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ABSTRACT 

A surrogate model was developed for a detached archetypal home in Toronto, ON. EnergyPlus 

was used to perform 1500 simulations within a design space defined by 23 input parameters with 

ranges based on field study data. Elastic net regression was used to create a surrogate model to 

predict annual energy use and to perform embedded feature selection. An analysis comparing 

house size to model performance found that including both small and large homes did not 

decrease the model accuracy. The final regression model predicted energy use with an average 

R2 of 0.946 and MAPE of 6.1% using nested cross-validation. A case study predicted actual 

annual energy use of two homes in Toronto within 10% error of utility bill data. A preliminary 

optimization analysis found that several weeks of simulation time could be saved and more 

optimal solutions could be discovered compared to a brute-force forward stepwise selection 

optimization. 
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1 INTRODUCTION 

Residential buildings account for 17% of the secondary site energy use in Canada [1]. Single-

family homes make up 53.6% of private dwellings in Canada in 2016 [2], and 75% of the homes 

that will exist in 2030 have already been built [3]. Lowering the energy consumption and 

greenhouse gas (GHG) emissions in existing homes is essential to achieve the Intergovernmental 

Panel on Climate Change’s (IPCC) requirement for net-zero buildings by 2050 [4]. 

Understanding our existing building stock and analyzing how to drastically reduce energy use is 

crucial to this goal. Deep retrofits that involve extensive renovations of the building’s systems 

must be undertaken. These retrofits can have substantial costs, thus determining the combination 

of retrofit solutions that minimize cost and maximize energy and GHG reductions is essential to 

incentivize these changes.  

To define the best strategy, a national net-zero retrofit plan is needed. To develop a retrofit plan a 

set of archetypes (used to describe subsets of the housing stock with similar characteristics) that 

describe the Canadian housing stock must be defined, as there are too many buildings to model 

individually. Archetypes increase the feasibility of scaling to a national level. Energy 

conservation measures can be tested and optimized on archetype models, and an optimal set of 

retrofit solutions can be determined. This research contributes an initial investigation towards 

describing the Toronto housing stock using a bottom-up archetype development framework that 

has the capability to be scaled to regional, provincial, and national levels. Figure 1 indicates the 

overarching goals for this research and a brief description of each step. 
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Figure 1 Overarching goals guiding research objectives. 

Bottom-up models use detailed housing descriptors to calculate or simulate energy use, which is 

then scaled to represent trends in larger housing stock subsets. Building energy simulation 

software is used in physics-based bottom-up models to mathematically model complex systems 

and predict the energy use of a building. Each simulation can take a few minutes and requires an 

expert who understands how to use the software. The programs do not always produce accurate 

results as they rely on assumptions and variability in user expertise. Current bottom-up archetype 

models are limited by inaccuracies caused by generic assumptions being used to divide the 

housing stock without sufficient data, and computational requirements to optimize whole 

building energy models [5]. Fast and accurate tools to predict annual energy use are needed to 

simplify this process, allowing informative decisions to be made regarding energy conservation 

measures. 

Surrogate models are computationally inexpensive tools that can be used to aid early design 

decisions for optimization, or perform an uncertainty or sensitivity analysis [6]. They calculate 

energy use and act as rapid approximations based on an original full building energy simulation 

model. As Hygh et al. describes it, “the resultant multivariate linear regression model is based on 

a set of detailed simulations that take into account the complex thermal interactions represented 

within a full scale energy simulation engine, but once developed, can operate independently of 
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the original, full scale model” [7]. Surrogate energy models are created using supervised 

machine learning methods. A supervised machine learning algorithm “sees” the input parameters 

and associated energy output value. It can then determine mathematical relationships that 

describe the change in the input parameter to the change in the output parameter and predict 

energy use if new input parameters are given. In a review of using surrogate models to predict 

energy use, Westermann and Evins found that they could be used to considerably reduce 

computational time during optimization studies [8]. Hester et al explain that not only is the speed 

beneficial, but having less input parameters required to get an energy use estimate is another 

advantage [9]. 

A 3-storey detached century home in Toronto, ON was identified as an archetype that represents 

45% of Toronto’s detached single family homes by Jermyn [10]. Jermyn developed a baseline 

energy model for this archetype using average measurements from a field study. The houses that 

were part of the field study were large versions of this archetype, however a smaller version of 

this archetype is also very common in Toronto. The detached century home archetype was 

chosen to explore the use of a surrogate model to describe the energy use of many Toronto 

homes.  Data collected for this thesis from small century homes was combined with Jermyn’s 

field study data [10] for large century homes. This allowed a larger subset of houses to be 

captured by one model. It was not known if the surrogate model would be able to predict as 

accurately when combining both sizes, or if separate models would be more suitable. An 

investigation was completed to determine how the model would predict on small versus large 

homes, and if it was appropriate to combine the wide range of sizes into a single model. This 

begins to address what levels of variation can be modelled by a single surrogate model. This is 

important because the feasibility of scaling this framework to include larger subsets of the 

housing stock depends on the level of granularity required to define each archetype. The larger 
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number of houses that can be represented by a single surrogate model, the more feasible this 

framework becomes to describe an entire housing stock. 

The surrogate model was created by varying a set of parameter ranges and simulating the energy 

use for each set of inputs. The parameter ranges were developed using Jermyn’s collected data 

[10] and from a field study completed for this research. These ranges along with the new 

baseline energy model was used to create the surrogate model. This process is shown in Figure 2.  

 

Figure 2 Process to develop surrogate model using existing baseline archetype model. 

This research concludes with a case study using utility data from two small century homes and 

two examples of optimization techniques using the surrogate model.  
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1.1 Research Objectives 

The objective of this research was to create a surrogate model to describe the annual energy use 

of an archetypal single-family detached century home common in Toronto, ON, and to quantify 

what accuracy could be achieved. This archetype included both small and large century homes. 

The size variation in the surrogate model and how it affected the accuracy of the predictions was 

analyzed. The objective was to determine if wider ranges of house sizes could be incorporated 

into a single surrogate model. While the accuracy of the model was important, another main 

objective was to focus on the simplicity of the model. This allows the model to generalize better 

to new data and it reduces the scope for future research. A simple model is more interpretable, 

which allows for transparency and a wide range of applications. The final objective was to 

consider the use of building energy surrogate models to support bottom-up archetype 

development that can be scaled to represent the Canadian housing stock.  

1.2 Research Questions 

This thesis aims to answer the following research questions: 

1. With what accuracy can a surrogate model developed using multivariate linear regression 

describe the simulated annual energy use of an archetypal detached single-family home in 

Toronto, ON? 

2. Can a small and large archetype with the same form be described by a single surrogate 

model, or do separate models provide more accurate results? 

To answer these research questions, this thesis followed a phased approach. Phase 1 involved 

collecting data from archetypal detached century homes in The Pocket neighbourhood in 

Toronto, ON. Input parameters and ranges were determined to allow a sampling plan to create 
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data for 1500 “homes” which were run through EnergyPlus to create the dataset required to 

develop the surrogate model. Phase 2 included creating a surrogate model to predict energy use, 

an investigation on the impact the size range of the archetype has on model accuracy using two 

methodologies, reducing the number of input features, testing the model using real utility data, 

and a preliminary optimization example.  

1.3 Thesis Structure 

Chapter 2 focuses on the background of the existing archetypal energy model, how the dataset is 

created, and how the surrogate model is developed and validated. Chapter 3 is a review of 

existing literature on bottom-up housing stock models and energy surrogate models. Chapter 4 

describes the methodology of this research, which is broken into two phases. Phase 1 focuses on 

developing the dataset used to create the surrogate model. This includes data collection, 

developing input parameters and associated ranges, devising a sampling plan, creating a baseline 

energy model, running 1500 simulations, and analyzing the synthetic dataset. Phase 2 describes 

creating and validating the surrogate model. This includes a house size analysis to determine the 

impact that size of an archetype has on model performance, preprocessing and transforming the 

data, comparing different training algorithms, developing the final model, a case study using 

utility data, an optimization example for the houses used in the case study, and a comparison to 

Jermyn’s brute-force optimization methodology [10]. Chapter 5 states and discusses the results 

of each step and follows the same two phases. Chapter 6 explains future work that could be 

explored and the key findings from this research.  

  



 7 

2 BACKGROUND 

This Chapter begins with a background of the century home archetype explored in this research. 

The century home archetype is used to develop a baseline energy model. This baseline energy 

model is used to create a dataset that is used to develop the surrogate model. The subsequent 

sections describe the process of creating the dataset and the surrogate model.   

2.1 Century Home Archetype 

In 2010 Blaszak and Richman [11] developed four archetypes commonly found in Toronto, ON: 

century detached, wartime, 1970’s OBC, and modern. In 2013 Zirnhelt and Richman [12] 

developed a methodology for modelling and calibrating a single-family home in EnergyPlus. In 

2013 Mucciarone [13] designed and tested retrofit wall assemblies and completed a 

hygrothermal analysis using WUFI. In 2014 Jermyn and Richman [10] developed archetypes for 

century detached, century semi, and wartime homes, and performed brute-force optimization to 

determine the most cost-effective retrofit solution to meet a specific energy performance target. 

In 2016, Niger [14] followed Jermyn’s methodology [10] to develop an archetype and optimized 

retrofit solutions for a 1970’s OBC archetype. Blaszak [11] and Jermyn’s [10] work led to the 

Toronto Archetype Project (TAP) initiative created in 2015 by Ryerson University. The Pocket 

community [15] partnered with TAP in 2016 to allow researchers to use the neighbourhood as an 

example for archetype classification and net-zero community energy planning. The Pocket – 

bordered by the CN train tracks, Jones Ave, Danforth Ave, and Greenwood Ave – is on a 

mission to reduce energy use in their neighbourhood [15]. The relationship between Ryerson 

University and The Pocket facilitated access to many of the homes to enable a field study on the 

archetypal homes. The next step in the work done by Blaszak [11] and Jermyn [10] with the 
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Toronto Archetype Project (TAP) was to investigate a bottom-up modelling approach of the 

single-family residential stock of Toronto, ON.  

Jermyn’s methodology for archetype development [10] followed three phases which have been 

simplified as (1) determine archetypes, (2) collect characteristic housing data to build and 

calibrate baseline energy models, and (3) develop retrofit strategies and associated costs. Jermyn 

used the model development procedure proposed by Zirnhelt [12] to model the century home 

archetype in a Toronto neighbourhood. Jermyn collected data for geometry, envelope 

constructions, airtightness, internal gains, and HVAC systems. This data was averaged and input 

into an energy model to create a baseline archetype model. Utility data from the same houses 

were used to calibrate the model. A brute-force sequential search method was performed using 

the calibrated baseline model to determine the best retrofit strategy for that archetype. [10] 

The Century home archetype described by Jermyn [10] is found throughout the city of Toronto. 

Jermyn determined that 45% of 33,570 single family homes in Toronto were represented by the 

century home archetype [10]. There are slight changes in the archetype in different 

neighbourhoods, such as size. The Pocket neighbourhood has many century homes described by 

Jermyn [10], however they are much smaller. Figure 3 shows examples of the detached small 

century archetype in The Pocket.  
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Figure 3 Examples of century homes in The Pocket neighbourhood in Toronto, ON. 

The archetype examined in this research is a detached century home, as defined by Jermyn’s 

archetypal development work [10]. The century homes measured in The Pocket are defined by 

the characteristics shown in Table 1. 

Table 1 Characteristics describing century home archetype in The Pocket. 

 Characteristic Century Home 

Structure Wood Frame 

House Type Detached 

Number of Storeys 3 

Year of Construction 1900-1930 

Building Footprint Rectangular 

Roof Type Peak Roof 

Heating Gas Furnace 

 

2.1.1 Brute-Force Comparison 

The baseline archetype model was used by Jermyn to perform a brute-force analysis to determine 

what retrofits were needed to reduce the energy use intensity to 75 kWh/m2 and 22 kWh/m2. 

The rule that Jermyn used to decide which retrofit level would be selected at each step was to 

minimize cost of retrofit per kWh of energy reduction. An energy model was run manually, 



 10 

upgrading each parameter to Level 1. The retrofit upgrade with the lowest cost per kWh saved 

would become the new baseline, and the process was repeated until the desired levels were 

reached. This process was manual, tedious, and time consuming. [10] 

The forward selection method selects an optimal solution for that particular baseline; however 

the true optimal solution is unknown. There could be a combination of upgrades that can get to 

75 kWh/m2 with lower costs, but this solution is never presented because of the order that was 

selected. Surrogate modeling can make the optimization process faster and more versatile and 

can produce more optimal solutions. 

2.2 Simulation Software and Input Modification 

There are many simulation software that can calculate the energy use of buildings given enough 

input information, such as EnergyPlus, DOE-2, Ecotect, and TRNSYS. EnergyPlus is commonly 

used for surrogate model development. The text file input for EnergyPlus is called an IDF (input 

data file) and contains a specifically formatted list of the inputs to the simulation software. 

Figure 4 shows the IDF editing program provided by EnergyPlus, where an object (ex. “Obj1”) 

has a list of fields to describe it (ex. “Name”), and each object belongs to a class (ex. “Building”). 
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Figure 4 EnergyPlus IDF Editor showing classes, fields and objects. 

This information can also be viewed as a text file. This text file can be easily edited using a 

Python script, allowing many updates to be made quickly. The building object shown in Figure 4 

can be edited using Python and the EPPY package [16], a Python add-on designed to update IDF 

files. If the IDF is named “IDF”, Figure 5 shows how the Name field of Obj1 in the class 

Building can be updated to “Century Home”. 

 

Figure 5 Python script to update EnergyPlus IDF. 

This process can be repeated for any field in any object and can be used to calculate what the 

value should be based on other fields. For example, a ventilation rate could be calculated using 

the volume and airtightness already defined in the model. 
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2.3 Data Analysis 

Tsanas et al. underline the importance of statistical analysis before machine learning, and argue 

that this step is often skipped in similar research [17].  After the data is collected, the next step is 

data analysis and visualization. This is accomplished using scatter plots, violin plots, Pearson 

correlation, and variance influence factor (VIF). Scatterplots and violin plots can provide a visual 

representation of the relationship between input and output variables, as used by Tsanas et al 

[17]. The Pearson’s product-moment correlation coefficient acts as a quantitative measure of the 

strength and direction of an association. It describes the strength of the relationship between two 

parameters. The sign indicates the proportional relationship, and the magnitude indicates the 

strength of the relationship. The Pearson’s correlation coefficient is always between -1 and 1 

[18]. 

The Pearson’s correlation coefficient can only calculate the relationship between two 

independent variables. The variance inflation factor (VIF) can be used to overcome this 

limitation, and allows the input data to be examined for multicollinearity [19]. Researchers have 

determined that VIF values above 5 or 10 indicate multicollinearity [19]–[21]. The VIF takes one 

predictor and regresses it against every other predictor in the model and calculates the coefficient 

of determination, R2. The VIF is then calculated as shown in Eq. 1 [20]. 

𝑉𝐼𝐹 =
1

1−𝑅𝑖
2  (1) 

2.4 Sample Size Analysis 

A sample size analysis can be used to ensure that the number of samples is large enough to allow 

the model to produce accurate and reliable results. The analysis involves evaluating the training 

and validation performance metrics at different sample sizes. The error metric is calcualted for 
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decreasing sample sizes and plotted on the y-axis with number of training samples on the x-axis. 

When validation and training lines converge, the dataset is large enough. If the results show that 

there is a large difference between the training and validation values, this indicates that there is 

variance in the model and more samples are needed. If the results show that the error is high, this 

indicates that the model has high bias. High bias indicates that either a more complex model is 

required or more parameters. Figure 6 shows an example of a sample size analysis that illustrates 

high bias and low variance (left), and low bias and high variance (right). 

 

Figure 6 Sample size analysis showing high bias low variance (left) and low bias high variance (right).   

2.5 Data Preprocessing 

The input variables often have different units making it difficult to interpret regression 

coefficients. The variables can be standardized to allow them to be compared on equal scales. 

The mean and standard deviation of a set of input variables is calculated. If regularization is 

used, standardization is required. The inputs can be standardized by subtracting the mean and 

dividing by the standard deviation, as shown in Eq. 2 [22].  

𝑧 =
𝑥𝑖− 𝜇

𝜎
 (2) 
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Where 𝑥𝑖 is the input parameter values, 𝜇 is the mean, 𝜎 is the standard deviation, and 𝑧 is the 

standardized value.  

