
www.elsevier.com/locate/dsw

Decision Support Systems 37 (2004) 415–434
Development of a fisheye-based information search processing

aid (FISPA) for managing information overload

in the web environment

Ozgur Turetkena,*, Ramesh Shardab

aFox School of Business and Management, Temple University, Philadelphia, PA 19122, USA
bCollege of Business Administration, Oklahoma State University, Stillwater, OK 74078, USA
Received 1 June 2002; accepted 1 October 2002

Available online 10 April 2003
Abstract

Information technologies have proliferated at an unprecedented rate to provide access to information across geographical

boundaries. However, this proliferation has led to an information overload. Information overload has adverse impacts on

information use and decision quality. This research focuses on the overload problem resulting from a web search, and proposes

a potential remedy. We develop the requirements of a system that makes use of clustering and visualization for browsing the

results of a typical web search. Based on this model, we develop a prototype that visualizes search results by first organizing

them into a hierarchy according to their individual contents. This system presents a visual overview of the groups in this

hierarchy, and lets the users focus (zoom) on specific groups of interest. One general problem with zooming within hierarchical

structures is the separation between the details and the context. To address this problem, we implement a fisheye zooming

capability in our system. This paper describes a typology of the various components necessary for addressing the problem and

then the proposed solution based upon a fisheye view-based visualization. Next, the specific visualization algorithm and the

system implementation are described. We conclude with research questions for further development of such interfaces for

presentation of the results from web searches.
D 2003 Elsevier B.V. All rights reserved.
Keywords: Information visualization; Web search; Human–computer interaction; User-interface design; Knowledge management
1. Introduction

One of the biggest challenges for successful man-

agement of information in today’s ‘‘information-

intensive’’ world is to find efficient ways to reduce
0167-9236/03/$ - see front matter D 2003 Elsevier B.V. All rights reserve

doi:10.1016/S0167-9236(03)00047-2

* Corresponding author.

E-mail addresses: turetken@temple.edu (O. Turetken),

sharda@okstate.edu (R. Sharda).
information overload. Information overload occurs

when an information user is exposed to more infor-

mation than she needs and, more importantly, is able

to process. This problem has long been recognized

and studied in various disciplines such as accounting

[5] and finance [36] among others [32]. However, the

challenge is much more serious today because the

almost ubiquitous Internet makes it extremely easy to

access various kinds of information created virtually
d.

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434416
anywhere. While this phenomenon offers unprece-

dented opportunities for the sharing of information, it

also creates massive amounts of overload. Informa-

tion overload poses serious threats to the quality of

information that one uses and bases their decisions

upon, as people tend to somewhat arbitrarily filter

information when they are overloaded [18,26].

In this study, we address the information overload

problem generated by a web search. Typically, web

search engines present results as a ranked list. For

broadly formulated search queries, such a list may

contain thousands of documents. Research has sug-

gested that search engine users are not likely to go

beyond the top 20 to 30 documents on these lists

before they get bored or frustrated, and subsequently

quit the search [31]. Web search success is thus

degraded. One remedy to this problem is finding more

efficient ways of filtering information (e.g. Ref. [8]) to

pursue higher precision in search results. Filtering is

useful in increasing precision, especially for relatively

small-scale repositories. However, filtering the irrele-

vant information from the search results increases the

ratio of the relevant information to the irrelevant, but

does not increase the chance of retrieving more of

the potentially relevant information. This issue is

addressed by research on web indexing and search

algorithms [3,10], as well as query formulation

[11,35]. As a result of these efforts, web search is

more effective and easier today than it was in the

earlier days of the Internet. Yet, the overload problem

in web search is still very evident. Accordingly,

additional support in processing the results of a web

search is valuable. This paper reports on our research

efforts in providing such post-search support at the

user-interface level.

To enhance the post-search exploration process, we

designed and implemented a prototype system (called

fisheye-based information search processing aid—

FISPA) that is based on information visualization.

Information visualization is the common name for

the techniques that use the idea of supporting the

cognitive system by means of visual cues [39,41]. The

relative processing capacity and speed advantage of

the perceptual (visual) system to the cognitive system

results in the better and quicker understanding of

information when supported by visual cues. Some

well-known applications of this idea in our domain of

interest are the use of visual maps to represent
directory structures [4,17,37,38] and visual represen-

tation of documents returned as a result of a database

query [14].

Visualization of web content has been of research

interest since the early days of the World Wide Web

[2,13,15,23,27,29]. Most of the work on web visual-

ization focuses on visualizing the link structure of a

web site. Because the list provided as a result of the

search process does not have an inherent structure, the

presentation of such a collection of web pages

requires a high level of organization before the visual-

ization process. Earlier work on the presentation of

results to a traditional database query has utilized

clustering (grouping) to provide such organization

[15].

Clustering is commonly used to identify patterns in

an unstructured collection of objects. When a collec-

tion is examined through a cluster structure, it is easier

to discover quick facts about it and to move on to the

examination of individual objects. Clustering has its

use in various application domains such as market

segmentation in traditional market research, and in

various forms of data mining. Accordingly,

we adopted a clustering-based visualization in our

design.

One challenge in applying clustering to the visual-

ization of web search results is finding appropriate

representations for web documents to be able to

cluster them [31,45]. Recent work in web visualiza-

tion [31] has approached the problem by preprocess-

ing web documents to extract their textual contents.

Once this is done, techniques of representing and

clustering text documents that have been around long

before the invention of the Internet [33] can be applied

to these documents.

The use of clustering in the organization of web

search results creates a multilevel information struc-

ture. One major challenge in visualization of such

structures is to facilitate the user’s perceptual integra-

tion of the separate views of the context and details.

More often than not, user interfaces to hypermedia

systems fail to meet this challenge, which leaves

users feeling disoriented or ‘‘lost in hyperspace’’

[1,29]. The fisheye view idea [12], based on provid-

ing views of details embedded in context, can be used

to address this issue since such views provide a

smooth integration of context and details. In our

design, we employ a version of fisheye views in the

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434 417
visualization of web search result clusters. The fish-

eye view approach allows for zoom to detail while

keeping a global context in view. Our system pro-

vides an overview of clusters by means of a two-

dimensional map, in which details are examined by

zooming on the regions of more interest. We imple-

mented two different kinds of zooming: a fisheye

zoom that presents details in context, and the tradi-

tional method of full zoom, which strictly separates

the views of different levels of the hierarchy, that is,

context and details.

This paper has two major objectives. The first

objective is to develop the design requirements for a

system that is based on the combined use of clustering

and visualization for the reduction of information

overload in exploration of web search results. This

design includes the concept of fisheye views to

facilitate more successful browsing of web search

results once they are retrieved. The second objective

is to introduce a visualization algorithm, and integrate

this algorithm with the best available tools to imple-

ment the specified design.

