
AN ENERGY-AWARE REAL-TIME VM-PROVISIONING

FRAMEWORK FOR HETEROGENEOUS DATA CENTRES

by

Salam Ismaeel

B.S. Control and Computer Eng., University of Technology, Iraq, 1995

M.S. Control Eng., University of Technology, Iraq, 1998

PhD Computer Eng., Al-Nahrain University, Iraq, 2003

A Dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the program of

Computer Science

Toronto, Ontario, Canada, 2020

c© Salam Ismaeel, 2020

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A DISSERTATION

I hereby declare that I am the sole author of this dissertation. This is a true copy of the

dissertation, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or individuals

for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.

ii

Abstract

An Energy-Aware Real-Time VM-Provisioning Framework for

Heterogeneous Data Centres

Salam Ismaeel, 2020

Doctor of Philosophy

Computer Science

Ryerson University

Increasing power efficiency is one of the most important operational factors for any data

centre providers. In this context, one of the most useful approaches is to reduce the number

of utilized Physical Machines (PMs) through optimal distribution and re-allocation of Virtual

Machines (VMs) without affecting the Quality of Service (QoS). Dynamic VMs provisioning

makes use of monitoring tools, historical data, prediction techniques, as well as placement

algorithms to improve VMs allocation and migration. Consequently, the efficiency of the

data centre energy consumption increases.

In this thesis, we propose an efficient real-time dynamic provisioning framework to reduce

energy in heterogeneous data centres. This framework consists of an efficient workload pre-

processing, systematic VMs clustering, a multivariate prediction, and an optimal Virtual

Machine Placement (VMP) algorithm. Additionally, it takes into consideration VM and

user behaviours along with the existing state of PMs. The proposed framework consists of a

pipeline successive subsystems. These subsystems could be used separately or combined to

improve accuracy, efficiency, and speed of workload clustering, prediction and provisioning

purposes.

The pre-processing and clustering subsystems uses current state and historical workload

data to create efficient VMs clusters. Efficient VMs clustering include less consumption re-

iii

sources, faster computing and improved accuracy. A modified multivariate Extreme Learning

Machine (ELM)-based predictor is used to forecast the number of VMs in each cluster for

the subsequent period. The prediction subsystem takes users’ behaviour into consideration

to exclude unpredictable VMs requests.

The placement subsystem is a multi-objective placement algorithm based on a novel

Machine Condition Index (MCI). MCI represents a group of weighted components that is

inclusive of data centre network, PMs, storage, power system and facilities used in any data

centre. In this study it will be used to measure the extent to which PM is deemed suitable

for handling the new and/or consolidated VM in large scale heterogeneous data centres. It

is an efficient tool for comparing server energy consumption used to augment the efficiency

and manageability of data centre resources.

The proposed framework components separately are tested and evaluated with both

synthetic and realistic data traces. Simulation results show that proposed subsystems can

achieve efficient results as compared to existing algorithms.

iv

Acknowledgments

I would like to express my heartfelt gratitude and appreciation to my supervisor Professor

Ali Miri for his kindness and immense patience throughout the course of this academic

journey. This work could not have been concluded without his ceaseless guidance, support,

and time. It is his belief in me throughout the challenging times during my research and my

graduation studies that continues to keep me motivated, even to this day.

I also owe a debt of gratitude to the thesis committee for generously offering their time,

guidance, and goodwill throughout the entire process of my PhD defense.

I would like to take this opportunity to thank my friends along with all members of the

lab mates family research group for their consistent encouragement.

I dedicated this thesis to my father who passed away while this work was being under-

taken; my interest and knowledge is his valued heritage; to my mother, who is a model of

generous disposition and kindness; to my wife, who is an embodiment of love, support and

enormous patience; as well as my sons and daughters, who are models of a promising future.

v

Table of Contents

Abstract iii

List of Tables x

List of figures xii

1 Introduction 1

1.1 Context and Motivation . 2

1.2 Thesis Objectives . 5

1.3 Thesis Contributions . 7

1.4 Thesis Organization . 10

2 Background and Literature Review 12

2.1 Introduction . 12

2.2 Workload Prediction Subsystems . 18

2.2.1 Clustering Process . 19

2.2.2 User and VM Behaviour . 22

2.2.3 Prediction Process . 25

2.3 Resources State Subsystems . 31

2.3.1 Host Underload Detection . 33

vi

2.3.2 Host Overload Detection . 35

2.4 VM Selection Subsystem . 38

2.4.1 Conventional, non ML-based, Techniques 39

2.4.2 Machine Learning Techniques . 40

2.5 VM Placement (VMP) Subsystems . 41

2.5.1 Deterministic Algorithms . 42

2.5.2 Heuristic Algorithms . 43

2.5.3 Approximation Algorithms . 44

2.5.4 Meta-heuristic . 45

2.6 VM Migration . 48

2.7 Network Effect . 50

2.8 Chapter Summary . 52

3 A Real-Time Energy-Conserving VM-Provisioning Framework for Cloud-

data centres 54

3.1 Introduction . 54

3.2 Energy-Aware Framework Components . 59

3.2.1 Feature Selection and Clustering Subsystem 59

3.2.2 Mapping and Filtering Process . 60

3.2.3 Prediction Process . 61

3.2.4 VM Placement Process . 62

3.3 Data Monitoring and Thesis Simulated Data 63

3.4 Chapter Summary . 65

4 A Systematic Cloud Workload Clustering in Large-Scale Data Centres 66

4.1 Introduction . 66

vii

4.2 Cloud Workload Clustering . 68

4.2.1 Hierarchical Clustering . 68

4.2.2 Partitional Clustering . 69

4.2.3 Density-based Clustering . 70

4.2.4 Model-based Clustering . 71

4.2.5 Grid-based Clustering . 71

4.3 Proposed VMs/Tasks Clustering Subsystem 72

4.3.1 Feature Selection Stage . 74

4.3.2 Proposed Pre-processing Stage . 74

4.3.3 Clustering Stage . 76

4.3.4 Recommended Clustering Stage . 77

4.3.5 Selected Validation Indices . 78

4.4 Proposed Systematic VMs/tasks Clustering 83

4.5 Experimental Evaluation and Comparison 86

4.6 Chapter Summary . 93

5 User Behavior-Based Workload Prediction for Cloud-Data Centres 94

5.1 Introduction . 94

5.2 Prediction Subsystem . 96

5.3 User Behavior-Based Filtering Process . 98

5.4 Observation Window Size . 101

5.5 Prediction Window Size . 102

5.6 Improved ELM Predictor . 103

5.7 Experimental Results . 109

5.8 Chapter Summary . 118

viii

6 VM Placement and Machine Condition Index 120

6.1 Introduction . 121

6.2 Machine Condition Index (MCI) . 122

6.3 Multi-Objective VMP based MCI . 126

6.3.1 Objective Functions . 127

6.3.2 Input Data . 130

6.3.3 Output Data . 131

6.3.4 Constraints . 131

6.4 VMP based Multi-Objective Genetic Algorithm 132

6.5 Experimental Results . 134

6.5.1 MCI as a Cloud Pricing Unit . 135

6.5.2 Real-Time VM Consolidation Framework 137

6.5.3 Power Consumption Experiment Results 139

6.6 Chapter Summary . 145

7 Conclusion and Future Work 146

7.1 Conclusions . 146

7.2 Future Work . 149

Appendix A Systematic Clustering Example 151

References . 155

ix

List of Tables

2.1 Workload prediction techniques . 30

2.2 Host underload detection algorithms . 33

2.3 Host overload detection algorithms . 37

2.4 Comparison of VMP algorithms . 47

3.1 Characteristics of Google traces . 63

4.1 A sample of typical general-purpose Amazon EC2 VMs 70

4.2 An overview of clustering categories . 72

4.3 General Notation . 79

4.4 Recommended Validation Indices . 83

4.5 Runtime sample of two candidate algorithms 87

4.6 Candidate internal validity indices for selected clustering methods 90

5.1 Sample of VM/user clustering matrix for 4/7 VM/user clusters 111

6.1 An example of component cost and weighted coefficients 136

6.2 Some of the MCI components to estimate the energy used 137

6.3 No. of PMs and VMs in three Experiments 139

6.4 PMs considered in the Exp1 . 139

6.5 VMss considered in the Exp1 . 139

x

6.6 Optimal VMP Results Comparisons . 144

6.7 Blade and Itanium CPU characteristics using McPAT 145

xi

List of Figures

1.1 Simplify illustrative heterogeneous data centres 3

1.2 Projection of data centres electricity use . 4

2.1 Proactive dynamic VM consolidation framework 15

2.2 Logical connections between VM consolidation subsystems 17

3.1 Proposed energy-aware real-time VMs provisioning framework 56

3.2 Clustering subsystem component . 59

3.3 Recommended prediction subsystem . 61

3.4 One day Google data with 3,295,896 tasks (a) task per min (b) tasks per hours 64

3.5 One day Google data with 426 users (a) tasks per user (b) task per user class 64

4.1 Proposed VMs/tasks clustering framework 73

4.2 2000 Unique and independents VMs for 24h 86

4.3 Resulting 4 VM/task clusters for 24 hours using k-means (a) Without (b)

With pre-processing . 88

4.4 Number of VM clusters vs the sum of square error 89

4.5 CH index evaluations for a different number of clusters 90

4.6 WG index evaluations for a different number of clusters 91

4.7 DBSCAN clustering (a) Resulting 2 categories (b) Resulting big VMs 91

xii

4.8 CPU and Memory probability distribution estimation 92

4.9 GMM clustering (a) Resulting 4 categories (b) Proposed boundaries 93

5.1 Proposed Prediction Subsystem . 96

5.2 ELM predictor . 105

5.3 Number of user clusters vs sum of square error 110

5.4 Number of tasks for each user’s cluster . 110

5.5 RMSE vs number of hidden neuron l in preliminary predictor 113

5.6 RMSE vs number of hidden neuron l in the multivariate predictor 114

5.7 RMSE vs regulation parameter R for the preliminary predictor 114

5.8 RMSE vs regulation parameter µ for the proposed predictor 115

5.9 Sample of actual vs predicted number of requests 115

5.10 RMSE comparisons of different predictive approaches 116

5.11 RMSE comparisons of different ELM inputs and states scenarios 117

5.12 ELM request error for each cluster without user behaviour for 5 hours data . 117

6.1 Resource allocation based on MCI . 125

6.2 VMP resources and corresponding chromosome: An example 134

6.3 Total consumed energy during the entire test period (for 125 hosts only) . . 138

6.4 Energy objective optimization progress versus generations for the homoge-

neous blade data centre in (a) Exp 1 (b) Exp 2 and (c) Exp 3 141

6.5 Total consumed energy vs optimal VM distribution in Experiment 1 with

Blade machine . 142

6.6 Distribution of VMs on PMs in Experiment 1 with Blade machine 143

6.7 Experiment 1 with three types of PMs (Blade, Itanium and hybrid) 143

xiii

List of Abbreviations

ACO Ant Colony Optimization

AHP Analytic Hierarchy Process

AIC Akaike Information Criterion

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

ANP Analytic Network Process

AR Auto-regressive

ARIMA Auto-regressive Integrated Moving Average

ART Association Rules Technique

BF Best Fit

BFD Best Fit Decreasing

BIC Bayesian Information Criterion

BIP Binary Integer Programming

CFS Constant Fixed Selection

CMS Cloud Management System

CPU Central Processing Unit

CV Cross Validation

DCIM Data Center Infrastructure Manager

DFQL Dynamic Fuzzy Q-learning

DMA Dynamic Management Algorithm

DVFS Dynamic Voltage and Frequency Scaling

DWNN Weighted Nearest Neighbors for Differenced data

xiv

ECU Elastic Compute Unit

EC2 Amazon Elastic Computer Cloud

ELM Extreme Learning Machine

EM Expectation Maximization

EPA Environmental Protection Agency

ESM Exponential Smoothing Model

FCFS First-Come First-Served

FCM Fuzzy c-means

FEC Fuzzy Expert System

FF First Fit

FFD First Fit Decreasing

FQL Fuzzy Q-Learning

FS Fuzzy System

FWP Frequent Workload Pattern

GA Genetic Algorithm

GFM Gray Forecasting Model

GMM Gaussian Mixture Model

HGA Hybrid Genetic Algorithm

HMM Hidden Markov Model

HTP History Table Predictor

IaaS Infrastructure as a Service

KNN k-nearest Neighbor

LP Linear programming

LR Linear Regression

xv

LTI Linear Time-invariant

MA Moving Average

MAD Median Absolute Deviation

Mbps Megabit per second

MB Megabyte

MC Maximum Correlation

MCI Machine Condition Index

MCDM Multi-Criteria Decision Making

MDS Multidimensional Scaling

MIPS Million Instructions per Second

ML Machine Learning

MMT Minimum Migration Time

NIC Network Interface Card

NN Neural Network

NP-hard Non-deterministic polynomial

PaaS Platform as a Service

PABFD Power Aware Best Fit Decreasing

PALB Power Aware Load Balancing

PCA Principal Component Analysis

PM Physical Machine

QoS Quality of Service

RASA Resource Aware Scheduling Algorithm

RBF Radial Basis Function

RMSE Root Meas Square Error

xvi

SaaS Software as a Service

SLA Service Level Agreement

SMM Statistical Metric Model

SOM Self-organizing Map

SSD Sum of Squared Distances

SVM Support Vector Machine

SWF Stochastic Wiener Filter

SWM Sliding Window Method

TPPC Two Phases Power Convergence

VCPU Virtual CPU

VL2 Virtual Layer 2

VM Virtual Machine

VMM VM Monitor

VMP Virtual Machine Placement

VN Virtual Network

WNN Weighted Nearest Neighbors

xvii

Chapter 1

Introduction

Several energy minimization strategies can be used in data centres, but the most important of

them is done by switching off unused Physical Machines (PMs). Unused PMs are obtained

by an optimal distribution or after reallocating Virtual Machines (VMs) on the selected

server.

In order to perform an optimal VM distribution/consolidation under Quality of Service

(QoS), it is necessary for energy consumption constraints to undertake the implementation.

In this thesis, we have built an energy-aware VM-provisioning framework that combines

several subsystems. These subsystems including pre-processing, clustering, prediction, and

placement, among others. The proposed framework also takes into considerations data

provided by monitoring tools, historical data, user behaviour and server states in order to

improve the proposed subsystems operations.

In this chapter, we introduce the importance of energy consumption in data centres. The

chapter also include problem statement and contributions of the thesis.

1

1.1 Context and Motivation

In the realm of cloud computing, the IT and business resources, such as servers, storage,

network, applications and processes can be dynamically provisioned to meet the users’ needs

and workloads. Cloud deployment models of public, private, hybrid or community describes

how the cloud service are consumed. Public cloud where service provider makes resources

available to the general public over the Internet, like Amazon EC2, Google Compute Engine,

HP Cloud, Rackspace, and Windows Azure.

Service application delivered to end users is often referred to as Software as a Service

(SaaS), Platform as a Service (PaaS), or Infrastructure as a Service (IaaS), depending on

which level of the software stack is provided. In terms of cloud computing and especially

Infrastructure-as-a-Service (IaaS), it is possible for users or companies to purchase services

such as any utility. As a matter of fact, IaaS has become an effective solution for pro-

viding a flexible, on-demand and dynamically scalable computing infrastructure for several

applications [1].

Much like distributed computing, in cloud computing applications run over multiple

computers connected by a network. This network is often a data centre network. Each

Physical Machines (PM) in the data centre can be used to hold one or many Virtual Machines

(VMs), which are essentially virtualized environments on PMs with predetermined virtual

resources. These resources may include CPU, memory, storage, bandwidth, VM configured,

operating system, middle-ware, and one or more application programs [2]. The VMs can be

categorized on the basis of their relationship with the PMs into: System VM and Process

VM. The system VM is a software implementation of a VM that executes programs such as

any PM. Such VM necessitates an operating system referred to as Guest Operation System.

The process VM is an application, task or a user program that can be installed and run on

2

Figure 1.1: Simplify illustrative heterogeneous data centres

the host operating system. In both cases, an operating system called VM Monitor (VMM)

is used to run on the virtualization platform. A VM controller enables VM to communicate

with the hardware via VMM. It is notable that the VMM virtualizes the hardware for each

VM [3], Figure 1.1.

Data centre power is among the large commodity expenditures in IT service for most or-

ganizations. A large-scale data centre may require multiple megawatts/hour. The electricity

demand of global data centre, estimated around 194 TWH in 2014, has been doubling every

five years [4], see Figure 1.2 [2]. Put differently, the energy costs of cloud data centres have

recently emerged as a practical concern, as discussed in [5, 6].

Most of data centre consumed energy, that is, about 88%, has been geared towards

powering and cooling the IT equipment. Amazon estimated that the cost of energy for

data centres reached 42% of the total cost of operation [7]. In addition, according to the

Environmental Protection Agency (EPA), every 1000 KWh of power consumption emits 0.72

tons of CO2. The reduction of energy has become a first-order objective in the design of

modern computing systems [2].

Cloud users order a group of VMs based on Service Level Agreement (SLA). These

3

Figure 1.2: Projection of data centres electricity use

VMs are placed in different PMs and allow communications amongst each other. This

enables cloud users and providers to scale up or scale down the resources depending on the

requirement. In addition to ensuring better resource utilization, it reduces the cost and the

energy by sharing physical resources among multiple VMs [8].

Efficient energy consumption is determined by: hardware efficiency, resource management

systems deployed on the infrastructure, and the efficiency of applications running in the

system [9]. VMs consolidation is undertaken to reduce the number of PMs by re-allocating

or performing live migration of VMs among PMs without interrupting the services. It takes

the performance based on a pre-defined SLA into consideration. This, in turn, will increase

the power efficiency in the data centre by turning off unused servers.

There are two approaches of VM consolidation: Static and Dynamic. The static provi-

sioning is useful when there are pre-defined resources of all types of VMs that will eventually

be used. Energy reduction will be done mostly based on simple heuristics or historical VM

demand patterns before commencing the auction. This could inflate the cost for application

providers during the period of low demand resources. On the other hand, available resources

may be insufficient during periods of high utilization [10]. Dynamic VM consolidation, which

is the objective of this thesis, determines variable amounts of resources in a given time in

4

order to meet Quality of Service (QoS) expectations amidst variable workloads [11–13].

1.2 Thesis Objectives

The objective of this thesis is to propose a real-time dynamic provisioning framework to

reduce energy consumption in a data centre through an efficient data pre-processing and

VM clustering, novel PM indexing factor, developed multivariate prediction, as well as an

improved placement algorithm. It takes into consideration user behaviour, the output of a

data centre monitoring tool, and the state of PMs in order to improve these processes. This

framework optimizes VMs consolidation under QoS constraints based on energy consumption

in a data centre that contains heterogeneous physical resources. This thesis aims to answer

the following questions:

• How to predict the workload?

Predicting the future state of VMs in a data centre and new users’ VMs request is

a crucial process for efficient resource utilization. This will be necessary not only for

energy saving purposes, but also for real-time control, resource allocation and capacity

planning.

• What is the current state of the data centre?

Monitoring tools and estimation algorithms is used to determine the data centre cur-

rent state and behaviour. Monitoring tools helps provide online information on current

physical and virtual resources state as well as about users usage. The state of data

centre is necessary to manage data center’s resources. Physical resources are not a

single thing, and include servers, storage subsystems, networking switches, routers and

firewalls, in addition to the cabling and physical racks that are used to organize and

5

interconnect the IT equipment. Monitoring tools such as Data Centre Infrastructure

Manager (DCMI)1 are able to provide this information in real-time. The virtual re-

sources include the VM and user states. Algorithms are usually used to model and

predict VM and user behaviours.

• Which VMs to migrate?

To migrate a VM, it is necessary to determine which VMs should be migrated to

reduce the number of PMs being used. The decision to migrate VMs must consider

the following: the overhead caused by migration in QoS requirements, the status of

PMs in terms of power efficiency, reliability, deviation in performance of hosted VMs,

as well as the reason why migration is occurring to establish an order of migration.

• Where is the best place for the new and migrated VMs?

Determining the best place (PM) and placement algorithm used for implementing the

allocation process for both new and migrated VMs is another essential aspect that

influences the quality of VM consolidation and energy consumption.

• When and which PM to switch on/off?

In order to optimize energy consumption and to avoid violations of the QoS require-

ments, a unique metric must be put in place to compare PMs. Through this unique

metric, we can determine when and which PM should be ON or OFF. Deactivation

and reactivation will be useful either for saving energy, or for handling increases in the

demand for resources.

In this work, we design an energy-aware VM consolidation framework consisting of several

algorithms and techniques in real-time to reduce energy consumption through dynamic VM

1https://www.sunbirddcim.com/

6

consolidation. It is also necessary to use a distributed or a pipeline system in order to

provide scalability and eliminate single points of failure. While traditionally global resources

management algorithms are centralized, it is necessary to formulate a new approach for

implementing the dynamic VM consolidation system in a distributed manner.

1.3 Thesis Contributions

Contributions of this thesis can be described as follows:

1. We have presented a background of the general framework. This framework includes

multiple phases of complete proactive VM consolidation processes in a heterogeneous

large-scale data centre, and will provide complete guidance on how these components

work together in an interactive manner. This contribution has been published in part

in the following:

• “Proactive dynamic virtual-machine consolidation for energy conservation in cloud

data centres,” Journal of Cloud Computing, vol. 7, no. 1, pp. 1-28, 2018.

• “Open source cloud management platforms: A review,” in IEEE 2nd International

Conference on Cyber Security and Cloud Computing, pp. 470-475, November

2015.

2. We have designed and implemented a fast data centre workload pre-processing algo-

rithm that is used to discover patterns relationships and extract data centre workload

with correlated behaviour. This algorithm also take user behaviour into considera-

tion [14]. This contribution has been published in part in the following:

• “An efficient workload clustering framework for large-scale data centers,” in IEEE

7

8th International Conference on Modeling, Simulation and Applied Optimization

(ICMSAO), April 2019.

3. We have designed and implemented a systematic VMs clustering subsystem for large-

scale data centres. This subsystem entails less consumption resources, faster computing

and improved clustering accuracy. Furthermore, a simple filtering approach is used to

effectively exclude unpredictable VM/task requests caused by users’ actions. This

contribution has been published (in part) in the following:

• “A systematic cloud workload clustering technique in large scale data centers,”

in IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 362-363,

July 2019.

• “Energy-consumption clustering in cloud data centre,” in IEEE 3rd MEC Inter-

national Conference on Big Data and Smart City (ICBDSC), pp.1-6, March 2016.

4. We developed and implement a multivariate Extreme Learning Machine (ELM)-based

predictor subsystem, which makes the prediction parameters tunable in real-time based

on the actual request load for each iteration. This increases the prediction accuracy

over time and obviates the need for frequent model training required by other machine

learning approaches. By estimating the number of VMs in each interval, it is possible

to determine the number of PMs required. This will narrow the target of the optimal

placement algorithm. This contribution has been published (in part) in the following:

• “Multivariate time series ELM for cloud data centre workload prediction,” in

Human-Computer Interaction. Theory, Design, Development and Practice (M.

Kurosu, ed.), pp. 565-576, Springer International Publishing, 2016.

8

• “Using ELM techniques to predict data centre VM requests,” in IEEE 2nd Inter-

national Conference on Cyber Security and Cloud Computing, pp. 80-86, Novem-

ber 2015.

5. We have proposed and implemented a novel index that is used to efficiently model

hosts in any cloud data centre. The index is inclusive of quantifiable as well as non-

quantifiable parameters. It is successfully used to select the PMs that are necessary

to handle new or consolidated VMs. The proposed index is also used to convert the

multi-objective placement algorithm into a single-objective. This contribution has been

published (in part) in the following:

• “A universal unit for measuring clouds,” in IEEE International Conference on

Humanitarian Technology Conference (IHTC), pp. 1-4, May 2015.

• “A novel host readiness factor for energy efficient VM consolidation in cloud

data centers,” in IEEE 8th International Conference on Modeling Simulation and

Applied Optimization (ICMSAO), pp. 1-5, April 2019.

6. The proposed index enable us to extend and implement the placement algorithm for the

purpose of handling requests with multiple resources such as CPU, memory, bandwidth,

etc. This contribution has been published (in part) in the following:

• “Energy efficient virtual machine placement algorithms in heterogeneous data

centre using machine condition index (MCI),” Under review 2020.

7. We proposed an integrated pipeline resource provisioning framework that relies on

consecutive algorithms and techniques to make suitable energy-aware resource man-

agement decisions. This contribution has been published (in part) in the following:

9

• “Real-time energy-conserving VM-provisioning framework for cloud-data centers,”

in IEEE 9th Annual Computing and Communication Workshop and Conference

(CCWC), pp. 0765-0771, Jan 2019.

In addition, we have also published the following as part of algorithms development in

this thesis:

• “Energy-efficient resource allocation for cloud data centres using a multi-way data

analysis technique,” in Human-Computer Interaction. Theory, Design, Development

and Practice (M. Kurosu, ed.), pp. 577-585, Springer International Publishing, 2016.

• “An extreme learning machine (ELM) predictor for electric arc furnaces’ v-i character-

istics,” in IEEE 2nd International Conference on Cyber Security and Cloud Computing,

pp. 329-334, November 2015.

• “Role-based multiple controllers for load balancing and security in SDN,” in IEEE

International Conference on Humanitarian Technology Conference (IHTC), pp. 1-4,

May 2015.

1.4 Thesis Organization

The remainder of the thesis is organized in the following manner:

In Chapter 2, a background and review of the framework techniques, as well as algorithms

that are relevant to the scope of this thesis, is presented. This chapter also highlights various

algorithms that are involved in implementing of our proposed energy-aware VM consolidation

based on energy consumption and justifies their choices.

In Chapter 3, a real-time VM provisioning framework based energy consumption in large-

scale heterogeneous data centres is presented. This chapter introduces the core components

10

of the proposed framework: pre-processing, clustering, prediction, and VM placement.

In Chapter 4, we present workload clustering applications in cloud data centres. More

specifically, a novel systematic method to select the suitable VMs clustering method will be

proposed. This selection process will be premised on clustering purpose, validation indices,

and result comparison.

In Chapter 5, we develop a multivariate ELM-based predictor that will be used as an

essential milestone in an efficient data centre workload prediction framework. Additionally,

we will introduce the technique used to handle the problem of predicting window sizes in

order to optimize PM utilization.

In Chapter 6, a novel machine index will be introduced. This machine index will me-

ter all resources related to servers in cloud data centre and provides relevant information

for design/implementation of resource management systems as well as resource allocation

algorithms.

In Chapter 7, the contribution of this thesis is summarized. We also explicate some

research problems and directions for the future.

11

Chapter 2

Background and Literature Review

In this chapter, we provide a background along with an in-depth survey of the most effective

techniques and algorithms used in proactive dynamic VM consolidation focused on energy

consumption. In addition, we present an overall review for the framework that uses multiple

phases of a complete consolidation process. The review presented in this chapter has also

appeared in [2].

2.1 Introduction

Data centre energy efficiency measures the reduction of energy used by hardware or software

components for a given service or activity level. Hardware equipment includes both IT

equipment (e.g. network and servers) and supporting equipment (e.g. power supply, cooling

and data centre building itself). On the other hand, software components may include Cloud

Management Systems (CMSs) that are used to manage the entire data centre or end-users’

applications, hypervisors, operation systems and different applications [15,16].

Given that a large component of power consumption of data centres is in their hardware

equipment, this chapter focuses on the problem of reducing energy consumption through

12

efficient management of PMs and VMs in the data centre [9, 17]. Four different strategies

are used to manage PMs and/or VMs to reduce energy:

• VM resizing: is the category of changing the amount of resources reserved for VMs

through either adding or removing resource elements, or increasing or decreasing the

capacity of each resource element in a VM. All these processes will be undertaken

without executing a reboot, an application restart, reconfiguration or recreation of a

VM [18]. Under this category, we will attempt to adjust the utilization of PMs to

actual load, which typically leads to a reduction of power [19–22].

• Optimal initial placement: seeks to optimally assign VM or group of VMs to servers,

as part of an initial deployment, such that the mapping minimizes the total inter-rack

PMs used or traffic load within the network to reduce energy [23]. Section 2.5.1 will

discuss these algorithms, such as those proposed in [24–26].

• Overbooking of physical resources: refers to the strategy of overlaying requested

virtual resources onto physical resources at a higher ratio than 1:1 [27]. This strategy

can facilitate an improved utilization of PM idle resources. However, special care must

be taken to reduce risks associated with unmet QoS demand over peak utilization of

PM resource [28,29].

• VM consolidation: is the process of using minimum possible active PMs through

migrating VMs overtime in an optimal fashion to reduce resource consumption [30–33].

As described in Section 1.1, there are two general types of VM consolidation: static

and dynamic. Under static consolidation, sizing and placement of VMs on PMs are pre-

determined when a job arrives and the placement remains unchanged over a period of time.

Thus, this type of VM consolidation is often suitable for short-running jobs for a couple of

13

hours, where PMs resources for different types of VMs are predefined [34]. Energy reduction

will mostly be based on simple heuristics or historical VMs demand patterns. This may

lead to an increase in the cost of application provider during the period of low resource

demand, whereas during the available resources may be insufficient during high utilization

periods [10].

Dynamic VM consolidation can lead to the utilization of fewer PMs by re-allocation or

live migration of VMs among PMs without significant interruption of services. It takes into

consideration the performance as it based on QoS, which is predefined via SLA between the

tenant and the service provider. This, in turn, will increase the power efficiency in data

centres by turning off unused servers to save power [11, 16]. Dynamic provisioning-based

energy consumption can represent the most efficient methods to improve the utilization of

the resources and reduce energy [11–13].

Dynamic provisioning falls under reactive or proactive categories. Reactive provisioning

is set to change the initial placement after the system attains a specific undesired state.

The change may be made due to performance, maintenance, power or load issues, or SLA

violations. Under proactive monitoring, historical data and prediction algorithms are used

for altering the VM’s initial placement before the system attains a certain condition [35,36].

Proactive provisioning uses prediction-based approaches that help prepare advanced changes

in the workload and system usage [37].

This chapter elucidates a comprehensive VM management framework to survey algo-

rithms and techniques used under proactive dynamic VM-provisioning in data centres with

an emphasis on energy consumption. We propose to reflect a large number of overlapped

domains used in typical dynamic energy consumption based on VMs consolidation. These

domains can be classified into the following four main interactive subsystems, as shown in

Figure 2.1:

14

Figure 2.1: Proactive dynamic VM consolidation framework

15

1. Workload Prediction Subsystems focus on algorithms and techniques used in clus-

tering process, VM and user behaviour estimation, prediction of window size, and

forecasting process as part of the workload prediction subsystem.