In linear regression, transformations of the input and output variables can be applied to increase 

the accuracy of the model. The most common transformations include log, square-root, and 

inverse. Tian et al. describe transformations as the best method to improve a model that has non-

linear relationships between input and output parameters while maintaining the underlying linear 

structure of the regression model [23]. They found that a simple square-root transformation 

resulted in a greatly improved model. Visually analyzing the residual distribution can determine 

if linear regression was an appropriate method. If the residuals show evidence of non-linearity, 

the correct transformation can improve the validity of the assumptions required for linear 

regression to be appropriate. Standardization and transformations apply for continuous input 

variables.  

Categorical inputs must be processed in some way before they can be handled by the learning 

algorithm. This is called encoding the categories which is accomplished using label encoding or 

one-hot encoding. Label encoding replaces a category with an arbitrary numerical value. It is not 

clear if label encoding is able to be processed by the learning algorithm as it imposes an 

ordinality that is not necessarily true. This could confuse the training algorithm and result in 

inaccurate coefficient values. To help the algorithm, they can be ordered using knowledge of 

their effect on the outcome variable. If there is no understanding of the category’s effect, one-hot 

encoding is an alternative approach where no assumptions about the data must be made. This 

works by converting each category into a new parameter and assigning a 1 or 0 to indicate true or 

false. This allows the model to analyze the effect each category has on the output variable.  
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2.6 Training Algorithm 

There are many algorithms that can be used to predict annual energy use. The most popular 

methods among surrogate building energy models are linear regression (including lasso, 

stepwise, and polynomials), artificial neural nets (ANNs), gausian processes (GP), multivariate 

adaptive regression spline (MARS), support vector machine (SVM), and radial basis function 

(RBF) [8].  

Using a highly complicated algorithm such as ANN could potentially fit a training set perfectly, 

however it would not necessarily generalize well to new data. The model could be fitting the 

noise instead of the trends. The “bias-variance trade-off” describes the balance between model 

complexity and accuracy [22]. The application of the surrogate model will determine which 

training algorithm best fits for that situation. Although the literature has proven that there are 

more accurate algorithms, linear regression has the benefit of being highly interpretable. Figure 7 

describes the trade-off between interpretability versus flexibility of a model. Lasso is regularized 

linear regression.  

 

Figure 7 Interpretability versus flexibility of different training algorithms. Figure adapted from [22]. 
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Interpretable models allow conclusions to be made based on the assigned weightings of each 

input parameter. Flexible models have many hyperparameters that can be used to tune the model 

to behave in many ways.  

2.6.1 Linear Regression 

The goal of linear regression is to calculate coefficient values so that a linear model can predict 

an output value as accurately as possible. This is generally accomplished by minimizing the sum 

of the squared errors [22]. In the case of multivariate linear regression, the line of best fit 

becomes a plane. The equation to describe the multivariate linear equation would be in the form 

shown in Eq. 3.  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝  (3) 

Where 𝛽0 is the intercept, 𝛽𝑝 is the coefficient value for the input 𝑥𝑝, and p is the number of 

variables.  

2.6.2 Elastic Net Regression 

Regularization, also known as shrinkage, is a method of reducing variance in a model [22]. 

Hastie et al. explain “the estimated coefficients are shrunken towards zero relative to the least 

squares estimates” [22]. There are different shrinkage methods, and sometimes the coefficients 

can be shrunken to equal zero effectively removing them from the equation. The plot on the left 

of Figure 8 shows an overfitted model. The plot on the right is the same model after applying a 
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regularization penalty (i.e. shrinkage). This results in a reduction of variance.

 

Figure 8 Overfitted model (left), good bias-variance trade-off (middle), underfitted model (right). 

Bias refers to model complexity and how well it fits a training set. The plot on the left shows a 

low bias model that has minimized error in the training set, however it has picked up on the noise 

instead of the underlying trends. This model would be inaccurate when predicting on unseen 

data. The plot on the right shows a high bias model that has missed the trends completely and 

will have a high training error. The model in the middle has a balanced amount of bias so that the 

error on the training and testing sets will be similar.   

Ridge, lasso (least absolute shrinkage and selection operator), and elastic net are all forms of 

regularized linear regression. The ridge coefficients aim to minimize the function in Eq. 4 [22]. 

𝑅𝑆𝑆 + 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1  (4) 

Where λ ≥ 0 is the tuning parameter and 𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1  is the shrinkage penalty.  

The lasso coefficients aim to minimize the function in Eq. 5 [22]. 

𝑅𝑆𝑆 + 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1  (5) 

Where λ ≥ 0 is the tuning parameter and 𝜆 ∑ |𝛽𝑗|𝑝
𝑗=1  is the shrinkage penalty. 
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The tuning parameter controls the impact of the shrinkage penalty. There will be a different set 

of coefficients every time this value is changed. If the tuning parameter is zero, the least squares 

fit is being computed (linear regression). As the tuning parameter increases, the coefficient 

values begin to decrease (this is “shrinkage”).  

Ridge will shrink the coefficients towards zero as the tuning parameter increases, however no 

coefficient value will ever reach zero unless 𝜆 = ∞  [22]. With lasso, the tuning parameter could 

be increased until all coefficients became zero. Ridge will always include all the parameters in 

the final model. The number of parameters included in the final lasso model will depend on the 

tuning parameter value. Edwards et al. explain that lasso reduces the number of coefficients 

which results “…in a sparser, more robust model. Note that robustness is defined based on the 

idea that a simplistic model is most likely to generalize to new scenarios” [24]. Edwards et al. 

based this on model complexity studies [25]–[27]. Tian et al. [23] believe that using lasso 

regression for feature selection could replace the conventional stepwise method that has been so 

widely used in this field up to this point. This is referred to as embedded feature selection 

because features are “selected” within the learning algorithm [28].  

Elastic net combines the lasso penalty and ridge penalty and minimizes the function in Eq. 6 

[29].  

𝑅𝑆𝑆 + 𝜆 (
1−𝛼

2
∑ 𝛽𝑗

2𝑝
𝑗=1 + 𝛼 ∑ |𝛽𝑗|𝑝

𝑗=1 )  (6) 

Where 𝛼 is the L1-penalty coefficient, and (1 − 𝛼) is the L2-penalty coefficient. The 

regularization method is ridge if 𝛼 = 0, lasso if 𝛼 = 1, and elastic net if 𝛼 is between 0 and 1. The 

tuning parameter and the L1-penalty coefficient are considered hyperparameters and define a 

specific “model”, since a change in either would result in different coefficient values.  



 19 

Tian et al. [23] use the “one-standard-error” rule to determine which hyperparameters to use. 

This rule indicates that the chosen model should have an error that is no more than one standard 

error more than the error of the best model [30].  

2.7 Validating Algorithm 

A machine learning algorithm is trained on a set of data. The objective is to fit a model that most 

accurately predicts the target variable given the input variables. The model is validated by testing 

the model developed from the training set on a set of unseen data, referred to as a validation set. 

An entire dataset is split into training and validation subsets using different splitting methods. To 

ensure the results are not affected by the location of the split, (for example if the validation set 

were to contains all the outliers), the split is randomly repeated many times and the average 

evalutation metrics are used to describe the performance of the model. According to Kuhn and 

Johnson [31], repeating the resampling may produce different values, but if repeated enough 

times will estimate the true value. 

If this is repeated iteratively, and the performance metrics of the validation set are used to choose 

the final model, the final model is being selected because it describes the validation set well. 

This is called data leakage. The model is performing well because it was chosen based on the 

highest validation scores. However, the validation set is just a small subset of data. When the 

model is passed new data, it may have much lower performance because the validation set was 

not a representative sample. To overcome this, a “hold-out” set, or testing set, is split off at the 

very beginning. This is never used by the model to make decisions about which algorithms or 

hyperparameters to use. The validation set can now be used to choose the model and tune the 

hyperparameters. When a final model is selected, it can be evaluated on the testing set – data it 

has never seen before – and the evaluation metrics are a more accurate indication of the model’s 
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ability to predict on unseen data. A proper cross-validation methodology will reduce data leakage 

and can calculate the model accuracy close to its true value.  

2.8 Model Performance Metrics 

Root mean squared error (RMSE is) measured in the unit of the output variable and can be 

interpreted compared to the range of the output values. This makes it difficult to compare across 

models when the range is not stated, or the units are not the same. If the variables were 

transformed, for example, the RMSE before and after could not be compared. In existing 

literature, the values of the output variable(s) are often not stated with the RMSE.  

Mean absolute percent error (MAPE) is measured as a percentage of the output variables. It can 

be compared no matter the unit or mean. MAPE is not always reported alongside R2 and RMSE, 

although it is the most useful for comparing models and the most interpretable. 

The coefficient of determination, R2, describes the proportion of variance explained by a line of 

best fit. It is unitless and always falls between 0 and 1. R2 can be determined using the total sum 

of squares and the residual sum of squares as shown in Eq. 7 and 8 [22].  

𝑅2 =
𝑇𝑆𝑆−𝑅𝑆𝑆

𝑇𝑆𝑆
  (7) 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
  (8) 

Where RSS is the residual sum of squares and TSS is the total sum of squares.  

Hastie et al. explain that “TSS measures the total variance in the response Y, and can be thought 

of as the amount of variability inherent in the response before the regression is performed. In 

contrast, RSS measures the amount of variability that is left unexplained after performing the 
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regression. Hence, TSS−RSS measures the amount of variability in the response that is explained 

(or removed) by performing the regression, and R2 measures the proportion of variability in Y 

that can be explained using X” [22]. 

2.9 NSGA-II Optimization 

Multi-objective optimization allows more than one objective function to be optimized. This can 

be accomplished using a non-dominated sorting genetic algorithm (NSGA-II) [32]. NSGA-II  

optimization can be used to find a Pareto front of solutions using a genetic algorithm. Figure 9 

shows an example of a multi-objective optimization problem.  

 

Figure 9 Pareto front diagram for minimizing two objective functions. 

The two axes represent each objective. In a trade-off case where both objectives cannot be 

minimized, for example cost and energy use, there will be no single optimum solution. Retrofit 

solutions cost money, therefore as cost increases, energy decreases, and vice versa. The Pareto 

front is a set of solutions that try to find a balance minimizing both functions. The feasible 
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domain is all possible retrofit solution combinations. The genetic algorithm optimization presents 

the Pareto front, which is the edge of the feasible domain where both objectives are minimized. It 

outputs a set of Pareto points that fall along the Pareto front. It is then up to the user to pick a 

single point as the optimal solution 
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3 LITERATURE REVIEW 

This Chapter begins with a review of existing bottom-up models describing the Canadian 

residential housing stock to outline the limitations of current methods. The rest of this section 

outlines current research on energy use surrogate models, including an overview, model intent, 

development, and validation. The final section summarizes the gaps in the literature that framed 

the research presented in this thesis.  

3.1 Bottom-up Housing Stock Models 

There are several different approaches that can be used to model energy consumption of a 

housing stock. Swan and Ugursal [33] describe the top-down and bottom-up approaches as the 

two main methods. The top and bottom refer to the “hierarchal position of data inputs as 

compared to the housing sector as a whole” [34]. The bottom-up approach considers small sets of 

houses with similar characteristics (archetypes), and results can be extrapolated to describe a 

larger subset of the residential housing stock [34]. Swan and Ugursal [33] explain that statistical 

methods and physical methods are the two groups used in the bottom-up approach. Statistical 

methods use historical data to identify end-use energy consumptions. This can be accomplished 

using regression, conditional demand analysis, or neural networks. Physical methods use inputs 

and known mathematical thermodynamic relationships to calculate end-use energy 

consumptions. Swan and Ugursal state that for this reason, physical methods are the only option 

for comparing the impact of retrofit options [33]. Foucquier et al [35] suggest hybrid models as a 

third category of the bottom-up approach. Hybrid models – also called grey box models – 

combine elements from the physical and statistical approaches.  

The BC Housing “Step Code” [36] and The Canadian Hybrid Residential End-Use Energy and 

GHG Emissions Model (CHREM) [37] are two examples of bottom-up models used to describe 
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a housing stock. The BC step code is a physics-based model and describes the residential 

housing stock in British Columbia. The CHREM is a hybrid model and describes the Canadian 

single-family residential housing stock. These methods are limited by the rigidity of the models, 

the assumptions that were made, and needing to sample the database due to the computational 

requirements of simulating the entire design space.    

The CHREM is a model based on building performance simulation of 16,952 unique houses that 

statistically represent the Canadian housing stock [37]. The input data for the models is a sample 

of real data collected from EnerGuide for Houses Database [38]. The physics-based method was 

used to simulate the thermal energy transfer and HVAC energy use, while the statistical method 

was used to estimate occupant-driven loads (appliance and lighting and domestic hot water) [37]. 

The purpose of the CHREM is to set a baseline energy consumption of the entire Canadian 

housing stock and allow researchers to model retrofit scenarios and compare the results. It takes 

approximately 68 seconds to run a simulation for one house, therefore it would take 13 days to 

run all the files consecutively (this could be shortened with better processors or more computers) 

and this would have to be repeated for each retrofit scenario investigated [37]. Note that not all 

houses have to be run for each simulation. There are five interconnected components that are 

required to run CHREM successfully, and each house is defined using 18-31 input files 

depending on the housing characteristics [37]. This model is sophisticated but complicated and 

hard to use. It would be difficult to use for a sensitivity analysis and is not ideal for optimization 

as the computational requirements would be enormous. Wills [39] adapted the CHREM and used 

it to perform an optimization algorithm but was limited to a single cost function due to the 

computational burden. The dataset is not very granular as the intent is to describe the entire 

Canadian single-family housing stock with 16,952 houses. The geometry inputs vary in size but 
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not type, as each house’s geometry was simplified to be rectangular with a peak roof [37]. This 

would likely impact the results.  

According to the final report “the BC Energy Step Code (the “Step Code”) is an amendment to 

the BC Building Code (BCBC) that provides a performance-based path intended to support a 

market transformation from current energy efficiency requirements to net zero energy ready 

buildings by 2032”. The retrofit solutions resulted in 54 million combinations of energy 

conservation measures. They used a dynamic sampling technique to model 60,000-240,000 

simulations (which took 12 days). The limitations of this project are that not all the possible 

solutions were able to be evaluated due to the lack of computing power. Another limitation is 

that the solutions only applied to homes in British Columbia. [36] 

3.2 Surrogate Model Overview 

Barnes [40] and Westermann and Evins [8] completed detailed literature reviews of surrogate 

modelling for building performance simulation in 2019. Barnes [40] reviewed 22 papers and 

Westermann and Evins [8] reviewed 57. They collected detailed information about the intentions 

of the models, the model algorithms, the sampling techniques, and the input parameters used.  

Westermann and Evins determined there were four stages of the building design process where 

surrogate models are commonly used. These are: the conceptual design stage, sensitivity 

analysis, uncertainty analysis, and design optimization. A sensitivity analysis is often an initial 

step to reduce computational cost before the other three processes. Surrogate models reduce the 

computational cost of building energy simulation allowing researchers to gain insight into 

building performance over a wide space of potential design or retrofit options. [8] 
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 Magnier and Haghigat used artificial neural nets (ANN) to create a surrogate model and the 

NSGA-II optimization algorithm to optimize energy use and comfort. It took three weeks to run 

the simulations to build the dataset and 7 minutes to run the optimization. If they had simulated 

the same number of model evaluations that they optimized, the process would have taken 10 

years. They were using small time steps and had a computer with low processing power so they 

noted that the three weeks of simulation time could be greatly reduced. [41] 

Westermann and Evins found that in some situations, a trade-off between accuracy and model 

interpretability was favoured [8]. Ostergard et al. compared various machine learning algorithms 

commonly used to develop energy use surrogate models concluded that the “best” technique 

should be determined based on time, expertise, and required level of accuracy [42]. Westermann 

and Evins summarize that Ostergard et al. [42] advocate “the use of ANN for extensive analysis, 

GP for non-experts to get high accuracy, and MLR for quick, automated surrogate modelling” 

[8].  

Figure 10 outlines the process found by Westermann and Evins to describe the surrogate model 

development process [8]. 
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Figure 10 Surrogate development process according to Westermann and Evins. Figure adapted from [8]. 

