
MOTION BOUNDARIES FORMATION FOR AUTONOMOUS VEHICLES

by

Joel Bannis

BSc. Geomatics, University of the West Indies, 2011

Master of Spatial Analysis, Ryerson University, 2012

An MRP

presented to Ryerson University

in partial fulfillment of

the requirements for the degree of

Master of Engineering

in the program of

Civil Engineering

Toronto, Ontario, Canada, 2020

© Joel Bannis, 2020



Author’s Declaration For Electronic Submission Of An MRP

I hereby declare that I am the sole author of this MRP. This is a true copy of the MRP, including

any required final revisions.

I authorize Ryerson University to lend this MRP to other institutions or individuals for the purpose

of scholarly research.

I further authorize Ryerson University to reproduce this MRP by photocopying or by other means,

in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

I understand that my MRP may be made electronically available to the public.

ii



MOTION BOUNDARIES FORMATION FOR AUTONOMOUS VEHICLES

Joel Bannis

Master of Engineering

Civil Engineering

Ryerson University, 2020

Abstract

In this paper, the application of Model Predictive Control to perform curvilinear motion planning

is explored. More specifically, nonlinear MPC will be focused on because of its proven efficiency

in the modeling of uncertainties as well as in nonlinear model dynamics. The main objective of

this report is to show that with proper modeling and formulation of motion constraints, curvilinear

motion planning can be achieved with nonlinear MPC. The trajectory of the vehicle will be tracked

with the least error while satisfying constraints such as speed and steering angles. Simulations are

presented which demonstrate the ability of the suggested models to successfully perform curvi­

linear motion staying safely within the bounds, while simulations of several models validate its

performance. A deterministic sensitivity analysis was conducted in order to determine the impact

of the prediction horizon time. Experimental results show that a critical prediction horizon time

approximately 10 to 13 seconds was identified as the ideal range for optimal results of the model.
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NOMENCLATURE

ωϕ Vehicle yaw rate

ωψ Semitrailer articulation rate

ωθ Vehicle front steering rate

ωζ Vehicle rear axle steering rate

ϕ Vehicle yaw angle
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θ Vehicle front steering angle

ζ Vehicle rear axle steering angle

a Vehicle longitudinal acceleration

e1 Fifth wheel shift relative to the tractor’s rear axle

H Lane width
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L1 wheelbase distance
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R Outer boundary radius

r Inner boundary radius

v Vehicle velocity
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1 INTRODUCTION

The research topic of autonomous vehicles (AV) and its applications has attracted an overwhelming

interest over the years and is continually growing. The rapid developments and advancements

in technology have allowed researchers to realize the possibility of having fully AV seamlessly

operating on transportation networks around the world. As such, a fully AV is expected to perform

all aspects of the dynamic driving task under all roadway and environmental conditions that can be

managed by a human driver. These systems aim at driving the vehicle autonomously by controlling

the steering, braking and throttling in real­time according to established planned path and controls.

There are numerous research studies focused on active steering methods to reduce the number of

motor vehicle accidents and make the driving experience safer. One aspect of concern is obstacle

avoidance. Obstacle avoidance can be summed up as the task of satisfying positional constraints

with the goal of preventing object collisions. This is different from simple path planning. Obstacle

avoidance involves implementation of reactive control on the dynamic environments, whereas,

planning implies pre­computation within path boundaries. As such, collision avoidance systems

make up the core aspect of advanced active safety systems. The importance of obstacle avoidance

in fully AV is emphasized by its potential for increasing road safety and the overall reduction

of occurring accidents. Vehicles equipped with these systems can identify obstacles on the road

such as pedestrians, cyclists, other vehicles as well as lane makers. They are intelligent enough to

perform emergency maneuvers to avoid collisions or perform parking procedures independently.

This suggests that a reliable and accurate obstacle avoidance system is paramount for fully AV.

MPC has been highlighted to be an effective means used various areas of automotive control

solutions including obstacle avoidance. This is because MPC has been adopted to handle non­

linearities and uncertainties as well as constraints exceptionally well. This report presents such an

application of model predictive control applied to motion planning for AV. A detailed methodology

is presented on the various components required for the optimal design of an MPC such as cost

function, mathematical model and constraints.
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1.1 Problem Statement

In this research, the application ofModel Predictive Control to perform curvilinear motion planning

is explored. Nonlinear MPC will be focused on because of its proven efficiency in the modeling of

uncertainties as well as in nonlinear model dynamics. The trajectory of the vehicle will be tracked

with the least error while satisfying constraints such as speed and steering angles. The optimal

solution of the NMPC allows explicit constraints for the controls and states and minimizes a cost

function, which ensures for a vehicle arriving at its destination point avoid any obstacles.

1.2 Scope

Nonlinear mathematical models for four (4) autonomous design vehicles are developed and tested

for curvilinear motion. The simulations are performed in MATLAB’s Model­Based Design Envi­

ronment, Simulink. Robustness testing is performed by varying vehicle parameters including speed

and steering angles, yaw angle vs. folding angle and acceleration/steering rate controls.

1.3 Objectives

This report is focused on motion planning using NMPC for AV. The main objective of this paper

is to show that with proper modeling and formulation of motion constraints, curvilinear motion

planning can be achieved with nonlinear MPC. The second objective is to test the NMPC precision

and adequacy and its sensitivity to changes in the vehicle state parameters.
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2 LITERATURE REVIEW

A fully autonomous vehicle is expected to perform all aspects of the dynamic driving task under all

roadway and environmental conditions that can bemanaged by a human driver. Towork effectively,

AV systems need the capability of path planning, obstacle avoidance, object detection and object

classification.

Obstacle avoidance is one of the critical technologies that ensure human and vehicle safety.

In order to avoid collision with fixed obstacles such as lane boundaries, a system must be able

to detect the boundaries and recalculate an optimal path. As it relates to an AV, after detecting

a boundary, the system will need to steer itself towards a safe and efficient path in real­time.

This highlights the two main characteristics which define this problem; the nonlinearity of the

vehicle dynamics and the presence of time­varying state and input constraints while navigating in

a dynamic environment. Considering how complex this is to accomplish, there are a number of

control methods that have been proposed in literature for such an intricate system. Some of these

include path planning (Du and Tan, 2015, Saback et al., 2019) and model predictive control (MPC)

(Frasch et al., 2018, Falcone et al., 2007) which has shown to be a more effective method for such

applications.

2.1 Path Planning

In the process of development of AV, advanced technologies in planning and control are required.

More specifically, planning algorithms allow an AV to determine the behavior of the vehicle by

itself (Chu et al., 2012). Planning algorithms for AV have been divided into two stages. The

global planning stage involves plotting the global route using waypoints. This is usually generated

from sources such as digital maps and a localization system. The local planning stage is where

the local path is generated. This is done from information gathered based on the global route and

information obtained from sensors such as radar or Lidar. Researchers have used this approach to

achieve some form of obstacle avoidance, however, some limitations are apparent. The method
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presented by Shiller and Gwo (1991), combines various aspects of motion planning of AV in a

unified way on general terrains. Vehicle dynamics and kinematics were taken into consideration

as well as topography, obstacles and regions with various mobility. In this study, the local optimal

path was obtained by using a parameter optimization procedure. Using the motion time as the cost

function, the initial guess to the local optimization problem is obtained by a global graph search

(Shiller and Gwo, 1991). Obstacle avoidance was demonstrated by placing obstacles to block

the unconstrained local optimal solution. It was found that the best solution obtained was in the

vicinity of a local optimal path. Huang et al. (2014), presented a real­time optimization method for

AVmotion planning using differential dynamic programming. Motion planning includes trajectory

generation and trajectory optimization. Conventional methods of optimization involve trajectory

smoothing however, Huang et al. (2014), decided to integrate differential dynamic programming

to solve the optimization problem. The motion planner was tested for obstacle avoidance, however,

as this was not the focus of the study the algorithm was not modified with that in mind. Results

show that the planner chose a trajectory to avoid the obstacle. Once the obstacle was avoided

the planner was able to choose the trajectory which returns to the center of the road. Differential

dynamic programming considers the vehicle model in the optimization and ensures a kinematically

feasible trajectory for the vehicle. Although obstacle avoidance was not the focus of the study, the

algorithm was able to avoid the obstacle and navigate back on track.

Marino et al. (2009), presented a nested proportional integrating derivative (PID) steering con­

trol for lane­keeping in vision­based AV. This systemwas designed to perform path following in the

case of roads with an uncertain curvature. The researchers compared the results from simulations

using the nested PID system with the MPC used in in the CarSim environment and found that MPC

performed slightly better. According to Du et al. (2016), the predictive ability ofMPC distinguishes

itself from the other control methods. One of the major drawbacks of typical approaches such

as path planning is that these methods leave the vehicle dynamics out of consideration. On the

other hand, Chu et al. (2012), presented local path planning for off­road autonomous driving

with avoidance of static obstacles. Using a real­time path­planning algorithm, the optimal path

4



for off­road autonomous driving with static obstacles avoidance was achieved. This provides a

design framework for local path planning that uses the global route and local environmental data.

It illustrates how with a predefined route, path planning is capable of obstacle avoidance, however,

because the path is predefined, there is no dynamic capability of the system to respond to new

obstacles on its own.

