

AXIAL MOTION COMPENSATION OF OPTICAL COHERENCE TOMOGRAPHY

WITH A COLLABORATIVE MEDICAL ROBOT

by

Robnier Reyes Perez

B.Eng., Ryerson University, Toronto, Ontario, 2016

A thesis

 presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2020

© Robnier Reyes Perez 2020

 ii

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

Including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

 iii

Abstract

AXIAL MOTION COMPENSATION OF

OPTICAL COHERENCE TOMOGRAPHY WITH A

COLLABORATIVE MEDICAL ROBOT

Robnier Reyes Perez

Master of Applied Science, Electrical and Computer Engineering

Ryerson University, 2020

 This thesis presents an imaging tool consisting of an Optical Coherence Tomography (OCT)

imaging system mounted on a collaborative robotic arm to enable axial motion compensation.

Optical Coherence Tomography is a subsurface, high-resolution imaging modality used in

neuroimaging to differentiate between pathological and non-pathological tissue. The motivation

behind this project is to bring Optical Coherence Tomography to the operating room for

neuroimaging to help with cancerous tissue differentiation and maximize the extent of tumor

resection. However, neurosurgeons have expressed concern with respect to intracranial pressure

(ICP) pulsation displacing the brain far off the optic axis of the imaging system so as to not be

visible. The collaborative robotic arm compensates for sample motion along the optic axis using

a Proportional controller to track the position of the peak intensity of the sample’s intensity

profile, which generally corresponds to the sample surface. Collaborative robots have changed

the robot industry paradigm becoming increasingly functional and safer than the previous

generations of robotic arms. We present an OCT robot end-effector to test the feasibility of

performing OCT imaging with the collaborative robot.

 iv

Acknowledgements

 I’d like to thank my supervisor, Dr. Victor X.D. Yang, for guiding me through the steps to

complete my thesis. I’d like to thank my friend and colleague, Andrew Marques, for his moral

support. I’d like to thank the rest of my lab group for their constant motivation.

 I’d like to thank my wife, Sarah, and my family for always being there.

 v

Table of Contents

Abstract…………………………………………………………………………. iii

List of figures…………………………………………………………………… vi

List of equations………………………………………………………………...vii

1 Introduction.…………………………………………………..……………….…1

1.1 Background and Motivation.……….…………………………….…………...1

2 Optical Coherence Tomography (OCT) Imaging……………...……………..14

2.1 Laser source ……………………………………………….………………...15

2.2 Michelson Interferometer.…………………………………….……………...17

2.3 Spectrometer………………………………..……………………………..…23

2.4 Data Acquisition and Processing.…………………………………………... 25

2.5 OCT end-effector……………………..……………………………………...28

2.6 OCT imaging performance.…………………..…………………..………… 32

3 System Integration, Experiment Methodology, and Results.………….…….36

3.1 LBR Med – Collaborative robot & safety-oriented programming…………..36

3.2 OCT integration.………………………………………………………….… 46

3.3 Experiment Methodology and Results………………………………………52.

4 Conclusion …………………………………………………………………….. 62

Appendix A ……………………………………………………………………..64

Appendix B ……………………………………………………………………..66

Appendix C ……………………………………………………………………..72

References ...…………………………………………………………………….95

 vi

List of Figures

Figure 1. Temporal coherence of light. [a] Monochromatic sinusoidal wave of finite length. [b]

Dual-frequency emission. [c] Beat wave. [d] Gaussian beat wave and its Fourier transform…..…..4

Figure 2. Schematic diagram for time-domain Optical Coherence Tomography………………...5

Figure 3. Schematic diagram for frequency-domain Optical Coherence Tomography…………...8

Figure 4. CARLO (top-left), Cyberknife (top-right) Artis pheno (bottom) images………………10

Figure 5. Optical Coherence Tomography imaging system optic diagram………………………15

Figure 6. Photonic Crystal Fiber (PCF) refractive index structure. Rendering done in MATLAB

using BeamLab toolbox. …………………………………………………………………………16

Figure 7. Supercontinuum laser spectrum with a 135 nm bandwidth ……………………………17

Figure 8. Fiber-based circulator and beamsplitter components of the Michelson interferometer...18

Figure 9. Graphical depiction and simulation of a beamsplitter or coupler with a 50:50 power split

ratio. Simulation performed in MATLAB using the BeamLab toolbox……………………….19

Figure 10. Optical circulator diagram and circulator component (CIR-1310-50-APC)………….20

Figure 11. Solid-state optic components. [a] Collimator F260APC with a focal length of

15.36mm and numerical aperture of 0.16. [b] Dual-axis galvo mirror with driving signal and

camera sync signal. [c] Plano-convex lens to focus the beam on the sample……………………22

Figure 12. Spectrometer image and diagram ……………..……………………………………23

Figure 13. Interference signal processing block diagram……………………………………….25

Figure 14. [a] Raw data with background noise component. [b] Interference signal after

background noise subtraction……..…………………...……………………………………...…26

Figure 15. Linearly resampled domain and interpolated A-line …………………………………27

 vii

Figure 16. Fourier transform on the interference signal extracts the sample structural

information………..…………………………………………………………...………..………..28

Figure 17. First-generation prototype of the OCT end-effector…………………………………30

Figure 18. Robot end-effector for OCT imaging with interferometer and aiming lasers…………31

Figure 19. Single-mode Gaussian beam profile. ………………………………………………...32

Figure 20. OCT imaging characteristics of the probing beam: probing depth, lateral resolution,

and axial resolution……………………….………………………………………………………...33

Figure 21. LBR Med 14 R820 configuration space information and workspace envelope.....….39

Figure 22. Safety-oriented workflow design for intraoperative OCT imaging ………………….44

Figure 23. [a] System integration block diagram. [b] Data flow block diagram…………………50

Figure 24. [a] LabView GUI for the LBR_OCT system. [b] Frame transformation diagram. [c]

OCT end-effector with aiming/guiding lasers and interferometer……………………………….51

Figure 25. Galvo motor and test sample. ……….………………………………………………..52

Figure 26. Intracranial Pressure (ICP) waveform and frequency spectrum………………..……53

Figure 27. Proportional controller tuning. .……………………………………………….……..58

Figure 28. Frequency response of the proportional controller. …………………………………..60

Figure 29. Intracranial pressure waveform signal and tracking error………………………….…61

 viii

List of Equations

Equation [1]. Electric field with a Gaussian amplitude spectrum……………………………. .6

Equation [2]. Gaussian amplitude spectrum……………………………………………………6

Equation [3]. Electric fields of the interferometer arms for the time-domain OCT scheme……..6

Equation [4]. Phase delay caused by the reference mirror displacement………………………..7

Equation [5]. Electric fields of the interferometer arms for the frequency-domain OCT scheme.8

Equation [6]. Sample response function in the frequency domain. ……………………………..9

Equation [7]. Fourier transform operation ……………………………………………………...9

Equation [8]. Diffraction grating equation………………………………………………………24

Equation [9]. Nonlinearly spaced wavelength values incident on each pixel……………….….24

Equation [10]. Mean signal calculation. ………………………………………………………..26

Equation [11]. Linearly spaced k values used to interpolate the new intensity values ………...27

Equation [12]. Peak optical intensity at the focusing spot of the Gaussian beam………………34

Equation [13]. Rayleigh range of the Gaussian beam ………………………………………….34

Equation [14]. Probing depth ………………………………………………………………......34

Equation [15]. Focus spot size and lateral resolution of the imaging system……………..........35

Equation [16]. Coherence length of the laser source and axial resolution…...…………………...35

Equation [17]. Elementary transformation matrices and Denavit-Hartenberg (DH) parameters to

obtain the forward kinematics matrix. …………………………………………………………...40

Equation [18]. Intracranial Pressure (ICP) waveform composition…………………………….53

Equation [19]. Proportional controller function………………….………………………….…..55

This page was left blank on purpose.

 1

1.Introduction

1.1 Background and Motivation

 Cancer is a leading cause of death and brain cancer is one of the most common and deadly types.

Despite advances in modern surgical techniques, there is a limit to the extent of tumor resection

current surgeons can achieve because visual delimitation of the tumor’s margin is still a challenge.

Optimal safe tumor resection is of upmost importance because the rate of cancer recurrence is

proportionally correlated to the extent of the resection. Therefore, novel approaches to allow for

intraoperative differentiation between cancer and non-cancer tissue are needed to improve clinical

outcome [1]. The motivation behind this project is to develop an Optical Coherence Tomography

(OCT) intraoperative imaging tool to introduce in the workflow of brain tumor resection surgical

procedures. OCT is a contactless medical imaging modality useful in applications where high-

resolution, subsurface images are required. The applications of OCT for neuroimaging were first

presented by Boppart as a useful tool for brain tissue differentiation [2]. Bohringer has also

demonstrated the different optical properties between pathological and nonpathological brain

tissue by comparing OCT images with histology results and presenting light attenuation maps

showing the differences in attenuation profiles of tumors and healthy tissue [3] [4]. These findings

have been confirmed by Dr. Quiñones in a study where pathologically confirmed brain cancer

tissue was found to have had considerably lower attenuation than non-cancerous tissue [4]. This

different attenuation profiles of cancerous and noncancerous tissue can be observed under OCT as

structures with different intensities. His latest research at John-Hopkins has also shown that OCT

imaging can be used to distinguish brain tumor margins [5] [6].

 2

 Optical Coherence Tomography was developed as an imaging modality by Fujimoto and his

research group in the early 1990’s from principles of interferometry [7]. Interferometry allows one

to measure the delay of reflected and scattered light from a sample by comparing it to a known

path length. These principles had been used in optic fiber communication and meteorology, but

the new implementation allowed images of a biological sample to be obtained and it was made

popular for structural imaging of transparent (i.e. eye) and nontransparent (i.e. skin, brain) tissues

by the work of Fercher and Izatt, among others [8] [9] . OCT has been traditionally referred to as

optical biopsy given its use to obtain histology-like images of tissue. During research studies,

histology slices of tissue are often compared to or analyzed next to their corresponding OCT

images. Today, commercial OCT systems for retinal imaging are often encountered as a benchtop

system in ophthalmology clinics. OCT has also become an important research tool with

applications in cardiology, dermatology, and oncology, where hand-held probes are used to

perform imaging in vivo. OCT is analogous to ultrasound in the sense that a wave is emitted, and

the time delay and magnitude of the reflected or scattered wave is measured to obtain structural

information of the sample. In contrast to ultrasound, which uses sound waves to detect differences

in acoustic impedance, OCT uses light waves to detect differences in indices of refraction in the

structures within the sample. These axial intensity profile produced by the backscattered waves

can be used to construct cross-sectional images of the sample. Moreover, the speed of sound

(3 ∗ 103𝑚/𝑠) and light speed (3 ∗ 108𝑚/𝑠) differences means that time delay and magnitude

measurements for ultrasound can be done directly by the sensor, whereas in OCT these

measurements is done indirectly using low-coherence interferometry. Low-coherence

interferometry splits a light beam and correlates the echo time delay and backscattered intensity of

the structures within the sample relative to a known reference path length. The resolution of this

measurement is directly related to the temporal coherence length of the source since interference

 3

can only be achieved when the optical path difference is within the coherence length. The

coherence of a laser source relates the phase relationship of the emitted waves at different locations

(spatial) and times (temporal). The coherence of a laser defines its ability to create interference. In

general, laser beams exhibit high spatial coherence which is what makes the beam have a high

quality and directionality. On the other hand, the temporal coherence of a laser very much depends

on the type of laser. Therefore, a low-coherence laser is meant to describe its temporal coherence

characteristic. High-temporal coherence lasers (i.e. HeNe laser) are very monochromatic and

exhibit a fixed phase relationship over a relatively long distance. A pure sinusoidal wave, Fig 1a,

emitted over a finite period of time, t, and extending over a length, 𝑙 = 𝑐t, is perfectly coherent

because the phase of every wave emitted by the source is predictable. For a perfectly coherent

wave, these are the coherent time and length of the wave. In practice, however, lasers have a

spectrum of frequencies, , at which the emitted waves oscillate. These superpose to create a

wave packet, Fig 1b&c, whose coherence length depends on the relationship between the time the

emission occurs, t, and the source spectrum, . The wave packet is modulated by an envelope

function that depends on the laser source used. If a Gaussian function is taken to be the envelope

of the wave packet, Fig 1d, the coherence time of the laser is inversely proportional to its spectrum,

t = 1
⁄ . Therefore, a broadband laser source (i.e. supercontinuum) is characterized by a short

temporal coherence. Furthermore, the assumption of a Gaussian envelope has practical

mathematical implications as the Fourier transform of a Gaussian function is also Gaussian. A

Fourier transform is used to deconstruct the sinusoidal oscillations that make up the wave and

observe its spectrum, Fig 1d.

 4

[a]

[b]

[c]

[d]

Figure 1. Temporal coherence of light. [a] Monochromatic sinusoidal wave of finite length. [b]

Dual-frequency emission. [c] Beat wave. [d] Gaussian beat wave and its Fourier transform.

 5

 OCT imaging technology has evolved from when it was first proposed as a structural time-

domain imaging modality to frequency-domain modalities offering structural and functional

information about the sample. In the following discussion we outline time-domain and frequency-

domain structural imaging schemes to introduce the reader to the requirements of building an OCT

imaging system and its functionality.

Figure 2. Schematic diagram for Time-Domain Optical Coherence Tomography (TD-OCT)

 Figure 2 depicts a Michelson interferometer with a beamsplitter cube, translating mirror at the

reference arm, sample under test, and optical sensor to detect the interference signal. The

translating mirror at the reference arm is crucial in time-domain OCT as it allows the

interferometer to match optical paths with structures deeper in tissue. Mirror translation

interrogates the sample and forms the intensity depth profile, commonly referred to as an

 6

Amplitude-line, or just A-line. We can present a mathematical formulation for OCT by expressing

the laser source as an electric field:

 𝐸𝑠𝑜𝑢𝑟𝑐𝑒 (𝜔, 𝑡) = 𝑆(𝜔)𝑒−𝑖𝜔𝑡

Equation [1] Electric field with a Gaussian amplitude spectrum

where, 𝑆(𝜔) is the source field amplitude spectrum, 𝜔 is the optical frequency as it relates to

wavelength through = 2𝑐
⁄ , and time variation t. The source field amplitude spectrum is a

Gaussian envelope with a distribution defined by the frequency characteristics of the laser source:

𝑆() = 𝑒
−(−𝑐)2

22

Equation [2] Gaussian amplitude spectrum

 The beamsplitter cube separates the laser beam so that the two waves travel through equal-in-

length paths along the reference and sample arm, respectively. The reflection and scattering signals

from each arm travel once again back to the beamsplitter where they form an interference pattern.

Assuming a lossless beamsplitter with a 50:50 split ratio:

𝐸𝑟𝑒𝑓 (𝜔, 𝑡, ∆𝑥) =
1

2
 𝐸𝑠𝑜𝑢𝑟𝑐𝑒(𝜔, 𝑡)𝑒−𝑖𝜑(∆𝑥)

𝐸𝑠𝑎𝑚𝑝𝑙𝑒(𝜔, 𝑡) =
1

2
 𝐸𝑠𝑜𝑢𝑟𝑐𝑒 (𝜔, 𝑡)𝐻(𝜔)

𝐸𝑜𝑢𝑡(𝜔, 𝑡, ∆𝑥) = 𝐸𝑟𝑒𝑓(𝜔, 𝑡, ∆𝑥) + 𝐸𝑠𝑎𝑚𝑝𝑙𝑒(𝜔, 𝑡)

Equation [3] Electric fields of the interferometer arms for the time-domain OCT scheme.