There are additional steps to creating a surrogate model and development decisions must be 

made throughout the process. A few examples include deciding which target variable to predict, 

which energy simulation software to use, and which error metrics to report. The rest of this 

section will describe each of these decisions and the options found in previous research. 

3.3 Surrogate Model Intent 

According to Cerezo et al, an archetype is generally classified based on properties such as use or 

construction year and can then be characterized using average values for that group. The most 

commonly used classifiers are type of building, floor area, shape, and age of construction. Once 

the building has been classified, the archetype must be characterized for necessary parameters to 

enable energy simulation. This includes non-geometric building and occupant factors (envelope 

construction details, HVAC system properties, occupancy schedules, internal loads, etc.) that are 

based on averages of the archetype’s parameters. Cerezo et al. state that literature data can be 



 28 

used to characterize archetype parameters, however more granular building data could be 

collected for the archetype by an audit or field survey. [43] 

Tsanas et al. [17] explain that modelling whole buildings to determine energy use is a widely 

used approach even though the result do not necessarily perfectly predict real energy use. They 

state that the results are an accurate indication of the percentage change and underlying trends 

and conclude that simulation results “represent actual real data with high probability and as such 

will be considered as ground truth” [17].  

Chidiac et al. developed several archetypes for Canadian office buildings, assessed the 

applicability of energy retrofit measures (ERMs), and selected the most suitable ERMs for each 

archetype. Their methodology was developed to “simplify the ranking of buildings for retrofit, to 

select and combine ERMs, and to plan energy and GHG reduction activities” [44]. They used 12 

ERMs based on current energy-saving industry standards. Individual equations to describe each 

end use load (lighting, equipment, pump, fan, domestic hot water, chiller, and boiler) were 

developed and summed together to calculate overall energy consumption. This allowed the 

author to gain an understanding of how an ERM affects the individual loads, and the resulting 

energy reductions. This study simulated individual variable changes but limited multiple 

interaction simulations to individual variables that effected energy consumption by more than 

10%, and only 3 level interactions were considered. The results were used to calculate payback 

period using installation and material costs from RSMeans. This helped determine the retrofit 

potential for each archetype. [44] 

Hygh et al. created a surrogate model for a medium-sized rectangular office building in 4 

different climate zones. The model predicted total space heating and cooling and was created 

using EnergyPlus simulations using a Monte Carlo sampling of the design space. Forward 
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stepwise regression was used to add combined parameters to the model. They conclude that 

linear regression models can replace a full energy simulation model when making design 

decisions during early stages. They found that the regression model for total energy consumption 

was more accurate than summing the predictions for the heating and cooling models. They used 

20,000 EnergyPlus simulation results used to generate the surrogate model, but an analysis of the 

prediction error versus the number of samples indicated that 1000 samples would be enough for 

the rectangular office building they modelled. The model was validated using 20% of the 20,000 

samples. It is unclear if this result was cross-validated, and the parameters may have been 

selected on the same set that accuracy was assessed. This can sometimes lead to models with 

larger bias, i.e. not generalizing as well to future data. This emphasizes the importance of 

researchers in this field clearly reporting all of the steps taken to allow for other researchers to 

compare and analyze the work that has been done. [7] 

Catalina et al. created a surrogate model for a multi-unit residential building in 16 cities in 

France. Their focus was on buildings forms. The model predicted the heating energy use and 

achieved R2 values of 0.99 with average error of 2%. They found a quadratic polynomial 

regression had the best fit. They checked the residuals of the regression to ensure the 

assumptions of the linear regression were met. The model was validated on simulation results of 

different building forms that were not used in the training set. [45] 

Asadi et al. used DOE-2 and Monte Carlo sampling to create a surrogate model for a typical 

office building in Houston, Texas. The model inputs focused on construction characteristics, 

shape, and occupancy schedule. A separate model was created for each of the seven building 

forms. They conducted 10,000 simulations per building and achieved R2 values of 0.94-0.95 and 
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5% error. The model was validated using 20% of the 10,000 samples, however it was unclear if 

the results were cross-validated. [46]  

Catalina et al. use polynomial regression to predict heating energy consumption in multi-unit 

residential buildings in Moscow, Bucharest, and Nice. The model had an R2 of 0.974 and 

average error of 10% when validating on data from 17 real buildings. They claim that error of 

more than 30% is acceptable by designers. The only parameters they used were the building 

global heat loss coefficient, the south equivalent surface, and the difference between the indoor 

set point temperature and the sol-air temperature. [47] 

Hester et al. created a surrogate model to predict energy consumption of single-family residential 

buildings in Chicago, Illinois. The goal was to develop a framework to make informed decisions 

to improve a building’s performance based on early-design decision parameters. They used 

stepwise forward selection and linear regression and reported R2 values of 0.968. [9]  

Melo et al. developed a surrogate model to predict the annual cooling energy of commercial 

buildings in Florianópolis, Brazil. They tested several algorithms including multivariate linear 

regression, which performed with a NRMSE of 3.7%. They used LHS and EnergyPlus to 

perform one million simulations. They pre-processed their data by standardizing the input 

variables, applied a log-transformation, and one-hot encoded their categorical variables. [48] 

Sangireddy et al. used residual analysis to ensure the appropriateness of their models. They 

simulated 100,000 input combinations in EnergyPlus for two cities in India. Different machine 

learning algorithms were trained on the Jaipur dataset and tested on the Hyderabad dataset. 

Using lasso yielded R2 scores of 0.877 and a MAPE of 5.8%. [49] 
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Tian et al. modelled a 5-storey office building in London, UK and created a surrogate model to 

predict heating energy use. They used a distribution-free bootstrap sampling method to compute 

the sensitivity index variation in building energy analysis. They were able to achieve R2 scores of 

0.983 for multivariate linear regression. [6] 

Sekhar et al. [50] used Tsanas et al.’s dataset [17] and achieves R2 scores of 0.924 using 

multivariate linear regression to predict heating load. The input parameters described the 

building geometry only. They compared many different training algorithms. 

3.4 Surrogate Model Development 

A sampling plan is used to generate the input matrix from the defined ranges for each parameter. 

There are many types of sampling plans, such as Monte Carlo, Latin hypercube sampling (LHS), 

orthogonal array, and full-factorial. It has been suggested by Sacks et al. that space-filling 

sampling plans (such as LHS) should be used when error is systematic [51]. Building energy 

simulations fall under this category. Westermann and Evins determined that there was a strong 

preference towards Latin hypercube sampling (28% of the studies reviewed used LHS) [8]. LHS 

creates a matrix of near-random values that are space-filled which results in values that span the 

entire design space. This ensures that each building input parameter has an even number samples 

throughout the whole range. No research was found to indicate the affect of sampling plan choice 

on the performance of energy use surrogate models.  

Barnes [40] determined that 64% of the papers reviewed used EnergyPlus (shown in Figure 11), 

and Westermann and Evins [8] found a similar value of 56% of the papers. Barnes determined 

that most of these papers used EnergyPlus for its capability to automate the modification of the 

IDF text file [40]. It is also the official energy analysis simulation program of the U.S. 
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Department of Energy, and it is based on first principles instead of simplified algorithms, which 

can avoid inaccuracies [7]. 

 

Figure 11 Percentage of energy simulation software used in surrogate modelling. Figure from Barnes [40]. 

Figure 12 shows the parameters that Barnes [40] determined were the most commonly used in 

the reviewed papers. The percent of studies that uses each parameters is shown. 

 

Figure 12 Percent of studies that use each input parameter. Figure from Barnes [40]. 

Westermann and Evins [8] found that most studies predicted annual energy demand, and the 

second most common target variable was heating and cooling. Barnes [40] found the opposite.  
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Several studies that did a sample size analysis with tens of thousands of simulation results 

concluded that 500-1000 samples would be large enough for a similar situation [7]. Westermann 

and Evins found that only 26% of the reviewed papers performed a sample size analysis [8]. This 

should always be done to assess how the sample size impacts the surrogate model performance. 

Westermann and Evins found that while most researchers selected the most accurate model, 

sometimes trading accuracy for interpretability was favoured [22], [52]. Westermann and Evins 

[8] found that 33% of the papers used linear regression. Figure 13 shows the percentage of the 

other algorithms.  

 

Figure 13 Percent of studies that use each learning algorithm. Figure adapted from [8]. 

3.5 Model Validation 

Castelli et al. look at predicting heating and cooling loads in residential buildings from Tsanas et 

al’s dataset [17]. They propose a genetic programming-based framework. They validate their 

results using 10-fold cross-validation with 100 repetitions. [53] 

Chou et al. used Tsanas et al’s dataset [17] and performed 10-fold cross-validation with 10 

repetitions. They compared many different algorithms such as support vector regression, 
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artificial neural nets, classification and regression tree, etc. in terms of speed and performance 

when predicting cooling load and heating load. [54] 

Hester et al. performed cross-validation using a training set of 60%, a validation set of 20%, and 

a test set of 20%. The validation set was used to tune the initial model developed on the training 

set. The test set was reserved for evaluating how well the model performed on unseen data. This 

avoids overfitting and ensures that the reported metrics are accurate. [9] 

Melo et al. performed 8-fold cross-validation during model development. They also validated 

their model by testing it against simulation results from a medium office building energy model. 

[48] 

Tsanas et al. used 10-fold cross-validation repeated 100 times. They did not have a testing and 

validation set, only one set was put aside and used to evaluate the algorithm, indicating that the 

models were validated and tested on the same data. [17] 

Tian et al. explain that the simplest technique to evaluate prediction error is using a separate 

subset of the dataset for validation and testing. This method is widely used in building 

performance analysis. They state that there are several disadvantages to this method and that new 

methods are required to overcome the shortcomings. [6] 

Krstajic et al. explain that model selection should have a different process (and separately 

reported performance metrics) than model assessment, but many researchers report the cross-

validation error that determined which model was the best as the true model performance [55]. 

Varma and Simon [56] show that this practice gives significantly biased estimates of the true 

error. They describe the correct practice which requires the parameter tuning to be repeated in 

each cross-validation loop, and conclude that a nested cross-validation procedure “provides an 
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almost unbiased estimate of the true error” [56]. None of the studies reviewed included nested 

cross-validation. It should be noted that this is only required when using a model that requires 

hyperparameter tuning. 

Westermann and Evins, who reviewed 57 papers on surrogate model development, did not 

mention cross-validation or lasso as embedded feature selection [8]. Barnes determined that only 

20% of papers used cross-validation [40]. 

Barnes [40] determined the percent of evaluation metrics used in the reviewed papers. The most 

common reported metrics were R2 and RMSE, followed by MAPE. 

 

Figure 14 Percent of reviewed studies that use each model performance evaluation metric. Figure from Barnes [40]. 

Many studies report only R2 or RMSE, which are not easy to compare. An error metric, such as 

RMSE, should always accompany a correlation metric, such as R2. This is because high 

correlation does not necessarily indicate low error. 

Barnes [40] determined that only 12% of surrogate models from the reviewed literature were for 

low-rise residential buildings. That category includes multi-unit buildings, which made up the 
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majority of those values. Figure 15 shows the percentage of the building types according to 

Barnes [40]. 

 

Figure 15 Percent of buildings used to make surrogate model in reviewed studies. Figure from Barnes [40]. 

3.6 Gaps in Current Literature 

The research in this field so far focuses on commercial buildings or multi-unit residential 

buildings. Not much emphasis has been placed on single-family homes. Although commercial 

buildings use more energy per building and in total, residential buildings account for 17% of the 

secondary site energy use in Canada [1]. There is still a great deal of energy savings that can be 

achieved by retrofitting existing homes. Only one paper by Hester et al. [9] was found to look at 

single-family residential homes, but their objective was to guide sequential design decisions. 

They used a forward stepwise selection methodology to decide on input parameters. They did not 

consider ventilation rates or heat recovery efficiencies for input parameters and did not report 

coefficient values. They conclude that their methodology could be improved with surrogate 

models that incorporate a wider range of designs, or “by a method to more rapidly generate a 

metamodel for a particular building type and context” [9]. 
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Many papers do not use cross-validation to choose hyperparameters or obtain true measures of 

model performance. Nested cross-validation was used in this research to obtain the most accurate 

model performance metrics. The decisions made in the surrogate model development process are 

not always made clear in existing literature. This makes it very difficult to learn from and 

compare to other research in this field. This research aims to be very clear about what decisions 

were made and what hyperparameters were used. 

Many papers explore which training algorithm is the most accurate, however at this point that 

has been sufficiently covered. Multivariate linear regression is used for its simplicity and 

interpretability based on the objectives of this paper. No other training algorithms are compared.  

None of the reviewed papers explore the bounds of surrogate models and how a variation in 

building types or size will affect the model performance (however some do explore different 

shapes). A house size analysis is completed in this research to determine the affect of house size 

on model performance. Capturing larger variations in houses that can be described by a single 

surrogate model greatly increases the feasibility of using surrogate models to describe an entire 

housing stock. 

There is currently no bottom-up model of the Canadian housing stock that overcomes the current 

limitations. Models need to be transparent, flexible, and allow for multi-objective optimization. 

The use of a surrogate model coupled with the physics-based bottom-up approach will start to fill 

that gap. More archetypes will need to be developed to incorporate larger subsets of the 

Canadian housing stock.  

This research proposes a methodology for creating a surrogate model for an archetypal single-

family home in Toronto, ON. This research is the first step towards creating a bottom-up model 

that can describe Toronto’s residential housing stock and other Canadian municipalities. 
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4 METHODOLOGY 

Phase 1 focused on creating the dataset used in Phase 2 to develop the surrogate model. Phase 1 

started with a field study of The Pocket neighbourhood to collect data. This data was used to 

update an existing archetype model to be the baseline model for the dataset. The data was used to 

determine a set of parameters and associated ranges that were randomly sampled using Latin 

hypercube sampling to create 1500 EnergyPlus input files (IDFs) to represent a set of houses 

within the defined century home archetype. The 1500 models were simulated using EnergyPlus 

and the annual energy use was appended to each set of input parameters as the output value. 

Figure 16 shows the outline of the methodology for Phase 1.  

 

Figure 16 Outline of Phase 1 methodology. 

Phase 2 used the dataset created in Phase 1 to develop a surrogate model using multivariate 

linear regression and regularized regression (elastic net). Phase 2 began with preprocessing the 

input and output parameters. A house size analysis was performed to determine if a large range 

of house sizes could be accurately captured by a single surrogate model. Four different models 
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using multivariate linear regression, elastic net, and different ways of processing the categorical 

variables (one-hot encoding versus label encoding) were created and compared. A final model 

was selected and trained, and the coefficient values were reported. A case study was conducted 

using the model and utility data from two homes in The Pocket neighbourhood. Finally, a 

preliminary optimization example was completed using retrofit and costing data from Jermyn’s 

research [10] and compared to their brute-force optimization. Figure 17 illustrates the 

methodology for Phase 2. 

 

Figure 17 Outline of Phase 2 methodology. 

4.1 PHASE I – DATA COLLECTION AND DATASET DEVELOPMENT 

4.1.1 Baseline Archetype Model Development 

Zirnhelt [12] validated a model development procedure that guided the data that Jermyn [10] 

collected to create the century archetype model. Characteristic data represents features that are 
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set in the baseline model and will not be changed. Parameters are features that are modified in 

the surrogate model and whose values are influenced directly by the ranges decided upon via the 

data collection. Table 2 shows the collected data and what was considered a parameter versus a 

characteristic, and what was changed from Jermyn’s baseline model [10] and why. The 

parameters are being updated for each sample; therefore changing the baseline model is not 

applicable. The rest of this section explains the changes in more detail.  

Table 2 Baseline archetype parameters and characteristics, and which were updated in the new model. 