2.2 MPC Theory

The general concept of receding horizon control and model predictive control (MPC) can be traced

back to the 1960s (Morari and Lee, 1997). Over the years interest in the field has been growing

and expanding attracting many researchers around the world. MPC has applications in many areas

of engineering from chemical engineering to mechanical engineering even spanning across to civil

engineering (Guay et al., 2017). At its core, MPC is a framework for implanting existing tools

of optimal control. MPC is considered a practical approach that is suited to control dynamical

constrained systems. It can to handle input and output constraints by directly incorporating it into

the optimization problem. It is also considered a control method which explicitly uses a model of

the system to predict its state at future time instant. One of the major advantages of MPC is that it

is considered straight forward to formulate the models based on well­understood concepts. It also

inherently explicitly handles constraints; this allows for the development time to be much shorter

than for competing advanced control methods. Overall, it is considered easier to maintain since

that changing the model or specs does not require complete redesign. As such, MPC is generally

chosen because of its capability of systematically incorporating nonlinearities. These qualities are

extremely important for motion boundary formation for AV.

2.2.1 Linear MPC

When the predicted state and output trajectory can be expressed as a linear function of the current

state this is a case of a linear MPC. Furthermore, the resulting optimization problem can either be
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a case of linear or quadratic programming. This is determined by the state of the cost function.

As such, both linear programming and quadratic programming problems can be efficiently solved

using high­performance solvers. There have been many research studies which have utilized this

method of linear MPC as it relates to obstacle avoidance.

Jiang et al. (2017), presents an approach for real­time obstacle avoidance of AV. An MPC

scheme based on convex quadratic programming (CQP) is developed to generate safe trajectories.

To reduce the computational burden in optimizing the performance index of MPC, linear time­

varying MPC is adopted and a unique single dimension artificial potential fields (SDAPF) method

to utilize the obstacle information is proposed. AV with this proposed method can track the desired

path if there is no obstacle on it and avoid both static and dynamic obstacles if the path is occupied

(Jiang et al., 2017). Simulation results show the validity of the approach and its superior real­time

performance, which is critical to AV. Turri et al. (2013), presents a linear MPC formulation that

specifically addresses the lane­keeping and obstacle avoidance problems for a passenger car driving

on low curvature roads. The linearity of themodel and convexity of the constraints is used to change

the MPC problem to resemble a set of quadratic subproblems. The low computational complexity

of each subproblem allows the researchers to solve the MPC problem in real­time while using

long prediction horizons. Tests for obstacle avoidance were performed and results showed that the

vehicle avoids the obstacle and returns to the road centerline with a low overshoot (Turri et al.,

2013). The researchers also note that the performance is like that seen in simulations. However, it

is important to note that the simulation scenario with multiple obstacles was not considered in the

experiments due to the lack of testing time.

2.2.2 Nonlinear MPC

Nonlinear MPC makes it impossible to express exact prediction as a linear function of current

state and input trajectory. As a result, even if the cost function was linear or quadratic, the re­

sulting optimization problem would be nonlinear. The cost function should be formulated in

such a way that its minimization leads to the fulfillment of control objectives. In the case of
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obstacle avoidance, for example, the cost function would need to be formulated so that when it

is optimized the objective of tracking of reference variables is achieved. Compared to linear MPC,

nonlinear MPC is computationally demanding and as expected a completely different approach to

the optimization must be taken. Depending on the target application, nonlinear MPC has many use

cases in the area of AV, more specifically, motion boundary formation for AV. Huang and Panagou

(2017), presented research that supports using nonlinear model predictive control approach for

automated vehicles turning and merging automatically. Quirynen et al. (2018), outlines embedded

optimization algorithm for steering in AV based on nonlinear model predictive control. The purpose

of the research by Rafaila and Livint, (2015), is to present a nonlinear model­based predictive

control of autonomous steering for ground vehicles. These examples of research using nonlinear

MPC pave the way for its application in motion planning research.

As an expansion of motion boundary formation and motion planning, we can consider obstacle

avoidance of AV. Using similar principles, nonlinear MPC controllers are used to solve obstacle

avoidance problems. Abbas et al. (2017), focused on implementing an MPC based trajectory

controller for obstacle avoidance in an autonomous ground vehicle. Interestingly, the model uses

a simplified bicycle model within the control, but the researchers validated the model by imple­

menting it in a fully nonlinear CarSim model where obstacle avoidance was tested. This controller

is tested under several constrained scenarios including static obstacle avoidance and avoidance

of obstacles with more complex constraints. The results show that the proposed method was

able to handle the dynamic trajectory changes and unanticipated obstacles at normal road speeds.

Similarly, Liu et al. (2018), presents the formulation of nonlinear MPC for obstacle avoidance in

high speed, large size autonomous ground vehicles (AVG). These vehicles have a high center of

gravity that operates in unstructured environments. Unstructured environments refer to the fact that

there are no lanes or traffic rules to follow. This presented a challenge for the researchers because

other MPC formulations which are specific to autonomous passenger vehicles could not be used

in this context. As such, the researchers needed to develop a new MPC formulation to navigate an

AVG and avoid obstacles while doing so safely.
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The main goal of this study was to develop a model that will allow the AVG to move from its

initial position to a specified target location as fast and as safe as possible. As this was expected to

be used for military applications, travel time was a priority and was expected to be minimized. The

nonlinearMPC obstacle avoidance algorithm developed for this research is based on two parts. The

Lidar data processor and the control command generator (Liu et al., 2018). Lidar was used to locate

the obstacles of varying size and shapes within the prediction horizon. The algorithm together with

the plant forms a closed­loop system. The control command generator consists of a multiphase

optimal control problem for each feasible opening which is solved in parallel. Two different vehicle

models were used to predict vehicle trajectories. Simulation results show that themethod developed

can yield a satisfactory performance in a variety of scenarios. As this is a specific model created

for and AVG and the unstructured environments it was tested in, this specific model will maybe

not be applicable for autonomous passenger vehicles. As noted by the researchers, future research

directions include moving obstacles and pursuing real­time implantation of the algorithm. It would

be interesting to see this model applied to autonomous passenger vehicles to determine how results

are affected based on the environment in which the vehicles are tested.

The dynamic vehiclemodel that is used in the nonlinearMPCmethod can accommodate varying

levels of complexity. This complexity can range based on the type of vehicle model utilized,

from a simplified single­track bicycle models to being combined with a four­wheel model. This

combined with the choice of vehicle dynamics and environment can increase the overall complexity

of the model. Yoon et al. (2009), presents a model predictive control approach for trajectory

generation of unmanned ground vehicles (UGVs) combined with a tire model. An optimal tracking

problem while avoiding collision with obstacles is formulated in terms of cost minimization under

constraints. Information on obstacles is incorporated online in the nonlinear model­predictive

framework as they are sensed within a limited sensing range. The overall problem is solved online

with nonlinear programming. For the local path regeneration upon detecting new obstacles, the cost

function is augmented using the obstacle information in two methods. The first method uses the

distance from the UGV to the nearest detected obstacle, and the second method uses the parallax
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information from the vehicle about the detected obstacles. Simulation results in cluttered and

dynamic environments show that the modified parallax method effectively reflects the threat of

the obstacles to the UGV considering the dimension and state variables of the vehicle, showing

clear improvements over the distance­based methods. Similarly, Park et al. (2009), focused on an

obstacle avoidance algorithm for ground vehicles based on nonlinear MPC. However, the approach

taken by the researchers was to separate the MPC based trajectory generation from the tracking

controller. This decision was made because of the difficulties in the calculation of optimal solutions

using complex nonlinear models. The trajectories were generated so that they were compatible with

the vehicle dynamics. The obstacle avoiding trajectories were calculated using the steepest gradient

descentmethod. The actual plant used in the simulationswas the CarSim vehiclemodel. Simulation

results show that the generated trajectories are compatible with the full non­linear vehicle dynamics.

Furthermore, satisfactory performance in terms of collision avoidance was shown in both static and

dynamic environments.

Over the last several decades, MPC technology has evolved into a mature state (Stewart et

al., 2010). Principles such as closed­loop properties are well documented and understood. The

use of nonlinear models in MPC has motivated the possibility of improving control by refining

the quality of the forecasting ability. This has encouraged the use of novel techniques such as

implement new ways to approach and solve the optimization problem. Du et al. (2016), proposes

a nonlinear MPC controller which controls the vehicle velocity and steering simultaneously. The

optimization solver is based on generic algorithms which allow for a more flexible structure for

MPC formulation. According to the researcher, the cost function and constraints can be designed

in a more accurate meaningful and direct way when using the genetic algorithm. Results from both

simulation and on­field test showed that nonlinear MPC developed allowed the vehicle to follow

the road centerline accurately and consistently. Moreover, the results also indicate that passenger’s

safety and comfort are taken into consideration. Using the genetic algorithm as the optimization

solver and improve the results of theMPC revealed that the proposed GA based nonlinear MPC can

be suitable. It would be interesting to see how a GA based nonlinear MPC can be used for obstacle
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avoidance and howmuch of an effect it can have on the overall results. On the other hand, Cho et al.

(2018), presented a different method to avoid obstacles in real­time using an obstacle dependent

gaussian potential field (ODG­PF). This method works by first receiving distance data from the

range sensors and then creating a Gaussian potential field from objects within the threshold range.

