) +
∑

u∈V (Gt+1)

degt(u
′)

=
∑

u∈V (Gt)

nt − 1 +
∑

u∈V (Gt)

nt − degtu− 1

= 2
∑

u∈V (Gt)

nt −
∑

u∈V (Gt)

degt(u)− 2
∑

u∈V (Gt)

1

= 2nt
2 − 2nt − Volt,

where the third equality follows from Lemma 2.8.

Next, we observe that

et+1 =
1

2
Volt+1

= n2
t − nt −

1

2
Volt

= n2
t − nt − et.
30



where the second equality follows from the previous derivation for the volume. �

Next, we prove that the ILAT model generates graphs which densify over time; that is,

the average degree of the graphs tends to infinity.

Theorem 2.10 ([10]). In the ILAT model, et
nt
→∞.

Proof. By Lemma 2.9, we have that

et+1 = (n0)
222t − n02

t − et.

Hence, by recursion, we find that

et+1 = ((n0)
222t − n02

t)− ((n0)
222(t−1) − n02

(t−1)) + · · ·

=
t∑
i=0

(−1)i
(
(n0)

222(t−i) − n02
(t−i))

= (n0)
2

t∑
i=0

(−1)i22(t−i) − n0

t∑
i=0

(−1)i2(t−i)

= (n0)
2S1 − n0S2,
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where

S1 =
t∑
i=0

(−1)i22(t−i)

= 22t − 22t−2 + 22t−4 − 22t−6 + · · ·

= 22t

(
1− 1

22
+

1

24
− 1

26
+ · · ·

)
= 22t

(
1− (−1

4
)t

1 + 1
4

)

=
4

5
22t

(
1−

(
−1

4

)t)
,

and where

S2 = 2t − 2t−1 + 2t−2 − 2t−3 + · · ·

= 2t
(

1− 1

2
+

1

22
− 1

23
+ · · ·

)
= 2t

(
1− (−1

2
)t

1 + 1
2

)

=
2

3
2t

(
1−

(
−1

2

)t)
.
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Note that we found the value of the infinite alternating sums in the derivations of S1 and S2

by using the formula for the sum of a geometric series. Therefore, we have that

et+1 = (n0)
24

5
22t

(
1−

(
−1

4

)t)
− n0

2

3
2t

(
1−

(
−1

2

)t)

= (n0)
21

5
22(t+1)

(
1− (−4)−t

)
− n0

1

3
2t+1

(
1− (−2)−t

)
= (n0)

222(t+1)

(
1

5
− 1

n03(2)t+1
− 1

5
(−4)−t +

1

n03(2)t+1
(−2)−t

)
= (n0)

222(t+1)

(
1

5
− o(1)

)
,

where the term o(1) denotes terms in t tending to 0 as t tends to ∞. Hence,

et = 22t

(
(n0)

2

5
− o(1)

)
.

The latter gives that

et
nt

= 2t
(n0

5
− o(1)

)
,

and this concludes the proof. �

From this discussion, we can obtain a limiting density as t→∞. Let Dt be the density

of Gt; that is, Dt = et

(nt2 )
. Notice that graph density and densification are distinct properties.

We finish this chapter by proving that the ILAT model generates graphs that are quite dense.

Theorem 2.11 ([10]). As t→∞, we have that Dt → 2/5.
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Proof. Observe that Dt = 2 et
nt(nt−1) . From the proof of Theorem 2.10 and the identity

nt = 2tn0, we then have that

Dt =
22t(n0)

2

nt(nt − 1)

(
1

5

)(
1−

(
−1

4

t−1))
(1− o(1))

∼ 2/5,

and this concludes the proof. �
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CHAPTER 3

Iterated Local Model for Social Networks

3.1. Introduction

In many applications of complex networks, both transitivity and anti-transitivity are

observed among triads of vertices [8, 20]. The ILT and ILAT models restrict their attention

considering exactly one of transitivity or anti-transitivity, respectively. We combine the two

methods and define the new Iterated Local Model (or ILM ). A transitive step is defined as

the cloning process from the ILT model, so that in time-step t > 0, we add a clone x′ for

each vertex x ∈ V (Gt−1) and define NGt(x
′) = NGt−1 [x]. An anti-transitive step is defined

as the anti-cloning process from the ILAT model where, in time-step t we add an anti-clone

x∗ for each vertex x ∈ V (Gt−1), and define NGt(x
∗) = V (Gt−1)\NGt−1 [x].

Definition 3.1. Given an infinite binary sequence S = {bi}i∈N, where bi ∈ {0, 1}, and

some input graph G0. For each time-step t > 0, we will define a graph Gt containing Gt−1

as an induced subgraph. At time-step t ≥ 1, we consider the value of bt. If bt = 0, then we

take an anti-transitive step, and if bt = 1, then we take a transitive step.

Notice that the constant sequence of 0’s will make the ILM equivalent to the ILT model,

and a constant sequence of 1’s will yield the ILAT model. Hence, the ILM model generalizes
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both the ILT and ILAT models. Note also that there are uncountably many choices for the

binary sequence S.

For a fixed infinite binary sequence S, ILMt,S(G) denotes the ILM graph generated by the

model at time-step t with initial graph G. Figure 3.1 depicts the first four time-steps of ILM

for the input graph K3 and input sequence S = (0, 1, 0, 1, 0 . . .), the alternating sequence

beginning with an anti-transitive step.

Figure 3.1. ILM graphs, where G0 = K3 for t = 0, 1, 2, 3.

To discuss the behaviour of the graph at individual time-steps, we will use the following

notation. We denote LT(G) as the resulting graph after performing a single iteration of a

transitive step on the graph G, and analogously we denote LAT(G) as the resulting graph

after performing a single anti-transitive step on the graph G. We will use the term clones to

refer to all vertices added during a transitive time-step, and the term anti-clones to reference

all the vertices added during an anti-transitive time-step.
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3.2. Complex network properties

To begin this section, we will consider the size of the graphs generated by the Iterated

Local Model. To do so, we will first need two theorems regarding the average degrees in

both the ILT model and the ILAT model. Recall from Chapter 2 that the volume of a graph

G is defined by

Vol(G) =
∑

v∈V (G)

deg(v)

Hence, the average degree of G is equal to Vol(G)/|V (G)|.

Theorem 3.1 ([9]). Let G be a graph, and let G′t = ILTt(G) and let G∗t = ILATt(G).

For all integers t ≥ 1, the average degree of G′t equals

(
3

2

)t(
Vol(G′t)

n0

+ 2

)
− 2.

For all integers t ≥ 1, the average degree of G∗t equals

2t
(

2n0

5
− o(1)

)
.

We now provide an asymptotic formula for the number of edges in an ILM graph, which

is the first novel result of the thesis.

Theorem 3.2. Let S = (s0, s1, s2, . . . ) be a binary sequence with at least one 0 and let

t ≥ 0. Let τ be the first index such that sτ = 0. For any graph G and all t ≥ τ , and with
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β = β(t) ≤ t being the largest index such that sβ = 0, then

|E(ILMt,S(G))| = Θ

(
2t+β

(
3

2

)t−β)
= Θ

(
2β
(

3

2

)t−β
nt

)

Proof. Let Gt = ILMt,S(G). Consider the case where st = sβ = 0. For all v ∈ V (Gt−1),

degt(v) = nt−1−1, since for all vertices u, v ∈ V (Gt−1), u is a non-neighbour of v if and only

if the clone of u is adjacent to v. Therefore, we have that

2|E(Gt)| ≥
∑

v∈V (Gt−1)

degt(v)

=
nt
2

(nt−1 − 1)

=
nt(nt − 2)

4
.

Hence, we find that

|E(Gt)| = Θ(n2
t ) = Θ(22t) = Θ(22β) = Θ(2t+β), (5)

and this case is finished.

Consider the case where st = 1 so t > β. By (5), we have that |E(Gβ)| ≥ c22β for some

constant c > 0. By Theorem 3.1, using the graph Gβ and the time-step t−β, we derive that
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the average degree of Gt is at least

(
3

2

)t−β (
2c22β

2β|V (G)|
+ 2

)
− 2 ≥ 2c

|V (G)|
2β
(

3

2

)t−β
.

Thus, we have that

2|E(Gt)| ≥ 2t

(
2c

|V (G)|
2β
(

3

2

)t−β)

= Ω

(
2t+β

(
3

2

)t−β)
.

Similarly, by (5), we have that there exists a real-valued constant C > 0 such that

|E(Gβ)| ≤ C22β, so by Theorem 3.1, the average degree is at most

(
3

2

)t−β (
2C22β

2β|V (G)|
+ 2

)
− 2 ≤

(
3

2

)t−β (
2C2β

|V (G)|
+ 2

)
,

so

2|E(Gt)| ≤ 2t

((
3

2

)t−β (
2C2β

|V (G)|
+ 2

))

= O

(
2t+β

(
3

2

)t−β)
,

completing the proof. �

As a corollary to Theorem 3.2, we have that ILM graphs densify for any input sequence.
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Corollary 3.3. For any binary sequence S and initial graph G, we have that

lim
t→∞

|E(ILMt,S(G))|
|V (ILMt,S(G))|

=∞.

3.3. Clustering coefficient

Complex networks exhibit high clustering coefficients [7]. Recall that clustering coeffi-

cients are a measure of local density. In the ILT model, the clustering coefficient tends to

0 as t → ∞, although more slowly than binomial random graphs with the same average

degree, as discussed in Chapter 2 [9].

For any sequence where there are no infinite sequences of 0s or 1s, we say the sequence

has bounded gaps. The ILM for sequences with bounded gaps will have clustering bounded

away from 0. We will find it useful to write ct,S,G(x) for cILMt,S(G)(x), and when S and G are

clear from context, we may write ct(x), consistent with earlier defined notation. The next

theorem will bound the change in the clustering coefficient after a single transitive step.

Lemma 3.4. If G is a graph with minimum degree δ, then

C(LT(G)) ≥
(

7

8
− 3

8δ

)
C(G).