The paper is organized as follows. The next section

proposes a system architecture for a clustering-based

visual web search processing aid accompanied by a

brief review of related previous work. It also includes
Fig. 1. The model for a clusterin
a background on fisheye views. Next, the algorithms

used in the design of the system and implementa-

tion of the prototype are described, followed by a

description of the prototype implementation. A sam-

ple session with our system, and the results of the

preliminary usability studies are illustrated then. We

conclude with plans for enhancement of the system in

Section 6.
2. A system architecture for a clustering-based

visual web search processing aid

Based on the previous research briefly mentioned

in the previous section, we identify three general tasks

that need to be performed for the visual presentation

of web search results (see Fig. 1). These tasks com-

prise an overall set of capabilities a post-search

processing system should include. This section pro-

vides a brief discussion of these capabilities along

with representative examples of related previous

work.

The overall set of functions such a system should

provide could be summarized as follows. The search

processing aid should take the results of a web search

and create a multidimensional vector, which repre-
g-based visual search aid.

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434418
sents this collection. This vector is then made avail-

able to the clustering step so that the resultant docu-

ments are organized into a single or multilevel cluster.

Through the visualization process, the reader can

explore the clusters and the documents. The visual

display system allows zooming to any individual

document or a cluster with or without a fisheye zoom

capability. Stated formally:

Given a search result set containing n documents

Rn:

Im ¼ f1ðRnÞ ð1Þ

where Im is a set of m index terms extracted from Rn

Unm ¼ f2ðRn; ImÞ ð2Þ

where Unm is a set of m-dimensional vectors one

corresponding to each document in Rn

C ¼ f3ðUnmÞ ð3Þ

where C is a cluster structure of the collection, and

Mapfull ¼ f4ðCÞ and Mapfisheye ¼ f4VðCÞ ð4Þ

where Mapfull and Mapfisheye are the full-zoom or

fisheye visualizations of the cluster structure C. The

objective is to develop and implement specific algo-

rithms for f1, f2, f3, f4, or f4V.
This model is general enough to be a framework for

design of similar systems. Contributions to the devel-

opment of a general web search aid could be made in

any step of the model by developing an appropriate

implementation of f1, f2, f3, f4, or f4V. Of course, we
recognize that considerable research continues to pur-

sue improved indexing and search algorithms. Our

focus, however, is on processing a set of results Rn

produced through a search. The following three sub-

sections describe the functionality of such systems in

general while also pointing to research in these areas.

2.1. Document representation

Processing the results of a web search requires that

these documents be represented in a form amenable to

further processing. A common approach to model a

document is based on its semantic contents. With this

approach, documents are represented as vectors where

each element in a vector corresponds to a term in the
specific collection of documents [33]. An element in a

vector represents the weight of the corresponding term

in the specific document that the vector represents.

The calculation of weights is performed on a list of

terms in each document, which remain after the

elimination of noise words, those that are used fre-

quently in the English language, but do not carry

unique meanings in each document, such as ‘‘is,’’

‘‘the,’’ ‘‘a,’’ ‘‘of,’’ ‘‘but,’’ and ‘‘an.’’

Tkach [40], among many others, observed that

using single words for extracting representative terms

in a document collection is inefficient. A more effi-

cient alternative is the use of lexical affinities. ‘‘A

lexical affinity is a correlated group of words, which

appear frequently within a short distance of one

another. Lexical affinities include phrases like ‘online

library’ or ‘computer hardware’ as well as other less

readable word groupings. They are generated dynam-

ically. Thus, they are specific for each collection. A

set of semantically rich terms can be obtained without

a need to hand-code a specialized lexicon or a

thesaurus’’ [40]. Accordingly, many document-index-

ing systems represent documents using a combination

of lexical affinities and individual key words instead

of words only [31,33].

2.2. Clustering

Once documents are represented mathematically as

vectors, a clustering algorithm can be applied to this

collection. There are two main types of clustering

algorithms that differ according to the final groupings

they create. Nonhierarchical techniques divide (parti-

tion) a data set into a series of subsets, which are

comprised of similar objects with no hierarchical

relationship between them. The cluster structure

resulting from a nonhierarchical technique is depend-

ent on a number of predefined parameters such as the

desired number of clusters, and therefore tends not to

be very stable [43].

A hierarchical cluster scheme is composed of

smaller clusters within larger clusters. The largest

cluster is the whole collection of objects being grouped.

The result is a tree-like structure, with individual

objects residing on the leaves and larger clusters being

reached as one climbs higher in the tree toward its root.

Avery well-known example of this type of collection is

the directory structure on a computer’s hard disk. In

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434 419
such a structure, there are a number of directories

(starting from the root) within which files and/or other

directories are stored. Hierarchical clustering algo-

rithms are general enough to be applicable to non-

hierarchical clustering with a few modifications.

The applicability of clustering to presenting an

unstructured collection of documents has been com-

monly recognized. The Scatter/Gather system [6] is

one such clustering-based system that is directed

toward a focus set of documents potentially interest-

ing to the user. The focus set is clustered into

smaller subsets and summarized to form an outline

from which the user can select a smaller focus set.

The indicated subcollection becomes the focus set,

and the process repeats [7]. Pirolli et al. [28] tested

the effectiveness of Scatter/Gather as a simple docu-

ment retrieval tool, and studied its effects on the

incidental learning of topic structure. Their basic

conclusion was that the Scatter/Gather clustering

method improved browsing effectiveness. Hearst

and Pederson [15] revisited the method, and applied

Scatter/Gather to retrieval results concluding that

clustering increased both search effectiveness and

efficiency. The results of the Scatter/Gather studies

provide strong evidence to the successful use of

clustering in information retrieval.

2.3. Visualization

In our model, the approach to presenting search

results is to not only cluster them, but to also present

visual representations of these clusters. Visual systems

provide such representations, that is, overviews of an

information space, and provide zooming capabilities

for the users to interact with these overviews as well as

focus on specific areas of interest. Graphs are the

general data structures used in representing similarities

within a group of objects such as documents and

document clusters. Accordingly, visualization of a

cluster structure can be studied as a specific paradigm

in the area of graph visualization. In their comprehen-

sive survey of graph visualization, Herman et al. [16]

describe a number of graph drawing algorithms, most

of which are directly applicable to the web domain.

Numerous visual metaphors such as a book [2], news-

paper [13], and even a city [9] can be used to represent a

graph, yet the majority of reported systems in the

visualization literature use a tree or a map as their
visual metaphor. Hence, we examine these metaphors

in more detail.