Geometry Parameter Characteristic Changed? Reason for Change 

Building footprint   x No  

Storey height   x No  

Dimensions  x  N/A  

Shading devices and overhangs  x Yes Simplification 
Glazing and doors  x  N/A  

Floor plan   x No  

Envelope          

Materials and material properties   x No  

Window constructions x  Yes Simplification 
Door constructions   x No  

Air tightness  x  N/A  

Basement          

Materials and material properties   x No  

Wall and floor thicknesses   x No  

Depth of wall below grade  x  N/A  

Internal Gains      
 

  

Types of major appliances   x No  

Occupancy schedules  x No  

HVAC          

Thermostat location   x No  

Type of heating and cooling   x Yes Auto sized 
Total ventilation flow rate  x Yes Calculated 
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The changes were made to prepare the baseline energy model to develop a dataset for the 

surrogate model. The size of the heating and cooling systems had to be adjusted based on house 

size, system efficiencies, and envelope thermal effectiveness. The International Energy 

Conservation Code (IECC) prototype models [57] were used as a reference to update the baseline 

model. Based on the IECC models, the HVAC systems were auto sized. The windows that 

Jermyn [10] used were updated to a “simple window” input in EnergyPlus to allow the surrogate 

model to change the whole window u-value solar heat gain coefficient easily. Simple windows 

are used in the IECC prototype models [57]. The ventilation rate was updated to the Outdoor Air 

Flow per Zone [m3/s] object in EnergyPlus [58]. Jermyn’s model had a constant ventilation rate 

that cycled on/off with the furnace, resulting in unmet ventilation requirements. The required 

ventilation for the updated baseline was calculated using Eq. 9 from ASHRAE 62.2 [59].  

𝑄𝑡𝑜𝑡 = (0.15 ∗ 𝐴𝑓𝑙𝑜𝑜𝑟 + 3.5(𝑁𝑏𝑟 + 1))/1000 (9) 

Where 𝑄𝑡𝑜𝑡 is the total required ventilation rate in m3/s, 𝐴𝑓𝑙𝑜𝑜𝑟 is the floor area in m2, and 𝑁𝑏𝑟 is 

the number of bedrooms.  

The infiltration for each sample was calculated using volume and ACH50. The amount of 

infiltration (up to 2/3 of  𝑄𝑡𝑜𝑡) can be subtracted to reduce the total required ventilation rate. 

Houses with lower air tightness will require larger amounts of mechanical ventilation, therefore 

the ventilation rate must be calculated for each sample.  

Jermyn imported basement heat transfer calculation results from the auxiliary EnergyPlus 

basement program [10]. This was a very time-consuming process and since then a new Kiva 

framework has been developed. The Kiva calculation tool replaces the three-dimensional heat 
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transfer calculations from the basement program to an approximated two-dimensional value that 

maintains a mean absolute deviation within 3% of the true value [60].  

The overhangs were removed from Jermyn’s baseline model [10] as it was determined that 

removing them had a negligible effect on annual energy use. They were very small to begin with 

based on the century home geometry, and no data was collected about them during the field 

study to create ranges for them as parameters in the surrogate model.  

4.1.2 Data Collection 

A survey of The Pocket Community determined that there were many homes with similar 

characteristics. This was determined by reviewing the houses on Google Earth [61] and from 

canvassing the neighbourhood. The Pocket Community Association assisted in establishing 

contact with many residents of The Pocket. When this resource was exhausted, a door-to-door 

strategy was used to find residents who were willing to participate. Some homes that seemed 

from the outside to fit the archetype ended up having different characteristics and were not able 

to be used in the final study. The field study was completed with another student from Ryerson 

University, Cameron Lawrence, who used the same data for their research on a similar topic. The 

data that was collected is shown in Table 3. 

Table 3 Data collected during The Pocket field study. 

Geometry Windows Envelopes HVAC 

Overall length and width Number of panes Wall insul and construction Type of heating systems 

 Floor heights Frame material Roof insul and construction Efficiencies and capacities 

Window areas Window type Slab insul and construction   

 

The field study was a non-intrusive investigation, therefore some values such as insulation levels 

were difficult to determine. Occasionally there was access to the attic or exposed insulation in 

the basement that allowed some data to be collected. A survey was filled out by the occupants of 
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each house regarding previous renovation descriptions, appliance use, set point temperatures, and 

goals for energy reduction renovations, if any.  

Jermyn’s baseline model included occupancy inputs that were based on averages from surveys 

filled out by homeowners during the field study. The surrogate model was not developed with 

any occupancy related input parameters, as it was not within the scope of this research.  

4.1.3 Parameter and Range Selection 

The selected parameters were broken into the following categories: geometry, enclosure 

performance, HVAC efficiencies, lighting, and infiltration. Jermyn’s detailed work on common 

retrofit scenarios, feasible values, and associated costs, was used as a reference to choose the 

retrofit parameters [10]. Jermyn collected data for three “levels” of retrofit upgrades for eight 

parameters [10]. The parameters and their levels are shown below in Table 4. 

Table 4 Retrofit parameters and level upgrades developed by Jermyn [10]. 

Strategy Baseline Level 1 Level 2 Level 3 

Walls (RSI) 1.01 4 6 10 

Roof (RSI) 2.64 9 10.5 13 

Basement Walls (RSI) 0.55 2 3 3.5 

Slab (RSI) 0.058 0.75 1 1.75 

Windows (U-factor) 2.7 1.9 1.2 1 

Air Sealing (ACH at 50 Pa) 10.54 20% Reduction 3 1 

Heating and Cooling 80% Eff. 90% Eff. 94% Eff. 97% Eff. 

HRV Option N/A 60% Eff. HRV 85% Eff. HRV 80% Eff. ERV 

 

The data collected from The Pocket included these eight parameters and 14 others that were 

expected to affect energy usage. Six describe geometry, four describe window-to-wall ratios for 

each elevation, and the other parameters are orientation, air conditioner efficiency, average 

lighting, and window solar heat gain coefficient. The parameters were chosen because they 
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described a variation within the archetype (ex. floor height, window-to-wall ratio) or they 

described a value that could be changed in a retrofit renovation (ex. wall insulation, furnace 

efficiency). Ventilation was the only calculated parameter, the rest were sampled from their 

defined ranges. Table 5 lists all the input parameters.  

Table 5 List of input parameters for surrogate model. 

Geometry Windows Insulation Other 

Orientation Window U-Value Wall Insulation RSI Avg Lighting Density 

Depth (side of house) SHGC Roof Insulation RSI ACH @ 50 Pa 

Width (front of house) Front WWR Slab Insulation RSI Furnace Efficiency 

Basement height above grade Back WWR Basement Insulation RSI AC Efficiency 

Basement height below grade Left WWR  HRV Option 

Average floor height (1&2) Right WWR  Ventilation 

Third floor height       

 

Ventilation was calculated from several of the input parameters during the IDF updating process. 

The Python script that was updating each IDF calculated the total ventilation rate (Eq. 9) and 

infiltration credit for each set of input data and set it equal to the ventilation rate in the 

EnergyPlus IDF. 

4.1.4 Sampling Plan 

With the design space set, a dataset size of 1500 was determined to be acceptable to accurately 

model the annual energy use based on previous research [7]. Latin hypercube sampling (LHS) 

was used to create a 1500 x 23 matrix of values ranging from 0 to 1. This was done using 

MATLAB’s lhsdesign [62]. Eq. 10 was applied to convert the LHS generated sample to a value 

within the specific range. 

𝑃𝑉𝑖,𝑗 = 𝐿𝐻𝑆𝑖,𝑗 × (𝑃𝑉𝑖,𝑚𝑎𝑥 − 𝑃𝑉𝑖,𝑚𝑖𝑛) + 𝑃𝑉𝑖,𝑚𝑖𝑛 (10) 
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Where 𝑃𝑉𝑖,𝑗 is the parameter value, 𝐿𝐻𝑆𝑖,𝑗 is the random Latin hypercube sample value, i is the 

parameter number (1-23), and j is the sample number (1-1500).  

This results in a dataset that describes 1500 “houses” with different combinations of parameters 

within the set design space. The set of 23 parameters that describes each individual “house” will 

be referred to as a sample.  

4.1.5 IDF Modification and EnergyPlus Simulations  

A Python [63] script was written to pull the values from each sample and update all the 

parameters in an IDF and resave it. The 1500 IDF files were run through EnergyPlus [58] and the 

energy use output was extracted with a Python script and appended to the dataset. It took 

approximately 36 hours to run all the files. Jermyn’s baseline models were created and calibrated 

in EnergyPlus [10]. Another benefit of using this software was to avoid translating the models 

into different software.  

4.1.6 Dataset Analysis 

Since the retrofit parameters affected both heating and cooling, total energy use was selected as 

the target variable. The EnergyPlus simulation outputs were analyzed. Energy use in GJ, and 

energy use intensity in kWh/m2 were plotted as histograms to visualize the distribution. Box 

plots of each were used to analyze the mean, quartiles, and ranges of the energy use and energy 

use intensity. The end-uses for each home (heating, cooling, DHW, lighting, fans, other) were 

averaged and compared to the total energy use. Energy use by natural gas versus electricity was 

compared.   

Energy use was plotted against each numerical input in individual scatterplots. This allows for a 

visual analysis of the relationship between each input variable and the output variables. Positive 

slopes indicate that as the input variable increases, so does the energy use. Negative slopes 
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indicate that as the input variable decreases, the energy use decreases. Ventilation was separated 

as it was not sampled using LHS but calculated from input data.  

For the categorical inputs, the energy use of all the samples containing each category were 

examined individually. Error bar plots were used to show the mean, standard deviation, and 

maximum and minimum value for the energy use associated with each category.  

The Pearson’s correlation coefficient was calculated for the entire dataset, comparing each input 

parameter against each other, and the energy use. This was a univariate comparison, so each 

input parameter was only compared against the output. The limitation of this method is that it 

does not capture the relationship of multiple input parameters to each other. The variance 

inflation factor (VIF) was calculated to examine collinearity between input parameters. This 

value is similar to the Pearson’s correlation except it considers multicollinearity by evaluating 

the relationship between all inputs and the output instead of just the output. Since all the input 

parameters except ventilation were randomly generated using LHS, none of those parameters 

should have a large VIF. However, since ventilation was calculated using combinations of input 

parameters, the VIF must be calculated to ensure that any collinearity will not affect the 

interpretability of the model.  

4.2 PHASE II – SURROGATE MODEL DEVELOPMENT 

4.2.1 Summary of Surrogate Model Development 

Table 6 summarizes the decisions made in the surrogate model development process, Phase 2. 
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Table 6 Summary of surrogate model development decisions, organized as proposed by Barnes [40]. 

D
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Model Intent Bottom-up archetype model to predict annual energy use for an archetypal home 

Target Variable Annual total energy use 

Building Archetype 3-storey detached single-family century home in Toronto, ON 

Location + Climate 2016 Toronto City Centre, Ontario, Canada - CWEC weather file [64] 

Energy Simulation 
Software 

EnergyPlus v8.9 [58] 

Statistical Analysis 
and Modelling Tool 

Python v3.7.1 [63] 

Base Model Century home model EnergyPlus v8.0 by Jermyn [10] 

Parameters + Ranges 

21 continuous variables 

2 categorical variables 

Parameters from field study representative of geometry, envelope constructions, air 
tightness, internal gains, and HVAC systems 

D
at

a 
P

ro
ce

ss
in

g Sampling Plan 1500x23 Latin hypercube sampling matrix  

Train/Validation/Test 
Split 

10 times repeated nested 10-fold cross-validation 

Feature Engineering 
Input parameter standardization and log transformation of input and output variables 

Elastic net for feature selection 

Tr
ai

n
ed

 M
o

d
e

l 

D
e

ve
lo

p
m

e
n
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Learning Algorithms + 
Hyperparameter 

Selection 

Multivariate regression 

Elastic net multivariate regression 

Error Metrics 

Coefficient of determination (R2) 

Root mean squared error (RMSE) 

Mean absolute percent error (MAPE) 

 

This Table was suggested by Barnes [40] as a way to allow researchers to easily compare and 

understand the surrogate models that are developed. Many of the reviewed papers did not explain 

how their surrogate models were created. Some examples include indicating if (or what type of) 

cross-validation was used, what sampling plan, how the hyperparameters were selected and what 
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the values were, and what thresholds used to select features were. Some papers only reported 

RMSE metrics, which can only be compared to output variables of the same unit. This makes it 

very difficult to compare methodologies and models. This field would benefit from continuity in 

reporting surrogate model development steps and findings.  

4.2.2 Preprocessing Input Variables 

The numerical inputs were standardized by calculating the mean and standard deviation of the 

training samples for each input parameter only. The data (training and validation) was 

standardized by subtracting the mean and dividing by the standard deviation.  This was done 

using the StandardScalar package in Python [65]. SKLearn’s Pipelines [65] was used to perform 

the standardizing and model training simultaneously to ensure the K-fold cross-validation 

technique is not causing data leakage.  

Models were developed using both label and one-hot encoded categorical inputs to determine 

which is more accurate. The categories were one-hot encoded creating four additional parameters 

(one for orientation and three for HRV options). Table 7 shows how this works for the HRV 

option.  

Table 7 one-hot encoded HRV option categorical parameter. 

Category No HRV HRV 60% HRV 90% ERV 85% 

No HRV 1 0 0 0 

HRV 60% 0 1 0 0 

HRV 90% 0 0 1 0 

ERV 85% 0 0 0 1 

 

Note that for linear regression one column must be dropped, as the values are inherently coded 

into n-1 variables. When performing lasso, ridge, or elastic net, all the categories should be left 

in. It was unclear if one-hot encoding or label encoding would produce better results. Both 
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methods were used and the method that produced the better results was be selected for the final 

model.  

After the initial linear regression was completed, it was clear that a linear relationship was not 

appropriate. Several of the most common transformations were performed on the data to 

determine if any improved the model. It was determined that a log transformation of both the 

input and output parameters was most successful. Therefore, all of the models going forward 

would use log-transformed data (performed before standardization). Since the energy use is in 

GJ, the predicted values of the model must be back-transformed to output values in this unit. The 

model must be evaluated using the back-transformed predicted outputs to ensure that it can 

accurately predict in the intended output unit. 

4.2.3 Model Comparison and Selection 

The objective of this research was to create a simple and interpretable model. Multivariate linear 

regression was used as a starting point to see if an accurate model could be created. The 

surrogate model was developed using multivariate linear regression and elastic net regression. 

Elastic net regression was used to reduce the number of parameters required in the model. The 

linear regression model was compared to see what accuracy must be sacrificed to reduce the 

number of parameters. For both linear regression and elastic net regression, label encoded and 

one-hot encoded categorical variables were used. This resulted in four models that were 

completed and compared. The models were evaluated on the accuracy, but also on simplicity 

(number of coefficients). Less parameters are desirable because the model will generalize better 

to new data. For future work this would also mean less ranges would have to be researched and 

created, and less optimization would be required.  
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4.2.4 Evaluation and Validation 

The model was evaluated using three metrics that compared the actual output values to the 

predicted ones. The coefficient of determination, R2, was used to evaluate the amount of variance 

that is described by the model. It is independent of unit and can be compared across all models. 

The mean absolute percent error (MAPE) and root mean squared error (RMSE) metrics were 

calculated as well. The MAPE is used as it is a more practical and interpretable metric in terms 

of understanding how much error there is. The RMSE can only be compared to models with the 

same mean and unit.  

K-fold cross-validation splits the data into k sets. Ten folds has been shown to produce test error 

results that have a good trade-off between bias and variance [22]. Nested 10-fold cross-validation 

repeated 10 times was used to validate the model. The process for nested 10-fold cross validation 

is as follows: 

1. The whole dataset is split into 10 subsets, or “folds”. One fold will later be used as the 

testing set. The remining nine folds become the new dataset for the inner loop.  

2. The inner loop dataset is split again using 10-fold cross-validation. One of these loops is 

the validation set, and the remaining nine are the training set.  

3. A model is trained on the nine folds of the inner loop (training set) and evaluated on one 

fold of the inner loop (validation set). The R2 and RMSE for the validation set is reported. 

This concludes one inner loop.  

For elastic net only:  

4. Step 3 is repeated for each set of hyperparameters. In this research, 200 tuning parameters 

and five L1 ratios are investigated, resulting in 1000 different sets of hyperparameters (or 
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models). The set of hyperparameters that falls within one standard error of the best 

(lowest) RMSE score is reported.  

5. Step 3 is repeated 10 times so that each fold is used as the validation set once. The 

hyperparameters are averaged and reported. This concludes one outer loop.  

6. Steps 1-4 are repeated 10 times so that each set of nine folds of the outer loop is used as 

the new dataset for the inner loop. The hyperparameters are averaged and reported (which 

are already the average of 10 inner loops). 

7. The result is one set of hyperparameters that are an average of 100 values (10 inner and 

10 outer loops). The mean hyperparameters are selected as the optimum hyperparameters 

for this model and are used to train the elastic net model for the rest of the steps. 