2. Resource State Subsystems are used to identify the state of physical and virtual

resources. This subsystem not only includes the monitoring and tracking tools, but

also focuses on algorithms and techniques used in defining the PMs states.

3. VM Selection Subsystems focus on VM selection criteria, including VM state esti-

mation.

4. VM Placement and Migration Subsystems deal with the question of how to

migrate selected VMs.

Networking strategies play a pivotal role in this framework, given that network infras-

tructure topology and routing protocols can have a direct impact on the migration or con-

solidation with minimum network load [38]. Figure 2.2 illustrates the logical connection

between these subsystems.

In this chapter, we will review and analyze available algorithms and techniques to answers

the following questions:

• How to predict workloads? What are the expected future VM requests?

• What is the current state of the resources? How can the behaviour of physical and

virtual resources be monitored and tracked?

• Which VMs are to be migrated and where?

• How to migrate selected VMs?

16

Figure 2.2: Logical connections between VM consolidation
subsystems

The rest of the chapter is organized based on the subsystems described above. Section 2.2

reviews applications and techniques in workload prediction subsystems. Section 2.3 reviews

algorithms related to data centre resource states, which are then used in VM selection

subsystems in Section 2.4. VMs and hosts selections are described in Section 2.5. VMs

placement and migration subsystem is covered in Section 2.6, while the network effect on

all these subsystems is presented in Section 2.7. This is followed by a brief summary in

Section 2.8.

17

2.2 Workload Prediction Subsystems

Resource estimation underlies various workload management strategies, including dynamic

provisioning, workload scheduling, and admission control. All these approaches possess a

common prediction module that provides estimations to determine whether or not more re-

sources are to be added, the order of query execution is to be rearranged, and a new incoming

query is to be admitted or rejected [39]. Prediction of future resource behaviour is a crucial

process for efficient resource utilization in a dynamic cloud computing environment because

workload forecasting for long or short periods will be necessary for real-time control, resource

allocation, capacity planning and data centre energy savings in cloud computing [36].

For the purpose of energy conservation and precise proactive VM consolidation, the

forecasting based on demand history must address some or all of the following challenges [40]:

• Finding a way to make predictions that take into consideration both user, virtual and

physical resources variations,

• Overcoming the problem of time-varying demands,

• Estimating the required observation window size, and

• Detecting when the prediction is likely to be incorrect and how this problem can be

overcome.

In a heterogeneous cloud environment, it is may difficult to predict the demand for each

type of resource separately [39,41]:

• Typically, VM requests consist of varying amounts and types of cloud resources (e.g.,

CPU, memory, bandwidth, etc.). The multi-resource nature of these VMs poses a

unique challenge in terms of developing prediction techniques.

18

• Different cloud clients may request different amounts of VM resources that may be

assigned on the same PM as opposed to separate machines. Therefore, it is both

impractical and too difficult to predict the demand for each type of resource on a

separate basis.

Therefore, it is logical to create different categories of VM clusters, before developing

prediction techniques for each of these clusters. In addition to covering the most practical

and recent published prediction algorithms, these subsystems will also include: clustering;

prediction window size; and VM and user behaviours. Thus, the workload prediction subsys-

tems are categorized into four functional areas. Each category is presented in a subsection:

• Clustering Process: this subsection reviews the recent literature in data centre

workload clustering.

• Prediction Process: this subsection reviews algorithms and techniques used to fore-

cast future resource demand in data centres.

• Prediction and Observation Windows Size: this subsection reviews prediction of

window size and approaches of observation window size selection.

• User and VM Behaviour: this section reviews the current approaches in analyzing

and supporting users along with resources behaviours. User and VM behaviours have

a strong influence on the overall cloud workload.

2.2.1 Clustering Process

Clustering is an effective unsupervised learning technique that groups together items that

are naturally similar to each other based on a certain metric [42]. This process is used to

map each request received into one of a set of clusters with different types of VMs or tasks

19

during the predefined time period. It is notable that for fuzzy partitioning, a point can

belong to more than one group [43]. The prediction algorithm can be used to predict the

number of VM in each cluster rather than predicting each type of VM [44].

This subsection will present a brief summary of clustering techniques related to VM

consolidation and scheduling in extant literature. In Chapter 4 we will propose a systematic

clustering process used along with its implementation.

k-means has been used by Dabbagh et al [41] and Chowdhury et al [45] to create a set of

clusters so as to group all types of VM requests. Each request represents a VM with CPU

and memory for Google traces data [46]. k-denotes algorithm inputs, including Google traces

and the number of clusters, while the output is the centres of these clusters. The selection

of k should be balanced between two conflicting objectives: reducing errors and maintaining

low overhead [39].

Khan et al [47] introduced a co-clustering algorithm to identify VM groups and the time

periods in which certain workload patterns appear in a group. Subsequently, they used the

Hidden Markov Model (HMM) to explore the temporal correlations in workload pattern

changes. This helps predict individual VM’s workload based on the groups identified in the

clustering step.

A kernel fuzzy c-means (FCM) clustering algorithm was used to forecast future CPU

loads by Xu et al [48]. After dividing historical long CPU load time series data into short

equal sequences, they used kernel FCM to put the sub-sequences into different clusters.

Canali and Lancellotti [49] used Principal Component Analysis (PCA) as an automated

methodology to cluster VMs by leveraging the similarity between VMs’ behaviour. It is

notable that they considered VMs as a member of classes running within the same software

component. This methodology has been applied to two case studies: virtualization tested

and a real enterprise data centre. This methodology can reduce the amount of collected

20

data, thus making effective contribution to addressing the scalability issues of the monitoring

system. This technique is very useful for monitoring and reporting, but it is difficult to use

it as an input to a prediction algorithm to forecast each type of VMs in the nearest future.

This is attributed to the following reasons: (1) PCA relies on linear assumptions; and (2)

PCA based on mean vector and covariance matrix, which means that some distributions

may be characterized by this but not all.

Claudia and Lancellotti [50] combined the Bhattacharyya distance and ensemble tech-

niques to evaluate the similarity between the probability distributions of multiple VM re-

source usage. The researchers considered both system and network-related data. Their

proposal achieved high and stable performance in automatic VM clustering through their

experiments on real-data gathered from an enterprise data centre. VM Clustering was used

to lower the amount of data necessary in cloud monitoring.

The workload is always driven by the users; therefore, realistic workload models must

include user behavioural patterns that are linked to tasks. The previously described ap-

proaches completely focused on tasks, thus neglecting the impact of user behaviour on the

overall environment workload [51].

According to our observations, all the currently used various clustering techniques do not

provide a structured model that can be used for conducting simulations. Most of previous

work rely on comparing the execution time or cluster quality. Workload analysis needs

to explore more than coarse-grain statistics and cluster centroids. In order to capture the

patterns of clustered individuals, it is also necessary to conduct an analysis of the parameters

and examine the trends of each cluster characteristic. This will underscore need for new

methodologies, especially for real-time and online streaming data [51,52].

In Chapter 4 of this thesis, we will propose a novel systematic framework to select the

suitable VMs/tasks clustering method in large-scale data centres based on the following:

21

clustering purposes, validation indices, and results comparison. The proposed clustering

framework also takes into consideration VM and user behaviour. In the proposed systematic

clustering, our contributions will be as follows:

• To design a novel efficient VMs/tasks clustering framework for large-scale data centres,

so as to achieve higher efficiency with the consumption of fewer computation resources,

fast computing, and accurate results.

• To propose an efficient pre-processing algorithm for such applications, in order to

convert the big data problem to a small 2D matrix include unique VMs/tasks with

CPU and memory size only. By including VM and user characteristics in the clustering

process.

• To combine VMs/tasks clustering techniques and validation indices to improve and

select suitable clustering techniques.

2.2.2 User and VM Behaviour

Analyzing and supporting behaviours of users and tasks is a crucial process for both data

centre providers and their prospective users. The behaviour analysis within a specific course

of time enables decision-makers to plan ahead for incoming workloads into data centres

and ensure the fulfilment of all behaviours. As an increasing amount of data is stored and

processed in data centres, anticipating behaviour of users and VMs inevitably becomes an

onerous process. The behaviour modeling and estimation can be used to anticipate requests

as well as consumption patterns.

The workload analysis captures both user and VM behaviours. Subsequently, users and

VMs are clustered based on characteristics are defined during workload modeling. Moreno et

22

al [51] showed that users with profiles U submitting tasks classified into profiles T . Each

user profile Ui can be defined by the probability of each task profile Ti. The expectation

E(Ui) of a user profile is denoted by its probability P (Ui), whereas the expectation E(Ti) of

a task profile is represented by its probability P (Ti) conditioned to the probability of P (Uj).

E(Ui) = UiP (Ui) (2.1)

E(Ti) = TiP (Ti)|P (Uj) (2.2)

Behaviour prediction models are used to predict application behaviours and VM be-

haviours in a cloud by tracing recently observed patterns. The frequent changes in workloads

are used to calculate the required resources. This will be used to guide dynamic manage-

ment decisions. Heuristic techniques, such as predefined thresholds and Auto-scaling, are

used to perform scaling operations (adding or removing resources) without requiring human

interactions [53].

In [54] monitoring changes in behaviours are saved in the History Table Predictor (HTP).

In this table, each row presents pattern changes. After finding a new pattern, the model

attempts to find a match in the table. This will be useful in the prediction phase or to

store that new pattern in case no matches are found. Sarikaya et al [55] used the Statistical

Metric Model (SMM) as an effective technique to outperform the HTP technique. They used

another historical predictor for long-term global patterns modeling in application behaviour.

The SMM model can be applied in cloud environments using common resource com-

ponents denoting the behaviour of the workload. In particular, these components include

memory utilization, CPU utilization, and network utilization. The three components can be

combined to use as a load volume and formulated as data centres.

23

Data mining techniques can be used to discover Frequent Workload Patterns (FWPs) in

accordance with the previous history of resource usages, as observed in [56]. The resource

allocations can be determined by using the Association Rules Technique (ART) based on the

prediction of resource availability in a given time period. The idea behind using ART on the

discovered data patterns is to identify the possibility that the same patterns will be repeated

in the future. Put differently, ART can be used to represent the correlation between data

patterns.

Techniques mentioned above work well in discovering patterns in workload data and

prepare them for subsequent operations such as resource allocations and predictions. Other

different techniques can be used to perform these operations. Since the data is already

assumed to be trained, resource allocations and predictions will be improved.

Since user behaviours have a large impact on improving prediction results, this thesis will

incorporate users as one of the key model variables in order to improve the clustering process

and subsequently, prediction accuracy. Prediction accuracy, in turn, enables the proposed

prediction framework to lower the number of required PMs, thus obtaining better energy

conservation. Thus, we will do that in Section 4.3 and Section 5.3:

• Efficient pre-processing historical data to extract the number of effective users.

• Combining clustering for users as well as VMs workload in the prediction process,

through the creation of a VM/user mapping matrix.

• Using user clustering to propose a filtering process to eliminate VMs with the lowest

probability from the prediction process.

24

2.2.3 Prediction Process

As discussed in Section 2.1, a proactive dynamic VM consolidation is to estimate resource

requests. This can be achieved by forecasting future resource demand values on the basis of

demand history. Since workloads tend to trace resources patterns based on time, time series

forecasting methods are expected to reliably predicted resource demand [40].

Prior works have focused on how to save energy, improve performance and increase profit

and so on [57]. In this subsection, the most recent prediction techniques, especially ML

techniques, applied in the field of VM consolidation based energy consumption, will be

reviewed. Prior to that, a simple description of the basic principle of prediction problem and

their techniques will be provided.

Basically, prediction problem requires the estimation of values of m outputs Y (t) = [y1(t),

y2(t), · · · , ym(t)]T from sets of readily available n inputs X(t) = [x1(t), x2(t), · · · , xn(t)],

and can be formulated simply by:

Ŷ (t) = f̂(X(t)) (2.3)

Where Ŷ (t) is the predicted values and f̂(X(t)) denotes the estimated relationship be-

tween inputs and outputs of the system at a specific time t. This relation is either linear or

nonlinear. In Linear Regression (LR) models, the relationship between one or more input

variables and dependent output variable(s) is linear, such as Auto-regressive (AR), Moving

Average (MA) and Gray Forecasting Model (GFM), and Wiener filter [40].

Linear models do not capture the real-world phenomena, which is why nonlinear models

are necessary. In many situations, the underlying nature of the process being modeled is

not clearly known or is difficult to model. In such cases, machine learning algorithms are

effectively used to address many problems. These methods include basis functions such as

25

Radial Basis Functions (RBF), Artificial Neural Networks (ANN), and k-Nearest Neighbors

(KNN). This section will summarize some of these algorithms that are used in workload

prediction with energy consumption in cloud environments.

In Auto-regressive Moving Average (ARMA), the basic assumption made to implement

this model is that the considered time series is linear, Auto-regressive (AR) and follows

a particular statistical distribution, such as Normal distribution, Moving Average (MA).

ARMA can be represented by:

Ŷ (t) = C +

Op∑
i=1

ϕ(i)Y (t− i) +
Om∑
j=1

θ(j)ε(t− j) + ε(t) (2.4)

where Op and Om denote integer constants representing the order of the models. ϕ(i)

and θ(j) are models parameter. ε(t) are random errors at time period t, whereas C is a

constant.

If the original process Y (t) is not stationary, then take the first-order difference process

∆Y (t + 1) = Y (t) − Y (t− 1) or the second-order differences ∆2Y (t + 1) = Y (t) − 2Y (t −

1)+Y (t−2) and so on. Y (t+1) is said to be an Auto-regressive Integrated Moving Average

process, while ARIMA(Op, d, Om), if ∆dY (t) is an ARMA(Op, Om) process.

Researches on workload prediction have been carried out based on statistical approaches,

such as [58–60] who proposed an ARIMA algorithm. The basic assumption is that the

considered time series is linear and follows a particular statistical distribution, such as normal

distribution. AR, MA, ARMA and ARIMA techniques, all of which can be used to models

several time series. A key tool in identifying a model is an estimate of the autocovariance

function [40].

Gray Forecasting Model (GFM) can be used to forecast the behaviour of non-linear time

series. This non-statistical forecasting method is particularly effective when the number of

26

observations is insufficient.

Grey forecasting model, precisely GM(1, 1) model, is one of the most widely used tech-

niques in the Grey system [61,62]. Under this technique, the predicted value of Ŷ (t) can be

obtained by accumulated generation sequence of the original data sequence.

Jheng et al [62] proposed a GFM to forecast the workload of the PMs in a cloud data

centre. The main characteristics of GFM are simple and have the ability in a time series

prediction with the least amount of historical data. This is done by extracting actual models

in a system that uses existing data [63], where the number of historical data must be more or

equal to four. However, the main drawback is that it assumes new data grows exponentially

and use time dependency rather than data dependency under a time series forecasting model.

Wiener filter is an optimal-linear discrete-time filter that can be used to produce an

estimate of a desired or target random process by linear time-invariant multi-filtering of an

observed noisy process, assuming the known stationary signal/noise spectra and additive

noise [64].

Dabbagh et al [41, 65] proposed a framework to forecast the number of VM requests, to

be arriving in the near future, in addition to the amount of CPU and memory resources

associated with each of these requests. The k-means that clustering was used to create a set

of clusters containing all types of VM requests. Stochastic Wiener Filter (SWF) was used to

estimate the workload of each cluster. Although, Wiener filter is unreliable for the dynamic

behaviour of demand cloud resources because it is suitable to estimate the target random

process by Linear Time-Invariant (LTI) for known stationary signal and noise spectra [66].

Dabbagh et al improved the original Wiener filter to support online learning, making it more

adaptive to changes in workload characteristics.

An alternative approach to address the challenges associated with prediction is LR [67],

which models the relationship between one or more input variables and a dependent output

27

variable by using a linear equation to observed data. Linear models on their own cannot be

used to capture the real-world phenomena, which is why nonlinear models are necessary. In

regression, all such models will have the same basic form, i.e. Equation 2.3. Typically, they

turn to ML that are widely used and quite efficacious for many problems. These methods

include basis function regression (including RBFs), ANNs, and KNNs.

Many researchers use a combination of pre-described techniques and other strategies

to increase the accuracy of predictions. Cao et al [68] suggested an ensemble model for

online CPU load prediction. Their model has multiple predictor sets, including AR model,

Weighted Nearest Neighbors (WNN) model, Exponential Smoothing Model (ESM), most

similar pattern model, and WNN model for differenced data (DWNN). Each predictor has

a specific membership that is capable of adjusting dynamically. CPU workload has been

estimated by these combined sets through the scoring algorithm. The main drawbacks in

this predictors are: 1) it consists of two levels of prediction; all the predictors have specific

weight and it is very difficult to find the optimal weight for each predictor; 2) relatively time-

consuming in applying different algorithms simultaneously; and 3) most of the suggested set

of predictors are based on statistical approaches.

In neural networks, a linear combination of shifted or smoothed step functions, linear

ramps, and the bias term is made. This model represented by:

Ŷ (X(t)) =

Ob∑
j

w
(1)
j b

(
w

(2)
j x(t) + bias

(2)
j

)
+ bias(1) (2.5)

where b(X(t)) = [b1(x(t)), b2(x(t)), . . ., bOb
(x(t))]T are the basis functions, Ob is the

number of basis functions and w = [w1, w2, . . ., wOb
]T are wights of basis function.bias is

the bias term. In ANN, a basis function could be a sigmoid function or RBF. The most

common choice of sigmoid is given by:

28

b(x) =
1

1 + e−x
(2.6)

These sigmoids are combined to create an ANN model used for regression with multi-

dimensional inputs X(t) ∈ Rn
2 , and multi-dimensional outputs Y (t) ∈ R2

1, and for 1D case

model, Equation 2.5. Usually, this objective function cannot be optimized in a closed-form,

thus necessitating numerical optimization procedures.

ANN and LR are widely applied in previous works to forecast VMs workload in cloud

environments [69]. The main problem with this approach, and in most of the LR applications,

is as follows: (1) They considered the fact that future workload could be independent of their

previous workload pattern [24]. (2) The workload has an obvious nonlinear feature [70].

(3) LR demands workloads that have a simpler behaviour than those of an ANN-based

method [58].

Several studies use ANN as a prediction model [71–73]. Although ANN represents a

universal approximation, it still suffers from the drawbacks of choosing a suitable algorithm,

network structure, and initial condition. For improved performance, ANN may be combined

with typical prediction methods such as Sliding Window Method (SWM) [74], AR model [70],

and Fuzzy System (FS) [24,70,75].

Dynamic behaviour forecasting problems can be resolved with ANN [71–73], Adaptive

Neuro-Fuzzy Inference System (ANFIS) [24, 70, 75], Support Vector Machine (SVM) [67],

and latent feature learning-based models [68,70,76].

Bey et al [75] combined Adaptive Network-based Fuzzy Inference Systems (ANFIS) and

clustering process to estimate the future value of CPU load. The model was carried out on

real CPU load time series to determine the optimal number of clustering for one machine.

According tot their findings, the CPU load prediction using ANFIS model for each category

29

performs better than using one ANFIS for the entire CPU time series without clustering.

Bey’s work was improved by Chen et al [70], an ensemble model where a subtractive-fuzzy

clustering-based fuzzy neural network were adopted. Fuzzy-neural network performance

was optimized using a fuzzy-subtractive clustering algorithm that comprises of the FCM

clustering algorithm and the subtractive clustering algorithm.

In [24], a neural network model was proposed to predict workload patterns in VMs, while

Fuzzy Expert System (FES) was used to control near-future changes in workload patterns

for every VM. This scheme has been used to determine the time during which the VMs will

be overloaded and need to be migrated.

Combining fuzzy and ANN improves the modeling and prediction process; even ANFIS is

reported to perform better than NN [77,78], but both of them require training before being

used.

Table 2.1 depicts that the prediction techniques can be divided into statistical, machine

learning and hybrid approaches. In this table, Owin and Pwin denote the observation and

prediction windows, respectively.

Table 2.1: Workload prediction techniques

Techniques References Parameter Clustering User behaviour Window size
VM PM

Statistical

ARIMA
[58,79] X Fixed

[59] X Fixed
GFM [62] X Fixed
HMM [47] X co-clustering Fixed
Bays Model [80] X X Owin=1/2 Pwin
Multi-Way Data Analysis [81] X FCM X Fixed

Hybrid

AR Model, ESM, WNN, DWNN [68] X Owin=2 Pwin
ECNN and LR [74] X Fixed
Ensemble Model based FNN [70] X FCM/subtractive Fixed
Static and adaptive Winner Filter [41] X k-means Fixed/overlapped

ML
SVM, NN, and LR [67] X Fixed
GA to optimize Elman NN [48] X Kernal FCM Fixed/overlapped
NN and Fuzzy expert [24] X Fixed

In Chapter 5 of this thesis, we develop a multivariate ELM model, which will be a key

part of an efficient workload prediction system in a data centre. This prediction framework

30

not only uses VM historical usage values, but also takes into account the behavior of VMs

and users. The main features of the proposed predictor in comparison to the earlier work

discussed are as follows:

• This predictor represents an online sequential process. The predictor helps eliminate

the restrictions pertaining to observation window size and the number of clusters.

• ELM-based predictor overcomes conventional gradient-based learning methods require-

ments, such as ANN and ANFIS [70–73], including avoiding stopping criteria, selecting

learning rates, size of learning epochs, and local minimums [39].

• Unlike in previous works [41, 48], they use a single ANN to predict all VM requests.

This predictor allows each cluster to have its own predicting network.

• The proposed ELM-predictor resolves the problem of time-varying VM requests by

depending on the actual service demand.

2.3 Resources State Subsystems

As a part of VM placement algorithm, a VM or group of VMs are assigned to server-racks.

This mapping minimizes the total inter-rack PMs used or traffic load in the network to reduce

energy, as an initial state [23]. Within a typical data centre, dynamic VM consolidation can

be done though migrating VMs over time in an optimal fashion. The typical data centre

is homogeneous, containing old and new PMs with different types. Put differently, in a

typical data centre, PM’s power consumption has varying parameters depending on the

PM’s load [82]. Thus, it is very important to identify the state of physical resources before

and after an initial assignment of VMs for any efficient VM consolidation.

31

The next subsections review the practical useful monitoring tools in data centres and

extrapolate the most recent algorithms and techniques used in extant literature to define

PMs state. According to these algorithms, host(s) will be selected. This host represents

the best placement of new or selected VM to migrate. Although host selection may depend

on several factors such as workload dependencies, security, and network load, this section

will encompass the selection process based on PM load. Subsections 2.3.1 and 2.3.2 discuss

algorithms related to selecting the host that will be switched-off host underload, after which

the host that will move some of the VMs due to overloading the host. However, prior to

that, practical data centre monitoring tools will be discussed.

Data centre state monitoring represents all physical components considerations and mon-

itoring by tracking the behaviour of these resources. Put succinctly, this is a process of

continuously measuring and accessing infrastructure/application behaviours in terms of per-

formance, reliability, and power usage without compromising on QoS. An effective data

centre monitoring tools used in dynamic consolidation must able to:

• Provide power information as well as the state of PMs and VMs,

• Combine monitoring data arrived at a different sampling rate from unrelated monitor-

ing systems,

• Analyze the measurement data, and select the most affected parameters to reduce the

storage/computation load, and

Monitoring power consumption is required not only for understanding the manner in

which power is consumed, but also for evaluating the impact of energy management poli-

cies [83]. It will help detect and track the variations or failure of resources and applica-

tions [84]. The myriad tools used in cloud monitoring include: Collectd, Nagios, Ganglia,

32

PRTG, Nagios, SolarWinds, Zabbix and Ceilometer, which provide the capability to monitor

the computing, networking and storage resources utilization. Independent test results and

case studies between these monitoring software can be found in [85]. In this thesis, we de-

cided to consider the Data centre Infrastructure Manager (DCIM) as an effective tool that

is capable of providing detailed information about server configuration, hardware, network

connections, installed software, and so on. DCIM profiles the power consumed by every

single part of the hardware in the data centre [44]. Cloud monitoring tools and platforms

properties, issues, analyzing, and comparisons surveys can be found in [86–92].

2.3.1 Host Underload Detection

Host underload is regarded as a necessary component in the process of migration strategies.

It refers to the state of a host wherein all VMs should be migrated. In extant literature,

the two common techniques used for determining host underload state are as follows: least

utilized host and static threshold [13]. If all VMs from the source host cannot be allocated,

the host is kept active. Several algorithms are used to determine the underloaded PMs, the

majority of which depend on the CPU load in the PM. Table 2.2 compares these algorithms,

which can be summarized as follows [13,93]:

Table 2.2: Host underload detection algorithms

Algorithm Policies Characteristic
Available Capacity Migration Delay Number of VM Host power

Least utilized host [93] X
Based on a host with minimum resources
Not cover the number of VMs on the host

Static Threshold [93] X
Depend on the mean of the last CPU used
Difficult to find the optimal value of the threshold

Available capacity [13] X
Based on available host capacity compared to others
Not necessary PMs has less power than the other

Migration delay [13] X
Based on the minimum time to complete VMs migration process
Need a lot of prediction and estimation

Hybrid [13] X X X
based on MCDM
More complicated and difficult for practical

Weighted CPU utilization [94] X X
Combines host utilization and a number of VMs
Need less computation then hybrid

Least utilized : this technique uses CPU usage of the PM as a measure of determining

33

underloaded PMs. PM is considered as being underloaded when it uses minimal resources.

This algorithm is cost-effective because any monitoring system for the CPU utilization will

be sufficient enough to identify the underloaded PM . However, it does not take into con-

sideration the number of VMs on that Host and the cost of moving such them to other

PM.

Static Threshold : this technique depends on the mean of the latest CPU utilization

measurements and compares it with a predefined threshold. If the mean CPU utilization is

lower than the threshold, a host underload is detected. Put in Kashyap et al [95] use 0.2 for

host CPU underload threshold. Constant values of the threshold will be useless, particularly

in a heterogeneous environment. It is also difficult to find an optimal threshold value useful

for all hosts.

Available capacity : this technique considers the available resource capacity instead of

resource utilization as a measure of determining underloaded PMs. This is done by selecting

a PM with an available capacity that has the least amount of PMs resources. However, the

main drawback of this technique is that PMs with adequate resources do not necessarily

consume less power than others. This technique also does not take into consideration the

number of VMs on a specific host.

Migration delay : this technique selects PMs based on the minimum time needed to

complete all VMs migration process to other PMs. This technique needs a pre-estimation of

the migration delay for each VM as far as different PMs are concerned. This technique how-

ever, suffers from a poor prediction accuracy due to the underlying complexity of migration

cost estimation.

Hybrid : this technique uses a multi-criteria decision-making method that takes into

consideration the available capacity of the PM, the number of VMs on the PM, as well as

the migration delays of VMs. Although this algorithm may yield more accurate results, it

34

is very complex to implement.

Weighted CPU utilization and VMs on Hosts : this technique combines the host

CPU utilization CPUhost and the number of VMs on the host VMhost according to the

following equation [96]:

Uhosti = α · CPUhosti + β · VMhosti (2.7)

Where Uhosti denotes the utilization of host i. α and β are weighted for CPUhosti and

VMhosti , respectively. Such that, α + β = 1, 0 ≤ α, β ≤ 1. Their values are optimized on

the basis of workload type with the hill climbing method.

The same technique is used in [94], by combining the CPU utilization as well as the

number of VMs according to reward function. While comparing this technique with Hybrid,

it was noticed that: 1) it reduces the number of required migrated VMs; 2) Host with the

least number of VMs has a better chance to be switched on to sleep mode in comparison

with a host with more VMs; 3) It depends on both host utilization and the number of VMs

on that host. Finally, it still requires more computation to identify the optimal values of α

and β for each host.

2.3.2 Host Overload Detection

Host overload detection is the process of deciding whether a host is considered to be over-

loaded so that some VMs should be migrated from it to other active or reactivated hosts

in order to avoid violating the QoS requirements. Static utilization thresholds, adaptive

utilization, and regression-based are some useful techniques [9]. Table 2.3 classifies the host

overload detection processes.

Static utilization threshold : is exactly the same as the static threshold in the host

underload algorithm. The algorithm compares the latest CPU utilization measurements with

35

a predefined threshold [93]. As discussed in Section 2.3.1, this technique is unsuitable for

dynamic and unpredictable workloads. e.g. Kashyap et al [95] use 0.8 for host CPU overload

threshold.

Adaptive utilization threshold : is done by using an adaptive threshold on the basis

of a statistical analysis of the VMs’ historical data. Beloglazov [9, 97] proposed two adjust-

ment criteria Median Absolute Deviation (MAD) and Interquartile Range. MAD depends

on statistical dispersion, where a PM with large CPU utilization deviations is weighted more

heavily as compared to others. After the threshold is calculated, the algorithm acts similarly

to the static threshold algorithm by comparing the current CPU utilization with the calcu-

lated threshold. Interquartile Range follows the same principle of MAD, but the distance is

calculated by computing the difference between the third and first quartiles in descriptive

statistics [98].

Prediction-based algorithms : are based on the estimation of future CPU utiliza-

tion. Wile they do offer better predictions of host overloading, they are also more complex.

Prediction algorithms include:

• Local algorithms : this is done by fitting simple models to localized observations of

the CPU utilization in order to build a curve that approximates the CPU utilization.

• Robust algorithms: the algorithm estimates the local parameter and uses them to

forecast the future CPU utilization at the next time step, taking into consideration the

VM migration time to be estimated [99].

• Markov overload detection : in this algorithm, a constraint on the overload time

fraction value will be added as a parameter of the algorithm, while maximizing the

time between VM migrations, thus improving the quality of VM consolidation but

increase the computation [100].

36

• k-nearest Neighbor : Farahnakian et al [101, 102] proposed two regression methods

to forecast the CPU utilization of a PM. These methods utilize the LR and the KNN

regression algorithms, respectively, in order to approximate a function based on the

data collected during the lifetimes of the VMs. Therefore, they use the function to

predict an overloaded or an underloaded PM to lower the SLA violations and energy

consumption.