The approach used by the researchers differs from the classical potential field­based methods used

in other research studies. One major difference is that ODG­PF defines obstacles from range sensor

data and then calculates the repulsive fields of the obstacles instead of putting the range sensor data

into the equation.

Another difference can be found in the way ODG­PF treat the calculation of the repulsive and

attractive fields. The repulsive and attractive fields are functions of the angle and as such are not

vectors. This allows the system to be robust and adaptive to small changes in the environment. As

a result, the system can avoid both static and moving obstacles without any adjustments. Based

on results from simulation, the researchers conclude that vehicle movements using ODG­PF were

stable. In the performed moving obstacle scenarios, the vehicle using it did not collide with any of

the static or moving obstacles (Cho et al., 2018). Another advantage of the system is that it does

not need to perform activities such as image processing or computer vision processing which is

considered time consuming. Based on this, the researchers suggest that ODG­PF is relatively light

and as a such can be easily implanted in a real­time system. This is an interesting approach used by

the researchers in their novel approach to obstacle avoidance. It is important to point out that the

testing vehicle used was an unmanned solution ERP42v1 without a braking system. This was an

ideal vehicle for the purposes of ODG­PF however, more testing would be required using an actual

AV to determine if the same results can be achieved.

2.3 MPC Formulation

As mentioned earlier, an MPC controller is based on an iterative, constrained optimization of the

mode. This basically means that at each discrete sampling time the model is sampled and at that
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point the actual state is measured or estimated. At this stage the performance of the controller is

expressed by the cost function. According to Takács and Rohaľ­Ilkiv (2012), the predicted cost

function gives a numerical indicator of the quality of control. To obtain the optimal sequence of

inputs the cost function must be minimized. This is performed at each sampling interval using

a numerical optimization algorithm. This sequence of repeated measure, predict and optimize is

known as receding horizon control.

Figure 2.1: Schematic representation of the model predictive control algorithm (Takács and Rohaľ­Ilkiv, 2012)

Fig 2.1, describes the typical MPC algorithm. In the diagram an MPC is illustrated as a form

of feedback control algorithm where a dynamic optimization process determines inputs based on

the measurements. With resepect to motion boundary formation for AV, the portion of the road

which is seen while driving is represented by the prediction horizon in the MPC model. With a

limited amount of the road ahead. the MPC will continuously update the decisions in real time

using the latest prediction horizon. According to Takács and Rohaľ­Ilkiv (2012), the MPC horizon

is receding forward in time. Maintaining a trajectory within a boundary or avoiding obstacles can be

considered a constraint the MPC would need to overcome. As such the addition of such constraints

can complicate the situation and affect the ability of the MPC to function properly. On the other

hand, using nonlinear MPC with boundaries as constraints can allow for successful application of

motion boundary formation.
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The development of an MPC is generally centered around three main areas:

1. The predictive model

2. The optimal control problem

3. The cost function

2.3.1 Prediction Model

The quality of the model largely determines the success of the MPC. If the model is not accurate

in its parameters or structure the actual performance of the system will behave incorrectly. A

predictive controller iterates the state­space model several steps ahead in time to determine how

the system will behave. Adjustments are made to the inputs at the current time accordingly at each

sampling instant. If we consider nonlinear continuous­time state­space models, this model class is

given by a set of ordinary differential equation.

x(t) = f(x (t), u(t) ) (2.1)

With an algebraic output equation

y(t) = g(x(t), u(t) ) (2.2)

Where x(t) is system state at time t, u(t) is control input at time t and y(t) is system output. Both

equations are given in themost general formwhich allowsmany real­world systems to be described.

The Jacobian matrix of continuous time state space models given by equation Eq 2.1 and Eq

2.2 is useful in the formulation of optimization problem that must be solved. The Jacobians are
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defined as:

∇xf = ∂f

∂x
=



∂f1
∂x1 . . . ∂f1

∂xn

... ...

∂fn
∂x1 · · · ∂fn

∂xn


(2.3)

And

∇uf = ∂f

∂u
=



∂f1
∂u1 . . . ∂f1

∂um

... ...

∂fn
∂u1 · · · ∂fn

∂um


(2.4)

2.3.2 Cost Function Description

As mentioned earlier, the importance of the cost function lies in its ability to be an indicator of the

degree of optimality of a dynamic model. A cost function needs to be minimized or maximized de­

pending on the intended use. According to Takács and Rohaľ­Ilkiv (2012), the degree of optimality

can express how close the model performance is to the desired output levels. The most basic form

of a cost function is the Time­Optimal cost function in which the system moves from some initial

state x(t0) to final state x(tf) in the minimum amount of time. This generally expressed as:

J =
∫ tf

t0
dt = tf − t0 = t∗ (2.5)

The equation, Eq 2.5 , represents the most basic form of a cost function, however, the cost

function can become more complex and be expressed as a quadratic function. in this form the

terms of states and control are squared. the structure of the quadratic cost function signifies the

type of problem being solved. An optimal solution depends on the values of states, values of

control, variables and form of the cost function.
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2.3.3 Constraint Function Description

The real power of MPC lies in computing optimal control actions for systems, which incorporate

constraints. Instead, the optimization procedure must be performed, in between samples. Simplest

constraints are linear and have the following form:

Umin ≤ u(t) ≤ Umax

Xmin ≤ x(t) ≤ Xmax

(2.6)

Where Umax and Umin, Xmax and Xmin are the upper and the lower limits on control input and

states respectively.

2.4 Solution of the Optimization Problem

According to Guay et al. (2017), there has been a significant development in the area of numerical

methods for the online solution of dynamic optimization problems. Early MPC implementations

generally made use of sequential quadratic programming solvers. Solving generally involves two

elements: the search for the optimal trajectory and the solution to generate the corresponding state

trajectory. Carvalho et al. (2013), presents the design of a controller for an autonomous ground

vehicle. Their goal was to have a system which tracks the lane centerline while avoiding collisions

with obstacles. To achieve this, the researchers relied on a nonlinear MPC framework together with

a four­wheel vehicle model. The inputs used from the four­wheel vehicle model were from the front

steering angle and the braking torques at each of the four wheels. In their proposed approach, the

researchers tested a customized sequential quadratic programming (SQP) algorithm. SQP involves

the iterative solution of a convex approximation to the original problem (Carvalho et al., 2013), the

nonlinear vehicle dynamics are linearized analytically and convex approximation to the collision

avoidance constraints are obtained. The researchers found that the proposed approach allows for

the use of longer prediction horizons when compared to those that are used with general nonlinear
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solvers. Results from simulation experiments show the ability of the controller to keep the vehicle

safe and avoiding multiple stationary and dynamic obstacles.

2.4.1 Sequential Quadratic Programming

SQP is an iterative method for solving nonlinearly constrained optimization problems. As with

most optimization methods SQP is not a single algorithm but rather a conceptual method from

which numerous specific algorithms have evolved. It is expected to find the global optimum for

convex problems, however, if the optimization problem is not convex, it converges to a locally

optimal point.

Suppose we have a nonlinear optimization problem in a form:

min
x

f(x)

x subject to : h(x) = 0

g(x) >
−

0

(2.7)

Where x is a vector of optimization variables of the objective functions and h equality constraint

function and g inequality constraint function respectively.

Similar SQP problems can generally be found in the form of nonlinear problems and its appli­

cations. Its greatest strength is its ability to solve problems with nonlinear constraints. As such, it is

expected that there is at least one constraint function. The basic idea of SQP is to model nonlinear

problems at a given approximate solution by a quadratic programming subproblem and then to use

the solution to the subproblem to construct a better approximation. This process is treated to create

a sequence of approximations that it is hoped will converge to a solution.
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2.4.2 Linear Quadratic Regulator

The linear quadratic regulator is a well­known method that provides optimally controlled feed­

back gains and is considered a special case of the generic linear­quadratic problem. One of the

main problems with LQR is its inability to deal with constraints (Takács and Rohaľ­Ilkiv, 2012).

Compared to SQP, LQR optimizes in a fixed time window, whereas SQP, for example, optimizes

in a receding time window.as a result, a new solution is computed often however, LQR uses the

single optimal solution for the whole­time horizon. According to Takács and Rohaľ­Ilkiv (2012),

SQP typically solves the optimization problem in smaller time windows than the whole horizon

and hence may obtain a suboptimal solution. However, because SQP makes no assumptions about

linearity, it can handle hard constraints as well as migration of a nonlinear system away from its

linearized operating point, both of which are downsides of LQR.

2.5 Vehicle Models

NonlinearMPC strongly relies on a mathematical model of the vehicle. Having a descriptive model

is hence fundamental to ensure good control and estimation of performance. According to Kong

et al. (2015), the main components of a modern AV are localization, perception and control. The

kinematic and dynamic models are the two general models which are used together with MCP to

simulate AV model­based control design. The kinematic model provides a mathematical descrip­

tion of the vehicle motion without consideration for forces that affect motion. The most popular

model is known as the bicycle mode Fig (2.2). The major assumptions used in the development of

the kinematic model is that the velocity vectors are in the direction of the orientation of the front

and rear wheels respectively. According to Rajamani (2005), this is equivalent to assuming that

the slip angles at both wheels are zero.

This is acceptable for vehicles traveling at low speeds and is considered a useful model for very

low­speed applications such as vehicle control for automated parking (Rajamani, 2005). At higher

vehicle speeds the assumption that the velocity at each wheel is in the direction of the wheel can
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Figure 2.2: Kinematics of lateral vehicle motion (Rajamani, 2005)

no longer be made. As a result, a dynamic model for lateral vehicle motion must be developed.