For linear regression and elastic net: 

8. Step 3 is repeated 10 times so that each fold is used as the validation set once. The 10 R2 

and RMSE are averaged and reported. This concludes one outer loop.  

9. Steps 1-3 are repeated 10 times so that each set of nine folds of the outer loop is used as 

the new dataset for the inner loop. The 10 R2 and RMSE are averaged and reported 

(which are already the average of 10 inner loops).  

10. The result is one set of R2 and RMSE values that are an average of 100 values (10 inner 

and 10 outer loops). The mean R2 and RMSE value estimates the true performance of the 

model.  

11. Steps 1-10 are repeated for each of the models that are to be tested. A final model is 

selected based on the mean performance metrics from Step 10.  
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For the final model: 

12. Back to Step 1. The nine folds of the outer loop become the training set. The model is 

trained on the training set and evaluated on the testing set (which has never been seen 

before by each inner loop). The R2 and RMSE values, along with the coefficients are 

reported.  

13. Step 12 is repeated 10 times for each of the outer loops. The mean of the 10 R2 and 

RMSE values are the final performance metrics for the selected model on unseen data. 

The ten sets of coefficients are averaged and the mean and standard deviation are 

reported. For elastic net, the one set of hyperparameters on each split of data might result 

in a different number of coefficients. Therefore the reported average number could be a 

decimal.  

This process ensures there is no data leakage by selecting hyperparameters and testing on the 

same data. Figure 18 shows this process for 3-fold cross-validation. For 10-fold cross-validation 

the steps would be the same except the outer loop and inner loop would be split into 10 folds.  



 53 

 

Figure 18 Cross-validation diagram showing 3-fold nested cross-validation. 

4.2.5 Sample Size Analysis 

A sample size analysis was performed to ensure the number of samples used to train and validate 

the model was large enough. The sample size analysis shows at what point the evaluation metrics 

for the training and validation set converges, if at all. This indicates how much variance and bias 

is present in the model.  

4.2.6 Archetype Size Analysis 

One of the research questions was to determine if the wide range of size of century homes would 

require separate archetypes, or if they could be incorporated into one surrogate model. The 
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flexibility of the surrogate model method allows for the entire design space (large ranges of 

many parameters) to be modelled. The correlation and error of the model will indicate if it can 

accurately predict energy use within that design space. 

This was tested in two ways to determine how to develop the final surrogate model. The first 

method involved separating all 1500 samples in three sets of 500 samples based on floor area. 

Three separate surrogate models for small, medium and large homes were created using the same 

methodology. A fourth model was created using a random split of 500 samples including all 

house sizes (so that the sample size across all four models are equal). Performance metrics, 

sample sizes, residuals, and coefficient values can be compared.  

The second method did not separate the data, it trained one model on the whole set. The 

validation set that this model was tested on was separated into thirds based on floor area and 

evaluated separately. The performance metrics and residuals can be compared. It was then 

determined whether three models trained on a specific house size will have similar results to one 

model trained on all sizes, and will a model trained on all sizes predict similarly on small, 

medium, and large homes. Since the datasets are smaller, 5-fold cross-validation was performed. 

This means 20% of the data was used to validate the model. This was repeated 10 times. Only 

one cross-validation loop with a training and validation set was used to evaluate the model. Since 

this was for comparative purposes and no model was being selected (or hyperparameters being 

tuned), no testing set or inner loops were needed. This applies to both methods.  

For method 1, 400 samples were used to train and 100 were used to validate. This methodology 

produced four separate models. For method 2, 1200 samples were used to train and 300 were 

used to validate. The validation set was split into three subsets based on size, meaning 100 

samples were used per size as validation. A fourth subset was created as a random sample of 100 
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samples from the 300 sample validation set in order to represent all the sizes, and to ensure that 

the number of samples was equal for each validation subset. Table 8 summarizes each method.  

Table 8 The two methods for the house size analysis and the sample sizes. 

  Model Dataset Size Training (80%) Validation (20%) 

Method 1 

Small 500 400 100 

Medium 500 400 100 

Large 500 400 100 

Combined 500 400 100 
       

Method 2 All sizes 1500 1200 300 

Small 100 

Medium 100 

Large 100 

All sizes 100 

 

Method 1 results in four models that have been trained on data for different sizes of homes. 

Method 2 results in one model that has been trained on all sizes and evaluated on different sizes 

of homes. Both methods result in metrics for prediction accuracy on small, medium, and large 

homes, and a fourth set of metrics representing all sizes. 

4.2.7 Case Study 

Natural Resources Canada (NRCan) provides an energy performance rating and labelling 

program that starts with an EnerGuide home energy audit [66]. Two homes in The Pocket had 

this energy audit performed and were provided with an energy efficiency report which included 

information that was not always possible to obtain during the field study, such as air tightness, 

wall insulation values, window U-values, and HVAC efficiencies. Some homeowners provided 

two years of gas and hydro utility bills. A case study was conducted using this information. The 

inputs to the surrogate model were taken from the energy audit report and the measured data 
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collected from these houses. The surrogate model predicted annual energy use. This was 

compared to the average annual energy use over two years from the utility bills. 

4.2.8 NSGA-II Optimization 

This research did not include a full optimization scope, however an example of how the 

surrogate model could be used for optimization was included to demonstrate its capabilities. This 

was accomplished with the gamultiobj function in MATLAB [62]. For this practical application 

example, the input parameters for the two homes used in the case study was used to create a 

baseline surrogate model.  

Jermyn’s thesis included a set of implementation levels for each retrofit parameter and the 

associated costs, shown in Table 9. The levels were determined by a field study and previous 

research. The costs were determined from RSMeans and local contractors. The costing shown 

below has accounted for inflation from 2013. [10] 

Table 9 Jermyn's retrofit levels and associated costs [10]. 

Strategy Baseline Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 

Walls (RSI) 1.01 4 6 10  $  23,284   $  23,843   $  25,655  

Roof (RSI) 2.64 9 10.5 13  $  10,911   $  12,590   $  18,295  

Basement Walls (RSI) 0.55 2 3 3.5  $     4,794   $     5,054   $     5,252  

Slab (RSI) 0.058 0.75 1 1.75  $     5,594   $     5,922   $     6,147  

Windows (U-factor) 2.7 1.9 1.2 1  $  20,445   $  22,751   $  26,907  

ACH at 50 Pa 10.54 20% Reduction 3 1  $     1,474   $     1,331   $     1,305  

Heating and Cooling 80% Eff. 90% Eff. 94% Eff. 97% Eff.  $     3,479   $     4,048   $     4,786  

HRV Option N/A 60% Eff. HRV 85% Eff. HRV 80% Eff. ERV  $     2,347   $     3,596   $     4,115  

 

The eight parameters that Jermyn determined retrofit levels and costing for were used to perform 

an optimization to see which retrofit parameters are the most cost-effective at reducing energy 

use [10].  
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In order to calculate the energy use using the coefficients, several preprocessing steps were 

required. The input variables were log-transformed and standardized with the means and 

standard deviations of the input parameter data used to train the final model. Then the input 

parameters were multiplied by their corresponding coefficients and summed together with the 

intercept. The final value was back-transformed to predict energy use in GJ. The cost for each 

selected upgrade was summed together to determine the total cost for all the retrofit levels 

chosen for that specific set of solutions. 

The input parameters for the case study homes were used. The eight retrofit parameters described 

in Table 9 are the only values that were optimized. The other 11 parameters were held constant. 

The baseline energy usage determined for each house was compared to the energy use after 

energy-saving retrofits had been applied. A set of cost-effective retrofit solutions were developed 

very quickly. 

To ensure the optimization does not achieve unrealistic results, the ACH50 value is only 

upgraded if wall insulation is upgraded. Jermyn did this for the brute-force optimization [10]. It 

is assumed that to achieve the ACH50 levels outlined by Jermyn, the wall insulation must be 

upgraded as well [10]. This is a limitation of this method. 

The NSGA-II algorithm was given an energy function and a cost function to minimize. The 

energy function was the final surrogate model – coefficient values multiplied by log-transformed 

and standardized inputs and a y-intercept – back-transformed to predict energy use in GJ. The 

cost function was a sum of each of the retrofit costs depending on the chosen level. The set of 

Pareto solutions returned aimed to minimize both functions.  
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5 RESULTS & DISCUSSION 

5.1 PHASE I – DATA COLLECTION AND DATASET DEVELOPMENT 

5.1.1 Data Collection 

The field study data collected for this research in conjunction with the field study data collected 

by Jermyn [10] included 35 homes total for 4-5 different archetypes. The field study included 

data for geometry, enclosures, and HVAC. This data, Jermyn’s data [10], and other sources 

(described in the next section) were used to determine a range of typical values for each 

parameter. These ranges define the design space for the model.  

5.1.2 Ranges 

The maximum and minimum values for each parameter are shown in Table 10. The grey rows 

are the parameters that Jermyn selected retrofit upgrade levels and costing for [10]. The model is 

only valid for input parameter values within these ranges. The ranges are designed to incorporate 

existing baseline conditions as the highest energy use and a heavily retrofitted house as the 

lowest energy use. The geometry ranges incorporate the smallest to largest values.  
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Table 10 Input parameters and associated ranges. 

Input Unit Min Max Source 

Depth (side of house) m 9.18 18.59 Field study & [10] 
Width (front of house) m 4.275 7.37 Field study & [10] 

Basement height above grade m 0.54 1.65 Field study & [10] 
Basement height below grade m 0.684 1.87 Field study & [10] 
Average floor height (1st/2nd) m 2.124 3.025 Field study & [10] 

Third floor height m 2.07 2.805 Field study & [10] 
Front Window to Wall Ratio - 0.08 0.35 Field study & [10] 
Back Window to Wall Ratio - 0.08 0.35 Field study & [10] 
Left Window to Wall Ratio - 0.01 0.12 Field study & [10] 

Right Window to Wall Ratio - 0.01 0.12 Field study & [10] 
Avg lighting W/m2 0.46 7.66 [67] 
AC Efficiency COP 2.9 5.0 [68] 

Wall Insulation RSI m2K/W 0 10 Field study & [69] 
Roof Insulation RSI m2K/W 0 14 Field study & [69] 
Slab Insulation RSI m2K/W 0 6 Field study & [69] 

Basement Wall Insulation RSI m2K/W 0 10 Field study & [69] 
Air Changes per Hour @ 50 Pa 1/h 1 23 [10] & [70] 

Furnace Efficiency % 0.78 0.98 [71] 
Window U-Value W/m2k 0.71 2.95 [10] & [69] 

SHGC - 0.2 0.7 [10] & [69] 
HRV Option - Categorical [10] 

Orientation (based on 17˚ tilt) - Categorical Field study 

 

The HRV option and orientation have categorical inputs instead of continuous numeric ranges. 

Table 11 shows the values that were used for each category. 

Table 11 All categories in the categorical input parameters. 

 Category 

 1 2 3 4 

HRV Option No HRV 
60% Efficient  

HRV 
90% Efficient 

HRV 
85% Efficient 

ERV 

Orientation 
North/South 

Facing (17/197˚) 
East/West  

Facing (107/287˚) 
- - 

 

Most of the houses in The Pocket were constructed between 1900 and 1930 [72], and many of 

them have no or little insulation. The minimum value for each of the insulation RSI values was 0 

(note that the RSI of the constructions was not zero as it included the structural and finish 
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layers). The maximum values were determined by the levels recommended to reach Passive 

House Institute US (PHIUS) standard certified house in the Toronto climate zone [69]. PHIUS is 

an organization dedicated to develop North American passive house practices and certifications 

for buildings [69]. 

The windows were simulated in EnergyPlus as a “simple window” object, taking U-value, solar 

heat gain coefficient (SHGC), and visible transmittance (VT) as inputs. The visible transmittance 

remained constant at 0.5, and the U-value and SHGC were considered separate continuous 

variables. The field study, PHIUS guidelines for Toronto’s climate zone [69], and Jermyn’s 

values [10] were referenced.  

The minimum value for air changes per hour at 50 pascals (ACH50) was determined from 

Jermyn’s research as the lowest possible value for a retrofit of homes constructed within this 

period [10]. The EcoEnergy Database contains blower door testing results from 500,000 pre-

retrofit homes in Ontario [70]. After filtering detached 3 storey homes built between 1900-1930, 

the results from ~7400 homes were left. The 99th percentile of the values was 22.77. This value 

was chosen as it was validated by two blower door test results that had been completed on homes 

in The Pocket.  

Most of the furnaces observed in the surveyed homes were high-efficiency furnaces with 

efficiencies of 0.96 or higher. The range was decided based on the field study and the minimum 

and maximum efficiency values as outlined by NRCan [71].  

The ventilation option is a categorical parameter. The options are no heat recovery ventilator 

(HRV), 60% efficient HRV, 90% efficient HRV, and 85% efficient energy recovery ventilator 

(ERV). These values were taken from Jermyn’s retrofit values for baseline and levels 1-3 [10]. 

These values were validated by looking at specifications of Canadian manufacturers of HRV and 
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ERVs to ensure that these values represented available products. The HRV/ERV was modelled 

as a part of the existing furnace ducting instead of a separate ventilation system. This was done 

to match the existing baseline condition of the existing homes. It should be noted that in reality, 

at low air tightness levels a separate ventilation system would be necessary to ensure the required 

ventilation levels were met.  

Jermyn’s baseline model described an average geometry from the measurements of all the 

surveyed houses [10]. The design space for the surrogate model includes variable geometry. The 

depth (side of house), width (front of house), basement height above grade (AG) and basement 

height below grade (BG), average first and second floor height, and third floor height was used 

to describe the size of the house. The shape will remain the same. The range of values for each of 

these inputs was chosen as the minimum and maximum value for each dimension collected from 

The Pocket field study and Jermyn’s field study [10]. Both sets of data were included so that a 

larger variation of the archetype could be represented by one surrogate model, and to be able to 

analyze the differences between the large and small century home archetype. The geometry 

minimum and maximum values were expanded by 10% to incorporate additional houses that 

were not measured but were assumed to exist.  

The window wall areas were collected from The Pocket’s small century homes. Jermyn reported 

window-to-wall ratios (WWR) for each elevation of the homes measured [10]. The minimum 

and maximum value for each elevation (front, back, left, right) was used as the range. The front 

is the side facing the street, back is opposite the front, left is the left side of the house when 

facing the front, and right is opposite the left. For example, if the front of the house was facing 

North, the left side would be facing East. The total WWR for each elevation was divided into 
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four windows on the front and back sides (one for each floor: basement, main, second and third), 

and three windows on the left and right sides (basement, main, second). 

The orientation is a categorical parameter. The categories are north/south facing or east/west 

facing. North/south facing would mean the front of the house was facing north or south. Because 

of the way Toronto’s grid is aligned, the cardinal directions were offset 17˚. Figure 19 shows a 

map of the City of Toronto with The Pocket neighbourhood outlined in red, and Figure 20 shows 

a map of The Pocket neighbourhood [73].  

 

Figure 19 Map of Toronto, ON Canada. The Pocket neighbourhood is outlined in red. 



 63 

 

Figure 20 Map of The Pocket neighbourhood. 

Air conditioner efficiencies were taken from NRCan’s recommendations based on ENERGY 

STAR products [68]. 

Statistics Canada reported that there were 27 lightbulbs on average per household in Ontario 

[67]. Incandescent bulbs have the highest wattage, with the maximum wattage being 100W. LED 

bulbs have the lowest wattage at around 6W. Using the floor area of the average house size 

described by the ranges, the average lighting in W/m2 was determined.  

The data collection process for future work could be reduced. If minimum and maximum values 

are already defined, such as insulation values and furnace efficiencies, these parameters do not 

need to be included in the field study. The most important parameters are the ones that describe 

the geometry. However, all the data would need to be collected if the house was to be used in a 

case study.  
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5.1.3 Baseline Model Development 

The baseline model in the OpenStudio plugin [74] for Sketchup [75] is shown in Figure 21. The 

purple planes mimic the shading that would be experienced by neighbouring houses.  

 

Figure 21 SketchUp model for baseline century home. 

The energy use from the updated baseline model is compared to Jermyn’s original model in 

Table 12 [10].  

Table 12 Baseline energy values from EnergyPlus. 