Table 2.3: Host overload detection algorithms

Algorithms Characteristics

Static utilization threshold [93,95]
Depend on the mean of the last CPU used.
Unsuitable for dynamic and unpredictable workload

Adaptive utilization threshold [9]
Median Absolute Deviation

Depend on statistical dispersion
Similar to the static threshold

Inter-quartile range [98]
Same as Median but compares third and first quartiles
Provides poor prediction of host overloading

Regression-based algorithms [11,100]
Local regression algorithms By fitting simple models to CPU utilization

regression robust Uses regression to predict the future CPU utilization
Markov overload detection Add constraint in estimation increase the computation

Generally, adaptive utilization threshold algorithms are observed to be more robust than

static CPU utilization threshold algorithms in dynamic environments. However, the accuracy

of prediction of these algorithms is poor, and the vast majority of them depend on a single

resource usage value, which can result in predicaments such as hasty decisions, unnecessary

live migration overhead and stability issues [99].

Masoumzadeh and Hlavacs [103] proposed an intelligent and adaptive threshold-based

algorithm to detect overloaded hosts by Dynamic Fuzzy Q-learning (DFQL). Its primary

difference with regard to the previous technique lies in the fact that the algorithm bene-

fits from the experiment gained by learning procedures to make better decisions about the

numerical value of the CPU utilization threshold in the future.

Host overload detection will become a more complex problem when a VM has multiple

(e.g. CPU, memory, storage capacity, etc.). For example, authors [104] proposed to use

37

Multi-Criteria Decision Making (MCDM) algorithms as a promising to tackle the problem

of VM selection that involves multiple computing resources. In this approach, these resources

can represent the multiple criteria in the problem domain of VM selection. Using common

MCDM algorithms such as Analytic Hierarchy Process (AHP) and Analytic Network Process

(ANP), pair-wise comparisons can be performed so that the decision-maker (e.g. a cloud

engineer or a data scientist) can determine the importance of each computing resource by

assigning a weight (e.g. 1 to 10) to allow him/her to determine the influence of one criterion

on the others. Not many efforts have been made to tackle the VM selection problem based

on multiple resources.

In this thesis, we propose a new unified index as a scalar value to rank hosts in any cloud

data centres. This index can incorporate both independent quantifiable and non-quantifiable

parameters. This unique index can be used for identifying of underload and overload hosts.

2.4 VM Selection Subsystem

A dynamic energy-awar VM consolidation can partially achieved through migrating all VMs

from underloaded host. This should be balanced with variability of workloads and keeping

SLA. If a host overloaded some of the VMs moved, they must be moved to other hosts that

may be required [96,105].

VM selection denotes the process of selecting at least one VMs from the full set of

deployed or planned VMs to be migrated to other server [12]. VM selection scheme must

address the following: which VMs to migrate, and where migrate them to. The main function

of the VMs selection subsystem is to determine the best subset of VMs to migrate in order

to provide the most beneficial system reconfiguration in terms of energy consumption and

many other parameters such as security and bandwidth.

38

In this thesis, we propose a VM selection technique to select overloaded PMs so as

to migrate them to achieve better energy consumption. We will divide the VM selection

techniques into conventional, non ML-based, and ML-based approaches. Details are provided

in Subsection 2.4.1 and Subsection 2.4.2, respectively.

2.4.1 Conventional, non ML-based, Techniques

Conventional, non ML-based, can be categorized into:

• Random Choice : this technique is based on a simple policy wherein the selection of

VM is based on the uniform random process [9].

• Dynamic Management Algorithm (DMA): in this technique, the VM selection

process is based on the CPU utilization of VMs. That is, the VMs with the lowest

CPU utilization are selected [93].

• Minimum Migration Time (MMT): in this technique, the selected VM will be

migrated based on the minimum time to complete the migration process relative to

other VMs that are allocated on the same host. Beloglazov [9, 97] posited that the

migration time refers to the amount of RAM utilized by the VM divided by the spare

network bandwidth available for the host.

• Maximum Correlation (MC): under this technique, the VMs will be selected

by calculating the probability correlation between resource usage by an application

running on the oversubscribed server. If there is a higher correlation between the

resource usages by applications running on an oversubscribed server, it will lead to a

higher probability of server being overloaded. This implies that if the correlation of

39

the CPU utilization of VMs of a particular host is high, then the probability of this

host being overloaded is also high [106].

• Constant Fixed Selection (CFS): this technique is similar to random choice. How-

ever, the VM removed from the fixed position in the VM list is found in the overloaded

host [107].

• Multi-objective optimization model : this technique is based on the analysis of the

impact of CPU temperature, resource usage and power consumption in VM selection.

The developed algorithm was evaluated by comprehensive experiments based on VM

monitoring Xen. As per their findings, combining all these factors can achieve better

VM selection with regard to resource usage, CPU temperature, and power consump-

tion [108].

Although DMA, MMT and CFS are traditional techniques and perform well in static

cloud environments, they are not suitable for decision-making in dynamic environments.

Although MC needs more calculations, it produces the best selection because it matches the

correlation between CPU usage of the current PM with VM behaviour.

2.4.2 Machine Learning Techniques

Most of ML-based techniques in the literature are based on fuzzy logic, given that the

selection process is a decision-making problem.

• Fuzzy Q-Learning (FQL): this technique is an online decision-making strategy. The

key component of this technique is to integrate multiple VM selection techniques and

dynamically choose a suitable VM selection approach for the current state [11,109].

40

• Fuzzy VM selection : this technique has been proposed to select VM from an over-

loaded host and incorporates migration control in the fuzzy VM selection method.

Simulation based on the CloudSim platform determined that the method provides

better performance when considering all parameters [110].

However, the exact formulation of the VM selection process should take into consider-

ation as many unrelated elements. Fuzzy logic is challenging to relate these elements in a

systematic manner [111].

In this thesis, our VM selection process will be based on the status of PMs in the data

centre, particularly for underloaded and overloaded PMs.

2.5 VM Placement (VMP) Subsystems

Virtual Machine Placement (VMP) is the process of mapping VMs to PMs in such a manner

that the PMs can be utilized to their peak efficiency. This will help with shutting down

unused PMs, depending on load conditions. Each VMP algorithm works well under certain

specific conditions. Thus, it is important to choose a technique that suits the needs of cloud

users and cloud providers. Additionally, the performance metrics are measured at the level

of both the system and the application. These metrics for physical and virtual resources are

characterized by their CPU (MIPS), RAM (MB), bandwidth (Mbps), etc. The goal of the

VMP algorithm is to determine the minimum number of PMs required for given set of VMs.

Fixed mapping VMP during the lifetime of the VM is known as Static VMP and allows

changes to initial placement due to unsatisfactory system performance, maintenance needs,

power or load requirements. These changes can be Reactive or Proactive [35].

In the following subsections, we will review the recent algorithms used for dynamic VMP

that are capable of improving PM power efficiency in a data centre. VMP techniques can be

41

classified into four categories: Deterministic, Heuristic, Approximation and Meta-heuristic

algorithms. These subsections will provide an overview for each, followed by a summary

table, Table 2.4.

2.5.1 Deterministic Algorithms

This type of algorithms are based on optimization techniques, where VM sizes and constraints

are pre-defined.

Some of the algorithms listed in this category are as follows: Linear programming

(LP) [112], Binary Integer Programming (BIP) [113], constraint programming [114, 115],

convex optimization [116], pseudo-Boolean optimization [117].

One of the simplest algorithms used is the LP, where the performance goal is linearly

related to the placement of VMs. For example, the optimal placement of new VMs on

different PMs makes the assumption that the minimal number of PMs required and the

resources in each server is subject to a linear function [118]. In BIP, each variable can

only take on the value of 0 or 1, i.e. it denotes the selection or rejection of a placement.

Constraints programming can be considered on extension LP by adding restrictions on the

number of VMs in a single PM, or by limiting the number of VM migrations, etc. Convex

optimization refers to a special class of mathematical optimization problems that is inclusive

of both least-squares and LP problems [119].

The general common issues in these algorithms are as follows:

• They need a long time to generate the optimal solution, depending on the number of

constraints.

• They can only be effective in static VM consolidation scenarios, since they require the

exact size and constraints of the VM.

42

2.5.2 Heuristic Algorithms

Heuristic algorithms are used to find step-by-step solution by identifying a local best decision.

The majority of these algorithms are based on Bin-Packing. The NP-hard bin-packing

problem principle is premised on the local best decision to pack a series of VMs having

specified sizes into the least possible number of PMs [45]. Most approaches used in extant

literature are premised on classic packing algorithms such as the First Fit (FF), the Best Fit

(BF), the First Fit Decreasing (FFD), the First-Come First-Served (FCFS), and the Best

Fit Decreasing (BFD) algorithms [120].

These algorithms can be classified into Online and Offline algorithms. In online algo-

rithms, such as FF, VMs are assigned to PMs as they arrive. There is no need for prior

knowledge of the VMs to be deployed in future. Offline algorithms possess the knowledge

about all the VMs to be assigned, which is why they are able to sort them beforehand. In

offline algorithms, such as FFD, VMs are assumed to arrive sequentially and are placed on

the first PM which can accommodate them, beginning from the first PM sorted according

to a predefined metric, power efficiency [16].

Beloglazov and Buyya [93] proposed a simple Power-Aware Best Fit Decreasing (PABFD)

algorithm that sorts the VMs based on their CPU utilization in decreasing order. For

each VM, it checks all the PMs and identifies a suitable PM where the increase of power

consumption is minimum.

Attempts have been made to improve bin-packing algorithms, such as those by CloudSim [9],

Chowdhury et al [45] and Farahnakian et al [121]. However, most of their algorithms have

the following common characteristics [15, 120]:

• They are fast and need fewer computation resources because it is done by comparing

the VM’s demand with the server’s available capacity, without considering the balanced

43

utilization of multidimensional resources.

• They can’t guarantee optimal placement, but can be considered for immediate goals

or suboptimal solutions.

• The resulting minimum number of PMs used will not necessarily be the solution for less

energy due to corresponding lower power consumption and hardware dependencies.

2.5.3 Approximation Algorithms

These algorithms deal with solution where exact cost of resource is unknown, but the prob-

ability distributions can be estimated such that network bandwidth of the VM is arrived at

as in [120]. Approximation algorithms are different from deterministic algorithms in that

they cannot be implemented using mean or maximum of the demand as its estimated value.

As an example, Farahnakian et al [122] formulate a VM consolidation as a bin-packing

problem considering both the current and future utilization of resources. The future utiliza-

tion of resources was predicted using a KNN regression-based model. Their experimental

results reveal that this approach provides an improvement over other heuristic algorithms in

reducing energy consumption, a number of VM migrations, and a number of SLA violations.

Authors in [123] suggested a heuristic algorithm to ensure multi-dimensional energy-

efficient resource allocation. More specifically, they created multiple copies of VMs and then

used dynamic programming as well as local search to place these copies on the PMs. Local

search attempted to reduce the cost of energy by shutting down the underutilized servers,

while dynamic programming initially identified the number of VM clones to be placed on

PMs. They minimized the length of networks connecting all PMs so as to minimize the total

connection costs and reduce energy.

Dalvandi et al [124], reduce power consumption by maximizing the benefit from the

44

overall traffic send by VMs to the root through the proposition of a time-aware VMP-routing

algorithm. In their approach, each VM requires a given number of network resources and

server resources for a time duration. They formulated this problem as a mixed-integer LP

optimization on the basis of a power utilization model.

The common characteristics of these algorithms are as follows:

• They do not need to be predefined constrained, because they depend on the probability

of the parameters.

• They need less computation time than their deterministic counterparts but more than

their heuristic counterparts.

• They are useful for dynamic VM consolidation.

2.5.4 Meta-heuristic

Meta-heuristic, sometimes called biology-based optimization, is a way to solve the bin-

packing problem with certain constraints. These approaches are premised on biology-driven

optimization techniques such as Genetic algorithm (GA) [125], Ant Colony Optimization

(ACO) method [126], and Hybrid Genetic Algorithm (HGA) [25]. These algorithms re-

quire more computation time and greater computing resources as compared to heuristic

algorithms [11].

Genetic algorithms, nondominated sorting GA I and II were compared with common

solution representation [125]. The simulation shows that the nondominated sorting GA II

gives good and wind range of solutions as compared to the former algorithms.

Tang and Pan [25] used an HGA for the energy-efficient VM placement problem on PMs

with communication network consideration in data centres. They developed a Java program

that can randomly generate VM placement problems of different configurations, fixed and

45

variable number of PMs with 20 and 80 random VMs. As per the experimental results, the

HGA is more accurate than the original GA.

Feller et al [126] developed a multidimensional bin-packing to place VMs into the least

number of PMs necessary for the current workload based on ACO.

Lopez and Baran [127] proposed three objective functions to apply multi-objective memetic

in solving VMP problems, where the critical application was considered for a specific SLA.

They concluded that, the number of solutions and execution time to find these solutions

decreased by increasing the percentage of VMs with high SLA.

The VMP categorization in [128] suggested three optimization approaches: 1) the mono-

objective approaches, which consider the optimization of one or multiple objectives one at

a time; 2) the multi-objective approaches, which consider multiple objective functions fused

into one objective function; and 3) the pure multi-objective approaches. Five objective func-

tions have been identified: energy consumption minimizations, network traffic minimiza-

tions, economic costs minimizations, performance maximizations and resource utilization

maximizations.

In Chapter 6 of this thesis, we have used meta-heuristic VMP algorithms that is capable of

treating the multi-objective as a single objective optimization problem. These objectives may

include power, QoS, network traffic, etc. The proposed VMP produces an optimal solution

that is capable of satisfying different predefined constraints. This algorithm taking into

consideration all PM characteristics, not focused only on workload characteristics through

efficient utilization of a machine index factor. The proposed machine index able to take into

consideration the heterogeneity of PMs in terms of power efficiency and capacity. This index

substitute the operation of host underload and host overload processes.

46

T
ab

le
2.

4:
C

om
p
ar

is
on

of
V

M
P

al
go

ri
th

m
s

S
o
lu

ti
o
n

C
a
te

g
o
ry

R
e
fe

re
n

ce
s

C
o
n

si
d

e
re

d
R

e
so

u
rc

e
s

A
sp

e
ct

E
v
a
lu

a
ti

o
n

P
e
rf

o
rm

a
n

ce
B

e
tt

e
r

T
h

a
n

D
e
te

rm
in

is
ti

c
L

in
ea

r
P

ro
gr

am
m

in
g

[1
12

]
C

U
P

,
st

or
ag

e
an

d
n
et

w
or

k
P

M
s’

re
so

u
rc

es
su

b
je

ct
to

li
n
ea

r
fu

n
ct

io
n

S
im

u
la

ti
on

N
on

In
te

ge
r

L
in

ea
r

P
ro

gr
am

m
in

g
[1

13
]

n
et

w
or

k
T

re
e

an
d

fo
re

st
fo

rm
u
la

te
d

on
gr

ap
h

S
im

u
la

ti
on

B
F

C
on

st
ra

in
t

P
ro

gr
am

m
in

g
[1

14
]

C
P

U
O

b
je

ct
iv

e
fu

n
ct

io
n
s

fo
r

op
ti

m
al

it
y

S
im

u
la

ti
on

B
F

h
eu

ri
st

ic
C

on
st

ra
in

t
P

ro
gr

am
m

in
g

[1
15

]
C

P
U

an
d

b
an

d
w

id
th

m
ax

im
u
m

li
n
k

u
ti

li
za

ti
on

op
ti

m
iz

at
io

n
S
im

u
la

ti
on

B
F

D
an

d
R

an
d
om

al
go

ri
th

m
s

C
on

ve
x

fu
n
ct

io
n

[1
16

]
C

P
U

P
M

s
m

ee
ti

n
g

al
l

ta
sk

s’
d
em

an
d
s

G
o
og

le
T

ra
ce

d
at

a
B

F
w

it
h

M
in

,
M

ax
an

d
ra

n
d
om

H
e
u

ri
st

ic
B

in
-p

ac
k
in

g
[1

29
]

C
P

U
,

m
em

or
y

an
d

n
et

w
or

k
V

ol
u
m

e
to

si
ze

ra
ti

o
S
im

u
la

ti
on

F
F

,
B

F
,

F
F

D
B

in
-p

ac
k
in

g
[4

5]
C

P
U

an
d

m
em

or
y

R
ed

es
ig

n
C

lo
u
d
S
im

P
A

B
F

D
[9

7]
C

P
U

on
-l

in
e

C
lo

u
d
S
im

F
F

,
B

F
,

F
F

D
E

n
h
an

ce
d

F
F

D
[1

30
]

C
P

U
V

M
re

u
se

st
ra

te
gy

C
lo

u
d
S
im

F
F

D
an

d
R

ou
n
d
-R

ob
in

P
A

B
F

D
+

m
in

im
u
m

co
rr

el
at

io
n

co
effi

ci
en

t
[8

]
C

P
U

P
A

B
F

D
w

it
h

m
in

im
u
m

co
rr

el
at

io
n

V
M

s
C

lo
u
d
S
im

P
A

D
F

B
A

p
p

ro
x
im

a
ti

o
n

U
ti

li
za

ti
on

A
w

ar
e

B
F

D
[1

22
]

C
P

U
an

d
m

em
or

y
U

se
V

M
an

d
P

M
p
re

d
ic

ti
on

C
lo

u
d
S
im

M
o
d
ifi

ed
B

F
D

,
M

o
d
ifi

ed
F

F
D

U
ti

li
za

ti
on

A
w

ar
e

B
F

D
[1

23
]

n
u
m

b
er

of
n
et

w
or

k
an

d
se

rv
er

re
so

u
rc

es
N

et
w

or
k

co
n
n
ec

ti
on

S
im

u
la

ti
on

F
F

D
U

ti
li
za

ti
on

A
w

ar
e

B
F

D
[1

24
]

N
u
m

b
er

of
V

M
s

U
se

V
M

an
d

P
M

p
re

d
ic

ti
on

S
im

u
la

ti
on

C
P

L
E

X
O

p
ti

m
iz

at
io

n
S
tu

d
io

[1
31

]
M

e
ta

-h
e
u

ri
st

ic
G

A
[1

27
]

C
P

U
,

m
em

or
y,

b
an

d
w

id
th

an
d

st
or

ag
e

m
u
lt

i-
ob

je
ct

iv
e

fo
rm

u
la

ti
on

of
th

e
V

M
P

It
ai

p
u

T
ec

h
n
ol

og
ic

al
P

ar
k

D
C

b
ru

te
fo

rc
e

ex
h
au

st
iv

e
se

ar
ch

al
go

ri
th

m
H

y
b
ri

d
ge

n
et

ic
al

go
ri

th
m

(H
G

A
)

[2
5]

C
P

U
an

d
n
et

w
or

k
sc

al
ab

le
w

it
h

p
ro

b
le

m
si

ze
S
im

u
la

ti
on

G
A

N
on

-d
om

in
at

ed
S
or

ti
n
g

G
en

et
ic

A
lg

or
it

h
m

(N
S
G

A
)

[1
25

]
C

P
U

,
m

em
or

y
an

d
b
an

d
w

id
th

N
on

-d
om

in
at

ed
S
or

ti
n
g

G
A

S
im

u
la

ti
on

G
A

A
n
t

co
lo

n
y

op
ti

m
iz

at
io

n
(A

C
O

)
[1

26
]

C
P

U
,

m
em

or
y

an
d

b
an

d
w

id
th

M
o
d
el

in
g

M
u
lt

id
im

en
si

on
al

b
in

-p
ac

k
in

g
S
im

u
la

ti
on

m
u
lt

i-
d
im

en
si

on
al

b
in

-p
ac

k
in

g
A

n
t

C
ol

on
y

S
y
st

em
(A

C
S
)

[1
05

]
C

P
U

F
in

d
n
ea

r
op

ti
m

al
C

lo
u
d
S
im

S
L

A
v
io

la
ti

on
an

d
m

ig
ra

ti
on

s
m

u
lt

i-
ob

je
ct

iv
e

A
C

S
[1

32
]

C
P

U
,

n
et

w
or

k
an

d
st

or
ag

e
V

ec
to

r-
al

ge
b
ra

b
as

ed
re

so
u
rc

e
u
ti

li
za

ti
on

S
im

u
la

ti
on

si
n
gl

e-
ob

je
ct

iv
e

A
C

O
,

F
F

D

47

2.6 VM Migration

Performing VM live migration in data centres is not a straightforward task. Several chal-

lenges need to be addressed, such as maintaining a reasonable level of QoS requirements

and optimum resource utilization for energy conservation [128]. The two key criteria for an

efficient VM migration are as follows: the downtime during the migration and the migration

time itself [133]. Downtime denotes the time when services are down due to the migration

process. Migration time refers to the time required to transfer a VM from one node to

another within a cluster [134]. In both criteria, the objective is to minimize their values so

that the migration process does not interrupt the provisioning process.

Different techniques have been used to execute live migrations. Some of the well-known

techniques used include the following:

• Pure stop and copy : in this technique, VMs are stopped, copying its content to the

destination, before the VM can be restarted. This process is simple, but the service

downtime could be large and is proportional to the allocated memory to the migrated

VM [133].

• Post copy : as per this technique, only essential data structures are transferred to

the destination that can be restarted. Other parts are migrated on-demand across the

data centre. This technique reduces the VM downtime, but the migration time still

takes a long time [135].

• Pre-copy : this technique involves iteratively copying memory from the source VM to

the destination server while keeping the migrated VM running. An iterative process is

performed to consider any updates that may have occurred in the migrated VM to make

sure that updates are available at the destination server [136]. The main shortcoming

48

of this technique is network overload, particularly with high memory usage VMs.

• Hybrid : this technique combines the pre-copy and post-copy algorithms. Besides

transferring the virtual CPU registers and devices states in post-copy, a small subset

of memory is also transferred, which is frequently accessed by the VM. The advantages

of both the pre-copy and post-copy can be exploited in the hybrid algorithm, which

makes it more suitable for VMs migrations [137].

Live migration cost energy and any reconfiguration should aim to reduce energy con-

sumption. Therefore a key decision in VM migration should be on the process of selecting

those VMs whose replacements to save at least as much energy as their migrations cost. In

order to achieve such energy-efficiency, we need an efficient migration cost model that quan-

tifies the energy overhead of VM live migration in advance. Linear regression techniques are

usually used to model the energy overhead of live migration [138–141].

Akiyama et al [142] proposed to integrate a performance model as well as an energy

model of live migration to simulate dynamic VM placement. The proposed performance

model estimates how long a live migration takes under a given environment. The input is

the size of the target VM, network bandwidth available for migration, and workload running

on the VM. This energy model simulates dynamic VM placements and estimates how much

energy is lost by performing live migrations to process dynamic VM placements. The input

is a number of memory pages transferred during live migration.

The advantage of their approach is the combination of energy consumption models of

the placement and migration operations since both operations complement each other in the

data centre environments. Moreover, it can simulate pre-copy live migration, as it works

perfectly as a pre-copy live migration by reusing non-updated memory in the initial memory

transfer. However, their model’s performance is not compared with the hybrid migration

49

technique where both the pre-copy and post copy algorithms are used.

In Chapter 6 of this thesis, migration cost can be added to the proposed PM index.

Migration cost can be either a static or dynamic factor, and are considered as part of the

total cost of the objective function of the VMP algorithm.

2.7 Network Effect

With increasing numbers of servers and switches in data centres, the communication band-

width has to scale exponentially to meet the growing requirements of data access, processing

and storage. Yang et al [143] highlighted that thousands of MapReduce programs are im-

plemented and run in different applications such as Yahoo, Facebook, Google’s data centres

on a daily basis. In addition, petabytes of daily data flow are transmitted among distributed

jobs within a data centre. This, in turn, incurs a very high energy consumption.

One way of dealing with this scenario is to find efficient and cost-effective approaches to

tackle the network effect. In data centres, there are two main approaches for network setup:

switches-centric and servers-centric [144].

• Switches-centric: this approach implements the hierarchical network topology con-

structed from off-shelf components. Under this approach, servers are positioned in

such a manner that they are at the leaves of the hierarchy of the network. The ad-

vantage of such approach is that it enables better load balancing and is less prone to

bottleneck [145, 146]. However, the weakness is the limitation in terms of scalability

owing to the size of routing tables in switches [144].

• Servers-centric: this approach implements the Cayley graph [147]. As opposed to

the first approach of switches-based network, the data centre network resides within

50

servers. It provides programmable capabilities and intelligent routing. Thus, servers

are not only able to process applications and data, but also act as routers to relay

traffic. The main advantages of this approach are as follows: 1) The low cost of

interconnections in data centres besides the ability to remove the bottleneck at the

architectural level. 2) Due to high scalability, expanding the network does not require

physical modification or enhancement of existing servers.

Liao et al [144] presented DPillar, a highly scalable network architecture for data centres.

DPillar is built with dual-port servers and n-port switches where server columns and switch

columns are alternately placed along a cycle. One disadvantage of DPillar is that it was not

designed to produce a short path routing on account of its simplicity. Erickson et al [147]

improved the DPillar algorithm efficiency by developing a single-path routing algorithm that

always produces the shortest path. Wang et al [148]proposed survey on different network

topologies used in data centres and divided their networks into two parts:

1. Tree-based topologies: classified into Basic-tree, Fat-tree, and Virtual-layer 2 (VL2).

It is primarily based on switch routing architecture.

2. Recursive-based topologies: classified into DCell, BCube, FiConn, FlatNet, and Sprint-

Net. It is primarily based on server routing architecture.

Although Recursive-based topologies do offer a significant remedy to the problems of the

Tree-based topologies, they still have their own shortcomings. DCell is built based on low-

level and hence, may cause a bottleneck. BCube is considered a topology with high wiring

complexity. FiConn suffers from deficiencies in fault tolerance, network capacity, and long

path traffic. FlatNet and SprintNet have low scalability as compared to other topologies.

The improved version of DPillar topology [144, 149] remedies these problems by providing

51

highly scalable network topology, good fault tolerance, improved bottleneck throughput and

latency, as well as the shortest path routing within the data centre network.

2.8 Chapter Summary

This chapter presents a background, comprehensive survey and analysis on VM consolida-

tion with an emphasis on the energy consumption in data centres. In particular, the chapter

focused on proactive dynamic VM consolidations in data centres with heterogeneous envi-

ronments. A general framework with multiple phases that achieves a complete consolidation

process was also presented.

Below are some of the key shortcomings observed in extant literature, which will be

addressed in this thesis:

• Most algorithms only consider the CPU as their primary input. In order to improve

their performance, these algorithms should be extended to consider other important

resources, such as memory, storage, bandwidth, etc.

• Algorithms cannot always be compared to one another, as they may take into consid-

eration different inputs, operation criteria or goals [17].

• There is no systematic clustering that makes efficient use of the historical VM re-

quest, user behaviour, and data centre monitoring tool instant output in the clustering

process.

• Prediction window size can play an important role in the workload prediction calcula-

tions as well as its accuracy. Additional work should focus on estimating the forecast’s

window size. This is important because the models used in existing literature are

mostly based on predefined period.

52

• Identifying the behaviours of cloud users’ requests resources strongly influences the

overall cloud workload. Uncovering the dependency relationships between users and

VMs helps improve the accuracy of predictions and excludes unwanted data.

• The capabilities of PMs in the data centre play a key role in the consolidation process.

Existing research has mostly focused on workload characteristics. Therefore, more

focus is needed on taking other PM characteristics into consideration.

• Most VMP algorithms compare their proposed algorithms against trivial heuristics. A

comparison against real data can yield more meaningful results, which in turn, can

result in improved algorithms.

• Simplicity assumption made in many algorithms, such as the homogeneity of PMs or

ignorance of PMs’ power consumption characteristics, lead to the degradation of their

performance under realistic settings. In particular, the heterogeneity of PMs in terms

of capacity and power efficiency must be considered when designing a VMP algorithm.

• There are different VM selection criteria, all of which have their weaknesses and

strengths for different applications and specifications, Section 2.4. It is useful to have

a rule-based system such as fuzzy logic in order to improve the process of selection

between these techniques, in accordance with environment states [45,150].

53

Chapter 3

A Real-Time Energy-Conserving

VM-Provisioning Framework for

Cloud-data centres

In this chapter, we provide a general elucidation and operation for a proposed energy-aware

VM-consolidation framework components. Additionally, we define the importance and usage

of the framework subsystem. Towards the end of this chapter, we will also explicate the data

used in the implementation phase for each proposed algorithm and technique that has been

used in this framework.

3.1 Introduction

This thesis proposes a framework to represent a real-time proactive VM-provisioning so as

to reduce energy consumption in heterogeneous large-scale data centres. This framework

takes into consideration data provided by monitoring tools, user behaviour, and historical

54

data to forecast the number of future VMs and to improve the consolidation process with

minimum energy consumption.

In a proactive VM consolidation, monitoring, historical data, and prediction algorithms

are used to alter the VM’s initial placement before the system reaches a certain condition.

The proactive provisioning uses prediction-based approaches that help prepare changes in

advance in the workload and system usage [2]. In this thesis, we propose a pipeline real-

time proactive provisioning framework in order to reduce energy consumption in large scale

heterogeneous data centres, Figure 3.1. The proposed framework consists of: 1) an efficient

data pre-processing and VM clustering subsystem; 2) a prediction subsystem; and 3) a VM

placement subsystem. Additionally, the framework takes into consideration: a) data centre

current states such that PMs states, networking, power, etc. and b) historical data to

estimate user behaviour, VMs execution time, etc. These considerations are used to improve

pre-processing, clustering, prediction and placement subsystems. The proposed framework

satisfies the following:

• An efficient pre-processing subsystem that improves filtering and normalization pro-

cesses for the historical as well as the monitoring data by extracting VMs with corre-

lated behaviour.

• A systematic VMs clustering subsystem that handles big monitoring data with less con-

sumption resources, faster computing, and improved accuracy. Furthermore, clustering

subsystem output for both users and VMs will be used for excluding unpredictable VM

requests caused by users’ actions.

• An ELM-based prediction subsystem that can predict the number of VMs in each

cluster. This predictor is also able to improve the forecast’s accuracy by taking into

consideration VM and user behaviour.

55

F
ig

u
re

3.
1:

P
ro

p
os

ed
en

er
gy

-a
w

ar
e

re
al

-t
im

e
V

M
s

p
ro

v
is

io
n
in

g
fr

am
ew

or
k

56

• A scalier unified index to model servers in heterogeneous data centres. The proposed

index is a measure of the extent to which the PM is suitable to handle new or consol-

idated VMs.

• The proposed index converts the multi-objective function into a single objective func-

tion for real-time application with optimal displacement.

The proposed framework’s operation can be implemented as a pipeline process that is

summarized in the following steps.

1. First, historical and current state of data centre provided by a monitoring tool (e.g.

DCIM) are used to identify cloud data centre states including PMs load, pre-defined

group of VM features, user profiles.