 7

where, 𝜑(∆𝑥) is a function of phase accumulation with respect to the reference mirror

displacement ∆𝑥 = ∆𝑡𝑐/𝑛𝑎𝑖𝑟. The need for the interferometry comes because the time of flight for

light, ∆𝑡, is too small to be directly measured by modern sensors and electronics. However, the

cosine modulated phase delay accumulation between interferometer arms can be detected.

𝜑(∆𝑥) = cos (2∆𝑥 𝑛𝑎𝑖𝑟 𝑐⁄)

Equation [4] Phase delay caused by the reference mirror displacement.

 When ∆𝑥 = 0, the reference and sample arms lengths are matched and the cross-interference

between interferometer arms is obtained. Reference mirror translation, ∆𝑥, is said to interrogate

deeper layers of the sample and extract its structural composition as an intensity profile. The

smallest structure detectable in the axial direction is of the same size as the coherence length of

the source used for imaging. This means that the axial resolution of the imaging system is equal to

the coherence length of the laser source.

 In this thesis we use a frequency-domain OCT method with a broadband laser and a

spectrometer; a general schematic diagram is depicted in Fig 2. The two relevant distinctions are

the change to a fixed reference mirror and the use of a spectrometer as a detector. Spectrometers

are optical devices designed to separate the wavelength components of light sources and observe

their spectral density, the intensity distribution of the wavelengths.

 8

Figure 3. Schematic diagram for frequency-domain Optical Coherence Tomography.

 We continue with the assumption of a laser source with Gaussian amplitude spectrum and a

lossless beamsplitter with a 50:50 split ratio. However, the fixed mirror eliminates the phase

accumulation from the optical delay:

𝐸𝑟𝑒𝑓(𝜔, 𝑡) =
1

2
 𝐸𝑠𝑜𝑢𝑟𝑐𝑒 (𝜔, 𝑡)

𝐸𝑠𝑎𝑚𝑝𝑙𝑒(𝜔, 𝑡) =
1

2
 𝐸𝑠𝑜𝑢𝑟𝑐𝑒 (𝜔, 𝑡)𝐻(𝜔)

𝐸𝑜𝑢𝑡(𝜔, 𝑡) =
1

2
 𝐸𝑠𝑜𝑢𝑟𝑐𝑒(𝜔, 𝑡)(1 + 𝐻(𝜔))

Equation [5] Electric fields of the interferometer arms for the frequency-domain OCT scheme.

 9

where, 𝐻(𝜔) is the frequency-domain response function of the sample under test:

𝐻(𝜔) = ∫ 𝑟(𝜔, 𝑧)𝑒−𝑖2𝑛(𝜔,𝑧)𝜔𝑧 𝑐⁄
∞

−∞

𝑑𝑧

Equation [6] Sample response function in the frequency domain.

 The response function contains structural information of the sample in the functions 𝑟(𝜔, 𝑧) and

𝑛(𝜔, 𝑧) as they describe the frequency and depth dependent reflectivity and group index of

refraction of all the structures in the sample along the optic axis of the beam (z-axis). The electric

field power intensity at the output of the beamsplitter contains the average reflectivity of the

reference mirror and sample information. From the frequency-domain response function of the

sample, 𝐻(𝜔), we can see that the desired structural information is encoded in this function.

However, in order to decode this information, we must observe the spectral density of the

interference signal with the use of a spectrometer. The spectrometer diffracts the beam into its

wavelength components, and it detects the particular intensity of each component. Once the optical

signal has been digitized in k-space, where 𝑘 = 2
⁄ , a Fourier Transform operation can be

performed on the signal to reconstruct the depth intensity profile of the sample:

𝐼(𝑡) = 𝐹𝑇{𝐼(𝑘)}

Equation [7] Fourier transform operation

 10

 The motivation behind the thesis is to integrate novel medical technologies to create innovative

imaging tools for intraoperative neuroimaging applications. The potential applications for OCT

have never been lacking. However, further technology progress is needed to increase adoption.

OCT imaging systems have evolved over the decades from large systems on optic tables in

research labs through portable cart systems to compact benchtop systems with handheld probes.

The portability and form factor of these probes have improved over time with increase application

in several clinical settings [10]. A forward step in the development of OCT imaging tools is to

leverage the advantages of collaborative robotic arms to hold the probe and navigate the sample.

To this end, we designed and constructed an OCT contactless probe as a robot end-effector to test

the feasibility of imaging with the LBR Med collaborative robot.

Figure 4. CARLO (top-left), Cyberknife (top-right) Artis pheno (bottom), images taken from the

public domain.

 11

 Applications of collaborative robots in the medical field are becoming increasingly popular with

start-ups starting to partner with industry leaders to bring commercial systems to market. Robot-

assisted laser and radiation delivery systems for navigation, imaging or treatment applications offer

a lower level of risk given the contactless nature of the application. A number of medical

applications have been showcased by robot manufacturers (i.e. KUKA, ABB) and partners (i.e.

AOT, Accuray) including laser ablation osteotomy, targeted-radiation delivery, and ultrasound

imaging. As a result, the robot maintains a safe distance from the patient. The distance kept

between the robot and the patient provides a margin of safety to stop the robot in case of a fault

(i.e. unexpected force). This creates a safe use case for patients. Research and development of

imaging robotic systems is advancing and showing good results with the development of

commercial systems, Fig 4. The CARLO system is used for cranio-maxillofacial surgery and

consists of a cold laser ablation payload held by an LBR Med, a 7 degrees-of freedom (DOF)

robotic arm. The system is produced by Advanced Osteotomy Technologies AG, founded in 2011

as a spin-off from the University of Basel [11]. Cyberknife (Accuray Inc, USA) makes use of a

KUKA Quantec robotic arm to deliver radiation and treat tumors. The system leverages the

flexibility and precision of robotic arms to target tumors from different angles with high accuracy.

This way they minimize the overall radiation received by healthy tissue while keeping the

cancerous tumor on target [12]. Artis pheno (Siemens AG, Germany) is a commercial robotic

intraoperative imaging tool used in the operating room. The system consists of a KUKA Quantec

robot holding C-arm at the end-effector. The imaging versatility of such system makes it easy to

adapt to different procedures [13]. Robot-assisted intraoperative OCT imaging is in its research

state.

 In this thesis we address the issue raised by surgeons that a contactless OCT imaging probe will

suffer from image instability due to intracranial pressure (ICP) pulsation. ICP pulsation is the result

 12

of cerebrospinal fluid movement, cardiac circulation, and breathing patterns. ICP pulsation has

been studied under MRI and ultrasound in order to better understand brain function. During these

studies, motions with an amplitude in the submillimetre range have been observed to occur [14]

[15]. However, after a craniotomy the brain is no longer enclosed by the skull and the motion is

more pronounced. If OCT is to be adopted as an intraoperative imaging modality under robot

control, the problem of ICP pulsation needs to be addressed. Otherwise, the image will be unstable

and may drift out of the field-of-view (FOV) of the imaging system. We present a peak intensity

detection solution to track the surface of the sample and a Proportional controller to position the

end-effector along the optic axis (z-axis).

 In the following chapters, the work done by the author will be presented. The thesis is divided

into chapters corresponding to background and motivation behind the thesis, the implementation

of OCT imaging and the construction of the end-effector, and consequently the integration with

the collaborative robot through safety-oriented programing to achieve motion compensation. The

OCT system uses a laser source, interferometer, spectrometer, and the appropriate signal

acquisition and processing hardware and software. Safety-oriented programming of the robot

requires a risks and hazards assessment to understand the dangers present in a surgical setting.

These risks and hazards are variable in nature, defined by the specific surgical setting

characteristics (i.e. staff presence, nearby equipment). An adaptive safety-oriented programming

approach is taken to maximize safety as the robot’s end-effector moves closer to the patient.

System integration consists of designing and manufacturing a robot end-effector for the

interferometer and aiming laser. Also, an ethernet-based communication channel between the PC

hosting the OCT program and the robot controller is established to create the control loop for

motion compensation. The proportional controller tuning as well as its frequency response are

presented. Results for motion compensation of an intracranial pressure (ICP) waveform are

 13

presented.

 14

2.Optical Coherence Tomography

Imaging System

 Since the inception of Optical Coherence Tomography (OCT), development of solid-state and

fiber-based optical components designed for and with OCT in mind, have facilitated the

construction of these systems. OCT imaging system for research applications require flexibility of

control over parameters of the system (i.e. data acquisition, trigger signals) so customize systems

are very common in research labs. Programmable laser and camera, high-precision galvo motor,

and data acquisition and signal processing software platform such as LabVIEW are leveraged to

build the OCT system. In this chapter we describe the steps taken for the implementation of the

OCT imaging system and the construction of a probe as the robot’s end-effector. The system uses

a supercontinuum (SC) laser source from NKT Photonics (Copenhagen, Denmark) and custom-

built spectrometer from P&P Optica (Ontario, Canada). It also uses off-the-shelf solid-state and

fiber-based optic components from Thorlabs to construct the interferometer. Data acquisition

hardware and software from National Instruments were chosen to build customized tasks and a

graphical user interface. A detailed schematic of all components used in shown in the optic diagram

of Fig 5. We proceed to explain each component as it relates to the work done by the author.

 15

Figure 5. Optical Coherence Tomography imaging system optic diagram.

2.1 Laser Source

We have selected to use a supercontinuum (SC) laser SuperK Extreme EXR-1 from NKT

Photonics (Denmark) for its broadband and high-power output. NKT Photonics was an early

adopter of a fabrication process to develop a nonlinear optic fiber known as photonic crystal fiber.

Photonic crystal fiber has a unique index profile, shown in Fig 6, different from that of single-

mode fiber, and by arranging the honey-comb structure a variety of properties (i.e. dispersion,

birefringence, nonlinearities) can be achieved.

 16

Figure 6. Photonic Crystal Fiber (PCF) refractive index structure. Rendering done in MATLAB

using BeamLab toolbox.

 Supercontinuum (SC) lasers are made possible by the interaction between light and nonlinear

optic materials. When a high-power laser pulse is propagated through a photonic crystal fiber, the

interaction causes the pulse to broaden. The wide broadening of the incident laser pulse is referred

to as supercontinuum generation. The broadening is cause by frequency conversion processes (i.e.

frequency doubling, sum and difference frequency generation) [16]. Supercontinuum lasers are

useful for OCT imaging applications. Their broadband output makes them ideal for high resolution

imaging and a high-power output ensures high sensitivity [17] [18]. OCT imaging has been

demonstrated in a number of different optical windows using supercontinuum lasers [19] [20] [21]

[22] [23] [24]. The spectrum provided by the SuperK Extreme, 0.4-2.4 𝜇𝑚, is filtered to a

Gaussian-like spectrum centered at 1.31 𝜇𝑚 (𝜆0 = 1310𝑛𝑚) with a bandwidth of 𝛥𝜆 = 135nm,

using the SuperK Gauss, as seen in Fig 7. The filtered beam is coupled into a single-mode fiber

delivery system, SuperK Connect, and terminated with a FC/APC connector for easy coupling

with the fiber-based interferometer. The power output of the laser is set to its minimum setting of

82mW for safety reasons.

 17

Figure 7. Supercontinuum laser spectrum with a 135 nm bandwidth.

2.2 Michelson Interferometer

 Interferometers work by splitting an optic signal, so its components propagate through two

different paths, the so-called reference and sample arms, then reconstructing the returning optic

signals to create an interference signal. The interference signal can be used to obtain information

about the laser source and the different path lengths that it has travelled through. An amplitude-

line, or A-line, is an interference signal obtained in time or frequency domain that contains

information about the sample in the form of an intensity profile describing the structures within

the sample. These are the building-blocks of OCT imaging and are stacked together to form 2-

dimensional images or 3-dimensional volumes of the sample. A broadband laser source is used in

OCT imaging because an interference signal can only be obtained if the reference and sample arm

path lengths are equal to within the coherence length of the source. Then, the smallest structure

that can be resolved in the axial direction is equal to the coherence length of the source.

 The fiber-based components of the Michelson interferometer, Fig 8, are a wideband 2x1

beamsplitter (TW1300R5A1, Thorlabs) with 50:50 split ratio and an optical circulator (CIR-1310-

50-APC, Thorlabs) that allows the interference optical signal to travel to the spectrometer rather

 18

than return back to the source. These components use single-mode (SM) fiber. In order to obtain

an interference pattern, the lengths of the sample and reference arms must be matched. Although

the individual fiber lengths of the beamsplitter are matched, there is an additional path on the

sample arm, through the collimator and focus lens, that must be matched at the reference arm. The

additional path needed is achieved with a second collimator and a reflective gold mirror on a

variable-length optic cage. Furthermore, the optical power of the reference and sample arm must

be balanced so that one signal does not envelope the other. A good quality interference pattern is

achieved if the intensities of the sample and reference arms are in the same order of magnitude.

Figure 8. Fiber-based circulator and beamsplitter components of the Michelson interferometer.

2.2.1 Single-Mode (SM) Optic Fiber

 Optic fibers designed to allow propagation of only the fundamental mode (𝐿𝑃01) are said to be

single-mode (SM) fibers. In contrast with multi-mode fiber, single-mode fibers have a smaller core

diameter. A common core diameter value used in the industry for SM fibers is 8.2 𝜇𝑚. SM fibers

are designed with a small core radius and small refractive index between core and cladding. These

 19

fibers do not suffer from intermodal dispersion and have lower propagation losses than multi-

modal fiber. They find use in communication and medical imaging applications.

2.2.2 Beamsplitter (TW1300R5A1)

Figure 9. Graphical depiction and simulation of a beamsplitter or coupler with a 50:50 power split

ratio. Simulation performed in MATLAB using the BeamLab toolbox.

 Fiber-based beamsplitters are achieved through the Fused Biconical Taper (FBT) process. This

industrial process fuses two fibers together so that their cores are very close to each other along a

given length. The close proximity of the cores allows the evanescent wave from either core to leak

into the other, Fig 9. The length and proximity of the fuse controls the ratio of the energy shared

by the cores. The TW1300R5A1 optic coupler from Thorlabs Inc. has a 50:50 split ratio and is

used to separate and recombine the laser beam. This single-mode tap has a center wavelength of

1300 nm and bandwidth of 200 nm.

 50:50

 20

 2.2.3 Circulator (CIR-1310-50-APC)

Figure 10. Optical circulator diagram and circulator component (CIR-1310-50-APC) from

Thorlabs.

 Optic circulators are three-port devices that control the direction light travels. They are

fabricated in a manner similar to fused fiber couplers. However, when light enter port 1 of a

circulator the intended purpose is to minimize the power being transferred to port 3 while

maximizing the power coupled to port 2. Accordingly, when light enters port 2 the circulator

couples the light to port 3. The CIR-1310-50-APC circulator from Thorlabs was used to redirect

the interference beam into the spectrometer, Fig 10. The circulator has a damage threshold of

500mW with a maximum insertion loss of 1.6dB and operating wavelength range of 1280-1400

nm. The circulator is the bottleneck for axial resolution with a bandwidth of 120 nm. This

bandwidth is smaller than the source, beamsplitters, and spectrometer’s bandwidth, making the

circulator the limiting factor for axial resolution.

