
ADVANCEMENTS IN MULTI-OBJECTIVE ECO-ROUTING SOLUTIONS

USING CONNECTIVITY

By

Lama Alfaseeh

Master in Engineering, Damascus University, February 2011
Bachelor in Civil Engineering, Damascus University, September 2006

A dissertation
presented to Ryerson University

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the program of
Civil Engineering

Toronto, Ontario, Canada, 2020
c© Copyright Lama Alfaseeh, 2020



c© Copyright by LAMA ALFASEEH, 2020
All Rights Reserved



ACKNOWLEDGMENT

"For anyone who does not taste the bitterness of acquiring knowledge, he/she

will taste the humiliation of ignorance all his/her life" Shafi’i

First and foremost, I would like to thank God Almighty for giving me the strength,

determination, ability, and patience to undertake this research. Without his blessings, this

achievement would not have been possible.

I am deeply indebted to my parents for raising me to value learning and academic achieve-

ments. I was nurtured not to waste time and to take advantage of opportunities. My mom,

Prof. Khetam, and dad, Dr. Ayman, are absolutely my role models.

I would also like to extend my deepest gratitude to Dr. Bilal Farooq, my supervisor, for

his continuous support during my PhD journey. I remember when I first met him, he told

me that he only researches cool stuff. Now, I know exactly what he meant! I was extremely

fortunate to work under his supervision. He is a very ambitious, knowledgeable, respectful,

supportive, and understanding supervisor. Dr. Bilal is what every PhD student would ask

for.

I would like to express my deepest appreciation to my committee members: Dr. Hanna

Maoh, Dr. Marianne Hatzopoulou, Dr. Tor Oiamo, Dr. Medhat Shehata, and Dr. Sabbir

Saiyed. They have generously dedicated their time to be part of my committee and provide

constructive feedback.

The completion of my dissertation would not have been possible without the support

and love of my husband, friend, and partner, Houssam Loutfi. He celebrated my success and

encouraged me when I needed a push. He believed in me and was sure that I would make it.

Being a mom and a PhD student was tough, but the inspiration I got from my kids,

ii



Hamzah (my heart) and Sima (my soul), made it much easier and made me more resilient

to the challenges I faced.

I would like to thank my sister, Dima, and brother, Ghaleb, for their encouragement and

support.

I would also like to extend my deepest gratitude to Dr. A for his special type of support

that made this work happen.

I would like to thank Prof. El-Rabbany for his support during my PhD journey from

day one until the end. His door was always open for me, regardless of the issue. His advice

definitely contributed positively to my professional and academic achievements. Prof. El-

Rabanny is absolutely an asset to Ryerson University. My sincere thanks are also to Prof.

Miljana Horvat for her support.

I am extremely grateful to Prof. Omar Hefni who shared priceless advice, followed up on

my progress, and supported me in several ways throughout this journey.

I would like to thank my research mates at the Laboratory of the Innovations in Trans-

portation (LiTrans). The friendly environment, Dr. Bilal encouraged, helped reducing the

stress level during my PhD journey. All of the research team members were ready to assist

when they were asked. My sincere thanks is for Dr. Shadi, who worked closely with me

and absolutely contributed to this research work. Thanks to Dr. Melvin, Arash, Rafael,

Veronica, and Mehdi for being supportive colleagues. Outside of LiTrans, I would like to

thank Yasmine and Markus Jesswein for being amazing colleagues.

Last but certainly not least, many thanks to my friends, who believed in me, especially

Abeer Dandal who was always there for me even when I did not ask for help.

iii



ADVANCEMENTS IN MULTI-OBJECTIVE ECO-ROUTING SOLUTIONS

USING CONNECTIVITY

Abstract

by Lama Alfaseeh
Doctor of Philosophy, 2020

Civil Engineering
Ryerson University

Due to the significant adverse impact of transportation systems on the environment, top-

ics related to alleviating greenhouse gas (GHG) emissions are gaining more attention. As

potential solutions to mitigate GHG emissions, several approaches have been proposed to

better control traffic and manage transportation systems. The employment of Intelligent

Transportation System (ITS), which adopts the advancements in Information and Commu-

nication Technology (ICT), has been proposed as the most favourable approach to alleviate

the undesirable impact of transportation systems on the environment. ITS can control sev-

eral aspects of a network, such as speed, traffic signals, and route guidance. For the purpose

of routing, this research aims to exploit the advancements in ICT by including connected

and automated vehicles (CAVs) and sensing technology in an urban congested network.

Anticipatory multi-objective eco-routing in a distributed routing framework was pro-

posed and compared to myopic routing with a large case study on a congested network.

The End-to-End Connected Autonomous Vehicles (E2ECAV) dynamic distributed routing

framework was examined, and encouraging results were found based on the traffic and envi-

ronmental perspectives. The impact of different market penetration rates (MPRs) of CAVs

was examined for various traffic conditions. E2ECAV was adopted for both the myopic and



anticipatory routing strategies in this dissertation. The best GHG costing approach was de-

fined and was among the elements tackled in this research. For a robust anticipatory routing

application, predictive models were developed based on Long-Short Term Memory (LSTM),

a deep learning approach, while considering a high level of spatial (link level) and temporal

(one minute) resolution. With regards to the LSTM predictive models, the impact was il-

lustrated of using a deeper LSTM network and systematically tuning its hyper-parameters.

The anticipatory routing strategy significantly outperformed the myopic routing strategy

based on the the traffic and environmental perspectives. This research shows that ITS can

help significantly reduce GHG emissions produced by transportation systems. The devel-

oped predictive models can be used while real-time data are collected from sensors within an

urban network. Furthermore, the proposed anticipatory routing framework can be applied

in a real-time situation.
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1.1 Overview and motivation

Transportation systems have a dramatic undesirable impact on the environment. According

to Environment and Climate Change Canada (2020), transportation system, which was the

second largest source of greenhouse gas (GHG) emissions, contributed to 25% of the produced

GHG emission in Canada in 2018. In 2017, it was found that 81% of the GHG was CO2,

which is a major contributor to climate change and global warming (Z. Liu et al., 2020).

Several approaches have been proposed to alleviate the adverse impact of transportation

systems on the environment. Substituting fossil fuel with other energy sources is one tool,

but this is unlikely to be adopted completely in the near future. Improving vehicles’ technol-

ogy is another approach. The employment of intelligent transportation system (ITS), which

utilizes the enhancements in Information and Communication Technology (ICT), has been

suggested to mitigate GHG emissions. The use of ITS is potentially the most promising

approach as it allows several measures to be controlled, such as speed, traffic signals, and

route guidance (Zegeye et al., 2009). It has been shown that there is a proportional rela-

tionship between routing efficiency and the performance of a transportation system from the

traffic and environmental perspectives (Djavadian, Tu, et al., 2020; Tu, Alfaseeh, et al., 2019;

Alfaseeh, Djavadian, and Farooq, 2018; Yang and Recker, 2006). While routing vehicles to

their destinations, ITS collects, processes, and shares data with users for a better performing

transportation system (Council of Ministers Transportation and Highway Safety, 2012).

The employment of intelligent vehicles has contributed to favourable results from the traffic

and environmental points of view as found in Djavadian, Tu, et al. (2020); Alfaseeh, Djava-

dian, Tu, et al. (2019); Tu, Alfaseeh, et al. (2019); Djavadian and Farooq (2018) and Alfaseeh,

Djavadian, and Farooq (2018). With regards to sensing technologies as another form of ITS,

distributed routing framework depends on different types of communication and has been

proposed to overcome the limitations of the existing centralized routing framework. These

limitations are related to the large investment required, high sensitivity to system failure, and
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high complexity in the case of system upgrades (Yang and Recker, 2006). For instance, the

End-to-End Connected Automated Vehicles (E2ECAV) dynamic distributed routing frame-

work (Farooq and Djavadian, 2019) has proven its ability to significantly outperform the

centralized routing system, especially with high market penetration rates (MPRs) of CAVs

(Djavadian, Tu, et al., 2020; Alfaseeh, Djavadian, Tu, et al., 2019; Tu, Alfaseeh, et al., 2019;

Djavadian and Farooq, 2018; Alfaseeh, Djavadian, and Farooq, 2018). The existing rout-

ing systems, which are predominantly myopic, aim at minimizing travel time solely and are

mostly applied in a centralized routing system (Alfaseeh and Farooq, 2020b). To incorporate

the environmental dimension, eco-routing takes environmental variables into consideration

while routing vehicles to their destinations and has replaced the original routing concept.

The motivation of this research is stemmed from the aforementioned facts related to the

adverse effect that transportation systems imposed on the environment. In addition, the

availability of supporting technologies for a better performing transport system represents

another part of this dissertation’s motivation. In this dissertation, the advancement in

ICT, sensing and intelligent vehicles, were exploited to mitigate the undesirable impact of

transportation systems on the environment. Novel anticipatory multi-objective eco-routing

strategies were developed and applied in a distributed routing framework. Unlike myopic

routing, which deals with the current traffic and environmental state, anticipatory routing

depends on the predicted state and requires predictive models of the optimized variables.

1.2 Contributions

This dissertation aims to take advantage of the advancements in ICT to minimize the pro-

duced GHG emission while dynamically routing vehicles from their origins to their destina-

tions. Routing was analyzed in different settings to minimize not only travel time but also

greenhouse gas (GHG) emissions. To fulfill this objective, following steps were taken:
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• A distributed dynamic routing framework, End-to-End Connected Automated Vehicles

(E2ECAV), was evaluated based on the traffic and environmental characteristics and

its suitability in the context of eco-routing;

• Myopic single and multi-objective eco-routing strategies were developed as a base case;

• Predictive mechanisms based on Long Short-Term Memory (LSTM) model were de-

veloped;

• Anticipatory single and multi-objective eco-routing strategies were developed and com-

pared with the base case, myopic routing strategies.

1.3 Research Significance

Anticipatory eco-routing strategies offer potential enhancements compared to myopic eco-

routing strategies from the traffic and environmental perspectives. To exploit the advance-

ment in ICT, the E2ECAV dynamic distributed routing system, which uses CAVs and two

types of communication, was examined in detail and employed in this dissertation. Demon-

strating the efficiency of the E2ECAV assures that connectivity contributes to significant

enhancements from the traffic and environmental perspectives. This will encourage future

research work to adopt distributed routing systems. To apply the anticipatory routing realis-

tically, sophisticated predictive models were developed in this dissertation for the variables in

concern. A high level of temporal (1 minute) and spatial (link level) resolution was adopted,

despite the high level of complexity associated. The developed predictive models can be used

while real-time data are provided from any urban network. In other words, if the link level

cost of every one minute interval is available from an urban network, the developed predictive

models can be adopted to predict the links cost, which includes travel time and/or GHG

that are used to dynamically route vehicles to their destinations. Another essential com-

ponent of this dissertation was the investigation of the best GHG costing approach, and it
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can become the reference for practitioners and researchers in the field. As every application

is associated with specifications related to the level of aggregation of traffic, emissions, and

required accuracy, the most suitable GHG costing approach will be defined for every unique

case and is an added value to the literature.

To the best of our knowledge, this research is the first of its kind that developed and ap-

plied anticipatory multi-objective eco-routing strategies. This approach optimizes not only

travel time, but also GHG emissions in a distributed routing framework, while adopting

sophisticated predictive models. This research work provides the framework of anticipatory

multi-objective eco-routing application and discusses the details of its process and compo-

nents. The interactions between the components of a transport system, such as the traffic

simulator, emission simulator, routing framework, vehicles, and intersections, are illustrated

in a detailed manner. The strengths and weaknesses of different options are also demon-

strated for future research work.

1.4 Dissertation Outline

The dissertation is composed of the following chapters. The framework followed in this

dissertation is presented in Figure 1.1.

Chapter 2 presents a detailed review of the state-of-the-art and classifies the existing

eco-routing models based on a multi-factor taxonomy. The three factors were the level of

aggregation of the traffic and emission models, the scale of the case study, and the number

of objectives optimized at a time. The strengths and weaknesses were discussed of every

category. Finally, the potential of using the distributed routing system was illustrated with

supporting results.

Chapter 3 included the background components, which will be used throughout this

dissertation, and their description. First, the traffic model was presented in addition to the

details of the adopted car following model. The emission model, MOtor Vehicle Emission
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Simulator (MOVES), was illustrated and its basic equations were discussed. Finally, a case

study and the characteristics of its roads were presented.

Chapter 4 analyzes a framework of dynamic distributed routing, End-to-End Connected

Automated Vehicles (E2ECAV) (Farooq and Djavadian, 2019) in the context of traffic and

environmental aspects. A range of macro and micro indicators are considered for a compre-

hensive analysis.

Chapter 5 proposes myopic multi-objective eco-routing strategies and tests them in the

E2ECAV routing framework. This framework overcame the shortcomings found in the stud-

ies from the related literature as summarized in Chapter 2. For the myopic multi-objective

eco-routing application, microscopic level of aggregation for the traffic and emission mod-

els was applied in a large urban case study. At the same time, multiple objectives were

optimized simultaneously. Results were analyzed at two levels: link and network.

Chapter 6 develops predictive models for GHG and speed based on the long short-term

memory (LSTM) model, a deep learning approach. A comparison between LSTM and two

other commonly used approaches, namely clustering and the autoregressive integrated mov-

ing average (ARIMA), has been conducted to define which model was the most suitable

within the setting of this dissertation. The impact of utilizing a deeper LSTM network and

systematically tuning the LSTM model hyper-parameters on the prediction performance was

presented.

Chapter 7 employs the best predictive models from Chapter 6 and develops anticipatory

multi-objective eco-routing strategies. A comprehensive comparison was made between the

myopic routing strategies in Chapter 5 and the anticipatory routing strategies in this chapter.

Results were analyzed at the link as well as network level.

Chapter 8 summarizes the major findings of this research and proposes ideas for future

research on reducing produced GHG emissions by transportation systems.
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Figure 1.1 Dissertation Framework
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Chapter Two

Review of Eco-Routing Studies

This chapter has resulted in the following publication:

1. Alfaseeh, Lama, and Bilal Farooq (2020). "Multi-Factor Taxonomy of Eco-Routing

Models and Future Outlook." Journal of Sensors.

8



2.1 Introduction

Transportation systems have been consistently ranked as the largest source of GHG emissions

in the U.S. (EPA, 2020b) and Canada (Environment and Climate Change Canada, 2020).

GHG emission is one of the major factors contributing to climate change and global warming

(Z. Liu et al., 2020). Among the suggested solutions to alleviate GHG produced by trans-

portation systems, eco-routing, which considers the environmental aspect and is an extension

of the routing concept, is a popular and effective approach. Nitrogen Oxide (NOx) is among

the pollutants produced by transportation systems and has a negative impact on the envi-

ronment and public health. NOx emissions lead to the formation of tropospheric O3, which

is also a greenhouse gas. Furthermore, NOx is associated with several adverse effects on the

public health with respect to acid deposition and drinking water nitrate. (Price et al., 1997).

To improve the performance of transportation systems, it is beneficial to also consider NOx

as a routing objective and/or performance indicator.

Initially, routing was based on one routing objective, which is travel time (Tzeng and C.-H.

Chen, 1993). However, in the last few decades, researchers started incorporating more than

one objective, while routing vehicles to their destinations. Multiple objective optimization is

associated with a high level of complexity due to the heterogeneous interaction between the

different objectives that might be competing. For example, an improvement in the network

throughput may have an adverse impact on the environmental aspect. A longer travelling

distance may contribute to a lower travel time, but it may also result in more GHG emissions

(Alfaseeh and Farooq, 2020a).

In this chapter, literature related to the fundamental elements is discussed, such as rout-

ing, eco-routing, traffic assignment and their relationship with routing in general. A three

factor taxonomy was developed based on the most representative characteristics of the eco-

routing studies. The strengths and weaknesses of each category of the taxonomy are dis-

cussed. Finally, concluding remarks are included. Table 2.1 illustrates the acronyms and
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abbreviations used in this chapter. The findings of this chapter trigger the need for further

research that is addressed throughout this dissertation.

This chapter is organized as follows. Section 2.2 discusses the concepts of routing, eco-

routing, and traffic assignment. In addition, the relationship between traffic assignment and

routing is demonstrated. Section 2.3 presents the main vehicle emission models and their

sub models with examples. The proposed taxonomy of the eco-routing studies is illustrated

in Section 2.4. In Section 2.5, the eco-routing studies are classified based on the taxon-

omy presented in the previous section. Finally, Section 2.6 summarizes the findings in this

chapter.

2.2 Vehicle Routing, Eco-Routing, and Traffic Assign-

ment

Routing is guiding vehicles to their destinations and is mainly based on a single objective,

such as travel time, distance, emissions, or fuel. Generally, routing was applied to minimize

travel time from origins to destinations (Cherkassky, Goldberg, and Radzik, 1996). To apply

routing, algorithms are required to define the optimal routes from origins to destinations.

It was found in literature (Cherkassky, Goldberg, and Radzik, 1996) that the Dijkstra,

Bellman–Ford, A*, Floyd–Warshall, Johnson, and Viterbi routing algorithms were the most

important. The Dijkstra algorithm is a very popular routing algorithm and solves the single-

source shortest path problem with non-negative edge weights. It was proposed in 1956

but was published three years later. The Bellman–Ford algorithm solves the single-source

problem if edge (links) weights may be negative, which occurs when incentives are provided

for choosing certain edges. The Bellman–Ford algorithm was first proposed by Alfonso

Shimbel (1955), but it is instead named after Richard Bellman and Lester Ford Jr., who

published it in 1958 and 1956, respectively. The A* search algorithm finds the shortest
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Table 2.1 Acronyms and Abbreviations Used in Chapter Two

Acronyms and Full name

abbreviations

STA Static traffic assignment

DTA Dynamic traffic assignment

UE User Equilibrium

SO System Optimal

Wt, Wd, We, and Wf Weights of travel time, distance, emissions, and fuel, respectively

Ti, Di, Ei, and Fi Travel time, distance, emissions, and fuel of link i, respectively

IS1 Model adopting microscopic traffic and emission models, small case study,

and optimizing one routing objective

IL1 Model adopting microscopic traffic and emission models, large case study,

and optimizing one routing objective

AS2 Model adopting macroscopic traffic and emission models, small case study,

and optimizing more than one routing objective

AL1 Model adopting macroscopic traffic and emission models, large case study,

and optimizing one routing objective

AL2 Model adopting macroscopic traffic and emission models, large case study,

and optimizing more than one routing objective

MS2 Model adopting different levels of aggregation of traffic and emission models,

small case study, and optimizing more than one routing objective

ML1 Model adopting different levels of aggregation of traffic and emission models,

large case study, and optimizing one routing objective

path for a single origin-destination pair using heuristics to try to speed up the search. The

Floyd–Warshall algorithm solves the shortest paths for all pairs. The Johnson algorithm also

solves the shortest paths for all pairs but may be faster than the Floyd–Warshall algorithm

on sparse graphs. The Viterbi algorithm solves the shortest stochastic path problem with
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an additional probabilistic weight on each node (Cherkassky, Goldberg, and Radzik, 1996).

The routing concept has been used by public agencies for decades and their main tool

is the road variable message sign (VMS) to direct traffic through the best routes. How-

ever, due to the emergence of ICT, the availability of route guidance services by private

parties have skyrocketed, and personal navigation platforms have been growing due to their

increased affordability and introduction by commercialization (Chiu et al., 2011). Recently,

environmental indicators have been considered and eco-routing has substituted the conven-

tional routing concept that only considers the traffic variables. Other synonym terms of

eco-routing can be pollution routing (Bektaş and Laporte, 2011) or green-routing (Guo, S.

Huang, and Sadek, 2013).

Dynamic	traffic
assignment	(DTA)

Static	traffic
assignment	(STA)

Both	traffic	assignments	consist	of	two	components

Traffic	flow	model Travel	choice
principle

Microscopic

Mesoscopic

Macroscopic

User	Equilibrium
(UE)

System	Optimal
(SO)

Traffic	assignment Vehicle	routing	problem

General	optimization
formulation	

Special	case:	Eco-routing
vehicle	problem

General	process	followed

Figure 2.1 Traffic Assignment Classification, Components, and Traffic Assignment
Relationship with Routing (Alfaseeh and Farooq, 2020b)

In general, to route vehicles based on a routing objective, the link cost is required to
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estimate the cost of possible paths and to consequently choose the optimal route. The cost

is obtained from historical data, data collected from sensors, probe vehicles, or traffic as-

signment. Traffic assignment focuses on the choice of a path from an origin to a destination

(Papacostas and Prevedouros, 1993). When a path is chosen, which is based on the objec-

tives set by drivers or by governments, any traffic or environmental variable is estimated

accordingly. Traffic assignment is the fourth step in the conventional transportation fore-

casting model and comes after trip generation, trip distribution, and mode choice. It is

considered as the equilibration model between the travel demand and transportation system

supply (Papacostas and Prevedouros, 1993). Traffic assignment is a common tool adopted to

define the link cost (Papacostas and Prevedouros, 1993). Figure 2.1 includes the types of the

traffic assignment models, their components, and the relationship between traffic assignment

and routing. Traffic assignment is classified into two categories: static and dynamic. The

static traffic assignment (STA) considers equal in and out flow of a studied link. This means

that the congestion phenomenon is not captured efficiently. The main outcomes of the STA

models include average speed, traffic volume, level of service, and traffic composition (Chiu

et al., 2011), and they are employed to estimate the weights of the traffic characteristics

to define the optimal routes (Szeto, Jaber, and Wong, 2012). On the other hand, the dy-

namic traffic assignment (DTA) represents the congestion more realistically by examining

the changes in the traffic conditions over time. Thus, the weights obtained based on DTA are

more reliable for routing compared to STA (Y. Wang et al., 2018). Both traffic assignment

models consist of two components, the traffic flow model and the travel choice principle. The

traffic flow model can be either microscopic, mesoscopic, or macroscopic (Luo et al., 2016).

The microscopic traffic flow model captures the dynamics of every vehicle while adopting

a high level of a spatial and temporal resolution. The outputs include the speed, position,

and acceleration of every vehicle at every time step. The macroscopic model is associated

with a lower level of resolution compared to microscopic models since it requires aggregated

information about the vehicular dynamics (Szeto, Jaber, and Wong, 2012). Finally, the
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mesoscopic flow model goes between the microscopic and macroscopic models. It captures

the vehicular flow at an aggregated level, while the behaviour rules are taken in detail. The

dynamics between the vehicles are applied at a microscopic level, and vehicles of the same

characteristics are grouped in small packets. The trajectories of these packets are applied

following the logic of the microscopic traffic flow model. The macroscopic flow–density re-

lationship is employed to model the flow propagation between links as in the macroscopic

models.

With regards to the travel choice models, Wardrop defined the two principles: the User

Equilibrium (UE) and the System Optimal (SO) (Zuurbier, 2010). UE is when “the journey

cost on all the routes actually used are equal and less than those which would be experienced

by a single vehicle on any unused route” (Zuurbier, 2010). This means that drivers look for

the route with the least cost regardless of the impact at the network level. The UE method

is the most widely used trip assignment method in transportation. In the case of UE, a

driver cannot unilaterally minimize his travel time by switching to another route. Under

this condition, the travel time is the same on each used path between any origin destination

(OD) pair. Nevertheless, the total system travel time in the case of UE traffic assignment

may not be the minimum (Szeto, Jaber, and Wong, 2012). On the other hand, the SO is

when “the average journey cost is a minimum for all routes in a network” (Zuurbier, 2010).

The minimum of the total system travel time can be found under this condition. The SO

assignment is what authorities aim to achieve.

The general optimization process of routing, whether it considers traffic and/or envi-

ronmental variables, follows Equation 2.1. When environmental variables are part of the

optimization process, routing is replaced with eco-routing.

min

{
n∑
i=1

Wt.Ti +
n∑
i=1

Wd.Di +
n∑
i=1

We.Ei +
n∑
i=1

Wf .Fi

}
(2.1)

Where Ti is travel time on link i; Di is distance traversed on link i; Ei is emissions on

link i that can include CO2, CO, NOx, or any other pollutant; Fi is fuel consumed on link
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i; n is number of links of a path k; and Wt, Wd, We, and Wf are weights associated with

travel time, distance, emissions, and fuel, respectively. The variables are obtained based

on a defined aggregation level, which can be microscopic, mesoscopic, or macroscopic. The

level of aggregation impacts explicitly the quality of estimation, which has a direct effect on

the routing performance. To better understand the application of the general optimization

process, the variables of a specific road link i in downtown Toronto are extracted from one

of the simulation runs. As found from the simulation data points, while adopting a minute

updating interval, the speed of that specific link varies from 10 to 80 km/hour throughout

the simulation. The link i length is 0.5 km, which is represented by Di in Equation 2.1. The

travel time, which reflects on Ti, varies from 0.0026 to 0.02 hour based on the speed at every

minute. If the cost of emissions, Ei, in Equation 2.1 is taken in a form of emission rate (ER),

the value ranges from 5137 to 14900 g/hour. The unit adopted for emissions can be kg/h or

even ton/h. Finally, the amount of consumed fuel can be estimated based on the distance

travelled (Natural Resources Canada, 2020). The conversion factor from distance to fuel

is subject to the traffic condition and vehicle characteristics. For example, the conversion

factor would be 0.078 litre/km for a gasoline-fuelled Honda Civic sedan with a four-cylinder

engine and 2 litre engine size on an urban road (Natural Resources Canada, 2020). Since the

link i length is 0.5 km, the fuel consumed by the Honda Civic would be around 0.0395 litres

(Natural Resources Canada, 2020). By examining the values of the four possible variables

based on only one link, the dramatic difference in their scales is illustrated. If more than

one objective is optimized simultaneously, the one with the larger scale would dominate

the optimization process. For instance, optimizing T and E in this case means that E is

the dominating variable in the optimization process. This brings in the need for weights

to account for the different units of the optimized variables (T , D, E, and F ) in Equation

2.1. Converting the different values to a monetary value is common in practice for routing

optimization problems (Aziz and Ukkusuri, 2012). Linear optimization has been considered

as it is suitable for minimization and maximization problems (Gass, 2003).
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Figure 2.2 demonstrates the general process followed while applying eco-routing. The

variables in concern are obtained from either sensors (real data) or from traffic flow models.

Generally, the used emission model and its level of aggregation define the required traffic

variables. Speed, acceleration, deceleration, and distance are the most important traffic

indicators when it comes to emission estimation. It is worth mentioning that the aggregation

level compatibility of the traffic and emission models plays a crucial role in improving the

eco-routing performance. When a microscopic level of aggregation is used, the traffic and

environmental states are represented more accurately. When a microscopic emission model

is used, as will be presented below in Section 2.3, a microscopic traffic model should also be

applied.

Traffic	flow	models;
microscopic,	mesoscopic,	or

macroscopic

Real-time	data

Traffic	indicators;	speed,
acceleration,	position,	etc. Emission/	fuel	model

Optimization	process,	single	or		multi-objective	routing	(travel
time,	distance,	fuel,	emissions,	etc.)

Routing	decisionIterative	process	of	eco-routing,
	every	t	seconds

Figure 2.2 Eco-Routing Framework (Alfaseeh and Farooq, 2020b)

The required traffic variables are the inputs of the emission model to estimate the envi-

ronmental variables needed for the eco-routing, such as GHG. Based on the routing objective,

the traffic and/or environmental indicators are utilized in the general optimization formula-

tion, as shown in Equation 2.1, to estimate the cost of paths and specify the optimal route

of the least cost. Once the route is chosen, the traffic characteristics are updated accord-

ingly. It is essential to note that this is an iterative process for every t seconds (Y. Wang

et al., 2018). Regardless of the level of aggregation, the link cost is updated based on the
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traffic and environmental indicators for every iteration.

2.3 Vehicle Emission Modelling

To better assess the impact of transportation systems on the environment, emission models

have been developed. Emission models estimate the emissions produced by multiplying a

defined emission factor expressing the mass of emissions produced per distance unit, time

unit, or burnt fuel unit by the corresponding vehicle activity data, such as vehicle kilometres

travelled (VKT), vehicle mile travelled (VMT), time spent in a specific driving condition, or

fuel consumed. Over the last few decades, the emission models have become more sophisti-

cated by incorporating driving behaviours while considering a higher level of resolution and

a higher level of details from the input data (Y. Wang et al., 2018). The emission models

are classified based on two factors: the level of spatial and temporal aggregation and the

driver behaviour aggregation. To connect emission to congestion explicitly and comparably

to traffic models, static and dynamic categories are adopted (Y. Wang et al., 2018).

Figure 2.3 illustrates the aforementioned two main categories of the emission models and

their sub categories.

Vehicle	emission	modelling

Static	emission	models Dynamic	emission
models

Aggregated	models	

Traffic	situation
models

Average	speed
models

Regression-based
models

Modal	models

Instantaneous	models

Figure 2.3 Classification of Vehicle Emission Models (Alfaseeh and Farooq, 2020b)
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2.3.1 Static Emission Models

This type of emission model is based on the macroscopic level of aggregation of information.

For this type of emission model, national statistical (e.g. public road and street mileage),

field measurement (e.g. traffic flow data obtained from cameras or sensors), or forecasted

traffic flow from STA models are employed when the emissions are estimated at a low level

of resolution, which is suitable for transportation planning purposes. Despite the drawbacks

associated with this type, it is still very commonly used due to its simplicity and ease of use

(Szeto, Jaber, and Wong, 2012). The static emission models are further classified based on

the level of complexity as follows. 1) Aggregated models are associated with an extremely low

level of resolution for the used data. These models estimate emissions based on the emis-

sion factors of the vehicle kilometres travelled (VKT) or the fuel consumed (Szeto, Jaber,

and Wong, 2012). Inventory and the Energy Book for transport are two examples of the

aforementioned models (Szeto, Jaber, and Wong, 2012). 2) Average-speed models estimate

emissions based on the average speed on the links and their corresponding emission factors.

The emission factors are g/VKT (Ntziachristos et al., 2000). An example includes the Com-

puter Program to Calculate Emissions from Road Transport (COPERT) (Ntziachristos et

al., 2000). Other examples are a computer program that estimates different emission factors

(MOBILE) (US Environmental Protection Agency, 2003) and the EMFAC2014 (California

Air Quality Research Board, 2014). It is essential to note that this type of model does not

capture the congestion on the links efficiently. Lastly, 3) traffic situation models estimate

emissions based on traffic conditions and emission factors associated with each traffic con-

dition (INFRAS, 2004). Examples of this type include the Handbook Emission Factors for

Road Transport (HBEFA) (INFRAS, 2004) and the Assessment and Reliability of Transport

Emission Models and Inventory Systems (ARTEMIS) (Boulter et al., 2007). The last model

is the most detailed compared to the other two static emission models (Y. Wang et al., 2018).
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2.3.2 Dynamic Emission Models

Unlike the static emission models, dynamic emission models are based on the second-by-

second vehicular dynamics. They take into account the related traffic inputs and simultane-

ously estimate the emissions of a vehicle based on operational conditions at a high level of

resolution. Compared to static models, dynamic emission models are able to capture changes

more realistically by reflecting on existing situation. As a result, this type of model is more

suitable for routing applications. Dynamic emission models are generally classified into three

categories based on the aggregation level of data points. 1) Regression-based models estimate

the emissions based on regression approaches and variables that represent the driving cycles.