2. Current state of the data centre, new requested and consolidated VMs delivered to the

clustering subsystem. The clustering subsystem will:

• Implement pre-processing, filtering and clustering processes based on updated

features for VMs and users.

• Clusters all VMs in accordance with the size and resource requirements.

• Recommend clusters on the basis of clustering purpose, validation indices, and

result comparison.

3. New and consolidated VMs, recommended VM and user clusters and these clusters’

centres will be input to the prediction subsystem. The prediction subsystem will:

• Map new and consolidated VMs based on new clusters’ centres.

• Use the findings of clustering processes for both VMs and users so as to filter low

probability VMs with the nearest future.

57

• Rapidly forecast the number of VMs required for the next period.

• Estimate the number of PMs required on the basis of current and predicted VMs.

4. Using estimated number of VMs, PMs and the current state of PMs using MCI, the

VM placement and MCI subsystem will:

• Optimize the distribution of new and consolidated VM. The VMP is taking into

consideration PM energy consumption, network, SLA, etc.

• Pass the result to the scheduling unit to assign each VM request to the defined

PM.

• Each PM that does not accommodate VMs anymore power-cycles itself in order

to save energy.

5. Adjust PMs usage by optimizing VMs execution time on each PMs (if possible).

6. Adjust the MCI for each PM, optimization factors, clustering indices factor. This will

be done by providing the feedback between the framework blocks, Figure 3.1.

The feedback between blocks are used to interact with different parts of the framework.

Put differently, the selection clustering index in the clustering process will impact the feature

selection criteria.

In the remainder of this chapter, we will describe the basics of each block in the proposed

framework in Section 3.2. The monitoring tools data as well as the simulated data used in

thesis will be described in Section 3.3. In the last section, Section 3.4, a summary of the

chapter will be provided.

58

3.2 Energy-Aware Framework Components

The target of the proposed energy-aware framework is to reduce the data centre energy usage

through optimal and dynamic allocation as well as the reallocation of VMs by reducing the

number of PMs used.

In this section, we will separately explain each component of the framework. Some

of these blocks collectively denote a subsystem that can perform a complete specific task

without needing others.

The last block in the framework represents power calculation and estimation. In this

block, we expound on the manner in which we can achieve further power-saving improvements

through: a) re-arranging the priority of VMs and b) reducing the number of migrated VMs

with high power cost.

3.2.1 Feature Selection and Clustering Subsystem

The general clustering subsystem used in VM clustering along with user behaviours will

be described in chapter 4. Clustering subsystem comprises of the following components,

Figure 3.2:

Figure 3.2: Clustering subsystem component

• VM Request Gathering: this includes cloud monitoring tool outputs. These out-

59

puts help detect the variations or failure of resources as well as applications during an

observation.

• Historical Workload: this represents the historical data that is collected from a

monitoring tool. This data is updated periodically and is used to forecast the next

period VM request for each observation. It is also used to calculate centres of clusters

on a period basis using long-term observations.

• Off-line clustering: this clustering is used to create a set of clusters for different

types of VMs and users using historical data. These clusters are used to improve

the systematic process to incoming requests. The number of clusters should be able

to balance two conflicting objectives: (1) reducing errors and (2) maintaining low

overhead.

• User and VM behaviour: this block is used to analyze both VM and user be-

haviours. The relationship between users and VMs is used to improve the accuracy of

pre-processing, clustering and prediction.

• Mapping: this matching process is used to map each request received during a given

observation time into one cluster in accordance with the calculated cluster.

3.2.2 Mapping and Filtering Process

The output of clustering subsystem is a group of VM clusters. The mapping and filtering

process is to used to: a) map each VMs received during a pre-defined observation window

into a specific cluster, for users as well as VMs; and b) to eliminate unexpected VMs from

the workload estimation process by filtering low use VMs in the cluster of each user. More

details about a proposed mapping algorithms will be presented in Section 5.3.

60

3.2.3 Prediction Process

The user-behaviour-driven filtered VMs clusters will be used to forecast the expected next

period VMs requests. An elucidate description on the developed multivariate time-series

ELM-based predictor will be mentioned in Section 5.6. The ELM-based predictor comprises

of a single neural network for forecasting the number of VMs requested in each cluster. Under

the the prediction subsystem, we use clustering technique not merely for VM requests, but

also after receiving user requests. The filtering processes will used to filter unexpected VM

requests caused by the unpredictable actions of users, Figure 3.3. The proposed subsystem

of prediction will be used to resolve the following challenges:

Figure 3.3: Recommended prediction subsystem

• In this subsystem, we include both user and VM variations in prediction process. Most

related work focuses on VM variability only.

• We overcome the problem of time-varying VM requests.

• We eliminate the restrictions on observation window size and the number of VM clus-

ters.

Any prediction process must take into consideration two key parameters: 1) the duration

of the time period used, monitoring window, Section 5.4 and 2) the duration of the time

61

period in the future for which the workload needs to be predicted, forecast window, Sec-

tion 5.5. We define both monitoring and prediction windows under the proposed prediction

subsystem in order to make the forecast process more accurate and faster to calculate.

3.2.4 VM Placement Process

The process of mapping the VMs to the existing PMs is commonly known as the Virtual

Machine Placement (VMP) problem.

The VM placement (VMP) denotes the process of mapping the VMs to existing PMs. In

Section 2.5, we showed that heuristic or generally bin packing algorithms are most suitable

for real-time application due to their pace and the fact that they require fewer computational

resources. However, bin packing algorithms also provide a sub-optimal distribution of VM’s.

In our proposed real-time VM consolidation, a part of proposed index implementation, we use

Best Fit Decreasing (BFD) algorithms for limited number of objectives (CPU usage only).

Knowledge of the VM, which will be submitted in the future, will be used to pre-specify the

number of PMs required. More details can be found in Section 6.5.2.

In this thesis, we will assign a pre-identified dynamic index for each server that will

measure the extent to which the PM is suitable or handling new or consolidated VM(s).

This new index, Machine Condition Index MCI in VM placement block of Figure 3.1, is

a dynamic assessment rating various PM elements as well as its environments. This index

constitutes the digital footprint of servers in data centres, details of which are provided in

Section 6.2. This index will be used as follows:

• A condition index substitutes the operation of host underload and host overload process

described in Subsection 2.3.1 and Subsection 2.3.2, respectively.

• An effective cloud measurement unit converts the multi-objective VMP to a single

62

objective VMP optimization problem for real-time purposes, Section 6.3

3.3 Data Monitoring and Thesis Simulated Data

The data centre monitoring tool is used to gather information about the running resources.

It forms an essential part of any data centre. The collected data is then used to identify

states of PMs, VMs, network, power usage, cooling system, users, etc. Under the proposed

framework, data pertaining to VMs/tasks are collected not only to track volume of requests,

but also to define VMs/tasks behaviour. Additionally, this work would use PMs and network

information for optimizing the performance of VMP algorithm.

In the remainder of this thesis, we will use a real-world workload from the Google cluster

traces [46] to simulate framework subsystems. We will utilize the data provided in the Task

Event table, where each VM request is called a task and each VM submission/termination

request is referred to as an event. This table has 144.6 million recorded observations, 672

thousand unique job IDs and 12583 unique machine IDs, Table 3.1 [151].

Table 3.1: Characteristics of Google traces

Trace Characteristic Value
Time span of trace 29 days
Number of PMs 12,583
Number of observations 143M
Number of jobs 650K
Number of submitted tasks 25M
Number of users 925
Compressed size of data 39GB

The power information, which is not included in Google data, will be simulated and

described in Subsection 6.5.3. Figure 3.4 (a) and (b) reveal the number of tasks request in

each minute and hour, respectively, for one day (24 hours). The total number of tasks stood

63

Figure 3.4: One day Google data with 3,295,896 tasks (a) task per
min (b) tasks per hours

Figure 3.5: One day Google data with 426 users (a) tasks per user
(b) task per user class

at 3,295,896, each of which has a value of CPU and memory. The number of users was 426.

These users were then classified to seven types using k-means for simplicity, as illustrated in

Figure 3.5 (a) and (b), respectively.

Furthermore, a randomly generated based Amazon EC2 instances types will be used for

creating a heterogeneous environment and for simulating the proposed algorithms. These

random Amazon EC2-based data will be used for partial clustering, Subsection 4.2.2, and

VMP with multiple objectives, Subsection 6.5.3, where Google traced data does not encom-

pass sufficient information.

For this thesis, all algorithms considered in the experiments have been implemented using

64

MATLAB on a Windows Operating System, with an Intel i5-6300U CPU at 2.4GHz and 8

GB of RAM.

3.4 Chapter Summary

In this chapter, we summarized the primary components of a real-time VM consolidation

on the basis of the energy consumption framework. The most significant concept of this

framework is to combine real-time processes including pre-processing, clustering, VMs and

user behaviour analysis, filtering, prediction and VMP under a series of pipeline processes.

This framework considers PMs index, characteristics model, VM execution time and net-

working as significant factors affecting scheduling and placement process. In the subsequent

chapters, we will provide elaborate elucidations of the myriad approaches, algorithms and

techniques used in the proposed real-time VM-provisioning framework.

65

Chapter 4

A Systematic Cloud Workload

Clustering in Large-Scale Data

Centres

In this chapter, we present cloud workload clustering categories as well as applications. In

addition, we propose an efficient pre-processing and a systematic subsystem for selecting suit-

able VMs/tasks clustering algorithm in large-scale data centres. The systematic clustering

is premised on clustering purpose, validation indices and result comparison.

4.1 Introduction

Cloud monitoring tools are usually used to provide information for the computing infras-

tructure and software resources. These tools generate a large volume of information about

workloads in data centres, which, in turn, requires network bandwidth and hardware storage.

In addition, the basic operations used for data monitoring, storing, analyzing processes and

66

retrieval operations can be both difficult and time-consuming [14,152].

The workload clustering is usually used to investigate workload characterization in fields

such as VMs/tasks scheduling, VMs allocation, and workload predictions. These character-

istics represent resource usage, arrival process and workload pattern [153].

In this chapter, we propose a general cloud workload efficient pre-processing and system-

atic clustering subsystem for a large-scale data centre. This subsystem is useful in various

cloud workload related applications such as monitoring, characteristics, modeling, prediction,

etc. In the proposed subsystem:

• We develop an efficient cloud workload pre-processing algorithm for big monitoring

data. The pre-processing efficiency consumes minimize computation resources, fast

computing, and accurate results.

• We propose a systematic algorithm to select the suitable VMs/tasks clustering method

along with the number of clusters in large-scale data centres.

• The systematic clustering algorithm recommends the best combination of VMs cluster-

ing techniques based on clustering purpose, validation indices, and result comparison.

In the next section, we will review clustering categories and reflect that on VMs/tasks

clustering. In Section 4.3, we will present the proposed pre-processing and clustering subsys-

tem for the large-scale data centre with practical recommendations. We will also objectively

discuss the proposed validation techniques. Proposed systematic clustering will presented in

Section 4.4. Finally, experiments and a summary of this chapter will be given in Section 4.5

and Section 4.6, respectively.

67

4.2 Cloud Workload Clustering

Clustering can be defined as an effective unsupervised learning technique. Clustering pro-

cess groups naturally similar items with each other based on certain metrics. Clustering

techniques combine objects into groups based on two criteria: (a) Homogeneity: the objects

only contain data points that are member of a single class, and (b) Dissimilarity: there is a

distance between objects belonging to two clusters under some criterion.

Various approaches have been utilized to infer cloud workload, more precisely VMs/tasks

characterization and behaviour. A cloud data centre in VMs behaviours are traced by ob-

serving patterns that can be used to guide dynamic management decision, efficient moni-

toring, and prediction. The next subsections will provide a summary of clustering methods

for which they get categorized into: hierarchical, partitioning, grid-based, density-based and

model-based methods.

4.2.1 Hierarchical Clustering

Hierarchical clustering refers to a set of nested clusters organized as a hierarchical tree

(dendrogram). These techniques do not require a predefined number of clusters. Any desired

number of clusters can be obtained by the tree at a proper level by merging similar clusters

sequentially. This process is known as agglomerative hierarchical clustering.

Hierarchical clustering characteristics have been summarized in [154]: a) Select the level

of clusters using dendrogram; b) Deterministic for linkage criteria, not optimal, greedy al-

gorithm; c) Flexible with reference to linkage criteria; d) Slow and impractical, which is an

N-cubed algorithm in most cases, and N-square for single linkage.

On the basis of these characteristics, hierarchical cluster algorithms are not recommended

in cloud workload clustering. This is attributed to the fact that cloud workload is usually

68

dynamic/fast and has a copious amount of monitoring data. Balanced Iterative Reducing and

Clustering Hierarchies (BIRCH), Clustering Using Representatives (CURE) and Chameleon

are popular algorithms [155].

4.2.2 Partitional Clustering

Partitional clustering algorithms are used to simultaneously distribute a dataset into all

clusters where the data are divided into non-overlapping clusters. Partitional clustering

objectives are intended to determine the number of partition, k, in dataset. The VMs/tasks

in these clusters are more similar to each other than to VMs/tasks in different clusters. For

this reason, partitional clusters are the most adopted and useful clustering methods in terms

of VM monitoring and VM behaviour prediction applications [2].

Under the partitioning methods, it is necessary to predefine the number of cluster k,

which is often non-deterministic. This issue can partially succeed in addressing predefined

instances. IaaS cloud providers offer various categories of predefined and custom VMs, with

varying amounts of resources. For example, Amazon EC21 instances are categorized into five

types. In EC2, there are more than 108 types of VMs along with different values in virtual

CPUs (vCPU), memory capacity (GB), etc., as per a sample provided in Table 4.1. These

predefined instances will enable service providers in the data centre to partially identify a

number of required clusters.

In partitioning algorithms such as k-means, k-medoids, k-modes, PAM, CLARA, CLARANS

and FCM [155,156], no specific technique is used to select a number of clusters that can be

generalized for cloud workload clustering applications. Different techniques and methods use

prior knowledge of the application so as to choose initial values of k, or use predetermined

indices [157,158].

1http://aws.amazon.com/ec2

69

Table 4.1: A sample of typical general-purpose Amazon EC2 VMs

Instances Model vCPU Mem (GB) Storage Net. Perfor-
mance

T3

t3.nano 2 0.5 EBS-Only
t3.micro 2 1 EBS-Only

...
...

t3.2xlarge 8 32 EBS-Only

T2

t2.nano 1 0.5 EBS-Only
t2.micro 1 1 EBS-Only

...
...

M5

m5.large 2 8 EBS-only Up to 3,500
m5.xlarge 4 16 EBS-only Up to 3,500

...
...

M4

m4.large 2 8 EBS-only 450
m4.xlarge 4 16 EBS-only 750

...
...

m4.16xlarge 64 256 EBS-only 10000

For example, in [154], they run hierarchical clustering on a subset of data in order to

seek a good k. They used different values of k and evaluated the quality of results. through:

(a) Selecting good initial centroids to ensure an appropriate distribution over the space; (b)

Using multiple sets of randomly-chosen centroids, before selecting the best possible result.

In order to improve the initial selection of cluster numbers, a genetic algorithm can be

used to estimate the initial selection of cluster centres, improved k-means++ [159], or even

apply different distance metrics [160]. The number of clusters was determined using an

evaluation graph that is depicted for k-means or FCM using a programmable logic array

(PLA) [49], L-Method [161], or stability criteria described in [155].

4.2.3 Density-based Clustering

In density-based clustering algorithms, the VMs/tasks are separated on the basis of their

regions of density, connectivity and boundary. Put differently, cluster can be defined as a

70

connected intensive component that grows in any direction that density leads to. These

algorithms can be used to: a) Discover VMs/tasks clusters of arbitrary shapes; and b) Filter

out or identify VMs requiring huge amounts of resources. OPTICS, DBCLASD, DENCLUE

and DBSCAN are algorithms used in such clustering [162].

4.2.4 Model-based Clustering

The model-based clustering methods are used to optimize the fit between the given data

and a predefined mathematical model. These methods are premised on the assumption that

the data is generated by a mixture of implicit probability distributions. The number of

clusters can be implicitly determined on the basis of standard statistics while taking noise

into consideration.

Two commonly used model-based approaches include: statistical and neural network

approaches. Expectation-maximization (EM) and MCLUST are almost best-known model-

based statistical algorithms, while self-organizing maps (SOM) is a very well-known neural

network (NN) approach [155].

4.2.5 Grid-based Clustering

In grid-based clustering, VMs/tasks monitoring datasets are divided into various grids. The

computation is immediately done for fast processing. This is usually suitable for highly

irregular data distributions to meet the required clustering quality and computation time.

Wave-Cluster and STING are typical examples of this type of clustering [155]. Neural net-

works (NNs) have several properties that make them popular for such clustering because:

a) NNs denote a parallel distributed processing architectures. b) Adjusting NNs intercon-

nection weights for best data fitting makes it a best fit to normalize a prototype, where

71

patterns play the role of features. c) Extractors for various clusters. d) NNs process nu-

merical vectors and require object patterns to be only represented by quantitative features.

Many clusterings take care of only numerical data.

The pre-processing algorithm proposed in the next section will reduce dataset radically.

For this reason, the grid-based clustering algorithms are recommended in the proposed sys-

tematic clustering algorithm.

Table 4.2 provides an overview of the clustering algorithm categories following the five

classes of above-mentioned categorization.

Table 4.2: An overview of clustering categories

Clustering
Categories

Summary Example

Hierarchical Permit clusters to have sub-
clusters. Nested clusters orga-
nized as a tree

BIRCH, CURE and Chameleon

Partitional Division of a dataset into non-
overlapping clusters. Each data
object is in exactly one subset

k-means, k-medoids, k-modes,
PAM, CLARA, CLARANS and
FCM

Density-based Separation of dense datasets from
each other by sparser areas

OPTICS, DBCLASD, DEN-
CLUE and DBSCAN

Model-based optimization of the fit between
given dataset and a predefined
mathematical model

EM, MCLUST and SOM

Grid-based Division of the dataset space into
grids

Wave-Cluster and STING

4.3 Proposed VMs/Tasks Clustering Subsystem

Cloud monitoring tools provide copious amounts of data with high density and variation [88].

The proposed VM clustering subsystem, Figure 4.1, divides this time-series big data problem

into small processes of successive data clustering.

72

F
ig

u
re

4.
1:

P
ro

p
os

ed
V

M
s/

ta
sk

s
cl

u
st

er
in

g
fr

am
ew

or
k

73

In Figure 4.1, data centres monitoring tools represent data aggregate for new and consol-

idated (VMs/tasks) states. The collected information also pertains to running resources and

users. In this figure, collected data represents VMs/tasks states. Algorithms and techniques

are used to define VMs/tasks useful states and behaviour in this subsystem through the

following stages:

• Feature selection stage,

• Pre-processing stage,

• Clustering stage, and

• Recommended clustering stage.

The next subsection will describe each stage in detail.

4.3.1 Feature Selection Stage

VMs and users behaviour must be properly selected to include as much information as pos-

sible [44]. The most important parameters that describe user behaviours in cloud workload

include: CPU, memory requests, and VM/task submission rate. During VM/task lifetime,

the average resource utilization for CPU and memory denotes essential parameters elucidat-

ing VM behaviour [51]. These values will be used to create the monitoring matrix.

4.3.2 Proposed Pre-processing Stage

The pre-processing stage is a cleansing process to remove VMs/tasks outliers, i.e. data

objects with extreme values [156]. Proposed pre-processing that improve VMs clustering

comprises of the following steps:

74

• Missing Values Discarding: the first step is to discard those instances that may

contain a missing value. Most cloud monitoring systems can provide users and VM

behaviour metric with high accuracy and availability. This will help prevent a bias in

the clustering process.

• Filtering Process: the second step is the excluding process used to filter noisy VM

related data. e.g. VMs with unexpected behaviour, size of VM greater than the host,

VM with zero, and VM without CPU or memory values.

• Exclude Correlated VMs: the last step is to exclude VMs/tasks with high repetition

for the same user or VMs with correlated behaviour. Correlated behaviour VMs/tasks,

especially with the same user, denote a parallel processing request so that they can

represent a separate cluster. These clusters are not required to include them in the

clustering process; in other words they are clusters on their own.

These steps are represented in Algorithm 1. Inputs of this algorithm include the VMs/tasks

represented by CPUs usage, memories usage, and user data represented by the number of

VM/task per user. These values are obtained from any cloud monitoring tools. The output

of the pre-processing stage is to have a 2D matrix with unique values of CPU and memory

sizes, with each pair representing a VM/task.

Algorithm 1 Proposed pre-processing algorithm

Inputs: VMs/tasks and Users monitoring data
Outputs: 2D matrix (CPU and memory) each pair represents a unique VM/task

1: Normalize VMs/tasks data, and identify Users
2: Remove undefined users and terminated VMs
3: Remove VM/tasks without specified resources
4: Identified predefined instances (VMs/tasks) by a service provider
5: Exclude VMs with very high repetition for the same user or have correlated behaviour,

separate clusters
6: Find the unique values of VMs (CPU and Memory)

75

4.3.3 Clustering Stage

As presented in Section 4.2, there are many existing clustering algorithms, but no single al-

gorithm could handle all types of cluster shapes and structures. In addition, some challenges

are associated with certain algorithms which are required to specify the number of clusters

in advance, e.g. k-means, or need to set a threshold value, e.g. hierarchical. Most algorithms

cannot automatically determine the number of clusters a dataset should be divided into.

The main advantage of the proposed clustering framework is to convert the problem

of big monitoring data into a two-dimension matrix, including unique (i.e. not repeated)

VMs/tasks data, and CPU/memory matrix. The two dimension matrix denotes the moni-

toring matrix for the prediction stage which helps us implement several expected clustering

methods, or even combine multi-clustering methods with high efficiency, including compu-

tation, time and accuracy.

In this thesis, we selected the following algorithms as a candidate for cloud workload

clustering:

• Recursive k-means and k-means++: the k-means++ is similar to k-means with

better initialization procedure, where observations far from existing centroids have

higher probabilities of being chosen as the next centroid. The initialization procedure

is achieved using fitness proportionate selection.

• Iterative Self-Organizing Data Analysis (ISODATA): this algorithm is essen-

tially a splitting and merging operations. If the number of observations within one

cluster is found to be less than one predefined threshold, two clusters are merged with

minimum between-class distance. The splitting into two different sub-clusters when

the variance of one cluster exceeds one predefined threshold.

76

• Mean Shift: this is a non-parametric model algorithm. Mean shift is used to find

neighbors for each point in a dataset, after which mean vector is calculated until the

point equals the mean. There is no need to pre-specify the number of clusters.

• Density-Based Spatial Clustering of Application with Noise (DBSCAN):

this algorithm is used to extend each cluster based on the connectivity between data

points, taking noisy data into consideration. The main drawback of this algorithm is

the selection of good parameters, which can difficult without prior knowledge.

• Gaussian Mixture Model (GMM): this is an iteration process used to estimate

parameters, mean and variance, as well as to generate a mixture of a pre-identified

number of Gaussian distributions.

• Self-Organizing Map (SOM): this algorithm is an unsupervised NN that uses a

neighborhood function to preserve the topological properties of the input space.

• Expectation-Maximization (EM): this is an iterative approximation used to create

a statistical model with maximum likelihood parameter estimation.

4.3.4 Recommended Clustering Stage

Recommended clustering stage is the process of selecting the most suitable clustering al-

gorithm to be used for a specific application. The recommended clustering algorithms are

based on:

• Clustering Purpose: the clustering purpose denotes the target of the clustering

algorithm used. The workload is used as an example to guide dynamic management

decisions, efficient monitoring [49], prediction [39, 41, 153], etc. On the basis of the

77

required clustering purpose, we can decide, for example, if the clusters should be

totally separated or an overlapping is acceptable.

• Compare Results: Comparing clustering algorithms can be done by implementing

several clustering algorithms on the same data. These clustering algorithms may im-

plemented separately or in combination. The selection is based on minimum error and

clustering indices, as described in a separate subsection, Subsection 4.3.5.

• Internal Clustering Validation: the clustering validity indices usually operate as

fitness functions to evaluate the clusters’ quality. The internal index uses quantities and

features inherited from the dataset to evaluate the goodness of a data partition [163].

Like Compactness (CP); Separation (SP); Davies-Bouldin Index (DB); Dunn Validity

Index (DVI). More details about such indices can be found in [157,158,160]. For predic-

tion proposes and due to the fact that a VM/task monitor data will be used, a selected

internal index will be used for examining the clustering methods and identifying the

best number of clusters.

4.3.5 Selected Validation Indices

The target of cluster algorithms in this subsystem is about identifying groups objects (VMs/tasks

and users). In this subsection, we shall present the proposed candidate internal indices that

are observed to be more suitable in cloud workload clustering. The variables and notations

used in this subsection are defined in Table 4.3 for the sake of simplicity.

Calinski-Harabasz (CH)

This index evaluates the cluster validity on the basis of the average between and within-

cluster sum of squares. The CH index is based on a ratio between cluster scatter matrix

78

Table 4.3: General Notation

Variable Explanation
N : Number of observations, VM1, V M2,V MN

p : Observation elements, each of which consists of (CPU, memory, etc.)
A : Data matrix, observation matrix, size of A is N × p, each value is represented as Aij
C : Set of clusters C = {C1, C2, . . . , CK}, data set within this cluster represented by XCk

(i, j)
K : Total number of clusters, (1 ≤ k ≤ K)
c : Centres vector of the clusters, if any, c = {c1, c2, . . . , cK},

NCk : Number of points in cluster Ck
µk : Barycenter of observation in the cluster Ck
XCk

: Data points belonging to cluster Ck

(BCSM) and within-cluster scatter matrix (WCSM), as shown in Equation 4.1:

CHk =
BCSM

K − 1
· N −K
WCSM

(4.1)

The BCSM is based on the distance between clusters, Equation 4.2:

BCSM =
K∑
k=1

NCk.d(ck, µk)
2 (4.2)

where ck denotes the centre of cluster Ck, NCk represents the number of points in cluster

Ck, µk centroid of all the data points and d signifies the Euclidean distance. The WCSM is

given in Equation 4.3:

WCSM =
K∑
k=1

∑
XCk

(i,j)

d(XCk
(i, j), ck)

2 (4.3)

where XCk
(i, j) denotes a data point that belongs to cluster Ck. In order to obtain well

separated and compact clusters, BCSM is maximized and WCSM minimized. Therefore,

the maximum value for CH indicates a suitable partition for the data set.

79

Davies-Bouldin (DB)

Davies-Bouldin (DB) uses the concepts of dispersion of a cluster and dissimilarity between

clusters. The DB index is among the best factor of internal indices [164, 165]. It is capable

of identifying cluster overlap by measuring the ratio of the sum of within-cluster scatters to

between-cluster separations. The DB index is defined in accordance with Equation 4.4:

DB =
1

K

K∑
i=1,j=1

max
j=1,...,k,i6=j

diam(Ci) + diam(Cj)

d(ci, cj)

 (4.4)

Where diam denotes the diameter of a cluster given in Equation 4.5:

diam(Ck) =

√√√√ 1

NCk

∑
XCk

∈Ck

d(XCk
(i, j), ck)2 (4.5)

DB close to 0 indicates that the clusters are compact and far from each other.

Dunn Index (DI)

The Dunn index (DI) is defined as the quotient of smallest distances dmin between the closest

points of two clusters (e.g. Ck and Cḱ) and the largest distances dmax separating distinct

points in a cluster (e.g. Ck), Equation 4.6.

DI =
dmin
dmax

(4.6)

where:

dmin = min
k 6=ḱ

d(XCk
(i, j), XCḱ

(i, j)) (4.7)

Where the largest distances separating distinct points in a cluster (e.g. Ck) are calculated

as follows:

80

dmax = max
XCk

(i,j)∈Ck,i 6=j
d(XCk

(i, j), XCk
(i, j)) (4.8)

XCk
(i, j) ∈ Ck and XCḱ

(i, j) ∈ Cḱ. The DI index used to determine the number of

clusters by maximizing its value.

Silhouette Index (SI)

The Silhouette Index (SI) is used to validate the clustering performance based on the pairwise

difference between and within-cluster distances. This is done by computing the width for

each point used to identify membership of this point in any cluster. The Silhouette width is

an average used for all observations, as illustrated in Equation 4.9:

SI =
1

K

K∑
k=1

NCk∑
r=1

br − ar
max(ar, br)

(4.9)

where ar : the average distance between point r and all other points in its own cluster:

ar =
1

NCk − 1

NCk∑
r 6=j

d(XCr , XCj
) (4.10)

br : the minimum of the average dissimilarities between r and points in other clusters.

br =
1

NCk
min
r 6=j

NCk∑
r 6=j

d(XCr , XCj
) (4.11)

The optimal number of clusters is determined by maximizing the value of the SI index.

Wemmert-Gancarski (WG)

The Wemmert-Gancarski (WG) index is used to find quotients of distances between the

points that belong to a cluster and the barycenter of all the clusters, Equation 4.12:

81

WG =
1

N

K∑
k=1

max

0, NCk −
∑
k 6=ḱ

d(XCk
, µk)

min
k 6=ḱ

d(XCk
, µḱ)

 (4.12)

where µk denotes the Barycenter of observation in the cluster Ck and XCk
represent data

points belonging to cluster Ck. It is possible to obtain optimal number of clusters through

the maximizing of the WG index.

Xie-Beni

The Xie-Beni index is the quotient between the mean quadratic error and the minimum of

the minimal squared distances between the points on the clusters. Let the minimal squared

distances δ(Ck, Cḱ) between the points in the clusters Ck and Cḱ be given as:

δ(Ck, Cḱ) = min
k 6=ḱ

d
(
XCk

(i, j), XCḱ
(i, j)

)
(4.13)

where δ(Ck, Cḱ)

The Xie-Beni index can be written as:

Xie-Beni =
1

N

WCSM

min
k 6=ḱ

δ(Ck, Cḱ)
2

(4.14)

The Xie-Beni index is an index of fuzzy clustering. However, it is also applicable on crisp

clustering. The mean quadratic error, in the case of a crisp clustering, is simply the quantity

1. The optimal number of clusters can be obtained by minimizing the Xie-Beni index.

Table 4.4 depicts the proposed candidate indices that can be used for different clustering

application. In this table, decision rules called max and min mean that one should select the

greatest or the smallest index value, respectively. Some candidate clustering algorithms, such

as DBSCAN, do not have centroids, which is why some internal indices are not applicable

82

to DBSCAN algorithms [166].