Proof. Let x ∈ V (G) and let x′ be its transitive clone in V (LT(G)). Let c0(x), c1(x)

denote the clustering coefficient of x inG and LT(G), respectively. SinceN(x′) = N [x]∩V (G)

and x dominates its neighbourhood, then c1(x
′) ≥ c0(x).
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We will now give a lower bound for c1(x). We count the edges in N(x). The induced

subgraph LT(G) [N(x) ∩ V (G)] is the subgraph of LT(G) induced by the vertex set N(x) ∩

V (G). By the definition of clustering, we have that the following number of edges in this

subgraph is:

c0

(
degG(x)

2

)
.

We now consider the number of edges between the sets N(x) ∩ V (G), the set of old

neighbours of x, and (N(x)\V (G)) \{x′}, the set of new clones adjacent to x other than the

clone of x. The number of such edges is:

2c0(x)

(
degG(x)

2

)
+ degG(x).

Finally, we consider the number of edges within the neighbourhood that are adjacent

to x′, which is degG(x). To find the clustering coefficient of x, we now must add all of the

edges displayed above. The degree of x in LT(G) is 2degG(x) + 1. We have as the clustering

coefficient in LT(G) satisfies:
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c1(x) =

3

(
deg0(x)

2

)
c0(x) + 2deg0(x)(

2deg0(x) + 1

2

)

=
3(deg0(x)− 1)c0(x) + 4

2(2deg0(x) + 1)

≥
(

3

4
− 3

4deg0(x)

)
c0(x).

Since for all v′ ∈ V (LT(G)) \V (G) we have that c1(v
′) ≥ c0(v), we can then find a lower

bound for the clustering of the graph LT(G) :

C(LT(G)) =

∑
v∈V (LT(G))∩V (G) c1(v) +

∑
v′∈V (LT(G))\V (G) c1(v

′)

2|V (G)|

≥

∑
v∈V (G)

(
3

4
− 3

4deg0(v)

)
c0(v) +

∑
v∈V (G) c0(v)

2|V (G)|

≥

(
7

4
− 3

4δ(G)

)∑
v∈V (G) c0(v)

2|V (G)|

=

(
7

8
− 3

8δ(G)

)
C(G),

and this completes the proof. �

We have the following corollary.
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Corollary 3.5. If G is a graph, then

C(ILTt(G)) = Ω

((
7

8

)t
t−3/7

)
.

Proof. We define δt = δ(ILTt(G)). Since each vertex v′ has degree degILTt−1(G)(v)+1 we

increase the minimum degree by exactly one, so δt = δt−1 + 1 and δt ≥ t. We may iteratively

apply Lemma 3.4 to obtain that

C(ILTt(G)) ≥ C(G)
t∏
i=1

(
7

8
− 3

8δi

)
≥ C(G)

t∏
i=1

(
7

8
− 3

8i

)
.

Observe that

t∏
i=1

(
7

8
− 3

8i

)
=

(
7

8

)t
1

t!

t∏
i=1

(
i− 3

7

)

=

(
7

8

)t
1

t!

t∏
i=1

(
t+

4

7
− i
)

=

(
7

8

)t
Γ(t+ 4/7)

t!Γ(4/7)

=

(
7

8

)t
Γ(t+ 4/7)

tΓ(t)Γ(4/7)
= Θ

((
7

8

)t
t−3/7

)
,

where Γ is the Gamma function. Thus,

C(ILTt(G)) = Ω

((
7

8

)t
t−3/7

)
,

which is the required result. �
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The following lemma demonstrates that the clustering coefficient is bounded away from

zero at time-step t whenever st−1 = 0.

Lemma 3.6. Let G be a graph and S = (s0, s1, s2, . . . ) be a binary sequence with bounded

gaps between 0’s. Let k be a constant such that there is no gap of length k, and let τ be the

third index such that sτ = 0. For all t ≥ τ , if st = 0, then

C(ILMt,S(G)) ≥ (1 + o(1))
1

22k+4
.

Proof. Let Gt = ILMt,S(G) with t ≥ τ , and let β1 < β2 ≤ t be the two largest time-

steps such that sβ1 = sβ2 = 0. Since we have no gaps of length k then β1 ≥ β2 − k ≥ t− 2k.

If v ∈ V (Gβ1−1), then degβ1(v) =
nβ1
2
− 1, where we use the notation degβ1(v) to be the

degree of v in Gβ1 .

Consider the case where sβ1+1 = 1, then

degβ1+1(v) = 2degβ1(v) + 1 =
nβ1+1

2
− 1.

Since all time-steps between β1 and β2 are transitive steps, we have shown inductively

that

degβ2−1(v) =
nβ2−1

2
− 1.
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Thus, v is adjacent to exactly half of the vertices in V (Gβ2)\V (Gβ2−1), since v is not adjacent

to itself.

Let Xβ2 = N(v) ∩ (V (Gβ2)\V (Gβ2−1)) be the set of clones that are adjacent to v, and

Yβ2 = (V (Gβ2)\V (Gβ2−1)) \N(v) be the set of clones that are not adjacent to v, as depicted

in Figure 3.2 where dashed lines represent non-edges. Since v is adjacent to exactly half of the

vertices of Gβ2 and half of the neighbours of v are clones, it follows that |Xβ2| = |Yβ2| =
nβ2
4

.

Figure 3.2. An illustration of the sets Xβ2 and Yβ2 in Lemma 3.6.

We show inductively that a sequence of transitive time-steps yields two sets with no edges

between them and each with cardinality one quarter of the total vertices. Consider the case

sβ2+1 = 1, we define Xβ2+1 and Yβ2+1 to be the vertices in Xβ2 and Yβ2 , respectively, along

with their new clones in time-step β2. There are no edges between Xβ2+1 and Yβ2+1 and

|Xβ2+1| = |Yβ2+1| =
nβ2+1

4
. In addition, Xβ2+1 ⊆ N(v) and Yβ2+1 ∩N(v) = ∅. Inductively, we

can continue in such a way until we reach time-step t− 1 with sets Xt−1 and Yt−1.
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We now use the fact that st = 0. After an anti-transitive step, the vertices in Xt−1 will

be adjacent to every anti-clone of the vertices in Yt−1. We then have that N(v) will contain

at least

|Xt−1| · |Yt−1| =
(nt−1

4

)2
=
(nt

8

)2
=
n2
t

64
.

Since v has deg(v) = nt
2
− 1 after an anti-transitive step, then we have that

c(v) ≥ n2
t/64(

nt/2−1
2

) = (1 + o(1))
1

8
.

This holds for all vertices v ∈ V (Gβ1−1). There are nβ1−1 ≥ nt−2k−1 = nt
22k+1 such vertices.

Thus,

C(Gt) =
(1 + o(1))

(
1
8

) (
nt

22k+1

)
nt

= (1 + o(1))

(
1

22k+4

)
.

This completes the proof. �

We now conclude the section by proving a lower bound for the clustering coefficient for

all ILMt,S(G) given some criteria on S.

Theorem 3.7. Let G be a graph, S = (s0, s1, s2, . . . ) be a binary sequence with bounded

gaps between zeroes, and k be an absolute constant such that there is no gap of length k. If τ
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is the second index such that stau = 0, then for all t ≥ τ , the clustering coefficient satisfies:

C(ILMt,S(G)) ≥ (1 + o(1))

(
7

8

)k
1

4k+2
.

Proof. Let Gt = ILMt,S(G) and τ ≤ β ≤ t denote the largest index such that sβ = 0.

Whenever there are no instances of zeroes between τ and t it is the case that β = τ , otherwise

β > τ . Since we have no gaps of length k, we also have that β ≥ t − k. There must be

at least one anti-transitive step prior to β, since β ≥ τ and τ is the second instance of an

anti-transitive step.

The maximum degree in Gβ−1 is ∆(Gβ−1) =
nβ−1

2
−1. Thus, after the anti-transitive step

at time-step β, we have the minimum degree is

δ(Gβ) ≥ nβ−1
2

=
nβ
4
≥ nt

2k+2
.

The minimum degree of a graph cannot decrease after a transitive step; hence, δ(Gt′) ≥

nt
2k+2 for all t′ ≥ β. Since thee are only transitive steps between β and t, using Lemma 3.6,

we have that

C(Gβ) ≥ (1 + o(1))

(
1

22k+4

)
.

By repeated applications of Lemma 3.4 we have that
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C(Gt) ≥
(

7

8
− 3 · 2k+2

8nt

)t−β
C(Gt1)

≥ (1 + o(1))

(
7

8

)k
1

22k+4
,

and this completes the proof. �

Determining the clustering coefficient of the ILAT model remains open [10]. Theorem 3.7

provides a lower bound of zero when k = 0, which is the case in the ILAT model.

3.4. Spectral expansion

In this section, we provide background on spectral graph theory [12].

Definition 3.2. For any graph G, the adjacency matrix, written A = (aij)n×n, is defined

by

aij =


1 if vivj ∈ E(G),

0 otherwise.

Definition 3.3. For any graph G, the diagonal degree matrix, written D = (dij)n×n, is

defined by
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dij =


deg(vi) if i = j,

0 otherwise.

For a graph G and sets of vertices X, Y ⊆ V (G), define E(X, Y ) to be the set of edges

in G with one endpoint in X and the other in Y. For simplicity, we write E(X) = E(X,X).

Let A denote the adjacency matrix and D denote the diagonal degree matrix of a graph G.

Since D is a diagonal matrix, we may find D−1/2 by taking the reciprocal of the square root

of each entry along the diagonal. The normalized Laplacian of G is

L = I −D−1/2AD−1/2.

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 denote the eigenvalues of L. The spectral gap of the

normalized Laplacian is defined as

λ = max{|λ1 − 1|, |λn−1 − 1|}.

For sets of vertices X and Y , we use the notation Vol(X) =
∑

v∈X deg(v) for the volume of

X, X = V \X for the complement of X, and, e(X, Y ) for the number of edges with one end in

each of X and Y. It is not necessary for X∩Y to be empty. In particular, e(X,X) = 2|E(X)|.

We next state the expander mixing lemma for the normalized Laplacian [12].
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Lemma 3.8 ([12]). If G is a graph with spectral gap λ, then for all sets X ⊆ V (G),

∣∣∣∣e(X,X)− (Vol(X))2

Vol(G)

∣∣∣∣ ≤ λ
Vol(X)Vol(X)

Vol(G)
.