Port 2

Port 1 Port 3

Circulator

 21

2.2.3 Solid-state optic components (collimator, reflective gold mirror & galvo-

controller mirror, focus lens)

 The fiber-based components need to be complemented with solid-state optic components to

complete the interferometer. After the laser beam splits, its components exit the fiber and are

reflected by a reference mirror and backscattered by the sample. Beam collimators are optic

devices commonly used as the output of a single mode fiber, necessary to maintain the beam radius

constant while propagating through free-space. The F260APC collimator uses an aspherical lens,

as seen in Fig 11a, so that the curved wavefronts become flattened. At the reference arm, the

collimator is followed by a gold mirror to reflect the beam back into the collimator. These

components are mounted on a variable-length optic cage. At the sample arm, the collimator is

followed by a galvo mirror, Fig 11b, and a plano-convex lens (LA5817), Fig 1ac, with a diameter

of 2.5cm and a focus length of 100mm, used to sweep and focus the collimated beam, respectively.

By sweeping the beam across the sample, multiple A-lines are acquired to create an image, or B-

scan. Furthermore, the scanning of the galvo mirror needs to be synchronized with the acquisition

camera to avoid split frames. The focus lens concentrates the beam on the sample so that sufficient

optical scattering is created to be picked up by the camera.

 22

[a]

[b]

[c]

Figure 11. Solid-state optic components. [a] Collimator F260APC with a focal length of 15.36

mm and numerical aperture of 0.16. [b] Dual-axis galvo mirror with driving signal and camera

sync signal. [c] Plano-convex lens to focus the beam on the sample.

 23

2.3 Spectrometer

Figure 12. Custom-built spectrometer from P&P Optica.

 The spectrometer was custom built by P&P Optica for OCT imaging at 1300nm. A transmissive

diffraction grating element and a high-speed camera, Fig 12, are used to sample the interference

signal in k-space. A diffraction grating lens with 892 lines/mm grating frequency placed at 35.6

degrees angle relative to the incident beam is aligned with the camera array sensor. The optical

beam incident on the diffraction grating element is separated into its wavelength components and

each of these beams are detected by one of 1024 sensors. Diffraction grating elements are

fabricated by periodically making ridges on a lens (transmissive grating) or mirror (reflective

grating). The period of the ridges or grating defines the angle at which an incident beam will be

diffracted into multiple beams.

 24

𝑚𝜇𝜆 = sin 𝜃𝑖 − sin 𝜃𝑑

• m is the grating diffraction order

• 𝜇 is the grating frequency in lines/mm

• 𝜆 is the incident beam wavelength

• 𝜃𝑖 is the incident beam angle

• 𝜃𝑑 is the diffracted beam angle

Equation [8]. Diffraction grating equation.

 The grating’s diffraction angle is a nonlinear function of the propagation constant, k, hence the

signal recorded by the camera is unevenly spaced in k-space, Eq [9]. This is important to note

because in order to reconstruct the image it is necessary to perform a Fourier transform operation,

for which a linearly spaced k-domain is needed for best results. Therefore, a resampling and

interpolation of the interference signal is necessary before the performing the Fourier transform

operation.

𝜆𝑖 = 1188.89 + 0.2268 ∗ 𝑥 − 8.2 ∗ 10−6 ∗ 𝑥2 − 6.99 ∗ 10−9 ∗ 𝑥3 𝑥 = 1,2,3, … ,1024

Equation [9]. Nonlinearly spaced wavelength values incident on each pixel of the sensor array as

per the manufacturer’s calibration data.

 The LDH2 from Unlimited Sensors is a high-speed camera designed specifically for OCT

applications. It has a 1024-pixel InGaAs sensor array and a maximum readout of 91kHz. The

LDH2 camera is connected to a PCIe-1427 frame grabber through a MiniDeltaRibbon 26-pin

Camera Link cable. The Camera Link cable is a 26-pin bus that uses a low-voltage differential

signaling (LVDS) for high-speed communication. The frame grabber (PCIe-1427) is an image

 25

acquisition device manufactured by National Instruments that uses the Peripheral Communication

Interface Express (PCIe) for high-speed communication.

2.4 Data Acquisition and Processing

 The Laboratory Virtual Instrument Engineering Workbench, LabVIEW, from National

Instruments is used to acquire and process the data sent by the camera to the frame grabber card.

The NI-IMAQdx library is used to handle camera related tasks, establishing a connection and

managing memory. The NI-DAQmx library is used to generate waveforms and trigger signals. The

raw data acquired by the frame grabber is processed to obtain the intensity profile and compute

the peak intensity, following the block diagram shown in Fig 13.

Figure 13. OCT data processing block diagram

2.4.1 Raw data, background subtraction, and averaging.

 The frame grabber obtains 1000 A-lines at a rate of 91 fps resulting in a 1000x1024 (row-by-

column) matrix of integers, 𝐼𝑖,𝑗(𝑘), where each row represents an optic intensity signal in k-space

as defined by the spectrometer. The average of the matrix is the background noise of the signal.

The background noise modulates the information carrying signal and needs to be subtracted. This

background noise corresponds to the reflectivity of the reference mirror. It can be computed by

averaging each column along the matrix to obtain a single 1x1024 array that is subtracted from the

raw data matrix. After background subtraction, Fig 14, the matrix is divided into ten parts and each

 26

submatrix averaged resulting in a 10x1024 matrix. This step is taken to reduce the data set for the

next processing steps and has the additional benefit of ensuring optic signal stability.

𝐼𝑚𝑒𝑎𝑛 =
∑ 𝐼𝑖,𝑗

1000
𝑖=1

1000
 for 𝑗 = 1, 2, 3, . . . , 1024

Equation [10]. Mean signal calculation.

Figure 14. Raw data with background noise component. [b] Interference signal after background

noise subtraction.

2.4.2 Resampling and Interpolation

 In OCT systems, the grating separates the incident beam into different wavelengths. Each pixel

in the sensor array measures the beam at a given wavelength, as a result the analog-to-digital

conversion is done in the wavelength domain of the signal. However, the FFT operation expects

the signal to be evenly spaced in the frequency domain or k-space. If one knows the spectral

distribution incident on the sensor array, given by Eq [9], it is possible to resample the signal to

linearly spaced k values, using Eq [10]. Interpolation calculation gives the new optic intensities

 27

associated with the newly resample k values. Cubic or spline interpolation fits a third-degree

polynomial between the two interpolation points. While resampling and interpolation methods

considerably decrease signal processing speed, it is a critical step to improve image resolution, Fig

15.

𝑘𝑖 =
2𝜋

𝜆𝑖
 = 2𝜋 (

1

𝜆𝑚𝑎𝑥
 +

𝑖

1024 − 1
(

1

𝜆𝑚𝑖𝑛
−

1

𝜆𝑚𝑎𝑥
)) 𝑖 = 1,2,3, . . . , 1024 − 1

Equation [11]. Linearly spaced k values used to interpolate the new intensity values.

Figure 15. Linearly resampled domain and interpolated A-line.

2.4.3 Fourier Transform

 The Fourier transform is used to convert the interference signal from frequency to time domain.

The diffraction grating lens, previously described, performs a Fourier transform on the beam by

decomposing it into its component wavelengths. Hence, it is necessary to reverse the operation.

The magnitude of the Fourier transform output contains the intensity depth profile of the sample.

 28

Figure 16. Fourier transform on the interference signal extracts the sample structural information.

2.4.4 Peak detection algorithm

 Following the Fourier transform operation, the position along the depth axis of the peak intensity

is computed. In general, the highest intensity on an A-line is at the surface of the sample. Therefore,

if the surface of a sample is desired to be located, a peak detection algorithm suffices. In practice,

the instability of the optic signal is a problem that causes the peak to disappear. Taking the average

of a number of A-lines, as previously described, and performing the peak detection ensures that

there is no data loss.

2.5 OCT end-effector

 The construction of the interferometer as the robot end-effector went through two design stages

to ensure that the requirements were met, and revisions based on surgeon-feedback were made.

The first prototype was built with off-the-shelf optic posts and rods on an optic breadboard. This

heavy setup accommodates the galvo cage and a trio of bulky aiming lasers, Fig 17. In this first

prototype, the variable length optic cage at the reference arm was not placed on the end-effector

and neither was the fiber-based circulator and beamsplitter. The second prototype of the OCT end-

effector is presented in Fig 18. It was design in AutoCAD and 3D printed using a MakerBot

 29

Replicator 2X with polylactic acid (PLA), a common thermoplastic used in additive

manufacturing. The end-effector was constructed to contain the the interferometer and aiming

lasers. The reference arm consisting of a collimator, gold mirror, and variable length optic cage is

mounted at the top of the end-effector. The sample arm with the collimator, galvo-controlled

mirror, and focus lens is located at the bottom of the end-effector pointing downwards to the

sample. The aiming lasers are three 650nm red lasers oriented so that their beams converge on the

focus spot of the sample arm’s focus lens. It is used to give the surgeon a broad sense of where the

imaging workspace is. Needed because the OCT laser is not in the visible spectrum and the

imaging workspace is too small for easy manual targeting. Therefore, an aiming laser system in

order to help orient the surgeon while guiding the robot towards the imaging workspace is

included. The interferometer, in its entirety, is accommodated on the end-effector in order to avoid

compromising its calibration and avoid disturbances in the fiber. The enclosing of the fiber-based

optical components (i.e. circulator and splitter), located in the posterior of the tool, was designed

sufficiently large to minimize bend losses through the fiber. The laser source and spectrometer

were not mounted on the robot for practical reasons (i.e. size, weight). The geometry and profile

of the end-effector was considered during design so as to not interfere with robot motion. The

physical dimensions were measured, and its weight taken and imported in the robot software.

These values were used to calculate the end-effector center of mass in a built-in robot application

that uses its joint torque sensors to compute the values. Safety-related integration of the end-

effector requires a calibration process to ensure that all physical parameters (i.e. dimensions,

weight, center of mass) are known to the robot controller, without this information, the robot

cannot be used in a safe collaborative manner.

 30

Figure 17. First-generation prototype of the OCT end-effector.

 31

Figure 18. Robot end-effector for OCT imaging with interferometer and aiming lasers.

 32

2.6 Imaging Performance

 A Gaussian beam refers to the function of the optical intensity across the transverse plane of

beam propagation to be Gaussian. Gaussian beams are the lowest-order self-consistent field

distribution in an optical resonator, for that reason the majority of lasers generate Gaussian beams.

Mathematical calculations for Gaussian beam propagation are simpler since the intensity profile

at any point on the beam is Gaussian with only the radius of the beam changing. In addition, the

intensity profile of single-mode fibers is also Gaussian-like so Gaussian beams can be launched

into the fiber with high-efficiency and propagation calculations are straightforward. The Gaussian

intensity profile of the collimated beam before entering the focus lens at the sample arm of the

interferometer is shown in Fig 19. The beam power was detected with an optical power sensor

(S144A from Thorlabs) to be 82mW (P = 82mW) and the diameter was measured with a beam

profiler (BP109-IR from Thorlabs) to be 2.52 mm (𝑑 = 2.52𝑚𝑚).

Figure 19. Single-mode Gaussian beam profile.

 33

Figure 20. OCT imaging characteristics of the probing beam: probing depth, lateral resolution,

and axial resolution.

 Once the beam is transmitted through the focusing length it is concentrated into a focus spot,

shown in Fig 20. The diameter of the focus spot was also measured with the beam profiler to be

66𝜇𝑚 (2𝑤0 = 66𝜇𝑚). The peak intensity at the focusing spot can be calculated through:

𝐼 =
2𝑃

𝑤0
2

= 47.9 𝑀𝑊
𝑚2⁄

Equation [12]. Peak optical intensity at the focusing spot of the Gaussian beam

 The Rayleigh range of a laser beam is the distance from the focus spot at which the beam radius

becomes 𝑤0√2. It is also called the depth of focus because the optical intensity is greater, and the

 34

rays of light converge at this point to provide a more focused, less blurred image. The value can

be calculated from:

𝑧𝑅 =
𝑤0

2

𝜆0
= 2.6𝑚𝑚

Equation [13]. Rayleigh range of the Gaussian beam.

 However, this value does not provide the whole picture in terms of probing depth for frequency-

domain OCT imaging. The probing beam is focused at the sample and the coherence matching

point is located at the focal point of the sample lens. The actual probing depth for a frequency-

domain OCT imaging system depends on the wavelength resolution of the spectrometer. Eq [13]

is a relationship for the expected probing depth as a function of laser spectrum width, ∆𝜆, and the

number of elements in the sensor array, N.

𝑧𝑚𝑎𝑥 =
1

4

𝜆0
2

∆𝜆
𝑁 ≈ 2.1 𝑚𝑚

Equation [14]. Probing depth.

 Lateral or transverse resolution is a function of the optic properties of the focus lens at the sample

arm of the OCT system. The focus spot size, previously measured with the beam profiler, gives

lateral resolution. As shown in Eq [5], a lens with a high numerical aperture (𝑁𝐴 = 𝑑
𝑓⁄) creates

a small spot size, improving lateral resolution.

∆𝑥 =
4𝜆0

𝜋

𝑓

𝑑
= 66 𝜇𝑚

• f is the focus length of the lens

 35

• d is the diameter of the collimated beam

Equation [15]. Lateral resolution of the imaging system defined by its spot size.

 Image quality depends on the axial and lateral resolution of the optic system. Resolution is

dependent on the laser source and optic configuration, Fig 20. For a laser source with a Gaussian

spectral distribution the temporal coherence length defines the axial resolution. The laser source

spectrum is correlated to the axial resolution through 𝜆2/𝛥𝜆. The coherence length and hence the

axial resolution can be calculated through:

𝑙𝑐 = 𝛥𝑧 =
2𝑙𝑛(2)

𝜋

𝜆0 2

𝛥𝜆
≈ 5.6 𝜇𝑚

Equation [16]. Coherence length of the laser source and axial resolution of the imaging system.

.

 36

3. System integration, Experiment

methodology, and Results

3.1 LBR Med – Collaborative robot & safety-oriented programming

 The complexity of the field of robotics crosses traditional engineering boundaries and puts

mechanical, electrical, and computer engineering together. The technology behind computer

controlled mechanical arms was born in the 1950s with the design, creation and successful

commercialization of the Unimate robotic manipulator. The invention of the robotic manipulator

by George Devol and its deployment in General Motors factories by Joseph Engelberger started

the industrial robot age in automation. The first-generation position-controlled robotic arms were

extremely useful performing hazardous repetitive tasks within a fixed industrial environment.

Today, the use of industrial robots has helped optimize factory automation processes to the point

where the adoption of new robot technology is needed to continue the growth and discover novel

solutions to existing problems. Out of this need and to this end, torque control and navigation

technology is emerging to create the concept of collaborative robotics with the goal of deploying

robots in unstructured, dynamic environments to work in the presence of humans. Constraints

previously placed on robots with regards to human interaction are being removed thanks to

improved sensors as well as better control, tracking, and navigation software being added to this

new generation of collaborative robots. The collaborative robot age is moving the robots from

industrial factories to hospital, airports, and hotels.

 KUKA AG (Augsburg, Germany) became a pioneer in the collaborative robot space after a

decade-long research and development collaboration with the German Aerospace Institute that

resulted in the LBR I in 1995 and LBR II in 2000. These 7 degrees-of-freedom (DOF) robotic

 37

arms were meant to explore the light weight robotics with high payload-to-weight ratio.