  Jermyn's Baseline Updated Baseline Difference 

Energy Use [GJ] 213 168 24% 

 

The difference can be attributed to the auto sizing of the HVAC system. There was a 43% 

decrease in the size of the heating coil from Jermyn’s model [10] compared to the updated 

model. Figure 22 and Figure 23 show the mean weekly temperatures for each zone in Jermyn’s 

baseline model [10] and the updated baseline model.  
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Figure 22 Mean weekly temperature for each zone for Jermyn's archetype model [10]. 

 

Figure 23 Mean weekly temperature for each zone in the updated baseline model. 

The above figures indicate that auto sizing the HVAC system allowed the setpoint temperature to 

be reached for more of the year. This shows that Jermyn’s baseline model [10] is delivering too 

much heat to the uncontrolled zones. As a result, the third floor is at 26˚C for most of the year. 

This is likely why the energy use is higher than in the updated baseline model. The house has 

only one control zone making it very difficult to meet setpoint temperatures in all zones. The 

system is cooling during most of the time the setpoint temperatures are not being met, which is 

only attributed to 2% of the total energy use. 
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5.1.4 Output Data Analysis 

The frequency distribution of the 1500 EnergyPlus simulations are shown in Figure 24 versus 

energy use values in GJ.  

 

Figure 24 Distribution of energy use output from 1500 EnergyPlus simulations.  

Figure 25 shows a boxplot of energy use per household. The red line indicates the mean, the box 

indicates the 1st and 3rd quartile, and the whiskers indicate the range of the data.  

 

Figure 25 Simulated energy use boxplot.  

Energy use intensity for each sample was calculated. Figure 26 shows the results. The red line 

indicates the mean, the box indicates the 1st and 3rd quartile, and the whiskers indicate the range 

of the data. 
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Figure 26 Simulated energy use intensity boxplot.  

Distribution of energy consumption by end-use is shown in Figure 27. Natural gas contributes to 

80% of the total energy use, and electricity makes up 20%.  

 

Figure 27 Average end-use distributions for the 1500 EnergyPlus simulations. 

5.1.5 Input Data Analysis 

Preliminary data visualization was used to analyze the numerical data inputs. Scatter plots for 

each input parameter were plotted against energy use in GJ. A line of best fit is shown on each 

scatter plot as a linear relationship between each input variable and the output variable was 

assumed for the multivariate linear regression. It was included to enable an easier visual 

comparison of the magnitude of each slope. A positive slope indicates a positive relationship 

with the output. This is most noticeable in the depth and the ACH50. As depth or ACH50 

increases, the energy use increases as well. The opposite is true for negative slopes. As the wall 
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insulation and burner efficiency increases, the energy use decreases. This gives the first 

indication of what input parameters will be important in the final surrogate model. The scatter 

plots are shown in Figure 28. 

 

Figure 28 Scatter plots showing energy versus the values for each input parameter. 
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The distribution plots in Figure 29 show how the Latin hypercube sampling has space filled the 

range with random values and created a uniform distribution. The Figure shown is for the depth 

parameter, however the distributions for the other input parameters are the same.  

 

Figure 29 Uniform distribution for the depth input parameter. All other distributions are very similar. 

Ventilation was examined separately as it was the only calculated input parameter (not sampled). 

Figure 30 shows a scatter plot on the left and distribution plot on the right.  

 

Figure 30 Scatter plot and distribution for ventilation. 

It does not have a uniform distribution like the other input parameters because it was not sampled 

using Latin hypercube sampling.  

The categorical inputs are analyzed using violin plots, as shown in Figure 31 below. The left 

Figure shows the two orientation categories; north-south facing or east-west facing. The right 
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Figure shows the four HRV categories; no HRV, 60% efficient HRV, 90% efficient HRV, and 

85% efficient ERV. These plots compare each category to energy use to visually interpret the 

relationship between them.  The width of each violin describes the distribution of the energy 

values for that category. The white dot is the median, the thick bar is the 1st and 3rd quartile, and 

the thin line is 1.5 times each quartile.  

 

Figure 31 Violin plots for the categorical variables. 

The mean, standard deviation, and range of each category is shown in Figure 32.  
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Figure 32 Mean, standard deviation, and minimum and maximum values for each categorical variable. 

The two orientations have very similar means, although North/South facing is slightly lower. The 

85% efficient ERV is associated with the lowest energy use, then the 90% efficient HRV, 60% 

efficient HRV, and lastly no HRV with the highest energy use. The HRV is attached to the 

furnace outdoor air intake and exhaust ducts in the baseline energy model. The furnace is cycled 

on and off based on the temperature of the control zone, therefore outdoor air is only being 

brought in while the furnace is on. This explains why there are only small changes in energy use 

output based on HRV category. The baseline model was left with this system because none of 

the century home archetypes had a separate ventilation system. As the houses become more 

airtight, there is not enough ventilation being delivered from the furnace ducts therefore a 

separate ventilation system would be required. This should be noted as a limitation of this 

research. 

A Pearson’s Correlation Matrix, shown in Figure 33, was calculated to analyze the statistical 

significance between each input variable and the output variable. Most variables were not 
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correlated to each other because the data was randomly generated with the LHS. The only 

variable that showed high correlation values is ventilation, because it was calculated using 

volume and ACH50. The Pearson’s correlation between each input and the output is included and 

shown in the bottom row.  

 

Figure 33 Pearson's correlation value for each input parameter to the output parameter. 

The ACH50 and depth values are the most negatively correlated, and wall insulation is the most 

positively correlated. These are the same conclusions that were made after a visual inspection of 

the scatter plots.  

To ensure that the correlation of ventilation with the other parameters did not affect the model, 

the variance inflation factor (VIF) was calculated. Figure 34 shows the VIF for each parameter.  
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Figure 34 Variance inflation factor for each input parameter. 

As expected, ventilation had the highest value followed by depth, width, and ACH50. No values 

have a VIF larger than 5, therefore it was assumed that collinearity did affect the interpretation of 

the model’s coefficients.  

5.2 PHASE II – SURROGATE MODEL DEVELOPMENT 

The dataset created in Phase 1 was used to train a model to predict energy use and the surrogate 

model was developed.  

5.2.1 Nested Cross-Validation 

Nested 10-fold cross-validation was used to evaluate the final model. The model was split into 

10 folds, with each fold being used as the testing set once. This was the outer loop which was 

only used to evaluate the final model (not to choose it). The training set of the outer loop was 

split again into 10 folds, with each fold being used as a validation set once. This was the inner 

loop which was used to compare various models and to choose a final model. The final model 

was evaluated on the testing set of the outer loop. This is summarized in Table 13.  

Table 13 Nested cross-validation purpose and split sizes. 

  Training Testing Purpose 

Outer Loop Sample Size 1350 150 Used to evaluate final model 

 Training Validation   

Inner Loop Sample Size 1215 135   Used to compare and choose final model 
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5.2.2 Linear Regression 

Linear regression was performed using Python’s SKLearn package [65]. The model was fit on 

the training set and evaluated on the validation set, using cross-validation to ensure accurate 

results. Figure 35 shows the results. The left plot shows predicted energy use versus simulated 

energy use, where predicted indicates the model’s prediction, and simulated indicates the 

EnergyPlus results. The right plot shows the residuals. The scores shown are for a single fold of 

the 10-fold cross-validation.  

 

Figure 35 Un-transformed simulated versus predicted energy use and the residual plot. 

The residuals are not evenly distributed around zero, indicating that the linear regression model 

does not fit the data. Linear regression assumes that there is a linear relationship between the 

expected value (energy use) and each independent variable (building parameters). Certain 

transformations may improve this linearity.  

5.2.3 Regression Variable Transformations 

Several transformation methods were evaluated to determine which, if any, were the most 

effective in improving the model. Table 14 shows the transformations and scores. 
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Table 14 Transformations performed on the input and output variables. 

Method Regression Equation R2 Validation MAPE 

Standard Linear Regression y = b0 + b1x 0.848 12.0 

Reciprocal Model 1/y = b0 + b1x 0.850 12.8 

Quadratic Model sqrt(y) = b0 + b1x 0.883 4.9 

Exponential Model log(y) = b0 + b1x 0.896 2.1 

Logarithmic Model y= b0 + b1log(x) 0.920 9.4 

Power Model log(y)= b0 + b1log(x) 0.958 1.4 

 

The RMSE cannot be compared as it is measured in the unit of the output, so it was omitted. The 

power model (log-transformation of both the input and output variables) is the most effective 

transformation and will hereafter be referred to as the “log-transformed model” for simplicity.  

The raw energy output distribution, shown on the left of Figure 36, is positively skewed. The 

log-transformed output, shown on the right, has a more normal distribution.  

 

Figure 36 Distribution of energy use outputs un-transformed (left) and log-transformed (right). 

Unskewing the distribution increases the linearity between the expected value and the 

independent variables. Figure 37 shows the new distributions of the log-transformed input 

variables. While these distributions are not necessarily normal, it emphasizes the linear 

relationship with the output. 
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Figure 37 Log-transformed input parameter distributions. 

Hair et al found that nonnormality in sample sizes of 200 or larger could have negligible effects 

[76]. The model performance increased which indicates these distributions increase the linear 

relationship between the input parameters and energy use.  
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The log-transformation of ventilation has created a more normal distribution, and there is a steep 

positive slope which indicates that ventilation is highly correlated with energy, shown in Figure 

38. Ventilation was examined separately as it is the only parameter calculated from other inputs.  

 

Figure 38 Scatter plot and distribution for log-transformed ventilation input. 

5.2.4 Log-Transformation 

Figure 39 shows the model with log-transformed input and output variables. The training and 

validation R2 scores shown are for a single fold of the 10-fold cross-validation. 

 

Figure 39 Simulated versus predicted energy use and the residual plot for the log-transformed model. 

The residuals are evenly distributed around zero indicating the linear regression model of the 

log-transformed data has a better fit. Barnes reported the same findings [40]. 
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All following models will include a log-transformation of the input and output variables. To 

predict energy use values in GJ, the output must be back-transformed, shown in Eq. 11 and 12.   

log(y) =  b0 + b1 log(x)  (11) 

y =  10(b0 +b1 log(x))  (12) 

Only the back-transformed metrics were reported for each of the models being considered. 

5.2.5 House Size Analysis 

Two methods were used to analyze the effect of house size on model performance. Method 1 

included creating four separate models for small, medium, and large homes, and the fourth 

model would sample all the sizes (i.e. the entire dataset). The performance metrics for each 

model were compared. Method 2 trains a single model on the entire dataset but splits the 

validation dataset into three subsets for small, medium, and large homes based on floor area. A 

fourth validation subset is created based on a random sampling of all the sizes. The performance 

of the single model on each different size subset was compared. The results of the two methods 

was also compared.  

The “medium” homes exist as the middle third so that there is a more definable difference 

between small and large homes, as the entire range of geometry measurements were sampled 

evenly. It should be noted that the results for medium sized homes are reported only to offer a 

more in-depth view of how the model is affected by size.  

5.2.5.1 Method 1 

The data was split into three evenly sized datasets based on floor area. A random sample of the 

combined dataset (all sizes) was created to enable comparisons. Each set had 500 samples. 

Figure 40 shows the energy use versus floor area for small, medium, and large homes.  
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Figure 40 Energy versus floor area separated by house size (separated equally by thirds). 

A sample size analysis was done for each dataset. Figure 41 shows the analysis for small, 

medium, and large homes, and a random sample of the combined dataset (all sizes). Each plot is 

shown on the same scale to allow for comparison. The shaded areas indicate the standard 

deviation for each point. This plot is showing log-transformed results instead of back-

transformed results because of limitations of the learning_curve function [65] used to perform 

the analysis in Python.  
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Figure 41 Sample size analysis for each house size using R2 score. 

This analysis indicates that the validation and training scores do not converge at 400 samples for 

the size separated homes. The combined sample size analysis is the closest to converging and 

therefore has the smallest variance. Note that the combined sample size is the same as the 

individual sizes (500 samples). This indicates that the R2 and RMSE would improve slightly 

with a larger sample size, however not drastically. This is a comparative analysis therefore this 

small difference is deemed negligible.   

A linear regression model with log-transformed input and output variables was chosen for this 

comparison. The back-transformed model predicts energy use in GJ. Linear regression was 

chosen to simplify the comparison. The results of the back-transformed linear regression for the 

four models are shown in Figure 42. The left plot shows the simulated energy use versus the 

predicted energy use for back-transformed input and output variables. The right plot shows the 
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residual versus predicted energy use. Note the data points and R2 scores in the following plots 

show the values for a single fold in the cross-validation loop. Each type of plot uses the same 

axes scale to allow for a visual comparison. 

 

Figure 42 Simulated energy use versus predicted energy use and residuals for each house size. 
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The residuals are generally evenly distributed around zero and get larger as house size and 

energy use increases. As the size of the house increases, the range of output energy values 

increases, and there are few homes with very large energy uses. It also seems that the residuals 

increase as house size increases.  

Ten time repeated 5-fold cross-validation was performed, which means the five folds were 

randomly generated 10 times resulting in 50 different validation and training combinations that 

were evaluated. The means of the evaluation metrics are summarized in Table 15. 

Table 15 Performance metrics for each house size. 

  R2 Test RMSE [GJ] MAPE [%] 

Small 0.939 5.43 5.90 

Medium 0.944 6.03 5.62 

Large 0.946 7.78 6.04 

Combined 0.956 6.51 5.82 

 

Figure 43 shows these values along with the standard deviation across the 50 values for each 

metric. The diamond represents the mean and the error bars indicate the standard deviation.  
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Figure 43 Performance metrics for R2, RMSE, and MAPE for each house size. 

Since there are four models, there are different coefficient values for each. Examining the 

magnitude and order of each allows meaningful conclusions to be drawn about how the different 

models are behaving, and if it is feasible to model these differently sizes homes in a single 

model. The average coefficient values calculated from the 10 times repeated 5-fold cross-

validation are shown in Figure 44 for small, medium and large homes. They are organized in 

descending absolute values for large homes. The error bars represent the standard deviation.  
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Figure 44 Coefficient values for each parameter for small, medium, and large homes. 

The coefficient values are similar, although there are some differences in the order of absolute 

values. Table 16 shows the coefficient values and their associated standard deviation. The point 

of reporting the coefficients is to compare the order of the parameters ranked by the absolute 

magnitude of coefficients, shown by the order number. 
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Table 16 Coefficient values for large, medium, and small homes. 

  Large Homes   Medium Homes   Small Homes 

Parameters Coefs SD Order  Coefs SD Order  Coefs SD Order 

ACH50 0.1294 0.0026 1  0.1083 0.00158 1  0.1070 0.0022 1 

Wall Insul -0.0702 0.0018 2  -0.0642 0.00188 2  -0.0753 0.0020 2 

Ventilation 0.0426 0.0022 3  0.0273 0.00121 7  0.0362 0.0028 5 

Roof Insul -0.0405 0.0014 4  -0.0385 0.00088 3  -0.0364 0.0011 4 

Window U-Val 0.0345 0.0008 5  0.0357 0.00071 4  0.0372 0.0007 3 

1&2 Floor Height 0.0296 0.0007 6  0.0288 0.00073 5  0.0288 0.0009 6 

Furnace Eff -0.0216 0.0007 7  -0.0184 0.00050 9  -0.0153 0.0011 11 

Window SHGC -0.0205 0.0010 8  -0.0278 0.00093 6  -0.0236 0.0009 7 

Depth 0.0142 0.0013 9  0.0248 0.00203 8  0.0230 0.0015 8 

Bmt Height AG 0.0133 0.0007 10  0.0133 0.00062 11  0.0156 0.0006 10 

Width 0.0117 0.0013 11  0.0175 0.00178 10  0.0178 0.0020 9 

Bmt Wall Insul -0.0079 0.0007 12  -0.0114 0.00074 12  -0.0099 0.0007 12 

Slab Insul -0.0075 0.0008 13  -0.0056 0.00062 17  -0.0086 0.0008 13 

Lighting Density 0.0070 0.0007 14  0.0100 0.00058 13  0.0082 0.0007 14 

HRV Option 0.0067 0.0008 15  -0.0076 0.00061 14  -0.0049 0.0007 16 

3 Floor Height -0.0065 0.0008 16  0.0063 0.00075 16  0.0047 0.0007 17 

Bmt Height BG -0.0054 0.0007 17  -0.0046 0.00076 18  -0.0027 0.0007 19 

Front WWR 0.0032 0.0007 18  0.0066 0.00067 15  0.0062 0.0007 15 

AC Eff 0.0026 0.0006 19  -0.0002 0.00071 23  -0.0041 0.0010 18 

Right WWR -0.0023 0.0008 20  -0.0009 0.00072 21  0.0011 0.0008 22 

Orientation -0.0021 0.0009 21  -0.0015 0.00046 20  -0.0020 0.0006 21 

Back WWR -0.0014 0.0009 22  -0.0022 0.00094 19  -0.0010 0.0006 23 

Left WWR 0.0005 0.0008 23   0.0008 0.00094 22   0.0021 0.0009 20 

 

Some observations can be made by comparing the order numbers. ACH50 and wall insulation are 

the most descriptive parameter in all three models. The furnace efficiency is more important as 

the home gets larger. The furnace coil is auto sized which means it increases as the house size 

increases, indicating that the furnace efficiency will have a greater impact on energy use with 

larger heating coils. The window U-value and SHGC is more important as the home gets smaller. 

