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Abstract 

This research investigates the application of surrogate modelling to improve the energy 
performance of single-family homes. EnergyPlus was used to simulate 6000 energy models for 
four different semi-detached and detached century archetypes in Toronto, ON. Multivariate 
regression and a novel forward stepwise selection methodology were used to develop the 
surrogate models for each archetype. These models predicted energy use between 7.02%-
7.54% error. A combined model that contained all four archetypes was developed to determine 
if a single model can replace multiple models. This model predicted annual energy use with 
7.03% error and the number of samples required per archetype was reduced by a factor of 3-4. 
Elastic net regression was tested and found to be equally as effective as the proposed stepwise 
selection methodology. The findings of this research support the future application of surrogate 
modelling as a powerful tool to develop bottom-up archetype models for century homes in 
Toronto, ON. 
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1 Introduction 

This chapter will provide a brief introduction to archetype work and building energy surrogate 

modelling and define the importance of this work. 

Problem definition 

Residential buildings make up 17% of Canada's secondary emissions and 14% of greenhouse gas 

emissions [1]. Single-family residences have the highest energy use intensity of all housing 

types due to their high exposed surface area to volume ratio compared to high rise residential 

buildings [2]. Jermyn [3] found that among single-family houses, century houses, built before 

1940 Have the highest energy intensity. 63% of residential energy use is attributed to heating, 

and only 1% of energy use is attributed space cooling. Most houses are heated with natural gas, 

which has a much higher carbon intensity than electrical sources [4], [5]. Reducing heating load 

can be achieved by improving the performance of the building envelope and the HVAC system 

[3]. 

Deep energy retrofits of existing single-family houses are a more effective method of reducing 

greenhouse gas emissions than a teardown and rebuild. The life cycle costs, carbon emissions, 

and waste associated with rebuilding a house mitigate operational savings offered by this 

approach, and retrofitting existing houses, was found to be a more sustainable solution [6].  

Modelling homes individually is not feasible given the size of the housing stock. It is far more 

efficient to work with archetype models to represent subsets of the housing stock. Blaszak [7] 

and Jermyn [3],  have helped to develop the Toronto Archetype Project in order to characterize 
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the Toronto housing stock. This work has focussed on developing bottom-up archetypes using 

real measurements and energy modelling software to determine optimal retrofit sequencing 

for common house types. In an analysis of 23 urban Toronto neighbourhoods, Jermyn [3] found 

35% of units (59,135 out of 165,825) were single-family houses. Century houses also made up 

60% of this group, corresponding to 25,227 houses. Wartime, 70s Ontario Building Code and 

modern archetypes made up the remaining fraction of houses [8]. This research will build on 

the work by Jermyn and Blaszak. 

Jermyn [3] identified a need for more archetypes to define each vintage within the Toronto 

housing stock. In an urban neighbourhood study, the archetypal three-storey semi homes made 

up only 51% of the semis, while two-storey semis made up 46%. Century Semi and Detached 

houses made up the majority of single-family houses in urban neighbourhoods [3]. Developing 

baseline models to describe two-storey semis enables a substantially larger percentage of 

century homes in Toronto to be represented. A field study was conducted in a neighbourhood 

east of downtown Toronto called “The Pocket”. The results of this field study were used to 

expand the existing three-storey detached and semi archetypes to include two-storey semi 

archetypes. 

There are two approaches to archetype development, the bottom-up approach and the top-

down approach, which uses historical data to build archetype models. This thesis will build on 

the current bottom-up modelling strategy, which uses building physics and measured data to 

assess the energy-saving potential from various retrofit or technology options. Optimization 

algorithms are often used to determine the least expensive path to meet an efficiency target. 

To run an optimization, a large number of building energy models need to be simulated to 
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represent all the combinations of possible retrofits for each building feature. Most researchers 

reported that simplifications and concessions in model accuracy are often necessary to address 

computational limitations in large scale optimizations [9], [10]. Recently surrogate modelling 

has been used as a way to substantially reduce computational times associated with 

optimization and energy model development. 

Several researchers [9] have investigated surrogate modelling as a hybrid bottom-up building 

archetype modelling strategy that combines building physics with machine learning algorithms. 