Speed, acceleration levels, or speed-time profile data is required to define the emission factor

(g/sec or g/VKT). Microscopic data is suitable for this type of model, and this model can

be used aside with the DTA. However, regression-based models are very sensitive to over-

fitting the calibrated data. Examples include VERSIT+ (Smit, Smokers, and Rabé, 2007)

and the Virginia Tech Microscopic Energy and Emission Model (VT-Micro) (Rakha, Ahn,

and Trani, 2003). 2) Modal models estimate the emissions based on the emission factors of

each driving mode, such as start, idle, acceleration, deceleration, and cruise. The vehicle

and the cycle characteristics are required as inputs. An example of this type is the Mobile

Emissions Assessment System for Urban and Regional Evaluation (MEASURE) (Fomunung,

Washington, and Guensler, 1999). Finally, 3) instantaneous models are generally the most

detailed emission models. Both dynamic operating variables (e.g., second-by-second speed,

road grade, and vehicle accessory use) and static mode parameters (to characterize the

vehicle tailpipe emissions for the appropriate vehicle/technology category) are required as

inputs. However, this type of model is difficult to calibrate and requires intensive vehicular

characteristics, operations, and locations. Examples include Passenger car and Heavy-duty

Emission Model (PHEM) (Hausberger et al., 2003), Comprehensive Modal Emission Model

(CMEM 2) (Scora and M. Barth, 2006), and MOtor Vehicle Emission Simulator (MOVES
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3) (United States Environmental Protection Agency, 2014).

2.4 Taxonomy of the Eco-Routing Studies

To classify the existing literature, a three-factor taxonomy was proposed as illustrated in

Figure 2.4. The first factor reflected on the employed level of aggregation of the traffic and

emission models. Basically, the purpose of the traffic models is to obtain the average or

instantaneous traffic variables to estimate the emissions. For this factor, four categories

were taken into account as shown below.

• Microscopic (I) is associated with a high level of spatial and temporal resolution

while estimating the traffic and environmental indicators. However, this comes at the

cost of computational time, resources, and input data requirements.

• Macroscopic (A) is associated with a course level of spatial and temporal resolution.

Hence, this category is associated with less accuracy compared to the I Models .

However, A Models are simply used as a traffic flow model when high-resolution data

points are not available.

• Mesoscopic (E) is in between the microscopic and macroscopic flow models in terms

of the aggregation level.

• Mixed aggregation (M) includes models of different levels of aggregation for the

traffic and emission models.

The second factor of the proposed taxonomy reflected on the scalability of the model. A

larger scale generally results in more realistic outcomes. However, this comes at the cost of

computation and complexity. There two categories:

• A large case study (L) can be an entire metropolitan area or central zones of a

region.
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Classification	factors

	

Microscopic	(I)

Mesoscopic	(E)

Aggregation	level

Macroscopic	(A)

Mixed
aggregation	(M)

	
Large	case	study

(L)

Small	case	study
(S)

Scaleability

	
One	objective	(1)

More	than	one
objective	(2)

Objectives	
optimized

Figure 2.4 Abbreviations of the Proposed Three Factor Taxonomy (Alfaseeh and
Farooq, 2020b)

• A small case study (S) can be a segment of a road, a well-defined part of a highway,

or a zone with limited number of intersections.

Finally, the third factor of taxonomy was related to the number of optimized objectives.

From earlier studies, a single objective was taken because contradictions could develop be-

tween routing objectives. While improving one objective, an adverse impact may be gen-

erated with another objective. Nevertheless, over time, environmental objectives have been

taken into account, in addition to other objectives, to provide better performing transporta-

tion systems from an environmental point of view. Two main categories have been considered

for the third factor of taxonomy:

• Single objective (1) considers only one routing objective, such as travel time, dis-

tance, GHG, or NOx.

• More than one objective (2) optimizes more than one routing objective. Different
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combinations can be chosen while routing vehicles to their destinations. For multi-

objective routing, travel time is generally prioritized and combined with one or more

other objectives, such as GHG, NOx, distance, or fuel.

As an example of the classification factors, AL2 is for eco-routing models that employ

macroscopic traffic flow and emission/fuel models with a large case study and optimized

more than one objective at a time.

2.5 Classification of Existing Literature

Table 2.2 demonstrates the classified eco-routing studies based on the three factors proposed

in Section 2.4. The details of the reviewed studies are presented below following the order

of the first factor of the proposed taxonomy.

2.5.1 Microscopic (I) Models

The main characteristic of I Models is the employed high spatial and temporal resolution

of data as the microscopic level of aggregation is adopted to estimate traffic and emissions

indicators.

Rakha, Ahn, and Moran (2012) developed two eco-routing algorithms. The first algorithm

was based on vehicle sub-populations (ECO-Subpopulation Feedback or ECO-SFA), and the

other algorithm was based on individual agents (ECO-Agent Feedback Assignment or ECO-

AFA). The model belongs to the IS1 classification as shown in Table 2.2. The main

objective function was to minimize either fuel consumption or travel time, and this means

that only one objective in Equation 2.1 was optimized at a time. The main difference between

the ECO-SFA and ECO-AFA was that the former gave periodically updated routes for every

vehicular class. On the other hand, the latter gave routes for every vehicle based on request.

Routing was multi-class because vehicles can only use information from vehicles of the same
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class. Routing was also stochastic as it accounts for the uncertainty with the cost of the

links (Rakha, Ahn, and Moran, 2012).

Ahn and Rakha (2013) applied the same logic followed in Rakha, Ahn, and Moran (2012)

and investigated the impact of applying a dynamic eco-routing system that took into account

different market penetration rates (MPRs) and congestion levels. The eco-routing method

goes under the IL1 classification as demonstrated in Table 2.2, and it allowed for a multi-

class, stochastic, and dynamic eco-routing system. Routes were updated based on real data

from vehicles in the network. Vehicles shared information related to their fuel consumption

with a Traffic Management Center (TMC) via roadside units (RSUs). The TMC processed

fuel consumption information from vehicles in the network and provided vehicles with optimal

routes (Ahn and Rakha, 2013).

J. Sun and H. X. Liu (2015) optimized one objective at a time in a signalized traffic

network. Their approach, which is classified as IS1 as shown in Table 2.2, was based on

applying the Markov decision process (MDP) that was converted to a linear programming

formulation. This study used high resolution (microscopic) data (vehicle arrival and signal

status) instead of GPS data. Vehicle trajectories were estimated based on a proposed method

that depended on the conditions of the traffic signal status and the number of vehicles arriving

at intersections. For every second, trajectories of vehicles were fed into a microscopic emission

model. The study optimized one objective at a time in Equation 2.1 (T or E). A comparison

was made between the shortest and minimum emissions paths. A reduction in emissions was

associated with the latter routing scenario. J. Sun and H. X. Liu (2015) extended the

concept of optimizing environmental indicators by constraining them. T was set as the main

objective, while E was constrained.

Elbery, Rakha, Elnainay, et al. (2015) moved towards utilizing one form of the ICT

improvements, where the vehicle to infrastructure (V2I) communication was adopted. As

shown in Table 2.2, the proposed eco-routing model is classified as IS1 . The model was

based on integrating two models: OPNET and INTEGRATION. OPNET was the model
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that handled the communication between the vehicles and TMC. When vehicles traversed

certain links, INTEGRATION calculated information about their experiences in terms of

emissions, travel time, and location, and the information was sent to the TMC. TMC defined

optimal eco-routes and sent them to vehicles when requested. The study investigated the

impact of errors due to data packet drops and delays, and it was found that the impact

was not significant. Furthermore, Elbery, Rakha, Elnainay, et al. (2015) found that the

proposed model was robust against delays and data packet drops (Elbery, Rakha, Elnainay,

et al., 2015).

Elbery, Rakha, ElNainay, et al. (2016) proposed an ant-colony-based approach, which

was based on a subpopulation feedback eco-routing (SPF-ECO) algorithm that was similar

to Rakha, Ahn, and Moran (2012) and Ahn and Rakha (2013). The proposed eco-routing

approach goes under IS1 classification as shown in Table 2.2. The authors mainly tried to

overcome the main shortcoming of the SPF-ECO approach, which was the delayed updates.

The main enhancement of the ant colony eco-routing (ACO-ECO) was the more realistic

representation of blocked and unoccupied links within a network. Furthermore, it consid-

ered periodical updates that helped to obtain optimal routes. The model was applied in a

centralized routing system framework in which vehicles sent the traversed cost of links to

TMC. A comparison between ACO-ECO and SPE-ECO was conducted. In Equation 2.1,

F was only optimized, and the optimization contributed to less emissions E. With regards

to results, ACO-ECO performed similarly to the SPE-ECO when the operation was normal

(links were unblocked and occupied). Yet, when links were blocked or unoccupied, ACO-

ECO reduced fuel consumption, travel time, and emissions compared to SFE-ECO (Elbery,

Rakha, ElNainay, et al., 2016).

Bandeira et al. (2018) assessed the impact of different eco-routing strategies in terms

of system travel time and other environmental criteria. The second-by-second data of the

vehicles in the transport system were obtained from Verkehr In Städten - SIMulationsmodell

(VISSIM). The distribution of vehicle-specific power (VSP) modes was calculated. Finally,
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emissions on a road segment were estimated based on the amount of time every vehicle

spent in each VSP mode multiplied by the proper emission factor. The proposed eco-routing

model belongs to the IL1 classification. Following the equations in Bandeira et al. (2018),

the time spent and corresponding total emissions produced by a pollutant (NOx, CO, HC,

and CO2) were estimated for every mode. Weights were given to the pollutants that were

taken into account. Then, environmental damage (ED) costs were obtained based on the

weights. While referring to Equation 2.1, one objective was optimized at a time while

routing vehicles. Routing depended on the travel time cost for non-eco-routed vehicles,

while emissions, environmental damage, and pollutant costs were determined for eco-routing

vehicles. Two scenarios were considered in terms of the system demand and MPR of the eco-

routing vehicles. With regards to the major results, minimizing emissions of the individuals

while routing may lead to more emissions overall compared to a standard UE assignment.

Nevertheless, when demand was moderate and MPR of eco-routing vehicles was 100%, CO2

and NOx emissions in the system were reduced by 9% compared to the standard UE travel

time case. Furthermore, the total system emissions were reduced at the cost of a slight

increase by up to 5% in travel time (Bandeira et al., 2018).

A recent study by Elbery and Rakha (2019), which belongs to the IL1 classification,

elaborated on the logic followed in Elbery, Rakha, Elnainay, et al. (2015). The proposed

eco-routing model depended on two main features: 1) the existence of connected vehicles

that can communicate with a TMC and 2) the existence of sensor vehicles or probe vehicles

that were uniformly distributed in the studied network. The main goal of the study was to

examine the efficiency of the communication feature proposed under different scenarios. The

model suggested that probe vehicles were distributed to collect information, in particular

the consumed fuel, on traversed links. This means that F variable of the optimization

formulation in Equation 2.1 was optimized. The obtained information was then sent to

TMC that updated routes based on real-time data. Connected vehicles requested optimal

eco-routes from TMC that did the related calculations. Different MPRs of probe vehicles
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and different demand levels were considered, and their impact on the model performance

was assessed. Furthermore, packet drops and delays may occur in reality, and the impact

of packet drops and delays were investigated with a case that was based on a "realistic

communication" system. The major findings of the study were the following: 1) for the ideal

communication condition (no packet drops nor delay), greater improvements to the network-

wide fuel consumption levels were offered with higher MPRs; 2) the system required 20%

to 30% of probe vehicles to produce acceptable results in the case of ideal and realistic

communication conditions; 3) for a realistic communication condition (with packet drops

and delays), the higher MPR caused more emissions due to errors in routing vehicles that

were triggered by the higher frequency of packet drops; and 4) the packet drops and delays

of the VANET communication network had a significant impact on the performance of a

dynamic routing system (Elbery and Rakha, 2019).

2.5.2 Mesoscopic (E) Models

From the extensive literature review, it was concluded that none of the studies applied

a mesoscopic level of model aggregation to both traffic and emission models. This could

have occurred since a great amount of time and computational power are required when a

mesoscopic traffic flow model is used to simulate the traffic flow, despite the reduced level of

resolution compared to the microscopic level of aggregation (Y. Xu et al., 2014).

2.5.3 Macroscopic (A) Models

The main characteristic of this category is the low level of spatial and temporal resolution.

Thus, this category is associated with less accuracy compared to I Models . However, this

type of model is used when high-resolution data points are not available.

Tzeng and Chen Tzeng and C.-H. Chen (1993) incorporated the environmental aspect

while assigning vehicles to their destinations in a model, which goes under the AL2 classi-
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fication as shown in Table 2.2. Nonlinear programming techniques were used to find the

optimal solution. Time and emissions were estimated based on the Bureau of Public Roads

(BPR) function. When multi-objective routing was applied, the approach was based on

weights to normalize the optimized variables. Sets of weights were compared to choose the

optimal weight for every variable. While referring to Equation 2.1, weights were applied for

T , D, and E (Tzeng and C.-H. Chen, 1993).

A study by Benedek and Rilett (1998), which belongs to the AL1 classification, consid-

ered both UE and SO traffic assignments. With reference to Equation 2.1, one variable was

optimized at a time. This study dealt with the static traffic assignment case when it came

to including the emission aspect (Benedek and Rilett, 1998).

A study by Luo et al. (2016), which belongs to the AS2 classification, proposed a frame-

work that was based on advanced controlling technology, which was called Model Predictive

Control (MPC). An online optimization was applied and the future state was predicted based

on the current state. In terms of the optimization formulation in Equation 2.1, the study

used weights for T , E, and F . The MPC was known to be an efficient tool for multiple control

objectives and constraints (Luo et al., 2016). Moreover, Luo et al. (2016) stated that MPC

is a robust tool when it comes to model mismatch, system uncertainties, and disturbances

(Luo et al., 2016). A real-time en-route diversion control strategy with multiple objectives

was designed in an MPC framework. VMS was used at the point where vehicles would have

information about the best route that satisfied the set of objectives. The variables were

optimized one at a time, and then, a multi-objective scenario was applied that considered

T , E, and F in Equation 2.1. During the peak hour, the multi-objective routing strategy

showed a clear improvement for the three variables. Furthermore, for the off-peak case, the

same scenario showed a slight increase in total travel time but showed a reduction in both

total emissions and consumed fuel (Luo et al., 2016).
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A study by Patil (2016), which belongs to the AS2 classification, used average speed to

estimate emissions and fuel based on regression equations. Two scenarios were set in terms

of flow, free-flow speed, links length, and links capacity. The study applied UE and SO

to optimize only travel time or both emissions or fuel and travel time. The major finding

was that SO of a combined objective (travel time and fuel or emission) outperformed UE.

Finally, it is worth mentioning that Patil (2016) tried to define the optimal speed for several

pollutants.

2.5.4 Mixed Aggregation (M) Models

This category includes the studies that employed different levels of aggregation for traffic

and emission models.

Aziz and Ukkusuri (2012) investigated the impact of incorporating CO emissions into

the cost while applying dynamic routing. The study considered two different objectives

for routing. One objective was based on optimizing travel time, and the other was based

on optimizing travel time and emissions. A comparison between the aforementioned two

scenarios was conducted. As shown in Table 2.2, the proposed model belongs to the MS2

classification. Three scenarios for comparison purposes were applied: 1) minimizing travel

time, 2) minimizing CO emissions, and 3) minimizing travel time and CO emissions. Hence,

in Equation 2.1, either T or E were optimized for the first two scenarios, and they were

optimized together for the third scenario. A normalization process, based on the monetary

value, was applied when the travel time and CO emissions were optimized. The major

finding of this study was that CO emissions were higher while trying to minimize travel time

compared to the second scenario. For scenario two that aimed to minimize CO emissions,

travel time increased compared to the first scenario. However, for the third scenario, a clear

trade-off took place between travel time and emissions. Scenario three gave the desired

results compared to the other scenarios (Aziz and Ukkusuri, 2012).
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Guo, S. Huang, and Sadek (2013) assessed the impact of green routing while using ITS

that provided dynamic route guidance to travellers. The study integrated an emission model

with a traffic model to define a routing strategy based on a defined objective. This study

belongs to the ML1 classification. The investigation divided the study area into two parts.

One section employed second-by-second trajectory data from the Transportation Analysis

and Simulation System (TRANSIMS) to define emissions by using MOVES microscopic

model that chose the optimal route accordingly. The other section used the average speed

to estimate emissions (a macroscopic level approach). The study estimated the emission

production factor (EPF) and fuel consumption factor (FCF) based on the outcomes of the

MOVES model. When seeking for the green routing assignment, the EPF and FCF factors

of every link would replace the cost of travel time, which was represented by Equation 2.1

for every link. Three main scenarios were applied for green routing: a) minimizing CO

emissions, b) minimizing NOx emissions, and c) minimizing fuel consumption. TRANSIMS

Router assigned vehicles based on the least EPF and FCF. Furthermore, for comparison

purposes, another scenario was taken into account that considered the case of the shortest

travel time where MOVES was used to obtain the required values for routing. The major

finding was that the reduction in emissions or fuel was associated with a slight increase in

travel time (Guo, S. Huang, and Sadek, 2013).

A model was proposed by Andersen et al. (2013) that gave eco-weights to a studied

road network based on data collected from buses, which were called CAN buses, equipped

with a GPS (Global Positioning System). Weights were given to adjust the travel time,

distance travelled, and fuel consumed. Then, vehicles were routed to their destinations by

applying the Dijkstra algorithm. More than 37 million CAN buses (vehicles i distributed

in the network) and 1.2 billion GPS records from more than 11,000 vehicles were used to

define weights of the routing objectives. This study analyzed three routes: the shortest

route, fastest route, and eco-route. Thus, Equation 2.1 variables (T , E & F , and D) were

optimized one at a time. Since this study did not employ flow and emission models, it
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belongs to the ML1 classification. The results showed that the eco-routes varied from both

the shortest and fastest routes. Furthermore, a reduction in fuel consumption was achieved

with a slight increase in travel time (Andersen et al., 2013).

A study by Zeng, Miwa, and Morikawa (2016), which belongs to the ML1 classification,

followed the logic of employing probe vehicles as in Andersen et al. (2013) to estimate emis-

sions and used a Pareto-Optimal based algorithm for optimization. In addition to optimizing

one objective at a time, T was constrained and was not allowed to exceed a defined value

while optimizing defined environmental objectives. The authors conducted a relative impor-

tance analysis and found that the average speed and average acceleration contributed to 85%

of the relative importance of the CO2 emission model (Zeng, Miwa, and Morikawa, 2016).

A model by Long et al. (2016), which belongs to the MS2 classification, solved SO

traffic assignment problems that minimized either total system travel time, total system

CO emissions, or total travel time and CO emissions of the system. This means that T

and/or E in Equation 2.1 were optimized depending on the scenario. When emissions were

considered in these aforementioned scenarios, the system was formulated as mixed-integer

linear-programming problem (MILP). In terms of the traffic flow model, the link transmission

model (LTM) was employed and was compared to the cell transmission flow model (CTM).

They both proved to perform similarly. Step functions were employed to estimate link

cumulative flow curves of every link and to decompose link in-flow into sub-flows. Travel

time was estimated based on the sub-flows on every link. On a link, the average travel

time of the inflow and sub-flow were used to provide the average speed and estimate the

emissions. The model developed in this study illustrated the trade-off between minimizing

the total emissions and travel time within a system (Long et al., 2016).

X. Huang and Peng (2018) investigated the eco-routing concept based on real data points.

The model belongs to the ML1 classification as shown in Table 2.2. The investigated

scenarios included the fastest route, shortest route, and eco-route. Thus, in Equation 2.1,

T , D, and E were optimized one at a time. The eco-routing strategy performed the best
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with respect to fuel consumption, while travel time was slightly higher than the fastest

strategy. Based on this result, X. Huang and Peng (2018) added a scenario where T was

constrained while E was optimized. A straightforward comparison was made between the

optimal shortest routing, fastest routing, unconstrained eco-routing, and constrained eco-

routing. With regards to the results, constrained eco-routing gave the best results compared

to other strategies while considering the travel time and consumed fuel. Although there was

a negligible increase in travel time, a reduction in the consumed fuel was observed compared

to the shortest routing and unconstrained eco-routing strategies (X. Huang and Peng, 2018).

2.6 Concluding Remarks

Based on Section 2.5, it was found that when case studies were larger, most of the eco-

routing studies used mesoscopic or macroscopic traffic flow models to extract the required

variables for routing. These models have a major drawback, especially with the emergence

of the ICT advancements. For example, when average speed was used by Long et al. (2016);

Patil (2016); Guo, S. Huang, and Sadek (2013) and Aziz and Ukkusuri (2012), emissions

were underestimated. Also, studies that employed regression models, as in Patil (2016);

Aziz and Ukkusuri (2012) and Benedek and Rilett (1998), were dependant on vehicular

speed to estimate emissions. This means that congestion in urban areas was not captured

efficiently.

When it comes to the scale of case studies, small case studies were usually employed,

and restrictions were made, especially with microscopic traffic and/or emission models, to

reduce the complexity of the analyses (Luo et al., 2016; Long et al., 2016; J. Sun and

H. X. Liu, 2015). Majority of the studies (J. Sun and H. X. Liu, 2015; Guo, S. Huang,

and Sadek, 2013; Andersen et al., 2013; Benedek and Rilett, 1998) considered one routing

objective, namely travel time, travel distance, consumed fuel, or emissions.

In some studies, such as Elbery and Rakha (2019); Zeng, Miwa, and Morikawa (2016)
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and Andersen et al. (2013), the use of probe vehicles is limited by securing sufficient MPR to

represent traffic conditions reliably. NOx is a pollutant that has significant impacts on the

public health but has been rarely considered as one of the routing objectives. Two recent

studies by Elbery and Rakha (2019) and Elbery, Rakha, Elnainay, et al. (2015) incorpo-

rated one of ICT advancements, which is the vehicle to infrastructure (V2I) communication.

Nevertheless, eco-routing was applied in a centralized framework, and the aim of these two

studies was to examine the impact of the communication characteristics on the proposed

models (Elbery and Rakha, 2019; Elbery, Rakha, Elnainay, et al., 2015). It has also been

noticed that most of studies were applied in a centralized routing framework, despite its po-

tential drawbacks. The centralized, conventional, routing frameworks has limitations related

to the required large financial investment; high sensitivity to system failure; and complexity

of updating the system compared to the distributed routing system (Yang and Recker, 2006).

Hence, while adopting a distributed routing framework, more research related to eco-routing

is urged for the management and planning of better performing transportation systems.
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Chapter Three

Background Components
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3.1 Introduction

This dissertation aims to develop and apply anticipatory multi-objective eco-routing in a

congested urban network while considering a high degree of spatial and temporal resolution.

The developed eco-routing framework was compared to a myopic approach. The methodol-

ogy used for the aforementioned application was agent based simulation. The first required

component is a routing framework. The routing framework is where the network elements,

vehicles, intersections, links, and sensors, interact based on the adopted communication

protocol. In the routing framework, the traffic and emission models are the two essential

components capturing the traffic and environmental characteristics at a microscopic level of

aggregation. The specifications of the adopted case study are important to reflect on the

scalability of this research work to another transportation network.

This chapter is organized as follows. The vehicle routing framework is presented briefly

in Section 3.2. The traffic and emission models are illustrated in Section 3.3 and 3.4, respec-

tively. The emission model requires information from the traffic model, which is discussed

in Section 3.4. Finally, the specifications of the case study are presented in Section 3.5.

3.2 Vehicle Routing Framework

The End-to-End Connected Automated Vehicles (E2ECAV) dynamic distributed routing

framework (Farooq and Djavadian, 2019) was employed in this dissertation to apply both

myopic and anticipatory multi-objective eco-routing strategies and to collect data for the de-

velopment of predictive models. The routing framework is where traffic and emission models

interact. The data, whether related to the traffic or environmental indicators, were estimated

by the traffic and emission simulators at a microscopic level. These estimations occurred at

one-second time intervals. Two types of communication systems were deployed in addition

to the connected automated vehicles (CAVs) in E2ECAV. The studied communication types
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include the vehicle to infrastructure (V2I) and infrastructure to infrastructure (I2I). The

information was then shared with elements (link, intersection, vehicle) of the transportation

system following the protocol of E2ECAV. Figure 3.1 illustrates the followed logic in the

routing framework (E2ECAV) and includes the main inputs and interactions between the

traffic simulator, emission simulator, and routing framework. The diagram in Figure 3.1 is

divided into two main parts, which are the link and intersection. The figure also shows the

processes that are applied to each component, particularly the traffic simulator, emission

simulator, and vehicle routing framework. The main role of the routing framework was to

receive, process, and disseminate the required information following the rules of the routing

framework (E2ECAV) based on the communication, updating interval, and elements that

share information. The routing framework can be observed mostly in the intersection part

of Figure 3.1. At every link, when the traffic and environmental data were collected and pro-

cessed to find the link cost, the aforementioned information was shared with the downstream

intersection. Then, every intersection shared the information with their adjacent upstream

intersections during every update interval. An updating interval was when the link cost

was updated based on the data points that were measured every second. Every intersection

calculated the cost of a path for every OD pair based on the given routing objective and

up-to-date cost of the links. This means that all of the intersections in the network have

a coherent view of the network. At each intersection, the optimal path of every OD pair

is estimated and updated at an optimal time interval based on the routing objective. This

time interval may vary based on the type of network and the general level of demand on the

network.
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3.3 Traffic Simulator

In this dissertation, a microscopic agent-based traffic flow model was used (Djavadian and

Farooq, 2018) to implement routing strategies, despite the associated complexity, for a con-

gested urban network to obtain high resolution data points. Figure 3.1 demonstrates that the

traffic model was only used at the link level. The second-by-second vehicular characteristics

were captured and used to estimate the link cost with both the traffic and environmental

indicators. The Intelligent Driver Model (IDM) (Treiber, Hennecke, and Helbing, 2000)

was used to estimate the second-by-second vehicular speed from the estimated acceleration,

which is expressed with Equation 3.1.

ai = a0
i

[
1−

( vi
v0
i

)δ
−
(s?(vi,∆vi)

si

)2]
(3.1)

s?
(
vi,∆vi

)
= s0 + Tvi +

vi∆vi

2
√
a0b0

(3.2)

Where ai is the estimated acceleration of vehicle i; a0 is the maximum acceleration of 1

m/sec2; b0 is the maximum deceleration of 2 m/sec2 (Djavadian and Farooq, 2018); vi is the

speed of vehicle i; v0
i is the maximum free flow speed that can be taken by vehicle i; δ is a

calibration factor of 4 (Treiber, Hennecke, and Helbing, 2000); s? is the desired gap between

vehicle i and its leading vehicle; si is the actual gap between vehicle i and its leading vehicle;

s0 is the safe spacing distance, which is 1 and 2 m for CAVs and human-driven vehicles

(HDVs), respectively; and T is the headway, which is 1 and 2 sec for CAVs and HDVs,

respectively (Djavadian and Farooq, 2018). The adopted parameters, reaction time and

safe spacing distance, of HDVs were the calibrated values for downtown Toronto. While for

CAVs the parameters were half of the case of HDVs (Djavadian and Farooq, 2018). It is of

high importance to note that the reduced reaction time and safe spacing distance of CAVs

will introduce enhancements with high market penetration rates (MPRs) in addition to the

impact of the routing framework. Reduced values of parameters in the case of CAVs will

40



contribute to improving several traffic and environmental indicators, such as speed, density,

flow, throughput, GHG, etc. On the other hand, routing makes sure to choose the optimal

set of links in the network while satisfying the optimization objective. While the triggered

improvements of the reduced parameters will be observed more at link level, routing impact

will be at network level.

For each vehicle i in the system, the IDM is a continuous function of the speed vi, gap si,

and speed difference ∆vi to the leading vehicle. IDM has been widely and successfully used

and for different types of vehicles, such as HDVs, adaptive cruise control (ACC) equipped ve-

hicles (Kesting, Treiber, Schönhof, et al., 2008), cooperative adaptive cruise control (CACC)

equipped vehicles (Zhou, X. Qu, and Jin, 2016), automated vehicles (AVs) (Djavadian and

Farooq, 2018; Talebpour and Mahmassani, 2016), connected vehicles (CVs) (Talebpour and

Mahmassani, 2016), and CAVs (Alfaseeh, Djavadian, and Farooq, 2018). It has been applied

because it offers several benefits (Kesting, Treiber, Schönhof, et al., 2008). IDM includes the

distance to the leading vehicle, and it also takes into account the difference in speed between

vehicles while contributing towards a collision free feature (Kesting, Treiber, Schönhof, et

al., 2008). It helps to offer a natural and smooth driving style. Acceleration oscillation is not

observed in the case of new traffic conditions. It has a few representative parameters, and

they are typically the desired speed and desired time gap. These parameters are defined by

the driver in the case of ACC or CACC equipped vehicles. IDM can incorporate the driving

behavioural aspect by changing its parameters. In particular, driving styles can be aggressive

or relaxed. IDM can easily be calibrated, and it can consider cases with parameters that

have different ranges or limitations, such as finite acceleration (Kesting, Treiber, Schönhof,

et al., 2008). In the simulation, IDM has significantly smaller validation errors and employs

a smaller number of parameters compared to other car following models (Zhu, X. Wang,

Tarko, et al., 2018). Based on Zhu, X. Wang, Tarko, et al. (2018), IDM has outperformed

several car-following models, such as GIPPS and Wiedemann 99 model used by VISSIM.

Zhu, X. Wang, Tarko, et al. (2018) adopted urban-expressways in Shanghai to compare be-
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tween the investigated car-following models. It was found that the IDM car-following model

was easier to calibrate and illustrated a better and more stable performance compared to

other car-following models. Furthermore, IDM took into account the behavioural differences

of different drivers (Zhu, X. Wang, Tarko, et al., 2018).

As shown in Figure 3.1, the vehicular characteristics, which are speed, acceleration, and

position, were captured at every second and were used to define the cost of the links. The

link cost, whether it is travel time, GHG, or both travel time and GHG, was shared with

the downstream intersections based on the principles of the routing framework, E2ECAV.

In the traffic simulator, the optimal updating interval ∆j would vary for different networks

and needs to be calibrated. This influences when the cost of the links is updated. Based on

the explanation in Section 3.2, every intersection has the updated optimal path of every OD

pair. When a vehicle arrives at an intersection, it declares its destination and the next link

of the optimal path, based on the latest update, is provided. It is important to note that

the employed traffic simulator adopted the First-In-First-Out (FIFO) logic at intersections.