A two-dimensional tree is the most common

presentation of a hierarchy. For example, it is very

typical to visualize an organizational chart by means

of a two-dimensional tree. Subsequently, two-dimen-

sional tree visualizations have been used in interfaces

of computerized systems. The Pruning with Dynamic

Queries (PDQ) Tree-browser [20] is such an inter-

face, which provides an overview of a hierarchy

(including that of a web site) by means of a two-

dimensional tree where areas of more interest (i.e.

branches) are zoomed as needed. The system was

designed to help information users browse hierarchies

in searching for the nodes of most interest to them.

The purpose of pruning is to reduce the set of

alternatives when the viewer is trying to decide which

branch to choose to find the information she is

seeking. The drawback of the PDQ system is that it

does not provide strong visual cues to smoothly

connect details and context.

Although not as common as their two-dimensional

counterparts, three-dimensional trees have the advant-

age of being able to display a larger information space

than a two-dimensional tree could. Like two-dimen-

sional trees, three-dimensional trees are used to visu-

alize hierarchies where certain branches of the tree can

be brought into focus. One of the best known exam-

ples of three-dimensional trees comes from Xerox

PARC and is known as the Cone tree [30]. In a cone

tree, branches of interest are focused by rotating a

portion of the tree. The problem with this approach is

the occlusion of certain parts of the tree by the focused

branch. Another problem is that it is difficult to

understand the transition between the overview and

details after zooming. Tree visualizations are very

intuitive, and for that reason, designers are likely to

continue using them. Yet, due to some of the draw-

backs mentioned above, there have been attempts to

use different visual metaphors to represent hierarchies.

Maps are examples of such metaphors.

Geographic maps have a long history of providing

spatial clues by means of an overview of a geo-

graphical area of interest. A map can similarly be

used to present an overview of an information space,

with different regions representing different groups

(clusters). The proximity of regions means that the

underlying concepts have close semantic contents

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434420
while the size of a region is an indicator of the size of

the corresponding cluster. This idea has been exten-

sively used in information retrieval interfaces. Some

common examples of two-dimensional maps for the

web are WebSOM from the Helsinki University of

Technology [21], the CategoryMap from the Univer-

sity of Arizona [4], the Visual Site map from the

University of Kentucky [25], the Galaxies visualiza-

tion in SPIRE [44], and Cartia’s Themescape. Web-

SOM, CategoryMap, and Visual Site are based on

Kohonen’s [19] self-organizing maps, an artificial

intelligence technique motivated by the clustering

capabilities of the human brain. In a recent applica-

tion, Roussinov and Chen [31] used a variant of this

approach to create an overview of results of a typical

web search. The basic idea in this application was to

take the clustering approach one step further, and

make the clusters visible. The authors empirically

showed that this approach increased search speed,

and it was preferred by most of its users.

A common feature among the visual systems

reviewed above is that they give undistorted views of

an information space. Two main classes of such sys-

tems exist, and are characterized according to the

zooming capabilities they provide. The first class of

such systems displays the zoomed-in area of the visual-

ization in full detail and prunes the area that is not in the

zoom (strict filtering). Others provide separate views of

the context and details. Alternatively, to accomplish

smooth integration of context and details as we aim in

our design, a distortion-oriented approach can be

adopted. A majority of distortion-oriented systems

are based on Furnas’ [12] fisheye view approach.

Furnas introduced the concept of generalized fish-

eye views based on the observation that ‘‘humans

often represent their own ‘neighborhood’ in great

detail, yet only major landmarks further away. This

suggests that such views (‘fisheye views’) might be

useful for the computer display of large information

structures like programs, data bases, online text, etc.’’

in providing detail embedded in context. In the

original paper by Furnas [12], the basic motivation

for fisheye views was described, and the ‘‘degree of

interest (DOI) functions’’ concept was introduced to

formalize generalized fisheye views. According to his

formulation:
DOIfisheyeðx; yÞ ¼ APIðxÞ � Dðx; yÞ ð5Þ
where DOIfisheye is the user’s degree of interest in point,

x, given that the current point of focus is y, API(x) is

then given a priori importance of x, and D(x,y) is the

distance between x and the current point y.

Using this formulation, Furnas defined an applica-

tion for tree structures and a specific example for tree

structured text files.

As explained in Leung and Apperley [24], there are

a number of ways a fisheye view can be created.

Sarkar and Brown [34] used a formulation similar to

the original one introduced by Furnas and applied the

fisheye view technique for viewing and browsing

computer graphs. They introduced layout concepts

to formalize fisheye views, and built a framework to

incorporate arbitrary structures by redefining the ‘‘dis-

tance’’ concept.

Lamping and Rao [22] describe an implementation

for presenting a 2-D graph through a fisheye zoom.

The hyperbolic browser provides a smoothly varying

‘‘focus + context’’ view; the display space allocated to

a node decreases continuously with the distance from

the focus, yet does not disappear abruptly. The Star

Treek system from Inxight Software (http://www.

inxight.com) is based on this principle and produces

maps, which display ‘‘details + context’’ views of

hierarchical structures including web sites.

2.4. Summary

As evident from the brief discussion in this sec-

tion, use of clustering and visualization has found

applicability in reducing overload, especially in the

examination of complex information. Also, the idea

to smoothly integrate context and details by means

of distortion-oriented, or more specifically fisheye

view, systems is promising. To our knowledge, use

of clustering supported with fisheye views has not

been applied to the visualization of web search

results, hence the motivation for this study, which

aims to build a web search aid that has a clustering-

based visual presentation system with a fisheye

capability.

Our contribution in this research thus is an original

design in the visualization step, that is, f4 or f4V, within
our formal specification of the problem. Therefore, in

Section 3, we describe our algorithm for the visual-

ization component of our system. Then in Section 4,

we describe a system that integrates the visualization

 http:\\www.inxight.com

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434 421
component with other components providing the rest

of the functionality described above.
Fig. 2. A simple hierarchy.
3. The ‘‘zoomable treemap’’ algorithm

The ‘‘zoomable treemap’’ algorithm is our modifi-

cation of the treemap algorithm by Johnson and Shnei-

derman [17] and Shneiderman [37] with extended

features to make the visualizations amenable to a fish-

eye zoom. In this section, we describe ‘‘zoomable

treemap,’’ starting with the original treemap algorithm.

The discussion in Section 3.1 provides an understand-

ing of the basics of the technique. Then in Section 3.2,

we describe the original features of our approach.

3.1. The original treemap algorithm

The treemap algorithm [17,37] stems from the

observation that despite its intuitive appeal, presenta-

tion of a hierarchy as a tree is space-inefficient, and is

therefore not appropriate for large hierarchies. As

discussed in Section 2, maps are popular presentations

of an information space. The treemap technique pre-

sents a hierarchy by means of a two-dimensional map.