Theorem 3.9. Let G be a graph and S = (s0, s1, s2 . . .) be a binary sequence. For all

t ≥ 1, we have that

λt ≥
1

4
− o(1),

where λt is the spectral gap of ILMt,S(G).

Proof. Let Gt = ILMt,S(G). First, consider the case where st−1 = 1, so that Gt =

LT(Gt−1). Let X = V (Gt)\V (Gt−1) be the set of cloned vertices added to Gt−1 to form Gt.

Since X is an independent set, we note that e(X,X) = 0. We derive the following using

Theorem [2.2]

Vol(Gt) = 6et−1 + 2nt−1,

Vol(X) = 2et−1 + nt−1,

Vol(X) = Vol(Gt)− Vol(X) = 4et−1 + nt−1.
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Hence, by Lemma 3.8, we have that

λt ≥
(Vol(X))2

Vol(Gt)
· Vol(Gt)

Vol(X)Vol(X)

=
Vol(X)

Vol(X)

=
2et−1 + nt−1
4et−1 + nt−1

> 1/2.

Second, consider the case where st−1 = 0, so thatGt = LAT(Gt−1). LetX = V (Gt)\V (Gt−1)

be the set of anti-clones added to Gt to form Gt+1. We derive that

Vol(Gt) = 2n2
t−1 − 2et−1 − 2nt−1,

Vol(X) = n2
t−1 − 2et−1 − nt−1, and

Vol(X) = Vol(Gt)− Vol(X) = n2
t−1 − nt−1.

Hence, by Lemma 3.8, we have that

λt ≥
Vol(X)

Vol(X)

=
n2
t−1 − 2et−1 − nt−1
n2
t−1 − nt−1

= 1− 2et−1
n2
t−1 − nt−1

=
1

4
− o(1),
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where the last equality follows since if t ≥ 2, Gt−1 has an independent set of cardinality

nt−1/2. In particular, we have that

2et−1 ≤ 2

(
nt−1

2

)
− 2

(
nt−1/2

2

)
=

3

4
n2
t−1 −

1

2
nt−1,

and this concludes the proof. �
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CHAPTER 4

Structural properties of the Iterated Local Model

4.1. Introduction

In this chapter, we consider the graph-theoretic structure of the graphs generated by

the Iterated Local Model. These results focus on graph parameters including diameter,

chromatic number, and domination number. We continue the chapter by discussing the

conditions under which the model will yield graphs that are Hamiltonian. We finish the

chapter by providing an interesting result regarding induced subgraphs of the model: we

prove that every finite graph is contained as an induced subgraph of the model after some

time-step for every initial graph or sequence.

4.2. Graph parameters

In this section, we will discuss various graph parameters in the ILM model.

4.2.1. Chromatic Number. Before we prove the theorem on the chromatic number

of the ILM model, we must first introduce a few lemmas.

Lemma 4.1. Let F be an induced subgraph of a graph H. If for every vertex v ∈ V (F ),

there exists u ∈ V (H)\V (F ) with N [v] ∩ V (F ) ⊆ N(u), then χ(H) > χ(F ).

Proof. See Figure 4.1.
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Figure 4.1. A diagram of the neighbourhood conditions for Lemma 4.2.

We prove this claim by contradiction. Assume χ(H) = χ(F ). The proper colouring of

H also induces a proper colouring of F . Thus, there must be some vertex v ∈ V (F ) such

that N [v] ∩ V (F ) witnesses every colour. In H, the neighbour u ∈ V (H)\V (F ) of vertex

v ∈ V (F ) is adjacent to every vertex in N [v]∩V (F ), and thus every colour in the set of χ(H)

colouurs. Hence, there is no available colour to colour u. This is a contradiction. Thus, it

must be the case that χ(H) > χ(F ).

�

Lemma 4.2. If G is a connected graph, then χ(LT(G)) = χ(G) + 1. If the radius of G is

at least 3, then χ(LAT(G)) = χ(G) + 1.

Proof. In both LT(G) and LAT(G), we have that the vertex set of Gt in each case can

be partitioned into two sets: an independent set that consists of all the new clones, and the

set of all vertices in Gt−1. Additionally, In both LT(G) and LAT(G), Gt[Gt−1] = Gt−1, since

all the edges in E(Gt)\E(Gt−1) contain an endpoint in V (Gt)\V (Gt−1). In either case, since

we may colour all new vertices a single colour. Thus, we have that
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χ(G) ≤ χ (LT(G)) ≤ χ(G) + 1 and χ(G) ≤ χ (LAT(G)) ≤ χ(G) + 1.

For the LT case, we use lemma 4.1, where G and LT(G) are the graphs F,H respectively

as stated in the lemma.

We continue the proof of the lemma for LAT(G). Let G be a graph of radius at least

three. For every v ∈ V (G) there exists a vertex u ∈ V (G) with dist(u, v) ≥ 3. Consider the

anti-clone of u, u∗ ∈ V (LAT(G)) \V (G). Every neighbour in G of v is not adjacent to u or

else the distance from v to u would be only two. Hence, each neighbour in G of v will be

adjacent to u∗. See Figure 4.2. This is the same property as Lemma 4.1, since LAT(G) has

G as an induced subgraph. Thus, χ (LAT(G)) > χ(G) whenever G has radius three.

v u

u∗

Figure 4.2. A diagram of the anti-transitive case for Lemma 4.2.

Further, in each case, we are adding an independent set. Thus, the chromatic number

at each time-step can increase by at most one colour, so χ (LAT(G)) ≤ χ(G) + 1 and
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χ (LT(G)) ≤ χ(G) + 1. The upper and lower bounds together yield the result as stated in

the lemma. �

The following lemma will give a lower bound on the radius of graphs after an anti-

transitive step. This will help us towards our proof of the chromatic number for all graphs

generated by the Iterated Local Model. Subsequently, we will prove an additional lemma

relating the radius and diameter after a transitive step.

Lemma 4.3. For any graph G, the radius of LAT(G) is at least three.

Proof. Consider a vertex x ∈ V (G) and its anti-clone x∗ ∈ V (LAT(G)) \V (G). We

note that N [x] ∩N [x∗] = ∅. Therefore, for every vertex x, there exists some vertex x∗ that

has dist (x, x∗) ≥ 3. This completes the proof. �

We next prove the following.

Lemma 4.4. If G is a graph with radius at least 3, then the radius of LT(G) is at least

3. Further, whenever diam(G) 6= 1, diam(G) = diam (LT(G)).

Proof. Consider u, v ∈ V (G). We first prove the following claim.

Claim: distG(u, v) = distLT(G)(u, v)

Consider any vertices u, v ∈ V (G). We must show that we cannot find a shorter path

using the new vertices in LT(G). For any vertex w ∈ V (G) and its transitive clone w′ ∈

LT(G) with N(w′) = N [w] ∩ V (G), there is no uv-shortest path that contains both w and
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w′. Thus, there exists a shortest path between u, v in LT(G) that uses only vertices from

V (G). This proves the claim.

Further, for any uv-shortest path in V (G), we can consider any interior vertex on this

path, and replace it along the path with its respective clone w′ ∈ V (LT(G) and obtain a

new uv-path in LT(G) of the same length.

Consider the path from u′ to v′. Whenever u, v are not adjacent, we may use the uv-

shortest path containing only V (G) vertices and have that distLT(G)(u
′, v′) = distG(u, v).

However, whenever u, v are adjacent, we must first move from u′ to u before arriving at v′.

Thus, if distG(u, v) = 1 then distLT(G)(u
′, v′) = 2. Whenever G has diameter at least two,

diam(G) = diam (LT(G)). �

With the two preceding lemmas, we are ready to complete the proof of the chromatic

number for the Iterated Local Model.

Theorem 4.5. If G is a connected graph and S = (s0, s1, s2, . . .) is a binary sequence,

then the chromatic number satisfies

χ(G) + t− 1 ≤ χ (ILMt,S(G)) ≤ χ(G) + t,

for all t ≥ 0.

Proof. For the upper bound, we may consider colouring the independent set at each

time-step with a new colour. This will always achieve a proper colouring with χ(G)+ t many

colours at time-step t ≥ 0.

57



For the lower bound, we first consider a sequence of constant ones, in which case by

repeated application of Lemma 4.2, we have that

χ (ILTt(G)) = χ(G) + t

for all t ≥ 0.

Consider now the first index, τ such that sτ = 0. We then have that ILMτ−1,S(G) =

ILTτ−1(G). Thus, we have that

χ (ILMτ−1,S(G)) = χ (ILTτ−1(G)) = χ(G) + (τ − 1).

Since ILMτ−1,S(G) is an induced subgraph of ILMτ,S(G), it must be the case that

χ (ILMτ,S(G)) ≥ χ (ILMτ−1,S(G)) = χ(G) + τ − 1.

For all t ≥ τ , ILMt,S(G) has radius at least 3 by Lemma 4.3, we may then use Lemma 4.2

to determine the following bound for any t ≥ τ ,

χ (ILMt,S(G)) ≥ χ (ILMt−1,S(G)) + 1.

Since we may apply Lemma 4.2 for each time-step between τ and t, we then have that

χ (ILMt,S(G)) ≥ χ(G) + (t− τ) + τ − 1 = χ(G) + t− 1.
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This completes the proof. �

4.2.2. Domination. We next focus on the domination number of ILM graphs.

Theorem 4.6. Let G be a graph and S = (s0, s1, s2, . . . ) be a binary sequence with at

least two bits equal to 0. If τ is the second index such that sτ = 0, then for all t ≥ τ + 1,

γ (ILMt,S(G)) ≤ 3.

Proof. Let Gt = ILMt,S(G) for any specified t and β1 < β2 ≤ t be the largest and

second largest indices such that sβ1 = sβ2 = 0. It may be the case that β2 = τ , but this is

not necessary.

Let v ∈ V (Gβ1). Since sβ1 = 0, Gβ1+1 = LAT(Gβ1). Let v∗ ∈ V (Gβ1+1) be the anti-clone

of v. Further, let v∗∗ ∈ V (Gβ2+1) be the anti-clone of v∗.