While focusing on the impact of connectivity, it is favourable to simplify the application and

minimize the required memory and computational power. To exploit the advancements in

ICT, V2I, I2I, and CAVs were utilized in the E2ECAV routing framework. The main focus in

this thesis was to demonstrate the effect of communication on the traffic and environmental

aspects of a transportation network. Due to the fact that links in the network are short

in length and there are very few overtaking/lane changing opportunities in the congested

network, the employed lateral movement model assigned the lane to a vehicle only at the

beginning of the link. Considering the lateral movement only at the beginning of the links

and the FIFO logic at intersections does not affect the comparative analysis between the

developed different routing strategies.
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3.4 Emission Simulator

To maintain the same high level of resolution with the microscopic traffic flow model, MO-

tor Vehicle Emission Simulator (MOVES) was employed to estimate the second-by-second

GHG (in CO2eq g/sec) emissions. MOVES is classified as an instantaneous model as shown

in Section 2.3.2 and was developed by the United States Environmental Protection Agency

(USEPA) (USEPA, 2015). According to the 2012 Canada-United States Air Quality Agree-

ment Progress Report (International Joint Commission, 2012), Canada switched to using

MOVES during the summer of 2012.

Figure 3.3 illustrates the followed steps by the emission model, MOVES, and the rela-

tionship between the emission and traffic models. The emission rate in MOVES is a fleet

average value. This means that the details about the specific engine type and size were not

required (United States Environmental Protection Agency, 2014). The vehicular technology

with regards to the engine of CAVs would not be different from the HDVs, unless CAVs are

electric vehicles (EVs). Nevertheless, the controlling aspect of CAVs would be the contributor

to the enhancements in the traffic and environmental characteristics. It is worth mentioning

that when CAVs are EVs in the future, emissions would be triggered by the battery charging

process instead of the tailpipe. That is, emission estimation in the routing objective function

would be based on emission factors (lb CO2/mi). The emission factors would differ based

on the electricity generation fuel source (McLaren et al., 2016). In this dissertation, light

duty vehicles (LDV), including passenger cars (46%) and passenger trucks (54%), were only

considered. Vehicle composition data was based on the report of Ministry Transportation of

Ontario in 2016 (Ministry of Transportation Ontario, 2017). Freight, public transportation,

and diesel vehicles were not taken into account. The distribution of the age of the vehicles

was also based on the 2016 report by the Ministry Transportation of Ontario (Ministry of

Transportation Ontario, 2017). MOVES estimates the emission rate (ER) by defining the

vehicle operating mode (opMode) based on the vehicle specific power (VSP) as illustrated
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in Equation 3.3. VSP represents the power demand on the engine during driving. VSP is

subject to the vehicle speed, acceleration, and road grade (Koupal et al., 2005).

PV,t =
Avt +Bv2

t + Cv3
t +mvtat

m
(3.3)

Where PV,t is the VSP of speed V at time t; vt is the speed (m/sec) of a vehicle at time t; at

is the acceleration (m/sec2) of a vehicle at time t; m is the mass of a vehicle, usually referred

as “weight" (Mg); and A, B and C are track-road coefficients that correspond to the rolling

resistance (in kW-sec/m), rotational resistance (in kW-sec2/m2), and aerodynamic drag (in

kW-sec3/m3), respectively. A, B, and C, which are based on the vehicle class, are directly

affected by the pavement type (Mukherjee, 2014).

After defining the VSP of a vehicle, the operating mode was defined given the VSP, speed,

and acceleration from Table 3.1. A matrix of ERs (g/sec) was derived from MOVES for all of

the cases that were based on the various vehicle types, ages, and operating modes. In other

words, each ER in the matrix represents the amount of emissions produced in one second by

a specific vehicle of type y at an age of k, driving in mode j (opMode ID = j). Figure 3.2

presents weighted emission rates for each vehicle type and calculated opMode by Equation

3.4. The vehicle ER was estimated following Equation 3.5 based on the distribution of a

vehicle type:

ERy,j =
30∑
k=1

ERy,k,j.Py,k (3.4)

ERj =
2∑
y=1

ERy,j.Py (3.5)

Where y represents vehicle type (passenger car or passenger truck); j represents opMode

ID of time point t, which is determined from instantaneous speed, acceleration and VSP;

k represents the age of a vehicle, which can be at the most 30 years old (specifically, a car
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could be made between 1986 to 2016); Py,k is the probability of a vehicle type y with an age

of k based on data from Ministry of Transportation Ontario (2017); Py is the probability of

vehicle type y based on the data from Ministry of Transportation Ontario (2017); ERy,k,j is

the emission rate obtained directly from MOVES of opMode ID j for vehicle type y with an

age of k; ERy,j is the emission rate of opMode ID j for vehicle type y that is weighted by the

vehicle age; and ERj is the emission rate of opMode ID j weighted by vehicle type y (Tu,

Alfaseeh, et al., 2019).

Figure 3.2 Emission Rates Versus Different OpModes for Two Different Vehicle
Type

3.5 Case Study

For this dissertation, a congested urban network from downtown Toronto, Ontario, Canada

was selected as the case study (Sweet, Harrison, and Kanaroglou, 2015; Council of Ministers

Transportation and Highway Safety, 2012; Metrolinx, 2008). Figure 3.4 illustrates the area

and indicates the major streets. During the morning peak period, the case study experiences
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Table 3.1 Operating Modes Based on VSP Bins

Operating Description VSP Vehicle speed Vehicle acceleration

mode (opMode) (kw/Mg) (vt, km/hour) (km/hour-sec)

0 Deceleration/braking at<=-3.2 OR (at<-1.6 AND

at−1<-1.6 AND at−2 <1.6)

1 idling [-1.6,1.6]

11 coast <0 [1.6,40]

12 cruise/acceleration [0,3) [1.6,40)

13 cruise/acceleration [3,6) [1.6,40)

14 cruise/acceleration [6,9) [1.6,40)

15 cruise/acceleration [9,12) [1.6,40)

16 cruise/acceleration >=12 [1.6,40)

21 coast <0 [40,80)

22 cruise/acceleration [0,3) [40,80)

23 cruise/acceleration [3,6) [40,80)

24 cruise/acceleration [6,9) [40,80)

25 cruise/acceleration [9,12) [40,80)

27 cruise/acceleration [12,18) [40,80)

28 cruise/acceleration [18,24) [40,80)

29 cruise/acceleration [24,30) [40,80)

30 cruise/acceleration >=30 [40,80)

33 cruise/acceleration <6 >=80

35 cruise/acceleration [6,12) >=80

37 cruise/acceleration [12,18) >=80

38 cruise/acceleration [18,24) >=80

39 cruise/acceleration [24,30) >=80

40 cruise/acceleration >=30 >=80
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Figure 3.3 Operation of the Emission Simulator and its Relationship with the
Traffic Simulator

a high level of recurrent congestion (Sweet, Harrison, and Kanaroglou, 2015). Downtown

Toronto is the financial centre of Canada and has the highest job density among the major

cities in the country. According to Toronto Foundation (2020), several factors contribute to

the high level of congestion in Toronto. The population of Toronto has increased yearly by

1% since 2011. Among the cities in the country, Toronto has the highest cost of living. The

ownership costs are growing four times faster than income, while renting costs are growing

two times faster than income over the last decade (Toronto Foundation, 2020). The network

consists of 223 links and 76 nodes. Links have a high level of heterogeneity as they have

different characteristics in terms of the number of lanes, free flow speed, and number of

directions.

The main characteristics of the streets in the case study are presented in Table 3.2, which

includes the speed limit, number of lanes per direction, number of directions, length, and

number of intersections of each street. The streets are presented from west to east followed by

the streets from south to north. This large case study was used throughout this dissertation

as a realistic situation, and the findings can potentially be scaled and considered for other

transportation networks. The vehicular demand was extrapolated for year 2014 from the
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data provided by the Transportation Tomorrow Survey (TTS) (DMG, 2011) for the period

between 7:45am and 8:00am.
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Table 3.2 Characteristics of the Links in the Case Study

Street name Speed No. of Direction Length No. of

limit lanes (km) intersections

Bathurst 60 2 2 0.707 6

Portland 40 1 2 0.707 6

Spadina 60 4 2 0.707 6

Blue Jays 40 2 2 0.707 6

John 40 2 2 0.707 6

Simcoe 40 2 1 0.707 6

University 60 3 2 0.734 6

York 40 4 1 0.707 6

Bay 60 2 2 0.709 6

Yonge 60 2 2 0.646 6

Victoria 40 2 2 0.352 3

Victoria between King and Front 10 1 1 0.262 3

Church 40 2 2 0.552 6

Jarvis 60 2 2 0.487 5

Front 80 2 2 2.262 12

Front between York and Bay 30 1 2 0.253 2

Wellington 40 2 1 2.471 13

King 60 2 2 2.471 13

Adelaide 60 4 1 2.471 13

Richmond 60 3 1 2.471 13

Queen 60 2 2 2.471 13
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Chapter Four

Analysis of End-to-End Connected

Automated Vehicles (E2ECAV)

This chapter has resulted in the following publications:

1. Alfaseeh, Lama, Shadi Djavadian, and Bilal Farooq. (2018). "Impact of Distributed

Routing of Intelligent Vehicles on Urban Traffic". In 2018 IEEE International Smart

Cities Conference (ISC2), IEEE.

2. Tu, Ran, Lama Alfaseeh, Shadi Djavadian, Bilal Farooq, & Marianne Hatzopoulou

(2019). "Quantifying the Impacts of Dynamic Control in Connected and Automated

Vehicles on Greenhouse Gas Emissions and Urban NO2 Concentrations". In: Trans-

portation Research Part D: Transport and Environment, 73, 142-151.
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4.1 Introduction

A study by Metorlinx in 2006 estimated that the cost to commuters and economy in 2031

will escalate and reach $7.8 and $7.2 billion, respectively, in the Greater Toronto Area (GTA)

(Metrolinx, 2008). As a potential solution, intelligent transportation system (ITS) uses ad-

vancements in ICT and has the ability to control several variables, such are speed, traffic

signals, and route guidance. From the environmental perspective, M. J. Barth, G. Wu, and

Boriboonsomsin (2015) presented how different forms of ITS can affect the environmental as-

pect. ITS consists of different technologies and applications. In general, they can be classified

into three essential areas: vehicle systems, traffic management systems, and travel informa-

tion systems. The aforementioned three categories of ITS have the potential to mitigate the

negative impact of transportation systems on the environment. This is due to the fact that

the variance applications of ITS have the ability to smooth traffic flow and reduce unneces-

sary stop and go incidents (M. J. Barth, G. Wu, and Boriboonsomsin, 2015). ITS has been

considered as the most favourable tool to improve the performance of transportation systems

(Djavadian, Tu, et al., 2020; Tu, Alfaseeh, et al., 2019; Alfaseeh, Djavadian, Tu, et al., 2019;

Alfaseeh, Djavadian, and Farooq, 2018; Talebpour and Mahmassani, 2016; Van Arem, Van

Driel, and Visser, 2006). Particularly, it has been found that there is a proportional relation-

ship between the efficiency of a routing framework and the performance of a transportation

system (Djavadian, Tu, et al., 2020; Tu, Alfaseeh, et al., 2019; Alfaseeh, Djavadian, Tu,

et al., 2019; Alfaseeh, Djavadian, and Farooq, 2018; Djavadian and Farooq, 2018; Yang and

Recker, 2006). The two types of routing frameworks are centralized and distributed. Figure

4.1 shows the elements (such as the road links, intersections, vehicles, sensors, and control-

ling node/nodes) and types of communications adopted in the centralized and distributed

routing frameworks. This figure demonstrates the process to gather characteristics (traf-

fic and environmental) of road links within a network; location that these data points are

processed; and potential outcome of data shared with the controlling node/nodes.
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The centralized system is the most commonly used type of framework (Luo et al., 2016;

Patil, 2016; J. Sun and H. X. Liu, 2015; Rakha, Ahn, and Moran, 2012), and it has a central

controller that may have a coherent view of the network, status, perturbations, and origin-

destination (OD) information of the vehicular demand. As shown in Figure 4.1, sensors are

distributed on links to gather information on the state of a link. Examples of the sensors

include passive magnetic sensors, pneumatic tube sensors, or inductive loops (Guerrero-

Ibáñez, Zeadally, and Contreras-Castillo, 2018). In addition to sensors, vehicles equipped

with vehicle to infrastructure (V2I) communication can be another source of data for a single

controlling node. Data points of the whole network are sent, including the origin-destination

(OD) matrices, to the transportation management centre (TMC), which is the controlling

node within a system. Afterwards, the cost of the links is estimated for routing. Based on

the routing objective, which may focus on the travel time or GHG, the link cost is defined.

Then, the optimal path for every OD pair is specified and shared with drivers based on the

communication protocol by a variable message sign (VMS) or the V2I communication. The

centralized routing framework has several drawbacks (Hawas and Mahmassani, 1996). It

requires a large capital investment (high price of sensors), has a high sensitivity to system

failure, and can be complex to modify when the system is upgraded (Yang and Recker, 2006).

Unlike a centralized routing framework, distributed routing framework, as demonstrated

in Figure 4.1, depends on many controlling nodes and several types of communication, in-

cluding vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and infrastructure to infras-

tructure (I2I). Information about road links in a network are captured by sensors and/or V2I

equipped vehicles. In other words, the local information is processed at a controlling node

and is shared with other elements in the network following the communication protocol of the

adopted distributed routing system. Based on the cumulative efforts of the network elements

to collect and share data with other elements, decisions are made locally and more reliably

at controlling nodes compared to the centralized routing system, especially in the case of

incidents and sudden changes. For a large scale network, distributed routing frameworks
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Figure 4.1 Centralized Versus Distributed Routing System

need to be adopted to efficiently route vehicles (Sha and Chow, 2019). Large networks have

a high level of complexity and require the development of quick responses to perturbations,

which includes accidents and congestion. For a centralized routing system, the network size is

proportional to the required computational time and communication infrastructure to build

a global controlling plan (Sha and Chow, 2019). A distributed routing framework overcomes

this issue, and it is an attractive solution for controlling large networks (Hawas and Mahmas-

sani, 1996). A distributed routing system offers better performance and faster responses to

perturbations compared to a centralized system. A distributed routing framework is scalable

unlike a centralized routing framework (Sha and Chow, 2019). The level of decentralization,

whether coarser or finer, would be specified based on the available computational power,

level of investment, and desired level of accuracy. In some cases, it is sufficient to apply data

at the link level, while data of smaller segments within the links are required in other cases.

In addition, the temporal level of resolution is another component that affects the level of
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decentralization (Hawas and Mahmassani, 1996). Several studies have examined the impact

of employing distributed routing frameworks and obtained results in its favour (Djavadian,

Tu, et al., 2020; Sha and Chow, 2019; Tu, Alfaseeh, et al., 2019; Alfaseeh, Djavadian, and

Farooq, 2018; Claes, Holvoet, and Weyns, 2011; Yang and Recker, 2006; H. Xu, 2006; Pavlis

and Papageorgiou, 1999; Hawas and Mahmassani, 1996).

In this chapter, the performance was analyzed in detail to employ the proposed End-

to-End Connected Automated Vehicles (E2ECAV) dynamic distributed routing framework

(Farooq and Djavadian, 2019). E2ECAV input parameters were defined including the up-

dating interval, IDM car following model, and number of shortest paths (K-paths). The

performance of E2ECAV was analyzed while considering the traffic and environmental per-

spectives. The traffic analysis has been conducted at two levels: link and network. The

impact was assessed for different MPRs of CAVs with various traffic conditions, such as

highly congested, congested, and uncongested. The throughput, speed, density, flow, total

greenhouse gas (GHG) emissions, and nitrogen oxide (NOx) emissions were the performance

indicators for the different MPRs of CAVs and traffic conditions. Figure 4.2 presents an

overview of this chapter and its relationship with the other chapters in this dissertation.

E2ECAV was adopted as the routing framework to apply the myopic routing, which is dis-

cussed in Chapter 5. This framework collected data points for the developed predictive

models, and the details of this process are provided in Chapter 6. Anticipatory routing was

added to E2ECAV and is described in detail in Chapter 7.

This chapter is organized as follows. Section 4.2 briefly provides background information

about sensing technology, intelligent vehicles, and the distributed routing framework. The

adopted traffic and emission models to examine E2ECAV are illustrated in Section 4.3. Sec-

tion 4.4 demonstrates the specifications of the case study. The description of the assessed

E2ECAV distributed routing system is in Section 4.5. The optimal input parameters, up-

dating interval, IDM parameters, and number of the optimal paths (K-paths) applied within

E2ECAV are discussed in Section 4.6. E2ECAV is analyzed in Section 4.7. The perfor-
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mance of routing the traffic is studied in Section 4.7.1, while the environmental perspective

is investigated in Section 4.7.2. Finally, concluding remarks are presented in Section 4.8.

Figure 4.2 Chapter Four Framework

4.2 Related Literature

During the last few decades, advancements in ICT have been applied to transportation sys-

tems and have modified cities in different ways. Two forms of technologies were generally used
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to improve transportation systems. The first technology uses wireless transmissions to send

data from sensors to external data processors. The second technology is vehicle-based and

can be seen by the development of intelligent vehicles (Talebpour and Mahmassani, 2016).

Sensing platforms are classified into two categories. The intra-vehicular sensing platform is

the first category, and it collects information about the conditions of a vehicle. The second

category is the urban sensing platform, which is used to collect information about traffic

conditions. The sensing technology is an important element for data collection during the

V2V and V2I communications that are used in distributed routing frameworks (Guerrero-

Ibáñez, Zeadally, and Contreras-Castillo, 2018). V2V and V2I communications allow the

traffic state to be estimated more reliably and contribute to more robust decisions during a

trip, and they offer a more efficient transport system as a result (Talebpour and Mahmas-

sani, 2016). The gathered information is used by the controlling node or nodes to be used for

any controlling or managing process, such as estimating optimal routes (Guerrero-Ibáñez,

Zeadally, and Contreras-Castillo, 2018).

Control technology with intelligent vehicles had grabbed the attention of researchers dur-

ing the last few decades. Adaptive cruise control (ACC), as introduced by Mitsubishi in 1993,

is one of the first forms of driving assistance systems where vehicles change their speed to

maintain a specific and safe spacing distance (Pananurak, Thanok, and Parnichkun, 2009).

ACC is used to enhance the driving comfort by automatically reacting to a preceding vehi-

cle. Afterwards, the cooperative adaptive cruise control (CACC) was introduced, and it is

an extension to ACC (Xiao, M. Wang, and Arem, 2017). CACC equipped vehicles have the

ability to communicate with other vehicles via the V2V communication to maintain a safe

and constant spacing distance. Since the CACC equipped vehicles can coordinate and com-

municate with other vehicles, they contribute to better performing transportation system

compared to ACC equipped vehicles (Xiao, M. Wang, and Arem, 2017). Automated vehi-

cles (AVs) are another form of intelligent vehicles that can be defined as driverless vehicles

according to the United States Department of Transportation (USDOT) (NHTSA, 2013).
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Automation has five levels (Society of Automotive Engineers, 2018) as illustrated in Fig-

ure 4.3. Level 0 is when automation is not available, and the driver is responsible for the

Figure 4.3 Automation Levels of Vehicles (Society of Automotive Engineers, 2018)

main vehicle controls, including braking, steering, throttling, and motor power, at all times.

The driver is completely responsible to monitor the road. Level 1 is when an advanced

driver assistance system (ADAS) on the vehicle can sometimes assist the human driver with

either steering or braking/accelerating, but assistance to both actions cannot be used at

once. Examples of level 1 automation are ACC and CACC. Level 2 is when an advanced

driver assistance system (ADAS) on the vehicle can itself actually control both steering and

braking/accelerating at the same time under some circumstances. The human driver must

continue to pay full attention at all times and perform the rest of the driving task. Examples

include, but are not limited to, Tesla Autopilot and Volvo Pilot Assist. Level 3 is also called

conditional automation and is when an automated driving system (ADS) on the vehicle can

itself perform all aspects of driving under some circumstances. In those circumstances, the

human driver must be ready to take back control at any time when the ADS requests the

human driver to do so. In all other circumstances, the human driver performs the driving

task. Level 3 vehicles can stop at stop signs; obey traffic signals and signs; and deal with

58



complex traffic situations without any driver intervention. However, drivers must pay at-

tention in order to take over at any time. Level 4 is when an automated driving system

(ADS) on the vehicle can do all driving tasks and monitor the driving environment under

certain circumstances. The human driver does not need to pay attention if he or she does

not want to intervene. Level 5 is when an automated driving system (ADS) on the vehicle

can do all the driving in all circumstances. This means that there is not a driver and only

passengers are in the level 5 automated vehicle (Society of Automotive Engineers, 2018).

Connected vehicles (CVs) are another type of intelligent vehicles that are capable of commu-

nicating with other vehicles via V2V communication and/or V2I communication (Harding

et al., 2014). V2V communications use on-board dedicated communication devices, such as

a short-range radio, to disseminate messages to other vehicles about the characteristics of

a vehicle, such as speed, heading, brake status, and other information. The communication

devices also receive the same information with a range and “line-of-sight” capabilities that

exceed by nearly twice the range of current and near-term systems. V2V communications

outperform the sensors, radars, or cameras in terms of detecting incidents in the network

because they have a long transmission range and the ability to see through vehicles and

around corners. On the other hand, V2I communication goes beyond the safety aspect to

incorporate the traffic and environmental performance factors (Harding et al., 2014). Lastly,

the most advanced type of intelligent vehicles is connected automated vehicle (CAV), which

has a certain automation level as demonstrated in Figure 4.3 with the communication ability

(Djavadian and Farooq, 2018; Alfaseeh, Djavadian, and Farooq, 2018). During a trip, CAVs

are not the decision makers. In the case of CAVs when level 5 of automation is adopted, the

100% compliance to management and controlling decisions in the network, paves the way

towards achieving the System Optimal (SO) traffic assignment (Alfaseeh, Djavadian, and

Farooq, 2018; Djavadian and Farooq, 2018).

Several studies have investigated the impact of employing ACC and CACC (Milanés and

Shladover, 2014; Jerath and Brennan, 2012; Van Arem, Van Driel, and Visser, 2006; Vander
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Werf et al., 2002) on the traffic characteristics of highways. Mainly, these studies showed

that the CACC outperformed the ACC by improving the traffic characteristics, through-

put, capacity, and speed. It was also noticed that for the same MPR, ACC was associated

with dramatically more speed oscillation compared to when CACC was adopted. Since the

CACC equipped vehicles were able to communicate their information with other vehicles,

the following vehicles were aware of the traffic state, unlike the case of ACC equipped vehi-

cles. It is worth mentioning that speed oscillation adversely affects both the string stability

(disturbance in traffic variables should not spread along the platoon) and environmental

aspect (Alfaseeh, Djavadian, Tu, et al., 2019) due to the quasi-convex relationship between

both speed and GHG or nitrogen oxide (NOx) emissions (Djavadian, Tu, et al., 2020). In

particular, NOx is a pollutant that negatively contributes to the public health (Price et

al., 1997). This asserts that connectivity is a major feature that has positive impacts on the

traffic (Milanés and Shladover, 2014; Jerath and Brennan, 2012; Van Arem, Van Driel, and

Visser, 2006; Vander Werf et al., 2002) and environmental indicators (Alfaseeh, Djavadian,

Tu, et al., 2019). Olia et al. (2018) assessed the impact of different combinations of CAVs,

AVs, and human-driven vehicles (HDVs) on a highway. The authors found that using 100%

AVs and 100% CAVs improved the vehicle capacity by 9% and 300%, respectively, compared

to when 100% HDVs were employed (Olia et al., 2018). The significant positive impact of

CAVs compared to the AVs is due to the triggered string stability by the connectivity feature.

The highway case study can further contribute to the performance of CAVs since it offers a

long distance of uninterrupted flow and allows for high speeds with less speed oscillations.

Talebpour and Mahmassani (2016) investigated the impact of employing AVs and CVs on

the traffic flow stability and string stability on a highway and considered different MPRs for

the AVs and CVs in their study. The CVs used two types of communication: V2V and V2I.

It was found that AVs contributed to a better flow stability compared to the same MPR

of CVs, while CVs contributed to a better string stability compared to the same MPR of

AVs. Talebpour and Mahmassani (2016) also found that the traffic throughput improved for
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certain MPRs. It is important to note that certain MPRs of any type of intelligent vehicle

may contribute to more re-routing and worse results and vise versa (Alfaseeh, Djavadian,

Tu, et al., 2019).

To route vehicles in a centralized routing system, the link cost should be estimated

based on the global view of the network (Sha and Chow, 2019). However, the required

computational power and communication infrastructure to build a global controlling plan

are subject to the size of a network. This can be very challenging for large and/or complex

networks. Thus, distributed routing frameworks have been suggested as a solution due to

their ability to deal with local data; communicate with other elements in the network; and

build a view of the network that is sufficient to make controlling decisions. Distributed

routing systems, which employ different types of communication, estimate the link cost with

the local data. Elements in a distributed routing system share information with each other to

develop a coherent view of the network for a reliable routing. Hawas and Mahmassani (1996)

compared centralized to distributed routing frameworks with different traffic incidents, such

as a lane blockage, at different levels and durations. It was found that the distributed

routing framework outperformed the centralized framework by managing a greater capacity

of vehicles. The distributed routing framework was able to update the routes based on local

information compared to the centralized routing framework, which did not change from

the original route. For the distributed routing system, traffic perturbations were captured

quicker since they were reflected on the local link cost. For the centralized routing system,

worse outcomes could have been due to delays and the level of accuracy with the data

(Hawas and Mahmassani, 1996). Yang and Recker (2006) examined the impact of inter-

vehicle communication (IVC). They considered different MPRs of IVC equipped vehicles

and various traffic conditions. They adopted two case studies: arterial streets and a highway

corridor. It was noticed that the average travel time was less when MPRs of equipped vehicles

were higher than a threshold of 1-2% of equipped vehicles (Yang and Recker, 2006). Lee and

Park (2008) examined the effect of routing based on vehicle-infrastructure integration (VII).
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The VII communication feature provides communication between vehicles and the roadside

infrastructure to increase the safety, traffic efficiency, and convenience of the transportation

system. Four routing strategies were considered that required different information from the

VII feature: 1) the latest travel time-based guidance (LTG) required the latest link travel

time; 2) the averaged travel time-based guidance (ATG) required the average of link travel

time; 3) the routing travel time-based guidance (RTG) required the travel times of individual

vehicles on links and their directional movements at intersections; and 4) the predicted travel

time-based guidance (PTG) required the origin-destination table. Lee and Park (2008)

compared these guidance strategies to the base case, which was no guidance, and found all

of the route guidance strategies offered enhancements based on the vehicle hours travelled,

vehicle speed, and throughput. However, the vehicle kilometers travelled increased for all of

these route guidance strategies. The best route guidance strategy was ATG as it contributed

to a decrease in the vehicle hours travelled, speed, and throughput respectively by 26%, 55%,

and 20% compared to the base case of no route guidance. The vehicle kilometres travelled

increased by 16% compared to the base case (Lee and Park, 2008). Sha and Chow (2019) also

compared centralized and distributed routing frameworks for managing urban networks with

users that were aware of prevailing traffic conditions. The authors examined the impact of

different MPRs of users, who had the choice to re-route according to the network state. Small

case studies and a microscopic traffic model were selected. They found that the performance

of the proposed distributed routing systems was proportional to the compliance MPR of

drivers to re-routing based on the traffic condition.

4.3 Traffic and Emission Models

An agent-based microscopic traffic simulation was employed that captured the second-by-

second vehicular characteristics (Djavadian and Farooq, 2018). The link cost was updated at

every one minute interval, which was found by Alfaseeh, Djavadian, and Farooq (2018) to be

62



the optimal. MOVES (United States Environmental Protection Agency, 2014) was used as

the emission model to assure compatible and high resolution data points for GHG emissions.

Further details related to the traffic and emission models can be found in Sections 3.3 and

3.4, respectively.

4.4 Case Study

Unlike most of the previous work from the literature on distributed routing systems, this dis-

sertation studied a highly congested urban network that was based on a section of downtown

Toronto. The simulation was based on the demand of the morning peak hour from 7:45am

to 8:00am and stopped when all the vehicles reached their destinations. As demonstrated in

Section 3.5, the characteristics of the links indicate a high level of heterogeneity due to the

number of lanes, speed limits, and street directions within the network.

4.5 Description of E2ECAV

E2ECAV employed intelligent intersections and level 5 CAVs. Two types of communication

were used: V2I and I2I. With E2ECAV, the link related indicators, such as speed, density,

and flow, were updated every one minute (Farooq and Djavadian, 2019), which was found

to be an optimal interval by Alfaseeh, Djavadian, and Farooq (2018). The CAVs shared

their information with the links they traversed via the V2I. The link cost was estimated,

whether it was the travel time, GHG, or both travel time and GHG. The information was

then transferred to the downstream intersections via the I2I communications. For a coherent

view of the network, the intersections in the network shared their information with the other

adjacent upstream intersections via the I2I communication. The cost was estimated for

every origin-destination (OD) pair at every updating interval by each intersection. CAVs

were guided in the network as they did not have information about the traffic conditions
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on the links (Farooq and Djavadian, 2019). When a vehicle arrived at an intersection, it

declared its destinations, and the next link on the optimal route was provided to the vehicle

based on the up to date cost of the paths. Further details related to E2ECAV can be found

in Section 3.2. The interactions between the traffic emission simulators in E2ECAV routing

framework are presented in Figure 3.1.

4.6 E2ECAV Parameters Analysis

In this section, the optimal input parameters of E2ECAV were defined for the updating

interval, IDM parameters, and optimal K-Paths. Table 4.1 presents the input parameters

and their values. First, the updating interval was examined for the same level of demand

while keeping the other input parameters constant. Then, the regular and reduced IDM

sets were examined. Finally, the optimal number of K-Paths was examined while using

the optimal updating interval and IDM set parameters. To account for stochasticity, five

trials with different random seeds were run for every scenario as recommended by Law and

McComas (1991).

4.6.1 Updating Interval

The updating interval is an element that has a significant impact on the routing efficiency.

The updating interval defines the frequency to update the link cost. Changes in the traffic

conditions should be captured in a timely manner to reliably estimate the link cost. While

considering the required computational power and memory, three updating intervals were

assessed: 30, 60, and 180 seconds. Updating intervals less than 30 seconds were not included

in this analysis since shorter intervals require more computational power and delays can

occur while data is sent to the controller. For the free flow speed, the travel time on links

in the case study ranges from 0.07 to 0.8 minute. However, when the network is congested,

it takes a longer time. The 30, 60, and 180 second updating intervals were examined to
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Table 4.1 The Investigated Input Parameters

Input parameter Values

Updating interval (second) 30 60 180

Safe spacing distance (meter) 1 2

Reaction time (second) 1 2

K-Paths 1 2

comprehend the magnitude of different updating intervals.