Table 4.4: Recommended Validation Indices

Name Rule Description
Calinski-Harabasz (CH) max is the average between and within-cluster

sum of squares.
Davies-Bouldin (DB) min identifies clusters that are far from each other

and compact.
Dunn Index (DI) max combines dissimilarity between clusters and

their diameters.
Silhouette Index (SI) max computes a width for each point, depending

on membership in any cluster.
Wemmert-Gancarski (WG) max represents distances between dataset points

and the barycenter of all the clusters.
Xie-Beni min is the quotient between the mean quadratic

error and the minimum of minimal squared
distances between the points on the clusters.

4.4 Proposed Systematic VMs/tasks Clustering

The clustering quality is depend on several factors:

• Evaluation target : the required target represents the characteristics used for select-

ing suitable indices. For example, the DB index used to evaluate intra-cluster similarity.

In the event this is what the target considers, then the DB index will be considered to

be good criteria. As another example, SI index may be used in the prediction process

in this work because it measures the distance between one point and another in both

same ad different clusters. The same holds true for all quality measures; indices should

relevant to the required clustering goal.

• Normalization : this process is to consider whether or not these quality measures

are normalized. For instance, the SI is normalized and a value close to 1 is always

83

considered good for evaluated clusters. However, the DB for instance is not normalized

and it is difficult to compare two values of DB from different data sets.

• Matching metric: the matching metric is to make sure that the applied quality

measure uses the same metric that the clustering algorithm results. Otherwise, this

quality measure will be biased.

Algorithm 2 summarizes the experimental steps in a systematic way for selecting suitable

VM/task clustering techniques and the number of clusters for VM/task prediction purposes.

Algorithm 2 Proposed systematic VMs/tasks clustering for prediction purposes

Inputs: 2D matrix from Algorithm 1 during a monitoring period
Outputs: Best clustering algorithm and the number of clusters for unclassified VMs/tasks

1: Apply DBSCAN with a threshold value
2: Extract VMs/tasks large resources (CPU,memory)
3: for Each clustering algorithm do
4: i←− 0
5: for i ≤ Max. no. of clusters do
6: Find clusters and centre of clusters
7: i←− i+ 1
8: end for
9: for Each clustering indices do

10: Calculate index value for the number of clusters
11: Find the optimal number of cluster based on index rule
12: end for
13: Measure the similarity with predefined VMs/task classes (algorithm and index)
14: end for
15: Choose the best match pair using the pairwise distance
16: Select a clustering algorithm
17: Select the number of clusters

Before using the algorithm, an offline recursive algorithm is used to cluster the prede-

fined classes and to compute the optimal number of classes for each candidate clustering

algorithm. This will be done based on candidate indices, Subsection 4.3.5. The outputs

are compared with the service provider VMs/tasks predefined classes and the comparison

process is repeated we get a minimum error between real classes and processed classes. Put

84

differently, the offline algorithm will be used to create a matrix concerning the clustering

technique versus the optimal number cluster based on validation indices.

Algorithm 2 shows the experimental procedures used for selecting suitable VMs/tasks

clustering techniques as well as the number of clusters for new and migrated VMs/tasks. In

this algorithm, we used a predefined VMs/tasks classes from a cloud service provider as a

guide to cluster unknown VMs/tasks.

For each pre-processed unknown VMs/tasks dataset during a monitoring period, a DB-

SCAN algorithm will be applied first with a low threshold value. This algorithm is used to

extract the VMs/tasks that may require a large PM. The second step is to find the optimal

number of clusters of each candidate clustering algorithm, Subsection 4.3.3. This will be

done by identifying the number of clusters based on the optimal number of indices. The

last step is to find the similarity between the two matrices using pairwise distance. Both

the candidate cluster algorithm and the number of clusters are premised on the best match

between the two matrices.

This algorithm ensures the balance between conflict objectives in selecting number clus-

ters: (1) reducing errors and (2) maintaining low overhead. When compared to other related

to the same data, e.g. in Google workload trace, Xia et al [167] and Rasheduzzaman et

al [168] chose k = 6 and 5, respectively, for the k-means clustering algorithm. Xia and

Rasheduzzaman depend on the minimum value of k in order to reduce error. They did not

factor in the effect of increasing k on the performance of the predictor. This problem was

discussed by Dabbagh et al [41,65], who suggested choosing k = 4 for the same data sample.

Meanwhile, the best selection of Moreno et al [51] was k = 3 because he included users

behavioural patterns.

85

4.5 Experimental Evaluation and Comparison

The Google trace dataset was described in Section 3.3 for one day (24 hours) in our exper-

iments. The first step after collecting VMs/tasks and users’ information, is to apply the

proposed pre-processing process, Algorithm 1. This includes normalizing the data, removing

undefined users and terminated VM/task, identifying the predefined instances and excluding

VM/task with high repetition for the same user, or VMs with correlated behaviour. The

suggested that pre-processing algorithm lowers the dataset from 3.3M VMs/tasks, Figure 3.4

to 2000 unique and independent VMs/tasks only, Figure 4.2.

Figure 4.2: 2000 Unique and independents VMs for 24h

The proposed pre-processing converts the very large collected monitoring data into a

simple 2D matrix, CPU versus memory usage for each VM/task. The small 2D matrix

allows us to implement and combine multi-clustering techniques with high accuracy and

minimum time. This is particularly significant for real-time application. Table 4.5 shows

the runtime on the same machine, as described in Section 3.3 of 2 candidates clustering

86

algorithm, for example, k-means and FCM concerning a different number of clusters before

and after the proposed pre-processing algorithm. According to our observations, the runtime

for k-means and FCM clustering are reduced from 1 to 3 order of magnitude on average,

respectively.

Table 4.5: Runtime sample of two candidate algorithms

Clustering Technique k-means FCM
Number of Clusters 3 4 5 3 4 5
Without pre-processing (sec) 2.605 3.546 2.78 44.16 60.601 80.131
With pre-processing (sec) 0.209 0.212 0.219 0.053 0.056 0.062
Processing Speed Increase 12 17 13 833 1082 1292

Also, mapping of new monitoring data to each cluster becomes more separable. Separated

clusters will make prediction more accurate in determining types and sizes of predicted

VMs/tasks. Figure 4.3 (a) and (b) illustrate the results for 4 clusters using k-means, where

each category is marked by a different color and centres of these clusters are marked by

“x”, for the data with and without pre-processing, respectively. With pre-processing, the clusters

become increasingly separable and the centres are spaced out.

With the reduced number of data, comparison, and analysis, the effect of the number of clusters

now is convenient, within a short period of time. The Sum of Squared Distances (SSD) is plotted

as a function of the number of clusters. SSD represents the error when each point in the data set

is represented by its corresponding cluster center, as illustrated by the following equation [39]:

SSD =
k∑
i=1

∑
r=Ci

d(r, ci)
2 (4.15)

where Ci denotes the cluster i, i.e., the set of all points belonging to the ith cluster. d(r, ci) is the

Euclidean distance between r and ci.

Figure 4.4 illustrates the comparison between k-means and FCM for different numbers of clus-

ters. Although the FCM algorithm needs long off-line time, we observed that it yields better results

than the k-means based method. This leads to choosing a fewer number of clusters, which will

87

Figure 4.3: Resulting 4 VM/task clusters for 24 hours using k-means (a) Without (b) With
pre-processing

88

affect the overall performance of the proposed framework for a cloud data centre based on energy

consumption by finding a balance between reducing errors and maintaining low overhead.

Figure 4.4: Number of VM clusters vs the sum of square error

Table 4.6 presents the results of the candidate clustering methods with reference to the candidate

internal validity measures. This table has been prepared by implementing all candidate clustering

algorithms for a different number of clusters (up to 15 clusters). For example, Figure 4.5 and

Figure 4.6 represent CH index and WG index evaluations for a different number of clusters.

In Table 4.6, it can be observed that for algorithms that do not need to identify a number

of clusters, such as DBSCAN, we changed the input to obtain a different number of cluster. For

example, Figure 4.7 represents 2 VMs categories for the same data using DBSCAN clustering for

epsilon = 0.03 and minimum points per cluster equal to 3. For VMs with large CPU and/or

memory in DBSCAN is recommended especially in VM consolidation applications, as mentioned in

Algorithm 2. It recommends keeping these large VMs in the same host due to the cost of moving

the big VM.

In Table 4.6, the number of the cluster in each clustering algorithm has been identified based

89

Table 4.6: Candidate internal validity indices for selected clustering methods

Clustering Algorithms
Measures

BH BR CH DB GD BHG SI WG Xie-Beni

Kmeans
Value 0.0122 -18957.8 1421.5 0.8855 0.006 0.9332 0.4644 0.747 158.9
Best 4 14 6 6 1 5 1 1 1

Kmeans++
Value 0.0102 -17075.3 1952.5 0.7236 0.0064 0.9731 0.4705 0.7512 43053.8
Best 4 11 9 1 8 13 3 3 3

Hierarchical
Value 0.0014 NaN 91.2 0.0732 0.2901 0.9997 NaN 0.921 0.1299
Best 2 1 1 1 1 1 NaN 1 1

ISODATA
Value 0.0062 -18912.7 805.2 1.215 0.0003 0.6518 0.2226 0.4279 84082.7
Best 5 13 5 9 2 5 2 2 2

MeanShift
Value 0.0231 -11737.2 296.2 0.7384 0.0091 0.9583 0.5704 0.7505 112.2
Best 6 12 7 10 12 10 11 10 4

DBSCAN
Value 0.0303 -10977.3 452.4 0.0732 0.2901 0.9997 0.6998 0.921 0.1299
Best 2 5 2 6 6 6 5 6 6

GMM
Value 0.0231 -11737.2 296.2 0.7384 0.0091 0.9583 0.5704 0.7505 112.2
Best 6 12 7 10 12 10 11 10 4

SOM
Value 0.0066 -20000.4 1717.7 0.6897 0.0005 0.9579 0.4663 0.7484 199.3
Best 3 9 3 13 5 5 3 2 4

EM Value 0.0052 -13841.5 1195 0.9899 0.0022 0.8149 0.3708 0.6322 1370.8

Figure 4.5: CH index evaluations for a different number of clusters

90

Figure 4.6: WG index evaluations for a different number of clusters

Figure 4.7: DBSCAN clustering (a) Resulting 2 categories (b) Resulting big VMs

91

on the rule of the indices. This table is essential in decision making for selecting the number and

type of clustering method to be used in the specific application. There is no prior knowledge about

the number of clusters required.

The last row in Table 4.6 represents efficient results of EM clustering with two clusters only,

where its performance has been improved through statistical estimation of the initial condition for

both the mean and variance of CPU and memory distribution using Kernel density estimation,

described in [169], as shown in Figure 4.8.

Figure 4.8: CPU and Memory probability distribution estimation

The last step entails finding out the similarity between this table and the predefined class table

generated from an offline recursive algorithm for pre-classified VMs/tasks. Comparison and/or

combine between several clustering methods will also facilitate the process of selecting the most

appropriate combination. e.g. model-based clustering techniques using the SOM and GMM imple-

mented on the same data. These methods provide stable results in identifying boundaries between

clusters and subsequently use k-means or FCM to perform another clustering within these bound-

aries, as shown in Figure 4.9. The determination of boundaries can be implemented using a Support

Vector Machine (SVM) algorithm [170].

The implementation of different combinations between clustering algorithms are represent the

recommendation block, in Figure 4.1.

92

Figure 4.9: GMM clustering (a) Resulting 4 categories (b) Proposed boundaries

Appendix A presents a step-by-step simple implementation of the proposed systematic algo-

rithm 2 for prediction purposes.

4.6 Chapter Summary

In this chapter, we discussed the clustering techniques that can be used for clustering big moni-

toring datasets, represented by VMs/tasks in large-scale data centres. More specifically, efficient

pre-processing and systematic clustering were proposed to select the most appropriate clustering

method based on clustering purpose, predefined validation indices, and clustering algorithms com-

parison. Additionally, we provided essential answers for the following questions: What is suitable

VMs/tasks clustering technique for the large-scale data centre? What is the rationale behind this

choice? In addition, we provide recommendations on clustering validation criteria.

Implementation of the proposed clustering subsystem on real big data shows a vast difference

in accuracy, computation resources and execution time as compared to previous literature work,

where the entire monitoring data is taken into consideration.

93

Chapter 5

User Behavior-Based Workload

Prediction for Cloud-Data Centres

In this chapter, we propose an efficient workload prediction subsystem based on user behaviours.

This prediction subsystem represents the key components of VM provisioning framework in real-

time. The proposed prediction subsystem not only uses VM historical values, but also takes into

consideration user behaviour and current states of the data centre. In this chapter, we also propose

a technique for resolving the problem of predicting window sizes in order to optimize PM utilization.

5.1 Introduction

In our prediction subsystem, we use previous workload patterns to estimate future VM requests in

data centres. Generally, the process of prediction comprises of two steps: VM clustering and VM

prediction for each cluster. Prediction process is an important step for estimating the number of

PMs required for the subsequent period.

Prediction of future resource required, e.g. VMs, is a crucial issue for efficient resource utiliza-

tion in dynamic cloud-computing environments for the following reasons:

94

• Estimation of future performance or workload of each VM ensures service quality and mini-

mizes costs [48].

• Prediction helps administrators take appropriate action to prevent the system from suffer-

ing traffic surges or the Slashdot effect attributed to high loads [68]. Prediction facilitates

proactive job scheduling or host-load balancing decisions [80].

• Prediction is important for lowering the cost of the energy consumed by switching servers in

order to reduce power states when they are not expected to be used [171].

• Workload estimation is not only used to decide whether to add or remove resources, but

also to rearrange the order of query execution, and admit or reject new incoming resource

requests [172].

• Accurate prediction host loads is also a significant factor in satisfying SLAs.

The forecasting load for a period of time (e.g. minutes) is necessary for real-time control, re-

source allocation, capacity planning and data centre energy saving in cloud computing. However,

such accurate predictions are extremely challenging, owing to the possible instantaneous fluctua-

tions in the load [80].

In this chapter, we propose a prediction subsystem that combines the systematic clustering

presented in Chapter 4 and user behaviour in order to forecast future VM requests. The next section

elucidates the components of the prediction subsystem. In Section 5.3, we describe user clustering

components and propose the filtering process of VMs filtering. Section 5.4 and Section 5.5 discuss

the observation and prediction windows sizes. Improved multivariate time series ELM prediction

algorithm is given in Sections 5.6. Experimental implementation of the proposed subsystem will

be discussed in Section 5.7. The summary of the chapter will be presented in Section 5.8.

95

Figure 5.1: Proposed Prediction Subsystem

5.2 Prediction Subsystem

The rapid variations in VM requests and user behaviours make it difficult to use conventional

machine learning algorithms with off-line learning. However, this work proposes a modified ELM

algorithm to obtain an accurate prediction of VM requests. A multivariate time series ELM al-

gorithm with the systematic clustering is presented in chapter 4, after which user behaviour will

be combined in a prediction framework so as to forecast VM requests. A real-time VM workload

prediction subsystem consists of the following main components, Figure 5.1:

Clustering component represents the clustering process, which is used to create a set of clusters

for different types of VMs and users. The centres of VMs and users clusters are used for classifying

collected data. The collected data denote the new request and/or consolidated VMs, during a

specific time frame referred to as observation window.

Mapping component is used to map or distribute each request received during a given obser-

vation window into one cluster on the basis of calculated cluster centres.

User and VM behaviours component influences the overall cloud workload. Comprehensive

workload models must consider both VMs and users, and even individual VM behaviour in order

to reflect realistic conditions by excluding unwanted VMs or users from the workload estimation

process.

Historical workload: the historical workload is updated periodically, and used to forecast

96

the next period VM request for each observation window.

VM Request gathering tool components represent the monitoring tools, Section 3.3. These

monitoring tools are also used for detecting and tracking the variations or failure of resources as

well as applications during an observation window.

Workload prediction component is used to estimate future VM requests. In this component,

current and previous usage patterns are used to estimate future VM requests in a data centre.

Prediction window size is used to decide whether or not PMs need to be switched to sleep

mode. Its value depends on the configuration of the data centre, especially the server hardware.

The monitoring frame is determined based on the prediction window, the clustering, and prediction

algorithm used.

The main characteristics of the proposed prediction subsystem are as follows:

• Proposed prediction subsystem integrates clustering not only on VM requests, but also on

user requests. Consequently, a proper filtering process excludes unexpected VM requests

caused by unpredictable users’ actions.

• This subsystem overcomes the problem of time-varying VM requests. Time-varying means

VM not only shifts the resource required in time, but also due to changes caused by the

behaviour of other data centre resources. The proposed prediction subsystem depends on

the actual service demand.

• This subsystem is an ELM-base online sequential framework which eliminates restrictions

about observation window size and the number of VM clusters.

A time delay or time advance of input not only shifts the output signal in time, but also changes

other parameters and behavior. It is notable that time variant systems respond differently to the

same input at different times.

97

5.3 User Behavior-Based Filtering Process

The data centres workloads are driven not only by VMs’ characteristics, but also by user behavioural

patterns. User behaviours are significantly more diverse than VMs behaviours [51]. In the proposed

prediction subsystem, user behaviour helps identify the dependency and/or the relationship between

users and VMs/tasks so as to improve the accuracy of the prediction. This will be done through

excluding VMs with unstable user behaviour from prediction process. Generally, users can be

classified into three event types:

• Users with high VM number can be considered as a significant event, which implies that the

user has a high number of useful resources on a frequent basis.

• Users with moderate VM number can be considered as medium events, which implies that

the user is using the resources in a medium frequency

• Users with low VM numbers or no events can be considered as low events.

Users behaviour in a cloud data centre is difficult to predict. User behaviour modeling depends

on the problem setting and its domain. Given that this research depends on monitoring tools

wherein users’ and their creating patterns that define each user VM requests are provided, it is

important to clarify and highlight definitions of user activity, user event and user behaviour in the

context of VMP. We have used the following definitions:

• Activity is the current action being carried out by the user.

• Event is grouping similar user activities that take place by a certain user at a certain time.

• Behaviour is a collection of performed events to be stored as history about a specific user.

In cloud data centres, user identity is undefined for security and privacy proposes. For ex-

ample, user names are hashed and provided as opaque base64-encoded strings in data described

in Section 3.3. Our proposed algorithm will: a) Identify users for current monitoring period; b)

98

Define a specific numeric code for each user; c) Cluster users on the basis of their behaviour (see

Algorithm 3).

Algorithm 3 Clusters users based on their behaviour

Inputs: Names of all users and all VMs/tasks
Outputs: Names of users without repetition and number of VMs/tasks for each user

1: Extract all names in a specific period
2: Delete repeated names by matching strings
3: Coding user to numbers
4: Use a suitable user clustering technique

In this chapter, the clustering algorithm will be used as a means of grouping users based

on their behavior. Usually, users’ activities are represented using vectors of their behaviour

and time. The clustering algorithm clusters them in different forms based on event types.

In large scale data centres, the number of users is usually large and is continuously

changing. Therefore users should be clustered based on used characteristics. Our proposed

clustering will be based on the number of submitted VMs for each monitoring sample. This

means that we totally depend on the user’s instant profiles and the number of VM requests

during a single monitoring period. In this process, it is important to leverage users’ behaviour

in filtering VMs clusters for prediction algorithm.

With the user clustering process, a mapping process is used to distribute VMs received

during an observation to a specific user cluster. The output of this stage will be in a 2D

matrix form combined VMs and users clusters represented by a matrix, in which each row

represents a time period, as shown below:

99

V1U1 V1U2 · · · V1Uu V2U1 · · · V2Uu · · · VmUu Time(min)



V 0
1 U

0
1 V 0

1 U
0
2 · · · V 0

1 U
0
u V 0

2 U
0
1 · · · V 0

2 U
0
u · · · V 0

mU
0
u t0

V 1
1 U

1
1 V 1

1 U
1
2 · · · V 1

1 U
1
u V 1

2 U
1
1 · · · V 1

2 U
1
u · · · V 1

mU
1
u t1

...
... · · · ...

...
...

... · · · ...
...

V i
1U

i
1 V i

1U
i
2 · · · V i

1U
i
u V i

2U
i
1 · · · V i

2U
i
u · · · V i

mU
i
u ti

(5.1)

where Vi denotes VMs in cluster i; Ui represents users in cluster j; m is number of the

VMs’ clusters; and u signifies the number of users’ clusters. e.g. V k
i U

k
j represents the number

of VMs in cluster i and user in cluster j at time period k.

The filtering process will be used to remove users with a low number of VMs. This

will increase the accuracy of the prediction algorithm by removing VMs with the lowest

probability. Algorithm 4 summarizes the steps where the output of this process is filtered

VMs clusters to be used in the next prediction stage.

Algorithm 4 Filtering process based user behaviour clustering

Inputs: VMs clusters and users monitoring data
Outputs: Filtered VMs clusters each cluster with CPU and memory size only

1: Calculate the number of users from historical data, Algorithm 3
2: Using historical data, long-period users clustering based on the number of VMs/tasks
3: Find the number of VMs for each user during the sampling period
4: Calculate the number of VMs for each user cluster
5: Find a unique user/VM clustering matrix
6: Filter user/VM matrix by deleting users with a small and very-low number of VMs

In this algorithm, historical data are used to cluster users based on the number of VMs

for each user during a specific period that represents the observation windows to be used

for forecasting the next period of time. A unique user/VM clusters matrix will be filtered

by deleting the column with the lowest expectation of VMs, i.e. unexpected user clusters

100

with a specific type of VM. As an implication, the filtering process eliminates VMs with the

lowest probability from the prediction process. The filtering process can be done by using

the following:

• Predefined threshold : This filter is used to delete the column with the lowest ex-

pectation of VMs, i.e. unexpected user clusters with a specific type of VMs. Put

differently, the filtering process eliminates VMs with the lowest probability from the

prediction process.

• Feature selection : This filter is used to exclude a specific or predefined types of user

or unwanted users under a process that is suitable for data with predefined classes.

However, this filter does not match with the proposed framework where there is no

information about the data centre users.

• Dimensionality reduction : This filter is based on table minimization technique.

The dimensions of the input space are used to facilitate the exploration of structures in

high-dimensional data. Dimensions reduction techniques are not recommended in our

proposed prediction subsystem due to the nature of the problem in mixing between

two independent variables users and VMs behaviour.

5.4 Observation Window Size

The determination of observation windows size is a process of observing and monitoring

workload variations during past time periods. Observation window will be used to specify

the time frame for gathered data to feed the prediction process. A long time frame will

increase the calculation, while a short time frame will reduce the prediction’s accuracy.

For example, in Google trace data described in Section 3.3, Di et al [80] estimated the

101

observation window to half of the prediction window length. Dabbagh et al [41, 171] used

experiments to estimate the duration of the observation window in each cluster for the same

data. i.e. different observation window sizes for each cluster. They increased the size of the

observation window gradually until a point is reached beyond which the prediction error can

no longer be reduced and even the window size increases.

In the proposed subsystem, we estimate the size of the observation window after classify-

ing VMs into clusters. A unique observation window size for all clusters will be determined.

This is estimated based on clusters behaviour during previous time periods. Clusters’ be-

haviour will be represented by the maximum degree of the equation that can fit into cluster

centres. This degree is the number of previous periods required to feed the predictor.

5.5 Prediction Window Size

The prediction window is the time period for the workload that is making the forecast. The

prediction window size represents the algorithms and optimization techniques used to deter-

mine the minimum number of times that the prediction calculations must be performed. For

example, Prevost et al [7], presented a dynamic prediction quantization method for deter-

mining the number of prediction calculation intervals to be performed within the required

future load SLAs. They didn’t take into consideration the PMs status, which is necessary

for power consumption framework.

The prediction window size completely depends on the configuration of the data centre,

especially the server hardware. We adopted Dabbagh et al [41, 171] proposal in estimating

prediction window size. It is based on the difference between the energy cost for keeping the

PM idle or PM Off/On power cost, as mentioned in the following equations:

102

Esleep = E0 + Psleep · (Tp − T0) (5.2)

where Tp denotes the length of the prediction window, Psleep is the consumed power when

in the sleep mode, E0 signifies the energy needed to switch the PM to the sleep mode as

well as the energy needed to wake up it later, and T0 represents the transitional switching

time. The estimated time required to keep the PM ON and idle (Tb) consumes an amount

of energy that is equal to the energy consumed due to mode transition plus that which is

consumed while the PM is in the sleep mode during that same period:

Pidle · Tb = E0 + Psleep · (Tb − T0) (5.3)

where Tb denotes the beak-event time. This means energy can be saved by switching PM

to sleep mode if and only if the PM stays idle for a time period longer than Tb. That is,

Tp ≥ Tb must hold in order for power switching decisions to be energy efficient.

According to the above, and for heterogeneous data centre environments, Tp value can

be easily estimated based on individual PM profiles provided by a monitoring tool. In our

implementation, we are going to use the PM energy measurement study of PMs conducted

in [173] in order to estimate the break-even time, Tb.

5.6 Improved ELM Predictor

Generally, machine learning, and especially neural networks, are powerful tools for solving

problems associated with complex systems. For this reason, machine learning is the best

approach for modeling systems with a high complexity, where there is good information

or where the information is almost correct owing to available monitoring tools. The main

103

objective of this prediction approach is to find a suitable model so as to ensure the best fit

between the predicted and actual results request.

In this next section, we propose an improved ELM-based predictor and combine it with

the proposed clustering technique in Chapter 4 to forecast the number and type of VM in

a data centre. The main features of the proposed predictor are compared with related work

as discussed in Subsection 2.2.3 are:

• ELM is single-layer neural network, with one iteration. The ELM is perfect for real-

time application

• Overcome conventional gradient-based learning methods requirements, such as avoid-

ing stopping criteria, size of learning epochs, and local minimums.

• An online sequential process, which is able to eliminate the restrictions on observation

window size and the number of clusters.

• Allows each cluster to have its own predicting network, so as to reduce errors.

• Overcomes the problem of time-varying VM requests, by depending on the actual

service demand.

The ELM is a single hidden layer feed-forward neural network, with one input layer, one

hidden layer, and one output layer. The predictor is used to estimate the number of VM

requests for each VM cluster during the observation window. This will be done by using the

previous states of each cluster C(k) = [c1(k) c2(k) . . . cK(k)]′ to forecast the number of VM

for next period for each cluster C(k + 1) = [c1(k + 1) c2(k + 1) . . . cK(k + 1)]′. Where ci(k)

is current number VMs in cluster i and ci(k + 1) is the predicted number VMs in cluster i.

The number of clusters (input/output) of predictor that may change in each monitoring

period depends on the recommended number of cluster from the clustering subsystem. Put

104

differently, the ELM predictor has a variable structure by changing number of input/output

nodes. The number of hidden nodes is given by l in Figure 5.2. wji denotes the weight

between the ith neuron in the input layer and the jth neuron in the hidden layer. βjr

represents the weight between the jth neuron in the hidden layer and the rth neuron in the

output layer. Finally, bj signifies the threshold in the jth hidden layer.

Figure 5.2: ELM predictor

For a general setting, let X(k) and Y (k) be the input and the output vectors at sample

k, respectively. Let W be the input weight matrix (l × n). Let B be the output weight

matrix (l × n), and b be the bias vector. Then, we get:

X(k) = [C1(k) C2(k) . . . Cn(k)]T (5.4)

Y (k) = [C1(k + 1) C2(k + 1) Cn(k + 1)]T (5.5)

105

W =



w11 w12 · · · w1n

w21 w22 · · · w2n

...
...

...

wl1 wl2 · · · wln


l×n

(5.6)

B =



β11 β12 · · · β1n

β21 β22 · · · β2n

...
...

...

βl1 βl2 · · · βln


l×n

(5.7)

b =

[
b1 b2 . . . bl

]T
l×1

(5.8)

If there are Q samples of data, the input matrix X and the output matrix Y are given by:

X =



x11 x12 · · · x1Q

x21 x22 · · · x2Q

...
...

...

xn1 xn2 · · · xnQ


n×Q

(5.9)

Y =



y11 y12 · · · y1Q

y21 y22 · · · y2Q

...
...

...

yn1 yn2 · · · ynQ


n×Q

(5.10)

The ELM with l hidden nodes with an activation function g(x) and the output Y (t) is

given by:

106

Y (t) =
l∑

i=1

βigi(xj) =
l∑

i=1

βigi(wi.xj + bi), j = 1, . . . , Q (5.11)

If the target vector T is [t1, t2, . . . , tQ]Tn×Q, and tj = [t1j, ..., tnj]n×1, using Equation 5.11,

the target matrix T can be written as follows:

T =



l∑
i=1

βi1gi(wixj + bi)

l∑
i=1

βi2gi(wixj + bi)

...
l∑
i=1

βingi(wixj + bi)


(5.12)

By separating β and therefore g in Equation 5.12, we get:

Hβ = T (5.13)

where β = [β1, β2, ..., βl]
T and H is the activation matrix provided by the following substi-

tutions:

H(w1, ...,wl, b1, . . . , bl,x1, . . . ,xQ) =



g(w1x1 + b1) g(w2x1 + b2) · · · g(wlx1 + bl)

g(w1x2 + b1) g(w2x2 + b2) · · · g(wlx2 + bl)

...
...

...
...

g(w1xQ + b1) g(w2xQ + b2) · · · g(wlxQ + bl)


(5.14)

H is called the hidden-layer output matrix of the network. The ith column of H is the

ith hidden node’s output vector with respect to the inputs x1, x2, · · · , xn whereas the jth row

of H is the output vector of the hidden layer concerning the input xj [174].

107

Huang et al [175] demonstrated that the input weights wj and biases bj for j = 1, 2, · · · , l

associated with the hidden layer can be assigned random values, and hence do not require

any training. The output weights βi, i = 1, 2, · · · ,m are determined through learning from

the training instances by solving the following objective function:

min︸︷︷︸
β

‖Hβ −T‖ (5.15)

and its solution is:

β̂ =
(
µI +HTH

)−1
HTT (5.16)

for l < N , where I is the identity matrix; µ is a regularization parameter.

Equation 5.16 represents the optimal weight current sample, which can be updated for

each previous time series samples to forecast the one step ahead sample according to:

β̂ = β̂ + λ∆β̂ (5.17)

As is the case with any delta function, this proposed improvement is added to the updated

weight in regular feed-forward neural network with back propagation training algorithm

where the new weight depends on previous weight with delta error between two previous

estimated weights.

∆β̂ =
(
µI +HTH

)−1
HTe (5.18)

where λ is a control parameter (0, 1) and e = [e1, e2, . . . , em]T is the error vector.