Ultimately, the rights to the robot technology were licensed to KUKA after the development of the

LBR III in 2004. KUKA kept iterating their light-weight collaborative robot technology and in

2013 released the LBR iiwa (Light Weight Robot - intelligent industrial work assistant) to explore

human-robot collaboration. Consequently, KUKA recognized a growing trend in medical

applications and released the LBR Med, the world’s first certified robot to be integrated into

medical devices, in 2017. The LBR Med builds on the earlier iiwa version, with additional medical

devices regulatory compliance. The International Electrotechnical Commission (IEC) is the

recognized organization that prepares standards for a number of technologies, including medical

devices hardware and software. IEC60601 Medical Electrical Equipment and IEC62304 Medical

Device Software outline requirements for medical equipment that were observed. Compliance with

IEC60601 requires a routine brake test to ensure that each physical brake can hold the maximum

allowed torque on its joint. The programming paradigm of the LBR Med meets the requirements

of the IEC62304 Medical Device Software document by implementing separate motion and safety

controllers. For example, commanding a robot to a position requires a motion command to the

desired position while using a safety controller command to guarantee the path to be followed

towards said position. In other words, the robot application program is implemented using the

motion controller while engaging the safety controller for redundancy. The safety controller

monitors the system in terms of position, velocity, and force. In the event of a fault, meaning that

one of the safety parameters is exceeded, the single fault safety required by the regulatory bodies

can only be guaranteed for the behavior of the safety controller. The operating system running on

the robot was developed by the manufacturer and named Sunrise. The Sunrise OS allows the

control and programming of the robot to be separated. Position, velocity, force, and impedance

 38

control, as well as gravity compensation and null space positioning tasks can be programmed on

the robot at a high-level through the development environment, Sunrise.Workbench, using Java.

 Robot arms are defined by their number of joints, the different types of joints, and length of the

links between joints. Fig depicts the geometric structure of the robot arm and its S-R-S-R-S-R-S

(spherical-rotational-spherical) kinematic structure. The forward kinematics matrix of a robot

combines the geometry and kinematics to obtain a relationship between robot joint angles and

Cartesian space. We can use the Denavit-Hartenberg (DH) convention to assign a coordinate

frame to each robot joint using four parameters to relate the current joint, 𝑗𝑖−1, to the next, ji. The

DH convention describes an articulated sequence of joints by defining the pose of a link frame

with respect to the previous link frame, starting from the most distal joint, j7. The transformation

between frames is described by four parameters that correspond to a series of rotations and

translations. The first transformation is a rotation about the z-axis by angle theta, 𝑖 , followed by

a translation along the z-axis corresponding to the length of the link joining the joints, 𝑑𝑖, and a

second translation along the x-axis. Lastly, a second rotation along the x-axis by angle alpha, 𝑖,

corresponds to the orientation of the new frame z-axis with respect to the previous frame z-axis.

The DH parameters for the LBR Med, shown in Table, can be used to create the transformation

matrix that relates the reference frame of each joint to the next. The product of these matrices

results in the forward kinematic matrix defining the pose of the robot arm on Cartesian space as a

function of joint angles, 𝑖. The 7 DOF configuration gives a kinematic redundancy so that the

pose can be maintained while moving the end-effector on Cartesian space, analogous to how the

human arm allows elbow motion while holding wrist pose. Each joint has a strain gauge-based

torque sensor and dual position sensors, with measurements made at a rate of 3kHz. Redundant

position sensors increase both accuracy and safety of the robot. Robot kinematics are computed

in the cabinet controller at a rate of 1kHz.

 39

Fig 21. LBR Med 14 R820 configuration space information and workspace envelope.

 40

Rz(j) =

cosj −sinj 0

sinj cosj 0

0 0 1

 Rx (𝐢) =
1 0 0
0 cos𝐢 −sin𝐢

0 sin𝐢 cos𝐢

Tz(di) =

0
0
di

 𝑇𝑥 (𝑎𝑖) =
𝑎𝑖

𝟎
𝟎

Joint (𝒋𝒊) 𝑅𝑥 (𝒊) 𝑇𝑥 (𝒂𝒊) 𝑇𝑧(𝒅𝒊) 𝑅𝑧 (
𝒊
)

𝒋𝟏 -/2 0 𝑑𝑏𝑠 1

𝒋𝟐 /2 0 0 2

𝒋𝟑 /2 0 𝑑𝑠𝑒 3

𝒋𝟒 -/2 0 0 4

𝒋𝟓 -/2 0 𝑑𝑒𝑤 5

𝒋𝟔 /2 0 0 6

𝒋𝟕 0 0 𝑑𝑤𝑓 7

𝑇
𝑗−1

𝑗 = 𝑅𝑧(𝑗)𝑇𝑧(𝑑𝑗)𝑇𝑥(𝑎𝑗)𝑅𝑥(𝑗)

𝑇
𝑗−1

𝑗 =

𝑐𝑜𝑠j −𝑠𝑖𝑛j𝑐𝑜𝑠𝐢 𝑠𝑖𝑛j𝑐𝑜𝑠𝐢

𝑠𝑖𝑛j 𝑐𝑜𝑠j𝑠𝑖𝑛𝐢 −𝑐𝑜𝑠j𝑠𝑖𝑛𝐢

0 𝑠𝑖𝑛𝐢 𝑐𝑜𝑠𝐢

𝑎𝑖𝑐𝑜𝑠j

−𝑎𝑖𝑠𝑖𝑛j

di

0 0 0

 1

𝑇
0

7 = 𝑇
0

1 𝑇
1

2 𝑇
2

3 𝑇
3

4 𝑇
4

5 𝑇
5

6 𝑇
6

7

Equation [17]. Elementary transformation matrices and Denavit-Hartenberg (DH) parameters to

obtain the forward kinematics matrix. Image modified from the robot manual.

 41

 Human-robot collaboration is becoming the basis of novel surgical techniques. However,

regulatory standards in surgical robotics is often a concern when issues of liability are raised.

Legal, regulatory, and ethic arguments have to be explored in order to understand the technology

and its potential adoption by the medical community [25]. To this end, government bodies,

education institutions, and private companies are collaborating to lay out a direction for future

research and development of collaborative robots for medical applications. The European Union

has funded the SAFROS project with the goal of adapting an existing safety framework to the

requirements of robot-assisted surgery [26]. RoboLaw is another project aiming to build a legal

framework around which they can regulate robotics. The project ran from 2012 to 2014 led by a

group of researchers from Italy and was funded by the 7th Framework Program (FP7), the

European Union’s research and development grant program. It resulted in a report outlining legal

and ethical concerns pertaining novel technology in the field of robotics [27] [28].

 The adoption of collaboration robots is a slow process full of technology setbacks and regulatory

hurdles. In order to remove the literal fence around the robot, years of risk assessments and

development of safety frameworks for collaborative robotic tasks have been performed. The

International Standards Organization (ISO) is working on providing guidance and outlining

requirements for safe collaborative robot tasks. Operator safety frameworks marks the difference

between collaborative robots and non-collaborative robot. ISO 10218-1&2 Robots and robotic

devices is the standard that specifies common risks associated with robots and outlines risk

elimination methods. ISO/TS 15066 Collaborative Robots builds on the aforementioned standards

but adds information and requirements specific to human-robot collaboration tasks. The key idea

behind ISO/TS15066 is that “if contact between human and robots is allowed … then that contact

shall not result in pain or injury”. This standard defines four types of collaborative operations

(Safety-monitored stop, Hand-guide mode, Speed and separation monitoring, Power and force

 42

limiting) and gives information and guidelines to maximize safety during such operations. It

provides comprehensive guidance for those conducting risk assessment of collaborative robot

applications, and outlines speed, force, and pressure permissible during such applications. The

need to determine force and pressure threshold values has risen as more robots are used in

collaborative tasks. However, there is a practical difficulty and ethical concerns that need to be

addressed in order to obtain those numbers. A number of studies have been approved and carried

out to determine pain threshold values using both phantoms and human volunteers under dynamic,

quasi-static, and static loads. Nevertheless, challenges for safety-critical robots remain. The author

designed a safe collaborative workspace within acceptable parameters according to the best present

knowledge of the state of the art [29] [30].

 Programming of the LBR Med robot is done through the Sunrise.Workbench development

environment, through which, robot motion, safety, and tool data can be loaded on the controller

for processing and monitoring. In order to introduce a collaborative robot into a surgical workflow,

the application/software running on the robot must be safe and flexible. This gives the surgeon

control over the process so different problems can be solved while guaranteeing robot operation

safety throughout. Robot application workflow design requires a careful examination of the risk

factors to the surgeon, patient, and surgical staff, as well as any other equipment present in the

operating room. We outline a collaborative workflow with an adaptive safety monitoring protocol

placed to reduce risk. As the level of interaction with the surgeon and the proximity to the patient

increases, the safety parameters become more constrained. Cartesian velocity and collision

detection parameters are modified to the level of risk inherent in the current task. In order to meet

requirements outlined by IEC62304, the collaborative robot software has separate motion and

safety controllers, where the safety controller is a redundant software to monitor the motion

controller. As shown in Fig 22, at each stage of the robot workflow there is a motion command

 43

and corresponding safety tasks are enabled. In the case where the robot needs to be held in a pose

while the surgical staff enables the imaging system, the motion controller does not guarantee the

holding of the position and the safety controller is used as a redundancy to address any faults that

may occur. The safety controller parameters (i.e. position, velocity, and force) are redundant to the

application running on the motion controller.

 44

Figure 22. Safety-oriented workflow design for intraoperative OCT imaging.

 45

 The operation of a robot arm during surgery needs to be done by an experienced surgeon who

understands the capabilities of the system. Robot workspace limitations need to be understood in

order to avoid faults in the workflow. The proposed robot workflow initializes with a safety-

monitored stop during which the robot cart is positioned in front of the patient as directed by the

experienced surgeon. A safety-monitored stop is a safety task where the robot motors are

physically locked with mechanical brakes, and no motion is possible. Once the robot cart is placed

and locked in position, the safety-monitored stop is disabled, and hand-guide mode is initiated.

The safety monitoring protocol uses trigger signals send from the main PC hosting the LabView

interface through the PCIe-6351 I/O card. Safety-oriented tasks with increasingly more

constrained safety parameters are enabled as the application proceeds in order to maintain the risk

associated with collaborative robots low. Under hand-guide mode, the surgeon comes into contact

with the robot, so a force monitoring safety task is enabled. A safety-monitored stop will activate

if the force on any point of the robot exceeds 15N. This number is well under the threshold values

for pain as reported by the most recent literature [31] [32]. The initial hand-guide mode is a macro-

positioning task under gravity compensation that allows the user to move the robot tool within the

imaging workspace, where the OCT imaging system will operate. Macro-positioning is

programmed so that the robot holds its position under the weight of the tool and the force of

gravity. It does, however, comply to any other external force applied to its axes. with impedance

parameters for each robot axis that account for the force of gravity. We refer to such hand-guidance

task as macro-positioning because it allows the robot to be moved to any point within its

workspace, but precise positioning and orientation of the tool is difficult to achieve. Once the robot

is placed within the imaging workspace with macro-positioning, the imaging and aiming lasers are

enabled and the program switches to micro-positioning hand-guide mode, a null space positioning

task. Micro-positioning, with the help of an aiming laser, is necessary to navigate the OCT system

 46

so that the sample is within its field of view (FOV). In contrast to macro-positioning, where each

axis is programmed with its own torque parameters, micro-positioning treats the entire robot as a

spring-damper model with stiffness and damping parameters. Stiffness and damping parameter are

configured to achieve a smooth motion so that delicate position and orientation adjustments can

be made by the surgeon. The OCT needs to be positioned so that the sample is within its field of

view (FOV). Given the increased proximity to the patient and the more involved operation of the

robot by the surgeon, motion commands inside the imaging workspace require the addition of a

speed and position monitoring safety mode. After the sample is in the FOV of the imaging system,

the surgeon stops all type of hand-guide task and the OCT-based visual servoing takes over in

order to compensate for motion in the optical axis. If the sample goes out of the FOV under motion

compensation, the robot needs to disable motion to avoid a collision.

 The author implemented a risk management procedure in order to validate safety requirements

needed for safe robot operation. The safety acceptance review outlined Appendix A, describes the

safety configuration that needs to be tested before robot operation. The robot code is presented in

Appendix B.

3.2 OCT Integration

 Intraoperative imaging has been leveraged by neurosurgeons to better locate brain lesions. The

development of collaborative robots has created opportunities for medical tasks to be performed

with improved accuracy. To this end, we have developed an intraoperative OCT imaging tool using

a collaborative robot to assist the surgeon during brain surgery. System design around

collaborative robots emphasize safety. The risks posed by sharing the workspace with a robotic

arm are such that redundant systems are necessary to ensure surgeon and patient safety. These

redundant systems come in the form of additional sensors and software to monitor the robot and

 47

its workspace. Imaging tasks inherently reduce risk because there is no physical contact between

the robot and the patient. Despite this, position and speed need to be monitored because close

proximity to the patient by the robot still carries risks. Given the collaborative nature of the task,

contact with the surgeon by the robot is unavoidable, therefore, force applied by or on the robot

needs to be monitored.

 Robot-assisted image-guided surgery is giving surgeons options to treat with procedures that

were, before, too dangerous for the patient. Intraoperative imaging gives near real-time feedback

to the surgeon while robotics allows to guarantee accuracy throughout the surgical procedure. The

intraoperative use of OCT has been presented before by a number of research groups. The first

projects combining robotics and OCT applied their efforts to retina surgery. Intraoperative OCT

applications in neurosurgery have also been explored. A common approach is the use of a hand-

held probe to scan the sample. This approach, however, has the drawback of providing an unstable

positioning for signal acquisition, which translates to poor image quality. A research group from

Germany has demonstrated the use of actuated robotic arms to address these problems [33] [34].

They have integrated an OCT system with a commercial robotized surgical microscope. Their

work has revolved around remote-controlled manipulation to position the microscope and the

development of an algorithm to register multiple C-scans to display a large volume. A second

research project led by J. Izatt is developing an OCT retina alignment system with a robotic arm.

This a very involved project where a combination of depth sensors and cameras are used to align

and stabilize the retina of the patient for OCT imaging [35]. In contrast, this project demonstrates

an OCT system mounted on a collaborative robotic arm navigated by the surgeon and enabled to

actively compensate for brain dilation and contractions during surgery. Such imaging platform is

not limited to a single repetitive task but becomes useful in surgical procedures where different

angles, views, or cross-sections are desired. We have aimed to develop a robotic workflow that is

 48

sufficiently flexible to adapt to different surgical workflows as needed by the surgical team.

 Vision technology is essential in robotics. The ability to have information about the robot’s

environment and react to it by safely changing the motion is necessary to avoid collisions and track

objects. Collaborative robot technology has made the robots safer to work with by giving them a

sense of touch through torque sensor. However, without robotic vision technology the robot only

knows about itself and nothing about its environment. Robotic vision leads us to the question of

what the relationship between the robot and the camera is, with respect to the environment where

they both operate. Robot motion affects what the camera sees. In the eye-to-hand architecture the

vision system is a free-standing system with a macro view of the environment and could potentially

be blocked by the robot or other change in the environment, such as a person standing in front of

the sensor. With an eye-in-hand architecture or end-point close-loop, in which the camera is

mounted on the robot, there is no risk of the robot blocking the camera, but field of view is

restricted to what is in front of the robot. This architecture is a robust solution in visual servoing

applications as the spatial transformation between imaging system frame and robot base frame is

fixed. Workspace restrictions as well as coordinate system relationships need to be understood in

order integrate robotic vision systems. Image-based visual servoing under the eye-in-hand

architecture requires the relationship between camera and robot coordinate system to relate the

desired camera motion to the required robot motion. Pose estimation is left to the robot controller

and a relative position command is transferred from the tracking controller in Cartesian space. A

schematic block diagram of the system integration, Fig 23, shows LabView used to synchronize

the scanning-galvo and the spectrometer, acquire and process OCT data, send safety-oriented

trigger signals to the robot, implement proportional control, and finally send the output of the

controller through a UDP channel to the LBR Med. An Ethernet-based UDP communication

protocol is used to send motion commands to the robot controller from the PC hosting the OCT

 49

imaging software and controller. Motion command transfer is done at a rate of 50Hz, limited by

the computational speed of OCT imaging. OCT imaging is data intensive and computationally

expensive. We found limitations related to imaging data processing speed and optic signal stability.