These dynamic models take into consideration the lateral tire forces and slip angles. Using the

fundamentals and assumptions of these model’s other vehicle models can be derived based on

vehicle dynamics.

Kong et al. (2015), study the use of kinematic and dynamic vehicle modes for MPC design

used in autonomous driving. According to Kong et al. (2015), published MPC controllers use

dynamic vehicle models combined with linear tire models (Carvalho et al., 2013). This is in line

with the literature review for this report. Kinematic vehicle models are seldom used. One of the

glaring disadvantages of this approach is that it is considered computationally intensive and any

tire model becomes singular at low vehicle speeds. This limits its application for stop and go

scenarios. The authors propose to address both disadvantages by using the kinematic bicycle model

to motivate MPC controller design. The results showed that the kinematic model has better forecast
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errors compared to the dynamic model at varying times. Furthermore, experimental tests for the

sinusoidal and winding track suggest that the kinematic model can track reference trajectories well

at lower speeds. However, the performance dropped significantly at higher speeds where the tire

model would be more appropriate.
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3 METHODOLOGY

In this section, the formulation of the nonlinear MPC is introduced for curvilinear motion planning

for AV. When dynamics cannot be accurately modeled by linear models, nonlinear models may

be essential to capture the full dynamics of the vehicle model to be controlled Nonlinear MPC is

an advanced control technique that relies on the system model to predict the model trajectory and

minimize its deviation from a given reference. The full nonlinearity of the model can be considered

by the nonlinear MPC and constraints depending on both states and controls can be easily enforced

in the problem formulation. The core strength of MPC is that it is considered a form of optimal

control that uses a receding horizon structure.

Nonlinear MPC consists of solving at every time instant the dynamic optimization problem.

The problem of estimating the current state given a set of measurements can be formulated as an

optimization problem that can consider the full model nonlinearities and gives the opportunity

to enforce constraints. At each sampling time step, starting at the current state, an open­loop

optimal control problem is solved over a finite prediction horizon. The optimal control input is

applied to the system to propagate the system dynamics. At the next time step, a new optimal

control problem is solved over a shifted horizon based on the current state of the system. The

optimal solution requires a dynamic model of the system, enables input and output constraints to

be explicitly included and minimizes a cost function. This allows the vehicle to detect and avoid

obstacles by adjusting the trajectory on the fly. A workflow diagram of the computation process

implanted in the MPC framework is shown in Fig 3.1. The loop in the diagram corresponds to

the iteration of the prediction horizon time. In this project the search for the optimal solution is

accelerated using the Taylor series during the linearization of the functions.
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Figure 3.1: Flowchart of nonlinear MPC algorithm as it is used in model simulation
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3.1 Vehicle Modeling

Nonlinear MPC strongly relies on a mathematical model of the vehicle. Having a descriptive

model is hence fundamental to ensure good control and estimation of performance. This section

introduces the vehiclemodels used for the control design. The kinematicmodels of four (4) vehicles

are proposed; (i) single vehicle, (ii) single long truck, (iii) tractor­semitrailer vehicle and (iv)

tractor­semitrailer vehicle with semitrailer’s steered axle. The kinematic model of vehicle motion

is developed to track the motion of the vehicle in the fixed coordinate system with considering

the forces causing the motion regardless of forces and torque that causes it. In this project the

kinematic bicycle model serves as the basis for the other models.The kinematic bicycle model is

a classic model that is exceptional at capturing vehicle motion in normal driving conditions. As

a result, it has long been used as a suitable representation for passenger vehicles because of its

simplicity and nonholonomic constraints of a car. The bicycle model used in this project is based

on the front wheel steering model. This was chosen because the front wheel orientation can be

controlled relative to the heading of the vehicle in a 2D plane. The front­wheel represents the front

right and left wheels of the vehicle. Similarly, the rear wheel represents the rear right and left

wheels of the vehicle.

To analyze the kinematics of the bicycle mode, the reference point was placed at the center

of the rear axle. The identification of the reference point is an important step, this is because

depending on its placement the resulting kinematic equations are changed respectively. As a result

this will influence the MPC formulation. Using the rear axle as the reference point, the heading of

the bicycle will be considered to be θ, and L will represent the length between the two wheel axis

(Fig 3.2). The velocity is denoted by v and points in the same direction as each wheel. One of the

assumptions made when using this model is the no slip condition. The no slip condition requires

that the wheel cannot move laterally or slip longitudinally. As a result ω, the rotation rate of the

model is equal to the velocity over the instantaneous center of rotation radius R.
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From the similar triangles formed by L and R, and v and ϕ it can be assumed that tan(ϕ) is equal

to L over the instantaneous turn radius R. By combining both equations we can find the relation

between the rotation rate and the vehicle ω, and the steering angle as ω = v · tan (θ)/L (Eq

3.3). Based on this model configuration, the velocity components of the reference point in the x

and y direction are equal to the forward velocity v·cos(θ) and sin(θ) respectively. Finally, it is not

possible to instantaneously change the steering angle of a vehicle from one extreme of its range to

another.The kinematic models can be formulated with four states: x , ω , θ , and the steering angle

ϕ. with that the kinematic bicycle model is now complete.

The kinematic bicycle model takes as inputs the velocity and the steering rate ϕ. The state

of the system, including the positions XC, YC, the orientation θ, and the steering angle ϕ, evolve

according to our kinematic equations from the model, which satisfy the no slip condition. We can

now use this model to design kinematic steering MPCs. As mentioned earlier, this serves as the

base for the other vehicle models used in this project.

3.1.1 Single Vehicle

In the kinematic bicycle model of a biaxial vehicle, it is assumed that the center of rotation is formed

by the intersection of the perpendiculars drawn to the planes of wheels’ rotation. The dynamics of

the model can be seen in (Fig. 3.2). It is assumed that the angular velocity of rotation is relative to

the instantaneous center of velocity O:

ω = v

R
(3.1)

If we consider that the minimum turning radius R can be determined by the right triangle with the
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vertex O from the ratio of the steering wheel’s rotation angle θ

tan (θ) = L/R (3.2)

When

ω = v · tan (θ)/L (3.3)

Figure 3.2: Kinematics of curvilinear motion of single passenger vehicle (Kong et al., 2015)

In this method, the bicycle model is linearized at the initial point and is used as the internal model

for the MPC controller. To set up this problem we introduce the model state parameters. The model

state parameters consist of: x ­ vehicle longitudinal displacement, y ­ vehicle lateral displacement,
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ϕ ­ vehicle yaw angle, θ ­ vehicle’s front axle steering angle, v ­ vehicle velocity. The derivatives

are given by vx ­ vehicle longitudinal velocity along global x­coordinate, vy ­ vehicle lateral velocity

along global y­coordinate, ωϕ ­ vehicle yaw rate. The control parameters used in this model are ωθ ­

vehicle’s front axle steering rate, a ­ vehicle longitudinal acceleration. Thus, the control parameters

are longitudinal acceleration and the angular velocity of the steered wheel rotation. Also input the

vector of model parameters p (p = L), where L is the vehicle wheelbase.

Then, in the vector form:

q =



x

y

ϕ

θ

v



q̇ =



vx

vy

ωϕ

θ̇

v̇



q̇ = f (q (t) ,u (t) ,p) u =


ωθ

a

 f (q,u,p) =



v · cos (ϕ)

v · sin (ϕ)

v · tan (θ)/L

ωθ

a



(3.4)

Reduce the nonlinear function f(q,u,p) to a more convenient form, separating states and controls:

f (q (t) ,u (t) ,p) = f (q,u,p) = φ (q,p) +B · u (3.5)
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Where

φ (q,p) = v ·



cos (ϕ)

sin (ϕ)

tan (θ)/L

0

0



, B =



0 0

0 0

0 0

1 0

0 1



(3.6)

Thus

q̇ = φ (q,p) +B · u (3.7)

Or

d

dt



x

y

ϕ

θ

v



= v ·



cos (ϕ)

sin (ϕ)

tan (θ)/L

0

0



+



0 0

0 0

0 0

1 0

0 1



·


ωθ

a

 (3.8)

Jacobian Matrix: To speed up the search for the optimal solution, as well as for the possibility

of using adaptive MPC, consider the linearization of (Eq. 3.7) through the expansion in a Taylor

25



series with the first linear terms in the vicinity of point O. In vector form

q̇0 (t) + ∆q̇ (t) = f (q0 (t) ,u0 (t) ,p) +

+ ∂f(q(t),u(t),p)
∂q

∣∣∣ q0
u0

· ∆q (t) + ∂f(q(t),u(t),p)
∂u

∣∣∣ q0
u0

· ∆u (t) +O2

(3.9)

Given that

q̇0 (t) = f (q0 (t) ,u0 (t) ,p) (3.10)

Obtain,

∆q̇ (t) = ∂f (q (t) ,u (t) ,p)
∂q

∣∣∣∣∣ q0
u0

· ∆q (t) + ∂f (q (t) ,u (t) ,p)
∂u

∣∣∣∣∣ q0
u0

· ∆u (t) (3.11)

Where

A (t) = ∂f (q (t) ,u (t) ,p)
∂q

∣∣∣∣∣ q0
u0

B (t) = ∂f (q (t) ,u (t) ,p)
∂u

∣∣∣∣∣ q0
u0

(3.12)

Then the linearized equation in increments

∆q̇ = A · ∆q +B · ∆u (3.13)
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Matrix A is Jacobian, which is calculated as:

J =



∂f1
∂q1

· · · ∂f1
∂qn

... . . . ...