The predicted output Ŷ (k+ 1) will be calculated for the last estimated β̂ for a new data

set through:

108

Ŷ (k + 1) = hβ̂ (5.19)

where h denotes the H matrix for the new input.

Algorithm 5 describes the steps of the Multivariate Time Series ELM predictor.

Algorithm 5 Multivariate time series ELM predictor

Initialization: Choose µ, l; randomly generate wij and bi; initial error Eold
Inputs: Normalize X(k) and T(k) to scales [0.1- 0.9]
Output: OptimalŶ (k + 1)

1: while Enew < Eold do . repeat for each estimation
2: for k = 1 : P do . P is the number of observed samples
3: Calculate H(X(k), w, β) using Equation 5.14
4: Calculate h(z, w, β) where z = X(k + 1)
5: Calculate Ŷ (k + 1) using Equation 5.19
6: Calculate new error e(k) = T (k)− Y (k)
7: Enew = Eold + 1

2

∑
e2(k)

8: end for
9: Calculate ∆β̂ using Equation 5.18

10: Update weights using Equation 5.17
11: if Enew >= Eold then
12: µ = ρµ
13: else
14: µ = ρ/µ;
15: end if
16: end while

In this algorithm, ρ is an update parameter and P denotes the chunk data number. When

P > 1, the improved ELM algorithm can update the output weights when every P sample

is observed.

5.7 Experimental Results

In this section, the efficiency of the proposed prediction subsystem will be evaluated using

the Google trace data that was explained in Section 3.3. Figure 5.3 shows k-means and FCM

109

clustering for different numbers of user clusters for the same period of Google data. The

number of users over 10 hours was 299. FCM achieved better results for a small number of

clustering, which will be very useful in reducing the number of inputs in a prediction system.

In turn, this will improve the overall proposed framework energy consumption optimization.

If we choose six classes of users, the number of tasks given to each class is illustrated in

Figure 5.4.

Figure 5.3: Number of user clusters vs sum of square error

Figure 5.4: Number of tasks for each user’s cluster

110

Table 5.1 depicts a sample of the VM/user mapping matrix described in Algorithm 3,

where the first column represents the time (in minutes). It commences from minute 60

because we use the first day of Google Trace data, where the monitoring starts after the

first hour [46]. This means that the mapping matrix in this example consists of 1440 rows

(representing the number of minutes in 24 hours) and 28 columns (denoting 4 VM times 7

user clusters).

Table 5.1: Sample of VM/user clustering matrix for 4/7 VM/user clusters

Time(Min) VM1U1 VM1U2 VM1U3 VM1U4 VM1U5 VM1U6 VM1U7 VM2U1 · · · VM4U7
60 1 0 0 0 0 0 35 3 · · · 15
61 0 0 0 0 0 0 731 9 · · · 6
62 0 0 0 0 1 0 260 6 · · · 3
63 0 0 0 0 0 0 68 6 · · · 6
64 0 0 0 0 3 0 2181 9 · · · 11
65 34 0 0 0 2 0 2109 0 · · · 1
66 57 0 0 104 0 0 774 15 · · · 16
...

...
...

...
...

...
...

...
...

. . .
...

1500 74 0 0 1 2 0 632 1176 · · · 111

The filtering process is used to delete the column with the lowest expectation of VM, i.e.

unexpected user cluster with a specific type of VM. This implies that the filtering process

eliminates VMs with the lowest probability from the prediction process.

Experiments show a greater variance of user cluster behaviours SSD error, Equation 4.15,

when compared to its VM cluster behaviours. In addition, user cluster results reveal that

in some cases, users have a very small number of specific VM clusters. Hence, long term

data during the off-line clustering can be used to identify and remove these types of user

clusters from the prediction computation. Such filtering will then improve the accuracy of

the prediction by removing the outliers from the dataset used.

In order to evaluate the proposed ELM predictor, we compare it with a primarily ELM

predictor with 2 state feedback [39]. In other word, Equation 5.4 and Equation 5.5 written

as:

111

X(k) = [C1(k) C1(k − 1) C1(k − 2) . . . C3(k − 1) C3(k − 2)]T (5.20)

Y (k) = [C1(k + 1) C2(k + 1) C3(k + 1)]T (5.21)

Primarily predictors like the improved ELM predictor is used to estimate the number

of VM requests for each VM cluster during the observation window. ELM mainly uses the

three previous states of each cluster, based on the clustering subsystem where each cluster

is represented by a second-order equation during the sampling period (monitoring window).

This means that if we have three types of VM clusters, primarily predictor will use 9 inputs

and 3 output. In other words, the resulting primarily ELM predictor has a structure of

9-input nodes, l hidden nodes, and 3-output nodes [39].

Both predictors will be evaluated by calculating and comparing the Root Mean Square

Error (RMSE) defined as follows:

RMSE =
3∑
i=1

√√√√ 1

N

N∑
k=1

(
Ŷi(k)− Yi(k)

)2

(5.22)

where i denotes one of the 3 categories used, and N represents the total number of samples.

For the primarily ELM predictor, Algorithm 5 changed to Algorithm 6:

Algorithm 6 Preliminary ELM predictor

Input : Regular parameter R instead of µ; number of hidden neurons l; Random W and b
Input : Normalized [X(k), Y (k), Y (k − 1), Y (k − 2)]
Output : Normalized Y (k + 1)

1: Calculate the hidden layer output matrix H(X(k), w, β) using Equation 5.14.
2: Calculate the inverse matrix term G = (I

R
+H ′H)−1

3: Calculate the output of the hidden layer using the new unknown input h(X(k+1), w, β)
4: Calculate the predicted output, of the ELM Ŷ (k + 1) using Ŷ (k + 1) =

[C1(k + 1) C2(k + 1) C3(k + 1)]T = hβ̂

In both predictors, we first select the number of hidden nodes l and the regulation

112

parameter R or µ. Figure 5.5 and Figure 5.6 illustrate the relationship between the number of

hidden neurons l and the RMSE for the preliminary and multivariate predictors, respectively.

Evidently, RMSE is reduced by increasing the number of hidden neurons l , like any other

conventional gradient descent algorithm. The main difference is that the error is less in

the multivariate algorithm for a law number of the hidden neuron. Importantly, number of

hidden neurons in the second predictor is about 1/3 of the preliminary predictor.

Figure 5.5: RMSE vs number of hidden neuron l in preliminary predictor

The value of the regulation parameters R and µ does not have a major effect on the value

of RMSE in both predictors, as illustrated in Figure 5.7 and Figure 5.8 which reveal the

relationship between the regulation parameters and the RMSE. In subsequent experiments,

we used l = 100 and µ = 1/5000 for the proposed forecaster.

Figure 5.9 shows an arbitrary 10-hour data with 5 min sampling rate of the actual number

of requests received as compared to both preliminary and multivariate predictors outputs.

The two predictors almost gave the same behaviour as the actual number of VM requests.

113

Figure 5.6: RMSE vs number of hidden neuron l in the multivariate predictor

Figure 5.7: RMSE vs regulation parameter R for the preliminary predictor

Execution time (in seconds) for both preliminary and multivariate predictors were 1.9661

sec. and 0.7106 sec., respectively. The proposed multivariate forecaster is faster than the

preliminary counterpart by almost 60-70%.

In order to illustrate the efficacy of our approach, we have compared the proposed pre-

dictor accuracy with the followings: Preliminary (Simple) ELM, Last minute predictors,

Min predictors, Max predictors, Average predictor, Exponential Weighted Moving Aver-

age (EWMA) predictors, Linear Regression (LR) predictors, and Wiener filters [41,65,176].

These algorithms are used for estimating the number of request in each of the four clusters

114

Figure 5.8: RMSE vs regulation parameter µ for the proposed predictor

Figure 5.9: Sample of actual vs predicted number of requests

of VMs.

Figure 5.10 shows the RMSE of each of these prediction approaches, for 5 hours test

115

sample with 5 minutes prediction window. Our proposed predictor is found to yield the

lowest RMSE.

Figure 5.10: RMSE comparisons of different predictive approaches

Several scenarios in the types and sizes of predictor inputs are used to investigate the

effect of inserting user behaviour (user clusters) on VM request forecasts. All scenarios are

implemented for six user clusters and four VM clusters. These scenarios are (1) ELM with

three states of VM clusters; (2) ELM with three states of VM and one state of user clusters;

(3) ELM with three states of VM and user clusters; (4) ELM with one state of VM and user

clusters; and (5) improved ELM with one state of VM clusters.

Figure 5.11 and Figure 5.12 shows a comparison of several scenarios in the types and

sizes of predictor inputs, while Figure 5.11 depicts these comparisons for each VM cluster.

It evident that the proposed multivariate ELM gives a faster and minimum error for both

in totality and for individual clusters.

Experiments confirm that the proposed filtering process can be used to remove VM

requests that have less probability, on the basis of historical data. We also noticed that

adding only user clusters as the input to the ELM prediction algorithm will not be efficacious.

Such addition will increase the rate of error, because the principle of ELM is to estimate the

116

Figure 5.11: RMSE comparisons of different ELM inputs and states scenarios

Figure 5.12: ELM request error for each cluster without user behaviour for 5 hours data

117

nonlinear function, which will have more errors if we add more variables. On the other hand,

our approach of using both user clusters and VM request together with the proposed ELM

can provide as much as 20% improvement in accuracy. Further improvement in accuracy

may be derived on the basis of using a long term offline filter, given a set of data. Value

selection for update parameter ρ and control parameter λ can also impact the accuracy of

results. In our experimentation, optimal values were found using a trial-and-error approach.

Part of future work can focus on finding a systematic way of finding off-line optimal values

of ρ, λ and even the type and number of hidden neuron l.

The on-line multivariate time series ELM eliminates any restrictions on observation win-

dow size and the number of VM clusters (inputs) for the predictor. In our online compu-

tations, we simply input the current state and used an iteration of previous states to cover

all possible observation window states, instead of using all the previous state for observation

windows as inputs. This approach also reduces the computation that is required to find the

inverse of the Hessian matrix in Equation 5.18.

5.8 Chapter Summary

In this chapter, we proposed a real-time workload prediction subsystem that can be used for

a better energy conservation strategy. A key component of the proposed subsystem is the

modified ELM predictor with a multivariate time series algorithm for VM request forecasting.

The improved ELM can deal with the problem of time-varying VM requests, eliminating any

restrictions on observation window sizes as well as the number of VM clusters for the ELM

predictor. The subsystem is premised on the efficient use of historical VM requests, user

cluster algorithms, the current state of the data centre, and an effective prediction window

118

size.

The long term historical workload time series data from cloud computing platforms can

be used for finding the centre of VM size cluster and for filtering the VM class-based on the

probability of user behaviour class. These centres and filtered historical data with predefined

window size, and the propose ELM-predictor, will improve the accuracy of the estimated

number of requests in various VM categories.

We evaluated the predictor performance using Google trace data for different sampling

rates and duration of time. The proposed ELM algorithm showed an improvement in accu-

racy of up to 20%. For a given set of data, it may be possible to derive further improvements

in accuracy by using a long term offline filter.

119

Chapter 6

VM Placement and Machine

Condition Index

This chapter introduces a concept called the Machine Condition Index (MCI) of a server.

MCI is a single unit that meters all resources relating to servers in a cloud data centre.

For a cloud service provider, MCI is a tool used to compare services, increase efficiency,

and ensure manageability of resource usage in the enterprise. MCI is a measure of the extent

to which the PM is suitable enough or handling the new or consolidated VM(s) in large scale

heterogeneous data centres. MCI will be used to convert the multi-objective optimization so

as to solve the VMP problem into a single-objective problem. This is very useful in real-time

VMP applications.

In this chapter, we will identify the MCI components and the manner in which we can use

it as a cloud resource unit. Then a proposed VMP algorithm uses MCI as a main objective

function that will be developed and implemented.

120

6.1 Introduction

In this thesis, the proposed real-time framework uses VMP to map VMs to PMs in order to

minimize the number of PMs required by the set of VMs. This will save energy usage by

switching-off unused servers. In other words, the objective of the VMP is to determine the

minimum number of PMs required by the set of VMs. Details in Section 2.5.

For proactive dynamic VM consideration, a deterministic approach, optimization-based,

technique should be considered to achieve an exact VMP in a cloud data centre. The scope

of this chapter is to find an optimal VMP for a heterogeneous data centre for real-time

applications. The main part of any VMP algorithm is the PM.

The majority of prior work has focused on CPU utilization of the PM as the main

factor for specifying the utilization of a PM. In this chapter, a novel factor named Machine

Condition Index (MCI) will be introduced as a new concept in describing the PM that scores

PMs in the data centre through pre-defined direct (measurable) and indirect (estimated)

values.

MCI will be used to effectively formulate the problem of VMP from that of multi-objective

optimization into that of a single-objective. By using MCI as an objective function to opti-

mize the VMs placement, the proposed VMP are imbued with the following characteristics:

• VMP algorithm does not have to consider CPU as their only input. The algorithm

is extended to consider other important resources as well, such as memory, storage,

bandwidth, cooling, etc. The proposed VMP algorithm takes all PM characteristics

into consideration, as opposed to merely workload characteristics.

• MCI takes into consideration the heterogeneity of PMs in terms of power efficiency

and capacity.

121

• MCI can also be used to rank available PMs, which, in turn, can assist with VMP and

resource scheduling.

MCI is implemented as a cloud unit for metering all resources related to the services

delivered by a cloud service provider. MCI is adopted as an effective tool for comparing the

services available by those providers, and can lead to increased efficiency and manageability of

resource usage within an enterprise. MCI can be considered as a standard unit for measuring

cloud resources within a data centre IT infrastructure. The main advantages of using MCI

as a cloud unit are as follows:

• MCI simplifies service offerings into a single unit with a known metric.

• MCI enables organization and cloud users to better predict costs.

• MCI monitor and distribute users’ cloud resources effectively and efficiently.

The remainder of this chapter is organized as follows. Description, formulation and

features for the proposed MCI will be introduced in Section 6.2. Similarly, multi-objective

VMP based MCI will be discussed in Section 6.3. Experimental implementation and analysis

of results examining the validity of the MCI as a cloud pricing unit and VM placement

algorithms will be described in Section 6.5. Finally, a summary of the chapter will be

presented in Section 6.6.

6.2 Machine Condition Index (MCI)

MCI provides a dynamic structure in which all server components can be reduced to a

quantifiable variable. It is capable of capturing PM operations environment (power and

122

cooling), infrastructure (CPU, memory, storage, and network), security (firewall etc.), in

addition to data centre service tiers (platinum, gold, silver) and availability attributes.

MCI is a nonlinear index that contains many variables operating separately and being

measured independently, or in concert with one another. Meanwhile, variables considered

can be both quantitative and qualitative. This implies that the estimation of MCI variable

coefficients is premised on measurements and expert knowledge. This will be done by iden-

tifying the parameter that will have a more pronounced effect, taking energy-conservation

as an example. MCI consists of direct and indirect measurements of different digital com-

ponents within the data centre. These values are based on:

• Infrastructure components: power and cooling

• Server hardware: CPU, memory, bandwidth, I/O, and storage

• Server software: hypervisor type, OS, and applications

• Service attributes: deployment and component model

MCI is a dynamic assessment rating of various PM elements, through direct and indirect

measurements of various imperative digital components in a data centre. The fundamental

configuration of the proposed unit is denoted by:

MCI = K
n∑
i=1

wixi = KW ′X (6.1)

where X = [x1, x2, . . . , xn]′ measurable infrastructure components (CPU, memory, net-

work, I/O, cooling, etc.); n denotes the number of measurable components; W = [w1, w2, . . . , wn]′

are coefficients calculated based on the component unit power effect concerning the entire

system; K signifies the host attribute factor, including security, availability, performance,

and priority.

123

The MCI value can be derived via paramedic estimated based specific cost function

estimation. In order to find the n parameters of W in Equation 6.1 we can use:

MCI = f(KW ′X) + e (6.2)

Where e is an error between estimated value and real values of MCI. Based on the least

squares that minimizes the Euclidean distance between the estimated values and the real

values, the W ′ parameters can be calculated by:

W = (X ′X)−1X ′Y (6.3)

Given an arbitrary X we can then estimate the cost function for the MCI. The above

elements represent the measurements at the macro level. For an operator with more specific

resource utilization (e.g. network can be split into firewall rules, IP addresses, storage can be

split into primary and secondary storage, etc.), these elements can be measured as allocated,

consumed or a combination of both. Figure 6.1 illustrates such an implementation in this

data centre.

In all cases, measurements are taken at specific parameter levels and analyzed in order

to provide a consumed value. The principle is to apply the weighted cost of the “split out”

component so as to derive its coefficient, and the unit value is the multiple of the component

scalar value and its coefficient.

MCI is not limited to a specific components, and can be extended, depending on the

nature of the server components and available measurements. For example, high-performance

disks, installed software, etc. can be added and used.

All data centre resources can be reduced to quantities of the basic unit, via the component

“drag coefficients”. Drag coefficients are derived via the multidimensional vector scaling

124

Figure 6.1: Resource allocation based on MCI

method (MDS) using large sample sets, Algorithm 7. Reduced dimensions matrix will be

generated using the square root of the dot product of the eigenvectors matrix and the diagonal

matrix of the largest eigenvalues.

Algorithm 7 Classical MDS

Input: Data centre resources instant power and usage (from a monitoring tool)
Outputs: Reduced MCI coefficient vector (eigenvalues)

1: Given a power measurement vs percentage usage for each MCI element
2: Create a distance matrix between elements
3: Create a square form for the matrix
4: Find the eigenvalues using Equation 6.3

The development of such a unit assumes great significance for IT resource management

and control, since it aggregates and quantifies IT resources as a unified block with an as-

sociated unit count. Portions of this resource block can then be assigned to user accounts

as budget. Controls can be implemented in a resource metering application on the basis of

125

unit value, which prevents user account (or cloud admin account) from going beyond the

allocated unit amount.

Similar to financial budgeting, this cloud unit can be transferred from one user to another

to ensure optimum resource management. A cloud unit provides the best means for control-

ling IT resources within a data centre. In addition, it enables resource allocation “given”

to specific users or departments while maintaining control of overall system resources at an

admin level.

For VMP application-based power consumption, a server’s MCI is a measure of the

extent to which the PM is suitable for handling new or consolidated VM(s) in large scale

heterogeneous data centre. It can be used to indicate which PM should be migrated to.

MCI combines the operation of two processes: host overload and host underload described

in Subsection 2.3.1.

6.3 Multi-Objective VMP based MCI

The VMP represents a multi-objective problem, including a set of p decision variables, q

objective functions, and r constraints. Using Equation 6.1, x denotes the decision vector,

while y signifies the objective vector. The decisions, objectives, and constraints denoted by

X, Y , and G receptively, can be expressed as:

Y = F (X) = [f1(x), f2(x), ...fq(x)] (6.4)

subjected to:

G(x) = [g1(x), g2(x), ...gr(x)] ≥ 0 (6.5)

Where x = [x1, x2, . . . , xp]
′ is the decision vector; gi(x) is constrain ithat is related to

126

decision variables x.

Typically, not all objective functions in Equation 6.4 can be optimized simultaneously.

For this reason, an optimal solution will require the concept of Pareto dominance. Pareto

optimal solution represents a trade-off approach that is used to identify the lower values

for all objectives as compared to any other solution. More applied details can be found

in [177,178].

The number of iteration used to find Pareto solution can be reduced using lower (Lx)

and upper (Ux) bounds associated with each objective function, Equation 6.6:

Lower and upper bounds:

Lx ≤ f(X) ≤ Ux (6.6)

This section discusses VMP as an optimization problem including power consumption

and resource utilization, i.e. optimization with a multi-objective problem. VMP in a large

scale data centre comprises of a set of requested VMs and PMs at each discrete time t. VMP

is required to incrementally seek placement of requested VMs into available PMs for the next

time instant t+ 1, thus satisfying the constraints and optimizing the considered objectives.

For real-time application, placement decisions are performed at each period t, if there

is sufficient information on upcoming VMs and available PMs. Using current PMs states

provided by real-time monitoring and the VM predictor proposed in Chapter 5, the VMP

algorithm will have the expected type and size of requested VMs along with the maximum

number of PMs required.

6.3.1 Objective Functions

Objective functions can represent all MCI components, which have more than one to opti-

mize. Optimization may include power, resource usage (minimum CPU, memory, storage),

127

time, security, etc. Equation 6.1 can be rewritten as a multi-objective function to include

power, QoS, migration cost, security and others.

Power Consumption Minimization

Total power of a PM (Pserver) can be computed on the basis of servers related to power

consumption, such as CPU, memory and Network Interface Card (NIC) utilization:

f1 =
n∑
k=1

Pserverαk =
n∑
k=1

r∑
i=1

wkixkiαk (6.7)

where f1 denotes the power objective function, n is the number of PMs required to handle

the requested and consolidated VMs for the next time period, αk signifies a binary variable

to show if the PMi is ON (1 value) or OFF (0 value), and r denotes the number of resources

considered. To illustrate, let us consider CPU, memory, storage and network resources. That

is r = 4 and Equation 6.7 can be rewritten as:

f1(X) =
n∑
k=1

(wk1UCPU + wk2Umem + wk3Udisk + wk4UNIC + Ebasek)αk (6.8)

UCPU , Umem, Udesk and UNIC denote CPU, memory, disk and network interface card

utilization, respectively. Ebase represents the idle state of the server.

Offline training can be used to compute weights w1 to w4 (for more details, see Algo-

rithm 7). For example, Economou et al. [179] used collected component utilization metrics

by the operating system to estimate the weights of two different server systems (highly

integrated blade server and an Itanium server) for which the power models are depicted as:

Pblade = 0.236UCPU + 4.47e−8Umem + 0.00281Udisk + 3.1e−8UNIC + 14.45 (6.9)

128

PItanium = 0.1108UCPU + 4.05e−7Umem + 0.00405Udisk + 635.62 (6.10)

where the constant value in the end of each two equations above represents the PM idle

power consumption.

Quality of Service

QoS can be used to give more weight to VMs with the highest level of priority associated to

the SLA. This objective is proposed to be:

f2 =
m∑
j=1

(MaxpowerSLAjβj) (6.11)

where Maxpower denotes the maximum estimated power by all predicted PMs required.

It constant value proposed to be large enough to prioritize VMs with large values of SLA,

and to vary based on the number of PMs required. On the other hand, βj is a binary variable

that shows if Vj located on PM (1 value) or not (0 value).

Network Traffic

Network traffic can be the estimated by the sum of average network traffic generated by each

VM with other VMs located and run on different PMs [180].

f3 =
m∑
j=1

m∑
k=1

(V netjkδjk) (6.12)

where V netjk denotes the average network traffic between VMs (Vj and Vk) on different

PMs. Put differently, V netkk = 0. δjk is a binary variable that shows if Vj and Vk are located

in different PMs (1 value) or not (0 value).

All these objectives, f1, f2, and f3, and others, can be represented in a single MCI with

129

different wights.

6.3.2 Input Data

The input data consists of two parts:

Destination represents the estimated number of PMs required and their specifications

including CPU, memory, etc.

PMk = [PMCPUk
, PMmemk

, PMdeskk , PMNICk
] , ∀k ∈ 1, . . . , n (6.13)

where PMCPUk
, PMmemk

, PMdeskk , and PMNICk
represent processing, memory, storage

and network resources of PM PMk and n is the number of PMs.

Source represents the estimated number of VMs in each cluster. As any PM, each VM

requires processing, memory, storage resources, it may also include the SLA to indicate its

priority level, security level requirements, etc., as shown below:

VMj =
[
VMCPUj

, V Mmemj
, V Mdeskj , SLAj

]
, ∀j ∈ 1, . . . ,m (6.14)

where VMCPUj
, V Mmemj

, and VMdeskj , denote processing, memory, and storage resources

requested for VMj respectively. Similarly, SLAj represents the service level agreement of

VMj, where SLAj ∈ 1, . . . , s and s signifies the highest priority level. m is number of VMs.

The network traffic can be part of source data and will be useful in the placement

algorithm. This traffic represents the network communication between different VMs that

are run on different PMs, as illustrated in the previous section.

VMnetj = [VMnetj1, V Mnetj2, . . . V Mnetjm] ∀j ∈ 1, . . . ,m (6.15)

130

6.3.3 Output Data

The solution of objective functions, Equations 6.10 to 6.12 using multi-objective and Pareto

principle, will produce a complete placement of all VMs into a minimum number of PMs in

the time period t+ 1. Notably, it will be a binary two dimensions matrix (Xm×n) indicates

whether each VM is located on candidate PMs or not.

6.3.4 Constraints

Constraints 1-Sufficient Physical Resources: Each PM may have one or more VMs. It

should be:

m∑
j=1

VMCPUj
xji(t+ 1) ≤ PMCPUj

, ∀i ∈ 1, . . . , n (6.16)

m∑
j=1

VMmemj
xji(t+ 1) ≤ PMmemj

, ∀i ∈ 1, . . . , n (6.17)

m∑
j=1

VMdeskjxji(t+ 1) ≤ PMdeskj , ∀i ∈ 1, . . . , n (6.18)

which states that the aggregate allocated resources for all the VMs hosted on a PM must

not exceed its capacity.

Constraints 2- Unique Placement: All requested and consolidated VMs should be

located to run on a single PM.

n∑
i=1

xji ≤ 1, ∀j ∈ 1, . . . ,m (6.19)

Where xji refers to a binary variable to indicate whether a VMj is located on PMi or

131

not.

Constraint 3-Assure SLA Provisioning: It is mandatory for VM with the highest

level of SLA to be located to run on a PM.

n∑
i=1

xji = 1, ∀j : SLAj = s (6.20)

6.4 VMP based Multi-Objective Genetic Algorithm

This section includes a description of the proposed multi-objective algorithms for the VMP

problem. This algorithm produces a set of non-dominated optimal solutions that satisfy

constraints Equations 6.16-6.20, whereas objectives power, QoS errors, and network traffic

are minimized. Non-dominated sorting genetic algorithm (meta-heuristic) are mixed with

the main characteristics of a genetic algorithm and here, the concept of Pareto dominance

will be used.

Firstly, the algorithm creates a random population for combined objectives [f1, f2, f3].

This is because multi objective solutions are ranked into several classes or fronts in accordance

to its non-domination level.

All non-dominated solutions are included in front level 1. This front represents the best

efficient set and is temporarily disregarded from the population. Iteratively, non-dominated

solutions are determined and assigned to front level 2. This new front denotes the second-

best efficient set and the process is repeated until the population is empty. This procedure

is called a fast non-dominated sort.

In order to maintain population diversity, a second value called crowding distance is

calculated for solutions that belong to the same non-dominated front. This measure estimates

population density around a solution within the objective space. The extreme points of

132

Algorithm 8 Multi-objective VMP based on MCI

Inputs: Predicted PMList Mk, VMList Vj, Objective funs [f1, f2, f3], and Constraints Equa-
tions 6.15-6.20
Initialization: Population size, number of iterations, upper and lower bounds
Outputs: VMs allocated with min power

1: Random initial population POP0

2: Calculate fitness functions, Equations 6.7, 6.11, and 6.12.
3: Use the fast non-dominated sort to assign a rank to each solution
4: Calculate the crowding distance for each solution
5: while stop criteria is not reached do
6: Select parents
7: Apply crossover and mutation
8: Calculate the objective functions
9: Use the fast non-dominated sort to assign a rank to each solution in POP0 ∪ POP1

10: Calculate the crowding distance of each solution in POP0 ∪ POP1

11: Replace solution in POP0 with the best solution in POP0 ∪ POP1

12: end while

each front are assigned with an infinite distance in order to preserve them and have them

introduce more dispersion in the population. As a consequence, every chromosome will have

two attributes, the non-domination rank and a crowding distance.

Next, a binary tournament is applied. Two solutions are picked randomly from the

population, and the winner is the lowest-ranked individual; if the rank is the same for both,

the winner will be the one with the highest crowding distance. This strategy is applied to

select pairs of parents, after which the crossover and mutation operators are applied to obtain

a new population POP1. Finally, the fast non-dominated sort and the crowding distance are

applied to all solutions in POP0 ∪ POP1, whereas the N best-ranked solutions are retained

to the next population. This process is repeated in a predefined number of generations, see

Algorithm 8.

In order to apply genetic operators, a proper encoding scheme (chromosome) consisting

of m genes presents the number of VM. The value of gene is an integer between 1 and n,

which denotes the PM where the VM is allocated. Figure 6.2 shows an example of VMP

133

Figure 6.2: VMP resources and corresponding chromosome: An example

and its corresponding chromosome.

6.5 Experimental Results

Simulation results obtained by proposed MCI and VMP-based multi-objective algorithms

in carefully designed experiments validate its effectiveness, taking into considerations the

challenges associated with the resolution of the VM consolidation problem introduced in

this thesis.

In next Subsection 6.5.1, we use MCI as a pricing unit for a private cloud. In our second

experiment, we perform the evaluation of using the MCI on the real-time VM consolidation

framework. Subsequently, we compare the quality of solutions obtained by a simple bin

packing algorithm against an optimal solution for the same data used in previous chapters,

as explicated in Section 3.3. Our last experiment will evaluate VMP using MCI as a single

objective function to minimize data centre power for different scenarios of PMs, VMs sizes,

and heterogeneity.

134

6.5.1 MCI as a Cloud Pricing Unit

MCI can be used as a pricing unit that can be implemented in a data centre used for

delivering cloud services. Information pertaining to these resources was collected from a

private data centre IT infrastructure that is capable of hosting thousands of applications.

This centre has the following specifications:

1. In computing, an Intel x86 platforms or Oracle/Sun SPARC with 4 processors are

used. A memory pool was used for high-speed data caching.

2. Computer network had at least one network router, firewall, load balance, network

switch (core, distribution and access), network card on the server and internet band-

width.

3. A storage system comprises of two defining elements: storage size and its performance.

The cloud unit describes the amount of disk under RAID 0; RAID 1 is used where 50%

of the total amount of disk space gets lost due to redundancy, after which a factor of 2

is applied to correct for this loss. The same principle is applicable to all disk redundant

formats.

4. Conditioned redundant power and cooling of the IT infrastructure consists of at least

one power-conditioned uninterruptible power source. Cloud instance power represents

the measure of the amount of power that is consumed by the cloud instance measured

in Watts.

In order to represent all data centre components, the proposed MCI unit includes one

CPU with 1.3 GHz, 1 GB RAM, 10 GB storage, 10 GB internet traffic, 1 instance of Ubuntu

OS, and instance of Apache. A Standard Cloud instance consuming one unit is assumed to

be equivalent to 8 Watts.