Claim: The set {v, v∗, v∗∗} is a dominating set of Gβ2+1.

Any vertex u ∈ V (Gβ2) is adjacent to one of either v∗ or v∗∗ by definition of anti-clone. We

must now consider new vertices in V (Gβ2+1)\V (Gβ2). These vertices form an independent

set, and so none are adjacent to v∗∗. Also, Nβ1+1[v] ∩ Nβ1+1[v
∗] = ∅, by the definition of

anti-clone. Since we only witness transitive steps between time-step β1 and β2, we also have

that Nβ2 [v] ∩Nβ2 [v
∗] = ∅. Thus, every vertex y ∈ V (Gβ2) is not adjacent to at least one of

v, v∗. We then have that the anti-clone of y, y∗ ∈ V (Gβ2+1)\V (Gβ2) must be adjacent to at

least one of v, v∗. Therefore, {v, v∗, v∗∗} is a dominating set of Gβ2+1.
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To complete the proof, we notice that transitive steps will preserve domination. A dom-

inating set in Gt will continue to dominate in Gt+1 = LT(Gt) since the clones of the vertices

outside of the dominating set are also adjacent to the dominating set. Therefore, the domi-

nation number of ILMt,S(G) for any sequence S and any graph G is bounded above by three,

when t ≥ β2 + 1. �

For any graph, an anti-transitive step cannot yield a dominating vertex since the anti-

clone is never adjacent to the parent. Theorem 4.6 bounds the domination number from

above. We cannot have γ (ILMt,S(G)) = 1 whenever S has at least one zero. Therefore,

ILMt,S(G) can only witness a domination of two or three whenever ILMt,S(G) 6= ILTt(G).

We continue in the next theorem to determine exactly when we have domination number

two for these graphs. We first present a lemma regarding vertex partitions.

Lemma 4.7. Let G be a graph. If G contains a pair of vertices whose closed neighbour-

hoods partition the vertex set, then the same pair of closed neighbourhoods also partition

the vertex set in LAT(G) and LT(G). Furthermore, if LT(G) contains a pair of vertices

whose closed neighbourhoods partition the vertex set, then G also has such a pair.

Proof. Let u, v ∈ V (G) be a pair of vertices whose closed neighbourhoods partition the

vertex set. Consider first, an anti-transitive step. We then have that every anti-clone of the

vertices in N [u]∩ V (G) is adjacent to v, and every anti-clone of the vertices in N [v]∩ V (G)

is adjacent to u. Thus, V (LT(G)) = N [u]∪N [v]. Also, since N [u], N [v] partition the vertex

set of G, and with the properties of the anti-clone, we have that N [u]∩N [v] = ∅ as required.
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Consider the transitive case. We claim that N [u] and N [v] will partition the vertex set of

LT(V ). Every transitive clone of N [u] ∩ V (G) is adjacent to u and every transitive clone of

N [v] ∩ V (G) is adjacent to v. Hence, we have that N [u] ∪N [v] = V (LT(G)). Additionally,

no clone of N [u]∩ V (G) is adjacent to N [v]∩ V (G) and no clone of N [v]∩ V (G) is adjacent

to N [u] ∩ V (G). Thus, N [u] ∩N [v] = ∅, as required.

Moving on to the second part of the lemma, let x, y ∈ V (LT(G)) be two vertices that

partition the vertex set of LT(G). If both x, y ∈ V (G) then they must partition the vertex

set of G since G is an induced subgraph of LT(G). If not, then there exists some vertex

w ∈ V (G) such that, without loss of generality, w′ = x.

Case 1: Suppose that there also exists some vertex z ∈ V (G) such that z′ = y.

Since x and y have neighbourhoods that partition the vertex set and all clones form an

independent set, it must be the case that x, y are the only two clones. Therefore, either

G = K2 or G = K2 (that is, a disjoint pair of edges). In both cases we consider taking a

transitive step. If G = K2, then we consider the graph of G shown in Figure 4.3, and notice

that there does not exist a vertex partition in LT(G), which is a contradiction. If G = K2,

then we have that w, z are the vertices whose neighbourhoods partition the vertex set of G.

Case 2: Suppose now that x ∈ V (LT(G))\V (G) and w′ = x for some w ∈ V (G) and that

y ∈ V (G), without loss of generality.

Since V (LT(G))\V (G) is an independent set, y must be adjacent to all vertices in

(V (LT(G))\V (G))\{x}. Hence, y is adjacent to V (G)\{w}. Since N [x] ∩ N [y] = ∅, w
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x y

w z

x y

w z

Figure 4.3. An illustration of LT(G) in Case 1 of Lemma 4.7 when G = K2

or G = K2, respectively.

must then be an isolated vertex in G, and N [w] and N [y] partition the vertex set of G. This

concludes the proof. �

The following proof characterizes exactly which graphs, G, and sequences S that will gen-

erate ILM graphs with domination two. For this proof we use the notation Gt = ILMt,S(G).

Theorem 4.8. Let G be a graph and let S = (s0, s1, s2 . . . ) be any binary sequence that

contains at least one bit equal to 0. If τ is the first index such that sτ = 0, then for all

t ≥ τ + 1, γ(ILMt,S(G)) = 2 if and only if one of the following statements holds.

(1) The graph G has a pair of vertices whose closed neighbourhoods partition the vertex

set.

(2) The graph G contains an isolated vertex and τ = 0.

(3) The graph G contains a dominating vertex, sτ = sτ+1 = 0, and t ≥ τ + 2.

Proof. We begin with the reverse direction. In each case listed by the items of the

theorem, we calculate the domination number.
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(1) If G has such a pair, then so does Gt for all t ≥ 0 by Lemma 4.7. Thus, γ(Gt) = 2.

(2) Let v be the isolated vertex and v∗ its anti-clone in G1. These vertices have neigh-

bourhoods that partition the vertex set since N(v∗) = V (G)\{v}.

(3) Since τ is the first index of zero, Gτ = ILTτ (G) which must also have a dominating

vertex, say v. After the anti-transitive step, v∗ will be an isolated vertex. We consider Gτ+1

to be a graph H and the first entry in its sequence is considered to be sτ+1 = 0, and we may

apply case (2), the result holds.

We now proceed to prove the forward direction. Consider the maximum degree at time-

step τ + 1, where we use nt to denote the number of vertices of Gt at time-step t for any

time-step t ≥ 0. Hence, we have the maximum degree is

∆(Gτ+1) =
nτ+1

2
− 1.

When performing an anti-transitive step, for any v ∈ V (Gτ ) we have that

degGτ+1
(v) = degGτ (v) +

(
nτ − degGτ (v)

)
= nτ − 1 =

nτ+1

2
− 1.

If sτ+1 = 1, then a vertex in Gτ+1 with ∆(Gτ+1) neighbours will have degree

2∆(Gτ+1) + 1 = nτ+1 − 1 =
nτ+2

2
− 1.

If sτ+1 = 0, then a vertex in Gτ+1 with ∆(Gτ+1) neighbours will have degree
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∆(Gτ+1) + (nτ+1 − 1−∆(Gτ+1)) =
nτ+2

2
− 1.

Thus, we have proven inductively for all t that ∆(Gt) =
nt
2
− 1. With this exact value

of the maximum degree, it must be the case that if γ(Gt) = 2, then Gt must have a pair of

vertices whose closed neighbourhoods partition the vertex set. We now must show that the

only conditions that yield such a partition are those in the statement of the theorem.

From Lemma 4.7 if G has a pair of vertices whose closed neighbourhoods partition the

vertex set of G, then Gt must also have such a pair. This is condition (1).

We next consider Gθ with θ ≤ t as the first time-step that witnesses a pair of vertices

that partition the vertex set of Gθ, and let u, v be these vertices. From Lemma 4.7, we

know that sθ−1 = 0, otherwise u, v would partition Gθ−1 which contradictions Gθ being the

first graph with such a partition. Furthermore, u, v cannot both be in V (Gθ−1) by the same

argument. Thus, at least one of u or v is an anti-clone.

Claim: At most one of u or v is an anti-clone at time-step θ.

Analogously to the proof of Lemma 4.7, if v is also an anti-clone, then u and v must be

the only two anti-clones. Since θ > 0, the initial graph G must be K1 and θ = 2. Since

sθ = 0, we only have two possible cases for Gθ: where s1 = 1 or s1 = 0, as illustrated in

Figure 4.4.

When s1 = 1, we do not have a partition in Gθ, this is a contradiction. When s1 = 0,

Gθ−1 also has a pair of vertices that partition the vertex set, which contradicts that Gθ is
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u
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v = y∗
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u = x∗

x

v

y

OR

Figure 4.4. An illustration of the two possible cases in Theorem 4.8.

the first instance with that property. By contradiction, u, v cannot both be anti-clones, and

this concludes the proof of the claim.

Without loss of generality, let u be the vertex in V (Gθ)\V (Gθ−1). and v ∈ V (Gθ−1). Let

v∗ be the anti-clone of v in Gθ. For the sake of contradiction, suppose that v∗ 6= u, then

v∗ /∈ N [v] by definition of anti-clone, and since all anti-clones form and independent set,

v∗ /∈ N [u]. Thus, v∗ is not dominated in Gθ, a contradiction.

Thus, v must be adjacent to all anti-clones except for u = v∗ which implies v must be an

isolated vertex in Gθ−1. If Gθ−1 = G then G has an isolated vertex, and we are in condition

(2), so we are done. Thus, assume θ− 1 ≥ 1. We then find that Gθ−1 has an isolated vertex.

Hence, sθ−1 = 0 since transitive steps cannot create an isolated vertex.

Claim: Gθ−2 = K1 or v ∈ V (Gθ−1)\V (Gθ−2).

Suppose not, then v ∈ V (Gθ−2). Since v is isolated in Gθ−1, we have that v must also be

isolated in Gθ−2. Since Gθ−2 6= K1, then there exists a non-neighbour of v in Gθ−2. However,
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this non-neighbour will have an anti-clone that will then be adjacent to v in Gθ−1, which

contradicts v being isolated in Gθ−1. This ends the proof of the claim.