∂fn

∂q1
· · · ∂fn

∂qn


(3.14)

Substituting Eq.(3.4) in Eq.(3.14), yield

A =



0 0 −v · sin (ϕ) 0 cos (ϕ)

0 0 v · cos (ϕ) 0 sin (ϕ)

0 0 0 v · (tan2 (θ) + 1)/L tan (θ)/L

0 0 0 0 0

0 0 0 0 0



; B =



0 0

0 0

0 0

1 0

0 1



(3.15)

3.1.2 Single Long Truck

Unlike the kinematic bicycle model of a biaxial vehicle (Fig.3.2), it is assumed that the minimum

turning radius of the vehicle with the additional rear steered axle is floating and depends on the ratio

of the rotation angles of the front and rear axles’ steered wheels (Fig.3.3). The angular velocity of

rotation relative to the instantaneous center of rotation O is determined according to Eq.(3.1).

Furthermore, in this model, the minimum turning radius R can be determined in two ways via
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Figure 3.3: Kinematics of curvilinear motion of single truck with steered rear axle (Espinosa et al., 1998)

right angle triangles with vertexO. From the ratio of the steering angle θ of the front steered wheel:

tan (θ) = L1/R (3.16)

From the ratio of the steering angle ζ of the rear steered wheel:

tan (ζ) = l1/R (3.17)
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Then

L1 = R · tan (θ)

l1 = R · tan (ζ)

L1 − l1 = R · (tan (θ) − tan (ζ))

(3.18)

Given that the l1 coordinate is negative relative to the R radius entry point

L1 − l1 = L1 − (− |l1|) = L1 + l1 = L (3.19)

Thus,

R = L/(tan (θ) − tan (ζ)) (3.20)

The expression for the angular velocity can be written as:

ω = v

R
= v · (tan (θ) − tan (ζ))

L
(3.21)

Similarly to the previous model, we can now introduce the state parameters, derivatives and

control parameters. The state parameters are defined by, x ­ vehicle longitudinal displacement, y

­ vehicle lateral displacement, ϕ ­ vehicle yaw angle, θ ­ vehicle’s front axle steering angle, ζ ­
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vehicle’s rear axle steering angle, v ­ vehicle velocity.

The derivatives are defined by, vx ­ vehicle longitudinal velocity along global x­coordinate, vy

­ vehicle lateral velocity along global y­coordinate, ωθ ­ vehicle yaw rate.

Also, the control parameters are defined by, ωθ ­ vehicle’s front axle steering rate, ωζ ­ vehicle’s

rear axle steering rate, a ­ vehicle longitudinal acceleration. Thus, the control parameters are

longitudinal acceleration and the angular rotation velocities of the steered wheels of the front and

rear axles. Vector of model parameters p (p = L), where L is the vehicle wheelbase. Then, in vector

form:

q =



x

y

ϕ

θ

ζ

v



q̇ =



vx

vy

ωϕ

θ̇

ζ̇

v̇



u =



ωθ

ωζ

a


q̇ = f (q (t) ,u (t) ,p) (3.22)

f (q (t) ,u (t) ,p) = f (q,u,p) = φ (q,p) +B · u (3.23)
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Where

φ (q,p) = v ·



cos (ϕ)

sin (ϕ)

(tan (θ) − tan (ζ))/L

0

0

0



B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1



(3.24)

Thus,

q̇ = φ (q,p) +B · u (3.25)

Or

d

dt



x

y

ϕ

θ

ζ

v



= v ·



cos (ϕ)

sin (ϕ)

(tan (θ) − tan (ζ))/L

0

0

0



+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1



·



ωθ

ωζ

a


(3.26)
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Jacobian. Similarly to Eqs.(3.9­3.14), get the linearization of the equation (3.26). Denote,

cϕ = cos (ϕ) sϕ = sin (ϕ) tθ = tan (θ) tζ = tan (ζ) (3.27)

Then a 6×6 matrix A has the following nonzero elements:

A1,3 = −v · sϕ, A2,3 = v · cϕ,

A3,4 = v ·
(
t2θ + 1

)
/L , A3,5 = −v ·

(
t2ζ + 1

)
/L ,

A1,6 = cϕ, A2,6 = sϕ, A3,6 = (tθ − tζ)/L

(3.28)

*Note: Matrix B remains without changes.

3.1.3 Tractor Semitrailer Vehicle

Now, consider the kinematic bicycle model of a two­unit vehicle. The rotation center is assumed to

be formed by the intersection of perpendiculars drawn to the rotational planes of the wheels (Fig.

3.2). In this case (Fig. 3.4), the angular velocity of tractor’s rotation relative to the instantaneous

center of velocities O will be ω1, and the angular velocity of the semitrailer ω2:

ω1 = v1

R1
, ω2 = v2

R2
(3.29)

At this stage we can introduce the model state parameters, derivative parameters and control

parameters. The state parameters are given by, x ­ vehicle longitudinal displacement, y ­ vehicle

lateral displacement, ϕ ­ vehicle yaw angle, ψ ­ vehicle articulation angle, θ ­ vehicle’s front axle

steering angle, v ­ vehicle velocity. The derivatives are given by, vx ­ vehicle longitudinal velocity
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Figure 3.4: Kinematics of curvilinear motion of an articulated vehicle (Ritzen et al., 2016, Werner et al., 2012)

along global x­coordinate, vy ­ vehicle lateral velocity along global y­coordinate, ωϕ ­ vehicle yaw

rate, ωψ ­ vehicle articulation rate. Finally, the control parameters for this model are ωθ ­ vehicle’s

front axle steering rate, a ­ vehicle longitudinal acceleration. Thus, the control parameters are

longitudinal acceleration and the angular velocity of the front axle’s steered wheel. The parameters:

L1 ­ tractor wheelbase, e1 ­ fifth wheel shift relative to the tractor’s rear axle (positive if within

wheelbase, negative if shifted behind the rear axle), L2 ­ semitrailer wheelbase (from the coupling

center to the middle axle).
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Considering that ψ = ϕ1 ϕ2,dψ/dt = ω1 ω2 ,in vector format:

q =



x

y

ϕ

ψ

θ

v



p =



L1

e1

L2


q̇ =



vx

vy

ωϕ

ψ̇

θ̇

v̇



u =


ωθ

a

 q̇ = f (q (t) ,u (t) ,p) (3.30)

The angular velocity of the leading unit (tractor) is determined similarly to Eq.(3.3) replacing

L with L1. For the semitrailer position it could be written:

tan (ψ) = L2 − e1/cos (ψ)
R2

(3.31)

Then,

ω2 = v2

R2
= v2 · tan (ψ)
L2 − e1/cos (ψ)

= v1 · cos (ψ) · tan (ψ)
L2 − e1/cos (ψ)

= v · sin (ψ)
L2 − e1/cos (ψ)

(3.32)
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As a result, similarly to Eq.(3.23),

φ (q,p) = v ·



cos (ϕ)

sin (ϕ)

tan (θ)/L1

tan (θ)/L1 ­ sin(ψ)
L2−e1/cos(ψ)

0

0



B =



0 0

0 0

0 0

0 0

1 0

0 1



(3.33)

Or

d

dt



x

y

ϕ

ψ

θ

v



= v ·



cos (ϕ)

sin (ϕ)

tan (θ)/L1

tan (θ)/L1 ­ sin(ψ)
L2−e1/cos(ψ)

0

0



+



0 0

0 0

0 0

0 0

1 0

0 1



·


ωθ

a

 (3.34)

Jacobian. Similarly to Eqs.(3.9­3.14), get the linearization of the equation (3.26). Denote,

cϕ = cos (ϕ) , sϕ = sin (ϕ) , cs = cos (ψ) , ss = sin (ψ) , tθ = tan (θ) (3.35)
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Then, the matrix A of 6×6 dimension has following nonzero elements:

A1,3 = −v · sϕ, A2,3 = v · cϕ

A4,4 = −v ·

 cψ
L2 − e1/cψ

+
e1 · s2

ψ

c2
ψ · (L2 − e1/cψ )2


A3,5 = A4,5 = v ·

(
t2θ + 1

)
/L1

A1,6 = cϕ, A2,6 = sϕ, A3,6 = tθ/L1

A4,6 = tθ/L1 − sψ/(L2 − e1/cψ )

(3.36)

*Note: Matrix B remains without changes.