Figure 4.4a shows the mean travel time (TT) and vehicle kilometres travelled (VKT),

and Figure 4.4b shows the throughput of the different updating intervals. The mean TT,

mean VKT, and throughput of a 30-second updating interval were similar to the 60-second

updating interval. The average TT for an updating interval of 60 seconds surpasses the

30-second updating interval by only 2%. A one minute interval was able to efficiently detect

the changes within the network while requiring less memory and computational power. An

updating interval of 30 seconds takes double the time to simulate a scenario compared to a

60-second updating interval. As illustrated in Figure 4.4, the 180-second updating interval

introduces a significant deterioration in the three performance indicators: TT, VKT, and

throughput. This is stemmed from the fact that a three-minute period is too long to capture

the changes in the traffic condition. Even when the network is congested and a longer

time is required to travel the links, a 3 minute interval is unable to detect the changes in the

network. This is reflected on the throughput analysis, in which the vehicles required 10 more

minutes to reach their destinations compared to the one-minute updating interval. When

3 minute updating interval was adopted, changes in congestion level were not captured in

time, which means the link cost was either underestimated or overestimated contributing to

the aforementioned deterioration. When the link cost was underestimated, a lot of vehicles

were sent to congested links causing more congestion. When the link cost was overestimated,
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the links were averted and were not chosen to be part of the optimal paths.

Based on these results, one-minute updating interval was used for the myopic routing,

data collection for the predictive models, and anticipatory routing in Chapters 5, 6, and

7, respectively. One minute interval gives results that are very much comparable to the 30

second updating interval while requiring less computational power and memory.

(a) (b)

Figure 4.4 The Impact of Different Updating Intervals on the a) Mean TT, Mean
VKT and b) Throughput

4.6.2 IDM Parameters

A microscopic agent-based traffic simulator was used in this dissertation (Djavadian and

Farooq, 2018). The second-by-second vehicular characteristics, namely speed, acceleration,

and position, were estimated and saved at every second. IDM (Treiber, Hennecke, and

Helbing, 2000) was adopted as the car-following model in the traffic simulator. The related

details can be found in Section 3.3. IDM calculates the longitudinal speed of vehicles based

on the change in acceleration at every second. The estimated acceleration depends on the

safe spacing distance and reaction time as provided in Equation 3.1. Hence, two different sets

of the IDM parameters were examined as illustrated in Table 4.1. HDVs follow a different

logic compared to AVs. HDVs require time to react, but AVs can react instantaneously
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(Talebpour and Mahmassani, 2016). The reaction time of an HDV varies from 0.7 to 1.5

seconds (Green, 2000). Talebpour and Mahmassani (2016) considered the reaction time of

an AVs to be half of a HDV. It was assumed in this part of the analysis that the safe spacing

distance and reaction time of HDVs were 2 meters and 2 seconds, respectively. This is the

regular set of IDM parameters in Table 4.1. However, for CAVs, two sets were examined:

regular and reduced. The regular set was the same as HDVs, while the reduced IDM set was

half value of the regular set. Figures 4.5a and 4.5b show that the mean TT, mean VKT,

and throughput of the reduced IDM set are comparable to the regular IDM set. Yet, the

reduced IDM set contributes to a reduction in the mean TT and VKT by roughly 4% and 1%,

respectively, compared to the regular IDM set. The throughput indicates that it takes about

2 minutes of less time to load and unload the network with the reduced IDM parameters.

The negligible enhancement in the case of reduced IDM set is linked to the adopted case

study, which is an urban network. The short length and stop-and-go nature of the links

must have limited the improvements. The reduced IDM set was employed throughout this

dissertation to exploit the characteristics of automated vehicles, and a better performing

transportation system can be found with vehicles that have lower safe spacing distances and

reaction times.

(a) (b)

Figure 4.5 The Impact of Different IDM Sets on the a) Mean TT, Mean VKT, and
b) Throughput
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4.6.3 Shortest Paths (K-Paths)

Another essential input is the number of optimal paths (K-Paths) for vehicles as they are

routed to their destination. The impact of using one and two K-Paths was analyzed. When a

vehicle arrives at an intersection, it declares its destination. The intersection has the option

to provide the vehicle with the next link of the first optimal route or to choose one randomly

from two optimal routes. More computational power and memory is required to calculate

and save information on additional optimal routes.

(a) (b)

Figure 4.6 The Impact of the Number of Optimal K-Paths on the a) Mean TT,
Mean VKT, and b) Throughput

Figures 4.6a and 4.6b show that there is a significant deterioration in the mean TT, mean

VKT, and throughput when there are two K-Paths. The mean TT and VKT increased by

66% and 56%, respectively, for two K-Paths. When more than one optimal route is provided,

more re-routing was triggered that resulted in longer travel distances, and the additional

time spent in the network is shown by Figure 4.6b. One K-Path was used throughout this

dissertation.
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4.7 Results and Discussion Using Optimal Parameters

In this section, the performance of E2ECAV, while relying on the optimal parameters, is

discussed based on the traffic and environmental perspectives. MPRs of 0%, 5%, 30%,

50%, 70%, and 100% CAVs were employed with different traffic conditions, namely highly

congested, congested, and uncongested. The MPRs of CAVs were defined based on previous

studies (Olia et al., 2018; Talebpour and Mahmassani, 2016) with the judgement to cover a

wide horizon of scenarios to consider various conditions. Olia et al. (2018) considered MPRs

of 20%, 40%, 60%, 80%, and 100%, while Talebpour and Mahmassani (2016) adopted MPRs

of 10%, 25%, 50%, 75%, and 90%. The emergence of CAVs will likely be gradual in reality

and urges the need to examine low MPRs. High MPRs are taken into account to illustrate

the magnitude of improvements associated with high MPRs of CAVs. The traffic indicators,

in particular the throughput, TT, VKT, speed, density, and flow, are examined in Section

4.7.1. In addition, the environmental indicators include the GHG and NOx emissions, and

their performance for different MPRs of CAVs and traffic conditions are discussed in Section

4.7.2.

4.7.1 E2ECAV Traffic Analysis

To account for stochasticity, five trials were conducted with different random seeds for every

scenario as recommended by Law and McComas (1991). The traffic analysis was conducted

at two levels: link and network. The most congested link in the network, which is on Front

Street, was studied to further comprehend the changes of the traffic indicators with different

settings. The link has two lanes with an 80 km/h speed limit, while the downstream link

has a single lane with a 30 km/h speed limit.
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Mean TT and VKT for Different MPRs of CAVs and Traffic Conditions

Figure 4.7 shows that higher MPRs of CAVs offered significant reductions in the mean

TT, but the reductions were at the cost of a slight increase in the mean VKT. The highly

congested and congested traffic conditions benefited from the connectivity in E2ECAV dis-

tributed routing system much more than the uncongested traffic condition. For the highly

congested and congested conditions, the decrease in the mean TT was due to the up-to-date

information of the optimal routes shared with the CAVs. The evolution of the traffic condi-

tion was captured at every minute, and link cost was updated accordingly for a more efficient

routing. If a vehicle takes a link of its optimal path, but the traffic condition changes on

that path, a new route is estimated and provided at the nearest intersection. To minimize

TT, vehicles were distributed in the network to use uncongested links regardless of distance

as long as the TT cost was satisfied. Section 5.7.3 in Chapter 5 illustrates the longer travel

distances when TT is the only routing objective.

On the other hand, when the traffic condition was uncongested, there was not a need

for up-to-date information as the density (vehicle/kilometre) was very low and speed of the

vehicles was almost equal to the speed limit. Vehicles did not have to avoid congested links

as the network was lightly occupied, and this justified the negligible enhancement in terms

of the mean TT.

When the MPR is 100% CAVs, the mean TT for the highly congested, congested and

uncongested reduced by 41%, 32%, and 10%, respectively, compared to the base case of

100% HDVs. The reduction in mean TT depends on the demand level. When the links were

saturated, which is the the case for the highly congested or congested traffic conditions, the

mean TT was enhanced by efficiently estimating the link cost and routing the vehicles.

For the highly congested traffic condition, the largest reduction in the mean TT of 37%

was with a MPR of 30%. When the MPR is 50% CAVs, the mean TT increased by 6%

compared to 30% CAVs, and this can be due to re-routing. For 70% and 100% CAVs, the
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results were comparable for the mean TT. The mean TT for 100% CAVs was only 0.8%

higher than 70% CAVs.

For the congested traffic condition, the mean TT reduces gradually with a higher per-

centage of CAVs without fluctuations compared to the highly congested traffic condition.

Due to the demand level with the highly congested network, the route choice has a greater

impact on the following vehicles compared to the congested traffic condition. The mean TT

was almost the same for 50%, 70%, or 100% of CAVs. Yet, the lowest mean TT is associated

with 100% MPR of CAVs, and the mean TT for this case is 0.8% lower than 70% of CAVs.

Similar to the congested traffic condition, the uncongested traffic condition has the mean

TT gradually reducing with a higher percentage of CAVs, but the change is almost insignif-

icant.

A lower average TT was at the cost of a slight increase in the VKT. A proportional

relationship exists between the mean VKT and MPR of CAVs. The increase in mean VKT

occurs when a high MPRs of CAVs were employed. This is due to the fact that CAVs were

directed to longer routes as long as the TT was minimized. As all of the possible routes in

the network were examined at every updating interval, the outcome was an increase in travel

distance in order to complete faster routes. The congested traffic condition has the highest

mean VKT when there were 100% of CAVs, and the mean VKT for this case was 4% higher

than the base case with 100% of HDVs. For the highly congested and uncongested traffic

conditions, the mean VKT for 100% of CAVs increased by less than 2.5% compared to 100%

of HDVs. Unlike the highly congested traffic network, the congested traffic condition had a

larger number of options to choose for the routes. When the network is uncongested, the

efficiency of the routing framework is not clear as there is not a need to reliably define the link

cost. It is essential to note that the additional distance travelled may have an adverse impact

on the environmental aspect, which is explored in Chapters 5 and 7. As shown in Figure

4.7, the best MPR of CAVs is 70% for the highly congested and uncongested conditions,

but the best MPR of CAVs is 100% for congested traffic condition. The optimal MPR is a
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function of demand level, in which dynamics vary from a condition to another. When the

network is highly congested, fewer route options are available compared to when the network

is congested. Thus, a MPR of 100% CAVs was optimal for the congested network, while the

highly congested network performs optimally with slightly less CAVs.

Figure 4.7 Mean TT (bars) and Mean VKT (lines) for Different MPRs of CAVs
and Traffic Conditions

In summary, the efficiency of the proposed E2ECAV (Farooq and Djavadian, 2019) is

the best when the traffic condition is congested or highly congested and when there are

high MPRs of CAVs. When the network is saturated or close to being saturated, updating

optimal routes in a timely manner is a major contributing factor to reduce the mean TT.

When there were high MPRs of CAVs, the whole possible route options were examined

for the best outcome. A lower mean TT was at the cost of a slightly higher mean VKT.

Any perturbation or congestion was captured and routes were proactively updated while

satisfying the routing objective.
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Throughput of Different Traffic Conditions

Figure 4.8a shows the throughput when the traffic condition is highly congested. There is a

proportional relationship between the throughput and the MPR of CAVs. When 100% CAVs

is employed, it takes as much as 40% less time to load and unload the network compared to

0% CAVs.

(a) (b)

(c)

Figure 4.8 The Throughput for the a) Highly Congested, b) Congested, c) Uncon-
gested Traffic Condition

The findings in this analysis were aligned with the results related to the mean TT. When

there are 30% of CAVs, the network is loaded and unloaded quicker by 37 minutes compared

to 100% HDVs. A longer mean TT occurred with 50% CAVs compared to 30% CAVs as

found in the previous section. In this analysis, 50% CAVs requires three minutes of more
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time to empty the network compared to 30% CAVs. This can be due to additional re-routing

when 50% CAVs is employed. A throughput of 100% was achieved at almost the same time

for the 70% and 100% CAVs. The time vehicles spend in the network has a negative impact

on the environment, and this aspect is discussed in detail in Chapters 5 and 7.

Figure 4.8b shows the results for the congested traffic condition and demonstrates that

a higher MPR of CAVs achieves 100% throughput in less time. The variation between

the scenarios of different MPRs is less compared to the case of highly congested traffic

condition. While comparing the different traffic conditions, the difference in throughput for

the same MPR is due to the demand level. This asserts that the efficiency of E2ECAV is

higher when the network is more congested. The effect was more noticeable when reliable

representative routes were provided to vehicles. When 5% CAVs was employed for congested

traffic condition, the network was loaded and unloaded 5 minutes earlier compared to having

0% CAVs. A MPR of 50%, 70%, and 100% CAVs achieved 100% throughput 6 minutes earlier

than the case of 0% CAVs.

Finally, Figure 4.8c shows the throughput for the uncongested traffic condition and indi-

cates that the improvement was negligible by adding more CAVs. These findings are aligned

with the related results with the mean TT that were presented in the previous section.

Fundamental Diagrams

The fundamental diagrams illustrate the relationship between the three important traffic

variables, namely speed, density, and flow (Papacostas and Prevedouros, 1993). The funda-

mental diagrams are supporting analyses at the link level. The most congested link in the

network was on Front Street and was studied for this analysis. The link is of 80 km/hour

speed limit and two lanes, while the downstream link is of 30 km/hour speed limit and one

lane. The fundamental diagrams (Papacostas and Prevedouros, 1993) were developed to

show the speed, density, and flow for the three traffic conditions: highly congested, con-

gested, and uncongested. The MPRs of CAVs at 0%, 5%, 30%, 50%, 70%, and 100% were
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incorporated into this analysis with five trials for every scenario, and the range of MPR of

CAVs allow the magnitude of improvement of employing different MPRs of CAVs to be seen

with the fundamental traffic variables.

Figure 4.9a shows the results of Speed-Density for the highly congested traffic condition.

A proportional relationship exists between the speed and MPR of CAVs. When high MPRs

of CAVs were employed, the vehicles averted congested links and traveled on links with a

higher speed limit and longer distance in order to minimize the travel time. These results

are similar to those found in Section 4.7.1. The trade off is demonstrated in detail between

TT and the VKT in Section 5.7.3. The speed increased by as much as 30 km/h for 100%

CAVs compared to 0% CAVs. Figure 4.9a also shows that a higher MPRs of CAVs improves

the density of vehicles within the link. This is due to the adopted short spacing distance of

1 meter and reaction time of 1 second by CAVs. Furthermore, as the optimal routes were

updated based on the most up to date traffic conditions, vehicles avoided congested links

when they do not satisfy the optimization objective of routing as shown in Equation 2.1.

For the 100% CAVs scenario, the density almost reaches the jam density of the link of 166

vehicle/kilometre/lane. This means more vehicles were accommodated on the link. The

reduced reaction time and safe spacing distance of CAVs compared to HDs improved the

density and also introduced enhancements in the capacity on the link as shown in Figures

4.9b and 4.9c. It is worth mentioning that the three fundamental variables, namely speed,

density, and flow, depend on each other. When one of them changed, the other two were

modified (Papacostas and Prevedouros, 1993). The increased link capacity supports the

findings in Sections 4.7.1. When 100% CAVs is used, the density and flow have increased by

65% and 133%, respectively, compared to the base case of 0% CAVs.

When the traffic condition is congested as shown in Figure 4.10, the same trend is demon-

strated compared to when the traffic condition is highly congested. Speed, density, and flow

were improved with higher MPRs of CAVs. However, the variance in value of the three traf-

fic fundamental variables among the range of MPRs of CAVs is less compared to the highly
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Figure 4.9 Fundamental Diagrams of a) Speed (km/h) vs. Density (veh/km/ln),
b) Flow (veh/h) vs. Speed (km/h), and c) Flow (veh/h) vs. Density (veh/km/ln)
for the Most Congested Link under the Highly Congested Traffic Condition and
Different MPRs of CAVs
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Figure 4.10 Fundamental Diagrams of a) Speed (km/h) vs. Density (veh/km/ln),
b) Flow (veh/h) vs. Speed (km/h), and c) Flow (veh/h) vs. Density (veh/km/ln)
for the Most Congested Link under the Congested Traffic Condition and Different
MPRs of CAVs
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Figure 4.11 Fundamental Diagrams of a) Speed (km/h) vs. Density (veh/km/ln),
b) Flow (veh/h) vs. Speed (km/h), and c) Flow (veh/h) vs. Density (veh/km/ln)
for the Most Congested Link under the Uncongested Traffic Condition and Different
MPRs of CAVs
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congested traffic condition. This occurred due to the demand level.

Finally, when the traffic condition is uncongested as shown in Figure 4.11, the enhance-

ment in the speed, density, and flow is low as the links, in general, are unoccupied. This

means that speed of the vehicles is almost equal to the speed limit, and the density is very

low as shown in Figure 4.11a.

The findings of this analysis support the results from the previous analysis. Also, when

the network is highly congested or congested, there is a strong necessity to proactively

estimate the link cost and to update the route of the vehicles accordingly.

Speed, Density, and Flow Over Time of Different Traffic Conditions

This analysis was conducted at the link level using the most congested link in the network,

which is on Front Street. The three fundamental traffic indicators, namely speed, density,

and flow, were analyzed over time to better observe the dynamics at a more disaggregated

level. Figure 4.12a shows that the link was loaded and unloaded quicker with higher MPRs.

With 100% CAVs, the link was loaded and unloaded in 54% less time compared to 100%

HDVs. With a higher MPR of CAVs, the speed increased over time. The speed was as much

as 30 km/h higher with 100% CAVs than with 0% CAVs. At the beginning of the simulation,

the speed from 7:45am to 8:00am was significantly higher when the MPR is higher or equal

to 50%. The justification is due to the dynamic proactive nature of the updating process for

the link cost. When low MPRs were used and the link was congested, vehicles were still sent

to the link, making the traffic situation worse on the link. On the other hand, with higher

MPRs, vehicles were distributed in the network and were not sent to the most congested link

unless the routing objective was satisfied. During the peak period from 8:00am to 8:20am,

the difference in speed over time is clear between the different MPRs of CAVs. During the

peak period, the speed on the studied link was greater when more CAVs were deployed.

While examining the density over time in Figure 4.12b for the highly congested traffic

condition, the use of a shorter safe spacing distance and reaction time contributes to a higher
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(a) (b)

(c)

Figure 4.12 The Most Congested Link in the Network under the Highly Congested
Traffic Condition and its a) Speed, b) Density, c) Flow

density with higher MPRs during the peak period from 8:00am to 8:20am. In general, more

vehicles were accommodated on the links when a higher MPRs was employed. At a point of

time, the density on the link was three times more when 100% CAVs is employed compared

to 30% CAVs. Based on the period between the beginning of the simulation at 7:45am

to 8:00am, the density was low on the most congested link in the network if the MPR of

CAVs was greater than or equal to 50%. During this period, this link does not satisfy the

optimization objective, and it is averted by the vehicles as a result. However, when the

demand is completely loaded into the network from 8:00am to 8:20am, the whole network is

congested, and this link is used as long as it contributes to minimizing the TT cost.
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(a) (b)

(c)

Figure 4.13 The Most Congested Link in the Network under the Congested Traffic
Condition and its a) Speed, b) Density, c) Flow

The three fundamental traffic variables are correlated (Papacostas and Prevedouros, 1993),

and this correlation explains the increase in the traffic flow on the studied link with higher

MPRs in Figure 4.12c. A supporting trend is captured in this figure that illustrates the

high flow when MPRs are less than 50% during the period of 7:45am and 8:00am. During

this period, the density is high, and the speed is low. The relationship between speed and

density triggers the increase in flow. For the peak period from 8:00am and 8:20am, the flow

is higher for MPRs equal to or more than 50%.

Figure 4.13 shows the results from the congested traffic condition and demonstrates the

same trend that was observed in Figure 4.12 with the highly congested traffic condition.
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(a) (b)

(c)

Figure 4.14 The Most Congested Link in the Network under the Uncongested
Traffic Condition and its a) Speed, b) Density, c) Flow

Nevertheless, with less congestion, the network has been loaded and unloaded faster for the

same scenario. This event occurs due to the demand level and number of vehicles in the

network. Due to the demand level, the congested traffic condition has less variation compared

to the highly congested condition in the performance indicators between the different MPRs.

Finally, Figure 4.14 shows there is not much value in employing E2ECAV when the

network is uncongested because the link is almost at the speed limit and the density is very

low.
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4.7.2 E2ECAV Environmental Analysis

It is paramount to assess the impact of employing any of ICT forms, such as intelligent

vehicles and sensing technology, on the environment. Greenhouse gases are the gases that

trap heat in the atmosphere (EPA, 2020a). GHG is the major factor that is negatively

contributing to climate change (Z. Liu et al., 2020). Air pollutant NOx, which reflects

on the public health aspect, represents a family of seven compounds (Cox, 1999; Price et

al., 1997). Figures 4.15a and 4.15b, respectively, show the total produced GHG and NOx

emissions for different MPRs of CAVs and traffic conditions. Figure 4.15a shows that the

effect of changing the MPR of the CAVs was more significant when the traffic condition was

highly congested or congested. This aligns with the findings in the previous section.

For the highly congested traffic condition, Figure 4.15a shows that the total GHG emis-

sions reduced by 35% for 30% CAVs compared to 0% CAVs. Between 30% and 100% CAVs,

a fluctuation has been noticed in the total GHG. An increase in the total emitted GHG

occurred for 50% MPRs of CAVs compared to 30% CAVs. As shown in Figure 4.7.1, this

was triggered by the additional TT and VKT spent in the network. For 50% CAVs, the

additional re-routing could be the trigger for the deterioration. Among the MPR of CAVs,

70% MPR of CAVs had the lowest total GHG that was 41% lower compared to 100% HDVs.

When the network was congested, the GHG emissions reduced gradually without fluctu-

ations as the MPR of CAVs increased. More route options were available for the congested

network compared to the highly congested network. This justifies the fewer fluctuations of

total GHG emissions when the network was congested compared to the highly congested

network. For the congested network with a 30% MPR of CAVs, the total produced GHG

was significantly lower by 23% compared to the 0% MPR of CAVs. Due to the variation in

the demand level, the variance in GHG emissions between the different MPRs was smaller

compared to the highly congested traffic condition. While comparing 100% CAVs to 0%

CAVs, the former reduced the total GHG emissions by 28% for the congested network. The
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emissions were reduced further by 39% for the highly congested traffic condition.

The impact of the MPRs of CAVs was negligible when the network was uncongested.

This result is also supported by the outcomes from the previous sections in this study.

(a) (b)

Figure 4.15 The Impact of Different MPRs of CAVs and Traffic Conditions on the
a) Total GHG and b) Total NOx

High MPRs of CAVs contribute to a lower mean TT, and this results in less total GHG

emissions because the network was generally loaded and unloaded quicker. It can be con-

cluded that higher MPRs of CAVs will result in less GHG emissions. It is crucial to note

that the optimal MPR of CAVs differs depending on the traffic condition. For the highly

congested and uncongested condition, the optimal MPR was 70%, and the total GHG was

reducted by 41% and 5%, respectively. The optimal MPR was 100% for the congested traffic

condition, and it reduced the GHG emissions by 28%. The difference between 100% and 70%

CAVs for the produced GHG is marginal among the three traffic conditions (Tu, Alfaseeh,

et al., 2019). It is important to note that in Figure 4.15a the trend is very similar to trend

with the mean TT in Figure 4.7.1 for the three traffic conditions. This illustrates the explicit

impact of the time spent in the network on the total GHG emissions. A longer travel time

by the vehicles in the network results in more GHG emissions.

With respect to the total NOx emissions, the trends are not similar to those for the GHG

emissions. Higher MPRs do not always decrease the total NOx. The major justification is
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the relationship between NOx and speed, which is quasi-convex (Djavadian, Tu, et al., 2020).

It has also been found that there is a proportional relationship between NOx and aggressive

driving (Tu, Alfaseeh, et al., 2019). With higher speeds, more NOx is generally emitted.

Figure 4.15b demonstrates that there are a lot of fluctuations in the total NOx for the highly

congested and congested traffic conditions, and this can again be linked to the speed on the

links. For the highly congested traffic condition, 70% CAVs is the optimal MPR that reduces

the emissions by 18% compared to 0% CAVs. For the congested traffic condition, the 100%

CAVs scenario produces as much NOx as 0% CAVs. When the network is uncongested, the

total NOx increases, starting from 5% CAVs. For the uncongested network, 100% CAVs

increased the NOx emissions by 7% compared to 0% CAVs.

4.8 Concluding Remarks

Both the traffic and environmental indicators were enhanced by exploiting the advancements

of ICT. ITS, which uses ICT developments, was proposed as the most favourable tool to

reduce the undesirable impact of congestion on the traffic and environmental aspects. In this

chapter, a dynamic distributed routing framework, E2ECAV (Farooq and Djavadian, 2019),

was assessed in detail, and its application for eco-routing was investigated. It has been found

that higher MPRs of CAVs offer better traffic and environmental characteristics in general

based on the flow, speed, density, and GHG emissions. The mean TT decreased when higher

MPRs of CAVs were employed, but the mean VKT increased slightly at the same time.

For 100% CAVs, the mean TT decreased by 41% when the network was highly congested

compared to 0% CAVs. Higher MPRs of CAVs contributed to a higher density during the

peak period on links due to the shorter safe spacing distance and reaction time. As a result,

more vehicles were accommodated on links. When the traffic condition was highly congested,

the speed at the link level was as much as 30 km/h higher for 100% CAVs compared to 100%

HDVs. For the highly congested and congested traffic conditions, significant improvements
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were noticed compared to the uncongested traffic condition. The efficiency of E2ECAV was

not completely exploited when the network was uncongested, and the links were lightly used.

When they were congested, the improvements in the traffic and environmental characteristics

resulted due to properly estimating the link cost and updating it in a timely manner. From

the environmental perspective, the major findings are as follows. In general, higher MPR

of CAVs provided lower total GHG emissions. The optimal MPR varied for the different

traffic conditions. The optimal MPR was 70% for the highly congested and uncongested

traffic conditions with a reduction in the total GHG by 41% and 5%, respectively. For the

congested traffic condition, 100% CAVs was the optimal MPR, and it reduced the total GHG

by 28% compared to the base case. The trend observed by the total GHG emissions was

comparable to the trend with the mean TT. This shows a direct relationship between the

time spent in the network and the emitted GHG. The total NOx emissions follows a different

trend compared to the GHG due to the relationship between speed and emitted NOx.

In summary, both the traffic and environmental characteristics have improved substan-

tially from utilizing the CAVs in a distributed routing framework. This shows that con-

nectivity is a beneficial feature that is capable of sharing the real-time status of a network

to offer proactive routing. The examined E2ECAV adopted the FIFO logic and applied

the lateral movement only at the beginning of the links. Future applications are urged to

address these aforementioned two aspects. As E2ECAV proved its ability to reliably cap-

ture the changes in traffic, it contributed to improvements in the traffic and environmental

characteristics of a network. E2ECAV is a good candidate to be deployed for eco-routing

application that considers the environmental dimension. In the next chapter, Chapter 5,

myopic multi-objective routing was applied while employing the efficient E2ECAV dynamic

distributed routing system to mitigate the undesirable impact of transportation systems

on the environment. Furthermore, anticipatory multi-objective eco-routing was applied in

Chapter 7 to further improve the results while using the E2ECAV.
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Chapter Five

Myopic Eco-Routing

This chapter has resulted in the following publications:

1. Alfaseeh, Lama, Shadi Djavadian, Ran Tu, Bilal Farooq, & Marianne Hatzopoulou

(2019). "Multi-Objective Eco-Routing in a Distributed Routing Framework". In 2019

IEEE International Smart Cities Conference (ISC2) (pp. 747-752). IEEE.

2. Djavadian, Shadi, Alfaseeh, Lama, Tu, Ran, Farooq, Bilal, & Hatzopoulou Marianne

(2020). "Multi-Objective Eco-Routing in a Distributed Traffic Management Frame-

work with a Case Study of Downtown Toronto". In 99th Annual Meeting of Trans-

portation Research Board, Washington, DC, January 2020.
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5.1 Introduction

It was estimated by the Council of Ministers Transportation and Highway Safety (2012)

that the Greater Toronto Area (GTA) contributed to 42.5% of the total congestion cost in

Canada in 2006. Among the proposed solutions, routing has been considered as a tool to

alleviate congestion in transportation systems. Myopic routing, which is most commonly

used, considers only travel time as the routing objective (J. Sun and H. X. Liu, 2015; Rakha,

Ahn, and Moran, 2012). In addition, a predominantly centralized routing framework has

been utilized (J. Sun and H. X. Liu, 2015; Rakha, Ahn, and Moran, 2012) despite the

advancements in ICT. Based on the aforementioned shortcomings of the existing routing

applications and the advancements in ICT, there is a strong necessity to extend the routing

concept and incorporate the environmental dimension and optimize more than one objective

by applying multi-objective eco-routing in a distributed routing framework. This application

demonstrates the potential effect of optimizing more than one objective simultaneously while

the environmental dimension is considered. Myopic routing depends on previous or current

traffic and/or environmental states. This makes myopic routing easy to apply compared to

the anticipatory routing that requires predictive models.

In this chapter, single and multi-objective myopic eco-routing strategies were examined

while adopting the efficient distributed routing framework, E2ECAV, which was examined

in Chapter 4. The impact of the myopic routing strategies was examined from the traffic and

environmental perspectives. The performance indicators included, average travel time (TT),

average vehicle kilometres travelled (VKT), total produced greenhouse gas (GHG) emissions,

and total produced nitrogen oxide (NOx). Network level analysis in addition to the path

analysis of a randomly chosen vehicle were conducted to support the major findings. The

network level analysis showed the global impact of different routing strategies, while the path

analysis illustrated how the paths vary based on a routing objective. The myopic routing

strategies were the base for comparison when anticipatory routing strategies were applied in
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Chapter 7.

Figure 5.1 illustrates the chapter framework and its relationship with the other chapters

in this dissertation. This chapter is organized as follows. Section 5.2 presents a brief liter-

ature related to the eco-routing studies and the drawbacks associated with them. Section

5.3 illustrates the specifications of the adopted traffic and emission models in this chap-

ter. Section 5.4 demonstrates the characteristics of the case study employed for the myopic

routing application. Section 5.5 introduces the investigated GHG costing approaches to de-

fine the best one for the setting of this dissertation in terms of the spatial and temporal

level of resolution. Section 5.6 includes the details related to the assessed routing strategies

in this chapter. Section 5.7 presents the analysis components related to the GHG costing

approaches followed by the myopic routing strategies. Finally, Section 5.8 summarizes the

major findings of this chapter.