Additionally, if Gθ−2 = K1 = G and θ − 2 = τ = 0 and K1 has a dominating vertex,

s0 = s1 = 0, so we are in condition (3). Therefore, we must now consider the case where

v ∈ V (Gθ−1)\V (Gθ2) and Gθ−2 6= K1. Let x ∈ V (Gθ−2) be the vertex so that x∗ = v. Since v

is isolated, x must then be a dominating vertex of Gθ−2. Dominating vertices can only occur

from transitive steps, and so si = 1 for all i < θ− 2. Therefore, θ− 2 = τ and sτ = sτ+1 = 0

and t ≥ τ + 2. Since Gτ−2 has a dominating vertex, G must also have a dominating vertex,

so we are in condition (3). �

4.2.3. Diameter. We continue our discussion of the domination number and distances

within graphs generated by the Iterated Local Model. We now work towards discussing the

diameter of these graphs in given cases.

Lemma 4.9. For any graph G, The graph LAT(G) is disconnected if and only if G has

a dominating vertex, or is the disjoint union of two complete graphs.

Proof. We begin with the forward direction by contraposition. Assume then that G

has no dominating vertex and G is not the disjoint union of cliques. Let A1, A2, . . . , A` be

the components of G, and let A∗i ⊆ V (LAT(G)) \V (G) denote the anti-clones of the vertices

in Ai for all 1 ≤ i ≤ `. Every vertex in Ai is adjacent to every vertex in A∗j whenever i 6= j.

Whenever ` ≥ 3, LAT(G) is connected, as in Figure 4.5, and we are done.
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A1
∗ A2

∗ A3
∗

A1 A2 A3

Figure 4.5. An illustration of the case where G contains at least three con-
nected components after one anti-transitive step in Lemma 4.9.

Consider the case when ` = 2. All vertices in A1 ∪ A∗2 are connected and all vertices in

A2∪A∗1 are connected. Since G is not the disjoint union of two cliques, there exist u, v ∈ A1,

without loss of generality, such that uv /∈ E(G). Therefore, u ∈ A1 is adjacent to v∗ ∈ A∗1,

the anti-clone of v. Thus, LAT(G) is connected.

Consider now the case when ` = 1. Since G does not have a dominating vertex, then

for any vertex u ∈ V (G) there exists a vertex v ∈ V (G) such that uv /∈ E(G). Hence,

the anti-clone of u, u∗ is adjacent to v. Thus, every anti-clone has some neighbour, so no

anti-clone is isolated. Thus, LAT(G) is connected. This concludes the proof of the forward

direction by contraposition.

To prove the reverse direction, consider the case when G has a dominating vertex. We

then have that LAT(G) has an isolated vertex and is disconnected. Next, consider the case

when G is the disjoint union of two cliques call them A1 and A2. We then have that there

are no edges from A∗i to Ai for i ∈ {1, 2}. Thus, LAT(G) is disconnected. This completes

the proof of the reverse direction. �
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We next consider the following lemma.

Lemma 4.10. For any graph, G, if γ(G) ≥ 3, then diam (LAT(G)) ≤ 3.

Proof. Let x and y be in V (G). Since γ(G) ≥ 3, there exists a vertex z that is not

adjacent to either x or y, regardless of whether xy ∈ E(G). If z∗ is the anti-clone of z in

LAT(G), then {x, z∗, y} is a path in LAT(G), so distLAT(G)(x, y) ≤ 2.

Analogously, distLAT(G)(x, z) = 2 and distLAT(G)(y, z) = 2, since there is always a third

vertex not adjacent to the other two, whose anti-clone will then provide the path of length

two. Also, x∗z, y∗z ∈ E (LAT(G)), so distLAT(G)(x
∗, y∗) = 2.

For a pair of vertices a, b with a ∈ {x∗, y∗} and b ∈ {x, y}, whenever a is not the anti-clone

of b, we have that if xy /∈ E(G) then ab ∈ E (LAT(G)). Otherwise, we find a new vertex,

say w, not adjacent to x nor y. Find a third vertex u such that each of b, w, and u are all

pairwise non-adjacent. Again, this must exist since γ(G) ≥ 3. We have a path as shown in

Figure 4.6 with vertices {a, w, u∗, b} which is a path of length three from a to b. Thus, we

find that distLAT(G)(a, b) ≤ 3.

Therefore, whenever γ(G) ≥ 3, we have that diam (LAT(G)) ≤ 3. �

Lemma 4.11. If G is a graph that is neither K1 nor K2, then neither LT(G) nor LAT(G)

is a disjoint union of two cliques.

Proof. If G = K2, then LT(G) is connected, and LAT(G) has three components. When

|V (G)| ≥ 3, if either LT(G) or LAT(G) is a disjoint union of two cliques then no two clones
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Figure 4.6. An illustration of the path of length three in Lemma 4.10.

could be in the same component. Since there are at least three vertices, there are at least

three clones, so by pigeonhole, there must be two clones in one component. This is a

contradiction. Therefore, neither LT(G) nor LAT(G) is a disjoint union of two cliques. �

We use the previous lemmas for the following theorem on the diameter of the graphs

generated by the ILM, and the final theorem In our section of graph parameters.

Theorem 4.12. Let G 6= K1 be a graph that is not the disjoint union of two cliques, and

S = (s0, s1, s2, . . . ) be a binary sequence with at least two bits equal to 0, where τ is the index

of the second time-step such that sτ = 0, then for all t ≥ τ + 1,

diam (ILMt,S(G)) = 3.

Proof. Let Gt = ILMt,S(G) for all t ≥ 0. Using Lemma 4.3, the radius of Gt for all

t ≥ τ + 1 is at least three. Therefore, the diameter is at least three, which gives our lower

bound.
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We next consider the upper bound. Since transitive steps preserve the diameter, we

only need to consider the diameter immediately after the most recent anti-transitive step.

Without loss of generality assume st−1 = 0, thus, Gt = LAT(Gt−1). Using Lemma 4.11, we

know that Gi is not the disjoint union of two cliques for all 0 ≤ i ≤ t − 1. It suffices to

prove this theorem in the case where t − 1 = τ is the second instance of a transitive step,

and where s0 = 0.

If γ(Gt−1) ≥ 3, then we are done by Lemma 4.10. We do not have a dominating vertex at

time-step t since we are taking an anti-transitive step, so our remaining case is γ(Gt−1) = 2.

Thus, there exist two vertices u, v ∈ V (Gt−1) whose closed neighbourhoods partition the

vertex set of Gt−1. Using Theorem 4.8, G cannot have a dominating vertex since γ(Gt−1) =

2 and there was only one prior instance of an anti-transitive step. Using Lemma 4.11,

G1 is connected. Hence, Gt−1 must also be connected since we are only taking transitive

steps, which preserve connectivity. Similarly, Gt−1 cannot have a dominating vertex since

∆(Gt−1) = nt−1

2
− 1. By Lemma 4.11, Gt is connected.

Let x and y be a pair of vertices whose closed neighbourhoods partition the vertex set of

Gt−1. By Lemma 4.7 they must also partition V (Gt). Thus, every pair of vertices in N [x] are

at distance at most two from each other. Consider a vertex u ∈ N [x]. If u has a neighbour

in N [y], as shown in Figure 4.7, then for all vertices v1 ∈ N [x] we have dist(u, v1) ≤ 2 and

for all vertices v2 ∈ N [y] we have dist(u, v2) ≤ 3.

We consider pairs of vertices u, v such that N [u] ⊆ N [x] and N [v] ⊆ N [y]. There are two

cases to consider.
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Case 1: u, v ∈ V (Gt−1)

We then have that deg(u) = deg(v) = nt
2
− 1. There must be some vertex a with a

neighbour in each of N [u] and N [v] or else G would be disconnected. Thus, dist(u, v) ≤ 3.

Case 2: Without loss of generality, v ∈ V (Gt)\V (Gt−1) and u ∈ V (Gt−1).

Let w ∈ V (Gt)∩N [x] such that the anti-clone of w is v = w∗. Since v = w∗ is not adjacent

to any vertex in N [x]∩V (Gt−1), it must be the case that V (Gt−1)∩N [x] = N [w]∩V (Gt−1).

Hence, N [w] and N [y] partition the vertex set of Gt−1, so we may consider x = w and

v = w∗ = x∗, as is described in Figure 4.7. Thus, N [y] ∩ V (Gt−1) ⊆ N [x∗] since N [x], N [y]

partition the vertex set.

Figure 4.7. An illustration of the relationship of vertex partitions in Theorem 4.12.

We know that Gt−1 is connected, so there must be some edge, say ab, from N [y]∩V (Gt−1)

to N [x] ∩ V (Gt−1) with endpoint a ∈ N [x] and endpoint b ∈ N [y]. If N [u] = N [x] we have

the path {u, a, b, v}. Otherwise, N [u] & N [x] implies deg(u) < nt
2
− 1 which implies that u

is some anti-clone of some vertex of Gt−1. We now apply a symmetric argument to u.
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Assume, without loss of generality that u is the clone of y. Since u and v are clones of

a pair of vertices whose closed neighbourhoods partition the vertex set of Gt−1 then it must

be true that N [u] = V (Gt−1)\N [y] = N [x] ∩ V (Gt−1) and also that N [v] = N [y] ∩ V (Gt−1).

Since Gt−1 is connected, we have found a path of length exactly three from u to v. This

concludes the proof of the upper bound.

Therefore, whenever G is neither the disjoint union of cliques nor K1, with a binary se-

quence that witnesses at least two 0’s before time-step τ , then for all t ≥ τ , diam (ILMt,S(G)) =

3. �

4.3. Structural Results

In this section, we will focus on two main results. The first result is the Hamiltonicity

of the graph, which will define and discuss the existence of Hamilton cycles. We will then

provide a result that says every finite graph will eventually appear as an induced subgraph

of ILMt,S(G) as t grows large.

4.3.1. Hamiltonicity. In the subsequent proof, we will use the following edge switch

technique. Let G be a graph with two disjoint cycles of arbitrary length, C(1) and C(2), and

let C4 be a 4-cycle that has one edge in common with C(1), say e, and one with C(2), say f .