Consequently, it uniquely integrates a popular way of

organizing information (hierarchical clustering) with a

popular way of displaying it (two-dimensional maps).

The basic theme of the algorithm is a simple ‘‘slice-

and-dice’’ idea. The available map space is first sliced

vertically with every slice having an area proportional

to the weight of the first-level cluster it represents.

These weights can be defined differently according to

the requirements of the specific application. For exam-

ple, in the visualization of a computer file structure,

these weights can be defined as the size of a file, or the

total size of the files in a directory. In our application,

the initial weight of a cluster is defined as the total

number of documents in the cluster and this weight is

adjusted while zooming. After the first-level slicing, a

similar partitioning is applied to each vertical slice, this

time creating horizontal slices of lower level clusters

where again the areas of these slices are proportional to

the weights of the corresponding subclusters.

For a simple illustration of the technique, see the

hierarchy depicted in Fig. 2. Assuming that the lowest

level nodes C, D, E, H, I, J, and K are all individual files

with a weight of 1, the weights of the clusters will be 3
for A, 4 for B, and 2 for each of F and G. According to

this weight structure, a treemap of the hierarchy is

formed as follows: initially the map space is divided

into two because there are only two first-level clusters:

A and B. The ratio of the area allocated for A to the area

allocated for B will be 3:4 because A has a weight of 3

and B has a weight of 4. After the first slicing, the areas

for clusters A and B are partitioned similarly where the

area of A is divided into three equal portions (between

C, D, and E), and the area for B is divided into two

equal portions (between F and G). Finally, the areas for

F and G are both divided into two equal portions to

represent H and I, and J and K, respectively. The

resulting treemap is shown in Fig. 3.

3.2. The additional features of ‘‘zoomable treemap’’

In the original treemap algorithm, the partitioning of

the available map space continues until each individual

document is represented on the map. Such a visual-

ization can be very overwhelming for substantially

large collections. For this reason, our algorithm stops

the partitioning before the area of a slice drops below a

predefined visibility threshold. For example, in the

treemap displayed in Fig. 3, each region that is allo-

cated to one of the lowest level nodes in the hierarchy,

that is, C, D, E, H, I, J, and K, is one seventh, or

approximately 14% of the total available map space.

Let us assume that the predefined threshold for this map

is 0.2, which means that a cluster will only be visible if

its area is larger than 20% of the total map space. In this

Fig. 3. The treemap of the hierarchy in Fig. 2.

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434422
case, all of these lowest level nodes would be below the

threshold (0.14 < 0.20); therefore, the partitioning

should stop before the lowest level. The result is shown

in Fig. 4. The caveat to this approach is that there may

be cases where some first-level clusters will always be

too small, and will never be visible if this threshold is

strictly enforced. Accordingly, our approach ignores

the threshold for first-level clusters.

The original treemap algorithm shows every detail

of the information structure in one visualization. Thus,

there are no portions of the overview, details of which

require further zooming. However, as seen in the map

of Fig. 4, our approach is to make the clusters visible

only if they are ‘‘large enough.’’ For this reason, there

is a need for zooming to visualize the details of a

cluster not available on the overview. The design of

full zooming (strict filtering) into our system would be

straightforward, in that it simply entails redrawing the

treemap using the zoomed-in node (cluster) as the

root. This is equivalent to assigning a weight of zero

to all out-of-focus clusters and redrawing the map.

Going back to our example in Fig. 4, ‘‘full’’ zooming
Fig. 4. Zoomable version of the treemap in Fig. 3.
on the region labeled ‘‘A’’ on this map would result in

the simple structure displayed in Fig. 5.

Our approach to fisheye zooming is one of many

possible interpretations of the idea. We propose a

method of zooming that requires the area of every

cluster to be redefined by increasing the weight, or

more specifically the degree of interest, of the zoomed-

in cluster and all of its descendents such that all

‘‘children’’ of the zoomed-in cluster become visible,

that is, exceed the visibility threshold. This means that

the size of the smallest ‘‘child’’ of the zoomed-in

cluster will determine the scaling factor. Given DOI

is the degree of interest; we denote the degrees of

interest for the overall collection, the zoomed-in node,

and its smallest subcluster (child) as DOI0, DOIZ, and

DOIsmall child, respectively. Then for the smallest child

to reach the threshold after the scaling, the following

equation should be satisfied:

threshold ¼ ðDOIsmall child � SCALEÞ
=ððDOIZ � SCALEÞ þ DOI0 � DOIZÞ

ð6Þ
From Eq. (6), the scale factor can be calculated easily

as follows:

SCALE ¼ threshold ðDOI0 � DOIZÞ
=ðDOIsmall child � ðthreshold � DOIPiÞÞ

ð7Þ

Note that the denominator of the right hand side of

Eq. (7) will be zero for a scale that would effectively

result in full zoom, and negative if the smallest ‘‘child’’

is too small to be visible even with the highest possible

scale factor. In such cases, the threshold is ignored for
Fig. 5. ‘‘Full’’ zooming on region A in Fig. 4.

Fig. 6. ‘‘Fisheye’’ zooming on region A in Fig. 4.

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434 423
that cluster, and it is made visible. The scale factor is

then calculated in a way tomake the next to the smallest

subcluster exceed the visibility threshold, that is, a

positive ‘‘finite’’ scale factor, if possible. This process

is repeated until a large enough subcluster is found, and

the scale factor is calculated accordingly. Meanwhile,

the out-of-zoom clusters are allocated less space

because the ratio of their weights to the weight of the

overall hierarchy decreases. By this decrease, the areas

of some of the out-of-zoom clusters may drop below

the visibility threshold. In case these clusters do not

have a sibling in zoom, the algorithmmodifies the view

such that only the parents of the clusters below the

visibility threshold are displayed. This way, the out-of-

zoom area is summarized to provide a context within

which the zoomed-in details are visible. On the other

hand, if an out-of-zoom cluster is below the threshold

and one of its siblings is in zoom, it cannot be combined

with its other siblings, as that would not allow the

zoomed-in sibling to be visible. In that case, the cluster

below the threshold is simply displayed as it is.

Continuing on with our example, fisheye zooming

on region A would require that the algorithm increase

the degree of interest to a level that the areas of these

regions would be 20% of the overall map space. From

Eq. (7), it could be shown that a scale factor of 2

would increase the areas of these regions enough to

make them exceed the visibility threshold. The result-

ing areas would be 20% of the map space for all C, D,

E, F, and G. Note that the map space allocated to F

and G would drop due this adjustment. Next, the

algorithm checks whether this drop brings the regions

below the visibility threshold. With the scale factor 2,

the degrees of interest for C, D, and E increase to 2,

and those for F and G remain at 2. Accordingly, F and

G are still above the threshold although their relative

areas shrank. The resulting map after these adjust-

ments is located in Fig. 6.