5.2 Literature

Based on the comprehensive literature review of the eco-routing studies in Chapter 2, the

crucial findings are as follows. It was found that the GHG emission cost was not defined in

detail. Every application is associated with specifications related to different aspects, such

as the level of resolution of the data, scale of the case study, and purpose of the application.

That is, defining the GHG costing approach in a detailed manner helps practitioners to decide

what GHG costing approach is the best for their setting. In some cases, the GHG emission

was based on either spent travel time or travelled distance. In both cases one dimension was

missing, either spatial or temporal (Alfaseeh and Farooq, 2020b). For a real-time application

at a disaggregated level, namely routing, incorporating the spatial and temporal dimensions

reflects more reliably on the traffic conditions.

With respect to the aggregation level of the traffic and emission models while eco-

routing was applied, macroscopic and mesoscopic models were dominating (Luo et al., 2016;
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Figure 5.1 Chapter Five Framework

Patil, 2016; Benedek and Rilett, 1998), despite the dramatic advancement in ICT. The low

level of resolution of data points is not suitable for real-time routing applications (Alfaseeh,

Djavadian, Tu, et al., 2019). As speed is the most important variable to estimate the GHG

emissions, using average speed contributed to emission underestimation. This also means

that congestion on links was not captured in a timely manner (Long et al., 2016; Patil, 2016;

Guo, S. Huang, and Sadek, 2013; Aziz and Ukkusuri, 2012).

In terms of scaleability, case studies were limited and restrictions were made on OD

pairs, especially when a microscopic level of aggregation of traffic and emission models was
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employed due to the complexity (Luo et al., 2016; Long et al., 2016; J. Sun and H. X.

Liu, 2015). Small case studies refer to a segment on a road, part of a highway, or a zone

with limited number of intersections. In some cases, only one destination was adopted (Long

et al., 2016). Utilizing small case studies means that a model is not scaleable and does not

reflect on a realistic situation.

Lastly, one routing objective was optimized at a time, travel time, distance, or emissions

(J. Sun and H. X. Liu, 2015; Guo, S. Huang, and Sadek, 2013; Andersen et al., 2013;

Benedek and Rilett, 1998). Routing objectives may conflict, which makes multi-objective

routing significantly more complicated compared to single objective routing. For instance,

increasing throughput, which can be achieved by choosing higher speed links, may have

an adverse impact on produced GHG due to the quasi-convex relationship between speed

and GHG (Djavadian, Tu, et al., 2020). Increasing distance travelled while minimizing

travel time may also contribute to more produced GHG and NOx emissions (Alfaseeh and

Farooq, 2020a).

Thus, this chapter overcomes the aforementioned shortcomings of previous work. First,

several GHG costing approaches were examined and the best one was adopted throughout

this dissertation when required. Myopic single- and multi-objective eco-routing strategies

were applied in the efficient distributed routing framework, E2ECAV (Farooq and Djava-

dian, 2019). A microscopic level of aggregation of the traffic and emission models was used

to assure a high level of resolution of data points. Downtown Toronto was the case study,

which experiences recurrent congestion during the morning peak hour. The outcome of

myopic routing application in this chapter was used as the benchmark for the comparison

with the outcome of the anticipatory routing application in Chapter 7. Djavadian, Tu, et

al. (2020) applied myopic multi-objective eco-routing in a similar setting to this chapter, but

while considering the cost of idling as a penalty at downstream intersection of a studied link

at every interval. Four main scenarios were analyzed, travel time with 100% HDVs, travel

time with 100% CAVs, GHG with 100% CAVs, travel time and idling penalty with 100%
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CAVs, and travel time including idling penalty cost and GHG with 100% CAVs. They found

that including penalty cost contributed to slight reductions in average travel time and total

produced GHG (Djavadian, Tu, et al., 2020).

5.3 Traffic and Emission Models

An agent-based traffic and emission simulation has been adopted in this part of the disserta-

tion to synthesize GHG and traffic characteristics for links at a very high temporal resolution

(Djavadian and Farooq, 2018). As explained in Chapter 3, the agent-based simulator em-

ployed the calibrated Intelligent Driver Model (IDM) (Treiber, Hennecke, and Helbing, 2000)

for the vehicular movement. The second-by-second vehicular dynamics were captured and

the cost of the links was estimated accordingly as presented in detail in Chapter 3. The

link cost was updated at every minute as found in Alfaseeh, Djavadian, and Farooq (2018).

Travel demand was obtained from the Transportation Tomorrow Survey (TTS) (DMG, 2011).

The time dependent exogenous demand Origin-Destination (OD) matrices were based on 5

minute intervals from TTS. The demand of 2014 was obtained from the data provided by

TTS while using the proper growth factor, that represents congested traffic condition, in this

chapter. Simulation ended once all of the vehicles reached their destinations.

With reference to the emission model, MOVES was the deployed emission model to gen-

erate the second-by-second GHG (in CO2eq g/sec) emissions of every vehicle (USEPA, 2015).

The second-by-second GHG (in CO2eq g/sec) emissions were then processed based on the

best GHG costing approach that was investigated in Section 5.7.1. MOVES estimated emis-

sions by defining the vehicle operating mode, which was based on the vehicle specific power

(VSP) (USEPA, 2015). Further details can be found in Section 3.4. For the myopic routing

strategies, only 100% CAVs was employed in a congested traffic condition.
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5.4 Case Study

Unlike the existing eco-routing studies (Alfaseeh and Farooq, 2020b), this myopic multi-

objective eco-routing strategies were applied in a congested urban network, during the morn-

ing peak hour, while microscopic traffic and emission models were used despite the associated

complexity. The links of the case study, which is downtown Toronto, are associated with a

high level of heterogeneity in terms of the speed limit, number of lanes, and the directions

as demonstrated in Section 3.5.

5.5 GHG Costing Approaches

Before applying the myopic eco-routing strategies, different GHG costing approaches were

examined, while taking into account the spatial and temporal dimensions. Table 5.1 shows

the different GHG costing approaches considered following the Equations 5.1, 5.2, 5.3, 5.4

and 5.5, respectively. The best GHG costing approach was adopted for the myopic routing in

this chapter and the anticipatory routing in Chapter 7. The resolution level of the available

data points was the judging factor for what costing approach to employ, while estimating

the link GHG cost. When the total GHG is available at a minute level, a more spatially

aggregated costing approach is used.

Table 5.1 The Investigated GHG Costing Strategies

Costing strategy name Approach

GHGcost1 Sum of GHG

GHGcost2 Sum of GHG per lane

GHGcost3 Weighted average of GHG

GHGcost4 Weighted average of GHG per lane

GHGcost5 Approximate vehicle cost of GHG
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GHGcost1(l,∆j), following Equation 5.1, is for when GHG cost is the sum of GHG emissions

of vehicles N on a studied link l during and interval ∆j. The optimal updating interval ∆j

has been found to be one minute as in Section 4.6.1 (Alfaseeh, Djavadian, and Farooq, 2018).

λ(i,l,j) is a binary variable, 1 if vehicle i is on a studied link l at time j and 0 otherwise. Taking

the sum of GHG may not be very representative as links in a case study may be associated

with different number of lanes. Thus, GHGcost2(l,∆j) normalizes the total GHG cost based

on number of lanes Zl as in Equation 5.2. To consider a higher temporal resolution, the

GHGcost3(l,∆j) costing approach is examined. Weighted average of GHG produced on link

l is the outcome of Equation 5.3. At every second j of any interval, a weight j, from 1-

60, is multiplied by the produced GHG by vehicles. The sum is then divided by the sum

of weights. This costing approach takes the GHG cost at every second, which means it is

associated with a higher temporal resolution compared to GHGcost1(l,∆j) and GHGcost2(l,∆j).

GHGcost4(l,∆j) as in Equation 5.4 (Alfaseeh, Djavadian, Tu, et al., 2019) follows the same

logic of GHGcost3(l,∆j), but divides by the number of lanes Zl of link l to normalize. Finally,

GHGcost5(l,∆j) is the approximate vehicle cost of GHG traversing a studied link l. The

approximate vehicle cost of GHG depends on an estimated GHG emission rate (ER) and TT

of interval ∆j on link l following Equation 5.5 (Djavadian, Alfaseeh, et al., 2020; Djavadian,

Tu, et al., 2020). TT was estimated following Equation 5.6, where Dl and V (l,∆j) represent

link l length and space mean speed on link l of time interval ∆j, respectively. With respect

to the simulation and how the above variables of GHG and TT were estimated, MOVES

has been incorporated to estimate the second-by-second GHG of every vehicle following the

steps in Section 3.4. Traffic variables, such as speed and acceleration were used as inputs for

MOVES. For GHGcost1(l,∆j) and GHGcost2(l,∆j) costing approaches, the sum of the second-by-

second estimated GHG from MOVES of vehicles on link l during the interval ∆j was used to

obtain the total GHG produced during the interval ∆j. In contrast, for the GHGcost3(l,∆j),

and GHGcost4(l,∆j) costing approaches, at every second the summation of GHG produced by

vehicles on link l was the input to the equations related. For the TT estimation, the traffic
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simulator utilized the IDM car-following model, as in Section 3.3, to estimate the vehicular

speed from the acceleration at every second. This means that speed V (l,∆j) was calculated

based on the second-by-second data points of speed and updated at every one minute at link

level (Djavadian and Farooq, 2018).

GHGcost1(l,∆j) =

∆j∑
j=1

N∑
i=1

λ(i,l,j) ×GHG(i,j) (5.1)

GHGcost2(l,∆j) =

∑∆j

j=1(
∑N

i=1 λ(i,l,j) ×GHG(i,j))

Zl
(5.2)

GHGcost3(l,∆j) =

∑∆j

j=1(j ×
∑N

i=1 λ(i,l,j) ×GHG(i,j))∑∆j

j=1 j
(5.3)

GHGcost4(l,∆j) =

∑∆j

j=1(j ×
∑N

i=1 λ(i,l,j)×GHG(i,j)

Zl
)∑∆j

j=1 j
(5.4)

GHGcost5(l,∆j) = GHGER(l,∆j) ∗ TT(l,∆j) (5.5)

TT(l,∆j) =
Dl

V (l,∆j)
(5.6)

5.6 Routing Strategies

Table 5.2 illustrates the examined routing strategies in this chapter. The first routing strat-

egy optimized TT, while the second and third ones optimized GHG and TT&GHG, respec-

tively. Minimizing TT may have an impact on the environmental indicators, GHG and NOx.

While optimizing TT, higher speed links or longer routes of higher speed may be adopted,
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which introduces more GHG and NOx emissions due to the quasi-convex relationship be-

tween speed and GHG (Djavadian, Tu, et al., 2020). On the other hand, optimizing GHG

must have an effect on the traffic indicators, TT, VKT, speed, density, and flow, as GHG

estimation depends mainly on speed. Illustrating the trade-offs is an essential element to be

considered when the results are discussed of the different routing strategies. As recommended

by Law and McComas (1991), every routing strategy has been run for five replications of dif-

ferent seeds and the average of any indicator was taken to account for stochasticity. The used

updating interval (∆j) was one minute. This means that at every minute the cost of links

was updated whether it was TT, GHG, or TT&GHG. Referring to the general optimization

formula, Equation 5.7 was followed. Where TTl is travel time on link l and GHGl is the

GHG emissions (in CO2eq) on link l; n is number of links of a path k; and WTT and WGHG

are the weights associated with travel time and GHG emissions, respectively. It is worth

mentioning that variables in Equation 5.7 (TT and GHG) have different units and weights

transformed them into a consistent unit, such as monetary value, when multi-objective rout-

ing was applied. The adopted TT monetary value was $27.36/hour based on Statistics

Canada (CBC, 2019). The used monetary value of GHG emission was $15.77/Ton based

on The World Bank (2019). Before applying the different routing strategies, the different

GHG costing approaches were analyzed in Section 5.7.1 and the most suitable one was used

throughout this dissertation. The adopted performance indicators to compare between the

myopic routing strategies were average travel time (TT), average vehicle kilometres travelled

(VKT), total GHG, and total NOx produced. To further analyze the outcomes of myopic

routing strategies, paths of a random vehicle were applied as presented in Section 5.7.3 in

addition to the network level analysis in Section 5.7.4.

min

{
n∑
l=1

WTT .TTl +
n∑
l=1

WGHG.GHGl

}
(5.7)
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Table 5.2 The Considered Routing Strategies

Scenario name Routing type

TTm Myopic

GHGm Myopic

TT&GHGm Myopic

5.7 Results and Analysis

First, the GHG costing approaches are analyzed in terms of the mean TT, mean VKT, total

GHG, and total NOx in Section 5.7.1. Then, the myopic routing strategies are discussed in

detail. The mean TT, mean VKT, total GHG, and total NOx are demonstrated in Section

5.7.2. Paths of a random vehicle of the myopic different routing strategies are extracted

and findings are presented in Section 5.7.3 to better comprehend the difference between the

routing strategies. The network level average speed, GHG, and NOx over time are examined

in Section 5.7.4 to illustrate the impact of adopting different routing objectives at the network

level.

5.7.1 GHG Costing Approach Analysis

Figure 5.2 shows that the GHGcost1 strategy performed the worst, in terms of all the per-

formance indicators. This is due to the fact that traffic characteristics were not captured of

a studied links, such as speed, flow, or density. The same total GHG emission cost can be

for two dramatically different sets of link characteristics. For instance a high total emission

x can be for a lightly used very long link of four lanes or for a shorter congested link of

two lanes. The speed, flow, and density of the aforementioned two cases are dramatically

different. That is, taking the total emissions did not reflect on spatial and temporal changes

of both traffic and environmental indicators.
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(a) (b)

Figure 5.2 The Impact of Different GHG Costing Approaches on the a) Mean TT
and VKT and b) Total GHG and NOx

The GHGcost3 costing approach illustrated significant improvements compared to the

GHGcost1 approach. The former is associated with a reduction in average TT, average VKT,

total GHG, and total NOx of 33%, 21%, 32%, and 25%, respectively, compared to the latter.

The main justification is the high level of temporal resolution employed. The changes in

the environmental status on links are sensitive to the temporal dimension. In general, if the

link cost is updated in a timely manner, vehicles would be routed to links representing the

environmental status reliably. Giving higher weights to the most recent seconds contributed

to the enhancement in terms of the four performance indicators. In other words, GHG

emissions of second 1 of interval ∆j were multiplied by 1, while emissions in second 60 of

interval ∆j were multiplied by 60. If produced GHG emissions at second 1 and 60 were equal,

the contribution of second 60 to link GHG cost was significantly higher due to the higher

weight associated, as it reflected on most recent environmental condition of a studies link.

This approach required produced emissions by vehicles at every second, which is not always

feasible. Obtaining the second-by-second emissions of every vehicle requires high level of

computational power and memory when the dynamics in the network are simulated. Even

when real data are used, a large number of sensors are required to be distributed to capture
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the second-by-second emissions produced by vehicles.

Dividing by the number of lanes in both GHGcost2 and GHGcost4 is associated with slight

enhancements compared to GHGcost1 and GHGcost3, respectively. When two links have the

same total GHG or same weighted average, but they are associated with different number of

lanes, comparing their GHG cost requires normalizing based on number of lanes. In terms

of mean TT, both GHGcost2 and GHGcost4 are associated with the same reduction of almost

3% compared to GHGcost1 and GHGcost3, respectively. Similarly, VKT, GHG, and NOx

have been decreased by comparable magnitude to the mean TT in the case of GHGcost2

and GHGcost4 with respect to GHGcost1 and GHGcost3. However, normalizing based on the

number of lanes triggers underestimation for links with larger number of lanes, which makes

it unrealistic costing approach. This is due to the fact that traffic indicators, such as density

and/or flow are not reliably represented. After developing video animation of every routing

strategy, it was found that links of larger number of lanes were more deployed when GHG

cost was normalized by the number of lanes.

GHGcost5, which is the approximate vehicle cost of GHG traversing link l, is based on

GHG ER and TT of a studied link l. The results are very much comparable to GHGcost4

despite the significant difference in the employed temporal resolution. GHGcost4 costing

approach required the second-by-second produced GHG emissions by vehicles of a studied

link, but did not not include any of the link traffic indicators (speed, flow, density). On

the other hand, GHGcost5, which takes into account speed and distance of a studied link,

adopted the same spatial level of resolution, link level, compared to GHGcost4, but lower

temporal level of resolution, one minute, compared to GHGcost4. The high level of temporal

resolution of GHGcost4 made the results comparable to GHGcost5. GHGcost5 performed better

than GHGcost4 because it considered speed and distance travelled, despite the lower temporal

resolution with respect to GHGcost4. GHGcost5 surpassed GHGcost4 in terms of the mean TT,

mean VKT, total GHG, and total NOx by 1%, 3%, 4%, and 5%, respectively. GHGcost5

is the most representative and suitable costing approach as it depends not only on GHG
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ER (explicitly), but also on travel time (implicitly), speed, and distance of a studied link.

This was applied while utilizing link level (spatial resolution) and one minute (temporal

resolution).

With respect to the total produced GHG and NOx, it was noticed that they were depen-

dent on the amount of time vehicles spend in the network. In other words, the higher the

average TT, the higher the GHG and NOx as in Figure 5.2b. Among the investigated GHG

costing approaches, GHGcost5 is the only costing approach that reflected on traffic condition

by considering speed and distance travelled. Hence, GHGcost5 was the cost used for the

myopic and anticipatory routing strategies in this Chapter and Chapter 7, respectively.

5.7.2 Average TT, Average VKT, Total GHG, and Total NOx

Analysis of the Different Myopic Routing Strategies

Figure 5.3 illustrates that GHGm routing strategy outperformed the TTm in terms of all

the four performance indicators. When TT was the routing objective, all of possible routes

were investigated, while minimizing TT only. Vehicles were distributed in the network to

avoid congested links. This means that vehicles were directed to uncongested links that

could be of low speed and shorter length or of long distance and higher speed. This justifies

the increase in mean TT and VKT in the case of TTm compared to GHGm. In the case

of TTm, longer routes were considered as long as they satisfy the optimization objective.

On the other hand for GHGm, GHG ER and spent TT on possible routes were optimized.

In other words, links of the optimal path must be the ones of the least GHG expected to

be produced by one vehicle traversing them, which is dependant on GHG ER, speed, and

distance. For instance, if two links have the same GHG ER, but different expected travel

time, the one of less TT is chosen to satisfy the optimization objective. This means that

GHGm looks for the best combination between GHG ER, speed, and distance to satisfy the

optimization objective. GHGm contributed to reductions in average TT, average VKT, total
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GHG, and total NOx of 15%, 12%, 11%, and 13%, respectively, compared to TTm. It was

noticed that the reduction in TT was larger than the reduction in the total GHG. In the

approximate vehicle cost of GHG as in Equation 5.5, travel time is a major component of

the optimization process. While minimizing GHG cost, time spent was minimized indirectly.

The aim of the approximate vehicle cost of GHG is to look for the best combination of GHG

ER and TT. This demonstrates the importance of reducing TT to minimize GHG produced.

Furthermore, while TT was minimized, NOx was minimized too. When vehicles spent less

time in the network, less NOx was the outcome.

(a) (b)

Figure 5.3 The Impact of the Different Myopic Routing Strategies on the a) Mean
TT and VKT and b) Total GHG and NOx

Multi-objective, TT&GHGm, routing strategy triggered a slight improvement compared

to GHGm. The former contributed to reductions in the average TT, average VKT, total

GHG, and total NOx of 2%, 1%, 6%, and 1%, respectively, compared to the latter. This

is stemmed from the fact that GHG cost has been scaled to be comparable to TT cost of

studied links. It was noticed that there was an obvious difference between the scale of TT

and approximate vehicle cost of GHG of links. To make the cost of the two variables of the

same scale, TT and GHG costs of the most congested link over time have been compared

to define the optimal scaling factor. When TT and GHG were optimized simultaneously,

the GHG cost was multiplied by a factor of 105, where GHG cost on links was taken by
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tons and time unit of minute in the optimization formula. In the case of TT&GHGm, not

only TT was optimized, but also GHG. In the case of multi-objective routing, both TT

and GHG objectives aimed at reducing the TT spent in the network. While TT objective

minimized TT explicitly, GHG objective minimized TT implicitly. Combining both TT and

GHG means controlling TT spent more strictly compared to routing to minimize TT or GHG

solely. It is noticed that there is a proportional relationship between experienced TT & VKT

and produced GHG & NOx on links. In other words, the more TT and longer trips vehicles

experience in the network, the more produced GHG and NOx as illustrated in Figure 5.3.

GHG estimation in Equation 5.5 is a function of time. This explains the increase in GHG

when TT increases and similarly for NOx. To sum it up, when TT was the routing objective

all what mattered was TT spent regardless of VKT, GHG, or NOx, while when GHG was

part of the optimization process, GHG and TT were minimized while VKT is controlled.

5.7.3 Path Analysis of the Different Myopic Routing Strategies

This analysis was conducted at a single vehicle level. Figure 5.4 illustrates the paths of a

randomly chosen vehicle of the different routing strategies (TTm, GHGm, and TT&GHGm).

From the figure, re-routing is a dominating feature in the three routing strategies. This could

be due to the fact that link cost was captured at link level and at every one minute. At

minute (t), the link cost was estimated based on the previous minute (t−1). The traffic and

environmental conditions at minute (t) changed, which was not reflected on link cost, which

would remain based on the data of the previous minute (t− 1). The re-routing phenomenon

implies that increasing the spatial and temporal level resolution while estimating link cost

may contribute to further improvements. In addition, estimating more proactively link cost,

by capturing traffic and environmental evolution, may introduce a better outcome, which is

discussed in detail in Chapter 7.

For TTm, the route was longer compared to other routing strategies, which supports the
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finding of the previous section related to mean TT and mean VKT. For TTm, all of the

possible paths were examined and vehicles were routed to the ones of the least TT regardless

of experienced VKT, GHG, and NOx. It can also be noticed that there are mutual links

between GHGm and TT&GHGm as GHG was part of the optimization process in both

routing strategies. Finally, the path of TT&GHGm is the shortest compared to the other

two strategies. The length of paths of TTm, GHGm, and TT&GHGm was 3.7, 3.2, and

3.1 km, respectively. When GHG was part of the optimization objective, the approximate

vehicle cost of GHG of GHGm considered not only produced GHG of one vehicle, but also

speed and VKT indirectly. Links of optimal speed were prioritized as long as the objective

was minimized. Links of too high or too low speed were not in favour due to the adverse

impact on the GHG ER and consequently GHG final cost.

5.7.4 Network Level Analysis of the Different Myopic Routing

Strategies

This analysis was conducted at the network level to comprehend the impact of the proposed

routing strategies at a higher level. Figure 5.5a shows the average speed over time in the

network of the different myopic routing strategies. In the case of GHGm and TT&GHGm,

the network was loaded and unloaded quicker, in which it took 8% and 11% less time,

respectively, compared to TTm. Mean TT and mean VKT analysis in addition to the path

analysis is Sections 5.7.2 and 5.7.3, respectively, support the longer required time to empty

the network in the case of TTm compared to the other two myopic routing strategies, GHGm

and TT&GHGm. It is noticed that GHGm and TT&GHGm were associated with higher

average speed over time compared to TTm. As much as 12 and 25 km/hour increase in speed

was observed at certain points of time for GHGm and TT&GHGm, respectively, compared

to TTm.
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(a) (b)

(c)

Figure 5.4Myopic Routes of a Random Vehicle of the Different Routing Strategies,
a) TT, b) GHG, and c) TT&GHG

When TT was the routing objective, all of available paths were checked and the best

one was chosen based only on one criterion, TT, regardless of experienced speed, distance,

GHG, and NOx. While optimizing TT, vehicles might be sent to links of lower speed and

shorter distance or to routes of higher speed and longer distance to minimize TT cost.

Nevertheless, when GHG was part of the optimization objective, GHG ER, speed, and

distance were parts of cost estimation process of links as shows in Equations 5.5 and 5.6. The

best combination of the aforementioned variables was chosen that satisfied the optimization

objective. Figures 5.3a and 5.4 support the aforementioned justification as when GHG was

part of the optimization process, mean TT and mean VKT and re-routing was less compared
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(a) (b)

(c)

Figure 5.5 The Network under the Different Myopic Routing Strategies and its a)
Speed, b) GHG, and c) NOx over time

to when TT was the only objective. When GHG was minimized, too high or too low speed

was not in favour as either case contributes to higher cost. Average TT and average VKT

were smaller in the case of GHGm and TT&GHGm, this means that on average higher speed

links were employed while routing vehicles to their destinations compared to TTm. It is

important to note that the peak period of the simulation was between 8:00am and 8:20am.

From 7:45am, when the demand started being loaded till around 8:10am average speed of the

three myopic routing strategies was comparable. However, after 8:10am, variation in speed

of the different routing objective strategies was obvious. This demonstrates the impact of

emptying the network faster, which was triggered by reduced TT and VKT. After 8:10am,

GHGm and TT&GHGm were associated with higher speed over time, as less vehicles were
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in the network and links were chosen based on their GHG ER, speed, and length, compared

to TTm.

Figures 5.5b and 5.5c illustrate that GHGm and TT&GHGm are associated with less GHG

and NOx over time compared to the TTm. The reduction in GHG over time is as much as

0.25 and 0.4 kg at certain points for GHGm and TT&GHGm, respectively, compared to TTm.

The explanation is the difference between the costing approaches of TTm and GHGm. The

former minimizes only TT, while the latter considers GHG ER and other traffic indicators

to minimize the final cost. For NOx, the value is high from the beginning of the simulation,

which is due to high speed of vehicles entering the network. It is also noticed that there is

a lot of fluctuations caused by sensitivity to speed on links and also number of vehicles in

the network. This assures that spending less time in the network and travelling for shorter

distances have a desirable impact on the environmental dimension. The difference in total

GHG between the different routing strategies after 8:00am is more noticeable. This is due

to less number of vehicles in the network for GHGm and TT&GHGm compared to TTm.

5.8 Concluding Remarks

In this chapter, myopic single- and multi-objective routing strategies were examined, while

employing the E2ECAV dynamic distributed routing framework introduced in Chapter 4.

The major findings of this chapter are as follows. When TT was the only routing objective,

travel time was all what mattered. All of possible routes in the network were examined,

regardless of experienced speed, VKT, GHG, and NOx. This illustrates why routing based

on TT was the worst routing strategy in terms of the whole performance indicators. In

addition, when TT was the routing objective, longer routes of higher speed were chosen,

which contributed to more GHG and NOx emissions. When GHG was the routing objective,

the approximate vehicle cost of GHG was the best costing approach due to its ability to

take into account GHG ER of every link in addition to travel time. Routing based on GHG

106



contributed to significant enhancements compared to routing based on TT, due to the costing

approach reflecting on both traffic and environmental dimensions at once. The approximate

vehicle cost of GHG took into account not only GHG ER but also the experienced speed

and distance on links in concern. That is, the best combination of the aforementioned

three variables was chosen. Routing based on TT&GHG introduced further enhancements

compared to when GHG was the routing objective. Due to different scales of TT and GHG

variables, a scaling factor was used, for GHG cost, to give the same importance for the

two optimized variables, TT and GHG, contributing to improvements in the case of multi-

objective routing. In the case of TT&GHG routing strategy, travel time was minimized

more strictly as TT routing objective optimized it explicitly, while GHG routing objective

minimized it implicitly. Comparing TT to TT&GHG routing strategies is like comparing

User Equilibrium (UE) to System Optimal (SO) traffic assignment. The network was loaded

and unloaded quicker in the case of when GHG and when TT&GHG were the routing

objectives compared to when TT was the only minimized variable. When GHG was part

of the optimization process, the time spent in the network was reduced implicitly triggering

improvements at the network and vehicle level. The amount of produced NOx is very

sensitive to aggressive driving. When GHG was the routing objective, links of speed close to

optimal value were prioritized and mean TT and VKT were reduced. These factors affected

the produced NOx implicitly. Due to re-routing observed in the three routing strategies, there

is still room for improvements. However, this requires predicting traffic and environmental

conditions for a proactive routing. In Chapter 6, deep learning based on the Long Short-Term

Memory (LSTM) predictive models were developed for speed and GHG ER. The developed

predictive models were deployed for the anticipatory routing application in Chapter 7 for

further enhancements from traffic and environmental perspectives.
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Chapter Six

Prediction Models

This chapter has resulted in the following publication:

1. Alfaseeh, Lama, Tu, Ran, Farooq, Bilal, & Hatzopoulou, Marianne (2020). “Green-

house Gas Emission Prediction on Road Network Using Deep Sequence Learning". In:

Transportation Research Part D: Transport and Environment.
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6.1 Introduction

Topics related to GHG reduction have grabbed the attention of researchers in the transporta-

tion field. In the near future, adoption of smart cities technologies will make high resolution

traffic related information available to improve several applications, such as prediction and

routing. It has been proposed that anticipatory routing can bring in further improvements

compared to myopic routing (Ben-Akiva et al., 2001; Bottom, 2000; Mahmassani, 1994).

The conventional routing used nowadays is myopic (Elbery and Rakha, 2019; Bandeira et

al., 2018; Ahn and Rakha, 2013), which depends on previous time step information and does

not consider the evolution of the traffic and environmental conditions. On the other hand,

anticipatory routing is based on predicted values of traffic and/or environmental variables

of current time step (Bottom, 2000). In other words, links cost in case of myopic routing is

taken at time (t− 1), while link cost in case of anticipatory routing is at time (t). Hence, for

real-time anticipatory applications, efficient predictive models are required, which consider

a proper level of spatial and temporal resolution.

Based on the findings in Chapter 5, with respect to the best GHG costing approach,

predictive models of GHG ER and speed were developed in this chapter to consider TT, GHG,

TT&GHG routing objectives for the anticipatory multi-obejctive eco-routing application in

Chapter 7. It is worth mentioning that some pollutants, such as Methane (CH4) and Nitrous

oxide (N2O), other than CO2 contribute to climate change. The aforementioned pollutants

may have an impact that is greater than that of CO2 and is often referred to as “CO2

equivalent" (United States Environmental Protection Agency, 2020). This explains why

CO2 ER was predicted in this chapter in the form of CO2eq instead of CO2. Speed was

predicted instead of TT due to the direct relationship between speed and traffic predictors,

such as density, and flow. Three predictive models were examined, ARIMA, clustering, and

LSTM for GHG ER prediction. A comparison between the three proposed predictive models

was applied, in terms of spatial and temporal aspects, and the best model was considered
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for a detailed analysis. Matlab was the used programming platform to develop and analyze

the aforementioned three prediction models. The best predictive model was then deployed

to forecast speed. Predictive models require data points in general. Some models, such as

clustering and LSTM need a lot of representative data points. The performance quality

of a predictive model is a function of data points quality. Due to scarcity of real data to

develop predictive models, simulation was the tool employed in this dissertation. While

routing vehicles to their destinations, in the efficient E2ECAV (Farooq and Djavadian, 2019)

distributed routing framework, data points were collected and processed to be in the form

required by every examined predictive model in this chapter. Nevertheless, in the near

future, deployment of smart cities technologies will make real data available for prediction

applications. Chapter 3 includes the details related to the traffic and emission simulators

and how they intact with each other in the E2ECAV distributed routing framework.