In this case, we call this copy of C4 an edge switch between e and f , and note that an edge

switch implies that there is a cycle that covers all the vertices in V (C(1)) ∪ V (C(2)).

We will also require Dirac’s Theorem, which we restate here [23].
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Theorem 4.13. Every graph G with |V (G)| = n ≥ 3 and minimum degree δ(G) ≥ n/2

has a Hamilton cycle.

We may now proceed to prove the theorem.

Theorem 4.14. Let G 6= K1, and S = (s0, s1, s2, . . .) a binary sequence with at least two

nonconsecutive 0’s such that if there are exactly two 0’s, there is a 1 in between them. If t0

is the first index such that st0 = 0 and st0−k = 0 for some k ≥ 2, then for all t ≥ t0 + 1,

ILMt,S(G) is Hamiltonian.

Proof. Let Gt = ILMt,S(G) for any particular t ≥ t0 + 1. Let τ1 be the lowest index

such that sτ1 = 0 and let τ1 + 1 ≤ τ2 ≤ t− 1 be the largest index such that sτ2 = 0. For all

θ ≥ τ1 + 1 we have that ∆(Gθ) = nθ
2
− 1 as shown in Theorem 4.8. Thus, δ

(
Gθ

)
= nθ

2
. Since

|V (Gθ)| ≥ 4, by Theorem 4.13, we have that Gθ is Hamiltonian.

Let uv ∈ E
(
Gτ2−1

)
be an edge in the Hamilton cycle, which must exist since τ1 and τ2

are nonconsecutive 0’s, thus τ1 + 1 < τ1 + 2 ≤ τ2.

Claim: Gτ2 has a Hamilton cycle with four consecutive vertices that form a clique.

The clone vertices ofGτ2 , the set V (Gτ2)\V (Gτ2−1), form an independent set of cardinality

nτ2/2, and thus, also form a clique of at least cardinality four in Gτ2 . Consider the Hamilton

cycle in Gτ2−1. We traverse a Hamilton path from u to v. The edge vv∗ ∈ E
(
Gτ2

)
, where v∗

is the anti-clone of v, and we can continue a Hamilton path from v to v∗ and then traverse all

the anti-clones in V (Gτ2)\V (Gτ2−1) which form a clique in Gτ2 , ending with u∗, the anti-clone

of u. See Figure 4.8.
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u∗

u

v∗

v

Figure 4.8. Creating a Hamilton cycle in the complement after one anti-
transitive time-step in Theorem 4.14.

In particular, since there are at least four vertices in Gτ2−1, we have at least four anti-

clones in a Hamilton cycle in Gτ2 . Further, these consecutive vertices along a Hamilton cycle

form a clique of order four. This completes the proof of the claim.

Let C = {v1, v2, . . . , vnτ2} be the Hamilton cycle in Gτ2 . Without loss of generality, let

{v1, v2, v3, v4} be the four consecutive vertices that form a clique. Consider now, the clones

of each vi in Gτ2+1, denoted v∗i , respectively. Since vivi+1 ∈ E
(
Gτ2

)
, it must be the case

that viv
∗
i+1 ∈ E (Gτ2+1) and that v∗i vi+1 ∈ E (Gτ2+1) for each 1 ≤ i ≤ nτ2 − 1 and for the

endpoint that v∗1vnτ2 , v1v
∗
nτ2
∈ E (Gτ2+1). These edges form two disjoint cycles in Gτ2+1, one

with edges of the form viv
∗
i+1, call this C(1) and the other with edges of the form v∗i vi+1, call

this C(2), with appropriate modularity for the endpoints. Each cycle has length nτ2+1/2, is

disjoint and V (C(1)) ∪ V (C(2)) = V (Gτ2+1).

Since {v1, v2, v3, v4} form an independent set in Gτ2 , we know that v1v
∗
3, v
∗
2v4 ∈ E(Gτ2+1).

Using the edge switch technique as defined earlier. We have that {v1v∗2, v∗2v4, v4v∗3, v∗3v1} is

a four cycle, where exactly one edge is in C(1) and exactly one distinct edge is in C(2). We
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may then take an edge switch to form a Hamilton cycle on the vertices V (Gτ2+1) as depicted

in Figure 4.9. Hence, Gt is Hamiltonian, whenever the sequence S witnesses at least two

non-consecutive 0’s. �

v1

v2
∗

v3
∗

v4

C1 C2

Figure 4.9. Using the edge switch technique to create a Hamilton cycle in Theorem 4.14.

For a sequence of all 0’s, we have the property that there are at least two nonconsecutive

0’s. Thus, we have the following corollary.

Corollary 4.15. For any graph G when t ≥ 3, then ILATt(G) is Hamiltonian.

Consider next the Iterated Local Transitivity model. Since we never experience anti-

transitive steps, we cannot utilize the previous theorem or proof techniques. In fact, we

notice that it may take large values of t before ILTt(G) becomes Hamiltonian for some graph

G. We now introduce the following parameter.

Definition 4.1. Let G be a connected graph. We define ζ(G) to be the smallest integer

such that for all t ≥ ζ(G) that ILTt(G) is Hamiltonian. This is proved to be well-defined in

Theorem 4.16. We define
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ζn = max{ζ(G) : |V (G)| = n,G is connected}.

The next theorem shows that ζn grows with n.

Theorem 4.16. For all n ≥ 3, we have that

log2(n− 1) ≤ ζn ≤ dlog2(n− 1)e+ 1.

Proof. We begin with the lower bound. Consider the star K1,n−1 on n vertices. Let

At denote the set of all vertices in ILTt(K1,n−1) that are descendants of the centre vertex;

that is they are clones of the centre, x, at each time-step, including the clones of clones. It

is the case that At is a vertex-cut of cardinality 2t whose removal leaves a graph with at

least n− 1 components. If 2t < n− 1, then ILTt(K1,n−1) cannot be Hamiltonian. Therefore,

t ≥ log2(n− 1) is a lower bound for ζn.

We continue with the upper bound. Fix a graph G on n vertices and let Gt = ILTt(G).

If Gt is Hamiltonian, then let C = {v1, v2, . . . , vnt} be the Hamilton cycle in Gt. In Gt+1, we

can then find a Hamilton cycle by replacing the edges of the form vivi+1 with the edges viv
′
i

and v′ivi+1 for 1 ≤ i ≤ nt − 1, and replacing the edge vntv1 with the edges vntv
′
nt and v′ntv1

for the endpoint. Hence, transitive steps preserve the Hamiltonicity of the graph.

It suffices to now find the first t such that Gt is Hamiltonian since it will continue to be

Hamiltonian for all subsequent time-steps.
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Claim 1: For all t ≥ 2, ILTt(K1) contains a Hamilton cycle in which each vertex of

ILTt−1(K1) is adjacent to its clone in ILTt(K1).

To prove this claim we will use induction. Our base case considers ILT2(K1), which

has a Hamilton cycle that can be found by inspection in Figure 4.10. The inductive step

K1 ILT1(K1) ILT2(K1)

Figure 4.10. The first two time-steps of the ILT model on K1 demonstrating
the existence of the Hamilton cycle in Theorem 4.16.

is the argument as described in the above paragraph. Once a Hamilton cycle is found, we

can continue to build a Hamilton cycle in which each clone is adjacent to its parent. This

concludes the proof of the claim.

Claim 2: If V (K1) = {v} and V (ILT1(K1)) = {u, v}, then for all t ≥ 1, ILTt(K1) contains

a perfect matching that matches the descendants of u to the descendants of v that are not

descendants of u.

For t ≥ 2, one such matching has the property that the edges can be paired off in

such a way that if e and f are paired, there exist two vertices, x, y ∈ V (ILTt−1(K1)) such

that e = xy′ and f = x′y. We refer to these edges as a paired matching, and indicate the

relationship in Figure 4.11.
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Figure 4.11. An example of a paired matching in Theorem 4.16.

We proceed by induction. The base case holds as shown previously. Assume true for

some τ > 1. Let Mτ−1 be the desired matching in ILTτ−1(K1). Let Mτ then be defined as

Mτ = {xy′ : xy ∈Mτ−1}.

This concludes the proof of Claim 2.

Let T be a spanning tree of G, and let t0 = dlog2(∆(T ))e + 1. We will show that Gt0 is

Hamiltonian. Let V (T ) = {v1, v2, . . . , vn0}, and let

Vi,t = {v ∈ V (Gt) : v is a descendant of vi}.

Observe that for all t ≥ 0, Gt[Vi,t] = ILTt(K1) and if vivj ∈ E(T ), then Gt[Vi,t ∪ Vj,t] =

ILTt+1(K1). By Claim 1, for each 1 ≤ i ≤ n0, we can find a cycle C(i) that covers Vi,t, and

has the property that the vertices in Vi,t−1 are adjacent to their clones in the cycle.

By Claim 2, for each edge vivj ∈ E(T ), we can find a paired matching from Vi,t0 to Vj,t0 .

For each edge v1vj ∈ E(T ), given any vertex v ∈ Vi,t0−1, there exists some u ∈ Vj,t0−1 such
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that there is an edge switch between vv′ and uu′. This property guarantees that we can

build a Hamilton cycle by iteratively using edge switches between edges of the form uu′ and

vv′, one for each edge in T . As long as we never perform two edge switches at the same

vertex, this will give us a Hamilton cycle, and we now describe that it would not be possible

to perform two edge switches at the same vertex. Since t0 ≥ log2(∆(T )) + 1, we have that

|Vi,t0−1| = 2t0−1 ≥ ∆(T ). Thus, we can avoid performing two edge switches at the same

vertex, so Gt0 is Hamiltonian. Since n0− 1 ≥ ∆(T ), we have that ζn ≤ dlog2(n− 1)e+ 1 and

this completes the proof. �

4.3.2. Induced Subgraphs. We conclude the chapter with a result on induced sub-

graphs. For any finite graph F , given any graph G and any binary sequence S we can find

some τ ≥ 0 such that for all t ≥ τ, F appears as an induced subgraph of ILMt,S(G).

Theorem 4.17. If F is a graph, then there exists some constant t0 = t0(F ) such that for

all t ≥ t0, all graphs G, and all binary sequences S, F is an induced subgraph of ILMt,S(G).