After a cluster is zoomed as described, the viewer of

the visualization may be interested in one of the

subclusters thereof and want to further explore that

subcluster, or may focus on an out-of-zoom cluster. In

the former case, the weights are adjusted exactly as they

were done in the previous zoom. In the latter case, the

weights of the zoomed-in clusters from the previous

zoom are reset (i.e. set to their originals) before the

procedure of weight adjustment is performed for the

new zoomed-in cluster. The reason for this extra step is
the need to make the visualizations independent of the

previously visited clusters unless the browsed area is

still inside those clusters. Fig. 7 summarizes the visual-

ization algorithms.
4. Development of the fisheye-based information

search processing aid (FISPA)

The input to our search processing aid is a list of

web search results from AltaVista. AltaVista is a

popular commercial search engine from Digital Cor-

poration. Our system could work with other commer-

cial search engines just as well. AltaVista’s flexibility

in accepting differing forms of queries, and the

relative ease with which the list of search results can

be parsed for further processing influenced our deci-

sion to choose it at the back end of our system. The

design of our prototype represents a specific set of

decisions in the selection of the technologies in the

various steps of the model displayed in Fig. 1, and

described in Section 2. Below is a brief description of

the system components that perform these tasks.

4.1. System components

4.1.1. Document representation and clustering

IBM’s ‘‘IntelligentMiner for Text’’ tool was used for

this part of our system. IntelligentMiner is commer-

cially available as a fast and easy-to-use tool. It uses

lexical affinities [40] instead of single words in index-

ing a group of documents. This way, the vector size is

more manageable, which improves the speed of the

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434424
algorithm. For our specific application, hierarchical

clustering is preferred to nonhierarchical clustering

for the following reasons:

� Nonhierarchical algorithms require some param-

eters to be specified in advance assuming that

there is some prior knowledge about the vector
Fig. 7. The visualization algori
space. In an automated system, this kind of prior

knowledge is not always available.
� When the number of objects to be clustered is high,

nonhierarchical clustering algorithms either create

too many clusters, or they group too many objects in

one cluster. This kind of a structure may not reduce

the overload to a desired level.
thm with Fisheye zoom.

Fig. 7 (continued).

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434 425
� In a fisheye zoom system, as one looks at the

information objects (pages) in one cluster, the

other clusters need to be summarized to provide
Fig. 8. The inp
a context. This requires combining similar

clusters at a higher level and hence assumes a

hierarchy.
ut form.

O. Turetken, R. Sharda / Decision Sup426
IntelligentMiner’s hierarchical clustering compo-

nent is based on the agglomerative strategy that is,

considering each object as a cluster of its own and

then iteratively joining clusters to form larger ones

until there is only one cluster.
Fig. 9. The system
4.1.2. Visualization

This part of the system is of major interest to us for

which we created our own component. This is a Java

applet that visually displays a hierarchical structure

based on the ‘‘zoomable treemap’’ algorithm described

port Systems 37 (2004) 415–434
flowchart.

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434 427
in Section 3. This applet can visualize any hierarchy by

first converting it into a data structure as an array of

array objects, and then presenting an overview of this

structure as a partitioned map as explained in Section

3. The overview map is ‘‘clickable’’ and responds to

mouse clicks by invoking the zooming methods that

were described in Section 3. Zooming is basically

provided by displaying the ‘‘children,’’ that is, sub-

clusters or individual objects, which are one level

below a cluster that it is clicked. When the area that

corresponds to a leaf node is clicked, the prespecified

attributes of the object are displayed. The functionality

briefly described here applies to the visualization of a

general hierarchy. In the next section, we discuss how

we used this component specifically for visualizing

web search results.

4.2. Integration and implementation with server-side

scripting

We implemented a working prototype system as a

proof of concept for the design ideas discussed in the
Fig. 10. Visual overview of the search results to the query
previous parts of this section. The system facilitates the

processes displayed in Fig. 1, and performs them

sequentially. A simple active server pages (ASP) form

(see Fig. 8) was designed to let the web searcher enter a

query. This form sends the query to an ASP document

that communicates with the AltaVista search engine.

The query is sent to AltaVista in a format that will allow

us to receive the first 100 search results. Next, an ASP

script parses the ‘‘AltaVista Results’’ using a compo-

nent (ASPTear), which has the built-in functionality to

parse, or ‘‘tear’’ a given HTML document. This way,

the title and URL of each search result is extracted from

the ‘‘AltaVista Results’’ page. The name (given by the

script for internal use by the system’s clustering com-

ponent), the title, and the URL of each of the 100 search

results are stored in an index file. Next, another ASP

script retrieves each of these results by calling their

URLs. The resulting documents are in html format;

therefore, they are first converted to text files by

stripping them of their html tags. The resulting text

files are locally saved under their unique names already

in the index file. The clustering component (Intelli-
‘‘What was the population of Hong Kong in 1998?’’.

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434428
gentMiner’s hierarchical clustering routine) works only

with these names for creating a hierarchical cluster

scheme. This cluster scheme is saved to a file, and is

sent to the visualization component.

Next, the visualization component, that is, the Java

applet (we refer to this applet as applet.java in the

following discussions), reads the index file and the

hierarchical cluster information from the output of the

clus- tering routine. In displaying the hierarchy,

applet.java uses the output of the clustering routine to

label the clusters. Leaves of the hierarchy, that is,

individual files, are labeled by looking up the corre-

sponding title for each file name in the index file that

was created before.

As mentioned before, the user can click on a part of

the overview for zooming. When a leaf, that is, an

individual file, is reached, the applet looks up the

URL of the file from the index file, retrieves the page,

and displays it in a separate window. Unless an
Fig. 11. ‘‘Full’’ zooming of the ‘‘popu
individual page is retrieved as described, the only

difference between the visual presentations of clusters

and individual pages is that individual pages occupy

less space than a cluster at the same level of the

hierarchy because they have minimal weights (1).

Fig. 9 summarizes the technical schematic of our

system. This summary includes the main processes,

the inputs and outputs produced, and the specific

program segments that execute each of the processes.

Two of these processes, namely, ‘‘Visualize Hier-

archy’’ and ‘‘Zoom,’’ are performed by means of

applet.java, the implementation of which is based on

the algorithm in Fig. 7.
5. A sample session

As described previously, the users of our system

enter their queries through the form displayed in Fig.
lous world’’ section of Fig. 10.

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434 429
8. Fig. 10 displays the visual overview that our system

provides for the example query, ‘‘What was the

population of Hong Kong in 1998?’’ As seen in Fig.

10, the largest group of the results to this query is

labeled ‘‘Hong Kong,’’ where some other groups are

‘‘populous world’’ and ‘‘city map.’’