3.1.4 Tractor­Semitrailer Vehicle with Semitrailer’s Steered Axle

This model is based on the previous one with the additional state parameter ζ ­ semitrailer’s middle

axle steering angle, and additional control parameter ωζ ­ semitrailer’s middle axle steering rate

(Fig.3.5).
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Figure 3.5: Kinematics of curvilinear motion of an articulated vehicle with semitrailer’s steered axle (Ritzen et al., 2016, Werner et al., 2012)

State­space components:

q =



x

y

ϕ

ψ

θ

ζ

v



p =



L1

e1

L2


q̇ =



vx

vy

ωϕ

ψ̇

θ̇

ζ̇

v̇



u =



ωθ

ωζ

a


q̇ = f (q (t) ,u (t) ,p) = φ (q,p)+B ·u (3.37)
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The radius R2 may be determined from two conditions, considering Eq.(3.31):

l′2 = R2 · tan (ζ)

L′
2 − e1/cos (ψ) = R2 · tan (ψ)

(3.38)

Then

L′
2 − l′2 − e1/cos (ψ) = R2 · (tan (ψ) − tan (ζ)) (3.39)

Considering the coordinate l’2 is negative relative to a cross point of radius R2:

L′
2 − l′2 = L′

2 − (− |l′2|) = L′
2 + l′2 = L2 (3.40)

Thus,

R2 = L2 − e1/cos (ψ)
tan (ψ) − tan (ζ)

(3.41)

The expression for angular velocity ω2 may be derived in a view:

ω2 = u2

R2
= v1 · cos (ψ)

R2
= v · cos (ψ) · (tan (ψ) − tan (ζ))

L2 − e/cos (ψ)
= v · sin (ψ − ζ)

(L2 − e/cos (ψ) ) · cos (ζ)
(3.42)
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As a result, similarly to Eq.(3.33),

φ (q,p) = v ·



cos (ϕ)

sin (ϕ)

tan (θ)/L1

tan (θ)/L1 ­ cos(ψ)·(tan(ψ)−tan(ζ))
L2−e/cos(ψ)

0

0

0



B =



0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1



(3.43)

Or

d

dt



x

y

ϕ

ψ

θ

ζ

v



= v ·



cos (ϕ)

sin (ϕ)

tan (θ)/L1

tan (θ)/L1 ­ cos(ψ)·(tan(ψ)−tan(ζ))
L2−e/cos(ψ)

0

0

0



+



0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1



·



ωθ

ωζ

a


(3.44)
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Jacobian. Similarly to Eqs.(3.9­3.14), get the linearization of the equation (3.26). Denote,

cϕ = cos (ϕ) , sϕ = sin (ϕ) , cs = cos (ψ) , ss = sin (ψ) , tθ = tan (θ) , tψ = tan (ψ) , tζ = tan (ζ)

(3.45)

Then, the matrix A of 7×7 dimension has following nonzero elements:

A1,3 = −v · sϕ, A2,3 = v · cϕ

A4,4 = −v ·
L2·cos(3·ψ−ζ)

4 + e1 · cos (2 · ψ − ζ) + L2·cos(ψ+ζ)
4 + L2·cos(ψ−ζ)

2

cζ · (e1 − L2 · cψ)2

A3,5 = A4,5 = v ·
(
t2θ + 1

)
/L1

A4,6 =
v · c2

ψ

c2
ζ · (L2 · cψ − e1)

A1,7 = cϕ, A2,7 = sϕ, A3,7 = tθ/L1

A4,7 = tθ
L1

− cψ · (tψ − tζ)
L2 − e1/cψ

(3.46)

*Note: Matrix B remains without changes.

3.2 Optimization

Proceed from minimizing the functional to predict vehicle control,

min
u

J (u) =
tf∫

0

(
yT ·Wy · y + uT ·Wu · u+ ∆uT ·Wu · ∆u

)
· dt (3.47)

Subject to:

q̇ = f (q (t) ,u (t) ,p) , t ∈ [t0, tf ] (3.48)
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The system of constraints is written as



yj,min (t) − ε · h(y)
j,min (t) ≤ yj (t) ≤ yj,max (t) + ε · h(y)

j,max (t) , t ∈ [t0, tf ]

uj,min (t) − ε · h(u)
j,min (t) ≤ uj (t) ≤ uj,max (t) + ε · h(u)

j,max (t) , t ∈ [t0, tf ]

∆uj,min (t) − ε · h(∆u)
j,min (t) ≤ ∆uj (t) ≤ ∆uj,max (t) + ε · h(∆u)

j,max (t) , t ∈ [t0, tf ]

(3.49)

where yj,min(t), yj,max(t) = minimum and maximum values of jth output at the ith prediction horizon

step, respectively; ∆uj,min(t), ∆uj,max(t) = minimum and maximum values of jth input at the ith

prediction horizon step, respectively; ∆uj,min(t), ∆uj,max(t) = minimum and maximum values of

jth input rate at the ith prediction horizon step, respectively; h(y)j,min(t), h(y)j,max(t) = minimum and

maximum values of jth output’s hard constraints at the ith prediction horizon step, respectively;

h(u)j,min(t), h(u)j,max(t) = minimum and maximum values of jth input’s hard constraints at the ith

prediction horizon step, respectively; h(∆u)
j,min(t), h(∆u)

j,max(t) = minimum and maximum values of

jth input rates’ hard constraints at the ith prediction horizon step, respectively; ny = number of

output parameters; nu = number of input parameters; n∆u = number of input rate parameters.

The functional Eq. (3.46) in discrete form has a view:

min
u

J (zk) =
p−1∑
i=1

(
yTi ·Wy · yi + uTi ·Wu · ui + ∆uTi ·W∆u · ∆ui

)
(3.50)

where y ­ vector of output parameters; Wy, Wu, W∆u ­ weighting factors; yi ­ output signals at the ith

prediction horizon step; zp =
(
uT 0, u

T
i+1, · · · uT p−1, εp

)
ui ­ control signals at the ith prediction

horizon step; ­ solution; ϵp ­ scalar dimensionless slack variable used for constraint softening; pϵ ­

constraint violation penalty weight; i ­ current control interval; p ­ prediction horizon (number of

intervals).
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The system of constraints is written as



yj,min(i) − ε · h(y)
j,min(i) ≤ yj,i ≤ yj,max(i) + ε · h(y)

j,max(i), i = 1...p, j = 1...ny

uj,min(i) − ε · h(u)
j,min(i) ≤ uj,i−1 ≤ uj,max(i) + ε · h(u)

j,max(i), i = 1...p, j = 1...nu

∆uj,min(i) − ε · h(∆u)
j,min(i) ≤ ∆uj,i−1 ≤ ∆uj,max(i) + ε · h(∆u)

j,max(i), i = 1...p, j = 1...n∆u

(3.51)

where yj,min(i), yj,max(i) = minimum and maximum values of jth output at the ith prediction horizon

step, respectively; uj,min(i), uj,max(i) = minimum and maximum values of jth input at the ith prediction

horizon step, respectively; ∆uj,min(i), ∆uj,max(i) = minimum and maximum values of jth input rate

at the ith prediction horizon step, respectively; h(y)j,min(i), h(y)j,max(i) = minimum and maximum

values of jth output’s hard constraints at the ith prediction horizon step, respectively; h(u)j,min(i),

h(u)j,max(i) = minimum and maximum values of jth input’s hard constraints at the ith prediction

horizon step, respectively; h(∆u)
j,min(i), h(∆u)

j,max(i) = minimum and maximum values of jth input

rates’ hard constraints at the ith prediction horizon step, respectively; ny = number of output

parameters; nu = number of input parameters; n∆u = number of input rate parameters.

For a single passenger car and for a conventional tractor­semitrailer y = θ, for a single truck and

for an articulated vehicle with steered semitrailer’s steered axles y = (θ, ζ)T.

Using the state­space model and above parameters, MATLAB is used to program and simulate

the vehicle model designs.
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4 SIMULATION RESULTS

4.1 Simulation Environment

This section presents the results obtained from simulations performed usingMATLAB/SIMULINK

software package. MATLAB was selected for nonlinear MPC implementation and simulation be­

cause of the SIMULINK interface. The combined use ofMATLAB/SIMULINK allows for text and

graphic programming to design theMPC system in a simulation environment. Themodel predictive

control toolbox provides functionality for designing and simulating MPCs. The kinematic vehicle

models developed in the previous section are tested to demonstrate its performance. Finally, tests

are presented to demonstrate how the models tolerate variation in vehicle parameters.

4.2 Motion Boundary Simulation

4.2.1 Scenario 1: Circle Motion

In this study, the idea of constraints is that the trajectories of k given points of the vehicle contour

must lay within the considered boundaries. At each point, there is a distance by a radius rpk from

the mass center and compose an angle αpk with the longitudinal axis of the vehicle local coordinate

system. Then, in the global coordinate system, the coordinates of the points will be xpki, ypki for the

ith prediction horizon step.

xpk,i
= xi + rpk

· cos (ϕi + αpk
)

ypk,i
= yi + rpk

· sin (ϕi + αpk
)

(4.1)
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Correspondingly, radii of controlling points

rk,i =
√
x2
pk,i

+ y2
pk,i

(4.2)

Then, the condition of nonlinear restrictions is

r ≤ rk,i ≤ R (4.3)

Where r and R – inner and outer radii, respectively.