The LabView control panel for these tasks is shown in Fig 24a. The frame transformation diagram

for the LBR Med and OCT end-effector and its mounting on the robot is shown in Fig 24 b&c.

 50

Figure 23. [a] System integration block diagram. [b] Data flow block diagram.

 51

Figure 24. [a] LabView GUI for the LBR_OCT system. [b] Frame transformation diagram. [c]

OCT end-effector with aiming/guiding lasers and interferometer.

 52

3.3 Experiment methodology and Results

 The experiment set up uses a galvo motor and a test sample with high-reflectivity, Fig. The galvo

motor is controlled through LabView where square, sine, and ICP waveforms can be easily

generated. The test sample has a simple intensity profile which simplifies the peak detection

solution needed. This allows us to easily observe the controller response without concerns on the

peak detection algorithm.

Figure 25. Galvo motor and test sample.

Intracranial Pressure (ICP) Waveform and Proportional Controller

 Intracranial pressure (ICP) pulsation is caused primarily by cerebrospinal fluid (CSF) flow.

Cerebrospinal fluid (CSF) contained in the brain ventricles and between the cerebral cortex and

brain meninges serves to protect and regulate neural functioning. CSF circulation is pulsatile and

in correlation with the cardiac cycle and respiration rate [36][37]. The simplest model of ICP

pulsations consists of a sinusoidal waveform, however, the true morphology of the waveform is

 53

dictated by complex physiologic events. In this experiment, we perform our oscillation using an

ICP pulse train generated using the model provided by Wadehn [38]. The waveform generated by

this model, shown in Fig 25, uses the Ursino-Lodi model of ICP dynamics [39]. The morphology

of the signal has three peaks called P1 (wave originating from systolic arterial blood pressure

pulsations), P2 (CSF pressure wave) and P3 (due to venous pulsations). Respiration induced

changes in the cardiovascular system modulates ICP with a sinusoid wave whose frequency is the

respiratory rate. The frequency domain signal shows the slow ICP dynamics modelled by Ursino-

Lodi, the respiration rate and the cardiac-induced pulse with its harmonics. The ICP signal is

obtained by adding all three components.

𝐼𝐶𝑃(𝑡) = 𝐼𝐶𝑃𝐶𝑆𝐹(𝑡) + 𝐼𝐶𝑃𝑐𝑎𝑟𝑑𝑖𝑎𝑐(𝑡) + 𝐼𝐶𝑃𝑟𝑒𝑠𝑝(𝑡)

Equation [18]. Intracranial Pressure (ICP) waveform composition.

Figure 26. Intracranial Pressure (ICP) waveform and frequency spectrum.

 We implement a proportional control loop which allows the robot to compensate for sample

motion in the direction of the optic axis (z-axis). It is important to understand the kinematics of

the problem as defined by the relationship between robot, camera, and sample space. As described

 54

in Fig 24, the robot base frame serves as the world coordinate system from which every other

frame is derived. The robot base, tool, and sample frames have been defined so that their axes have

the same orientation in order to simplify spatial transformations. We use the proportional controller

to maintain the peak intensity position in the target location. The peak intensity detection operation

on an OCT A-line gives the location of the surface of the sample. The location of the peak is

continuously computed, and the controller maintains it at a target level, within the FOV of the

imaging system, by sending relative displacement commands to the robot. The control problem is

solved in image space, in terms of pixel number, but the relative position commanded of the robot

needs to be sent in meters (m). Given the probing depth value presented in the OCT imaging

chapter (𝑧𝑚𝑎𝑥 = 2.1𝑚𝑚) and the number of pixels in the direction of the z-axis (512 pixels), we

can calculate the size of a pixel in the real world. A pixel in space domain represents ~4m. After

defining how we want points to move in the image the robot to move, we construct a controller

that moves the camera so as to create the desired point motion. The proportional controller employs

feedback to calculate the error, 𝑒(𝑡), between a required value, 𝑟(𝑡), and the current value, 𝑦(𝑡),

of a measured variable. The controller calculates the current value of the error function, 𝑒(𝑡), to

drive the measured variable to the required setpoint. The proportional term, 𝐾𝑝, determines the

contribution the error value will have on the controller response. The proportional term weights

on the current error value so that a large 𝐾𝑝 will drive the error function to zero faster than a small

𝐾𝑝 value. The use of a large proportional term, however, will cause the controller to overshoot the

desired setpoint, or it will become unstable.

 𝑒(𝑡) = [𝑟(𝑡) − 𝑦(𝑡)] ∗ 4 ∗ 10−6

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡)

Equation [19]. Proportional controller function.

 55

 Given the controller type, we have elected to manually tune the coefficient term. A square wave

is generated to drive the galvo motor and obtain the step response. The step response is used to

observe the time evolution response of the controller to a sudden change in input. The step response

of the controller is shown in Fig 27 as the 𝐾𝑝 variable increases and it is used to calculate rise time,

overshoot, and settling time until the desired response is obtained. The rise time is the time taken

by the controller to reach the desired value when there is an instantaneous step input. The overshoot

is a percentage ratio between the desired target and the maximum value reached by the controller.

The settling time is taken as the time needed to reach a stable value after the step input has been

applied.

 The goal of the controller is to track the ICP waveform. The frequency spectrum of the ICP

signal has low frequencies (<1Hz) and a main frequency component of 1Hz with its harmonics.

We generate a series of sinusoidal waves at the desired frequencies to serve as the drive signal to

the galvo motor. Fig 28a-c show the drive signal in blue and the tracking error in orange. Fig 28d

shows the magnitude frequency response of the controller with a stable tracking error for the

desired frequency band. Lastly, Fig 29 shows the ICP waveform generated at a frequency of 1Hz,

shown in blue. The controller is able to track the motion with an average peak error of 0.31mm,

shown in orange, as expected from the frequency response.

 [a]

 56

Rise time = 1.3s Overshoot = 0% Settling time = 2.32s

[b]

Rise time = 0.62s Overshoot = 0.9% Settling time = 1.59s

[c]

 57

Rise time = 0.36s Overshoot = 1.2% Settling time = 1.51s

[d]

Rise time = 272ms Overshoot = 4.2% Settling time = 1.38s

 58

[e]

Rise time = 171ms Overshoot = 4.4% Settling time = 1.27s

Figure 27. Proportional controller tuning.

[a]

 59

[b]

[c]

 60

[d]

Figure 28. Frequency response of the proportional controller.

 61

Figure 29. Intracranial pressure waveform signal and tracking error

 62

4. Conclusion

 The work presented in this thesis proposes a solution to brain motion compensation for OCT

imaging using a collaborative robot arm. Advantages and disadvantages of such tool can be

understood, from the surgeon’s perspective, to be a trade-off between ease of use and clinical

outcome improvement. The outcome of this project was successful as it demonstrated how surgeon

and robot can safely collaborate to perform an imaging task. However, further engineering

development is needed to make this system into a fully operational tool ready to be deployed in

the operating room.

 A major disadvantage with OCT-based robot navigation is that OCT imaging is a data intensive

modality. Acquisition and processing of large volumetric OCT data is slow and computationally

expensive. Optimized hardware solutions (i.e. GPU, FPGA) are needed to reduce the

computational overhead. The current probing depth of the imaging system is relatively shallow at

~2mm. Deeper tissue penetration can be obtained through hardware by swapping the

spectrometer’s camera for a model with more elements in the sensor array.

 The test sample used in the experiment can be upgrade to a brain phantom in order to create a

more realistic intensity profile to develop a better peak intensity detection algorithm. In addition,

a patient under anesthesia has a cardiac rate higher than 60 beats/second so a faster controller

response is desired in a real setting.

 In conclusion, intraoperative imaging with robot collaboration is feasible. An experienced

surgical staff can leverage the technology to ease workflow and improve clinical outcome. Safety

software and hardware protocols ensure that fault scenarios are handled in the safest way possible.

 63

This has given way to new use cases for robots in surgery. The LBR Med is the result of decades

of research in collaborative robots and its currently the only collaborative robot arm certified to be

integrated in a medical device. The demonstration of our system shows the possibilities for novel

imaging devices with collaborative robots in a surgical setting.

 64

Appendix A:

Safety acceptance overview – System safety functions

No. Activity Yes No

1 Operator safety: is all operator safety equipment configured,

properly connected and tested for correct function?

✓

2 Operator safety: a stop is triggered if AUT or T2 mode is

active with the operator safety open.

✓

3 Operator safety: a manual reset function is present and activated. ✓

4 Brake test: is a brake test planned and has an application

been created for this purpose?

✓

5 Hand guiding device enabling state: is the enabling device

of the hand guiding device configured, properly connected

and tested for correct function?

✓

6 Local EMERGENCY STOP: are all local EMERGENCY

STOP devices configured, properly connected and tested

for correct function?

✓

7 External EMERGENCY STOP: are all external EMERGENCY

STOP devices configured, properly connected and tested

for correct function?

✓

8 Local and external EMERGENCY STOP: are the local and

external EMERGENCY STOPs each configured as an individual

AMF in a row of the PSM table?

✓

9 Safety stop: is all operator safety equipment configured,

properly connected and tested for correct function?

✓

10 Safe operational stop: is all equipment for the safe operational

stop configured, properly connected and tested for

correct function?

✓

11 When using position-based AMFs: is the limited safety integrity

of the position-based AMFs taken into consideration

in the absence of position referencing?

✓

12 When using position-based AMFs: has position referencing

been carried out successfully?

✓

13 If external position referencing is used: has a suitable test

method for position mastering been provided?

✓

14 If external position referencing is used: has it been ensured

that the input is only set after successful testing?

✓

15 If external position referencing is used: has it been ensured

that the input is only set after successful testing?

✓

16 Manual guidance: has it been configured in such a way that ✓

 65

appropriate velocity monitoring is active in every operating

mode for manual guidance?

17 If using the enabling device of the hand guiding device as

an input for deactivating safety functions:

Has it been taken into consideration that using the enabling

device as an input may result in safety functions being deactivated

during manual guidance?

✓

18 Collision detection: have all necessary HRC functionalities

been configured?

✓

19 Collision detection: has it been configured in such a way

that velocity monitoring is also always active when collision

detection is active?

✓

20 Collision detection: has it been configured in such a way

that velocity monitoring is also always active when TCP

force monitoring or monitoring of a base-related TCP force

component is active?

✓

21 Collision detection: is a safety stop 0 configured for all safety

monitoring functions in order to detect crushing situations?

✓

22 When using axis torque-based AMFs: is the limited safety

integrity of the axis torque-based AMFs taken into consideration

in the absence of position referencing and/or torque

referencing?

✓

23 In the configuration of all rows in the PSM table and all

ESM states, has it been taken into account that the safe

state of the AMFs is the “violated” state (state “0”)?

✓

24 PSM configuration: in the configuration of output signals,

has it been taken into account for the safety reaction that

an output is LOW (state “0”) in the safe state?

✓

25 PSM configuration: Was a check carried out during configuration

of the “Brake” safety reaction to see whether there

could be an increased risk due to rapid switching to and

from the violation state of the AMFs with which the Cartesian

velocity monitoring is linked?

✓

26 ESM configuration: are all ESM states consistent, i.e. does

each individual ESM state sufficiently reduce all dangers?

✓

27 Have torque and position referencing been carried out successfully? ✓

Signed: Robnier Reyes Perez

 66

Appendix B:

LBR Med Code

package com.kuka.connectivity.fri.example;

import static com.kuka.roboticsAPI.motionModel.BasicMotions.positionHold;

import static com.kuka.roboticsAPI.motionModel.BasicMotions.ptp;

import java.util.concurrent.TimeUnit;

import java.util.concurrent.TimeoutException;

import com.kuka.connectivity.fastRobotInterface.FRIConfiguration;

import com.kuka.connectivity.fastRobotInterface.FRIJointOverlay;

import com.kuka.connectivity.fastRobotInterface.FRISession;

import com.kuka.roboticsAPI.applicationModel.RoboticsAPIApplication;

import com.kuka.roboticsAPI.controllerModel.Controller;

import com.kuka.roboticsAPI.deviceModel.LBR;

import com.kuka.roboticsAPI.geometricModel.CartDOF;

import

com.kuka.roboticsAPI.motionModel.controlModeModel.CartesianImpedanceControlMode;

import com.kuka.roboticsAPI.motionModel.controlModeModel.PositionControlMode;

import com.kuka.roboticsAPI.sensorModel.DataRecorder;

import com.kuka.roboticsAPI.sensorModel.DataRecorder.AngleUnit;

import com.kuka.roboticsAPI.uiModel.ApplicationDialogType;

/**

 * Creates a FRI Session.

 */

public class LBRJointSineOverlay extends RoboticsAPIApplication

{

 private Controller _lbrController;

 private LBR _lbr;

 private String _clientName;

 @Override

 public void initialize()

 {

 _lbrController = (Controller) getContext().getControllers().toArray()[0];

 _lbr = (LBR) _lbrController.getDevices().toArray()[0];

 // **

 // *** change next line to the FRIClient's IP address ***

 // **

 _clientName = "192.170.10.5";

 }

 67

 @Override

 public void run()

 {

 DataRecorder rec1 = new DataRecorder("J6data.log", 25, TimeUnit.SECONDS, 1);

 rec1.addCurrentJointPosition(_lbr, AngleUnit.Radian);

 rec1.addCommandedJointPosition(_lbr, AngleUnit.Radian);

 //Position Control Mode Configuration

 PositionControlMode posHold = new PositionControlMode();

 //Impedance Control Mode Configuration

 CartesianImpedanceControlMode impModeX = new CartesianImpedanceControlMode();

 impModeX.parametrize(CartDOF.X).setStiffness(200).setDamping(0.1);

 CartesianImpedanceControlMode impModeTRANSL = new

CartesianImpedanceControlMode();

 impModeTRANSL.parametrize(CartDOF.TRANSL).setStiffness(100).setDamping(0.1);

 CartesianImpedanceControlMode impModeROT = new

CartesianImpedanceControlMode();

 impModeROT.parametrize(CartDOF.ROT).setStiffness(50).setDamping(0.1);

 CartesianImpedanceControlMode impModeALL = new

CartesianImpedanceControlMode();

 impModeALL.parametrize(CartDOF.ALL).setStiffness(50).setDamping(0.1);

 CartesianImpedanceControlMode impModeXSweep = new

CartesianImpedanceControlMode();

 impModeXSweep.parametrize(CartDOF.Y).setStiffness(200).setDamping(0.1);

 impModeXSweep.parametrize(CartDOF.A).setStiffness(0.1).setDamping(0.1);

 CartesianImpedanceControlMode impModeYSweep = new

CartesianImpedanceControlMode();

 impModeYSweep.parametrize(CartDOF.Z).setStiffness(200).setDamping(0.1);

 impModeYSweep.parametrize(CartDOF.B).setStiffness(0.1).setDamping(0.1);

 // move to start pose

 //_lbr.move(ptp(Math.toRadians(16.93), Math.toRadians(48.76), Math.toRadians(0),

Math.toRadians(-78.49), Math.toRadians(0.79), Math.toRadians(-39.22), Math.toRadians(-1.23))

 // .setJointVelocityRel(0.2));

 _lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));

 // configure and start FRI session

 FRIConfiguration friConfiguration = FRIConfiguration.createRemoteConfiguration(_lbr,

_clientName);

 friConfiguration.setSendPeriodMilliSec(1);

 getLogger().info("Creating FRI connection to " + friConfiguration.getHostName());

 getLogger().info("SendPeriod: " + friConfiguration.getSendPeriodMilliSec() + "ms |"