Let us assume that the user thinks the answer they

are seeking is under the ‘‘populous world’’ section of

this map. Then the next step would be to zoom on that

portion of the map. Fig. 11 displays the resulting

screen if the user is interacting with the ‘‘full-zoom’’

version of our system, which is based on the tradi-

tional full-zoom idea; details are displayed without

any context information.

Fig. 12 displays the alternative ‘‘fisheye view’’ of

the same portion of the map. The details of this

cluster are now being displayed without totally elim-
Fig. 12. ‘‘Fisheye’’ zooming of the ‘‘po
inating the rest of the overall map. Note that some of

the groups on this view are very small and, therefore,

are difficult to recognize. This problem occurs when

the clustering algorithm creates too many first-level

clusters that cannot be combined with others to

provide a more summarized representation of the

context. While this is a problem with the clustering

rather than the visualization algorithm, the user

should still be supported with clues as to what each

of these regions on this map are. The way we chose to

provide such support is by means of implementing a

mouse-over function where the users can see the

name of the cluster their mouse is over in the title

bar right above the map. Also, note that this problem

is not specific to the fisheye implementation, because

the small clusters are hard to recognize even at the

first-level overview.
pulous world’’ section of Fig. 10.

Fig. 13. Looking into the contents of the web page titled ‘‘Job Opportunities’’.

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434430
The user interaction with the interface continues in

this manner where the user moves back and forth

between different clusters and web pages until they

find the answer they are seeking. Otherwise, the

process is repeated with a new search query. Fig.

13 displays the screen that the user will see when

they are looking into the contents of an individual

page titled ‘‘Job Opportunities’’ in its separate win-

dow.
6. Usability studies

We conducted several sessions of experiments to

test the usability of our systems. The sessions resulted

in a total sample of 57 subjects who were under-
graduate and graduate level business (mostly MIS)

students. The goal of the experiments was to compare

the visual systems (FISPA and its full-zoom counter-

part) to the text-based system, and to compare the

full-zoom visualization to the fisheye zoom visual-

ization in terms of effectiveness (number of correctly

answered questions) and efficiency (speed in answer-

ing the questions). We asked the subjects three groups

of questions with four general-interest questions in

each group. The users were supported by a different

mode of presentation, that is, text-based, full zoom, or

fisheye zoom for each of the question groups. There-

fore, all subjects answered all questions, and used all

three systems, but had different combinations of

system and question-group. The time it took for the

subjects to finish each section was automatically

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434 431
recorded. After the data were collected, we analyzed

the records and assigned a score to each subject for

every experimental phase depending on how many

correct answers they found for the questions in that

phase.

The data analyses (MANOVA) showed that the

subjects were significantly faster with the visual

systems than they were with the text-based system

(p = 0.00) while their scores were not significantly

different (p = 0.48). Similarly, the fisheye system

resulted in significantly faster performance than the

full-zoom system (p = 0.04) without any significant

change in scores (p = 0.12). Full details of the usabil-

ity studies and the analysis and implications of the

results are described in Ref. [42].

In addition, the comments we received from some

of the experimental subjects such as ‘‘Excellent job! It

is time-saving and easy’’ were encouraging as to the

user-acceptance of our design ideas. Meanwhile, our

observations during the usability studies and our own

experiences with the use of the prototype suggest how

the system can be improved. We discuss these issues

in the next section.
7. Discussion

A growing conviction exists in the system design

community that user interface is crucial. Interface

development will gain more importance given that

due to the increasing number of novice information

technology users, the trend in the computing world is

toward more user-friendly systems. From that per-

spective, we believe that our effort in the development

of a system with a novel interface that addresses a real

problem in the popular activity of web search is

valuable. Visual aids such as windows, frames, icons,

and images are already inevitable elements of user-

friendly interface design. Thus, the general idea of

using visualization in interface design has great poten-

tial, especially with the growing image processing

capabilities of today’s computers.

The building of the prototype system involved

many decisions on the selection or implementation

of the system components. These decisions were

determinants of the quality of the prototype system,

and are worth discussing for identifying possible

improvement efforts.
Although not in depth, our brief evaluation of web

search engines led us to the conclusion that the North-

ern Light search engine is interesting in that it provides

an alternative clustering-based presentation of search

results. Considering our approach is based on the

clustering of search results, the clusters that are readily

available from Northern Light can be used for visual-

ization purposes. Incorporation of a search engine that

includes clustering will add the speed the system needs

to find a more practical applicability. On the other

hand, the idea of presenting clusters of search results

can easily be adopted by other commercial search

engines such as the recently popular Goggle. A search

engine that chooses to include the clustering feature as

part of its system can adopt our visual design ideas,

and implement a system with better integration of the

individual components. Such an integrative approach

would yield higher system efficiency.

Another point that is related to the speed of the

system is the approach that was followed to represent

each search result. Currently, the system follows the

hyperlink from each result to retrieve the whole web

page, and saves the text portion of those pages locally

as text documents. Because it is prone to network

traffic and the performance of the communicating

servers, the retrieval process is the most time-con-

suming component of the system. Our reason for

following this approach was the conviction that the

quality of the resulting clusters would be higher if we

used whole pages in clustering instead of using only

the title or a summary for each result. We are aware of

the speed degradation such an approach would lead

to, yet for the time being, our focus was on the

visualization component, and not the speed of the

overall system.

Zamir and Etzioni [45] found that using snippets

instead of full documents for clustering did not lead to

significantly lower cluster quality while improving

the clustering speed considerably. Accordingly, a

speed improvement in our system can be achieved

by using the short snippet provided by the search

engine in the ‘‘results’’ page, instead of following the

links and retrieving the whole documents. Experi-

menting with different forms of input to the clustering

process is an interesting activity, which needs to be

further studied.

Our system uses a tool that utilizes one of the

numerous possible techniques for clustering docu-

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434432
ments. We observed some problems with the quality

of the clusters that this tool created. Our choice of

IntelligentMiner was mainly based on convenience,

that is, availability and accessibility. IntelligentMiner

is very fast in creating a cluster structure and needs

no further processing in the way it presents its

output. Nevertheless, we believe that most of the

shortcomings of the system were due to the fact that

the clustering structures created were not as useful as

expected. Although part of the reason for this is that

the input to the clustering algorithm, that is, the

search results, may at times be totally unrelated, we

still believe that some of these problems can be

remedied by experimenting with different clustering

techniques. This is an open issue, which requires

further investigation, and we shall pay specific

attention to this particular point in our future

research.