Figure 6.1 demonstrates the framework of this chapter and its relationship with other

chapters in this dissertation. This chapter is organized as follows. A brief literature review

related to adopted predictive models for GHG emissions and speed is presented in Section

6.2. The methodology related to ARIMA, clustering, and LSTM is presented in Sections 6.3,

6.4, and 6.5, respectively. The data collection process is illustrated in Section 6.6 followed by

the discussion in Section 6.7 and the concluding remarks in Section 6.8. The best predictive

models developed in this chapter were adopted for the anticipatory routing application in

Chapter 7.

6.2 Literature

With reference to the used predictive models for GHG, a wide variety was found in literature,

such as Grey model (A. Ö. Dengiz, Atalay, and O. Dengiz, 2018), autoregressive integrated

moving average (ARIMA) (Rahman and Hasan, 2017), artificial neural networks (ANNs)

(Abdullah and Pauzi, 2015), Long Short-Term Memory (LSTM) network (Ameyaw, L. Yao,
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Figure 6.1 Chapter Six Framework

et al., 2019; Y. Huang, Shen, and H. Liu, 2019; Ameyaw and L. Yao, 2018), and clustering

(Poucin, Farooq, and Patterson, 2018).

GHG emission has been predicted dominantly at national level regardless of the deployed

models. Pao and Tsai (2011) forecasted CO2 emissions based on income and energy consump-

tion by using grey prediction model (GM) in Brazil. Pao and Tsai (2011) found that results

were comparable to ARIMA in terms of forecasting performance. The GM was also used

by Lin, Liou, and C.-P. Huang (2011) to predict CO2 emissions in Taiwan. ARIMA, which

is a commonly used statistical approach used in case of time series prediction, was adopted
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to predict CO2 emissions in Bangladesh and Bahrain as in Rahman and Hasan (2017) and

Tudor (2016), respectively.

Antanasijević et al. (2014) predicted GHG emissions at national level as well, of Eu-

ropean countries, employing a new approach based on ANNs. Predictors considered were

agriculture, transportation, energy supply and use, and waste. Radojević et al. (2013) em-

ployed ANN to predict CO2 emissions in Serbia based on the share of renewable sources of

energy, gross domestic product, gross energy consumption, and energy intensity (Radojević

et al., 2013). The extreme learning machine (ELM), which is a type of ANNs, based on

particle swarm (PSO) optimization was used by W. Sun, C. Wang, and C. Zhang (2017) to

predict CO2 emissions. W. Sun, C. Wang, and C. Zhang (2017) found that their proposed

approach, called PSO-ELM, outperformed ELM and back propagation neural network in

terms of prediction performance, RMSE and MAPE. At a more disaggregated level, Grote

et al. (2018) developed Practical Emissions Model for Local Authorities emission (PEMLA)

to be used by local government authorities. Data points were collected from sensors, which

were part of the traffic control system. Five traffic variables were taken into consideration:

1) traffic average speed (km/hour); 2) traffic density (vehicles/km); 3) traffic average de-

lay rate (seconds/vehicle·km); 4) access density (intersections/km); and 5) square of traffic

average speed (km/hour)2. The relationship between variables was defined by the Multiple

Linear Regression (MLR), while the ANN was used to predict the CO2. Their case study

was Southampton, a city on the South coast of the UK with a population of approximately

255,000. Their prediction interval was of five minutes. Traffic variables were obtained from

detectors at every five minutes to estimate network level CO2 emissions (Grote et al., 2018).

The main feature of the above GHG predictive models is that models adopted an extremely

low level of spatial and temporal resolution. GHG emissions were mainly predicted at a

national level as in Y. Huang, Shen, and H. Liu (2019); Ameyaw, L. Yao, et al. (2019) and

Ameyaw and L. Yao (2018). Even when spatial resolution was increased, temporal dimen-

sion was not captured at a disaggregated level as in Grote et al. (2018), in which five minute
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updating interval was employed. In terms of predictors used, generally fuel and economical

factors were employed (Alfaseeh, Tu, et al., 2020).

Vlahogianni, Karlaftis, and Golias (2014) developed a detailed review related to short-

term traffic forecasting. It was shown that studies mainly considered freeways as their case

study, due to simplicity compared to urban congested networks. The authors also found

that mostly statistical models were used for prediction (Vlahogianni, Karlaftis, and Go-

lias, 2014). With reference to TT prediction, two streams have been found in literature, one

predicted TT directly and the other one predicted speed and consequently TT. For directly

forecasting travel time, several predictive models have been deployed. Linear modelling (X.

Zhang and Rice, 2003), the nonlinear autoregressive with external inputs (NARX) model

(Mane and Pulugurtha, 2018), the nonlinear autoregressive model (NAR) (Mane and Pu-

lugurtha, 2018), clustering (Elhenawy, H. Chen, and Rakha, 2014), neural networks (Mane

and Pulugurtha, 2018), ant colony based approach (Claes and Holvoet, 2011), and deep

neural networks (Duan, Lv, and F.-Y. Wang, 2016; Ran et al., 2019). For indirectly pre-

dicting travel time from speed, examples can be found in Ishak and Alecsandru (2004); Gu

et al. (2019); Innamaa (2000); Yildirimoglu and Geroliminis (2013); Ma et al. (2015); B. Yao

et al. (2017) and Gmira et al. (2017). Most of the aforementioned studies adopted freeways

as their case study and a low level of temporal resolution. These findings are aligned with the

outcome of a review paper conducted by Vlahogianni, Karlaftis, and Golias (2014) related

to short-terms traffic forecasting.

Unlike the existing related work, in this chapter GHG ER and speed were predicted based

on data points extracted from a congested urban network. Available traffic and environmental

predictors, such as speed, density, flow, and GHG ER were employed to predict responses

at a high level of spatial (link level) and temporal (every one minute) resolution. Three

predictive models were investigated and the best one was chosen based on a comparison

process.
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6.3 ARIMA with Exogenous Variables

ARIMA (p,d,q) is a statistical approach, which has been widely employed for time series

data that can be made to be “stationary” by differencing of “d” order. There should be

no trends in the data in order to predict using the ARIMA model efficiently. Where: “p”

and “q” are small integers reflecting on the “autoregressive” (AR) and “moving-average”

(MA), respectively. For a generic form of ARIMA while r exogenous variables are included,

Equation 6.1 is followed.

ŷt = µ+

p∑
i=1

φiyt−i +
r∑

k=1

βkxtk + et +

q∑
j=1

θjet−j (6.1)

Where ŷt is the response at time t, µ is the constant, φi is the AR coefficient at lag i,

yt−i is the value of the variable in concern for prediction at time t − i, βk is a coefficient of

exogenous variable k, xtk is exogenous variable k at time t, θj is the MA coefficient at lag j,

and et−j = yt−j − ŷt−j is the forecast error that was made at period t− j (Box et al., 2015).

Figure 6.2a presents the stages followed to develop ARIMA model and predict GHG ER.

A ratio of 80% to 20%, training to validation, was considered. To define the optimal pa-

rameters (p,d,q), an iterative process took place while considering auto-correlation, partial

auto-correlation plots of differenced series, and root unit which was a measure that signalized

when time series was under or overdifferenced (Alfaseeh, Tu, et al., 2020). To avoid overfit-

ting, we examined several sets of data and made sure there were no trends in the data set.

One of the major shortcomings of ARIMA models in our context is related to scaleability

aspect. A separate model has to be developed for every link. In other words, ARIMA lacks

the spatial dimension.
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6.4 Clustering

Clustering is a machine learning approach, which basically groups objects so that in one group

objects are more related to each other than those in other groups (Mann and Kaur, 2013).

To classify traffic conditions at link level, K-means clustering has been deployed. The data

points were classified into clusters and every cluster had its own centroids based on considered

variables. Every data point belongs to a cluster with the minimum distance to related

centroid/s of that cluster. In K-means clustering, optimal cluster is defined when total

intra-cluster variance or squared error is minimized (Poucin, Farooq, and Patterson, 2018)

following Equation 6.2. Taking the overfitting aspect into account, cross validation has been

applied for 100 iterations during the training process of the model. For every cross-validation

iteration, the training data of 80% was divided randomly into 70% and 10%. The optimal

GHG ER for every cluster of the 70% data points was specified based on the least distance

between true and estimated GHG ER. Then the optimal GHG ER was adopted for the cross

validation on the 10% data points.

M =
k∑

m=1

n∑
i=1

||x(m)
i − cm||2 (6.2)

Where M is the objective function, k is the number of clusters, n is the number of data

points (observations), x(m)
i is the observation i being tested for cluster m, cm is the centroid

of cluster m. The number of clusters is dependent on the data and a statistical analysis

associated. To specify the optimal number of clusters, the elbow method/sum of squared

error (Poucin, Farooq, and Patterson, 2018), which estimates the sum of squared distances

between the points within a cluster was the guide (Alfaseeh, Tu, et al., 2020). Figure 6.2b

shows the steps followed. For clustering, dataset has been divided into 80% and 20% for

training and validation, respectively (Tu, Kamel, et al., 2018). The input variables were

used to define the optimal cluster they belong to based on the sum of squared distance

with the centroid related. Then the response variable was obtained from the optimal cluster
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(Alfaseeh, Tu, et al., 2020).

(a) (b)

(c)

Figure 6.2 Methodology for a) ARIMA with Exogenous Variables, b) Clustering,
and c) LSTM with Exogenous Variables
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6.5 LSTM with Exogenous Variables

Recurrent neural network (RNN) is a type of the deep neural networks (DNN). RNN is

associated with multiple layers between the input and output layers, unlike the artificial

neural network (ANN). The RNN defines the correct mathematical manipulation to give

output from an input, whether it is a linear relationship or a non-linear relationship (Ag-

garwal, 2018). RNNs introduce the concept of memory. The Long-Short Term Memory

(LSTM) network is a category of the RNNs, that overcomes the drawback of regular RNNs,

the vanishing gradient problem (Amarpuri et al., 2019). The LSTM network has been con-

sidered as one of the most powerful RNN architectures where sequential data is involved

(Lipton, Berkowitz, and Elkan, 2015). LSTM is associated with three gates (Hochreiter and

Schmidhuber, 1997), input, forget, and output following the below Equations 6.3, 6.4, and

6.5, respectively.

it = σ(wi[ht−1, xt] + bi) (6.3)

ft = σ(wf [ht−1, xt] + bf ) (6.4)

ot = σ(wo[ht−1, xt] + bo) (6.5)

Where it represents the input gate, ft represents the forget gate, ot represents the output

gate, σ represents the sigmoid function, wx represents the weight for gate x neurons, ht−1

represents the output of the previous LSTM block at time t− 1, xt represents the input at

current time step t, and bx represents biases for respective gates (x). Figure 6.2c presents the

methodology followed of the LSTM application. A ratio of 80%-20% has been considered

for training to validation, respectively (Alfaseeh, Tu, et al., 2020). Among the proposed

approaches to avoid overfitting, adding drop out layers is an effective and easy way in NNs

in general (Srivastava et al., 2014). This is the considered technique for the investigated

LSTM networks in this chapter.
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The selection of hyper-parameters of LSTM network has a profound impact on prediction

performance (Reimers and Gurevych, 2017; Hutter, Lücke, and Schmidt-Thieme, 2015). It

has been proven that increasing the depth of neural network (NNs) in general (Hermans

and Schrauwen, 2013; Pascanu et al., 2013) and effectively tuning hyper-parameters (Snoek,

Larochelle, and Adams, 2012) may contribute to a desirable effect on prediction performance.

In this chapter, one and two LSTM/hidden layers were examined while LSTM model hyper-

parameters were tuned manually and systematically.

6.6 Data Collection

To develop the predictive models at the link level and one minute prediction interval, high

resolution data points were required reflecting to traffic and environmental indicators. To

fulfill the aforementioned task, the dynamic distributed routing framework (E2ECAV) was

used, which employed an agent-based microscopic simulation as illustrated in Section 3.3.

The used emission model was MOVES (USEPA, 2015), which has been presented in Section

3.4. The second-by-second traffic and environmental characteristics of every vehicle were

utilized to obtain the one minute link level data points. The emission simulator required

inputs from the traffic simulator, as shown in Figure 3.3. With time, utilization of the smart

cities technologies will increase. This means that the developed predictive models can be

retrained on real data and used for prediction purposes.

It is crucial to note that the adoption of a large urban road network, which is downtown

Toronto as illustrated in Section 3.5, is associated with a high level of complexity. Never-

theless, it makes the developed predictive models more realistic. Figure 6.3 demonstrates

statistical analysis of variables reflecting on traffic conditions and GHG ER (in CO2eq g/sec)

on links. From Figure 6.3a, the mode for speed is 40 km/hour. It is important to note that

speed limit of 132 and 18 links in our case study is 60 and 80 km/hour, respectively. Speed

average in the network based on second-by-second data point is 56.16 km/hour. However,
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speed varies from 0 to 80 km/hour. Similarly, density in veh/km.lane as in Figure 6.3b and

flow veh/h as in Figure 6.3c are associated with a wide range of values to account for dif-

ferent traffic conditions. Finally, GHG ERs (in CO2eq) start from less than 1 g/sec to more

than 5 g/sec as in Figure 6.3d. It was noticed that frequency of data points out of [20 60]

speed range was significantly lower than values within the aforementioned range. Similarly,

frequency of GHG ERs out of [1.5 2.5] g/sec range was dramatically smaller than GHG ERs

within the mentioned range.

To develop generic predictive models of GHG ER and speed, a variety of scenarios have

been simulated. Different traffic conditions have been mimicked by employing different

demand levels and departure time distributions as shown in Table 6.1. For every simulation

run, a specific demand level and a distribution to estimate the departure time were deployed.

Travel demand was provided by the Transportation Tomorrow Survey (TTS) (DMG, 2011).

The time dependent exogenous demand Origin-Destination (OD) matrices were based on 5

minute intervals from TTS. The demand ranged from 2,437 to 6,988 representing 70% to

200% of the 2014 demand provided by the TTS. Different distributions were taken into ac-

count for departure time, normal, uniform, and exponential triggering more heterogeneity

in traffic conditions. The data have been divided into 80% training and 20% validation for

clustering LSTM. Training and validation data sets were of 48,652 and 12,159 data points,

respectively. For ARIMA model, 4 representative links were considered, which were associ-

ated with different characteristics to give an indication of the prediction performance at the

network level. Data points of every link have been divided into 80% to 20% for training to

validation (Alfaseeh, Tu, et al., 2020). The total number of sequences was 83 for ARIMA.

Training and validation datasets consisted of 66 and 17 sequences, respectively.
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(a) (b)

(c) (d)

Figure 6.3 Histogram of a) Speed, b) Density per Lane, c) Flow, and d) GHG ERs
(in CO2eq g/sec)

Table 6.1 The Considered Scenarios for Data Generation

% of the 2014 demand No. of Vehicles Departure time distribution

70 2,437 Exponential, uniform, and normal

100 3,477 Exponential, uniform, and normal

130 4,520 Exponential, uniform, and normal

150 5,259 Exponential

200 6,988 Exponential
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6.7 Results and Discussion

While the three proposed models, ARIMA, clustering, and LSTM, were evaluated for GHG

ER prediction, only the best predictive model was deployed for the speed prediction. Before

illustrating the results of the predictive models of GHG ER and speed in Sections 6.7.2 and

6.7.3, respectively, a detailed correlation analysis was conducted in Section 6.7.1 for GHG ER

and speed, respectively. Four performance indicators were employed for comparison purposes

between the predictive models, the correlation coefficient between observed and predicted

GHG ERs (in CO2eq g/sec) and speed, fit to the ideal straight curve, R2, and RMSE.

6.7.1 Correlation Analysis

This analysis was the reference for choosing the predictors and the number of sequences to

develop the predictive models of GHG ER and speed. Five sequences, minutes, represented

the period of the correlation investigation with the sixth minute of the variable in concern,

GHG ER or speed. The five-minute period was chosen as it was sufficient to reflect on the

changes in the traffic and environmental conditions in an urban area. The max link length

in the network is around 450 meters. Speed varies from 0 to 80 km/hour. Under the free

flow traffic condition, the maximum travel time required to traverse a link is around 0.8

minute. In this section, the specifications and major findings related to the GHG ER and

speed correlation analysis are illustrated, respectively.

Correlation Analysis of GHG ER

For this analysis, a comprehensive list of variables has been considered not only of the studied

links, but also of the up-stream links. In other words, experienced traffic and environmental

conditions on in-links at time (t − 1) give an indication of what traffic and environmental

conditions would be on studied links at time (t). Speed, density, flow, delay (difference

between free flow travel time and actual travel time), in-links speed, in-links density, in-
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(a)

(b)

Figure 6.4 Correlation between the Proposed Variables at Every Minute from 1 to
5 (Top to Bottom) with a) GHG ER and b) Speed at the 6th Minute
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links flow, and GHG ER (in CO2eq g/sec) were the examined variables. Figure 6.4a shows

that the absolute value of the correlation coefficient increases between all of the variables

except for the delay and the GHG ER (in CO2eq g/sec) at the sixth minute from minute

1 to minute 5 (top to bottom). Speed is the most correlated variables with the GHG ER

at the sixth minute, followed by GHG ER (in CO2eq g/sec), density, in-links speed, and

the rest of the variables. The dominating role speed plays in GHG ER estimation process,

as demonstrated in Equation 3.3, justifies the high correlation (United States Environmen-

tal Protection Agency, 2014). The high correlation between GHG ER and density can be

explained based on the relationship between speed and density, which are two of the fun-

damental traffic variables (Papacostas and Prevedouros, 1993). The relationship between

speed and density is monotonically decreasing (Papacostas and Prevedouros, 1993). Among

the in-links variables, speed is the mostly correlated with GHG ER on the downstream links.

The speed on in-links at time (t− 1) gives a strong indication of what the speed at time (t)

would be on studied links. Different combinations of predictors and number of sequences,

minutes, have been assessed for the best outcome.

Correlation Analysis of Speed

The same logic of the previous subsection is followed here in terms of the number of sequences,

minutes, and inclusion of in-links characteristics. In terms of the importance order as shown

in Figure 6.4b, speed followed by density, flow per lane, total flow, and in-links speed are

the top five highly correlated variables of the previous five sequences with speed at the

sixth minute. The high correlation with density is due to the monotonically decreasing

relationship between speed and density (Papacostas and Prevedouros, 1993). Among the

in-links variables, speed is the most highly correlated one with the speed of a studied link.
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6.7.2 GHG ER Models

In this section, the examined predictive GHG ER models, ARIMA, clustering, and LSTM,

are presented in order to specify the most suitable model for the employed level of spatial

and temporal resolution in this chapter.

ARIMA with Exogenous Variables

Figure 6.5 Sample Representation (4 Sampled Links) of Network Level Prediction
Using ARIMA with Exogenous Variables

The ARIMA model with exogenous variables model is associated with a major drawback

related to capturing the non-linearity between variables in concern (G. P. Zhang, 2003). This

makes it not suitable for problems of high complexity. Moreover, ARIMA is not scalable.

While considering a high spatial level of resolution, every link requires its own model. This

can be very tedious and time consuming when the case study is large. However, to compare

between the models, a sample of 4 links, which are associated with different characteristics

(number of lanes and free flow speed) and conditions (congested and uncongested), were

considered. With reference to the predictors adopted, the top three variables, speed, density,
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and GHG ER, were taken. Figure 6.5 shows that GHG ERs between 1.5 and 2 g/sec were

predicted with a higher level of accuracy compared to GHG ER higher than 2.5 g/sec.

Not capturing the non-linearity between variables can be a justification. The correlation

coefficient and R2 of the ARIMA model of the four links are 0.494 and 0.56, respectively.

With regards to the fit to the straight curve, there was underestimation of around 16% and

the RMSE was of 0.597 g/sec.

Clustering

The sum of squared error, elbow, approach was employed to define the used number of clus-

ters. Although the optimal number of clusters was five as shown in Figure 6.6, ten and fifteen

clusters were examined for further enhancements. Similarly to the ARIMA application, the

top three predictors, speed, density, and GHG ER, were employed for this application. The

profound limitation of the clustering approach is that the predicted GHG ER was consid-

ered as a discrete variable compared to ARIMA model. This means that changes overtime

were not captured reliably compare to ARIMA model. Figure 6.7a shows that the predicted

values of GHG ERs were either under or overestimated. Values of GHG ERs ranging from 1

to 4 were predicted to be either 1.5, 1.8, 1.9, or 2.3 (g/sec). While routing vehicles, optimal

routes from origins to destinations were updated at every minute based on link cost. When

link cost does not capture fluctuations in GHG ER over time on a studied link, cost will

remain the same. For an example, let’s say that true value of GHG ERs on a link k at

minutes (t), (t + 1), and (t + 2) are 1.5, 2, and 3 g/sec, respectively, the predicted value

of GHG ER of the three minutes can be the same of around 3.8 g/sec while considering 5

clusters. Thus, link GHG cost at the three minutes will remain the same, while in reality the

cost is increasing. The priority of choosing this link should change with respect to selecting

it to be part of optimal route. For five cluster as shown in Figure 6.7a, the correlation coef-

ficient, R2, and RMSE are 0.71, 0.66, and 0.4 (g/sec), respectively. Increasing the number

of clusters to ten or fifteen in Figures 6.7b and 6.7c, respectively, was associated with only a
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slight enhancement to the performance indicators. The correlation coefficient of 10 and 15

clusters has increased by 2.4% and 3.1%, respectively, compared to 5 clusters. The RMSE

of 10 and 15 clusters has decreased by 3.1% and 3.9%, respectively, compared to 5 clusters.

When ten or fifteen clusters were employed, GHG ER ranging from 2.5 to 4 g/sec were

either underestimated to be 2.5 or overestimated to be 4 g/sec. Varying values of predictors,

speed, density, and GHG ER, were grouped to be in one, which was associated with one

response (GHG ER). In other words, different traffic and environmental conditions can be

in the same cluster, which is a drawback when a high level of temporal resolution is urged.

While ARIMA lacks the spatial dimension, clustering lacks the temporal dimension. The

changes over time were not well reflected on the predicted GHG ER.

Figure 6.6 Sum of Squared Error (Elbow Method) of 15 Clusters

LSTM with Exogenous Variables Results

This section demonstrates the results of the proposed LSTM networks in Table 6.2. The first

six LSTM networks were related to GHG ER prediction, while the last two LSTM networks

were related to speed prediction. The results are discussed in the following subsections,
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(a) (b)

(c)

Figure 6.7 True vs. Predicted GHG ERs (in CO2eq g/sec) of Clustering Where: a)
is for 5 Clusters, b) is for 10 Clusters, and c) is for 15 Clusters

respectively. Each of the LSTM networks was tuned manually (indexed with m) and sys-

tematically (indexed with b) to illustrate the importance of the latter tuning approach. The

Bayesian optimization (Gelbart, Snoek, and Adams, 2014) was utilized for the systematic

tuning.

To define the best LSTM predictive network, a long list of options with regards to selec-

tion of predictors, number of sequences, and choice of hyper-parameters has been considered

(Reimers and Gurevych, 2017; Hutter, Lücke, and Schmidt-Thieme, 2015). It is crucial to

note that increasing the depth of NNs (Hermans and Schrauwen, 2013; Pascanu et al., 2013)

and effectively tuning the hyper-parameters (Snoek, Larochelle, and Adams, 2012) may
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Table 6.2 Trained LSTM Network and their specifications

Model Predictors Response No. of No. of Sequence Hyper-param.

ID sequences/ LSTM interval tuning

minutes layers approach

LSTM1m Speed, density, GHG ER 3 1 1 min Manual

and GHG ER

LSTM1b Speed, density, GHG ER 3 1 1 min Bayesian

and GHG ER

LSTM2m Speed, density, GHG ER, GHG ER 3 1 1 min Manual

and in-links speed

LSTM2b Speed, density, GHG ER, GHG ER 3 1 1 min Bayesian

and in-links speed

LSTM3m Speed, density, GHG ER, GHG ER 3 2 1 min Manual

and in-links speed

LSTM3b Speed, density, GHG ER, GHG ER 3 2 1 min Bayesian

and in-links speed

LSTM4m Speed, density, Speed 3 1 1 min Manual

and in-links speed

LSTM4b Speed, density, Speed 3 2 1 min Bayesian

and in-links speed

contribute to in favour outcome. Hence, one and two hidden layers were examined and

hyper-parameters were tuned following two stages: manual and systematic (Bayesian opti-

mization) tuning. Two solvers were considered: the stochastic gradient descent with momen-

tum (sgdm) (Robert, 2014) and adaptive moment estimation (Adam) methods (Kingma and

Ba, 2014). The sgdm adds a momentum term to the parameter update to reduce oscillation

associated with the standard stochastic gradient descent solver along the path of steepest de-
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scent towards the optimal solution (Robert, 2014). Adam is derived from adaptive moment

estimation. It adopts different learning rates for the parameters unlike sgdm, but uses a

momentum term like the sgdm to further improve network training (Kingma and Ba, 2014).

The hyper-parameters considered are as follows: the initial learning rate, momentum, max

epochs, learning rate drop factor, learning rate drop period, number of hidden units of the

first LSTM (hidden) layer, and the number of hidden units of the second (LSTM) layer when

used. After examining different number of sequences, three minute period was the optimal

and was adopted for the predictive LSTM networks. The manual tuning helped narrowing

the search range of the hyper-parameters in concern. Then came the systematic tuning,

using the Bayesian optimization and based on the best manually tuned hyper-parameters

for further improvements. The results of the whole LSTM networks, whether manually or

systematically tuned, predicting GHG ER and speed are demonstrated in Table 6.3.

With respect to the LSTM networks and their specifications as shown in Table 6.2, the

three most important variables were used in LSTM1. The LSTM1 was used for compari-

son purposes with the ARIMA, and clustering models. LSTM2 considered the variables of

LSTM1 in addition to the most important in-link variable, which is the in-link speed. Fi-

nally, LSTM3 considered the predictors or LSTM2, but employed an additional hidden layer

for further enhancements. Three sequences have been found to be the best sequence (Al-

faseeh, Tu, et al., 2020). Figures 6.8a and 6.8b demonstrate the results of the LSTM1m and

LSTM1b networks, respectively. A noticeable enhancement in the prediction performance

is associated with the latter LSTM network. A reduction in the RMSE of 17% is observed

compared to LSTM1m. A slight increase in the correlation coefficient and R2 of 2% and 3%,

respectively is noticed in LSTM1b compared to LSTM1m. This assures that systematically

tuning the hyper-parameters contributed to a better prediction performance. The LSTM1b

underestimated the GHG ER by 3%, while the LSTMm overestimated by 7%. The LSTM1b

outperformed both ARIMA and the best clustering model in terms of the whole performance

indicators. The correlation coefficient of LSTM1b was increased by 52% and 1.4% compared
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to the ARIMA and clustering of 15 clusters, respectively. The R2 of LSTM1b is 23% and

1.3% higher than ARIMA and the best model of clustering, respectively. Finally, the RMSE

of LSTM1b has improved by 37% and 3% compared to the ARIMA and the best model of

clustering, respectively. While the ARIMA model is not scalable, LSTM can be applied at a

network level regardless of the characteristics of links, speed, number of lanes, directions. In

other words, LSTM is more generic compared to ARIMA. It is worth mentioning that the

prediction performance of ARIMA is link based and was subject to the level of congestion on

a studied link. For two uncongested links, RMSE was 0.0718 and 0.0054 g/sec. On the other

hand in the case of two congested links, RMSE of ARIMA was 0.95 and 0.4494 g/sec. On

the other hand, LSTM was more stable regardless of the traffic condition on links. RMSE

ranged from 0.3577 to 0.4494 whatever the traffic condition on the studied links was. The

major drawback of considering predicted GHG ER as a discrete variable in clustering was

overcome by LSTM. In LSTM application, GHG ER is a continuous variable and depends

only on the most representative predictors of the last three sequences in our application. Un-

like clustering that groups traffic and environmental variables into clusters, LSTM provides

a response for every set of predictors.

(a) (b)

Figure 6.8 True vs. Predicted GHG ERs (in CO2eq g/sec) of a) LSTM1m and b)
LSTM1b

It can be concluded that LSTM was the best predictive model among the investigated
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Table 6.3 Performance Indicators of the Trained LSTM Networks

Model Correlation R2 Linear RMSE

ID coefficient fit

LSTM1m 0.732 0.671 Y=1.07 x 0.451

LSTM1b 0.747 0.690 Y=0.97 x 0.376

LSTM2m 0.733 0.672 Y=1.06 x 0.445

LSTM2b 0.748 0.691 Y=0.97 x 0.374

LSTM3m 0.702 0.573 Y=0.89 x 0.491

LSTM3b 0.767 0.704 Y=0.97 x 0.363

LSTM4m 0.888 0.822 Y=0.97 x 7.013

LSTM4b 0.925 0.866 Y=0.97 x 5.95

ones due to its scaleability and consideration of temporal changes and non-linearity between

variables in concern. Hence, LSTM2 and LSTM3 were applied for further improvements in

the GHG ER prediction performance.

(a) (b)

Figure 6.9 True vs. Predicted GHG ERs (in CO2eq g/sec) of a) LSTM2m and b)
LSTM2b

The performance of LSTM2m and LSTM2b in Figures 6.9 is comparable to LSTM1m and
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LSTM1b in Figure 6.8. Including in-links speed has not brought in further enhancement.

Nevertheless, considering the most correlated indicator with GHG ER of in-links is in favour

and gives a higher consideration to spatial dimension.

Finally, to increase the prediction accuracy, a deeper LSTM network was used for the

same predictors of LSTM2. LSTM3b is associated with a significant reduction in the RMSE

of 26% as shown in Figure 6.10b compared to LSTM3m as in Figure 6.10a. This asserts that

increasing the depth and systematically tuning the hyper-parameters of LSTM networks is in

favour. LSTM3b is associated with a reduction in the RMSE of 19% compared to LSTM1m.

The LSTM3b was used for the anticipatory routing application in Chapter 7 when GHG

was part of the optimization process. The accuracy of the predictive model is important.