Surrogate models use a supervised machine learning approach to approximate the output of a 

complex and computationally demanding process by estimating the relationship between a set 

of predictor variables and an output(target) [9], [11]. Building energy surrogate models are 

trained using a synthetic dataset of buildings that have been simulated with energy modelling 

software. The set of buildings is developed based on a range of building features that describe 

the design space. Each building that has been run represents a single training sample that a 

learning algorithm will use to develop a surrogate model. Surrogate models have been 

developed for a variety of building types and design goals. 

Only a handful of studies have investigated using surrogate modelling for single-family 

dwellings, and most of these studies have been top-down models [12] or were used for energy 

labelling instead of calculating end-use. 

Only a single study was identified that investigated the use of a single surrogate model to 

model multiple buildings [13]. The process of developing surrogate modelling is time-

consuming and complicated. Currently, the individual building-specific approach to developing 
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surrogate models limits the potential application of surrogate modelling to solve larger-scale 

problems. The feasibility of using surrogate models for large scale retrofit optimization 

problems is contingent on the scope of a single model being expanded to be able to accurately 

predict energy use for more than one archetype and a more comprehensive subset of the 

housing stock.  

Four distinct single-family home archetypes with different characteristics were explicitly 

targeted in this research. These dwellings are all defined as Century homes (pre-1940). The four 

archetypes that were targeted are shown below in Figure 1. 

 

Figure 1 Four archetypes investigated in this research 

This research aims to determine the feasibility of creating surrogate models of various subsets 

of the stock of single-family century houses in Toronto in order to address shortcomings in the 

current archetype development approach. The four archetypes studied in this research are 

compared horizontally, and this research will investigate whether multiple different archetypes 

can be described by a single surrogate model (i.e. different number of floors, different roof 

shapes, detached vs. semi). Each archetype will be modelled using the same ranges in order to 

allow a horizontal comparison between archetypes. 

This research will also investigate what machine learning algorithms and methodologies are 

appropriate to develop surrogate models to predict energy usage for single-family houses to 

simplify future research. 

Three-Storey Semi Small Two-Storey SemiLarge Two-Storey Semi Detached
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Objectives 

Each chapter in this research will be divided into phase 1 and phase 2. The overall goal of this 

research was to investigate the application of surrogate modelling to expand and add value to 

the existing research on bottom-up urban Toronto archetypes.  

In phase 1, a field study was conducted in a targeted neighbourhood to determine what 

archetypes exist and whether the existing Century Detached and Three-Storey Century Semi 

archetypes proposed by Jermyn [3] should be expanded to include a Two-Storey Semi 

archetype. The development of the dataset used in phase 2 also occurred in this phase. 

In phase 2, Surrogate models were developed to determine how effectively a multivariate 

regression-based surrogate model can be used to predict energy usage for increasingly 

comprehensive subsets of the Toronto housing stock.  

• The first investigation was used to determine what accuracy is possible with surrogate 

models trained and tested on a single distinct archetype.  

• A second investigation, a single model was trained on a dataset, including multiple 

archetypes and was tested on individual archetypes. 

• A third investigation was used to determine what accuracy is possible for a set of models 

that were trained on three archetypes and tested on an independent test set containing 

the fourth archetype.  

The goal for these investigations is to determine potential accuracy for models developed on 

single, and multiple archetypes, and estimate a baseline accuracy that can be expected when a 

surrogate model is used to predict energy on the entire Toronto century housing stock.  
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Two different feature selection methodologies for a set of highly collinear feature options will 

be investigated for use in linear regression models to inform further research and compare 

options. A model will also be built using an artificial neural network to determine the level of 

accuracy that is possible for a more flexible learning algorithm. The research questions are 

outlined below. 

1. After establishing the range of single-family archetypes present in a targeted urban 

neighbourhood in Toronto, how can an existing set of century house archetypes be 

expanded? 

 

2. What accuracy can be achieved for four surrogate models developed to predict energy 

use for four distinct single-family residential archetypes, how does this differ from the 

accuracy achieved when using a single surrogate model for all four? 

 

3. What is the most effective learning algorithm and feature selection methodology to 

develop surrogate models for bottom-up archetypes of century homes in Toronto. 

Structure  

The chapters in this thesis are divided into two phases. Phase 1 consists of field research, and a 

continuation of work on the Toronto Archetype Project.  Phase 2 investigates the application of 

surrogate models to develop the Toronto Archetype Project further. The background section 

will focus primarily on modelling techniques used in this thesis and will also inform the 

methodology used in the results section. 
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2 Background and literature review 

This chapter will provide a background for Phase 1 and Phase 2 of this research. In Phase 1 of 

this chapter, some of the current archetype work will be explored, and some of the gaps in the 

existing research will be identified.  