Our research reported in this paper involves exper-

imentation with a specific, original implementation of

the fisheye view technique. Consequently, the

insights gained from the development effort have

only limited generalizability as to the success of the

fisheye zooming, or in general terms, the ‘‘details

embedded in context’’ idea. It is our conviction that

the general principles of fisheye views are fairly

applicable in the specific domain of application we

addressed, and further research should explore the

application of different techniques for fisheye zoom-

ing. A natural extension of this idea would be the

exploration of different methods to create visual

overviews of the document hierarchy, and compare

them to the map representation implemented in this

study. An example method of this kind is the hyper-

bolic tree we discussed in Section 2. Hyperbolic trees

are particularly good fisheye view implementations,

although their applicability to very large collections is

debatable because the visual presentations produced

using hyperbolic trees are not space efficient. How-

ever, it would still be interesting to compare this

method to the one we developed and reported in this

study.

Meanwhile, it should be noted that system quality is

not the only determinant of the usability of a system.

User characteristics and behavioral variables such as

commitment and reaction to change should also be

considered in explaining the successful use of a

system. Therefore, we believe that the usability of
our system can be realistically evaluated only after a

period of continuous use where the users are familiar

with it and the initial performance problems are solved.

Nevertheless, the results of our usability studies show

that there is value in using the system, and it is worth

pursuing the suggested enhancements to make it more

widely accepted by potential users.
Acknowledgements

We appreciate the cooperation and access to

Treemap97 code from Ben Shneiderman and the

Human–Computer Interaction Lab at the University

of Maryland. We are very thankful to Mr. Someshwar

Baldawa for his contribution in the coding of the

algorithm. Also, Mr. Vishal Jangla and Mr. Sanjay

Vanketasvarulu are highly appreciated for the design

and coding of the server-side scripts.
References

[1] R.A. Botafogo, E. Rivlin, B. Shneiderman, Structural analy-

sis of hypertexts: identifying hierarchies and useful metrics,

ACM Transactions on Information Systems 10 (2) (1992)

142–180.

[2] S.K. Card, G.G. Robertson, W. York, The WebBook and the

Web Forager: an information workspace for the World Wide

Web, Proceedings of the Conference on Human Factors and

Computing Systems, April 13–18, 1996, Vancouver, British

Columbia, 1996.

[3] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D.

Gibson, J. Kleinberg, Automatic resource compilation of ana-

lyzing hyperlink structure and associated text, http://decweb.

ethz.ch/WWW7/1898/com1898.htm downloaded (April 24th,

2002), 1996.

[4] H. Chen, A.L. Houston, R.R. Sewell, B.R. Shatz, Internet

browsing and searching: user evaluations of category map

and concept space techniques, Journal of the American Soci-

ety for Information Science 49 (7) (1997) 582–603.

[5] E.C. Chewning Jr., A.M. Harrell, The effect of information

load on decision makers’ cue utilization levels and decision

quality in a financial distress decision task, Accounting, Or-

ganizations and Society 15 (6) (1990) 527–542.

[6] D.R. Cutting, D.R. Karger, J.O. Pedersen, J.W. Tukey, Scatter/

Gather: a cluster-based approach to browsing large document

collections, Proceedings of the 1992 Conference on Research

and Development in Information Retrieval, June 21–24,

1992, Copenhagen, Denmark, 1992.

[7] D.R. Cutting, D.R. Karger, J.O. Pedersen, Constant interac-

tion-time Scatter/Gather browsing of very large document col-

lections, Proceedings of the Fifteenth Annual International

 http:\\decweb.ethz.ch\WWW7\1898\com1898.htm

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434 433
ACM Conference on Research and Development in Informa-

tion Retrieval, June 27–30, 1993, Pittsburgh, PA, 1993.

[8] P. De Bra, G.J. Houben, F. Dignum, Task-based information

filtering: providing information that is right for the job, http://

wwwis.win.tue.nl/~houben/respub/infwet97.html downloaded

(April 23rd, 2002), 1997.

[9] A. Dieberger, A.U. Frank, A city metaphor for supporting

navigation in complex information spaces, Journal of Visual

Languages and Computing (9) (1998) 597–622.

[10] K.L. Fox, O. Frieder, M.M. Knepper, E.J. Snowberg, SENTI-

NEL: a multiple engine information retrieval and visualization

system, Journal of the American Society for Information Sci-

ence 50 (7) (1999) 616–625.

[11] J.C. French, D.E. Brown, N.H. Kim, A classification approach

to Boolean query reformulation, Journal of the American So-

ciety for Information Science 48 (8) (1997) 694–706.

[12] G.W. Furnas, Generalized fisheye views, Proceedings of the

Conference on Human Factors in Computing Systems, April

16–23, 1986, Boston, MA, 1986.

[13] G. Golovchinsky, M.H. Chignell, The newspaper as an infor-

mation exploration metaphor, Journal of Information Process-

ing and Management 33 (5) (1997) 663–683.

[14] M. Hearst, TileBars: visualization of term distribution infor-

mation in full text information access, Proceedings of the

Conference on Human Factors in Computing Systems, May

7–11, 1995, Denver, CO, 1995.

[15] M. Hearst, P. Pedersen, Reexamining the cluster hypothesis:

scatter/gather on retrieval results, Proceedings of the Confer-

ence on Research and Development in Information Retrieval,

August 18–22, 1996, Zurich, Switzerland, 1996.

[16] I. Herman, G. Melancon, M.S. Marshall, Graph visualization

and navigation in information visualization: a survey, IEEE

Transactions on Visualization and Computer Graphics 6 (1)

(2000) 24–43.

[17] B. Johnson, B. Shneiderman, Treemaps: a space filling ap-

proach to the visualization of hierarchical information struc-

tures, Proceedings of the Second International IEEE Visual-

ization Conference.

[18] K.L. Keller, R. Staelin, Effects of quality and quantity of

information on decision effectiveness, Journal of Consumer

Research 14 (2) (1987) 200–213.

[19] T. Kohonen, Self-organizing maps, Springer Series in Infor-

mation Sciences, New York, NY, 2001.

[20] H.P. Kumar, C. Plaisant, B. Shneiderman, Browsing hierarch-

ical data with multi-level dynamic queries and pruning, Inter-

national Journal of Human-Computer Studies 46 (1) (1997)

103–124.

[21] K. Lagus, S. Kaski, T. Honkela, T. Kohonen, Browsing digital

libraries with the aid of self-organizing maps, Proceedings of

the Fifth International World Wide Web Conference, May 6–

10, 1996, Paris, France, 1996.

[22] J. Lamping, R. Rao, Laying out and visualizing large trees

using a hyperbolic space, Proceedings of the ACM Symposi-

um on User Interface Software and Technology, November

2–4, 1994, Marina del Rey, CA, USA, 1994.