The wall to floor area is increasing, indicating that the thermal resistance of the windows has a 

larger impact. The width and depth become less important as the homes gets larger. The larger 
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floor area could indicate that the surface to volume ratio is lower which would result in less heat 

loss through the envelope. Geometry is important to small homes, then as they get larger and the 

auto sized HVAC equipment becomes larger, some of the HVAC descriptors can more 

accurately predict energy use (for example, furnace efficiency and ventilation are more important 

in large homes). The ventilation and AC efficiency are less important for the medium homes than 

the small or large, and the HRV option is least important for the small homes. This could be due 

to the same point made above. Geometry and window descriptors are better able to describe 

energy use in small/medium homes if the HVAC equipment is smaller.  

Note that “importance” is used to mean “the statistical significance within these ranges”. This 

comparison was done to determine if there were significant differences in the order of the 

parameters with respect to coefficient magnitudes.  

5.2.5.2 Method 2 

The same linear regression model with log-transformed input and output variables was used as in 

method 1. The back-transformed model’s metrics are reported. Figure 45 shows the actual vs 

predicted energy use for small, medium, and large homes on the same scale. The residuals are 

shown on the right.  
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Figure 45 Simulated versus predicted energy use and residuals for each home size. 

These residuals look similar to the results of the individual models in Figure 42. As size 

increases, energy use output increases, and so do the absolute residual values. There seems to be 

more overlap between energy use values across house sizes compared to method 1.  
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The evaluation metrics are recorded for each validation subset. The results are shown in Table 

17. These values are the means of the cross-validated results.  

Table 17 Performance metrics for each house size. 

  R2 Test RMSE [GJ] MAPE [%] 

Small 0.942 5.22 5.82 

Large 0.945 7.83 6.12 

Medium 0.949 5.71 5.35 

All 0.959 6.23 5.62 

 

The means represented by the diamonds and their associated standard deviations represented by 

the error bars are shown in Figure 46.  

 

Figure 46 Performance metrics for R2, RMSE, and MAPE for each house size. 
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5.2.5.3 Discussion 

Some observations can be drawn from the results from methods 1 and 2. It is assumed that the 

RMSE values are proportional to the increasing magnitude of energy use outputs as the house 

size increases and will therefore focus on R2 and MAPE. 

• The combined homes have the best R2 score, and a better MAPE than small and large 

homes. 

• Other than the combined set, the medium homes have the best R2 and MAPE values. 

• The small homes have the worst R2 score with the largest standard deviation. 

• The only difference from methods 1 and 2 is that the medium homes had a worse R2 

score than the small and large homes in method 1, and better in method 2. 

The R2 value is influenced by the span and range of the output values, as it includes the residual 

sum of squares and total sum of squares in its calculation. Since the total sum of squares value is 

much larger than the sum of squared residual value, models with larger sum of squared residuals 

(larger prediction error) that span greater output ranges can have better R2 scores. That is why an 

error metric should always accompany R2, because a good line of best fit does not necessarily 

mean small prediction error.   

The average absolute residual value within energy use bins of 10 GJ are shown in Figure 47, 

plotted against predicted energy use for each bin. These values are 10 sets of validation data for 

each size. The RSS is the total sum over the 10 loops, and the numbers above the bars indicate 

the number of values that are included in that energy bin. 
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Figure 47 Average absolute residual value for 10 GJ bins of predicted energy use. 

The residuals increase as house size increases. Other than the residual being an absolute value 

that increases as the energy output gets larger, there are several possible reasons for this. At very 

low energy uses, the more predictable base loads make up a larger percentage of the total energy 

use, resulting in more accurate predictions. Some input parameters have strong relationships that 

are only linear for smaller energy uses. As seen in the energy use histogram plot in Figure 36, the 

distribution of energy uses is normal when log-transformed, however the un-transformed energy 

uses in GJ show a positively-skewed distribution, resulting in more samples in the low to mid-

range of energy use outputs which could explain more accurate predictions for these values. 

The RMSE is calculated as the square root of the sum of squared residuals divided by the 

number of samples. The number of samples in each validation subset is the same. RMSE is an 

absolute metric and the range is reflected by the magnitude of the energy use outputs, so the 
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results are expected. The MAPE is a more interesting metric as it describes the percent error 

which is unaffected by magnitude of energy use outputs.  

The MAPE is calculated as the sum of the residual divided by the actual (simulated) value. 

Lower MAPE values would result from large energy use outputs (a large denominator) and small 

residuals (a small numerator). The medium homes have low sum of squared residuals and mid-

range energy use outputs, resulting in the smallest MAPE. Small houses have low sum of 

squared residuals but smaller energy use outputs, resulting in a larger MAPE. The large homes 

have larger energy use outputs, but much larger SSRs, resulting in the largest MAPE. The 

combined dataset has the full range of energy use outputs, however many of them are focused in 

the lower energy use range, and mid-range sum of squared residuals. This results in a better 

MAPE than the small and large homes.  

5.2.5.4 Summary 

It is important to understand the effect that the size of homes has on model accuracy in order to 

make decisions on how to create archetypes moving forward. The combined models have a 

slightly better R2 and MAPE values than the small and large home models for both methods. 

However, the values are all very similar. Creating a single archetype that combines small and 

large homes results does not decrease the accuracy of the model. This implies that surrogate 

models can be created to incorporate more houses that fall under the same characteristics but 

vary in size. This allows bottom-up surrogate models to describe greater subsets of the Toronto 

housing stock within a single model. The coefficient value analysis in method 1 determined that 

the small and large houses had the same top six parameters in terms of absolute coefficient value.  
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5.2.6 Model Comparison 

Four models were compared to determine the approach that was used to create the final surrogate 

model. Two models used multivariate linear regression, one with label encoding the categorical 

variables and one with one-hot encoding. Elastic net was used with both types of categorical 

variable encoding for the purpose of reducing parameters. The objective was to use the 

multivariate linear regression model to quantify the accuracy that would be sacrificed by 

reducing the number of input parameters in the elastic net model.  

5.2.7 Linear Regression with Continuous and Label Encoded Inputs 

The actual (simulated) energy use values were compared to the back-transformed predicted 

values. Figure 48 shows the back-transformed data. The training and validation R2 scores shown 

are for a single training and validation set only. 

 

Figure 48 Back-transformed simulated versus predicted energy use and residuals. 

The residuals are mostly distributed around zero, however there is slight heteroscedasticity (the 

residuals become larger as simulated energy use increases) which could be caused by some 

outliers at the largest energy use outputs. Figure 49 shows the absolute percent error versus 

simulated energy use on the left, and a box plot of the absolute percent error on the right.  
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Figure 49 Percent error versus simulated energy use (left) and a box plot (right). 

The mean absolute percent error (MAPE) of the data is 5.89%. The box plot indicates that the 

error ranges from 0-15% (excluding outliers), and the first and third quartile (i.e. 50% of the 

data) range from 3-8%.  

The results of the cross-validated linear regression using numerical and label encoded inputs are 

shown in Table 18. This model will be referred to as the “label encoded linear regression” 

model.  

Table 18 Back-transformed performance metrics with linear regression with label encoded inputs. 

  R2 RMSE [GJ] MAPE [%] 

Back Transformed 0.9472 7.02 5.89 

 

Only the back-transformed metrics are reported as it predicts values in GJ. The untransformed 

and log-transformed results are in-between steps and will not be considered. 

5.2.8 Elastic Net Regression with Numerical and One-Hot encoded Inputs 

Elastic net regression was performed for L1 ratios of 0, 0.25, 0.5, 0.75, and 1. For each of these 

L1 ratios, the R2 score, RMSE, and MAPE was calculated for 200 tuning parameters ranging 

from 0.0001 to 0.09. The L1 ratio and tuning parameters used for each calculation are called the 

model’s hyperparameters, and each different set of hyperparameters is considered a new model. 

For each of set of hyperparameters, 10-fold cross-validation was performed. 
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Figure 50 shows the effect changing the L1 ratio has on the values of the coefficients as the 

tuning parameter increases. Lasso regression (left) indicates a L1 ratio of 1, while ridge 

regression (right) indicates a L1 ratio of 0. Any value in-between 0 and 1 indicates elastic net 

regression. 

 

Figure 50 Coefficient values versus tuning parameter for lasso, elastic net, and ridge. 

As seen in the right plot of Figure 50, the coefficients are reduced but never removed. In the left 

plot, almost all the coefficients are removed (if the tuning parameter were to keep increasing, 

there would eventually be zero coefficients left). The middle plot with an L1 ratio of 0.25 

indicates that both ridge and lasso penalties are being applied, resulting in shrinkage of all the 

coefficients and removal of some.  

5.2.8.1 Hyperparameter Selection 

The most accurate value for each set of hyperparameters was selected (maximum for R2, 

minimum for RMSE), and the standard error for each was calculated. The minimum number of 
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coefficients that have an accuracy greater than the maximum accuracy with all the coefficients 

minus the standard error of that accuracy is selected. The equations are shown in Eq. 13-14. 

𝑅2𝑚𝑖𝑛 ≥ 𝑅2𝑚𝑎𝑥 − 𝑆𝐸  (13) 

𝑅𝑀𝑆𝐸𝑚𝑎𝑥 ≤ 𝑅𝑀𝑆𝐸𝑚𝑖𝑛 + 𝑆𝐸  (14) 

Figure 51 shows the results (R2 and RMSE) of the validation set. Only the most accurate point 

was shown for each L1 ratio and each number of coefficients. The left plots show the entire 

range of tuning parameters, which shows how the accuracy of the model changes as the tuning 

parameter increases and the number of coefficients decreases. The right plots show a close-up of 

the top ten number of coefficients. This is shown for one loop in the cross-validation process. 

 

Figure 51 R2 score versus number of coefficients for various L1 ratios. 

The model with the best RMSE within one standard deviation of the RMSE of the best model falls 

at 19 coefficients. This is shown by the dashed line. Figure 52 shows 19 coefficients only.  

 

Figure 52 R2 score for 19 coefficients for various L1 ratios. 
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The tuning parameter value in this case is 0.00236, and the most accurate L1 ratio as seen above 

is 1. These would be the hyperparameters (i.e. the model) selected for this fold. Figure 53 shows 

the values of each coefficient for the selected hyperparameters. The Figure on the right is a 

close-up view of the Figure on the left. The dashed line shows where the model was selected as a 

result of the one-standard error rule.  

 

Figure 53 Coefficient values versus tuning parameter for lasso, elastic net, and ridge. 

Since 10-fold cross-validation is used, this is performed 10 times. The set of tuning parameters 

and L1 ratios for each fold are shown in Table 19. 
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Table 19 Hyperparameters for each fold of the cross-validation. 

Fold Tuning Parameter L1 Ratio 

1 0.003714 0.50 

2 0.003714 0.50 

3 0.002359 1.00 

4 0.002811 0.50 

5 0.002359 0.75 

6 0.003714 0.50 

7 0.002359 0.75 

8 0.002359 0.75 

9 0.001907 1.00 

10 0.002359 0.75 

Mean 0.002766 0.700 

 

Elastic net regression using the mean of the hyperparameters was performed using 10-fold cross-

validation. Table 20 summarizes the findings for the back-transformed model.  

Table 20 Performance metrics for the elastic net model with one-hot encoded categorical variables. 

  R2 RMSE [GJ] MAPE [%] Tuning Parameter L1 Ratio # Coefs 

Back Transformed 0.9462 7.11 6.18 0.2766 0.7 19.5 

 

5.2.8.2 Lasso Parameter Elimination 

Removing coefficients causes the model accuracy to decrease, however it would be interesting to 

know in what order the coefficients are being removed (i.e. the least important in predicting 

energy use). Lasso is used (L1 ratio of 1) to show when all the coefficients are forced to zero. 

Figure 54 shows the 27 parameters and the order in which they were removed from the Lasso 

regression.  
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Figure 54 Number of coefficients in order of which they were dropped by the embedded feature selection (elastic net). 

The model with 19 coefficients is outlined to show which variables are most likely to be included 

in the final model. 

5.2.9 Final Model Selection 

This same process was repeated for linear regression using one-hot encoding and elastic net 

regression with label encoding. The graphs and values were not shown as they follow the same 

trends. Table 21 summarizes the results for all the back-transformed models. Note that R2 is 

specifying correlation and should be maximized. RMSE and MAPE are specifying error and 

should be minimized. 
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Table 21 Performance metrics of all models developed. 

  R2 RMSE [GJ] MAPE [%] #  Coefs 

LE Linear Regression 0.9472 7.02 5.89 23 

OHE Linear Regression 0.9472 7.02 5.88 27 

LE Elastic Net 0.9466 7.08 6.10 19.5 

OHE Elastic Net 0.9462 7.11 6.18 19.5 

 

The values are the means reported from each value of the 10-fold cross-validation. Figure 55 

shows the means (diamond) along with the standard deviation (blue line) and minimum and 

maximum values (grey lines). The selected model is outlined. 

 

Figure 55 Performance metrics for each model developed. 



 100 

The elastic net model is chosen because it reduces the number of coefficients and the objective of 

this research was to select the simplest model without sacrificing a large amount of accuracy. 

The MAPE is reduced from 5.89 to 6.1% which is negligible when comparing to the energy use 

of buildings. In a house using 250 GJ of energy annually, which is on the highest end of the 

simulated results, the decrease in accuracy by selecting the elastic net model would result in a 

0.53 GJ difference. Between the label encoded and one-hot encoded models, the label encoded 

model is chosen as it is simpler than having separate parameters for each categorical option.   

The convergence of the training and validation sets during the sample size analysis implies that 

the model has low variance. This explains why elastic net increases the model error, because 

generally regularization is used to reduce variance by introducing some bias. In this case elastic 

net was used as a feature selection methodology at the cost of introducing this small amount of 

bias. 

5.2.9.1 Final Model Results 

The training and validation sets are combined to form the new training set of the outer loop. The 

selected elastic net model is trained on this data and tested on the test set from the outer loop. 

The model has not seen this data before. The results are shown in Table 22.  

Table 22 Performance metrics of final model. 

  R2 RMSE [GJ] MAPE [%] #  Coefs 

LE Elastic Net 0.9465 7.07 6.09 19 

 

This indicates that 94.7% of the variance is accounted for by the model. The mean of the energy 

use output is 81 GJ. The RMSE is 7.07 GJ, and the MAPE is 6.09%. 
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5.2.9.2 Coefficients 

The coefficient values are calculated for each of the 10 folds in the outer loop. The mean and 

standard deviation of the coefficient values from the final model are shown in Table 23. They are 

ordered by largest absolute value. 

Table 23 Coefficient values and y-intercept for final model. 

Parameter  Coefficient STD    Parameter Coefficient STD 

ACH50 0.1117 0.00092  Lighting Density 0.0058 0.00034 

Wall Insul -0.0678 0.00066  Slab Insul -0.0045 0.00029 

Ventilation 0.0521 0.00115  HRV Option -0.0040 0.00024 

Roof Insul -0.0360 0.00082  3 Floor Height 0.0036 0.00034 

Window U-Val 0.0332 0.00034  Front WWR 0.0029 0.00030 

Depth 0.0328 0.00067  Bmt Height BG -0.0023 0.00023 

1&2 Floor 
Height 

0.0277 0.00027  AC Eff -0.0005 0.00023 

Window SHGC -0.0218 0.00034  Right WWR 0.0000 0.00000 

Width 0.0188 0.00065  Orientation 0.0000 0.00000 

Furnace Eff -0.0165 0.00029  Left WWR 0.0000 0.00000 

Bmt Height AG 0.0124 0.00047  Back WWR 0.0000 0.00000 

Bmt Wall Insul -0.0080 0.00041   y-intercept 1.87836 

 

The coefficient values are plotted in Figure 56 with the error bars indicating standard deviation. 