The first simulation ran was the Passenger Car. The following parameters were used to define

the model:

Table 4.1: Control parameters for passenger car vehicle model

Parameter Value
L 2.8 m
R 20.0 m
H 3.75 m
Lane Width (r) 16.25 m
β 45◦

Prediction Horizon Time (tf) 10 s
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Table 4.2: State and constraint parameters for passenger car vehicle model

Name Parameter Value
Initial State q0 (0, ­(R+r)/2, 0, arctan(2ꞏL/(R+r)), 0)T

Final State qf ((R+r)/2ꞏcos(β), ((R+r)/2ꞏsin(β),
(π/2+β), arctan(2ꞏL/(R+r)), 0)T

State Restrictions θ ­0.7 ≤ θ ≤ 0.7
Velocity ­10 ≤ v ≤ 10

Control Restrictions ωθ ­0.5 ≤ ωθ ≤ 0.5
Acceleration ­2 ≤ a ≤ 2.5

Figure 4.1: Predicted trajectory for a passenger car in autonomous mode at the roundabout arc
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Figure 4.2: Results of states and controls for passenger car in autonomous mode at the roundabout arc:
(a) ­ mass center displacement, (b) ­ speed/acceleration, (c) ­ yaw angle vs. steering angle, (d) ­ steering rate control

The trajectory obtained by applying the proposed control scheme to this scenario is displayed

in Fig 4.1 , where the controller is able to avoid the boundaries accurately. The model correctly

maintains the same distance away from the boundary as it navigates along the path. In Fig 4.2,

if we compare graph (c), and graph (d) we can see smooth curves between the steering angle and

steering rate. This suggests that the system is fluid and smooth while avoiding the boundary. After

the start of the simulation, the MPC slowly corrects the inaccuracy and find the optimal solution to

maintain avoiding the lane boundary, this is shown by the rate of change of the Yaw angle Fig 4.2

graph (c).
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The second model simulated was the Single Truck. The following constraint parameters were

used to test the model:

Table 4.3: Control parameters for single truck vehicle model

Parameter Value
L1 6.65 m
l1 1.4 m
R 30.0 m
H 6.0 m
Lane Width (r) 24.0 m
β 45◦

Prediction Horizon Time (tf) 10 s

Table 4.4: State and constraint parameters for single truck vehicle model

Name Parameter Value
Initial State q0 (0, ­(R+r)/2, 0, arctan(2ꞏL1/(R+r)), ­arctan(2ꞏl1/(R+r)), 0)T

Final State qf ((R+r)/2ꞏcos(β), ((R+r)/2ꞏsin(β), (π/2+β),
arctan(2L1/(R+r)), ­arctan(2ꞏl1/(R+r)), 0)T

State Restrictions θ ­0.7 ≤ θ ≤ 0.7
ζ ­0.5 ≤ ζ ≤ 0.5

Velocity ­10 ≤ v ≤ 10
Control Restrictions ωθ ­0.5 ≤ ωθ ≤ 0.5

ωζ ­0.5 ≤ ωζ ≤ 0.5
Acceleration ­2 ≤ a ≤ 2.5
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Figure 4.3: Predicted trajectory for a single truck in autonomous mode at the roundabout arc

Figure 4.4: Results of states and controls for a single truck in autonomous mode at the roundabout arc:
(a) ­ mass center displacement, (b) ­ speed/acceleration,(c) ­ yaw angle vs. steering angle, (d) ­ steering rate control
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Similarly to the results obtained from the passenger car simulation, the single truck results show

that the model was successful in avoiding the boundary constraint. Looking at the front steering

rate and rear steering rate (Fig 4.4 graph (d)), we can see that they begin inverse of one another.

This is expected because it is assumed that the minimum turning radius of the vehicle with the

additional rear steered axle is floating and depends on the ratio of the rotation angles of the front

and rear axles’ steered wheels.

The third model simulated was the Conventional Tractor­Semitrailer. The following constraint

parameters were used to test the model:

Table 4.5: Control parameters for conventional tractor­semitrailer vehicle model

Parameter Value
L1 3.8 m
L2 7.57 m
etr 0.47 m
R 30.0 m
H 6.0 m
Lane Width (r) 24.0 m
β 45◦

Prediction Horizon Time (tf) 10 s
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Table 4.6: State and constraint parameters for conventional tractor­semitrailer vehicle model

Name Parameter Value
Initial State q0 (0, ­(R+r)/2, 0, arctan(2L1/(R+r)), ­arctan(2ꞏl1/(R+r)), 0)T

Final State qf ((R+r)/2ꞏcos(β), ((R+r)/2ꞏsin(β), (π/2+β),
arctan(2L1/(R+r)), ­arctan(2ꞏl1/(R+r)), 0)T

State Restrictions θ ­0.7 ≤ θ ≤ 0.7
ψ ­π/2 ≤ ψ ≤ π/2

Velocity ­10 ≤ v ≤ 10
Control Restrictions ωθ ­0.5 ≤ ωθ ≤ 0.5

Acceleration ­2 ≤ a ≤ 2.5

Figure 4.5: Predicted trajectory for a tractor­semitrailer in autonomous mode at the roundabout arc
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Figure 4.6: Results of states and controls for a tractor­semitrailer in autonomous mode at the roundabout arc:
(a) ­ mass center displacement, (b) ­ speed/acceleration, (c) ­ yaw angle vs. folding angle, (d) ­ steering rate controls

The tractor semitrailer vehicle is based on a two­unit vehicle model. Considerations had to

be made for the angular velocity of the tractor’s rotation as well as the angular velocity of the

semitrailer. The results suggest that the model was successful. The tractor semi­tractor was able

to avoid colliding with the boundary and maintain its trajectory. Fig 4.6 graph (d) shows that the

vehicle model was able to complete its trajectory smoothly considering both the angular velocity

of the tractors rotation and the angular velocity of the semitrailer.

Finally, the last model simulated was the Articulated vehicle with semitrailer steered axle. The

following constraint parameters were used to test the model:
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Table 4.7: Control parameters for articulated vehicle with semitrailer steered axle model

Parameter Value
L1 3.8 m
L2 7.57 m
etr 0.47 m
R 25.0 m
H 4.5 m
Lane Width (r) 21.5 m
β 45◦

Prediction Horizon Time (tf) 10 s

Table 4.8: State and constraint parameters for articulated vehicle with semitrailer steered axle model

Name Parameter Value
Initial State q0 (0, ­(R+r)/2, 0, 0.35, arctan(2L1/(R+r)), ­arctan(2L2/(R+r)), 0)T

Final State qf ((R+r)/2ꞏcos(β), ((R+r)/2ꞏsin(β), (π/2+β), 0.35,
arctan(2L1/(R+r)), ­arctan(2L2/(R+r)), 0)T

State Restrictions θ ­0.7 ≤ θ ≤ 0.7
ψ ­π/2 ≤ ψ ≤ π/2
ζ ­0.61 ≤ ζ ≤ 0.61

Velocity ­10 ≤ v ≤ 10
Control Restrictions ωθ ­0.5 ≤ ωθ ≤ 0.5

ωζ ­0.61 ≤ ωζ ≤ 0.61
Acceleration ­2 ≤ a ≤ 2.5
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Figure 4.7: Predicted trajectory for an articulated vehicle with steered semitrailer’s axle in autonomous mode at the roundabout arc

Figure 4.8: Results of states and controls for an articulated vehicle with steered semitrailer’s axle in autonomous mode at the roundabout arc:
(a) ­ mass center displacement, (b) ­ speed and steering angles, (c) ­ yaw angle vs. folding angle, (d) – acceleration / steering rate controls
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The vehicle model used here is similar to the tractor­semitrailer previously mentioned with the

addition of the middle angle steering rate. This model was successful in simulating curvilinear

motion planning by avoiding the boundaries as it navigates along the path. Fig 4.8 graph (d) shows

that the steering rate of the middle angle and the tractors steering angle are similar. This suggests

that the model follows a smooth trajectory.

4.2.2 Scenario 2: No Space Constraints

As mentioned earlier, the second objective of this paper was to test the NMPC precision, adequacy

and its sensitivity to changes in the vehicle state parameters. To accomplish this, the trajectory of

motion is predicted in the absence of space restrictions, the initial and final values of the state vector

are specified. The expectation of this simulation is to move and park the vehicle by determining

the optimal path.

The first simulation ran was the Passenger Car. The following constraint parameters were used

to test the model:

Table 4.9: No space state and constraint parameters for passenger car vehicle model

Name Parameter Value
L 2.8 m

Prediction Horizon Time tf 10 s
Initial State q0 (0, 0, 0, 0, 0, 0)T

Final State qf (­25, 0, π/2, 0, 0)T

State Restrictions θ ­0.7 ≤ θ ≤ 0.7
ζ ­0.5 ≤ ζ ≤ 0.5

Velocity ­10 ≤ v ≤ 10
Control Restrictions ωθ ­0.5 ≤ ωθ ≤ 0.5

Acceleration ­2 ≤ a ≤ 2.5
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Figure 4.9: Predicted trajectory for a passenger car in autonomous mode for parking place changing

Figure 4.10: Results of states and controls for passenger car in autonomous mode for parking place changing:
(a) ­ mass center displacement, (b) ­ speed/acceleration, (c) ­ yaw angle vs. steering angle, (d) ­ steering rate control

The second model simulated was the Single Truck. The following constraint parameters were

used to test the model:
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Table 4.10: No space state and constraint parameters for single truck vehicle model