[23] J. Lamping, R. Rao, Visualizing large trees using the hyper-

bolic browser, Proceedings of the Conference Companion on
Human Factors and Computing Systems, April 14–18, 1996,

Vancouver, British Columbia, 1996.

[24] K.Y. Leung, M.D. Apperley, A review and taxonomy of dis-

tortion-oriented presentation techniques, ACM Transactions

on Computer-Human Interaction 1 (2) (1994) 126–160.

[25] X. Lin, Map displays of information retrieval, Journal of the

American Society for Information Science 48 (1) (1997)

40–54.

[26] N.K. Malhotra, Information load and consumer decision mak-

ing, Journal of Consumer Research 8 (4) (1982) 419–430.

[27] D.A. Nation, C. Plaisant, G. Marchionni, A. Komlodi,

Visualizing web sites using a hierarchical table of contents

browser: WebTOC, Proceedings of the Third Conference

on Human Factors and the Web, April 1998, Los Angeles,

CA, 1998.

[28] P. Pirolli, P. Schank, M.A. Hearst, C. Diehl, Scatter/Gather

browsing communicates the topics structure of a very large

text collection, Proceedings of the ACM Conference on Hu-

man Factors in Computing Systems, April 13–18, Vancouver,

British Columbia, Canada.

[29] E. Rivlin, R.A. Botafogo, B. Shneiderman, Navigating in hy-

perspace: designing a structure-based toolbox, Communica-

tions of the ACM 37 (2) (1994) 87–96.

[30] G.G. Robertson, J.D. Mackinlay, S.K. Card, Cone trees: ani-

mated 3D visualizations of hierarchical information, Proceed-

ings of the ACM Conference on Human Factors in Computing

Systems.

[31] D. Roussinov, H. Chen, Information navigation on the web by

clustering and summarizing query results, Information Pro-

cessing & Management 37 (6) (2001) 789–816.

[32] I.A. Rudy, A critical review of research on electronic mail,

European Journal of Information Systems 4 (4) (1996)

198–213.

[33] G. Salton, Automatic Text Processing: The Transformation,

Analysis, and Retrieval of Information by Computer, Addi-

son-Wesley, Reading, MA, 1989.

[34] M. Sarkar, M.H. Brown, Graphical fisheye views of graphs,

Proceedings of the Conference on Human Factors in Comput-

ing Systems, May 3–7, 1992, Monterey, CA, USA, 1992.

[35] J. Savoy, Ranking schemes in hybrid boolean systems: a new

approach, Journal of the American Society for Information

Science 48 (3) (1997) 235–253.

[36] D. Setton, Information overload, Forbes 160 (6) (1997) 18–20.

[37] B. Shneiderman, Tree visualization with treemaps: a 2D

space-filing approach, ACM Transactions on Graphics 11

(1) (1992) 92–99.

[38] B. Shneiderman, The eyes have it: a task by data type taxon-

omy of information visualizations, Proceedings of the IEEE

Symposium on Visual Languages, September 03–06, 1996,

Boulder, CO, 1996.

[39] B. Shneiderman, Designing The User Interface, Strategies for

Effective Human–Computer Interaction, Addison Wesley,

Reading, MA, 1997.

[40] D. Tkach, Technology text mining—turning information into

knowledge—a white paper from IBM, http://www-3.ibm.com/

software/data/iminer/fortext/download/whiteweb.pdf down-

loaded (April, 24th, 2002), 1998.

 http:\\wwwis.win.tue.nl\~houben\respub\infwet97.html
 http:\\www-3.ibm.com\software\data\iminer\fortext\download\whiteweb.pdf

O. Turetken, R. Sharda / Decision Support Systems 37 (2004) 415–434434
[41] E.R. Tufte, The Visual Display of Quantitative Information,

Graphics Press, Cheshire, CT, 2001.

[42] O. Turetken, R. Sharda, Visualization support for managing

information overload in the web environment, Proceedings of

the 22nd International Conference on Information Systems

(ICIS), December 16–19, 2001, NewOrleans, LA, USA, 2001.

[43] P. Willet, Recent trends in hierarchical document clustering: a

critical review, Information Processing & Management 24 (5)

(1988) 577–597.

[44] J.A. Wise, J.J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A.

Schur, V. Crow, Visualizing the non-visual: spatial analysis

and interaction with information from text documents, Pro-

ceedings of the IEEE Information Visualization Symposium,

October 30–31, 1995, Atlanta, GA, USA, 1995.

[45] O. Zamir, O. Etzioni, Grouper: a dynamic clustering interface

to web search results, Proceedings of the 8th International

World Wide Web Conference, May 11–14, 1999, Toronto,
Canada, 1999.

Ozgur Turetken is Assistant Professor of

Management Information Systems in the

Fox School of Business and Management

at Temple University. He received a BS in

Electrical Engineering and an MBA from

Middle East Technical University in

Ankara, Turkey, and a PhD from Oklahoma

State University. Dr. Turetken’s research

interests are in information visualization,

decision support systems, and distributed

work arrangements.
Ramesh Sharda is Conoco Chair of Man-

agement of Technology and a Regents

Professor of Management Science and

Information Systems in the College of

Business Administration at Oklahoma State

University. He received his BS Eng degree

from University of Udaipur, MS from The

Ohio State University, and an MBA and

PhD from the University of Wisconsin-

Madison. His research has been published

in major journals in management science
and information systems including Management Science, Informa-

tion Systems Research, Decision Support Systems, Interfaces,

INFORMS Journal on Computing, Computers and Operations

Research, and many others. He served as the Founding Editor of

the Interactive Transactions of ORMS and on the editorial boards of

other journals such as the INFORMS Journal on Computing,

Information Systems Frontiers, Journal of End User Computing,

and OR/MS Today. One of his major activities in the last few years

was to start the MS in Telecommunications Management Program at

Oklahoma State. Now he is establishing a major interdisciplinary

Institute for Research in Information Systems (IRIS) at OSU.

His research interests are in optimization applications on desktop

computers, information systems support collaborative applications,

neural networks, business uses of the Internet, and knowledge

networks. Defense Logistics Agency, NSF, Marketing Science

Institute, and other organizations have funded his research. Ramesh

is also a cofounder of a company that produces virtual trade fairs,

iTradeFair.com.

	Development of a fisheye-based information search processing aid (FISPA) for managing information overload in the web environment
	Introduction
	A system architecture for a clustering-based visual web search processing aid
	Document representation
	Clustering
	Visualization
	Summary

	The zoomable treemap algorithm
	The original treemap algorithm
	The additional features of zoomable treemap

	Development of the fisheye-based information search processing aid (FISPA)
	System components
	Document representation and clustering
	Visualization

	Integration and implementation with server-side scripting

	A sample session
	Usability studies
	Discussion
	Acknowledgements
	References