135

The index values or weighted coefficients are determined from the proportionate cost of

the components in the unit divided by their scalar value: i.e. the CPU constitutes 61.75% of

the unit cost or 0.6175 of 1 and has a scalar value of 1; the coefficient is 0.61754/1; similarly,

the network cost is $0.28 and has 10 GB. The network constitutes 9.866% of the unit cost

or 0.09867 of 1 with a scalar value of 10. Table 6.1 depicts the cloud component costs in the

data centre along with the weighted coefficients.

Table 6.1: An example of component cost and weighted coefficients

Parameter Coefficient Value Monthly Unit Cost
CPU (1.3 GHz) 1 0.6175 $17.83
RAM (GB) 1 0.1883 $5.44
Storage (GB) 10 0.0485 $1.40
IOPS 10 0.0470 $1.36
Network (GB) 10 0.0987 $2.85
Total: 1 $28.87

It is notable that this factorization can be used for any dimensional scaling. For example,

cloud infrastructure with double the resources (i.e. 2 compute nodes, 2 GB memory, 20 GB

storage, 20 IOPS, 20 GB network) will be equivalent to 2 cloud units. This decomposition

principle can also be used to compute the size of any cloud instance in singularity with

simplicity.

Notably, these weighted coefficients and costs vary from one cloud computing provider

to another. In this implementation, all the cloud resources were inserted in one place. Put

differently, a specific data centre was used to implement this unit, which enabled the cloud

provider to make cost estimations for each component used by the user and VM as well. At

the same time, the service provider could monitor, measure and estimate the values of all

used resources.

136

Table 6.2: Some of the MCI components to estimate the energy used

Parameter Value Unit
P sleep 107 Watt
P idle 300.81 Watt
P peak 600 Watt
E on to sleep 5510 Joule
E sleep to on 4260 Joule

6.5.2 Real-Time VM Consolidation Framework

As a case study, the output of the prediction algorithm used in Section 5.7 will be applied

in this experiment. In particular, the Task Event Table from Google dataset with 5 minutes

prediction windows is used.

Heuristic or bin packing based algorithms are the most suitable for real-time applications

because they require less computational resource and they are very fast, as shown in sec-

tion 2.5.2. However, bin packing algorithms also provide a sub-optimal distribution of VMs.

For real-time VM consolidation, we use best fit decreasing (BFD) algorithms to assign VMs

to specific hosts. In addition, we use prediction algorithm to estimate the type and size of

requested VMs, in order to pre-specify the number of PMs required.

To use MCI in VMP, we developed the simple power aware best fit decreasing (PABFD)

algorithm proposed in [93], Algorithm 9. In our modified PABFD method, MCI was not

only used for PMs, but also for each VM. MCI is used to classify VMs, by arranging them

in decreasing order. Subsequently, for each VM, it checks all PMs to identify a suitable

solution where power consumption is minimum.

Figure 6.3, compares the total consumed energy during the entire test period for 125

hosts (PMs) only. The energy measurements used MCI with special values are shown in

Table 6.2.

The results of this experiment demonstrate that MCI can represent used as a VM and a

137

Algorithm 9 PABFD

Inputs : arranged decreasing list MCI, VMList
Outputs : VMs allocated with min power

1: for each VM in arranged decreasing list do
2: PM with min. MCI ← VM with max MIC requirements (e.g. CPU)
3: allocated PM ← null
4: for each PM in the PM List do
5: if PM has enough resources for this VM then
6: Calculate new MCI on the PM
7: if MCI < min MCI then
8: allocated PM ← VM
9: Update min MCI ← new MCI

10: end if
11: end if
12: if allocated PM 6= null then
13: allocate the VM in specified PM
14: end if
15: end for
16: end for

Figure 6.3: Total consumed energy during the entire test period (for 125 hosts only)

server condition index. This leads to most of the power estimation that were previously used

in the works concerning VM provisioning based energy consumption, which can be treated

as a special case of the MCI.

138

6.5.3 Power Consumption Experiment Results

In this experiment, we use a simulated data centre, including two types of PMs and different

types of VMs to create a heterogeneous environment. Table 6.3 depicts the number of VMs

and PMs used in each experiment. Table 6.4 gives a sample of PMs considered in first

experiment. Table 6.5 gives the configuration of VMs used in first experiments. These VMs

are randomly generated on the basis of Amazon EC2 instances types. The values of VMs

and PMs for these experiments can be found in1

Table 6.3: No. of PMs and VMs in three Experiments

No. of VMs No. of PM
Exp1 8 4
Exp2 50 12
Exp3 1000 100

Table 6.4: PMs considered in the Exp1

PM Type CPU (ECU) Mem (GB) Storage (GB)
PM1 180 512 10000
PM2 350 1024 10000
PM3 180 512 10000
PM4 350 1024 10000

Table 6.5: VMss considered in the Exp1

VM Type CPU (ECU) Mem (GB) Storage (GB)
VM1 4 15 80
VM2 8 30 160
VM3 2 4 32
VM4 4 8 80
VM5 8 15 160
VM6 16 30 320
VM7 32 60 640
VM8 2 15 32

1https://github.com/flopezpires/iMaVMP/tree/master/inputs

139

Amazon EC2 instances (VMs) are categorized into five types of categories with more than

108 types of VMs along with different values in Virtual CPUs (vCPU) and main memory

(GB) capacity2, see Table 4.1.

As a case study, the power model assumed for each to be represented by two PM models

is described in Equation 6.9 and only the power objective function is given by Equation 6.8.

The idea is to evaluate the proposed MCI model to solve the VMP problem with homogeneous

(blade or Itanium PMs), non-homogeneous or hybrid (40% blade and 60% Itanium) PMs.

All other factors such as data centre infrastructure, number of instantly requested VMs,

the size and instantly available PMs, etc are assumed to be available by the data centre

monitoring tool.

MCI depends on the information provided by any cloud monitoring tools such as Data

Center Infrastructure Manager (DCIM) which provides elaborate information about a server

configuration, hardware, network connections, installed software, and so on. DCIM profiles

the power consumed by each part of the hardware in a data centre [44].

Figure 6.4 represents the optimization progress versus generation for Experiments 1, 2

and 3 for a homogeneous blade data centre in Equations 6.9 and population size of 100. From

these figures, oscillated convergences in all experiments are directly proportional to increase

the size of the data centre. Put differently, a growing number of PMs and requested VMs

will increase the oscillation. This oscillation is attributed to the use of random Gaussian

distribution for the mutation selection option to each entry of the parent vector. Typically,

the amount of mutation, which is proportional to the standard deviation of the distribution,

lowers at each new generation.

Figure 6.5 compares the normalized total energy with the optimal energy calculated in

the proposed algorithm for 4 PMs in Experiment 1. The proposed optimal algorithm saves

2http://aws.amazon.com/ec2

140

Figure 6.4: Energy objective optimization progress versus generations for the homogeneous
blade data centre in (a) Exp 1 (b) Exp 2 and (c) Exp 3

141

more than 60% of the regular consumption of the data centre. Results show only one PM

that is sufficient enough to accommodate all 8 VMs, as illustrated in Figure 6.6

Figure 6.5: Total consumed energy vs optimal VM distribution in Experiment 1 with Blade
machine

Figure 6.7 three types of PMs used for the data centre in Experiment 1. Blade, Itanium

and hybrid with 40% blade and 60% Itanium machines. The data centre with Itanium

machines is shown to have the lowest power usage. This implies that the proposed MCI

based optimization process is completely predicated on the MCI values.

Table 6.6 compares the results of the three experiments with different types of PMs in a

data centre (Blade, Itanium and Hybrid).

The average executing time for all experiments is relatively small as compared to the

monitoring period, see section5.4 for the suitable monitoring period. Executing time in

Table 6.6 represents the average five times running for each experiment. As any regular

machine learning algorithm, GA convergence time increases by augmenting the population

size, i.e. increase the number of PMs and VMs/tasks.

142

Figure 6.6: Distribution of VMs on PMs in Experiment 1 with Blade machine

Figure 6.7: Experiment 1 with three types of PMs (Blade, Itanium and hybrid)

143

Table 6.6: Optimal VMP Results Comparisons

PM
Types

Exp.
No.

Max
Power
(KW)

No Power
Mngmt
(KW)

Optimal
Power
(KW)

No. of
Iteration

Function
count

Execution
time
(sec)

% of PM
used

Blade
1 250.3 183.3 18.0 71 7,201 3.9 25
2 751.0 617.8 100.9 87 8,801 6.0 58
3 6,258.3 6,258.3 1,991.9 230 23,101 67.8 100

Itanium
1 2.8 2.0 0.7 58 5,901 3.2 25
2 8.5 7.1 4.5 109 11,001 6.9 58
3 70.6 70.6 64.9 160 16,101 49.8 100

Hybrid
(40% blade)

1 126.6 76.2 0.7 60 6,101 3.2 25
2 297.8 197.4 4.1 152 15,301 9.8 58
3 2,545.6 2,528.6 853.4 352 35,301 111.3 99

In experiment 3, all PMs of the data centre used, 100% PM required. In this experiment,

the number and size of VMs were massive and almost needed all PMs. The proposed

algorithm saves power, particularly in hybrid, given that the algorithm uses the PMs with

less power. For example, no power management and optimal power for Itanium were 70.6KW

and 64.9KW, respectively, i.e. 8% saving. The power management and the optimal power

for Hybrid were 2528.6KW and 853.4KW, respectively, i.e. 66% saving. However, both

experiments almost used the same number of PMs. 100% and 99% of PMs were used in

Itanium and Hybrid experiments.

Significant differences are found when using MCI to model PM power as compared to

modeling based on CPU only. MCI takes the effect of server components and environments.

These differences are identified when we compare optimal power usage in Table 6.6 with the

actual power usage for each PMs’ CPU. Additionally, there is a large difference in power

usage between Blade and Itanium servers in all experiments. These differences are unequaled

with the power characteristics of these processors. Table 6.7 depicts the architectural power

and clock rate for the two processors using the McPAT package version 1.33. McPAT is a

micro-architectural multi-core power and area estimator. Further details about the package

3https://github.com/HewlettPackard/mcpat

144

can be found in [181].

Table 6.7: Blade and Itanium CPU characteristics using McPAT

Architecture Characteristics Blade (AMD Turion) Itanium 2
Clock Rate 2.2 GHz 4 \times 1.5 GHz
Memory 512 MB SDRAM 1 GB DDR

Dynamic
Peak Dynamic 68.07 W 61.72 W
Runtime Dynamic 101460 W 29638 W

Static
Subthreshold Leakage 9.85 W 8.61 W
Subthreshold Leakage with power gating 4.82W 4.23 W
Gate Leakage 1.21 W 1.04 W

Total Power 101,544 W 29,714 W

These experiments tested MCI for hardware components only. However, as discussed

in Section 6.2, MCI can be trained to include all qualitative and quantitative quantities

pertaining to server power in a heterogeneous environment.

6.6 Chapter Summary

MCI is a unified index proposed and developed as a scalar value to rank hosts in cloud

data centres for energy consumption on the basis of VM consolidation. For any host, MCI

has many independent quantifiable and non-quantifiable parameters, and converts these

parameters into a useful single and unique index value to measure the effectiveness with

which the PM fits the new and migrated VMs in order to reduce energy. The suggested

index showed the simplicity and feasibility of implementing the MCI as a benchmark to

provide a sense of the required investment required for bringing the host to a certain level of

energy saving. The suggested index also demonstrated the simplicity of converting the multi-

objective function to a single objective function, which assumes the greatest significance in

real-time VM consolidation with optimal displacement.

145

Chapter 7

Conclusion and Future Work

7.1 Conclusions

This thesis proposes a comprehensive real-time VM consolidation framework that focuses on

energy consumption in large-scale heterogeneous data centres. In particular, thesis focused

on proactive dynamic VM consolidations in data centres with heterogeneous environments.

The framework introduces and proposes various techniques and algorithms that could

be summarized into three main subsystems. Upon submitting a VM request from end-users

to a data centre, the first step is to cluster VMs based on users’ behaviour, the number of

VM requests, and the number of VM re-allocated by discovering the behaviour of the user

and the VM. Second, the prediction subsystem based on modified ELM is used to predict

the number of VMs and estimates the number of PMs required for the next period of time.

Third, the optimal placement for new and migrated VMs algorithms has been undertaken

through a multi-objective genetic-based algorithm using a novel index named MCI.

MCI hinges on measured and estimated quantitative and qualitative components; it was

used to efficiently estimate the objective function in the VMP algorithm,. MCI can also be

146

used as a pricing model for cloud service providers and may include any types of components,

including the infrastructure of the data centre, server hardware, server software, and service

attribute.

Though the analysis and implementation, key observation:

1. We illustrated that dynamic VMs consolidation and resource allocation policies can

play an important role in energy-efficient allocation of resources. To that end, a sys-

tematic framework was proposed to create a comprehensive review of components,

algorithms, techniques, and tools that were used in previous publications in these

fields.

2. Various clustering techniques used for analyzing workload characteristics do not provide

a structured model that can be used for conducting simulation. Workload analysis

needs to explore more than coarse-grain statistics and cluster centroids. In order to

capture the patterns of clustered individuals it is also necessary to conduct an analysis

of the parameters and examine the trends of each cluster characteristic.

3. Efficient VMs clustering process should not only use historical data only, but also

include user behaviour, clustering indices, the current state of the data centre, and

effective monitoring window size.

4. Identifying users’ behaviours based on the number of VMs requests strongly influ-

ences the overall cloud workload prediction process. Under the proposed framework,

a simple and fast filtering process through VM and users behaviour helps improve

pre-processing, clustering, and prediction accuracy.

5. The key component of our proposed workload forecast is the modified multivariate time

series ELM predictor. ELM predictor eliminates any restrictions on the observation

147

window sizes and the number of VM clusters for the ELM predictor.

6. VMs predictor sustains the strength of the ELM algorithm in fast prediction, but offsets

its accuracy weakness as compared to other NNs. This accuracy is improved either by

increasing the number of feedback (number of the previous state), or by reducing the

prediction window size via the utilization of modified multivariate ELM.

7. The fast pre-processing, mapping, filtering, ELM and single-objective optimization

algorithms constitute an efficiency real-time VMs consolidation system for a large-

scale heterogeneous data centre.

8. Extensive simulations were carried out to evaluate the proposed framework components

separately with both synthetic and realistic data traces. Simulation results show that

proposed algorithms can achieve better and efficient results in comparison to some

existing algorithms.

9. With the use of MCI, proposed VMP algorithm takes into account the heterogeneity

of PMs in terms of capacity and power efficiency.

10. Unlike most algorithms that only consider CPU as their primary input to measure

power, MCI was extended to consider other important resources as well, such as mem-

ory, storage, bandwidth, cooling, etc. This will lead to enhanced performance and

more accurate power consumption.

11. Most VMP algorithms compare their proposed algorithms against trivial heuristics. To

that end, a comparison against real data, Google Trace and simulated Amazon EC2

used in this work yielded more meaningful results.

12. The proposed energy-aware VMP based MCI scheme sustains the strength of the ge-

148

netic algorithm in optimality and efficiency, but offsets its weakness in slow conver-

gence speed. By placing the VMs running the same application to closer cores on

the multi-core system based on their traffic rates, energy consumption and delays in

communication can be reduced significantly.

7.2 Future Work

1. Consideration of QoS parameters related to VMs performance such as availability,

response time and reliability is imperative as part of the consolidation process. It is

very important to ensure that the level of QoS is maintained in accordance with SLA,

while attempts are made to fully utilize data centre resources. These element can be

a part of the MCI.

2. Multi-criteria VMs selection models that take into consideration multiple infrastructure

resources, can be used to improve the consolidation process, particularly for energy

consumption. For example, it is useful to have a rule-based system, e.g. ANFIS, so as

to improve the process of VMs selection according to environment states.

3. Additional implementation is required for the proposed MCI for different practical

PMs and different cloud monitoring tools for different vendors. This will help identify

a unique MCI for each type of machine and environment. This process can be auto-

mated using an unsupervised machine learning algorithm in order to estimate the MCI

coefficient through continuous monitoring and adjustment.

4. Most of VMP algorithms and techniques have neglected the security-related objective

in the VMP operations. Security is one of the crucial factors that must be considered

in future VMP researches and studies.

149

5. VM migrations usually occur when there is over/under-utilization of the resources.

Extra VMs migration may affect energy efficiency, thus resulting in further power

consumption. Balancing should be done to avoid unnecessary VM migration. This

balance results in energy savings due to turning off PMs and energy ascribed to the

migration process. Adding migration cost on MCI and the VMP algorithm will also

increase energy efficiency.

6. Failures due to power outages or network components are referred to as correlated

failures. The impact of these failures can cause reliability to be overestimated by

at least two orders of magnitude. Correlated failure impact on energy consolidation

necessitates more attention in future researches.

7. Predict VM release times for submitted requests based on historical traces when VMs’

release times are typically not specified by the client. It is useful to build a prediction

process that is able to estimate VM release time and add that to VMP algorithm.

8. It is important to enable a collaboration link with the CloudSim group in order to

integrate the proposed workload generator as an add-in of the existing framework

implementation, which paves the way for its publicly availability.

150

Appendix A

Systematic Clustering Example

This example illustrates the detailed steps implementation of the systematic clustering al-

gorithm, described in Section 4.4 for predication purposes.

In this example, we assume there are three user defined VMs/tasks with CPU and mem-

ory distributed values shown in table A.1 after pre-processing stage.

Table A.1: Task distribution, fixed length [168]

Distribution
(AD Value)

Parameters
Distribution
(AD Value)

Parameters

Task Requested CPU Requested Memory

T1 Generalized Extreme
ξ= -0.016,

3P Lognormal
µ = -4.342,

ρ = 0.02098, σ = 0.569,
µ = 0.01954 T = -2.399E-4

T2 Weibull
k = 0.9594,

3P Weibull
k = 2.528,

λ= 0.09795 λ = 0.0703
T = -9.294E-3

T3 3P Lognormal
µ = -6.120,

3P Lognormal
µ = -5.907,

σ = 1.897, σ = 0.877,
T = 6.41E-6 T = -2.204E-4

Figure A.1 and A.2 reveal the CPU and memory of 1000 VMs requests based on distri-

bution described in Table A.1.

Table A.2 represents a 3 predefined VMs with 650 requests for the same duration (sam-

151

Figure A.1: CPU requests proposed distributions

Figure A.2: Memory requests with proposed distributions

152

pling period).

Table A.2: Pre-defined VMs

VM
Predefined size

Requested CPU Requested Memory No. of request

Small 0.1 0.1 300
Medium 0.2 0.2 200
Large 0.3 0.3 150

To select the best algorithm and number of clusters based proposed systematic clustering

described in Algorithm 2, we should follow the following steps:

1. Using known VMs during this period (Table A.2), find the average number of clusters

for all candidate clustering algorithms after find optimal number of clusters based on

clustering indices. We select k-means and k-means++ for simplicity, and we found

the average for number of clusters in both k-means and kmeans++ are 3 and 5.67,

respectively. Details can be found in Table A.3. Compare with active number of

pre-defined VMs (e.g. 3), we select k-means for this interval (monitoring period).

Table A.3: Pre-defined VMs optimal number of cluster for different clustering indices

k-means k-means ++
Index Value Best Value Best

Calinski Harabasz 4.61E+30 3 2.06E+31 15
Davies Bouldin 1.37E-14 3 1.37E-14 4
Dunn 1 3 1 3
Silhouette 1 3 1 4
Wemmert Gancarski 1 3 1 4
Xie Beni 5.22E-29 3 5.22E-29 4

Average 3 5.67

2. Filter unrepeated VMs/tasks using DBSCAN. Figure A.3 shows the user defined VMs

before and after DBSCAN filtering process. We notice that only 7 VMs will be excluded

from clustering process. These 7 VMs assumed to be consolidated in a separate PMs

for each.

153

Figure A.3: DBSCAN filtering for the 1000 unique independents VMs

3. For accurate predication, we need to identifies dissimilar clusters that are far from

each other and compact, thus Davies-Bouldin (DB) and Dunn (DI) are best candidate

indices for prediction application.

4. The last step is to find optimal number of clusters for the candidate clustering algo-

rithms (k-means in this example) using selected clustering indices (DB and DI indices),

Table A.4.

Table A.4: Candidate clustering indices based selected algorithm for user defined VMs/tasks

k−means
Index Value Best
Davies Bouldin 0.59 4
Dunn 0.02 2

Average 3

The optimal number of the unknown VMs/tasks during this monitoring period will be

3, and candidate clustering algorithm will be k-means.

154

Bibliography

[1] S. Ismaeel and A. Miri, “A universal unit for measuring clouds,” in IEEE International

Conference on Humanitarian Technology Conference (IHTC), pp. 1–4, May 2015.

[2] S. Ismaeel, R. Karim, and A. Miri, “Proactive dynamic virtual-machine consolidation

for energy conservation in cloud data centres,” Journal of Cloud Computing, vol. 7,

no. 1, pp. 1–28, 2018.

[3] K. Hwang, J. Dongarra, and G. C. Fox, Distributed and cloud computing: from parallel

processing to the internet of things. Morgan Kaufmann, 2013.

[4] S. Petrović, A. Colangelo, O. Balyk, C. Delmastro, M. Gargiulo, M. B. Simonsen, and

K. Karlsson, “The role of data centres in the future danish energy system,” Energy,

vol. 194, pp. 1–14, 2020.

[5] Natural Resources Defense Council (NRDC), “Data Center Efficiency Assessment,”

tech. rep., Natural Resources Defense Council (NRDC), August 2014.

[6] D. Sitaram, H. L. Phalachandra, G. S, S. H V, and S. TP, “Energy efficient data center

management under availability constraints,” in 2015 Annual IEEE Systems Conference

(SysCon) Proceedings, pp. 377–381, April 2015.

155

[7] J. Prevost, K. Nagothu, M. Jamshidi, and B. Kelley, “Optimal calculation overhead for

energy efficient cloud workload prediction,” in World Automation Congress (WAC),

2014, pp. 741–747, Aug 2014.

[8] X. Fu and C. Zhou, “Virtual machine selection and placement for dynamic consolida-

tion in cloud computing environment,” Frontiers of Computer Science, vol. 9, no. 2,

pp. 322–330, 2015.

[9] A. Beloglazov, Energy-efficient management of virtual machines in data centers for

cloud computing. PhD thesis, Department of Computing and Information Systems,

The University of Melbourne, 2013.

[10] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in cloud computing: A

randomized auction approach,” in Proceedings IEEE INFOCOM, pp. 433–441, 2014.

[11] A. Abdelsamea, E. E. Hemayed, H. Eldeeb, and H. Elazhary, “Virtual machine consoli-

dation challenges: A review,” International Journal of Innovation and Applied Studies,

vol. 8, no. 4, pp. 1504–1516, 2014.

[12] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuris-

tics for efficient management of data centers for cloud computing,” Future generation

computer systems, vol. 28, no. 5, pp. 755–768, 2012.

[13] E. Arianyan, H. Taheri, and S. Sharifian, “Novel energy and SLA efficient resource

management heuristics for consolidation of virtual machines in cloud data centers,”

Computers & Electrical Engineering, vol. 47, pp. 222–240, 2015.

156

[14] S. Ismaeel, A. Al-Khazraji, and A. Miri, “An efficient workload clustering framework

for large-scale data centers,” in IEEE 8th International Conference on Modeling, Sim-

ulation and Applied Optimization (ICMSAO), April 2019.

[15] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and A. V. Vasi-

lakos, “Cloud computing: Survey on energy efficiency,” Acm computing surveys (csur),

vol. 47, no. 2, pp. 1–36, 2014.

[16] E. Feller, Autonomic and energy-efficient management of large-scale virtualized data

centers. PhD thesis, Université Rennes 1, 2012.

[17] V. De Maio, G. Kecskemeti, and R. Prodan, “A workload-aware energy model for

virtual machine migration,” in 2015 IEEE International Conference on Cluster Com-

puting, pp. 274–283, Sep. 2015.

[18] D. Breitgand, D. M. Da Silva, A. Epstein, A. Glikson, M. R. Hines, K. D. Ryu, and

M. A. Silva, “Dynamic virtual machine resizing in a cloud computing infrastructure,”

Jan. 2 2018. US Patent 9,858,095.

[19] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for cloud sys-

tems,” in 2010 International Conference on Network and Service Management, pp. 9–

16, Oct 2010.

[20] S. Sotiriadis, N. Bessis, C. Amza, and R. Buyya, “Elastic load balancing for dynamic

virtual machine reconfiguration based on vertical and horizontal scaling,” IEEE Trans-

actions on Services Computing, vol. 12, pp. 319–334, March 2019.

157

[21] D. Breitgand, D. M. Da Silva, A. Epstein, A. Glikson, M. R. Hines, K. D. Ryu, and

M. A. Silva, “Dynamic virtual machine resizing in a cloud computing infrastructure,”

Sept. 17 2012. US Patent App. 13/621,526.

[22] F. Larumbe and B. Sansò, “Elastic, on-line and network aware virtual machine place-

ment within a data center,” in IFIP/IEEE Symposium on Integrated Network and

Service Management (IM), pp. 28–36, 2017.

[23] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “Vmplanner: Optimizing

virtual machine placement and traffic flow routing to reduce network power costs in

cloud data centers,” Computer Networks, vol. 57, no. 1, pp. 179–196, 2013.

[24] F. Ramezani, J. Lu, and F. Hussain, “An online fuzzy decision support system for

resource management in cloud environments,” in 2013 Joint IFSA World Congress

and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 754–759, June 2013.

[25] M. Tang and S. Pan, “A hybrid genetic algorithm for the energy-efficient virtual ma-

chine placement problem in data centers,” Neural Processing Letters, vol. 41, no. 2,

pp. 211–221, 2014.

[26] X.-F. Liu, Z.-H. Zhan, K.-J. Du, and W.-N. Chen, “Energy aware virtual machine

placement scheduling in cloud computing based on ant colony optimization approach,”

in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Compu-

tation, GECCO’14, (New York, NY, USA), p. 41–48, Association for Computing Ma-

chinery, 2014.

[27] J. Ortigoza, F. López-Pires, and B. Barán, “Dynamic environments for virtual machine

placement considering elasticity and overbooking,” arXiv preprint arXiv:1601.01881,

2016.

158

[28] A. Amarilla, “Scalarization methods for many-objective virtual machine placement of

elastic infrastructures in overbooked cloud computing data centers under uncertainty,”

arXiv preprint arXiv:1802.04245, 2018.

[29] F. López-Pires, B. Barán, L. Beńıtez, S. Zalimben, and A. Amarilla, “Virtual machine

placement for elastic infrastructures in overbooked cloud computing datacenters under

uncertainty,” Future Generation Computer Systems, vol. 79, pp. 830 – 848, 2018.

[30] J.-p. Luo, X. Li, and M.-r. Chen, “Hybrid shuffled frog leaping algorithm for energy-

efficient dynamic consolidation of virtual machines in cloud data centers,” Expert Sys-

tems with Applications, vol. 41, no. 13, pp. 5804–5816, 2014.

[31] X. Li, P. Garraghan, X. Jiang, Z. Wu, and J. Xu, “Holistic virtual machine scheduling

in cloud datacenters towards minimizing total energy,” IEEE Transactions on Parallel

and Distributed Systems, vol. 29, pp. 1317–1331, June 2018.

[32] N. Quang-Hung, N. T. Son, and N. Thoai, “Energy-saving virtual machine scheduling

in cloud computing with fixed interval constraints,” in Transactions on Large-Scale

Data- and Knowledge-Centered Systems (A. Hameurlain, J. Küng, R. Wagner, T. K.

Dang, and N. Thoai, eds.), (Berlin, Heidelberg), pp. 124–145, Springer Berlin Heidel-

berg, 2017.

[33] Y.-h. Zhu, D. Chen, and Y. Zhuang, “Virtual machine scheduling algorithm based on

energy-aware in cloud data center,” Computer and Modernization, vol. 4, pp. 17–25,

2016.

[34] Y.-C. Shim, “Performance evaluation of static vm consolidation algorithms for cloud-

based data centers considering inter-vm performance interference,” International Jour-

nal of Applied Engineering Research, vol. 11, no. 24, pp. 11794–11802, 2016.

159

[35] M. Masdari, S. S. Nabavi, and V. Ahmadi, “An overview of virtual machine placement

schemes in cloud computing,” Journal of Network and Computer Applications, vol. 66,

pp. 106–127, 2016.

[36] S. Ismaeel and A. Miri, “Multivariate time series elm for cloud data centre work-

load prediction,” in Human-Computer Interaction. Theory, Design, Development and

Practice (M. Kurosu, ed.), (Cham), pp. 565–576, Springer International Publishing,

2016.

[37] Y. Shoaib and O. Das, “Performance-oriented cloud provisioning: Taxonomy and sur-

vey,” arXiv preprint arXiv:1411.5077, 2014.

[38] K. L. LaCurts, Application workload prediction and placement in cloud computing

systems. PhD thesis, Massachusetts Institute of Technology, 2014.

[39] S. Ismaeel and A. Miri, “Using ELM techniques to predict data centre VM requests,” in

IEEE 2nd International Conference on Cyber Security and Cloud Computing, pp. 80–

86, November 2015.

[40] C. Vazquez, R. Krishnan, and E. John, “Time series forecasting of cloud data center

workloads for dynamic resource provisioning,” Journal of Wireless Mobile Networks,

Ubiquitous Computing, and Dependable Applications (JoWUA), vol. 6, no. 3, pp. 87–

110, 2015.

[41] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient resource

allocation and provisioning framework for cloud data centers,” IEEE Transactions on

Network and Service Management, vol. 12, pp. 377–391, Sept 2015.

160

[42] T. Marian, H. Weatherspoon, K.-S. Lee, and A. Sagar, “Fmeter: Extracting indexable

low-level system signatures by counting kernel function calls,” in ACM/IFIP/USENIX

International Conference on Distributed Systems Platforms and Open Distributed Pro-

cessing, pp. 81–100, Springer, 2012.

[43] X. Jin and J. Han, “Partitional clustering,” Encyclopedia of Machine Learning,

pp. 766–766, 2010.

[44] S. Ismaeel, A. Miri, and A. Al-Khazraji, “Energy-consumption clustering in cloud

data centre,” in IEEE 3rd MEC International Conference on Big Data and Smart

City (ICBDSC), pp. 1–6, March 2016.