They are ordered by largest to smallest absolute value.  
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Figure 56 Coefficient values for final model. 

The standard deviations are barely visible in most cases, indicating the coefficient values over 

the 10 folds of the outer loop are very similar. This indicates the model is stable. The elastic net 

regression removed right, left, and back window-to-wall ratios (WWR) and orientation from the 

final model by shrinking the coefficient values to zero. The range of modelled WWRs for the 

sides (left and right) are very small, ranging from 0.01-0.12. The front and back WWRs are 

slightly larger, ranging from 0.08-0.35. This could indicate why front WWR was still included. 

Orientation was removed perhaps because the WWRs were not large enough to make the 

direction they are facing a significant factor for energy use.   

5.2.10 Sample Size Analysis 

To ensure enough samples were being used for the training and testing of the model, a sample 

size analysis was conducted. Variously sized training and validation sets were randomly created, 

with the training set containing 10-90% of the samples from the full dataset, and the validation 

set containing the remaining samples. A model was fitted to each training set and evaluated 
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against the validation set using the R2 score metric. The R2 score used 10-fold cross-validation to 

ensure accurate results. The data was split into 10 folds, and each fold took a turn being the 

validation set, and the remaining nine would be the training set. This is done to ensure one split 

did not contain specific data that could skew the results, and that every single data point would 

eventually be in the validation set. Each fold was evaluated, and a mean R2 was returned. Figure 

57 shows the R2 score for various sizes of training sets. The shaded area represents the standard 

deviation for the cross-validated scores. 

 

Figure 57 Sample size analysis for the dataset. 

The training sets experience smaller standard deviations because it is the set that the model is 

being trained on. Therefore, when that same training set is used to predict energy use, the model 

outputs are very reliable. It is also a larger sample size. The R2 and RMSE scores have almost 

converged at 1250 samples. Since the marginal increase in accuracy would be negligible 

(especially at the cost of additional simulation time), this was considered an appropriate sample 

size.  

5.2.11 Case Study 

Utility data was obtained for two houses in The Pocket neighbourhood. All inputs required for 

the model were taken from an EnerGuide energy audit or the field study. This included air 

tightness testing results, wall insulation values, window U-values, floor areas, and HVAC 
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systems and efficiencies. There was no information for window SHGC, so a value of 0.7 was 

assumed based on the window types. A value for lighting density of 2.505 W/m2 was assumed, 

and a cooling efficiency (for House 1 only) of 3 COP was assumed based on Jermyn’s baseline 

model [10]. The ventilation was calculated using the volume and air tightness. The input values 

are shown in Table 24. 

Table 24 Input values for the case study from the EnerGuide energy audit. 

  Unit House 1 House 2 

Infiltration ACH at 50 Pa 17.05 16.7 

Wall RSI m2K/W 1.3 2.08 

Roof RSI m2K/W 3 2.09 

Slab RSI m2K/W 0.28 0.28 

Basement Wall RSI m2K/W 0.48 1.41 

Furnace Efficiency - 0.8 0.93 

Window U-value W/m2K 0.50 0.41 

HRV Option - 0.24 0.24 

Window SHGC - 0.7 0.7 

Ventilation  0.0045 0.0053 

Depth m 13.7 13.8 

Width m 5.1 6.1 

Bmt Height Above Grade m 1.2 1.3 

Bmt Height Below Grade m 1.1 0.8 

Average First Floor Height m 2.6 3.3 

Third Floor Height m 2.5 2.8 

Front WWR - 0.104 0.092 

Back WWR - 0.067 0.102 

Left WWR - 0.017 0.023 

Right WWR - 0.023 0.053 

Lighting Density W/m2 2.505 2.505 

Cooling Efficiency COP 3 3.8 

Orientation - 0.99 0.24 

 

The results indicated that energy use could be predicted to within 10% error compared to utility 

data using the surrogate model. An EnergyPlus model of each house was simulated to compare 

to the surrogate model results. Table 25 summarizes the findings.  
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Table 25 Case study results. 

  House 1 House 2 

Actual Energy Use (Utilities) [GJ] 129.5 148 

   

Surrogate Model [GJ] 121.53 133.98 

Difference compared to Actual [%] -6.15 -9.47 

   

EnergyPlus Simulation [GJ] 124.4 130.42 

Difference compared to Actual [%] -3.94 -11.88 

 

The House 2 predictions are close to the MAPE value of 6.1%. House 1 is slightly higher. The 

full EnergyPlus simulation was more accurate in House 1 and less accurate in House 2. This is 

reasonable as the percent error for the surrogate model ranged from -15 to 15% (excluding 

outliers). These are promising results; however more case studies would need to be completed to 

develop a confident estimation of accuracy. 

5.2.12 NSGA-II Optimization 

Figure 58 and Figure 59 show the Pareto front of solutions for this application. Out of the 65,536 

possible combinations of retrofit levels, the optimization algorithm has selected 70 Pareto point 

solutions that it feels has the best energy-cost trade-offs. Each point corresponds to a set of levels 

of retrofit upgrades. It should be noted that each point is an individual solution, and they do not 

build off each other. The Pareto front seems discontinuous. Reviewing the solutions indicate that 

the discontinuity is caused by retrofit upgrades that drastically decrease energy use. Each 

“group” of the Pareto front all have the same wall insulation and ACH50 level.  
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Figure 58 Pareto front solutions for house 1 from the case study. 

 

Figure 59 Pareto front solutions for house 2 from the case study. 

Since there is a trade-off between cost and energy use, no single optimal solution can be 

determined. It is now up to the user to decide which point provides the most optimal solution. In 
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the case of an energy retrofit renovation, there might be certain limitations. If the goal is to 

maximize energy savings within a certain budget or get to a certain level of energy use, there 

would be different optimal solutions. The final decision would be made based on the situation, 

proposed application of the results, and external constraints.  

Upgrading the wall insulation and ACH50 values reduce the energy more than any other retrofit 

parameter. The energy reduction seems slightly unrealistic. The ACH50 and wall insulation were 

the two most significant factors in the final surrogate model, and they could be overestimating 

the energy reduction potential. This example demonstrates the dangers associated with costing 

data. The level 1 upgrade cost is $23,284, but the level 3 upgrade is only $25,655. This is a 

minimal increase in cost for large energy savings. And the cost associated with ACH50 upgrades 

is comparatively low. This has to do with the way that Jermyn defined the costing and levels 

[10]. Likely, the cost could be higher and the energy savings could be lower. 

The error on individual surrogate model predictions ranged from -15 to 15% (excluding outliers), 

although the average was 6.1%. This means these individual points could vary compared to the 

simulated values. To show how far off the optimization results using the surrogate model were, 

all 70 optimization solutions were simulated using a full model in EnergyPlus. The results are 

shown in Figure 60 and Figure 61.  
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Figure 60 Results of EnergyPlus simulations versus the surrogate model for house 1 from the case study. 

 

Figure 61 Results of EnergyPlus simulations versus the surrogate model for house 2 from the case study. 

The EnergyPlus simulations are close to the predicted surrogate model values at higher energy 

uses. At lower energy uses, the surrogate model tended to underestimate energy use. If this were 
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done on multiple houses the error would likely be accurate on average and represent the MAPE 

of 6.1%. This demonstrates the power and capability of the surrogate model but illustrates the 

dangers of costing data and using individual houses as it could provide unrealistic retrofit costs 

and energy savings if the analysis is not done properly. 

The purpose of this analysis was to show what an optimization could look like using a surrogate 

model, to demonstrate the potential issues, and to compare to a brute-force optimization. The 

purpose was not to conclude which retrofit solution is most cost-effective. 

5.2.12.1 Brute-Force Optimization 

The results of Jermyn’s brute-force optimization [10] are shown in Figure 62.  

 

Figure 62 Jermyn's brute-force optimization results. Figure adapted from [10]. 

The brute-force optimization was completed with a different baseline energy model and slightly 

different inputs than these case studies, however comparing the results show that the NSGA-II 

optimization algorithm is showing results with lower costs and lower energy uses. This shows 

that adding the most cost-effective options in order is overestimating the total costs required to 
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achieve lower energy uses. The NSGA-II optimization shows that upgrading the wall and ACH50 

results in lower cost per energy use saved overall, although it was not necessarily the lowest cost 

per energy use saved compared to each possible retrofit upgrade as in the brute-force 

optimization. This shows that the surrogate model can find more optimal solutions than the 

brute-force optimization.  

5.2.12.2 Optimization Comparison 

For this optimization example, there were 65,536 possible solutions. Table 26 compares the time 

it would take to complete this optimization using mathematical optimization (simulating all 

possible solutions), brute-force optimization, and NSGA-II optimization. 

Table 26 Time comparison with and without surrogate model for mathematical, brute-force, and NSGA-II optimization. 

 

Another limitation of optimizing without a surrogate model is that any changes in the 

optimization problem would require all the simulations to be rerun. The surrogate model can be 

used in any application or repeated without requiring additional simulations. One of the 

limitations of using the surrogate model is the slight loss of accuracy. The final model had a 

MAPE of 6.1% with an error range of -15 to 15% (excluding outliers).  

With Surrogate Model

Mathematical Optimization Brute-Force Optimization NSGA-II Optimization

45 days to run 65,536 simulations 3 hours to run 184 simulations
2 days to run 1500 simulations and 

develop surrogate model

Several hours of post-processing
Several days to perform manual 

brute-force optimization
Minutes to perform optimization

Set of optimal solutions determined Sub-optimal solution determined Set of optimal solutions determined

Without Surrogate Model
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6 CONCLUSIONS 

6.1 Future Work 

Future work must be done to determine how many models are needed to describe the municipal, 

provincial, and national housing stock. Is there a point where the surrogate model framework 

does not apply? In different climates? Urban versus suburban areas? More varied surrogate 

models need to be developed in different parts of the city, with different house types, in different 

climates, to determine what accuracy is possible to describe a large subset of the housing stock, 

and at what point a single surrogate model does not apply.  

Energy use was predicted within ~10% error of actual utility bill data for the case studies 

investigated. The case study only included two homes due to the availability of the EnerGuide 

energy audit results and the utility data. If more homes were included in the case study, a 

confident representation of the accuracy of the model compared to utility data could be 

understood.  

The preliminary NSGA-II optimization demonstrated the capabilities and power of the surrogate 

model. However, it also indicated potential dangers associated with costing data and only using a 

single home. A more in-depth optimization study should be completed to expand upon the 

findings from this research. Future work should be done to optimize multiple houses to provide 

an accurate understanding of the trends for cost and energy reduction in terms of retrofit 

solutions for this archetypal home. Once enough surrogate models have been developed to 

describe Toronto’s residential housing stock, the best retrofit strategies could be optimized. 

Adding life-cycle cost or occupant comfort as another objective to the optimization problem 

could be investigated. 
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The practicality and applicability of the model could be improved by beginning the research with 

the end goal in mind regarding how it would be used. The input from stakeholders (industry 

professionals or policy makers) could make the model more valuable in terms of practicality of 

use. Additionally, future work could include a user interface to allow the model to be easily used. 

The performance and applicability of the surrogate model is heavily dependent on the dataset. 

The Latin hypercube sampling plan was chosen because it was most common in the reviewed 

literature. Further research should be completed on the effect of sampling plans on the accuracy 

of the model. The samples with high predicted error could be examined to see if there are any 

repeated patterns that could be remedied to reduce the error of the model.  

One of the largest limitations of this surrogate model was fixing the occupant determined loads 

in the baseline model. This is not a limitation of the methodology itself, as these inputs can – and 

should – be added and the impact on the accuracy of the model and the practicality of using it to 

describe larger subsets of housing stocks should be investigated. It was not within the scope of 

this research.  

A natural gas furnace was fixed in the baseline energy model. The surrogate models need to be 

able to include a retrofit option to upgrade existing furnaces to gas-free options such as air source 

heat pumps. This could potentially be included as a categorical variable; however further 

research must be completed to analyze if the model could achieve the same levels of accuracy.  

Another limitation of the current model is that there is no separate ventilation system. It was 

modelled as such because that is the state of the existing baseline condition in the surveyed 

homes and adding a separate ventilation system as a retrofit requires a very large renovation with 

high costs. Since heavily retrofitted homes with low airtightness are being investigated, at some 

point a separate ventilation system would be necessary to ensure the required ventilation levels 
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are being met. Future work could be completed to determine if it is possible to have a model that 

can switch the HVAC system based on input parameter values. 

6.2 Conclusions 

An existing archetype for large detached century homes in Toronto, ON was updated using data 

from a field study of small century homes in The Pocket neighbourhood. The baseline model 

used to develop the dataset was updated and improved. Ranges for 23 parameters were 

determined using data from 35 homes which were measured in Jermyn’s field study [10] and The 

Pocket field study. EnergyPlus was used to run 1500 simulations within the defined design space 

to create the synthetic dataset. 

The final model used elastic net regression with label encoded categorical variables. It was the 

simplest in terms of number of coefficients (19.5 on average) and only sacrificed 0.2% MAPE 

compared to the full model with all the coefficients. Testing on a held-out dataset, the final 

model was able to achieve an R2 value of 0.947 and a MAPE of 6.1%. The final model predicted 

energy use within 10% of annual utility bills for two houses in the field study. The first research 

question can be answered: a surrogate model developed using multivariate linear regression 

can describe the annual energy use of an archetypal single-family home in Toronto, ON 

within 6% error on average.  

To answer the second research question, a house size analysis was completed to determine 

whether including a much smaller version of the century home archetype in the surrogate model 

would affect the performance. The results showed that including the wide range of house sizes 

sustained the model accuracy compared to the small or large houses on their own. The absolute 

value of the coefficients for each parameter were similar for all the home sizes, with air tightness 

and wall insulation RSI being the two most important parameters. The second research question 
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can be answered: small and large archetypes with the same form can be described by a 

single surrogate model without losing accuracy. 

A sample size analysis of the small and large homes showed that more samples may have 

increased model performance slightly, as the validation and training errors had not yet converged 

at 400 samples. The increase would be minimal (R2 of ~0.01) and would be at the cost of 

additional simulation time. The purpose of this analysis was to compare models and each model 

had the same amount of variation therefore a larger sample size would likely produce similar 

results. The sample size analysis of the entire dataset showed the model was much closer to 

converging (more samples would only change R2 by <0.001) therefore this was considered an 

appropriate sample size. 

A preliminary optimization investigation was conducted using the NSGA-II optimization 

algorithm and Jermyn’s collected data for retrofit upgrade values and associated costs [10]. This 

proved to be more effective than brute-force forward stepwise optimization performed by Jermyn 

[10]. The results of the optimization analysis indicated that increasing airtightness and the wall 

insulation RSI values would result in a large energy reduction. This option was not selected by 

the brute-force optimization because this upgrade has a large cost, therefore it was not selected as 

the most “cost-effective” option until later in the forward stepwise selection process. At that 

point the total cost became very expensive and many of the other retrofits that had been selected 

before did not necessarily provide a cost-effective solution at that point.  

Using NSGA-II optimization, a design space with 65,536 potential combinations was narrowed 

down to 70 optimal solutions in less than a minute. To simulate all these solutions would have 

taken more than 45 days (assuming one minute per file, a conservative estimate). The 1500 

EnergyPlus simulations for this research were run in approximately 1.5 days. Once the final 
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model was selected, the surrogate model took seconds to create. The optimization algorithm took 

a few hours to set up and one minute to run. This results in substantial time savings (potentially 

weeks), more flexibility, and the dataset that was created only needs to be simulated once. The 

developed model can be used repeatedly without additional simulations.  

This thesis describes a bottom-up surrogate modelling approach to describe energy use in an 

archetypal house in Toronto, ON. The results indicate that further investigations must be 

conducted to determine the applicability of this framework in more varied situations. This 

research found that multivariate linear regression can be used to develop an accurate surrogate 

model which can incorporate a wide range of house sizes. There is great potential for this 

framework to contribute to eventually developing bottom-up surrogate models to describe the 

entire residential Canadian housing stock.  
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