Name Parameter Value
L1 6.65 m
l1 1.4 m

Prediction Horizon Time tf 10 s
Initial State q0 (0, 0, 0, 0, 0, 0)T

Final State qf (­35, 10, π/2, 0, 0, 0)T

State Restrictions θ ­0.7 ≤ θ ≤ 0.7
ζ ­0.5 ≤ ζ ≤ 0.5

Velocity ­10 ≤ v ≤ 10
Control Restrictions ωθ ­0.5 ≤ ωθ ≤ 0.5

ωζ ­0.5 ≤ ωζ ≤ 0.5
Acceleration ­2 ≤ a ≤ 2.5

Figure 4.11: Predicted trajectory for a single truck in autonomous mode for parking place changing
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Figure 4.12: Results of states and controls for a single truck in autonomous mode for parking place changing:
(a) ­ mass center displacement, (b) ­ yaw angle vs. steering angles, (c) ­ speed/acceleration, (d) ­ steering rate controls

The third model simulated was the Conventional Tractor­Semitrailer. The following con­

straint parameters were used to test the model:

Table 4.11: No space state and constraint parameters for conventional tractor­semitrailer vehicle model

Name Parameter Value
L1 3.8 m
L2 7.57 m
etr 0.47 m

Prediction Horizon Time tf 10 s
Initial State q0 (0, 0, 0, 0, 0, 0)T

Final State qf (­35, 10, π/2, 0, 0, 0)T

State Restrictions θ ­0.7 ≤ θ ≤ 0.7
ψ ­π/2 ≤ ψ ≤ π/2

Velocity ­10 ≤ v ≤ 10
Control Restrictions ωθ ­0.6 ≤ ωθ ≤ 0.6

Acceleration ­2 ≤ a ≤ 2.5
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Figure 4.13: Predicted trajectory for a tractor­semitrailer in autonomous mode for parking place changing

Figure 4.14: Results of states and controls for a tractor­semitrailer in autonomous mode for parking place changing:
(a) ­ mass center displacement, (b) ­ speed/acceleration, (c) ­ yaw angle vs. folding angle, (d) ­ steering rate control and angle

Finally, the last model simulated was the Articulated Vehicle with Semitrailer Steered Axle.

The following constraint parameters were used to test the model:
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Table 4.12: No space state and constraint parameters for articulated vehicle with semitrailer steered axle model

Name Parameter Value
L1 3.8 m
L2 7.57 m
etr 0.47 m

Prediction Horizon Time tf 10 s
Initial State q0 (0, 0, 0, 0, 0, 0)T

Final State qf (­35, 10, π/2, 0, 0, 0)T

State Restrictions θ ­0.7 ≤ θ ≤ 0.7
ψ ­π/2 ≤ ψ ≤ π/2
ζ ­0.61 ≤ ζ ≤ 0.61

Velocity ­10 ≤ v ≤ 10
Control Restrictions ωθ ­0.7 ≤ ωθ ≤ 0.7

ωζ ­0.61 ≤ ωζ ≤ 0.61
Acceleration ­2 ≤ a ≤ 2.5
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Figure 4.15: Predicted trajectory for an articulated vehicle with steered semitrailer’s axle for parking place changing

Figure 4.16: Results of states and controls for an articulated vehicle with steered semitrailer’s axle in autonomous mode for parking place changing:
(a) ­ mass center displacement, (b) ­ speed and steering angles, (c) ­ yaw angle vs. folding angle, (d) ­ acceleration / steering rate controls

The results show that the models are successful when implanted with no space restrictions.

Although the initial and final values of the state vector are specified the model still has a lot to
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accomplish. For each vehicle, the MPC must orient itself so that it can accurately arrive at the

final position. This application is most suitable for the parking of AV. However, other applications

include delivery trucks docking at dispatch centers autonomously.

4.3 Sensitivity Analysis

The nonlinear MPC operates by solving the optimization problem at each sample time. As men­

tioned earlier, this sequence of repeatedmeasure, predict and optimize is known as receding horizon

control. For linear systems, there are several studies that have suggested selection criteria for

the prediction horizon based on the applicable scenario. However, not much research has been

conducted for nonlinear systems. Some of the results indicate that shortening the prediction horizon

time tends to produce a slower system response. However, conventional MPC feedback suggests

that longer horizon tend to produce aggressive control action, more overshoot and aremore sensitive

to disturbances. However, having a longer horizon time has been shown to result in faster responses

from vehicle models. Conducting a sensitivity analysis on the prediction horizon time allows for

insight into the effects it has on the model.

In order to determine the impact of varying the prediction horizon time, a deterministic sensi­

tivity analysis was conducted using the single passenger car model. The only parameter that was

varied was the prediction horizon time with the other state and constraint parameters remaining

constant Table 4.1 and Table 4.2. In each case, the value of the prediction horizon parameter was

incrementally changed while keeping other parameters constant. The overall performance of the

model was investigated for each scenario.
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Figure 4.17: Computing time in seconds and mean acceleration with different prediction horizon times

It was found that the nominal stability of the single car model was strongly affected by the

prediction horizon time. A critical prediction horizon time approximately 10s to 13s was identified

as the ideal range for optimal results of the model Fig 4.17. Prediction horizon times shorter than

the critical range of values produced a slow and unresponsive situation while the mean acceleration

was relatively high Fig 4.17. Based on the simulation results, the effect of increasing the prediction

horizon time above the critical range of values resulted in a faster response in the model, however,

the simulations were found to be unstable. This could be due to the additional computation time

required by the hardware to run the simulation Fig 4.17. More results from the sensitivity analysis

Fig 4.18 highlight the direct relationship between the speed and acceleration and yaw angle and

steering angle as the prediction horizon time varies.

The importance of the prediction horizon time has been highlighted from the results of the

sensitivity analysis. If the prediction horizon time is too great there was a faster response in

the model, however, the model was not stable. This could likely be due to the inability of the

optimization function to minimize the function. On the other hand, lower values of the prediction

horizon time produced an unresponsive model. The critical values for the prediction horizon time

were found to be ranging from 10s to 15s. It is important to note that the speed of execution of the
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simulation can be affected greatly by the hardware which it is being run on. As a result, the results

of the sensitivity analysis may differ if the simulations are being ran on more advanced hardware.

It is also important to note that while the single car model was used in this sensitivity analysis it is

easily capable of evaluating the impact of varying the prediction horizon time, this is because it is

considered a simple model which the other models are built upon.
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Figure 4.18: Results of sensitivity analysis for a for passenger car in autonomous mode at the roundabout
arc with different prediction horizon times showing

(i) ­ speed and steering angles, (ii) ­ acceleration / steering rate controls
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5 CONCLUSIONS

5.1 Summary of Results

In this project, the application of nonlinear MPC to perform curvilinear motion planning and lane­

keeping for AV is presented. The main objective of this paper is to show that with proper modeling

and formulation of motion constraints, curvilinear motion planning can be achieved with nonlinear

MPC. The second objective is to test the NMPC precision and adequacy and its sensitivity to

changes in the vehicle state parameters. Mathematical models for four (4) vehicle types were

derived and then a nonlinear MPC framework was formulated. The framework formulates the

problem as a nonlinear model predictive control problem. Simulations were performed using the

Simulink/MATLAB environment using the fully nonlinear kinematic vehicle model to test the

limits of the controller and its robustness to changes in the vehicle parameters. The models were

tested in different types of simulation scenarios by varying vehicle parameters including (a) speed

and steering angles, (b) yaw angle vs. folding angle and (c) acceleration/steering rate controls. The

efficiency and the sensitivity of the proposed combined path planning and MPC framework have

been evaluated under numerous simulated test cases.

Simulations are presented which demonstrate the ability of the suggestedmodels to successfully

perform curvilinear motion staying safely within the bounds, while simulations of several models

validate its performance. The results show the effectiveness of the controller in the presence of

uncertainty and utility of this approach. Further testing of the robustness of the models shows

that they can perform predicted motions successfully in the absence of space restrictions where the

initial and final values of the state vectors were specified. Moreover, a deterministic sensitivity

analysis was conducted in order to determine the impact of the prediction horizon time on the

model. More specifically, the trade­off between model performance and prediction horizon time

has been highlighted. The minimum prediction horizon which provides acceptable performance

and vehicle stability has been quantified at several vehicle speeds. Experimental results show that a
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critical prediction horizon time approximately 10 to 13 seconds was identified as the ideal range for

optimal results of the model. It was shown that the proposed models were successful in satisfying

curvilinear motion planning by keeping within the constraints of the lane in a circle motion.

In conclusion, the computational complexity of the MPC framework has been highlighted and

simulation results have shown the possibility of experimentally validating the models at varying

prediction horizon times. It was found that with proper modeling and formulation curvilinear

motion planning can be achieved with nonlinear MPC. It is evident that MPC can be systematically

designed and impended to control a nonlinear vehicle model with constraints on the states and

input.

5.2 Future Work

Possible extensions of this work include the implementation of the models to test obstacle avoid­

ance with stationary objects or integrating other vehicles in the simulation to implement accident

avoidance capability. This has proven to be computationally intensive and as such, more practical

dedicated hardware may be required. The results from the sensitivity analysis further motivate

efforts towards a real­time implementation to evaluate the system in real­world scenarios. An

important design metric for real time implantation of MPC is the computation time. It will be

interesting to analyze the real time effects of the MPC when the models are simulated on dedicated

hardware.

In this project, vehicle models used were based on vehicle kinematics. Further expansion of

this work can include comparing the performance of kinematic models with tire based models to

see the difference in performance and if there are extra computational requirements. Expanding the

simulation scenarios to include more complex vehicle models can expand the scope of the research

to include different classes of AV including aerial vehicles.
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