 + " ReceiveMultiplier: " + friConfiguration.getReceiveMultiplier());

 68

 FRISession friSession = new FRISession(friConfiguration);

 FRIJointOverlay jointOverlay = new FRIJointOverlay(friSession);

 // wait until FRI session is ready to switch to command mode

 try

 {

 friSession.await(10, TimeUnit.SECONDS);

 }

 catch (final TimeoutException e)

 {

 getLogger().error(e.getLocalizedMessage());

 friSession.close();

 return;

 }

 getLogger().info("FRI connection established.");

 int option0 = 0;

 option0 = getApplicationUI().displayModalDialog(ApplicationDialogType.QUESTION,

"What's next?", "Hold position", "Imaging position");

 switch(option0){

 case 0:

 getLogger().info("Hold position");

 _lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));

 break;

 case 1:

 getLogger().info("Moving to Imaging position");

 _lbr.move(ptp(Math.toRadians(0), Math.toRadians(45),

Math.toRadians(0), Math.toRadians(-75), Math.toRadians(0), Math.toRadians(-30),

Math.toRadians(0))

 .setJointVelocityRel(0.2));

 break;

 }

 int option1 = 0;

 int option2 = 0;

 while (option1!=7){

 option1 =

getApplicationUI().displayModalDialog(ApplicationDialogType.QUESTION, "What's next?",

"Macro-positioning", "Micro-positioning","'Soft' Mode", "Trocar Guiding","OCT X

Sweep","OCT Y Sweep", "Brain Motion Compensation", "Finish");

 switch(option1){

 case 0:

 /*_lbr.setESMState("2");

 _lbr.move(handGuiding());

 69

 _lbr.setESMState("1");

 _lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));*/

 getLogger().info("HandGuide Mode");

 _lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));

 break;

 case 1:

 getLogger().info("Micro-positioning");

 //_lbr.setESMState("3");

 while(option2!=3){

 option2 =

getApplicationUI().displayModalDialog(ApplicationDialogType.QUESTION, "Micro-

Position?", "TRANSL", "ROT","ALL", "Finish");

 switch(option2){

 case 0:

 _lbr.move(positionHold(posHold,

1,TimeUnit.SECONDS));

 _lbr.move(positionHold(impModeTRANSL,

1,TimeUnit.SECONDS));

 break;

 case 1:

 _lbr.move(positionHold(posHold,

1,TimeUnit.SECONDS));

 _lbr.move(positionHold(impModeROT,

1,TimeUnit.SECONDS));

 break;

 case 2:

 _lbr.move(positionHold(posHold,

1,TimeUnit.SECONDS));

 _lbr.move(positionHold(impModeALL,

1,TimeUnit.SECONDS));

 break;

 case 3:

 _lbr.move(positionHold(posHold,

1,TimeUnit.SECONDS));

 break;

 }

 }

 //_lbr.setESMState("1");

 _lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));

 break;

 case 2:

 getLogger().info("Soft mode");

 //_lbr.setESMState("3");

 _lbr.move(positionHold(impModeALL, 30,TimeUnit.SECONDS));

 case 3:

 _lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));

 _lbr.move(positionHold(impModeX, 1,TimeUnit.SECONDS));

 break;

 70

 case 4:

 _lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));

 //oct_tool.getFrame("OCT_TCP").move(positionHold(impModeXSweep,

1,TimeUnit.SECONDS));

 break;

 case 5:

 _lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));

 //oct_tool.getFrame("OCT_TCP").move(positionHold(impModeYSweep,

1,TimeUnit.SECONDS));

 break;

 case 6:

 getLogger().info("Brain Motion Compensation");

 rec1.enable();

 rec1.startRecording();

 _lbr.move(positionHold(posHold,25,TimeUnit.SECONDS)

 .addMotionOverlay(jointOverlay));

 rec1.stopRecording();

 break;

 case 7:

 //_lbr.setESMState("1");

 _lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));

 break;

 }}

 /*

 lbr.setESMState("1");

 lbr.move(positionHold(posHold, 1,TimeUnit.SECONDS));

 */

 // move to start pose

 //_lbr.move(ptp(Math.toRadians(19.5), Math.toRadians(46.36), Math.toRadians(0.01),

Math.toRadians(-85.53), Math.toRadians(26.54), Math.toRadians(-46.74), Math.toRadians(-

19.23))

 // .setJointVelocityRel(0.2));

 // async move with overlay ...

 // _lbr.move(ptp(0, Math.toRadians(45), 0, Math.toRadians(-75), 0, Math.toRadians(-30), 0)

 // .setJointVelocityRel(0.2)

 // .setBlendingRel(0.1)

 //);

 //_lbr.move(positionHold(posHold,10,TimeUnit.SECONDS)

 // .addMotionOverlay(jointOverlay)

 //);

 /* // ... blending into sync move with overlay

 _lbr.move(ptp(0, Math.toRadians(45), 0, Math.toRadians(-75), 0, Math.toRadians(-30), 0)

 .setJointVelocityRel(0.2)

 71

 .addMotionOverlay(jointOverlay)

);*/

 // done

 friSession.close();

 }

 /**

 * main.

 *

 * @param args

 * args

 */

 public static void main(final String[] args)

 {

 final LBRJointSineOverlay app = new LBRJointSineOverlay();

 app.runApplication();

 }

}

Appendix C:

 72

OCT code

/***************************** LBROverlayApp.cpp ****************************/

#include <cstdlib>

#include <cstdio>

#include <cstring>

#include "LBRJointSineOverlayClient.h"

#include "friUdpConnection.h"

#include "friClientApplication.h"

#include <NIDAQmx.h>

#include <niimaq.h>

#include <windows.h>

#include <mmsystem.h>

#include <stdio.h>

#include <time.h>

#include <math.h>

#include <wincon.h>

#include "HLGrab.h"

#include <thread>

#include <fftw3.h>

#include <boost/math/interpolators/cubic_b_spline.hpp>

#define _NIWIN

struct mainType {

 int argc;

 char *argv[];

};

int FRIMAIN(struct mainType *FRIMAINStruct);

void sendToClient(LBRJointSineOverlayClient *function);

//THINGS FOR THE DISPLAY START---

-

#define DAQmxErrChk(functionCall) if(DAQmxFailed(error=(functionCall))) goto Error; else

// error checking macro

#define errChk(fCall) if (error = (fCall), error < 0) {goto Error;} else

#define PI 3.1415926535

#define Cspeed = 299792458;

int32 CVICALLBACK DoneCallback(TaskHandle taskHandle, int32 status, void *callbackData);

// Window proc

 73

LRESULT CALLBACK ImaqSmplProc(HWND hWnd, UINT iMessage, UINT wParam, LONG

lParam);

// Error display function

void DisplayIMAQError(Int32 error);

// Callbacks

int OnGrab(void);

DWORD ImaqThread(LPDWORD lpdwParam);

DWORD StopThread(LPDWORD lpdwParam);

DWORD GalvoThread(LPDWORD lpdwParam);

DWORD TriggerThread(LPDWORD lpdwParam);

// Thread objects

static HANDLE HThread;

static HANDLE HGalvoThread, HTriggerThread;

static HANDLE HStopThread, HStopEvent;

// windows GUI globals

static HINSTANCE hInst;

static HWND ImaqSmplHwnd;

static HWND HStop, HGrab, HQuit, HIntfName, HFrameRate;

static HWND HPeakPosition;

// Imaq globals

static SESSION_ID Sid = 0;

static BUFLIST_ID Bid = 0;

static INTERFACE_ID Iid = 0;

static uInt16 *ImaqBuffer = NULL; // acquisiton buffer

static Int32 CanvasWidth = 512; // width of the display area

static Int32 CanvasHeight = 512; // height of the display area

static Int32 CanvasTop = 10; // top of the display area

static Int32 CanvasLeft = 10; // left of the display area

static Int32 AcqWinWidth;

static Int32 AcqWinHeight;

static BOOL StopGrab = FALSE;

static unsigned int plotFlag;

int N = 1024;

//Int16 acq_image[1024][512];

uInt16 output_image[1024][512];//output_image[512][256];

double index[1024];

double default_index[1024];

Int16 interpolate_index[1024];

double lambda[1024];

double interpolate_array[8][1024];

int a, b;

int Na = 8, Nb = 1024;

 74

int k2 = 0;

double k0[1024], k1[1024], k1_inv[1024], kmax = 0, kmin = 0;

double line_rate = 91912;

int Aline_Num = 1000;

double amp = 1; //2.5

double Bperiod = 0;//1000 * Aline_Num * 2 / line_rate; //In microseconds;

double Bfreq = 0;

int peakDepth = 0;

DWORD FRIMAINID;

static HANDLE FRIMAINThread;

DWORD GIVEID;

static HANDLE giveThread;

double *InterpolateVector;

fftw_plan fftPlan;

fftw_complex *in, *out;

uInt16 *fftOutput;

uInt16 *fftOutputFinal;

int allow;

//THINGS FOR THE DISPLAY END--

using namespace KUKA::FRI;

//Galvo variables

#define DEFAULT_PORTID 30200

#define DEFAULT_JOINTMASK 0x20

#define DEFAULT_FREQUENCY 0.1

#define DEFAULT_AMPLITUDE 0.01

#define DEFAULT_FILTER_COEFFICIENT 0.7

#define PI 3.1415926535

#define Cspeed = 299792458;

#define DAQmxErrChk(functionCall) if(DAQmxFailed(error=(functionCall))) goto Error; else

#define errChk(fCall) if (error = (fCall), error < 0) {goto Error;} else

int32 CVICALLBACK DoneCallback(TaskHandle taskHandle, int32 status, void *callbackData);

//End of galvo variables

//CODE FOR THE DISPLAY, THIS CONTAINS THE MAIN---

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpszCmdLine, int nCmdShow)

{

 CHAR ImaqSmplClassName[] = "Imaq Sample";

 WNDCLASS ImaqSmplClass;

 MSG msg;

 HWND hTemp;

 // register the main window

 75

 hInst = hInstance;

 if (!hPrevInstance)

 {

 ImaqSmplClass.style = CS_HREDRAW | CS_VREDRAW;

 ImaqSmplClass.lpfnWndProc = (WNDPROC)ImaqSmplProc;

 ImaqSmplClass.cbClsExtra = 0;

 ImaqSmplClass.cbWndExtra = 0;

 ImaqSmplClass.hInstance = hInstance;

 ImaqSmplClass.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 ImaqSmplClass.hCursor = LoadCursor(NULL, IDC_ARROW);

 ImaqSmplClass.hbrBackground =

static_cast<HBRUSH>(GetStockObject(LTGRAY_BRUSH));

 ImaqSmplClass.lpszMenuName = 0;

 ImaqSmplClass.lpszClassName = ImaqSmplClassName;

 if (!RegisterClass(&ImaqSmplClass))

 return (0);

 }

 // creates the main window

 ImaqSmplHwnd = CreateWindow(ImaqSmplClassName, "HLGrab",

WS_OVERLAPPEDWINDOW | WS_VISIBLE,

 CW_USEDEFAULT, CW_USEDEFAULT, 700, 600, NULL, NULL, hInstance,

NULL);

 // creates the interface name label

 if (!(hTemp = CreateWindow("Static", "Interface Name", ES_LEFT | WS_CHILD |

WS_VISIBLE,

 540, 14, 100, 20, ImaqSmplHwnd, (HMENU)-1, hInstance, NULL)))

 return(FALSE);

 // creates the frame rate label

 if (!(hTemp = CreateWindow("Static", "Frame Rate", ES_LEFT | WS_CHILD |

WS_VISIBLE,

 540, 232, 140, 20, ImaqSmplHwnd, (HMENU)-1, hInstance, NULL)))

 return(FALSE);

 if (!(CreateWindow("Static", "Peak Depth", ES_LEFT | WS_CHILD | WS_VISIBLE,

 540, 280, 140, 20, ImaqSmplHwnd, (HMENU)-1, hInstance, NULL)))

 return(FALSE);

 // creates the interface name edit box

 if (!(HIntfName = CreateWindow("Edit", "img0", ES_LEFT | WS_CHILD |

WS_VISIBLE | WS_BORDER,

 540, 34, 100, 20, ImaqSmplHwnd, (HMENU)-1, hInstance, NULL)))

 return(FALSE);

 76

 // creates the frame rate edit box

 if (!(HFrameRate = CreateWindow("Edit", "0", ES_LEFT | WS_CHILD | WS_VISIBLE |

WS_BORDER,

 540, 252, 100, 20, ImaqSmplHwnd, (HMENU)-1, hInstance, NULL)))

 return(FALSE);

 if (!(HPeakPosition = CreateWindow("Edit", "0", ES_LEFT | WS_CHILD | WS_VISIBLE

| WS_BORDER,

 540, 300, 100, 20, ImaqSmplHwnd, (HMENU)-1, hInstance, NULL)))

 return(FALSE);

 // creates the Grab button

 if (!(HGrab = CreateWindow("Button", "Grab", BS_PUSHBUTTON | WS_CHILD |

WS_VISIBLE | WS_BORDER,

 540, 72, 80, 40, ImaqSmplHwnd, (HMENU)PB_GRAB, hInstance, NULL)))

 return(FALSE);

 // creates the stop button

 if (!(HStop = CreateWindow("Button", "Stop", BS_PUSHBUTTON | WS_CHILD |

WS_VISIBLE | WS_BORDER,

 540, 112, 80, 40, ImaqSmplHwnd, (HMENU)PB_STOP, hInstance, NULL)))

 return(FALSE);

 EnableWindow(HStop, FALSE);

 EnableWindow(HFrameRate, FALSE);

 // creates the quit application button

 if (!(HQuit = CreateWindow("Button", "Quit", BS_DEFPUSHBUTTON | WS_CHILD |

WS_VISIBLE,

 540, 152, 80, 40, ImaqSmplHwnd, (HMENU)PB_QUIT, hInstance, NULL)))

 return(FALSE);

 //Initialize a vital array

 for (int a = 0; a < Na; a++) {

 for (int b = 0; b < Nb; b++) {

 interpolate_array[a][b] = (double)1.0;

 }

 }

 // Display the main window

 ShowWindow(ImaqSmplHwnd, SW_SHOW);

 UpdateWindow(ImaqSmplHwnd);

 while (GetMessage(&msg, NULL, 0, 0))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 77

 }

 // Wait for the stop thread to complete before returning

 WaitForSingleObject(HStopThread, INFINITE);

 return (int)(msg.wParam);

}

// Message proc

LRESULT CALLBACK ImaqSmplProc(HWND hWnd, UINT iMessage, UINT wParam, LONG

lParam)

{

 WORD wmId;

 switch (iMessage)

 {

 case WM_COMMAND:

 wmId = LOWORD(wParam);

 switch (wmId)

 {

 case PB_QUIT:

 PostQuitMessage(0);

 break;

 case PB_GRAB:

 // Grab button has been pressed

 OnGrab();

 break;

 case PB_STOP:

 // Grab button has been pressed

 SetEvent(HStopEvent);

 break;

 }

 break;

 case WM_DESTROY:

 SetEvent(HStopEvent);

 PostQuitMessage(0);

 default:

 return DefWindowProc(hWnd, iMessage, wParam, lParam);

 break;

 }

 return 0;

}

// Function executed when the grab button is clicked

int OnGrab(void)

 78

{

 int error;

 char intfName[64];

 unsigned int bitsPerPixel;

 DWORD dwThreadId;

 struct mainType FRIMAINStruct;

 FRIMAINStruct.argc = 1;

 FRIMAINStruct.argv;

 FRIMAINThread = CreateThread(NULL, 0,

(LPTHREAD_START_ROUTINE)FRIMAIN, &FRIMAINStruct, 0, &FRIMAINID);

 if (!FRIMAINThread)

 return 0;

 // Create the event that needs to be signaled when we

 // wish to stop the acquisition.

 HStopEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 if (!HStopEvent)

 return 0;

 // Create the thread that is responsible for shutting

 // down the acquisition

 HStopThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)StopThread,

(LPDWORD)&HStopEvent, 0, &dwThreadId);

 if (!HStopThread)

 return 0;

 // Get the interface name

 GetWindowText(HIntfName, intfName, 64);

 // Open an interface and a session

 errChk(imgInterfaceOpen(intfName, &Iid));

 errChk(imgSessionOpen(Iid, &Sid));

 // Let's check that the Acquisition window is not smaller than the Canvas

 errChk(imgGetAttribute(Sid, IMG_ATTR_ROI_WIDTH, &AcqWinWidth));

 errChk(imgGetAttribute(Sid, IMG_ATTR_ROI_HEIGHT, &AcqWinHeight));

 if (CanvasWidth < AcqWinWidth)

 AcqWinWidth = CanvasWidth;

 if (CanvasHeight < AcqWinHeight)

 AcqWinHeight = CanvasHeight;

 // get the pixel depth of the camera.

 errChk(imgGetAttribute(Sid, IMG_ATTR_BITSPERPIXEL, &bitsPerPixel));

 switch (bitsPerPixel)

 79

 {

 case 10:

 plotFlag = IMGPLOT_MONO_10;

 break;

 case 12:

 plotFlag = IMGPLOT_MONO_12;

 break;

 case 14:

 plotFlag = IMGPLOT_MONO_14;

 break;

 case 16:

 plotFlag = IMGPLOT_MONO_16;

 break;

 case 24:

 case 32:

 // assumes that a 24 bits camera is a color camera.

 // in this mode, even if the camera is 24 bits the board returns 32 bits values

 plotFlag = IMGPLOT_COLOR_RGB32;

 break;

 default:

 plotFlag = IMGPLOT_MONO_8;

 break;

 }

 // Set the ROI to the size of the Canvas so that it will fit nicely

 errChk(imgSetAttribute2(Sid, IMG_ATTR_ROI_WIDTH, N));

 errChk(imgSetAttribute2(Sid, IMG_ATTR_ROI_HEIGHT, AcqWinHeight));

 errChk(imgSetAttribute2(Sid, IMG_ATTR_ROWPIXELS, N));

 // Setup and launch the grap operation

 errChk(imgGrabSetup(Sid, TRUE));

 // Let NI-IMAQ manage the memory

 ImaqBuffer = NULL;

 Bperiod = 1000 * Aline_Num * 2 / line_rate; //In microseconds

 Bfreq = line_rate / (Aline_Num * 4);

 StopGrab = FALSE;

 // Start the acquisition thread

 HThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)ImaqThread,

(LPDWORD*)&StopGrab, 0, &dwThreadId);

 if (HThread == NULL)

 return 0;

 EnableWindow(HStop, TRUE);

 80

 EnableWindow(HGrab, FALSE);

 EnableWindow(HQuit, FALSE);

Error:

 if (error<0) {

 DisplayIMAQError(error);

 PostMessage(ImaqSmplHwnd, WM_COMMAND, PB_STOP, 0);

 }

 return 0;

}

DWORD ImaqThread(LPDWORD lpdwParam)

{

 static int nbFrame = 0, error;

 static int t1, t2;

 char buffer[32];

 //char buffer2[32];

 int Aline_count = 512;

 int Pixel_count = N;

 int peakDepthNum = 0;

 int avg[1024];

 char temp[10];

 double startValue = (2 * PI) / (1189 * 0.00000001);

 double *la;

 double k1, k2;

 double step;

 double magnitude;

 peakDepth = 0;

 BOOL line_order = FALSE;

 // Create a pointer to the stop boolean. This needs to be

 // volatile because the value can change at any time.

 BOOL* volatile stop = (BOOL*)lpdwParam;

 //errChk(imgGrabSetup(Sid, TRUE));

 in = (fftw_complex *)malloc(sizeof(fftw_complex) * N);

 out = (fftw_complex *)malloc(sizeof(fftw_complex) * N);

 fftOutput = (uInt16 *)malloc(sizeof(uInt16) * (N / 2) * Aline_count);

 fftOutputFinal = (uInt16 *)malloc(sizeof(uInt16) * (N / 2) * Aline_count);

 InterpolateVector = (double *)malloc(sizeof(double) * N);

 la = (double *)malloc(sizeof(double) * N);

 fftPlan = fftw_plan_dft_1d(N, in, out, FFTW_FORWARD, FFTW_MEASURE);

 for (int a = 0; a < N; a++) {

 81

 la[a] = 0.000000001 * (1188.89 + (0.2268 * a) - (0.0000082 * pow(a, 2) -

(0.00000000699 * pow(a, 3)))); //the wavelength x axis.

 }

 k1 = la[0]; //min

 k2 = la[0]; //max

 for (int a = 0; a < N; a++) {

 if (k1 > la[a]) {

 k1 = la[a];

 }

 if (k2 < la[a]) {

 k2 = la[a];

 }

 }

 k1 = (2 * PI) / k1;

 k2 = (2 * PI) / k2;

 step = (abs(k1 - k2)) / 1024;

 for (int a = 0; a < 1024; a++) {

 avg[a] = 0;

 }

 // the thread stop when StopRing goes to TRUE or there is an error

 while (!*stop && !error) {

 allow = 0;

 t2 = GetTickCount();

 // Get the frame after tne next Vertical Blank

 errChk(imgGrab(Sid, (void **)&ImaqBuffer, TRUE));

 for (int x = 0; x < N; x++) {

 for (int y = 0; y < Aline_count; y++) {

 avg[x] = avg[x] + (uInt16)*(ImaqBuffer + y*N + x);

 }

 avg[x] = avg[x] / Aline_count;

 }

 for (int y = 0; y < Aline_count; y++) {

 for (int x = 0; x < N; x++) {

 in[x][0] = (uInt16)*(ImaqBuffer + y*N + x) - avg[x];

 in[x][1] = 0.0; //no imaginary part.

 }

 //for (int x = 0; x < N; x++) {

 82

 //(double)*(InterpolateVector + x) = in[x][0];

 //}

 //boost::math::cubic_b_spline<double> spline(InterpolateVector, N,

startValue, step);

 //for (int x = 0; x < N; x++) {

 //if (spline((2 * PI) / la[x]) < 0) {

 //in[x][0] = 0;

 //}

 //else {

 //in[x][0] = spline((2 * PI) / la[x]);

 //}

 //}

 fftw_execute(fftPlan);

 for (int x = 0; x < N / 2; x++) {

 magnitude = sqrt(out[x][0] * out[x][0] + out[x][1] * out[x][1]);

 (uInt16)*(fftOutput + y*(N / 2) + x) = (uInt16)magnitude;

 }

 }

 peakDepthNum = 0;

 peakDepth = 0;

 for (int y = 0; y < Aline_count; y++) {

 for (int x = 50; x < N / 2; x++) {

 if (peakDepthNum < (uInt16)*(fftOutput + y*(N / 2) + x)) {

 peakDepthNum = (uInt16)*(fftOutput + y*(N / 2) + x);

 peakDepth = x;

 }

 }

 }

 //peakDepth = (peakDepth / 5) * 5;

 for (int y = 0; y < Aline_count; y++) {

 for (int x = 0; x < N / 2; x++) {

 (uInt16)*(fftOutputFinal + y*(N / 2) + x) = (uInt16)*(fftOutput +

x*(N / 2) + y);

 }

 }

 // Display it using imgPlot

 // Note that if you are using a board or camera with bitdepth greater

 // that 8 bits, you need to set the flag parameter of imgPlot to match

 83

 // the bit depth of the camera. See the "snap imgPlot" sample.

 //int data = (uInt16)*(ImaqBuffer + 500 * N + 450);

 imgPlot2(ImaqSmplHwnd, fftOutputFinal, 0, 0, AcqWinWidth, AcqWinHeight,

 CanvasLeft, CanvasTop, plotFlag);

 allow = 1;

 itoa(peakDepth, temp, 10);

 //set the value of the peak position on the display window.

 SetWindowText(HPeakPosition, temp);

 // Calculate the number of frame per seconds every 10 frames

 nbFrame++;

 if (nbFrame>10)

 {

 sprintf(buffer, "%.2f", 1000.0 * (double)nbFrame / (double)(t2 - t1));

 SetWindowText(HFrameRate, buffer);

 t1 = t2;

 nbFrame = 0;

 }

 Error:

 if (error<0 && !*stop)

 {

 DisplayIMAQError(error);

 PostMessage(ImaqSmplHwnd, WM_COMMAND, PB_STOP, 0);

 }

 }

 free(la);

 return 0;

}

// Waits for the stop event to occur, then stops the acquisition.

DWORD StopThread(LPDWORD lpdwParam) {

 DWORD dwResult;

 // Get a handle to the stop event

 HANDLE event = *((HANDLE*)lpdwParam);

 // Wait for the done event to occur

 dwResult = WaitForSingleObject(event, INFINITE);

 if (dwResult != WAIT_FAILED) {

 CloseHandle(event);

 event = NULL;

 84

 }

 // Stop the thread

 StopGrab = TRUE;

 // Wait for the thread to end and kill it otherwise

 dwResult = WaitForSingleObject(HThread, 2000);

 if (dwResult == WAIT_TIMEOUT)

 TerminateThread(HThread, 0);

 // Stop the acquisition

 imgSessionStopAcquisition(Sid);

 // Close the interface and the session

 if (Sid != 0)

 imgClose(Sid, TRUE);

 if (Iid != 0)

 imgClose(Iid, TRUE);

 EnableWindow(HStop, FALSE);

 EnableWindow(HGrab, TRUE);

 EnableWindow(HQuit, TRUE);

 free(InterpolateVector);

 free(in);

 free(out);

 free(fftOutput);

 free(fftOutputFinal);

 fftw_destroy_plan(fftPlan);

 return 0;

}

// in case of error this function will display a dialog box

// with the error message

void DisplayIMAQError(Int32 error)

{

 static Int8 ErrorMessage[256];

 memset(ErrorMessage, 0x00, sizeof(ErrorMessage));

 // converts error code to a message

 imgShowError(error, ErrorMessage);

 MessageBox(ImaqSmplHwnd, ErrorMessage, "Imaq Sample", MB_OK);

}

 85

//CODE FOR THE DISPLAY, THIS CONTAINS THE MAIN---

int FRIMAIN(struct mainType *FRIMAINStruct)

{

 //--

 int argc = FRIMAINStruct->argc;

 char **argv = FRIMAINStruct->argv;

 /*LPDWORD lpdwParam = 0;

 TaskHandle taskHandle11 = (void*)1; //Task 1 set both channel to 0

 float64 datainitiate[2] = { 0 };

 DAQmxCreateTask("", &taskHandle11);

 DAQmxCreateAOVoltageChan(taskHandle11, "Dev2/ao0:Dev2/ao1", "", -10.0, 10.0,

DAQmx_Val_Volts, "");

 DAQmxStartTask(taskHandle11);

 DAQmxWriteAnalogF64(taskHandle11, 1, 1, 10.0, DAQmx_Val_GroupByChannel,

datainitiate, NULL, NULL);

 DAQmxStopTask(taskHandle11);

 DAQmxClearTask(taskHandle11);

 //--

 static int nbFrame = 0, nbFrame1 = 0;

 static int t1, t2;

 char buffer[32];

 char buffer2[32];

 int Aline_count = 0;

 int Pixel_count = 0;

 //float64 data2[16000];

 BOOL line_order = FALSE;

 TaskHandle taskHandle2;

 double data1 = 0;

 DAQmxCreateTask("", &taskHandle2);

 DAQmxCreateCOPulseChanFreq(taskHandle2, "/Dev1/ao0", "", DAQmx_Val_Hz,

DAQmx_Val_Low, data1, Bfreq, 0.5);

 DAQmxCfgImplicitTiming(taskHandle2, DAQmx_Val_ContSamps, 1000);

 DAQmxRegisterDoneEvent(taskHandle2, 0, DoneCallback, NULL);

 DAQmxStartTask(taskHandle2);

 //NIDAQmx declarations

 int32 error = 0;

 TaskHandle taskHandle = 0;

 // TaskHandle taskHandle1 = 3;

 86

 int samnum = 1000;

 float64 data[16000]; //12290 = real_period * 12, originally 2000 for normal wave with

one galvo. 1 triangle = 2000

 //uInt8 data1[212+2];

 char errBuff[2050] = { '\0' };

 int i = 0;

 int k = 0;

 int kand = 0; //Master counter for number of triangles

 int j = 1; //for toggle 1 to -1 for creating triangle waveform

 double slop = 2 * amp / samnum;

 double slop2 = (0.666666*amp) / samnum; //slope for increasing segments in

secondary galvo driver signal

 double oneOverThree = 0.333333;

 BOOL* volatile stop = (BOOL*)lpdwParam;

 //int32 error = 0;

 TaskHandle taskHandle1 = (void*)3;

 //Dual wave for two galvos "c-scan" mode, must initiate both channels "/Dev1/ao0" ->

"/Dev1/ao0:1"

 //"kand < 8" where 8/2 is the number of triangles, so "kand < 4" will make two triangles

 for (kand = 0; kand < 8; kand++) {

 for (i = 0; i < samnum; i++) {

 data[i + kand * 1000] = -j*amp + j*i*slop;

 }

 j = -1 * j;

 }

 //Waveform for secondary galvo for four triangles will need strong modification if number

of triangles is changed

 for (i = 0; i < samnum; i++)

 data[i + 8000] = -amp; //hold position while acquire

 for (i = 0; i < samnum; i++)

 data[i + 9000] = i*slop2 - amp; //segment 1

 for (i = 0; i < samnum; i++)

 data[i + 10000] = -oneOverThree*amp;

 for (i = 0; i < samnum; i++)

 data[i + 11000] = i*slop2 - oneOverThree*amp; //segment 2

 for (i = 0; i < samnum; i++)

 data[i + 12000] = oneOverThree*amp;

 for (i = 0; i < samnum; i++)

 data[i + 13000] = i*slop2 + oneOverThree*amp; //segment 3

 for (i = 0; i < samnum; i++)

 data[i + 14000] = amp;

 for (i = 0; i < samnum; i++)

 data[i + 15000] = (-2 * amp / samnum)*i + amp; //return segment

 87

/***/

// DAQmx Configure Code

/***/

 /*DAQmxCreateTask("", &taskHandle);

 DAQmxCreateAOVoltageChan(taskHandle, "/Dev2/ao0:1", "", -10.0, 10.0,

DAQmx_Val_Volts, NULL);

 DAQmxCfgSampClkTiming(taskHandle, "", line_rate, DAQmx_Val_Rising,

DAQmx_Val_ContSamps, samnum * 2);

 DAQmxRegisterDoneEvent(taskHandle, 0, DoneCallback, NULL);

 /***/

 // DAQmx Configure Code

 /***/

 /*DAQmxCreateTask("", &taskHandle1);

 DAQmxCreateCOPulseChanFreq(taskHandle1, "Dev2/Ctr0", "", DAQmx_Val_Hz,

DAQmx_Val_Low, 0, Bfreq * 2, 0.5);

 DAQmxCfgImplicitTiming(taskHandle1, DAQmx_Val_ContSamps, 1000);

 DAQmxRegisterDoneEvent(taskHandle1, 0, DoneCallback, NULL);