[45] M. R. Chowdhury, M. R. Mahmud, and R. M. Rahman, “Implementation and per-

formance analysis of various vm placement strategies in cloudsim,” Journal of Cloud

Computing, vol. 4, no. 1, pp. 1–21, 2015.

[46] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces: format+

schema,” Google Inc., Mountain View, CA, USA, Technical Report, 2011.

[47] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization and prediction

in the cloud: A multiple time series approach,” in 2012 IEEE Network Operations and

Management Symposium, pp. 1287–1294, April 2012.

[48] D. Xu, S. Yang, and H. Luo, “A fusion model for CPU load prediction in cloud

computing,” Journal of Networks, vol. 8, no. 11, pp. 2506–2511, 2013.

[49] C. Canali and R. Lancellotti, “Improving scalability of cloud monitoring through pca-

based clustering of virtual machines,” Journal of Computer Science and Technology,

vol. 29, no. 1, pp. 38–52, 2014.

161

[50] C. Canali and R. Lancellotti, “Exploiting ensemble techniques for automatic virtual

machine clustering in cloud systems,” Automated Software Engineering, vol. 21, no. 3,

pp. 319–344, 2014.

[51] I. Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis, modeling and simula-

tion of workload patterns in a large-scale utility cloud,” IEEE Transactions on Cloud

Computing, vol. 2, pp. 208–221, April 2014.

[52] S. Arora and I. Chana, “A survey of clustering techniques for big data analysis,”

in 2014 5th International Conference - Confluence The Next Generation Information

Technology Summit (Confluence), pp. 59–65, Sep. 2014.

[53] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas, and

M. L. Scott, “Energy-efficient processor design using multiple clock domains with dy-

namic voltage and frequency scaling,” in Proceedings Eighth International Symposium

on High Performance Computer Architecture, pp. 29–40, Feb 2002.

[54] M. Zaman, A. Ahmadi, and Y. Makris, “Workload characterization and prediction:

A pathway to reliable multi-core systems,” in 2015 IEEE 21st International On-Line

Testing Symposium (IOLTS), pp. 116–121, July 2015.

[55] R. Sarikaya, C. Isci, and A. Buyuktosunoglu, “Runtime workload behavior prediction

using statistical metric modeling with application to dynamic power management,” in

IEEE International Symposium on Workload Characterization (IISWC’10), pp. 1–10,

Dec 2010.

[56] T. Liang, S. Wang, and I. Wu, “Using frequent workload patterns in resource selection

for grid jobs,” in IEEE Asia-Pacific Services Computing Conference, pp. 807–812, Dec

2008.

162

[57] R. Karim, C. Ding, and A. Miri, “End-to-end performance prediction for selecting

cloud services solutions,” in IEEE Symposium on Service-Oriented System Engineering

(SOSE), pp. 69–77, March 2015.

[58] R. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload prediction using

ARIMA model and its impact on cloud applications’ QoS,” IEEE Transactions on

Cloud Computing, vol. PP, no. 99, pp. 1–11, 2014.

[59] W. Fang, Z. Lu, J. Wu, and Z. Cao, “RPPS: A novel resource prediction and pro-

visioning scheme in cloud data center,” in IEEE Ninth International Conference on

Services Computing, pp. 609–616, June 2012.

[60] Shengming Li, Ying Wang, Xuesong Qiu, Deyuan Wang, and Lijun Wang, “A workload

prediction-based multi-vm provisioning mechanism in cloud computing,” in IEEE 15th

Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1–6,

Sep. 2013.

[61] J. Cui, S.-f. Liu, B. Zeng, and N.-m. Xie, “A novel grey forecasting model and its

optimization,” Applied Mathematical Modelling, vol. 37, no. 6, pp. 4399–4406, 2013.

[62] Jhu-Jyun Jheng, Fan-Hsun Tseng, Han-Chieh Chao, and Li-Der Chou, “A novel VM

workload prediction using grey forecasting model in cloud data center,” in IEEE In-

ternational Conference on Information Networking 2014 (ICOIN2014), pp. 40–45, Feb

2014.

[63] M. R. Lotfalipour, M. A. Falahi, and M. Bastam, “Prediction of CO2 emissions in

iran using grey and ARIMA models,” International Journal of Energy Economics and

Policy, vol. 3, no. 3, pp. 229–237, 2013.

163

[64] J. Benesty, J. Chen, Y. A. Huang, and S. Doclo, Study of the Wiener filter for noise

reduction, pp. 9–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[65] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient datacenter resource

utilization through cloud resource overcommitment,” Memory, vol. 40, no. 50, pp. 1–6,

2015.

[66] R. G. Brown, P. Y. Hwang, et al., Introduction to random signals and applied Kalman

filtering, vol. 3. Wiley New York, 1992.

[67] S. Ajila and A. Bankole, “Cloud client prediction models using machine learning tech-

niques,” in Proceedings of the 2013 IEEE 37th Annual Computer Software and Appli-

cations Conference (COMPSAC), pp. 134–142, July 2013.

[68] J. Cao, J. Fu, M. Li, and J. Chen, “CPU load prediction for cloud environment based

on a dynamic ensemble model,” Software: Practice and Experience, vol. 44, no. 7,

pp. 793–804, 2014.

[69] G. Kousiouris, A. Menychtas, D. Kyriazis, S. Gogouvitis, and T. Varvarigou, “Dy-

namic, behavioral-based estimation of resource provisioning based on high-level ap-

plication terms in cloud platforms,” Future Generation Computer Systems, vol. 32,

pp. 27–40, 2014.

[70] Z. Chen, Y. Zhu, Y. Di, and S. Feng, “Self-adaptive prediction of cloud resource

demands using ensemble model and subtractive-fuzzy clustering based fuzzy neural

network,” Computational intelligence and neuroscience, vol. 2015, pp. 1–14, 2015.

[71] S. Sahi and V. Dhaka, “Study on predicting for workload of cloud services using Arti-

ficial Neural Network,” in Proceedings of the 2015 2nd International Conference on

164

Computing for Sustainable Global Development (INDIACom), pp. 331–335, March

2015.

[72] J. J. Prevost, K. Nagothu, B. Kelley, and M. Jamshidi, “Prediction of cloud data

center networks loads using stochastic and neural models,” in Proceedings of the 2011

6th International Conference on System of Systems Engineering (SoSE), pp. 276–281,

June 2011.

[73] Y.-C. Chang, R.-S. Chang, and F.-W. Chuang, “A predictive method for workload

forecasting in the cloud environment,” in Advanced Technologies, Embedded and Mul-

timedia for Human-centric Computing (Y.-M. Huang, H.-C. Chao, D.-J. Deng, and

J. J. J. H. Park, eds.), (Dordrecht), pp. 577–585, Springer Netherlands, 2014.

[74] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for adaptive

resource provisioning in the cloud,” Future Generation Computer Systems, vol. 28,

no. 1, pp. 155–162, 2012.

[75] K. B. Bey, F. Benhammadi, A. Mokhtari, and Z. Guessoum, “CPU load prediction

model for distributed computing,” in Proceedings of The 8th IEEE International Sym-

posium on Parallel and Distributed Computing. (ISPDC’09), pp. 39–45, 2009.

[76] K. Cetinski and M. B. Juric, “Ame-wpc: Advanced model for efficient workload pre-

diction in the cloud,” Journal of Network and Computer Applications, vol. 55, pp. 191–

201, 2015.

[77] S. Ismaeel and K. Al-Jebory, “Adaptive fuzzy system modeling,” Eng. Technology,

vol. 20, no. 4, pp. 201–212, 2001.

165

[78] K. Aljebory, S. Ismaeel, and A. Alqaissi, “Implementation of an intelligent SINS nav-

igator based on ANFIS,” in Systems, Signals and Devices, 2009. SSD ’09. 6th Inter-

national Multi-Conference on, pp. 1–7, March 2009.

[79] S. Mazumdar, A. Scionti, and A. S. Kumar, “Adaptive resource allocation for load

balancing in cloud,” in Cloud Computing, pp. 301–327, Springer, 2017.

[80] S. Di, D. Kondo, and W. Cirne, “Host load prediction in a google compute cloud with a

bayesian model,” in IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis (SC), pp. 1–11, Nov 2012.

[81] R. Karim, S. Ismaeel, and A. Miri, “Energy-efficient resource allocation for cloud data

centres using a multi-way data analysis technique,” in Human-Computer Interaction.

Theory, Design, Development and Practice (M. Kurosu, ed.), (Cham), pp. 577–585,

Springer International Publishing, 2016.

[82] Z. A. Mann and M. Szabó, “Which is the best algorithm for virtual machine place-

ment optimization?,” Concurrency and Computation: Practice and Experience, vol. 29,

no. 10, 2017.

[83] F. Rossigneux, L. Lefevre, J.-P. Gelas, D. Assuncao, and M. Dias, “A generic and

extensible framework for monitoring energy consumption of openstack clouds,” in Pro-

ceedings of The 4th IEEE International Conference on Big Data and Cloud Computing

(BdCloud), pp. 696–702, Dec 2014.

[84] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P. Jayaraman, J. Kolodziej, P. Bal-

aji, S. Zeadally, Q. M. Malluhi, N. Tziritas, A. Vishnu, et al., “A survey and taxonomy

on energy efficient resource allocation techniques for cloud computing systems,” Com-

puting, vol. 98, no. 7, pp. 751–774, 2016.

166

[85] B. Jennings and R. Stadler, “Resource management in clouds: Survey and research

challenges,” Journal of Network and Systems Management, vol. 23, no. 3, pp. 567–619,

2015.

[86] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn, “A survey

of cloud monitoring tools: Taxonomy, capabilities and objectives,” Journal of Parallel

and Distributed Computing, vol. 74, no. 10, pp. 2918–2933, 2014.

[87] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P. Jayaraman, J. Kolodziej, P. Bal-

aji, S. Zeadally, Q. M. Malluhi, N. Tziritas, A. Vishnu, et al., “A survey and taxonomy

on energy efficient resource allocation techniques for cloud computing systems,” Com-

puting, vol. 98, no. 7, pp. 751–774, 2016.

[88] G. Aceto, A. Botta, W. De Donato, and A. Pescapè, “Cloud monitoring: A survey,”

Computer Networks, vol. 57, no. 9, pp. 2093–2115, 2013.

[89] S. Ismaeel, A. Miri, D. Chourishi, and S. M. R. Dibaj, “Open source cloud management

platforms: A review,” in IEEE 2nd International Conference on Cyber Security and

Cloud Computing, pp. 470–475, November 2015.

[90] J. Gutierrez-Aguado, J. M. Alcaraz Calero, and W. Diaz Villanueva, “Iaasmon: Mon-

itoring architecture for public cloud computing data centers,” Journal of Grid Com-

puting, vol. 14, no. 2, pp. 283–297, 2016.

[91] G. Da Cunha Rodrigues, R. N. Calheiros, V. T. Guimaraes, G. L. d. Santos, M. B.

de Carvalho, L. Z. Granville, L. M. R. Tarouco, and R. Buyya, “Monitoring of cloud

computing environments: Concepts, solutions, trends, and future directions,” in Pro-

ceedings of the 31st Annual ACM Symposium on Applied Computing, SAC ’16, pp. 378–

383, ACM, 2016.

167

[92] U. Ismail, “Comparing 7 options for docker container monitoring,” January 2020.

Online; accessed 03 March 2020.

[93] A. Beloglazov and R. Buyya, “Openstack neat: a framework for dynamic and energy-

efficient consolidation of virtual machines in openstack clouds,” Concurrency and Com-

putation: Practice and Experience, vol. 27, no. 5, pp. 1310–1333, 2015.

[94] S. Masoumzadeh and H. Hlavacs, “Dynamic virtual machine consolidation: A multi

agent learning approach,” in IEEE International Conference on Autonomic Computing

(ICAC), pp. 161–162, July 2015.

[95] R. Kashyap, S. Chaudhary, and P. Jat, “Virtual machine migration for back-end

mashup application deployed on openstack environment,” in International Conference

on Parallel, Distributed and Grid Computing (PDGC), pp. 214–218, Dec 2014.

[96] A. Horri, M. S. Mozafari, and G. Dastghaibyfard, “Novel resource allocation algorithms

to performance and energy efficiency in cloud computing,” The Journal of Supercom-

puting, vol. 69, no. 3, pp. 1445–1461, 2014.

[97] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adaptive

heuristics for energy and performance efficient dynamic consolidation of virtual ma-

chines in cloud data centers,” Concurrency and Computation: Practice and Experience,

vol. 24, no. 13, pp. 1397–1420, 2012.

[98] M. Monil and R. Rahman, “Implementation of modified overload detection technique

with vm selection strategies based on heuristics and migration control,” in IEEE/ACIS

14th International Conference on Computer and Information Science (ICIS), pp. 223–

227, June 2015.

168

[99] D. Minarolli, A. Mazrekaj, and B. Freisleben, “Tackling uncertainty in long-term pre-

dictions for host overload and underload detection in cloud computing,” Journal of

Cloud Computing, vol. 6, p. 4, Feb 2017.

[100] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic consolidation

of virtual machines in cloud data centers under quality of service constraints,” IEEE

Transactions on Parallel and Distributed Systems, vol. 24, pp. 1366–1379, July 2013.

[101] F. Farahnakian, P. Liljeberg, and J. Plosila, “LiRCUP: Linear regression based CPU

usage prediction algorithm for live migration of virtual machines in data centers,” in

IEEE 39th Euromicro Conference on Software Engineering and Advanced Applications,

pp. 357–364, Sep. 2013.

[102] F. Farahnakian, T. Pahikkala, P. Liljeberg, and J. Plosila, “Energy aware consoli-

dation algorithm based on k-nearest neighbor regression for cloud data centers,” in

IEEE/ACM 6th International Conference on Utility and Cloud Computing (UCC),

pp. 256–259, 2013.

[103] S. S. Masoumzadeh and H. Hlavacs, “An intelligent and adaptive threshold-based

schema for energy and performance efficient dynamic vm consolidation,” in Energy

Efficiency in Large Scale Distributed Systems (J.-M. Pierson, G. Da Costa, and

L. Dittmann, eds.), (Berlin, Heidelberg), pp. 85–97, Springer Berlin Heidelberg, 2013.

[104] T. L. Saaty, The Analytic Hierarchy and Analytic Network Processes for the Measure-

ment of Intangible Criteria and for Decision-Making, pp. 363–419. New York, NY:

Springer New York, 2016.

169

[105] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres, and H. Ten-

hunen, “Using ant colony system to consolidate vms for green cloud computing,” IEEE

Transactions on Services Computing, vol. 8, pp. 187–198, March 2015.

[106] M. A. H. Monil and R. M. Rahman, “Vm consolidation approach based on heuristics,

fuzzy logic, and migration control,” Journal of Cloud Computing, vol. 5, p. 8, Jul 2016.

[107] G. F. Shidik, K. Mustofa, et al., “Evaluation of selection policy with various virtual

machine instances in dynamic vm consolidation for energy efficient at cloud data cen-

ters,” Journal of Networks, vol. 10, no. 7, pp. 397–406, 2015.

[108] A. Song, W. Fan, W. Wang, J. Luo, and Y. Mo, “Multi-objective virtual machine

selection for migrating in virtualized data centers,” in Pervasive Computing and the

Networked World (Q. Zu, B. Hu, and A. Elçi, eds.), (Berlin, Heidelberg), pp. 426–438,

Springer Berlin Heidelberg, 2013.

[109] S. S. Masoumzadeh and H. Hlavacs, “Integrating vm selection criteria in distributed

dynamic VM consolidation using fuzzy Q-learning,” in IEEE 9th International Con-

ference on Network and Service Management (CNSM), pp. 332–338, Oct 2013.

[110] M. A. H. Monil and R. M. Rahman, “Fuzzy logic based energy aware VM consol-

idation,” in Internet and Distributed Computing Systems (G. Di Fatta, G. Fortino,

W. Li, M. Pathan, F. Stahl, and A. Guerrieri, eds.), (Cham), pp. 31–38, Springer

International Publishing, 2015.

[111] S. Ismaeel, A. Al-Khazraji, and K. Al-delimi, “Fuzzy information modeling in a

database system,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 6,

no. 1, pp. 1–7, 2017.

170

[112] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual machine placement across mul-

tiple cloud providers,” in IEEE Asia-Pacific Services Computing Conference APSCC,

pp. 103–110, 2009.

[113] F.-H. Tseng, C.-Y. Chen, L.-D. Chou, H.-C. Chao, and J.-W. Niu, “Service-oriented

virtual machine placement optimization for green data center,” Mobile Networks and

Applications, vol. 20, no. 5, pp. 556–566, 2015.

[114] C. Ghribi, Energy efficient resource allocation in cloud computing environments. PhD

thesis, Institut National des Télécommunications, 2014.

[115] D. Jiankang, W. Hongbo, and C. Shiduan, “Energy-performance tradeoffs in iaas

cloud with virtual machine scheduling,” IEEE China Communications, vol. 12, no. 2,

pp. 155–166, 2015.

[116] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Online assignment and place-

ment of cloud task requests with heterogeneous requirements,” in IEEE Global Com-

munications Conference (GLOBECOM), pp. 1–6, 2015.

[117] B. C. Ribas, R. M. Suguimoto, R. A. Montano, F. Silva, and M. Castilho, “Pbfvmc: A

new pseudo-boolean formulation to virtual-machine consolidation,” in IEEE Brazilian

Conference on Intelligent Systems, pp. 201–206, 2013.

[118] X. Liu, H. Gu, H. Zhang, F. Liu, Y. Chen, and X. Yu, “Energy-aware on-chip virtual

machine placement for cloud-supported cyber-physical systems,” Microprocessors and

Microsystems, vol. 52, pp. 427–437, 2017.

[119] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

171

[120] W. Yue and Q. Chen, “Dynamic placement of virtual machines with both determin-

istic and stochastic demands for green cloud computing,” Mathematical Problems in

Engineering, vol. 2014, 2014.

[121] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, and H. Tenhunen, “Multi-agent

based architecture for dynamic VM consolidation in cloud data centers,” in 40th EU-

ROMICRO Conference on Software Engineering and Advanced Applications, pp. 111–

118, Aug 2014.

[122] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, and H. Tenhunen, “Utilization

prediction aware VM consolidation approach for green cloud computing,” in IEEE 8th

International Conference on Cloud Computing, pp. 381–388, June 2015.

[123] H. Goudarzi and M. Pedram, “Energy-efficient virtual machine replication and place-

ment in a cloud computing system,” in IEEE 5th International Conference on Cloud

Computing (CLOUD), pp. 750–757, 2012.

[124] A. Dalvandi, M. Gurusamy, and K. C. Chua, “Time-aware VM-placement and routing

with bandwidth guarantees in green cloud data centers,” in IEEE 5th International

Conference on Cloud Computing Technology and Science (CloudCom), vol. 1, pp. 212–

217, 2013.

[125] A. C. Adamuthe, R. M. Pandharpatte, and G. T. Thampi, “Multiobjective virtual

machine placement in cloud environment,” in IEEE International Conference on Cloud

and Ubiquitous Computing and Emerging Technologies (CUBE), pp. 8–13, 2013.

[126] E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony based workload place-

ment in clouds,” in 12th IEEE/ACM International Conference on Grid Computing

(GRID), pp. 26–33, Sept 2011.

172

[127] F. López-Pires and B. Barán, “Multi-objective virtual machine placement with service

level agreement: A memetic algorithm approach,” in IEEE/ACM 6th International

Conference on Utility and Cloud Computing (UCC), pp. 203–210, Dec 2013.

[128] F. López-Pires and B. Barán, “Virtual machine placement literature review,” arXiv

preprint arXiv:1506.01509, 2015.

[129] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provisioning for the

cloud using online bin packing,” IEEE Transactions on Computers, vol. 63, no. 11,

pp. 2647–2660, 2014.

[130] A. Alahmadi, A. Alnowiser, M. M. Zhu, D. Che, and P. Ghodous, “Enhanced first-fit

decreasing algorithm for energy-aware job scheduling in cloud,” in IEEE International

Conference on Computational Science and Computational Intelligence (CSCI), vol. 2,

pp. 69–74, 2014.

[131] U. Ismail, “IBM ILOG CPLEX optimization studio,” 2020. Online; accessed 03 March

2020.

[132] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony system

algorithm for virtual machine placement in cloud computing,” Journal of Computer

and System Sciences, vol. 79, no. 8, pp. 1230–1242, 2013.

[133] S. K. Bose and S. Sundarrajan, “Optimizing migration of virtual machines across data-

centers,” in International Conference on Parallel Processing Workshops (ICPPW’09),

pp. 306–313, Sept 2009.

173

[134] A. Mohan and S. Shine, “Survey on live vm migration techniques,” International

Journal of Advanced Research in Computer Engineering and Technology, vol. 2, no. 1,

pp. 155–157, 2013.

[135] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and

A. Warfield, “Live migration of virtual machines,” in Proceedings of the 2nd con-

ference on Symposium on Networked Systems Design & Implementation-Volume 2,

pp. 273–286, 2005.

[136] B. Hu, Z. Lei, Y. Lei, D. Xu, and J. Li, “A time-series based precopy approach for

live migration of virtual machines,” in IEEE 17th International Conference on Parallel

and Distributed Systems (ICPADS), pp. 947–952, 2011.

[137] S. Sahni and V. Varma, “A hybrid approach to live migration of virtual machines,” in

IEEE International Conference on Cloud Computing in Emerging Markets (CCEM),

pp. 1–5, Oct 2012.

[138] A. Strunk, “A lightweight model for estimating energy cost of live migration of virtual

machines,” in IEEE Sixth International Conference on Cloud Computing (CLOUD),

pp. 510–517, June 2013.

[139] X. Guan, B. Y. Choi, and S. Song, “Topology and migration-aware energy efficient

virtual network embedding for green data centers,” in IEEE 23rd International Con-

ference on Computer Communication and Networks (ICCCN), pp. 1–8, Aug 2014.

[140] J. Huang, K. Wu, and M. Moh, “Dynamic virtual machine migration algorithms using

enhanced energy consumption model for green cloud data centers,” in IEEE Interna-

tional Conference on High Performance Computing Simulation (HPCS), pp. 902–910,

July 2014.

174

[141] C. Ghribi, M. Hadji, and D. Zeghlache, “Energy efficient VM scheduling for cloud data

centers: Exact allocation and migration algorithms,” in 13th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 671–678, May 2013.

[142] S. Akiyama, T. Hirofuchi, and S. Honiden, “Evaluating impact of live migration on

data center energy saving,” in IEEE 6th International Conference on Cloud Computing

Technology and Science (CloudCom), pp. 759–762, Dec 2014.

[143] T. Yang, Y. C. Lee, and A. Y. Zomaya, “Energy-efficient data center networks plan-

ning with virtual machine placement and traffic configuration,” in Cloud Computing

Technology and Science (CloudCom), 2014 IEEE 6th International Conference on,

pp. 284–291, Dec 2014.

[144] Y. Liao, D. Yin, and L. Gao, “Dpillar: Scalable dual-port server interconnection for

data center networks,” in IEEE 19th International Conference on Computer Commu-

nications and Networks (ICCCN), pp. 1–6, 2010.

[145] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network

architecture,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 4,

pp. 63–74, 2008.

[146] G. Qu, Z. Fang, J. Zhang, and S.-Q. Zheng, “Switch-centric data center network

structures based on hypergraphs and combinatorial block designs,” IEEE Transactions

on Parallel and Distributed Systems, vol. 26, no. 4, pp. 1154–1164, 2015.

[147] A. Erickson, I. A. Stewart, A. Kiasari, and J. Navaridas, “An optimal single-path

routing algorithm in the datacenter network dpillar,” arXiv preprint arXiv:1509.01746,

2015.

175

[148] T. Wang, Z. Su, Y. Xia, and M. Hamdi, “Rethinking the data center networking:

Architecture, network protocols, and resource sharing,” IEEE Access, vol. 2, pp. 1481–

1496, 2014.

[149] A. Erickson, A. E. Kiasari, J. Navaridas, and I. A. Stewart, “An efficient shortest-path

routing algorithm in the data centre network dpillar,” in Combinatorial Optimization

and Applications (Z. Lu, D. Kim, W. Wu, W. Li, and D.-Z. Du, eds.), (Cham), pp. 209–

220, Springer International Publishing, 2015.

[150] T. H. Duong-Ba, T. Nguyen, B. Bose, and T. T. Tran, “A dynamic virtual machine

placement and migration scheme for data centers,” IEEE Transactions on Services

Computing, 2018.

[151] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Towards

understanding heterogeneous clouds at scale: Google trace analysis,” Intel Science

and Technology Center for Cloud Computing, Tech. Rep, vol. 84, pp. 1–21, 2012.

[152] S. Ismaeel and A. Miri, “Real-time energy-conserving vm-provisioning framework for

cloud-data centers,” in IEEE 9th Annual Computing and Communication Workshop

and Conference (CCWC), pp. 0765–0771, Jan 2019.

[153] Y. Yu, V. Jindal, I.-L. Yen, and F. Bastani, “Integrating clustering and learning for

improved workload prediction in the cloud,” in IEEE 9th International Conference on

Cloud Computing (CLOUD), pp. 876–879, 2016.

[154] J. V. Guttag, Introduction to computation and programming using Python. MIT Press,

2013.

176

[155] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou, and

A. Bouras, “A survey of clustering algorithms for big data: Taxonomy and empirical

analysis,” IEEE transactions on emerging topics in computing, vol. 2, no. 3, pp. 267–

279, 2014.

[156] M. C. Thrun, Projection-Based Clustering Through Self-Organization and Swarm In-

telligence: Combining Cluster Analysis with the Visualization of High-Dimensional

Data. Springer, 2018.

[157] C. Hennig, “Cluster validation by measurement of clustering characteristics relevant

to the user,” arXiv preprint arXiv:1703.09282, 2017.

[158] J. Hämäläinen, S. Jauhiainen, and T. Kärkkäinen, “Comparison of internal clustering

validation indices for prototype-based clustering,” Algorithms, vol. 10, no. 3, p. 105,

2017.

[159] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Transactions on neural

networks, vol. 16, no. 3, pp. 645–678, 2005.

[160] B. Desgraupes, “Clustering indices,” University of Paris Ouest-Lab Modal’X, pp. 1–34,

2013.

[161] S. Salvador and P. Chan, “Determining the number of clusters/segments in hierarchical

clustering/segmentation algorithms,” in IEEE 16th International Conference on Tools

with Artificial Intelligence (ICTAI), pp. 576–584, 2004.

[162] A. Amini, T. Y. Wah, and H. Saboohi, “On density-based data streams clustering

algorithms: A survey,” Journal of Computer Science and Technology, vol. 29, no. 1,

pp. 116–141, 2014.

177

[163] R. Xu, J. Xu, and D. C. Wunsch, “A comparison study of validity indices on swarm-

intelligence-based clustering,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), vol. 42, no. 4, pp. 1243–1256, 2012.

[164] S. Saitta, B. Raphael, and I. F. Smith, “A comprehensive validity index for clustering,”

Intelligent Data Analysis, vol. 12, no. 6, pp. 529–548, 2008.

[165] N. Williams, S. Nasuto, and J. Saddy, “Method for exploratory cluster analysis and

visualisation of single-trial erp ensembles,” Journal of neuroscience methods, vol. 250,

pp. 22–33, 2015.

[166] S. Ismaeel and A. Miri, “A systematic cloud workload clustering technique in large

scale data centers,” in IEEE World Congress on Services (SERVICES), vol. 2642-

939X, pp. 362–363, July 2019.

[167] Q. Xia, Y. Lan, L. Zhao, and L. Xiao, “Energy-saving analysis of cloud workload

based on K-means clustering,” in The IEEE Computing, Communications and IT

Applications Conference (ComComAp), pp. 305–309, Oct 2014.

[168] M. Rasheduzzaman, M. Islam, T. Islam, T. Hossain, and R. Rahman, “Task shape

classification and workload characterization of google cluster trace,” in Proceedings of

the 2014 IEEE International Advance Computing Conference (IACC), pp. 893–898,

Feb 2014.

[169] Z. I. Botev, J. F. Grotowski, D. P. Kroese, et al., “Kernel density estimation via

diffusion,” The annals of Statistics, vol. 38, no. 5, pp. 2916–2957, 2010.

178

[170] W. M. Campbell, D. E. Sturim, and D. A. Reynolds, “Support vector machines using

gmm supervectors for speaker verification,” IEEE Signal Process. Lett., vol. 13, no. 5,

pp. 308–311, 2006.

[171] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Toward energy-efficient cloud

computing: Prediction, consolidation, and overcommitment,” IEEE Network, vol. 29,

no. 2, pp. 56–61, 2015.

[172] A. Khoshkbarforoushha, R. Ranjan, R. Gaire, P. P. Jayaraman, J. Hosking, and E. Ab-

basnejad, “Resource usage estimation of data stream processing workloads in datacen-

ter clouds,” CoRR, vol. abs/1501.07020, 2015.

[173] I. Sarji, C. Ghali, A. Chehab, and A. Kayssi, “Cloudese: Energy efficiency model for

cloud computing environments,” in Proceedings of The International Conference on

Energy Aware Computing (ICEAC), pp. 1–6, Nov 2011.

[174] N. ming Xie and S. feng Liu, “Discrete grey forecasting model and its optimization,”

Applied Mathematical Modelling, vol. 33, no. 2, pp. 1173 – 1186, 2009.

[175] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and

applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501, 2006.

[176] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient cloud re-

source management,” in IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), pp. 386–391, 2014.

[177] A. Grosfeld-Nir, B. Ronen, and N. Kozlovsky, “The pareto managerial principle: when

does it apply?,” International Journal of Production Research, vol. 45, no. 10, pp. 2317–

2325, 2007.

179

[178] F. López-Pires and B. Barán, “Many-objective virtual machine placement,” Journal

of Grid Computing, vol. 15, no. 2, pp. 161–176, 2017.

[179] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-system power

analysis and modeling for server environments,” in Workshop MOBS, pp. 70–77, 2006.

[180] V. Shrivastava, P. Zerfos, K. Lee, H. Jamjoom, Y. Liu, and S. Banerjee, “Application-

aware virtual machine migration in data centers,” in Proceedings IEEE INFOCOM,

pp. 66–70, April 2011.

[181] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,

“McPAT: An integrated power, area, and timing modeling framework for multicore

and manycore architectures,” in 42nd Annual IEEE/ACM International Symposium

on Microarchitecture MICRO 42, pp. 469–480, 2009.

180