Proof. To begin, we will first show for some constant k = k(F ) that ILTk(K1) contains

an induced copy of F . We will then show for large enough constant t0 = t0(k) that ILMt,S(G)

contains an induced copy of ILMk(K1) for all binary sequences S and graphs G. Let |V (F )| =

`.

Claim: ILT`+(`2)−1
(K1) contains an induced copy of F .

We remark that the clique number, ω (ILT`−1(K1)) ≥ `, since at each time-step we

increase the order of the largest clique by at least one. To show this is true, consider any

79



maximum order clique and one vertex of this clique. The clone of this particular vertex will

be adjacent to all vertices in the clique, and so increases the order of the largest clique by

at least one.

We now proceed to show that, for an arbitrary graph H if H is an induced subgraph of

ILTr(K1), then H − e is an induced subgraph of ILTr+1(K1) for any edge e ∈ E(H). Let

e = uv ∈ E(H) and let Vr(H) be the set of vertices in ILTr(K1) that induce a copy of H. Let

u′, v′ be the clones of the vertices u, v, respectively. We then have that (V (H)\{u, v})∪{u′, v′}

induces a copy of −e since Nr[u] = Nr+1(u
′) and Nr[v] = Nr+1(v

′), and also that u′, v′ are

not adjacent, as can be seen in Figure 4.12.

u′

u

v′

v

F

Figure 4.12. The removal of edge e = uv from the induced subgraph of H
in Theorem 4.17.

For any graph F on ` vertices we can find a time-step τ ≥ ` − 1 such that ILTτ (K1)

contains a copy of K`, the complete graph on ` vertices. We then inductively remove edges

from this copy of K` until we have found an induced copy of F . We need one time-step

for each edge removal, so we need at most
(
`
2

)
time-steps to find this induced subgraph.
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Therefore, we have shown that ILT`−1+(`2)
(K1) contains an induced copy of every graph on

` vertices.

We continue by showing that for any fixed k, for any graph G, and for any binary

sequence S that ILM2k,S(G) contains an induced copy of ILTk(K1). If ILMt,S(G) for some

t ≥ 0 contains a copy of ILTr(K1) for any integer r when a transitive step is performed

then ILMt+1,S(G) contains an induced copy of ILTr+1(K1), by considering the vertices that

induced the copy of ILTr(K1) along with their clones in time-step t+ 1.

We claim that if ILMt,S(G) contains an induced copy of ILTr(K1) and we perform two

anti-transitive steps, then ILMt+2,S(G) contains an induced copy of ILTr+1(K1).

For every vertex x ∈ V (ILMt,S(G)), let x∗∗ ∈ V (ILMt+2,S(G)) \V (ILMt+1,S(G)) denote

the anti-clone of the anti-clone of x. We use Nt[x] to denote the closed neighbourset of x at

time step t for any t ≥ 0. We have the following:

Nt+2[x
∗∗] = V (ILMt+1,S(G)) \Nt+1[x

∗]

= V (ILMt+1,S(G)) \ (V (ILMt,S(G)) \Nt[x])

= ((V (ILMt+1,S(G)) \V (ILMt,S(G)))) ∪Nt[x].

Thus, Nt[x] ⊆ Nt+2[x
∗∗]. In fact, Nt[x] = Nt+2[x

∗∗] ∩ V (ILMt,S(G)). In fact, Nt[x] =

Nt+2[x
∗∗] ∩ V (ILMt,S(G)). So, if X ⊆ V (ILMt,S(G)) induces a copy of ILMr(K1), then

X ∪ (X∗∗ ∩ V (ILMt,S(G))) induces a copy of ILMr+1(K1). Thus, for any clique of largest

order in ILMt,S(G) that contains x as a vertex of the clique, then together with x∗∗ we

have that ILMt+2,S(G) contains a clique of order one larger. Therefore, whenever ILMt,S(G)
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contains a copy of ILMr(K1), we have that ILMt+2,S(G) contains a copy of ILMr+1(K1) if

st+1 = st+2 = 0.

Thus, any combination of k transitive steps or pairs of subsequent anti-transitive steps

will yield and induced copy of ILMk(K1). Observe that such a sequence must occur within the

first 2k time-steps. If we partition the first 2k elements of the sequence S into k contiguous

pairs, then each pair either contains a one or is a pair of zeros, which will yield the appropriate

structure as described above. This completes the proof. �
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CHAPTER 5

Iterated Global Models

5.1. Introduction

The previous models discussed in the thesis including ILT, ILAT, and ILM focused on

considering the local structure of the graph and generating a new model iteratively from

this structure. In this chapter, we now define a model that is independent of the structure

of the initial graph but retains the iterative character of the previously defined models. We

introduce the Iterated Global Models, where a dominating vertex is added for each subset of

vertices of a given cardinality. This creates large graphs that behave similarly to unbalanced

complete bipartite graphs, which will be discussed in subsequent sections.

Let k ≥ 1 be an integer. The one parameter of the model is the initial, connected graph

G = G0. At each time-step t ≥ 0, we create Gt+1 from Gt in the following way: for each

set of vertices of cardinality b 1
k
ntc, say S, add a new vS that is adjacent to each vertex of

S. We name this process the 1
k
-model. For ease of notation and for consistency with earlier

chapters, we refer to newly added vertices in Gt+1 as clones. Note that the clones form an

independent set in Gt+1.
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We will focus in this chapter on the case k = 2, which we refer to as the half-model. In

the half-model, each new vertex is adjacent to approximately half of the existing network.

See Figure 5.1 for an example.

Figure 5.1. One time-step of the half-model beginning with C4.

One motivation for the model is that a new vertex chooses a prescribed fraction of the

new vertices to link to, without preference of local or other structures. For example, a user

on social media may choose to like a fraction of the posts on their newsfeed. The half-model

takes this assumption to an extreme to provide structural insight into this deterministic

process.

5.2. Complex network properties

Our first result establishes the order and size of graphs generated by the half-model. We

first recall Stirling’s approximation for the factorial:

n! ∼
√

2πn
(n
e

)n
.
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Stirling’s approximation may be used to derive an expression for the central binomial coef-

ficient,

(
2n

n

)
∼ 22n

√
πn

.

which may be derived directly and is part of folklore. This approximation will be useful

in our analysis, and its usefulness has provided motivation for the study of the half-model

as opposed to other values of k.

For an exposition of the asymptotics of binomial coefficients, see the book Asymptopia

by Spencer and Florescu [22].

Theorem 5.1. The order and size of the graph Gt in the half-model are given by the

following, respectively:

nt ∼
(
nt−1⌊
nt−1

2

⌋) and et ∼
(
nt−1⌊
nt−1

2

⌋) · ⌊nt−1
2

⌋
.

To simplify notation as we proceed with the chapter, we define the function:

αt =

(
nt⌊
nt
2

⌋).
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Proof. We begin with the order of Gt. By the definition of the model, at each time-step

t ≥ 1, we add one vertex for each set of size
⌊
nt−1

2

⌋
. Hence, we derive the following sum:

nt = n0 +
t∑
i=1

αi−1.

The term αt−1 will dominate the rest of the summation, which gives us the desired expression

for the order of Gt.

Next, we determine the size of Gt. Each new vertex added is adjacent to a set of size⌊
nt−1

2

⌋
, and we add αt−1 vertices, so we obtain the following recursive formula for the number

of edges at time-step t :

et = et−1 +
⌊nt−1

2

⌋
αt−1.

We observe that the second term dominates the sum, and the result follows. �

The half-model gives rise to graphs with average degree tending to infinity.

Theorem 5.2. The half-model densifies with time.

Proof. By Theorem 5.1, we have that

et
nt
∼
αt−1 ·

⌊
nt−1

2

⌋
αt−1

=
⌊nt−1

2

⌋
,

which tends to infinity with t. �
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The half-model has bad spectral expansion, as in the case of the ILM model. As in

Chapter 3, we use the following lemma.

Lemma 5.3 ([12]). If G is a graph with spectral gap λ, then for all sets X ⊆ V (G),

∣∣∣∣e(X,X)− (Vol(X))2

Vol(G)

∣∣∣∣ ≤ λ
Vol(X)Vol(X)

Vol(G)
.

Theorem 5.4. Graphs generated by the half-model satisfy λt ∼ 1, where λt is the spectral

gap of Gt.

Proof. Let X = V (Gt)\V (Gt−1) be the set of cloned vertices added to Gt−1 to form

Gt. Since X is an independent set, we note that e(X,X) = 0. We derive that

Vol(Gt) = 2et ∼ αt−1 · nt−1,

Vol(X) = αt−1 ·
⌊nt−1

2

⌋
,

Vol(X) ∼ αt−1 ·
⌊nt−1

2

⌋
.
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Hence, by Lemma 5.3, we have that

λt ≥
(Vol(X))2

Vol(Gt)
· Vol(Gt)

Vol(X)Vol(X)

=
Vol(X)

Vol(X)

∼
αt−1 ·

⌊
nt−1

2

⌋
αt−1 ·

⌊
nt−1

2

⌋
= 1,

and the result follows. �

5.2.1. Diameter. We observe that the half-model has a small (in fact, constant) di-

ameter as required for the small-world property. We first prove some results about the

connectivity for graphs generated by this model.

Lemma 5.5. For all t ≥ 0, if Gt is connected and nt ≥ 2, then Gt+1 is connected.

Proof. If v is a clone in Gt+1, then since nt ≥ 2, we have that v is adjacent to at least

one vertex u in V (Gt)\V (Gt+1). Since Gt is connected by hypothesis, there exists a path

from u to any other vertex of Gt, and hence, there is such a path from v to any vertex of

Gt. Since the vertex v was an arbitrary clone, we have shown there exists a path between

any two vertices in Gt+1. �

In the case where n0 = 1, then G0 is K1. Note that G1 is K2, and G2 is the disjoint

union of two edges. In particular, G1 and G2 are not connected. The subsequent lemma
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will provide insight into how many iterations a disconnected graph requires before becoming

connected.