 /***/

 // DAQmx Write Code

 /***/

 //DAQmxWriteAnalogF64(taskHandle, samnum * 8, 0, 10.0,

DAQmx_Val_GroupByChannel, data, NULL, NULL);

 /***/

 // DAQmx Write Code

 /***/

 //DAQmxStartTask(taskHandle);

 /***/

 // DAQmx Start Code

 /***/

 //DAQmxStartTask(taskHandle1);

 //--

 // parse command line arguments

 if (argc > 1)

 {

 if (strstr(argv[1], "help") != NULL)

 88

 {

 printf(

 "\nKUKA LBR joint sine overlay test application\n\n"

 "\tCommand line arguments:\n"

 "\t1) remote hostname (optional)\n"

 "\t2) port ID (optional)\n"

 "\t3) bitmask encoding of joints to be overlayed (optional)\n"

 "\t4) sine frequency in Hertz (optional)\n"

 "\t5) sine amplitude in radians (optional)\n"

 "\t6) filter coefficient from 0 (off) to 1 (optional)\n"

);

 return 1;

 }

 }

 char* hostname = (argc >= 2) ? argv[1] : NULL;

 int port = (argc >= 3) ? atoi(argv[2]) : DEFAULT_PORTID;

 unsigned int jointMask = (argc >= 4) ? (unsigned int)atoi(argv[3]) :

DEFAULT_JOINTMASK;

 double frequency = (argc >= 5) ? atof(argv[4]) : DEFAULT_FREQUENCY;

 double amplitude = (argc >= 6) ? atof(argv[5]) : DEFAULT_AMPLITUDE;

 double filterCoeff = (argc >= 7) ? atof(argv[6]) : DEFAULT_FILTER_COEFFICIENT;

 /***

****/

 /* */

 /* Place user Client Code here */

 /* */

 /***

***/

 amplitude = DEFAULT_AMPLITUDE + 0.1;

 // create new sine overlay client

 LBRJointSineOverlayClient client(jointMask, frequency, amplitude, filterCoeff);

 giveThread = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)sendToClient,

&client, 0, &GIVEID);

 if (!giveThread)

 return 0;

 /***

****/

 /* */

 /* Standard application structure */

 /* Configuration */

 /* */

 /***

****/

 // create new udp connection

 89

 UdpConnection connection;

 // pass connection and client to a new FRI client application

 ClientApplication app(connection, client);

 // connect client application to KUKA Sunrise controller

 app.connect(port, hostname);

 /***

****/

 /* */

 /* Standard application structure */

 /* Execution mainloop */

 /* */

 /***

****/

 // repeatedly call the step routine to receive and process FRI packets

 bool success = true;

 while (success)

 {

 success = app.step();

 }

 //DAQmxStopTask(taskHandle);

 //DAQmxClearTask(taskHandle);

 //DAQmxStopTask(taskHandle2);

 //DAQmxClearTask(taskHandle2);

 /***

****/

 /* */

 /* Standard application structure */

 /* Dispose */

 /* */

 /***

****/

 // disconnect from controller

 app.disconnect();

 return 1;

}

void sendToClient(LBRJointSineOverlayClient *function) {

 while (true) {

 90

 //if (allow == 1) {

 function->giveDepth(peakDepth);

 //}

 }

}

int32 CVICALLBACK DoneCallback(TaskHandle taskHandle, int32 status, void *callbackData)

{

 int32 error = 0;

 char errBuff[2048] = { '\0' };

 // Check to see if an error stopped the task.

 DAQmxErrChk(status);

Error:

 if (DAQmxFailed(error)) {

 DAQmxGetExtendedErrorInfo(errBuff, 2048);

 DAQmxClearTask(taskHandle);

 printf("DAQmx Error: %s\n", errBuff);

 }

 return 0;

}

/***************************** LBROverlayClient.cpp **************************/

#include <cstring>

#include <cstdio>

#include "LBRJointSineOverlayClient.h"

#include "friLBRState.h"

#include <iostream>

#include <fstream>

#include <math.h>

#include "pid.h"

// Visual studio needs extra define to use math constants

#define _USE_MATH_DEFINES

#include <cmath>

int newPeakDepth;

std::ofstream errorFile;

std::ofstream phi;

 91

using namespace KUKA::FRI;

PID pidController = PID(0.001, 0.1, 0, 0.020, 0,0);

//--

void LBRJointSineOverlayClient::giveDepth(int depth) { //using this function, we can transfer any

variable that we would like.

 newPeakDepth = depth;

}

//--

//**

**

LBRJointSineOverlayClient::LBRJointSineOverlayClient(unsigned int jointMask,

 double freqHz, double amplRad, double filterCoeff)

 : _jointMask(jointMask)

 , _freqHz(freqHz)

 , _amplRad(amplRad)

 , _filterCoeff(filterCoeff)

 , _offset(0.0)

 , _phi(0.0)

 , _stepWidth(0.0)

{

 /*printf("LBRJointSineOverlayClient initialized:\n"

 "\tjoint mask: 0x%x\n"

 "\tfrequency (Hz): %f\n"

 "\tamplitude (rad): %f\n"

 "\tfilterCoeff: %f\n",

 jointMask, freqHz, amplRad, filterCoeff);*/

 //amprad is peakDepth;

}

//**

**

LBRJointSineOverlayClient::~LBRJointSineOverlayClient()

{

}

//**

**

void LBRJointSineOverlayClient::onStateChange(ESessionState oldState, ESessionState

newState)

{

 LBRClient::onStateChange(oldState, newState);

 // (re)initialize sine parameters when entering Monitoring

 switch (newState)

 {

 92

 case MONITORING_READY:

 {

 _offset = 0.0;

 _phi = 0.0;

 _stepWidth = robotState().getSampleTime(); //2 * M_PI * _freqHz *

 errorFile.open("error.txt");

 phi.open("phi.txt");

 break;

 }

 default:

 {

 break;

 }

 }

}

//**

**

void LBRJointSineOverlayClient::command()

{

 double error;

 double step;

 //error = ((((double)newPeakDepth - 100) / 666) * 3.149) / 180 ;

 error = ((double)newPeakDepth - 250) * 0.000004;

 // calculate new offset

 //double newOffset = _amplRad *sin(_phi);

 //double newOffset = _phi;

 //double newOffset = _phi;

 //_offset = _offset * _filterCoeff + newOffset * (1.0 - _filterCoeff);

 //step = pidController.calculate(0, error);

 /*step = 0.005*_stepWidth;

 if (error < 0) {

 if (error > -0.0005) {

 step = 0.00000001*_stepWidth;

 }

 _phi -= step;

 }

 else if (error > 0){

 if (error < 0.0005) {

 step = 0.00000001*_stepWidth;

 }

 93

 _phi += step;

 }*/

 step = pidController.calculate(0, -1*abs(error));

 //_phi += step;

 if (error < 0) {

 _phi -= step;

 }

 else if (error > 0) {

 _phi += step;

 }

 //step = sqrt((0.0002)-((1/4)*abs(error)-0.0142)*((1/4)*abs(error) - 0.0142))*_stepWidth;

 /*step = abs(error) * _stepWidth;

 if (error < 0) {

 _phi -= step;

 }

 else if (error > 0) {

 _phi += step;

 }*/

 errorFile << error << "\n";

 phi << step << "\n";

 //_phi += 0.1*_stepWidth;

 //if (_phi >= (1/16) * M_PI) _phi -= (1/16) * M_PI;

 //if (_phi >= error) _phi = 0;

 // add offset to ipo joint position for all masked joints

 double jointPos[LBRState::NUMBER_OF_JOINTS];

 memcpy(jointPos, robotState().getIpoJointPosition(), LBRState::NUMBER_OF_JOINTS

* sizeof(double));

 for (int i=0; i< LBRState::NUMBER_OF_JOINTS; i++)

 {

 if (_jointMask & (1<<i))

 {

 jointPos[i] += _phi;

 94

 //printf("JointPos[6]: %f\n", jointPos[i]);

 }

 }

 //double jointPos[LBRState::NUMBER_OF_JOINTS] = {0, 0, 0, 0, 0, 0.6, 0};

 robotCommand().setJointPosition(jointPos);

}

//**

**

// clean up additional defines

#ifdef _USE_MATH_DEFINES

#undef _USE_MATH_DEFINES

#endif

 95

Reference list

[1] M. Lara-Velazquez, A. Quinones-Hinojosa, “Advances in brain tumor surgery of

glioblastoma in adults”, Brain Sciences, 2017

[2] S.A. Boppart, “Optical coherence tomography: technology and applications for neuroimaging”

[3] Bohringer, “Non-invasive intraoperative optical coherence tomography of the resection cavity

during surgery of intrinsic brain tumors”, Proceedings of the Photonics Therapeutics and

Diagnosis, 2006

[4] Bohringer “Imaging of human brain tumor tissue by near-infrared laser coherence

tomography”, 2009

[5] C. Kut, A. Quiñones-Hinojosa, “Detection of human brain cancer infiltration ex vivo and in

vivo using quantitative optical coherence tomography,” Sci. Transl. Med. 7(292), 292ra100

(2015).

[6] R.M. Juarez-Chambi, A. Quiñones-Hinojosa, “Detection of brain tumor margins using optical

coherence tomography”, SPIE Medical Imaging 2018

[7] J.G. Fujimoto, “Optical biopsy and imaging using optical coherence tomography”, Nature Med,

1995

[8] A.F. Fercher, W. Drexler, C.K. Hitzenberger, “Optical coherence tomography – principles and

applications”,

[9] J.A. Izatt, “Optical Coherence Tomography for biodiagnostics”, 1997

[10] G.L. Monroy, S.A. Boppart, “Clinical translation of handheld optical coherence tomography:

practical considerations and recent advancements”, Journal of Biomedical Optics, Dec 2017

 96

[11] Cold-Ablation Robot-guided Laser Osteotome (CARLO) aot.swiss/en/carlo/ visited on

November 2019

[12] Accuray https://www.accuray.com/ visited on November 2019

 [13] Siemens Healthineers https://www.siemens-healthineers.com visited on November 2019

[14] M. E. Wagshul, P. K. Eide, J. R. Maiden, “The pulsating brain: A review of experimental

and clinical studies of intracranial pulsatility”, Fluids Barriers CNS, 2011; 8: 5

[15] M. Bianciardi, N. Toschi, J. R. Polimeni, K.C. Evans, H. Bhat, B. Keil, B. R. Rosen, D. A.

Boas, “The pulsatility volume index: an indicator of cerebrovascular compliance based on fast

magnetic resonance imaging of cardiac and respiratory pulsatility”, Philo Trans A Math Phys

Eng Sci, 2016 May 13; 374(2067): 20150184.

[16] J.M. Dudley, J.R. Taylor, “Ten years of nonlinear optics in photonic crystal fibers”, Nature

Photonics 2009

[17] Y. Lim, T. Yatagai, Y. Otani, “Ultrahigh resolution spectral domain optical coherence

tomography using supercontinuum light source”, Opt Rev 2016

[18] Y. Wang, Y. Zhao, J.S. Nelson, Z, Chen, “Ultrahigh-resolution optical coherence tomography

by broadband continuum generation from a photonic crystal fiber”, Optics Letters, Vol 28, No 3,

February 2003

[19] Y. Nomura, H. Kawagoe, N. Nishizawa, “Supercontinuum generation for ultrahigh-resolution

optical coherence tomography at wavelength of 0.8m using carbon nanotube fiber laser and

similariton amplifier”, Applied Physics Express, 2014

https://aot.swiss/en/carlo/
https://www.accuray.com/
https://www.siemens-healthineers.com/

 97

[20] Y.J. You, C. Wang, Y.L. Lin, A. Zaytsev, P. Xue, C.L. Pan, “Ultrahigh-resolution optical

coherence tomography 1.3m central wavelength y using a supercontinuum source pumped y

noise-like pulses”, Laser Physics Letters, 2016

[21] M.L. Ferhat, L. Cherbi, “Supercontinuum generation inn optimized photonic crystal fiber at

1.3m for optical coherence tomography”, CSNDD 2016

[22] M. Yamanaka, H. Kawagoe, N. Nishizawa, “High-power supercontinuum generation using

high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence

tomography in 1600nm spectral band”, Applied Physics Express, Vol 9, 2016

[23] H. Kawagoe, S. Ishida, M. Aramaki, Y. Sakakibara, E. Omoda, H. Kataura, N. Nishizawa,

“Development of a high-power supercontinuum source in the 1.7m wavelength region for highly

penetrative ultrahigh-resolution optical coherence tomography”, Biomedical Optical Express, Vol

5, No 3, February 2014

[24] H. Kawagoe, N. Nishizawa, “Ultrahigh-resolution optical coherence tomography using

supercontinuum source in 1.9m wavelength region”, Optical Society of America, 2014

[25] S. O’Sullivan, H. Ashrafian, “Legal, regulatory, and ethical frameworks for development of

standards in artificial intelligence and autonomous robotic surgery”, International Journal of

Medical Robotics and Computer Assisted Surgery, 2018

[26] SAFROS project (Patient safety in robotic surgery), FP7-ICT grant agreement No. 248960.

www.safros.eu visited on Nov 2019

[27] E.PalmeriniaA, BertoliniaF, BattagliabB.-J, KoopscA. CarnevaleaP. Salvinia “RoboLaw:

Towards a European framework for robotics regulation”, Robotics and Autonomous Systems

Volume 86, December 2016, Pages 78-85

[28] Regulating Emerging Robotic Technologies in Europe: Robotics facing Law and Ethics

www.robolaw.eu visited on November 2019

http://www.safros.eu/
http://www.robolaw.eu/

 98

[29] J. Guiochet, M. Machin, H. Waeselynck, “Safety-critical advanced robots: a survey”,

Robotics and Autonomous Systems, 2017

[30] A. Mylaeus, A. Vempati, “A survey on the pain threshold and its use in robotics safety

standards”

[31] M. Y. Park, D. Han, J. H. Lim, M. K. Shin, Y. R. Han, D. H. Kim, S. Rhim, K. S. Kim,

“Assessment of pressure pain thresholds in collisions with collaborative robots”, PLOS ONE, May

2019

[32] J. Falco, J. Marvel, R. Norcross, “Collaborative Robotics: Measuring Blunt Force Impacts on

Humans”, National Institute of Standards and Technology

[33] M. Finke, Scheiweikard, “Automatic scanning of large tissue areas in neurosurgery using

optical coherence tomography”, International Journal of Medical Robotics and Computer Assisted

Surgery, 2012

[34] S.V. Kantelhardt, M. Finke, A. Schweikard, A. Giese, “Evaluation of a completely robotized

neurosurgical operating microscope”, Neurosurgery, Vol 72, Jan 2013

[35] M. Draelos, P. Ortiz, R. Qian, B. Keller, K. Hauser, A. Kuo, . Izatt, “Automatic Optical

Coherence Tomography Imaging of Stationary and Moving Eyes with a robotically-aligned

scanner”,

[36] L. Sakka, G. Coll b, J. Chazal, “Anatomy and physiology of cerebrospinal fluid”, European

Annals of Otorhinolaryngology, Head and Neck diseases (2011) 128, 309—316cs

[37] M Czosnyka, J D Pickard, “Monitoring and interpretation of intracranial pressure”, J Neurol

Neurosurg Psychiatry 2004;75:813–821.

[38] F. Wadehn, D.J. Mack, E. Keller, T. Heldt, “Multiscale Intracranial Pressure Signal

Simulator”, Computing in Cardiology Conference, Sept 2018

 99

[39] M. Ursino, C.A. Lodi, “A simple mathematical model of the interaction between intracranial

pressure and cerebral hemodynamics”,