In the case of single or multi-objective eco-routing, the low accuracy would trigger over or

underestimation of GHG cost of links. This would have an undesirable effect on the efficiency

of routing by not reflecting on the real traffic and environmental states reliably. When link

GHG cost is based on average speed, over or underestimation of link GHG cost would be

the outcome as found in Alfaseeh and Farooq (2020b).f

(a) (b)

Figure 6.10 True vs. Predicted GHG ERs (in CO2eq g/sec) of a) LSTM3m and b)
LSTM3b

The common feature in the LSTM1b, LSTM2b, and LSTM3b is that GHG ERs over 4

g/sec were not predicted with a high level of accuracy. This can be explained by referring
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to the histograms in Figure 6.3. It can be noticed that the frequency of links of GHG ER

greater than 4 (gram/second) is very low. Hence, generating more data points to reflect on

this condition may bring in higher accuracy of prediction when GHG ER is higher than 4

(g/sec).

6.7.3 Speed Model

As LSTM has outperformed the assessed other two predictive models, namely ARIMA and

clustering, LSTM was the predictive model utilized to predict speed on links. The last

two networks in Table 6.2 were for speed prediction. Their specifications in terms of the

predictors, number of sequences, number of LSTM layers, sequence interval, and the method

of tuning the hyper-parameters are demonstrated in the same table.

LSTM Networks of Speed

After examining different sets of predictors and number of sequences based on the conducted

correlation analysis in Section 6.7.1, speed, density, and in-links speed were the variables

employed of the last three sequences, minutes. The developed LSTM4m and LSTM4b were

associated with one and two hidden layers, respectively. Figure 6.11b shows a significant

reduction in the RMSE of 15% compared to the LSTM4m as in Figure 6.11a.

This emphasizes on the importance of increasing the depth of LSTM network and sys-

tematically tuning the network hyper-parameters. Every layer in a deep network processes

part of the task. It develops its representation and passes it to the next layer. The next

layer employs the outcome of the previous layer and processes another part of the task till

the last hidden layer, which gives the outcome (Hermans and Schrauwen, 2013). Adding

hidden layers to an LSTM network is like representing the problem at different time scales

(Pascanu et al., 2013). While the fit to the linear straight curve is identical of LSTM4m

and LSTM4b, the correlation coefficient and R2 increase by 4% and 5% in the latter case,
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(a) (b)

Figure 6.11 True vs. Predicted Speed (km/h) of a) LSTM4m and b) LSTM4b

which was triggered by the increased depth of the network. It is important to note that the

speed prediction accuracy in significantly higher than the case of GHG ER prediction as il-

lustrated in Section 6.7.2. Specifically, the correlation coefficient and R2 of LSTM4b is higher

by 21% and 23% compared to the best LSTM predictive network, LSTM3b. This is due to

the complicated non-linear relationship between GHG ER and the most correlated traffic

variable, speed. The quasi-convex relationship (Djavadian, Tu, et al., 2020) between GHG

ER and speed makes prediction more challenging. On the other hand, speed and density

for example have a monotonically decreasing relationship, which makes the prediction more

straight forward compared to GHG ER. The LSTM4b network was used for the anticipatory

routing in Chapter 7 when TT or GHG were part of the optimization process.

6.8 Concluding Remarks

Due to the significant negative impact of transportation systems on the environment, there is

a necessity to take advantage of ICT advancements to minimize the produced GHG emissions.

The use of smart cities technologies will increase in the near future and make challenging

research topics achievable, such as prediction, due to the availability of real-time data. Ef-

ficiently predicting traffic and environmental indicators will absolutely improve the network
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performance in different ways. Routing, which is one of the potential applications that will

benefit from prediction, has a direct impact on both traffic and environmental characteris-

tics. Thus, switching from the myopic, in Chapter 5, to the anticipatory routing, in Chapter

7, was dependent on the prediction quality.

In this chapter, three types of predictive models, ARIMA, clustering, and LSTM, were

developed and a comparison was conducted to specify the most suitable model for the defined

setting. Unlike the previous related work in the literature, two deep learning based predictive

models have been developed while considering a large congested urban network and high

level of spatial (link level), and temporal (1 minute) resolution. For a robust application,

a comprehensive correlation analysis of both GHG ER and speed was applied. Not only

the links indicators, but also in-links characteristics were taken into account. The essential

findings of this chapter are as follows. The LSTM network outperformed both ARIMA

and the best clustering model in terms of the whole performance indicators. The RMSE of

LSTM1b of GHG ER prediction, which considered the top three highly correlated variables,

has been reduced by 37% and 3% compared to the ARIMA and the best case of clustering,

respectively. The LSTM overcame the shortcomings of the other two models investigated.

While ARIMA is not scalable, LSTM can be used at a network level. Unlike clustering

that considered GHG ER as a discrete variable, LSTM considered GHG ER as a continuous

variable and was able to capture changes over time. In clustering, different traffic conditions

were grouped together and every group was associated with one response. This means that

changes in network status were not captured well, which affected negatively the link cost

estimation process.

LSTM took into account the spatial and temporal dimensions efficiently reflecting on

changes in the traffic conditions. With respect to the LSTM application, the results showed

that increasing the depth of the LSTM network was in favour and triggered significant

enhancements in terms of the whole prediction performance indicators, correlation coefficient,

R2, linear fit, and RMSE. Although it was noticed that incorporating the in-links most highly
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correlated variable with predicted GHG ER did not bring in improvements, keeping the in-

links highly correlated variable took into account the spatial dimension more efficiently. Not

to forget that systematically tuning the LSTM network introduced noticeable enhancement

compared to manually tuning the same network. The best LSTM GHG ER and speed

predictive models were used to develop the anticipatory routing strategies in Chapter 7,

which was compared to the conventional myopic routing strategies in Chapter 5.
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Chapter Seven

Anticipatory Eco-Routing

This chapter has resulted in the following publication:

1. Alfaseeh, Lama and Bilal Farooq. (2020). "Deep Learning Based Anticipatory Multi-

Objective Eco-Routing Strategies for Connected and Automated Vehicles". arXiv

preprint arXiv:2006.16472 (under-review in Frontiers in Future Transportation).
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7.1 Introduction

The existing myopic routing depends on the previous time step, but anticipatory routing

estimates the link cost based on predicted values from the current time step. Anticipatory

routing takes into account the evolution of the traffic and environmental conditions, which

makes it proactive compared to the myopic reactive routing strategy (Bottom, 2000). The

link cost, such as travel time and GHG emissions, in the case of myopic routing is taken at

time step (t − 1). In the case of anticipatory routing, the cost of the links is at time step

(t). The future values are based on either historical data, traffic simulations, or predictive

models (Bottom, 2000). Anticipatory routing is proposed as a potential tool to alleviate

congestion and outperform the myopic routing strategy. Frameworks have been developed

for real-time dynamic anticipatory routing applications, such as DYNASMART, MITSIM,

and DynaMIT (Ben-Akiva et al., 2001; Bottom, 2000; Mahmassani, 1994) in a centralized

routing framework, while the variable message sign (VMS) was the tool for disseminating

information on the best routes to drivers. In previous studies on anticipatory routing, simple

prediction models were employed to predict traffic and/or environmental optimized variables

while routing vehicles to their destinations. The predicted travel time was based on either

previous iterations (Ben-Akiva et al., 2001; Kaufman, Smith, and Wunderlich, 1991), linear

relationships between speed and density (Pan et al., 2013), or travel times when vehicles

were exiting a studied link (Ben-Akiva et al., 2001).

In this chapter, the developed sophisticated predictive models in Chapter 6 were deployed

to apply the anticipatory multi-objective eco-routing. The advancements in ICT, connected

automated vehicles and sensing technology, were exploited for a better performing trans-

portation system from traffic and environmental perspectives. Similar to Chapter 5, three

routing objectives were considered in this chapter: TT, GHG, and TT & GHG. A detailed

comparison was conducted between the anticipatory and myopic routing strategies at the link

and network levels to comprehend respectively the local and global impact of both routing
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types.

Figure 7.1 illustrates the framework of this chapter and its relationship with other chap-

ters in this dissertation. This chapter is organized as follows. A brief literature review is

presented in Section 7.2 on anticipatory routing frameworks and applications of anticipatory

routing. The specifications of the traffic and emission models employed in this chapter are

presented in Section 7.3. The details of the case study for the anticipatory multi-objective

eco-routing application are demonstrated in Section 7.4. The crucial highlights of the used

predictive models of the optimized variables are illustrated in Section 7.5. Section 7.6 includes

a detailed analysis of the anticipatory multi-objective eco-routing strategies in addition to

a comparison with the myopic strategies. Finally, the concluding remarks are presented in

Section 7.7.

Figure 7.1 Chapter Seven Framework
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7.2 Literature

A limited number of studies are related to anticipatory routing. Limitations were found

with respect to the scale of the case studies; included routing objectives; routing framework;

origin-destination (OD) pairs; aggregation level of traffic and emission models; and predictive

models.

Kaufman, Smith, and Wunderlich (1991) applied anticipatory routing in a small case

study, and travel time was the objective. The predicted travel time was based on the travel

time when exiting a link. However, they found that this prediction approach was associated

with inconsistencies of predicted values. Hence, they adopted the time when vehicles exited

the links of a previous simulation iteration. A prediction interval of one minute was used.

Consistency of predicted values was achieved by comparing the predicted travel time with

the latest experienced travel time while a tolerance factor was employed. From the results,

the authors found that the anticipatory routing contributed to reductions in travel times for

drivers and the overall network at market penetration rates up to 50% of anticipatory route

guidance equipped vehicles (Kaufman, Smith, and Wunderlich, 1991).

Mahmassani (1994) proposed a simulation-assignment framework, which is DYNAS-

MART. It was stated that it was capable of applying the anticipatory routing if predictive

functions were provided. The authors urged the need for reliable predictive models to help

switch from myopic to anticipatory routing for a better performing transportation system.

Bottom (2000) developed a framework for anticipatory routing that included three fixed-

point formulations for guidance consistency with deterministic, quasi-deterministic and fully

stochastic models. The author adopted a simple 14-link network with a single OD pair

and eleven OD paths. The author developed a simulator for the three major variables. The

three variables considered were all time-dependent and consisted of network conditions, path

splits, and guidance messages. The major relationships between the fundamental variables

were defined by using three maps: the network loading map, which adopted the path splits
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to specify the network conditions; the guidance map, which used the network conditions

to define the corresponding guidance messages; and the routing map, which used guidance

messages to apply path splits. Predictive models were not used by the author, and it was

assumed that the data were collected and processed into the inputs required by a traffic

prediction model (Bottom, 2000). The VMS was employed to provide vehicles with the best

route (Bottom, 2000). When the best route was defined, it was not guaranteed that drivers

would comply and follow the route. Hence, the author incorporated a simple approach

that highlighted the main issues of the behavior of drivers in the developed framework.

The path choice was defined based on the logit model. The framework was tested with

different problems. The stochasticity in the outputs was the major performance indicator.

It was found that compliance by the drivers was an essential element that contributed to

the stochasticity in the path flow per time period, which affected the flow evolution in the

network (Bottom, 2000).

Ben-Akiva et al. (2001) proposed DynaMIT, which is a real-time system that can be

used to generate guidance for drivers. Off-line and real-time information were adopted. The

off-line data were the historical network conditions that were used for estimating the state.

The real-time data were obtained from the control system. The OD pairs were defined

at an aggregated level, while the response of the drivers was captured at a disaggregated

level. Thus, the simulation tools within DynaMIT combined microscopic and macroscopic

models, which made them mesoscopic simulators. Two simulation tools were used: the

demand simulator and supply simulator. The demand simulator estimated and forecasted

the origin-destination (OD) flow, departure time of drivers, mode, and route choice. While

the supply simulator directly simulated the interactions between the demand and supply

within the network. Travel time was the only routing objective. The predicted travel time

for the vehicles was a function of the travel time experienced from the previous simulation

iteration. Speed on the links was estimated based on its linear relationship with density on

the same link. The VMS was used to inform drivers about the best route. From this analysis,
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the authors found that anticipatory routing was promising as it contributed to reducing the

travel time of vehicles (Ben-Akiva et al., 2001).

Claes (2015) developed an anticipatory traveller information system (AntTIS), which was

modelled as a multiagent system (MAS). MASs were software systems that consisted of mul-

tiple autonomous software agents. The author got inspired by the ant colony concept. The

overall functionality of the software system was achieved based on interactions between the

individual agents. To mitigate the complexity of coordinating between the large number of

agents interacting within a large scale network, AntTIS employed a technique called the del-

egate multiagent system (dMAS). The goal of the proposed AntTIS was to delay congested

buildups and to assist drivers/road users make reliable decisions on the shortest paths to-

wards their destinations. The system mainly collected information from road users about the

road links they intended to use. Then, the traffic condition was predicted accordingly. Dele-

gate multi-agent systems were used to collect and share information with intended agents in

the traffic network. Predictions on the traffic conditions were made based on the information

provided by community users (drivers and road links) and artificial neural networks. Partic-

ularly, the predicted time for a user to traverse a certain link was the outcome. The AntTIS

system defined conditions on links within the traffic network by keeping both the information

provided by the community and artificial neural networks. The vehicles and infrastructure

were two agents involved in the process. While vehicle agents shared information about

the links they intended to use and when they would arrive at every link, the infrastructure

agents provided the vehicle agents with predicted travel times on links. This would allow

the vehicle agents to make reliable decisions. With a large scale case study, the interactions

between the agents should be minimized, and this condition indicated two major challenges

with this application. Vehicle agents should only share their intentions (information about

the links they intend to use) with infrastructure agents, which were a part of the intended

routes. Similarly, infrastructure agents could only share information with vehicle agents that

intended to use these infrastructure agents (links). One-minute updating intervals for the
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routing intentions were used. Every vehicle agent updated its intention every minute and

shared it with the intended infrastructure agents. Infrastructure agents kept the intentions

for two minutes if they were not updated. Afterwards, the intentions were erased. Large net-

works have been used to illustrate the realistic impact of using the proposed framework. Trip

distance and trip duration were the two performance indicators that were examined. The

base-line case was a user equilibrium under user optimality. With regards to the results, the

author examined two cases: undisturbed and disturbed scenarios. The undisturbed scenario

was when the network and the demand were not changed. For the disturbed scenario, flow

disturbances and network disturbances were applied. Flow disturbances were disturbances

that modified the traffic demand. Network disturbances were disturbances in the supply side

of the network. The major findings were as follows. In the case of undisturbed, travel time

experienced by the vehicles was slightly higher than the base-line case. The lower travel time

in the latter case was due to the complete information about the network compared to the

former case. The travelled distance was almost equal to the base-line case. For the disturbed

scenario when AntTIS was adopted, the travel time was less compared to the base-line case,

while the distance travelled was negligibly different from the base-line case. For both scenar-

ios, the participation rate (market penetration rate) of vehicles sharing their intentions had

a significant effect on the prediction quality (Claes, 2015). It is worth mentioning that travel

time was the only routing objective in the aforementioned proposed anticipatory framework.

Pan et al. (2013) proposed proactive re-routing strategies to reduce travel time. The

authors estimated congestion based on a density/jam density ratio. The update in their

simulation was event-based and speed was estimated based on the Greenshield model. Linear

relationship between density and speed was adopted, which is a major limitation. The actual

relationship between speed and density is not 100% linear. When the density was very low,

speed underestimation was the outcome (Papacostas and Prevedouros, 1993). The authors

found that their re-routing performed as good as the dynamic traffic assignment (Pan et

al., 2013).
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Liang and Wakahara (2014) also applied re-routing based on predictions for the traffic

congestion. One of the developed predictive models was based on the spatiotemporal corre-

lation. The authors assumed that the amount of traffic was constant during each prediction

time interval, which was unrealistic and did not reflect on traffic conditions efficiently (Liang

and Wakahara, 2014).

S. Liu and Q. Qu (2016) developed a crowdsourcing dynamic congestion model to apply

anticipatory routing for a fleet of cooperative vehicles by predicting the probability distribu-

tion of traffic conditions. A one-minute prediction interval was used, and data points were

obtained from the GPS traces and social media. The authors found that their approach

outperformed the conventional routing approach (S. Liu and Q. Qu, 2016).

It can be concluded that frameworks for the anticipatory routing application have been

proposed. There were strong indications that the anticipatory routing was associated with a

positive impact on the network performance with respect to the myopic routing case. Never-

theless, the unsophisticated prediction models did not analyze the effect of the anticipatory

routing strategy reliably and realistically. Moreover, the compliance was a serious issue in

some of the cases and would be overcome if CAVs were adopted. In the previous research,

travel time was the only routing objective, and anticipatory routing was applied in a cen-

tralized routing framework. Thus, this chapter overcomes the drawbacks of the previous

related work and applies anticipatory multi-objective eco-routing in a distributed routing

framework, E2ECAV. A large urban network, which was based on downtown Toronto, was

utilized despite the associated complexity. To consider the high resolution data points, a

microscopic level of aggregation was applied for the traffic and emission models. Finally, so-

phisticated prediction models were used to accurately reflect on the traffic and environmental

status.
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7.3 Traffic and Emission Models

For a real-time application, high resolution data points were required. A microscopic agent-

based traffic simulation was deployed for the anticipatory routing application. The IDM

car following model (Treiber, Hennecke, and Helbing, 2000) was used to obtain the second-

by-second acceleration. The second-by-second speed of vehicles was estimated based on the

acceleration. Further details related to the traffic model and IDM can be found in Section

3.3. For a compatible level of aggregation with the microscopic traffic model, MOVES was

the employed emission model (United States Environmental Protection Agency, 2014). The

second-by-second traffic and environmental variables of every vehicle were stored. Then, at

every one-minute prediction interval, the link cost, whether it was travel time and/or GHG,

was predicted using the developed predictive models in Chapter 6.

7.4 Case Study

Unlike most of the existing studies, a congested urban network based on downtown Toronto

was selected as the case study. The network consists of 223 links and 76 centroids. The case

study is associated with a high level of heterogeneity due to the following link characteristics:

speed limit, number of lanes, and directions. Further details can be found in Section 3.5.

Travel demand was obtained from the Transportation Tomorrow Survey (TTS) (DMG, 2011).

The time dependent exogenous demand Origin-Destination (OD) matrices were based on 5

minute intervals from TTS (DMG, 2011). The demand during 2014 was estimated based

on the provided TTS data that represents a congested traffic condition. The simulation

ended once all of the vehicles reached their destinations. Similarly to the myopic routing

application, in Chapter 5, 100% CAVs was considered only.
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7.5 Predictive Models

To apply the anticipatory routing while optimizing TT, GHG, or TT&GHG, predicted values

were required. Unlike the previous work that predicted TT based on historical data, previous

iterations of traffic simulations, or regression models (Bottom, 2000), this work utilized

the sophisticated deep learning LSTM predictive models. The best prediction models, as

shown in Chapter 6, were developed for the speed and GHG ER and were utilized for the

anticipatory routing application in this chapter. The LSTM models were of two hidden

layers, and their hyper-parameters were systematically tuned using Bayesian optimization

(Krizhevsky, Hinton, et al., 2009) as illustrated in Section 6.5. For the GHG ER prediction,

the link speed, density, GHG ER, and in-link speed of the three previous sequences were the

used predictors as in Section 6.7.2. For the speed prediction, the three previous sequences of

speed, density, and in-link speed were the utilized predictors as illustrated in Section 6.7.3.

The RMSE of the GHG ER and speed predictive models were 0.36 g/s and 5.95 km/h,

respectively. During the simulation, at every minute (t), the predictors of the last three

sequences (t − 3) to (t − 1) were utilized to predict the cost at time (t), and the cost was

based on the routing objective, which was TT, GHG, or both. Physical constraints have

been made for a realistic application. When either the predicted GHG ER or speed of time

step (t) was negative, the value was set to zero. The predicted speed of time step (t) that

surpassed the link speed limit was set to the link speed limit.

7.6 Discussion

The included routing strategies in this chapter are presented in Table 7.1. While the myopic

routing strategies adopted the cost on the links at time interval (t − 1), the anticipatory

routing was based on the predicted costs of the links at time (t), whether it was TT, GHG,

or both TT&GHG. The prediction interval was one minute (Alfaseeh, Djavadian, and Fa-
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rooq, 2018). The TT and GHG costs followed Equations 5.6 and 5.5, respectively. After

investigating the different GHG costing approaches, the approximate vehicle cost of GHG

traversing a link was the best costing approach as presented in Section 5.7.1. The approx-

imate vehicle cost of GHG, as in Equation 5.5, required the predicted GHG ER and speed

to forecast the time that would be spent on a studied link. The link cost was based on the

predicted values. When TT was part of the routing objective, the predicted speed was used.

When GHG was the routing objective, both the predicted speed and GHG ER were used.

The general optimization process followed Equation 7.1. In the equation, TTl is travel time

on link l; GHGl is emissions on link l, which is the GHG (in CO2eq) in this case; n is number

of links on path k; and WTT and WGHG are the weights associated with travel time and

GHG emissions, respectively. It is worth mentioning that variables in Equation 7.1 (TT and

GHG) have different units and weights were deployed to transform them into a consistent

unit (e.g. monetary value) when multi-objective routing was applied. The adopted TT mon-

etary value was $27.36/hour based on Statistics Canada (CBC, 2019). The used monetary

value of GHG emission was $15.77/Ton based on The World Bank (2019).

min

{
n∑
l=1

WTT .TTl +
n∑
l=1

WGHG.GHGl

}
(7.1)

Based on Law and McComas (1991), every routing strategy ran for five trials with dif-

ferent random seeds and the average of any performance indicator was taken to account for

stochasticity. The performance indicators were average TT, average VKT, total produced

GHG, and total produced NOx. To further analyze the outcomes of the anticipatory rout-

ing strategies, a network level analysis was conducted in addition to the path analysis of a

random vehicle of the different routing objectives. A comparison with the myopic routing

strategies was applied.
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Table 7.1 The Investigated Routing Strategies

Scenario name Routing type

TTm Myopic

GHGm Myopic

TT&GHGm Myopic

TTa Anticipatory

GHGa Anticipatory

TT&GHGa Anticipatory

7.6.1 Average TT, Average VKT, Total GHG, and Total NOx by

the Different Routing Strategies

Figure 7.2 demonstrates that anticipatory routing strategies outperformed the myopic strate-

gies, regardless of the routing objective or performance indicator. The justification is three-

fold. Firstly, unlike the myopic routing, the anticipatory routing took into account the

evolution of the traffic and environmental conditions. In other words, the link cost was

based on the predicted value at time step (t), while in the myopic case (t− 1) was the time

step of the used cost. Secondly, the efficiency of the predictive models had an explicit im-

pact on the performance of the anticipatory routing. Lastly, the representative GHG costing

approach, when GHG was part of the optimization process, contributed to the finding. The

approximate vehicle cost of GHG following Equation 5.5 takes into account the GHG ER

and spent time on a studied link. Particularly, TTa, GHGa, and TT&GHGa introduced re-

ductions in the total GHG by 23%, 23%, and 18% compared to TTm, GHGm, TT&GHGm,

respectively. These results show the positive impact of using anticipatory routing.

The same pattern of performance by the routing strategies was observed in the myopic

and anticipatory routing applications. TT was the worst strategy followed by GHG and
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TT&GHG. Whether it was myopic or anticipatory routing, when TT was the objective, all

the possible paths in the network were assessed based on the travel time regardless of VKT,

GHG, and NOx. When the network was congested, vehicles were distributed in the network

to uncongested links, which triggered more VKT, GHG, and NOx. Links of low speed were

replaced by links with a longer distance but a higher speed. On the other hand, whether

routing was myopic or anticipatory when GHG was a part of the optimization process, a

more obvious enhancement was noticed. This is due to the fact that the approximate vehicle

cost of GHG took into account the speed, travel time, and distance variables into account

contributing to results in favour. The best combination of speed, GHG ER, and VKT was

used. Both excessively high or low speeds triggered greater GHG ERs due to the quasi-convex

relationship between speed and GHG ER (Djavadian, Tu, et al., 2020) . The links with a

speed close to the optimal value were prioritized as long as the objective was optimized. The

approximate vehicle cost of GHG minimizes VKT (re-routing), which contributes to less

GHG emissions. With regards to the results, TTm surpassed the GHGm in terms of VKT,

total GHG, and total NOx by 13%, 12%, and 15%, respectively. TTa surpassed the GHGa

in terms of the VKT, total GHG, and total NOx by 1%, 11%, and 8%, respectively. The

variations were reduced between the performance indicators of different routing objectives

for anticipatory routing, and this was because the cost was predicted reflecting on the current

situation efficiently.

For multi-objective routing with TT and GHG, the scale of the monetary value of GHG

was different from TT. Hence, to make the costs comparable, a scaling factor of 105 was

used for GHG cost. The GHG cost on the links was taken by tons and time was in minutes

in the optimization formula. Normalization can be another option to scale the values of TT

and GHG in the optimization formula. When both TT and GHG were optimized and of a

comparable scale, TT was minimized more strictly. Whether it is myopic or anticipatory,

comparing TT&GHG to TT is like comparing the SO to the UE traffic assignment. Details

can be found in Section 2.1. The approximate vehicle cost of GHG in the TT&GHG acted
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(a) (b)

Figure 7.2 The Impact of Myopic and Anticipatory Routing Strategies on the a)
Mean TT and VKT and b) Total GHG and NOx

as the social cost (Papacostas and Prevedouros, 1993) that controlled the TT cost and con-

tributed to a favourable outcome. TT&GHGm was associated with reductions in the average

TT, average VKT, total GHG, and total NOx of 17%, 13% , 16%, and 14%, respectively,

compared to TTm. On the other hand, TT&GHGa was associated with reductions in the av-

erage TT, average VKT, total GHG, and total NOx of 15%, 1%, 10%, and 7%, respectively,

compared to TTa. The enhancements in the case of anticipatory routing was less compared

to the myopic case. This was due to the adopted prediction in the former case. Whether

it was myopic or anticipatory, TT&GHG introduced slight reductions in terms of the whole

performance indicators compared to when GHG was the routing objective. TT&GHGm was

associated with reductions in the average TT, average VKT, total GHG, and total NOx of

2%, 1% , 6%, and 1%, respectively, compared to GHGm. The reductions in the mean TT,

mean VKT, total GHG, and total NOx in the case of TT&GHGa were of 1%, 1%, 0.2%, and

0.1%, respectively, compared to GHGa, as shown in Figure 7.2. The negligible improvement

in the case of TT&GHG compared to GHG was due to the fact that GHG controls the TT

variable indirectly. When TT&GHG were optimized, TT was minimized extensively com-

pared to when GHG was the only routing objective. Highlighting the difference between the

best anticipatory routing strategy, TT&GHGa, and TTm presents reductions in average TT,
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average VKT, total GHG, and total NOx of 17%, 22%, 18%, and 20%, respectively. Since

NOx is very sensitive to aggressive driving, links with a higher speed are not favourable.

When TT was the routing objective, links with a lower speed might be used because they

were unoccupied. Nevertheless, the additional time and distance experienced in the network

made the total NOX in the network higher compared to when GHG was the objective, which

found the balance between speed, GHG ER, and distance. It can be concluded that the ad-

ditional time and longer trips were essential triggers to increase GHG and NOx in the case

of myopic and anticipatory routing.

7.6.2 Path Analysis of the Different Myopic and Anticipatory

Routing Strategies

For this analysis, the paths of the myopic and anticipatory routing strategies of a randomly

chosen vehicle were examined. This analysis investigated the dynamics at an extremely

disaggregated level of one vehicle. Figure 7.4 shows the results by the anticipatory routing

strategies, which was compared to the myopic routing results in Figure 7.3.

The first thing to note is that the paths of the myopic routing strategies were associated

with significant re-routing compared to the paths of the anticipatory routing strategies. The

main justification is that the myopic routing strategies depended on the traffic condition of

the previous time step (t− 1) to define the cost of the links, while the anticipatory routing

strategies employed the predicted values at time (t) of the required indicators for the cost

estimation on links. In other words, the evolution of the traffic and environmental condi-

tions was captured in the anticipatory routing, contributing to the improved performance.

Whether the routing was myopic or anticipatory when TT was the routing objective, the

path was significantly longer than when GHG was optimized solely or when combined with

TT. This assures that when TT was the routing objective, vehicles were sent to uncongested

links in the network regardless of VKT, GHG, and NOx. Figure 7.4a illustrates that instead
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(a) (b)

(c)

Figure 7.3 Myopic Routes of a Random Vehicle Subjected to Different Routing
Strategies: a) TT, b) GHG, and c) TT&GHG

of taking route a (east-west) of two link, route b (north-south) of five links was chosen. In

the case of TTa, the vehicle traversed an additional distance of around 700 meters while

taking route b compared to GHGa and TT&GHGa routing strategies. The speed of route

b was around 38 km/hour, while the speed of route a was around 1 km/hour. The shorter

paths of GHGa and TT&GHGa routing strategies were due to the fact that the approximate

vehicle cost of GHG takes into account the spent travel time as illustrated in Equation 5.5.

Links of speed near to the optimal speed value, due to the quasi-convex relationship between

speed and GHG ER (Djavadian, Tu, et al., 2020), were prioritized as long as the approximate

vehicle cost of GHG was minimized. The best combination of speed, VKT, and GHG ER
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(a) (b)

(c)

Figure 7.4 Anticipatory Routes of a Random Vehicle Subjected to Different Rout-
ing Strategies: a) TT, b) GHG, and c) TT&GHG

was chosen to minimize the approximate vehicle cost of GHG. This explains why the trip

length of the paths was less when GHG was a part of the optimization problem. The findings

of this analysis are aligned with the mean TT, mean VKT related analysis in Section 7.6.1.

7.6.3 Network Level Analysis of Average Speed, GHG, and NOx

Over Time from the Routing Strategies

Figures 7.5 and 7.6 present the average speed, produced GHG, and produced NOx over time

of the myopic and anticipatory routing strategies, respectively. The first thing to note is
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that the network was loaded and unloaded quicker in the latter case compared to the former.

TTa, GHGa and TT&GHGa required 13%, 10%, and 10% less time to load and unload the

network compared to TTm, GHGm, and TT&GHGm, respectively. The explanation is that

the evolution of traffic and environmental conditions was not neglected and was reflected on

the predicted costs of the links. This finding supports the results related to the average TT

and average VKT in Section 7.6.1. As vehicles spent less time in the network and travelled

shorter distances, in the case of the anticipatory routing, the network must be loaded and

unloaded quicker. Furthermore, the noticed re-routing in the case of myopic in Figure 7.3

compared to the anticipatory in Figure 7.4 is another supporting analysis for why the network

was loaded and unloaded quicker in the case of anticipatory routing strategies.

(a) (b)

(c)

Figure 7.5 The Network Under the Different Myopic Routing Strategies and its a)
Speed, b) GHG, and c) NOx Over Time
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(a) (b)

(c)

Figure 7.6 The Network Under the Different Anticipatory Routing Strategies and
its a) Speed, b) GHG, and c) NOx Over Time

Figure 7.6a illustrates that the time required to achieve 100% throughput in the case of

GHGa and TT&GHGa was less by about 8% and 11%, respectively, compared to TTa. The

same pattern was noticed in 7.5a of the myopic routing strategies. Figure 7.6a shows that

TTa was associated with the lowest speed over time compared to GHGa and TT&GHGa,

which is the same pattern observed in Figure 7.5a of the myopic routing strategies. The main

justification is that when TT was the objective, vehicles were distributed in the network in

a way to minimize the TT regardless of any other variables, such as speed, VKT, and GHG.