Lemma 5.6. For all t ≥ 0, if Gt is a graph with nt ≥ 4, then Gt+1 is connected.

Proof. We proceed by a proof by contraposition. Suppose then that Gt+1 is discon-

nected, and so there exists two vertices u, v in Gt+1 such that there is no path between

them.

Case 1: u, v are both in V (Gt).

In this case, there is no set of size
⌊
nt−1

2

⌋
that contains both u and v, since otherwise, a

clone in Gt+1 would be adjacent to both u, v. At each time-step t, we add a clone for every

subset of size
⌊
nt
2

⌋
; hence, it must be the case that

⌊
nt
2

⌋
< 2 which implies nt ≤ 3. This

satisfies the negation of the predicate, and we have proved the result in this case.

Case 2: Exactly one of u or v is not in V (Gt); without loss of generality, say u ∈ V (Gt+1)\V (Gt).

As u is a clone it has degree
⌊
nt−1

2

⌋
, and so has a neighbour x in Gt, whenever nt ≥ 2.

Thus, there is no path from x to v in Gt, and we apply Case 1 using these two vertices.

Case 3: Both u, v are in V (Gt+1)\V (Gt).

Since there are at least two clones it must be the case that αt ≥ 2, and so nt ≥ 2. There

then exists some neighbour x of u in Gt and some neighbour y of v in Gt. We then have

that there is no path from x to y in Gt and we apply Case 1 to these two vertices. The proof

follows. �
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Our next result proves the 2-connectivity of graphs generated by the half-model.

Lemma 5.7. The graph Gt is 2-connected whenever t ≥ 4, regardless of the input graph

G0.

Proof. Using the recursive formula for the number of edges at time t in the proof of

Theorem 5.1, for any graph G0, we have at least four vertices after two time-steps. Using

Lemma 5.6, we require at least one additional time-step to ensure connectivity. Thus, re-

gardless of the input graph G0, it is the case that Gt is connected for t ≥ 3. We now claim

that whenever a graph Gt is connected, Gt+1 will be 2-connected.

Claim: If Gt is connected and nt ≥ 4, then Gt+1 is 2-connected.

If Gt is 2-connected, then we are done since every vertex in V (Gt+1)\V (Gt) has at least

one neighbour in V (Gt), and we may use the same two paths between those neighbours to

find 2-connectivity. Suppose Gt is at most 1-connected and thus let u be a cut-vertex of Gt.

Consider two vertices in Gt, say a, b, that have a shortest path through u. In Gt+1, there is

some clone z that is adjacent to both a, b. Therefore, we have two paths from a to b, and

the proofs of the claim and theorem follow. �

Our main result of this section is the following.

Theorem 5.8. Suppose that G0 has order at least 4. In the half-model, the diameter of

Gt for t ≥ 5, is at most three.
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Proof. We consider the distance between two non-adjacent vertices x, y ∈ V (Gt) in

three cases.

Case 1 : x, y ∈ V (Gt−1).

There exists some set S ⊆ V (Gt−1) of cardinality
⌊
nt−1

2

⌋
containing both x and y. Thus,

the dominating vertex for this set S, vS is adjacent to both x and y so their distance is 2.

Case 2 : x ∈ V (Gt−1) and y /∈ V (Gt−1).

There exists a vertex z ∈ NGt(y). There is some set S ⊆ V (Gt−1) so that x, z ∈ S. The

vertex vS that dominates S in Gt is adjacent to both x and z, so we have the path yzvSx.

Hence, the distance between x and y is at most 3. The symmetric case where y ∈ V (Gt−1)

and x /∈ V (Gt−1) is analogous.

Case 3 : x, y /∈ V (Gt−1).

Since x, y are new vertices in time-step t, there must be two sets Sx, Sy ⊆ V (Gt−1),

where x dominates Sx and y dominates Sy. If Sx
⋂
Sy 6= ∅, then there is some vertex of

Gt−1 adjacent to both x and y, so their distance is 2. Suppose now that Sx
⋂
Sy = ∅. Since

|Sx| = |Sy| =
⌊
nt−1

2

⌋
, it may be the case that there exists a vertex z /∈ Sx ∪ Sy.

Suppose first that there is no such vertex z. There must be some edge with one endpoint

in Sx and the other in Sy, since otherwise, the graph would be disconnected, which contradicts

Lemma 5.7. We call these two endpoints a and b. We then have a path xaby and the distance

between x and y is 3.
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If there is such a vertex z, then since Gt is 2-connected by Lemma 5.7, z cannot be a

cut-vertex. Therefore, there must be some edge with one endpoint in Sx and the other in Sy

and the distance between x and y is 3. �

5.3. Graph Parameters for the Half-Model

In this section, we discuss classical graph parameters for the half-model. We begin by

considering the independence and clique number.

Theorem 5.9. The independence number of Gt is αt−1 and for the clique number we

have

χ(Gt) ≥ min
(⌊nt−1

2

⌋
+ 1, ω(G0) + t

)
.

Proof. At each time-step t, all the cloned vertices form an independent set. The set of

new vertices has order αt−1 ≥ nt−1, so this set must be the largest independent set in Gt.

Therefore, we derive that α(Gt) = αt−1.

We next consider the clique number of Gt. At each time-step t, we add a dominating

vertex to subsets of cardinality
⌊
nt−1

2

⌋
from Gt−1. If the largest clique K at time-step t− 1

is contained in one such subset, then we have increased the order of K by 1. However, the

maximum degree of new vertices is
⌊
nt−1

2

⌋
. Hence, we cannot increase the size of the largest

clique to be larger than
⌊
nt−1

2

⌋
+ 1 . �

We next give the chromatic number of the half-model.

Theorem 5.10. For the half-model, we have that the chromatic number is given by
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χ(Gt) = min
(
χ(G0) + t,

⌊nt−1
2

⌋
+ 1
)
.

Proof. Suppose that Gt is properly coloured. Consider a rainbow subset of vertices;

that is, a set of vertices that requires each distinct colour in the graph. Let the cardinality

of this set be r ≥ 1. When r ≤
⌊
nt−1

2

⌋
, any new clone added that contains this set in its

neighbours will need a new colour. When r >
⌊
nt−1

2

⌋
, any new clone that is added will have

a neighbour set smaller than the cardinality of the colours, which implies there will always

be an available colour. �

We finish by proving a result on the domination number of graphs generated by the

half-model.

Theorem 5.11. The domination number of Gt is

γ(Gt) =
⌈nt−1

2

⌉
+ 1.

Proof. We will first establish the upper bound

γ(Gt) ≤
⌈nt−1

2

⌉
+ 1.

Consider a set S of bnt−1

2
c non-clone vertices in Gt−1. The vertex xS dominates S. The

complement T of S in V (Gt−1) has cardinality
⌈
nt−1

2

⌉
. Hence, {xS} ∪ T, is the desired

dominating set.
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For the lower bound, we must show that γ(Gt) >
⌈
nt−1

2

⌉
. For a contradiction, suppose

that some set of
⌈
nt−1

2

⌉
-many vertices, say X, dominates Gt. Suppose first that X consists

of non-clones. Regardless of the choice of X, there will be some set of non-clones, call it T ,

of size
⌊
nt−1

2

⌋
such that X ∩ T = ∅. Thus, xT is not dominated, which is a contradiction.
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G
t-1

z

Figure 5.2. The vertex z is not adjacent to X.

Suppose that X contains at least one clone. There is a least one clone z not adjacent to

X ∩ V (Gt−1), since |X ∩ V (Gt−1)| <
⌈
nt−1

2

⌉
. See Figure 5.2. Any clone in X is not adjacent

to z, since the clones form an independent set. Therefore, z is not dominated by X, which

gives a contradiction. �
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CHAPTER 6

Conclusion

6.1. Introduction

In this thesis, we introduced two new deterministic models for social networks. The

first chapter motivated the models and gave requisite background on graph theory and

complex networks. In Chapter 2, we provided background on models that inspired our work:

the Iterated Local Transitivity model and the Iterated Local Anti-Transitivity model. We

discussed the results for these models, which motivated the new models.

We defined the Iterated Local Model (ILM) in Chapter 3, where we discovered results

pertaining to its complex network properties. Specifically, we showed that ILM graphs

exhibit the small-world property and densification. Further, the spectral gap was discussed

and it was shown that the model has bad spectral expansion as found in real-world social

networks.

Chapter 4 focused on the structural properties of ILM graphs, including distance prop-

erties and Hamiltonicity. There are many interesting structural properties of this model; in

particular, we proved that for any finite graph F , there is a time-step t ≥ 0 such that the

ILM graphs at time-step greater than t will contain the graph F as an induced subgraph.
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In Chapter 5, we defined the Iterated Global Model (IGM). The IGM is independent of

the original graph structure, unlike ILM graphs, and relies on subsets of vertices to generate

new graphs. We proved that graphs generated by the half-model exhibit densification and

bad spectral expansion, and we investigated various graph parameters for this model.

6.2. Open problems and further directions

Several open problems remain concerning ILM and half-model graphs. We conclude the

thesis by presenting a list of them.

(1) Much less is known about the eigenvalues of the ILAT model than for ILT graphs,

and hence, for ILM graphs. In addition, we do not have a precise asymptotic value

for the clustering coefficient of ILM graphs.

(2) Rather than cloning vertices, we could instead clone entire families of subgraphs

such as paths or triangles. It would be interesting to analyze complex network

properties such as the clustering coefficient in this model, as well as classic graph

theory parameters.

(3) Randomization of the models would make them more realistic but more complicated

to analyze. For instance, in the half-model, we may clone sets of cardinality
⌊
nt−1

2

⌋
chosen uniformly at random from all possible subsets of Gt−1. Duplication models

[13], where we randomize which edges to clone, are difficult to rigorously analyze

given their dependency structure. The ILM could also be randomized by considering

random binary sequences.
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(4) Graph limits consider dense sequences of graphs and analyze their properties based

on their homomorphism densities. Since the ILM and half-models generate dense

sequences of graphs, it would be interesting to explore their graph limits.

(5) Many questions remain in the half-model. For example, it would be interesting

to estimate the clustering coefficient. Another interesting direction would be to

generalize our results to integers k > 2.
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