Vehicles were sent to uncongested links with a higher speed and triggered an increase in

the VKT and time experienced in the network compared to GHG and TT&GHG routing

strategies. Hence, more vehicles were in the network over time in the case of TT compared
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to GHG and TT&GHG, which contributed to the lower speed over time. When GHG was

part of the optimization process, the approximate vehicle cost of GHG aimed at finding

the best combination of speed and GHG ER, while preventing unnecessary re-routing. The

approximate vehicle cost of GHG takes the speed and distance of the links implicitly and

GHG ER explicitly. This means that for the same GHG ER and link length, links of higher

speed were prioritized to be part of the optimal path as long as the GHG cost was minimized.

The average speed of GHGa and TT&GHGa surpassed the average speed of TTa by as much

as 12 km/h.

The vehicles were loaded in the network at 7:45am and the congestion period was between

8:00am and 8:20am. Figure 7.6b of the anticipatory routing shows that the GHG values over

time were very much comparable to the case of myopic routing as in Figure 7.5b. For both

the myopic and anticipatory routing strategies, after 8:10am, the values of GHG varied over

time with different routing objectives. The main explanation is the additional experienced

TT and VKT vehicles.

The variation in terms of the performance indicators between the anticipatory routing

strategies, namely TTa, GHGa, and TT&GHGa, was less compared to the myopic case, which

was due to the proactive feature of the former. Figures 7.6b and 7.6c, of the anticipatory

routing case, show that produced GHG and NOx over the time in the network were less when

GHG was part of the optimization process. The justification is that vehicles experienced less

time and travelled for shorter distances in the network as shown in Figure 7.2a. The decrease

in the total GHG was more in the case of the anticipatory routing compared to the myopic

due to the use of the predicted cost. NOx is very sensitive to aggressive driving (Alfaseeh,

Djavadian, Tu, et al., 2019). This explains the high values at the beginning of the simulation

in which vehicles travelled at the free flow speed. The TT and VKT were the two major

factors contributing to the reduction in NOx over time regardless of the routing objective and

type (myopic or anticipatory). This supports that NOx over time for myopic and anticipatory

was less when GHG was optimized. It is noticed that there were a lot of fluctuations in the
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value of NOx over time in general as a result of the relationship between NOx and speed.

7.7 Concluding Remarks

Several studies proposed the great potential of using anticipatory routing to improve the

performance of transport systems. Anticipatory routing frameworks have been developed to

suite the real-time routing application. However, they were applied in centralized routing

frameworks, utilized the VMS, and did not use efficient prediction models. In this chapter,

the anticipatory multi-objective eco-routing was applied. Instead of using the cost of links

at time (t−1), the predicted cost at time (t) was employed with different routing objectives,

namely TT, GHG, and TT&GHG. Unlike the existing related work, the anticipatory routing

was applied while adopting the following: a distributed routing framework, microscopic level

of aggregation for both the traffic and emission models, large urban case study, prediction

interval of 1 minute, and sophisticated deep learning predictive models based on the LSTM.

Anticipatory routing means that the evolution of the traffic and environmental conditions

is captured and routing is proactive compared to the myopic, which is reactive. The en-

hancements were significant with the former compared to the latter in terms of the whole

performance indicators and for the three routing strategies, TT, GHG, and TT&GHG. The

reductions in the mean TT of TTa, GHGa, and TT&GHGa strategies were 19%, 18%, and

17% compared to TTm, GHGm, and TT&GHGm, respectively. The justification of the sig-

nificant decrease in TT in the anticipatory routing case was threefold. Firstly, the predictive

feature in which the link cost (TT, GHG, or TT&GHG) was estimated based on traffic con-

ditions at time (t) instead of (t−1) in the case of myopic routing strategies. Within a minute,

traffic and environmental states change due to the dynamic nature of transportation systems.

If the link cost is underestimated compared to the real situation, vehicles would still be sent

to congested links. On the other hand, if the link cost is overestimated, these links would

be averted and not considered to be part of the optimal path. For anticipatory routing,
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traffic and environmental conditions were represented in a timely manner and reflected on

the link cost. When congestion or any perturbation occurred in the network, the situation

was captured, and the link cost was updated accordingly. Secondly, the high level of spatial

and temporal resolution adopted by the predictive models and the link-cost updating pro-

cess was a contributor to the reduced TT. Thirdly, the sophistication level of the predictive

models was a significant trigger to the enhancements. The most representative predictors

and number of sequences were chosen for a reliable model (LSTM) that captures the non-

linearity between the variables in concern. The network was loaded and unloaded quicker in

the case of anticipatory routing. The decrease in the mean TT triggered reductions in the

mean VKT of 31%, 23%, and 22% for the TTa, GHGa, and TT&GHGa routing strategies,

respectively, compared to the myopic strategies. It can be concluded that minimizing TT

and VKT introduced reductions in total GHG and NOx. The approximate vehicle cost of

GHG took into account GHG ER explicitly, while link speed and distance implicitly con-

tributing the aforementioned enhancements. Links with a speed close to the optimal value

were prioritized as long as the GHG cost was minimized. Links with excessively high or

low speeds were not considered, when they dissatisfied the optimization process. Too high

speed links would contribute to increasing the GHG ER, while too low speed links would

contribute to increasing GHG ER and travel time (Alfaseeh, Djavadian, Tu, et al., 2019).

Considering a large urban network as the case study made this work scalable and realistic.

However, since the data points were obtained from simulation, it would be an added value

to apply this framework on real data from sensors.
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Chapter Eight

Summary, Concluding Remarks, and

Future Outlook
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8.1 Summary

The overall goal of this dissertation was to examine different innovative routing solutions

while considering the environmental aspect and taking advantage of connectivity in a real-

istic setting (high resolution data points and large case study). This dissertation started by

summarizing the current state-of-the-art of the proposed eco-routing approach to minimize

the negative impact that transportation systems impose on the environment. The impact

of employing the dynamic distributed routing system, namely E2ECAV, was assessed to

overcome the limitations with the existing centralized routing system. Based on the short-

comings found with the existing eco-routing applications, myopic multi-objective eco-routing

was applied in the efficient distributed routing framework, E2ECAV, while adopting a high

level of spatial (link level) and temporal resolution (with a one-minute updating interval).

Due to the emergence of ICT technologies in transportation systems, data availability will

not be an obstacle for many applications, including the prediction of traffic behaviour. Pre-

dictive models were developed in this dissertation to forecast the routing objectives, and

these models will pave the way to replace the current reactive routing with proactive routing

for potential enhancements to both the traffic and environmental characteristics. Predictive

models were developed with the Long Short-Term Memory (LSTM), a deep learning method.

The developed predictive models were used for the anticipatory routing application. Finally,

anticipatory multi-objective eco-routing and myopic routing strategies were applied in a case

study under similar settings to make a proper comparison. This work contributes to four

major areas: routing frameworks, multi-objective routing, predictive models, and anticipa-

tory routing. Figure 8.1 illustrates the stages for the current state of routing to the routing

state in the near future, where more advancements of ICT will be deployed. The following

summarizes each chapter in this dissertation.

This research was motivated by the impact transportation systems have on the envi-

ronment. The first chapter of this dissertation provided an overview of this problem and
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Figure 8.1 Summary of the Stages Followed in this Dissertation From the Current
Routing State to the Routing State in the Near Future

proposed potential solutions. Furthermore, the contributions and research significance of

this study were demonstrated. The first chapter also outlined its following chapters in this

dissertation.

The second chapter of this dissertation investigated the state-of-the-art of eco-routing
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offered by other studies. A three factor taxonomy was proposed based on the most represen-

tative indicators for the performance of eco-routing models. The three factors were chosen as

they were important characteristics of every eco-routing application. The first factor was the

level of aggregation, which can be categorized as microscopic, mesoscopic, and macroscopic,

for the traffic and emission models. To increase the efficacy of any transportation manage-

ment process, high resolution data is required. The second factor was based on the scale of

the case study, which is either large or small. This factor has a significant influence on the

scalability of an eco-routing model. Finally, the third factor was the number of objectives

optimized at once while routing vehicles to their destinations. Typically, one or two objec-

tives are optimized at a time. For this three factor taxonomy, the strengths and weakness

were illustrated for every category. For instance, macroscopic traffic and emission models

were limited by their level of resolution, which affected the accuracy of estimations for the

cost of a link. On the other hand, microscopic traffic and emission models increased the

level of resolution but were associated with a high level of complexity. Another aspect was

the size of the case study, which reflects on how generic the developed models are. Several

contributions were provided from this chapter. The current state-of-the-art of eco-routing

from recent studies asserted on good or poor practices for future applications. Based on

the proposed three-factor taxonomy, this chapter also illustrated the expectations from the

modifications on the routing process. As every eco-routing application is unique with its

settings, the developed taxonomy implies the best choice for the three factors in every case.

The findings of this chapter triggered the research work in the following chapters.

The third chapter defined the mutual components that were used in this dissertation. The

description of the vehicle routing system was presented. The specifications were explained for

the traffic and car-following model (IDM) applied in this study. The emission model, called

MOVES, and its related formulas were discussed. The interactions between the routing

framework, traffic simulator, and emission simulator were illustrated. Moreover, the case

study and the characteristics of its major roads were described.
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The fourth chapter of this dissertation assessed the efficiency of the proposed dynamic

distributed routing framework, E2ECAV, in the context of eco-routing. With E2ECAV, a

microscopic agent-based traffic and emission simulation was adopted for the high-resolution

data points. A comprehensive analysis was conducted at the network and link levels to exam-

ine and quantify the effect of E2ECAV on the traffic and environmental characteristics. The

analysis considered different traffic conditions, in particular highly congested, congested, and

uncongested, and market penetration rates (MPRs) of connected automated vehicles (CAVs),

which included 0%, 5%, 30%, 50%, 70%, and 100%. The considered performance indicators

were throughput, average TT, average VKT, flow, density, speed, total GHG emissions, and

total NOx emissions. These indicators were used since they illustrate differences between

various scenarios at the link and network levels.

The fifth chapter developed myopic single and multi-objective eco-routing strategies for

a congested urban network. A section of downtown Toronto was selected as a large-scale

and realistic case study to assess the performance of the eco-routing strategies. The effi-

cient distributed routing system, E2ECAV, was used with CAVs to exploit the benefits of

ICT advancements. Both travel time and GHG emissions were considered for the routing

optimization process. This application was applied with 100% MPR of CAVs. For a robust

application, several GHG costing approaches were investigated, and the most representative

approach was chosen. The results were analyzed at the link and network levels for a better

comprehension of the events. Mean TT, mean VKT, total GHG emissions, and total NOx

emissions were analyzed for different routing strategies and GHG costing approaches. The

paths of a random vehicle subjected to the different routing strategies were extracted, and

the characteristics of these paths were compared to better understand the behaviours of

different routing objectives.

The sixth chapter demonstrates a major milestone and helps to make the application of

anticipatory routing more realistic in practice. In this chapter, predictive models of the GHG

emission rate (ER) and speed were developed. Before defining the most suitable predictive
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model, the three commonly used predictive models (ARIMA, clustering, and LSTM) were

analyzed. The spatial and temporal aspects were the judging factors for the best model. A

correlation analysis was conducted for the GHG ER and speed to define the highly correlated

predictors (traffic and environmental variables). Predictors of the studied links were taken,

but in-link indicators were also incorporated to better consider on the spatial dimension. For

the LSTM, further improvements in the accuracy of predictions were demonstrated by using

a deeper network and systematically tuning the hyper-parameters. It is of high importance

to note that the developed predictive models are suitable for any urban network. This has

been illustrated in the statistical analysis of traffic and environmental predictors. In the

training dataset, speed ranged from 0 to 80 km/h, density ranged from 0 to 150 veh/km/ln,

flow ranged from 0 to 8000 veh/h, and GHG ER ranged from around 0.9 to 5 g/sec. That is,

any urban network of indicators within the aforementioned ranges can be used for prediction

purposes.

Finally, the seventh chapter applied anticipatory single and multi-objective eco-routing in

similar settings as that of myopic eco-routing. Applying anticipatory routing means replacing

the existing reactive (myopic) routing with proactive routing, which takes into account the

evolution of the traffic and environmental state. Instead of relying on the cost of the links

from the previous minute (t−1), which is the case with myopic routing, the cost at the current

minute (t) was adopted with anticipatory routing. Based on the work related to anticipatory

routing from the literature, simple predictive models were utilized because data was scarce

and the routing process can become complex if the data has a high level of resolution. The

developed sophisticated predictive models in Chapter 6 were used to predict in a timely

manner speed and GHG ER of the different anticipatory routing strategies. The myopic and

anticipatory routing protocol were compared based on the traffic and environmental aspects

to present the potential enhancements of the proposed anticipatory routing strategy. The

analysis was conducted at the link and network levels to understand the global and local

impact of every routing strategy.
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8.2 Concluding Remarks

Due to the limitations of the centralized routing framework, E2ECAV dynamic distributed

routing framework (Farooq and Djavadian, 2019) was proposed and assessed for its suitability

for the eco-routing application. E2ECAV employed V2I and I2I communication in addition

to CAVs. The results were promising since the traffic and environmental characteristics

were enhanced with higher MPRs of CAVs. The benefit of E2ECAV was more noticeable

when the network was congested or highly congested. When 100% CAV was employed in a

highly congested network, the mean travel time was reduced by as much as 41% compared

to 100% human-driven vehicles (HDVs). However, this reduction in the average travel time

was at the cost of the average VKT increasing slightly by less than 2.5%. When the traffic

condition was highly congested, the total GHG emissions were reduced by 39% for 100%

CAVs compared to 100% HDVs. The trend in mean travel time was similar to the trend

observed in total GHG emissions. This illustrated the direct relationship between the time

spent in the network and the emitted GHG. The encouraging positive findings of this chapter

encourages the use of distributed routing systems in future research and practice.

Defining the state-of-the-art eco-routing was an essential step towards the final applica-

tion of anticipatory routing. The important elements of the reviewed studies were organized

into the developed three factor taxonomy. The three factors of the proposed taxonomy in-

cluded the level of aggregation of the traffic and emission models, scale of the case study, and

number of optimized objectives. These three factors were chosen, while classifying the ex-

isting eco-routing studies, due to their ability to reflect on three critical aspects: the level of

data resolution, system scalability, and optimization objective(s). The developed taxonomy

offered several major findings. The levels of aggregation for the traffic and emission models

were generally at the macroscopic and mesoscopic level. Studies commonly optimized the

routes with one objective due to the conflict when two or more objectives were optimized si-

multaneously. Improving throughput may have an adverse impact on produced GHG. Small
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case studies were selected, especially when a microscopic level of aggregation was used. Re-

strictions were made in terms of the OD matrix. A centralized routing framework was used

while applying eco-routing. The findings of this part of this dissertation can be a guide

for researchers and practitioners as the strengths and weaknesses of different settings for

routing were demonstrated. The limitations found in the existing eco-routing studies were

the motivation for several components in this dissertation, which should also trigger future

research to offer better performing transportation systems.

Myopic single and multi-objective routing strategies were developed in the efficient dis-

tributed routing framework, E2ECAV. Among the different GHG costing approaches, the

approximate vehicle cost of GHG was the most representative. The multi-objective strategy,

which was to minimize travel time and GHG emissions, outperformed the single objective

routing strategies, which minimized solely travel time or GHG emissions. When travel time

was the routing objective, vehicles were distributed in the network to uncongested links to

minimize travel time regardless of VKT. When GHG emissions were included in the opti-

mization process, the best combination of GHG ER, speed, and distance was chosen. Links

of speed close to the optimal value (due to the quasi-convex relationship between speed and

GHG ER) were prioritized as long as the routing objective was satisfied. Links with very low

or too high speeds were averted as their speed increased the GHG ER. A low speed was not

favourable as it increased the GHG ER and travel time. The experienced additional travel

time and VKT in the network had a direct impact on the total GHG and NOx emissions.

While comparing the multi-objective and single objective (travel time only) routing strategy,

the multi-objective approach reduced the mean travel time, mean VKT, total GHG emis-

sions, and total NOx emissions by 17%, 13%, 16%, and 14%, respectively. This outcome

illustrates the benefit of balancing the objectives and applying multi-objective eco-routing.

Myopic routing can be replaced with anticipatory routing to take advantage of the devel-

opments in ICT and minimize the adverse impact of transportation systems on the environ-

ment. While applying the anticipatory routing, sophisticated predictive models were required
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for a more realistic application. Three predictive models, namely clustering, ARIMA, and

LSTM, were examined, and the LSTM performed the best considering the spatial and tem-

poral dimensions efficiently. While clustering considered the predicted value as a discrete

variable, LSTM considered it a continuous variable and accounted for temporary changes

in the traffic condition. ARIMA was not scalable compared to the LSTM. LSTM was used

to develop two individual network predictive models for the GHG ER and speed, and the

models were developed to be used dynamically. For a robust application, a detailed correla-

tion analysis was conducted, and the optimal predictors and number of sequences (minutes)

of predictors were defined. The traffic characteristics of the studied link and in-links were

incorporated to better consider the impact of the spatial aspect. Traffic and environmental

conditions of in-links at time (t-1) give an indication of what the situation would be on a

studied link at time (t). Deeper LSTM networks for each of the responses introduced signifi-

cant improvement in the prediction performance of the models. The hyper-parameters of the

network were tuned in two stages: manual and systematic. Bayesian optimization was used

for the systematic tuning and adopted the ranges of the hyper-parameters that were tuned

manually. Over fitting was taken into account with the whole three predictive models. The

best LSTM predictive models for the GHG ER and speed had a RMSE of 0.36 g/sec and

5.95 km/hour, respectively. The accuracy of the GHG ER prediction model was lower due

to the complicated and nonlinear relationship between the GHG ER and studied predictors,

such as speed, flow, and density. These results would guide the practitioners to choose the

most suitable predictive model for their situation. The reliable developed predictive models

in this part of the dissertation can be used with real data. The developed predictive model

can be further improved by following the measures presented in Section 8.3.

Finally, the anticipatory multi-objective eco-routing was applied with the distributed

routing framework, E2ECAV, in a case study that was based on downtown Toronto. The

results were alluring from the traffic and environmental perspectives. The anticipatory rout-

ing strategies outperformed the myopic routing strategies regardless of the routing objective.
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The network was loaded and unloaded quicker with anticipatory routing. Since the routing

strategy could adopt to the changing traffic conditions, the travel time decreased within the

network. The link cost was predicted by using the developed predictive models. The mean

TT of anticipatory routing while minimizing TT, GHG, and TT&GHG was respectively

lower by 19%, 18%, and 17% than the corresponding myopic routing strategies that opti-

mized TT, GHG, and TT&GHG. As a result of the reductions in the mean TT, reductions in

the total GHG were noticed. Anticipatory routing strategies that optimized TT, GHG, and

TT&GHG respectively reduced the total GHG emissions by 23%, 23%, and 18% compared

to the myopic routing strategies. The positive benefits of using anticipatory multi-objective

eco-routing were the outcome of employing the high level of spatial and temporal resolution;

sophisticated predictive models; and connectivity between the elements of a transportation

system, such as the vehicles, links, and intersections. Hence, future research is encouraged

to extend and refine this routing strategy.

Several stakeholders may benefit from this work. Google Maps is used by the public;

service providers, such as Uber and Lyft; and government agencies. Thus, Google Maps is

encouraged to adopt several suggested solutions in this study. Myopic eco-routes can be

included as other options for users. The trade-offs between the different routing strategies

in terms of the expected time and distance should be illustrated to allow drivers to make

their own decisions. This adoption has a significant economic impact. In the case of myopic

routing, for around 2500 vehicles in downtown Toronto, it took around 40 minutes to load

and unload the network when GHG was the routing objective. The total TT and GHG were

reduced by 114 hours and 225 kg, respectively, compared to when TT was the objective. Eco-

nomically, this means that when GHG was the myopic routing objective, the consumed fuel

was reduced by 98 litres by around 2500 vehicles in downtown Toronto for the approximately

40 minutes. Based on a conversion factor of fuel to CO2 by the Natural Resource Canada

(Natural Resources Canada, 2014), approximately 2.3 kg of CO2 is produced by burning 1

L of gasoline. To further demonstrate the benefits of routing vehicles myopically by only
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optimizing for the GHG at the network level, it can be assumed that cars are using the

network for 12 hours per day for 25 days per week. While a reduction of 98 litres, compared

to when TT is the objective, is noticed for around 2500 vehicles in the network for around

40 minutes, 147, 1764, 44100, and 529200 liters would be reduced per hour, day, month, and

year, respectively. Similarly, the yearly reductions in total TT and GHG produced by only

2500 vehicles in downtown Toronto are of 615,600 hours and 1,215 tons, respectively. To

even replace the myopic routing with the anticipatory routing, the predictive models devel-

oped in this study can be the starting point. Anticipatory routing would provide a higher

positive impact on the environment and economy. When TT anticipatory routing is applied

for around 2500 vehicles travelling in downtown Toronto, reductions within 35 minutes in

the total TT and GHG of 115 hours and 500 kg, respectively, were observed compared to the

TT myopic routing strategy. For anticipatory routing, regardless of the routing objective,

transportation networks were emptied faster. This approach helps to accommodate more

vehicles while dealing with the increased vehicular demand for the same transportation sup-

ply. For anticipatory routing while TT is the objective, the network required 35 minutes to

be loaded and unloaded. The effect of this application at the network level is substantial.

Within a year, reductions in the total TT, GHG emissions, and consumed fuel would be

709,714 hours, 308,6 tons, and 1,339,200 litres, respectively, compared to routing myopically

while optimizing TT. Citizens should be given the option to mitigate the negative impact of

their chosen route on the environment and economy.

According to the New York Taxi and Limousine Commission report (TLC, 2020), Uber

has the largest number of ride-hailing trips per day compared to Lyft and other similar

service providers. Uber is encouraged to incorporate the eco-routing and anticipatory eco-

routing concepts by giving their users a choice to optimize their routes. This consideration

will offer mutual benefits as the routing would reduce the costs for Uber drivers and make

Uber a more attractive service. By incorporating myopic eco-routing options, anticipatory

routing, or eco-routing options, the direct outcome would be less fuel consumption, lower
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TT, and less emissions. A collaboration between governments and Uber or other similar

service providers can be made while incentives are considered. It is worth mentioning that

Google, Waze, Uber, and Lyft provide UE routing solutions, while the E2ECAV distributed

routing system gives a SO solution. It was found in this dissertation that the E2ECAV

contributed to reductions in TT, GHG, and NOx. That is, incentives should be given to

users when their routes are a bit longer to achieve SO.

Government agencies in Canada are urged to step forward and consider innovative solu-

tions, as presented in this research, that can alleviate the negative impact of transportation

systems on the environment. This research demonstrates substantial incentives for govern-

mental agencies in Canada to employ the proposed solutions. When drivers spend less time in

the network, the following benefits can be received: the transportation network is used less,

less fuel is consumed, less GHG is produced, and a higher demand is accommodated. Bus

routes can be modified in a way to adopt any of the beneficial routing strategies (eco-routing,

anticipatory, or anticipatory eco-routing). Minor changes in bus routes could contribute to a

significant positive impact to the economical and environmental aspects. Since the variable

message sign (VMS) is still commonly used to guide drivers to faster routes, eco-routing

options can be incorporated to introduce improvements. Furthermore, instead of using the

myopic cost of specific routes, the anticipated cost is proposed to be used since it can ben-

efit from advancements in ICT. Governmental transportation entities can help researchers

by providing real-time data to examine the developed framework in this study and other

similar studies. Moreover, the GHG costing approach at link level can be a reference for

policy makers. In this study, it was found that the approximate vehicle cost of GHG was

the most efficient costing approach. It considers both GHG ER and TT of a studied link.

The approximate vehicle cost of GHG can be the reference for a step forward to define the

best method to estimate GHG cost at link level.

To summarize, there are different ways to reduce the adverse impact transportation

systems impose on the environment. Routing should incorporate environmental variables
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and anticipate the changing traffic conditions. These features will help reduce the cost

for commuters, benefit the economy of nations, and also reduce the contribution to global

warming.

8.3 Future Outlook

This dissertation has demonstrated the impact of anticipatory routing while adopting several

forms of ICT, CAVs and sensing. Nevertheless, there is still room for more research that can

further enhance topics related to the anticipatory routing concept. The suggested topics for

future research are below.

Training data: The data collected for training the predictive models can be more reflec-

tive on the wide range of traffic and environmental conditions. The performance of the

prediction model and anticipatory routing can be improved by generating data points

through a simulation or by collecting more measurements of low frequency traffic condi-

tions among the data gathered. When data points of specific traffic and environmental

conditions are of low frequency, more data points are required for a better performing

predictive model. If simulation is the tool, scenarios that mimic specific conditions of

low frequency in the trained data, such as low speed, high speed, low GHG ER, or

high GHG ER, should be generated. If the data points were extracted from real mea-

surements, situations that represent the low frequency conditions should be detected

to extract the data needed to assess on the specific traffic and/or environmental states.

Data points can be included to reflect on the whole possible traffic and/or environmen-

tal conditions, and this data will improve the prediction accuracy, especially for the

LSTM. The LSTM network is trained to predict based on a training data set. When

the set does not represent all the possible conditions, the prediction accuracy will be

affected negatively. Furthermore, the simulated data points can be replaced with real

data from sensors for a more realistic representation and assessment of the developed
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predictive models and proposed routing framework. Different sensors can be used for

collecting data. There are three commonly used sensors for traffic control purposes,

and the three types of sensors collect and share traffic data in different ways with the

processing unit. 1) Passive magnetic sensors are installed on streets and are connected

by wires or wirelessly with the processing units. 2) Pneumatic tube sensors are placed

across the street and share traffic data with processing units through wired/wireless

media. Finally, 3) inductive loops are wire coils buried into streets and send data to

processing units (Guerrero-Ibáñez, Zeadally, and Contreras-Castillo, 2018).

Case study related : Researchers are encouraged to deploy a larger case that includes

highways. Meshkani, Djavadian, and Farooq (2019) expanded the adopted case study

in this dissertation to include the complete downtown area and used E2ECAV to de-

velop a decentralized shared CAV system. Their case study can be adopted to apply

the developed framework of anticipatory multi-objective eco-routing from this disser-

tation. Nevertheless, the predictive models should be adjusted to accommodate for the

heterogeneity in the characteristics of the links.

Predictive models : Links can be categorized based on their main features, such as speed

limit, number of lanes, and number of directions. This may contribute to greater accu-

racy for predictions, and the suitable predictive model will be chosen based on traffic

and/or environmental characteristics of every link. To improve further the proposed

predictive models, higher spatial and temporal resolution data points can be adopted.

As the developed predictive models predicted only the next time step, it is proposed to

develop predictive models for the whole considered predictors to make prediction for

more than one time step possible. Being able to predict link cost at any future time

step means that the anticipatory routing cost would be based on the expected time

step to traverse a studied link.

Application related : For a more realistic application, the impact of public transporta-
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tion and freight is urged to be captured. It would be an added value to the literature

to assess the impact of different MPRs of CAVs of different traffic condition for the

myopic and anticipatory mult-objective eco-routing strategies. The utilization of in-

telligent vehicles will be gradual in the near future. Thus, assessing the impact of a

wide range of MPRs of CAVs is urged. The V2I and I2I communications, which were

adopted in E2ECAV, introduced substantial improvement from the traffic and environ-

mental perspectives. Examining the effect of V2V communication is also an essential

aspect to tackle. The V2V communication is applied by using the dedicated short-

range communications (DSRC), which are one- or two-way short to medium range

wireless communication channels. The DSRC communications are developed specifi-

cally for automotive use (Miller, Shaw, et al., 2001). In the case of V2V utilization,

it is expected that upstream vehicles would disseminate information about their des-

tination and receive information about traffic and/or environmental conditions from

downstream vehicles to estimate the optimal path while taking into account the up-

dating interval and routing objective. Adopting V2V communication would reduce the

need to adopt sensors and equipped infrastructure. V2V communication would con-

tribute to a substantial reduction in the required capital investment to apply myopic

and anticipatory routing strategies efficiently. Another suggestion for future research

is that the efficiency of the developed models and the proposed framework can be

illustrated by utilizing real-time measurements from sensors. Since E2ECAV adopts

the First-In-First-Out (FIFO) logic at intersections, it is preferable to consider the

real situation where vehicles are controlled by traffic lights at intersections. Another

aspect to take into account is to make E2ECAV more realistic by representing the

lateral movement, while Gipps (Hidas, 2002) and MOBIL (Kesting, Treiber, and Hel-

bing, 2007) are proposed models to investigate. Anticipatory routing strategies can

be incorporated into the personal navigation platforms to reduce TT, GHG, and NOx

while routing vehicles to their destinations. It is expected that HDVs and other types
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of intelligent vehicles, such as automated vehicles (AVs) and CAVs, will be electric

vehicles (EVs) in the future. Although EVs are associated with zero tailpipe emissions,

EVs contribute to energy consumption and air pollution during the generation of elec-

tricity adopted to charge EVs. In the case of EVs, the concept of energy regeneration

is highly correlated with acceleration and deceleration, which contributes to more en-

ergy consumption (Hu, J. Wu, and Schwanen, 2017). In future research related to

routing whether the vehicular technology is conventional or electric, eco-driving at the

operational level should be taken into account for less emissions. Eco-driving at the

operational level aims to minimize idling, choose the optimal speed, use cruise control

feature, and avert aggressive driving behaviour (Sivak and Schoettle, 2012). As NOx

is the pollutant reflecting on the public health aspect and since speed has a direct

impact on the produced NOx, future research is urged to investigate the optimal speed

on highways and urban streets that would reduce the produced NOx but would not

affect the traffic characteristics negatively. Since diesel is a major contributor to the

produced NOx (Cox, 1999), vehicles that use diesel fuel should be taken into account

in similar analysis. This would introduce a realistic estimation of the emitted GHG

and NOx.

Optimization related: The constrained anticipatory routing is an important aspect to

investigate for further potential enhancements. Travel time or GHG can be constrained

to not exceed a threshold. Constrained eco-routing will demonstrate the trade-offs

within a network and improve the comprehension of eco-routing based on different

constraints. In 2009, about 50% of the total NOx was produced by heavy-duty vehicles

(diesel) (Toronto Public Health, 2014). NOx is the pollutant reflecting on the public

health aspect (Cox, 1999). Hence, more research work should consider NOx compounds

while optimizing the routes for better air quality. Other environmental indicators

should be incorporated, such as exposure. When multi-objective routing is applied,

174



the impact of different weights can be assessed for further improvements.
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