In Phase 2 of this chapter, some existing applications of surrogate modelling for archetype 

development will be presented. This section will focus primarily on the background for the 

methodologies used in this research and will lay out the current best practices in surrogate 

model development.  

Phase 1: Archetype Background 

2.1.1 Bottom-Up vs. Top-Down Archetype Development  

There are two main approaches to archetype development, top-down and bottom-up model 

approaches. M. Kavgic et al. [14] conducted a review of bottom-up building stock models. He 

describes top-down modelling as models built on aggregated level historical data and 

macroeconomic trends instead of physics or component-based factors. These models are not 

suitable for making technological decisions. Bottom-up approaches generally combine 

disaggregated components and physics-based analysis or building components [14].  Bottom-up 

approaches can be further divided into statistical, physics-based and hybrid models. Physics-

based models use measurable data and often use energy modelling software or mathematical 

relationships to calculate energy use. These models help determine the effect of technology or 

retrofit strategies on energy use and can, therefore, help guide policy. The downside of these 

models is that they require more technical information than other model types. Statistical 
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bottom-up models can be created using utility data and can offer insights into macro and 

socioeconomic relationships to energy use. These models do not offer very much insight into 

policy decisions and energy reduction measures. Hybrid models use combinations of physics-

based and statistical bottom-up models [15]. Figure 2 shows the general process involved in 

creating bottom-up archetypes. 

 

Figure 2 Bottom-up archetype development steps 

Swan and Ugursal[16], and Reinhard and Davilla [17] also conducted thorough reviews of 

residential energy modelling strategies. According to Swan and Ugursal [16], an archetype 

model is defined by characteristics such as vintage, number of storeys, geometry, building 

envelope and HVAC type. A single archetype model is designed to characterize a subset of the 

building stock. Building performance simulation is often used to estimate energy use for an 

archetype model and estimate the effect of a retrofit option on a subset of the housing stock 

[16]. Reinhard and Davilla [17] identified that a weakness in the current bottom-up archetype 

approach is that the method used to characterize the building stock and develop average can 

rely on a lot of assumptions that are often based on insufficient real measured data. If the base 

model is not robust the energy predictions will not be reliable. 
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2.1.2 Toronto Archetype Project 

This research will primarily focus on the recent work conducted by several researchers from 

Ryerson University. These papers have followed the basic methodology of defining 

characteristic baselines, developing a bottom-up model and optimizing a set of retrofit 

scenarios to improve energy efficiency. Figure 3 describes the timeline of work conducted on 

the Toronto Archetype Project, which was first developed by Blaszak and Richman [7].

 

Figure 3 Timeline of archetype work in Toronto [3], [7], [18]–[20] 

Blaszak divided the existing Toronto urban housing stock into four archetypal houses. These 

archetypes included a three-storey century detached house, a wartime bungalow, three-storey 

1970s and a three-storey modern house. Base geometry and building performance parameters 

were taken from various datasets. The houses were modelled using Hot2000 [7] to determine 

baseline energy use. Several retrofit options were considered in order to achieve an energy use 

intensity below 100kwh/m2. Blaszak’s results suggested that building form and building type 

may have an impact on the optimal retrofit solution[7].  

2010 2014 2016

Blazsak

Jermyn

Niger

Developed New Century 
Semi archetype. Developed 
new energy modelling 
methodology for wartime, 
century semi and century 
detached, used brute force 
optimization to reach an 
energy performance target.

Developed 4 archetypes 
based on field research, 
Century Detached, Wartime, 
1970s OBC and Modern.

2013
Zirnhelt

Developed Methodology for 
Building and calibrating an 
energy model for a single 
family home using Energy -
Plus.

Following methodology 
developed by Jermyn, 
modelled a 1970s OBC 
house and conducted a 
brute force optimization.

2013

Mucciarone
Developed high R value 
enclosure designs for 
century home retorifts and 
performed hygrothermal 
analysis using WUFI.



10 
 

Independently to the Toronto Archetype Project, Zirnhelt [18] developed a methodology for 

building a calibrated EnergyPlus model of a single-family house in several Canadian climate 

zones, in order to model potential savings from passive solar design. Zirnhelt prepared a 

detailed methodology outlining the steps taken to produce a calibrated model. 

Mucciarone [19] developed a set of building envelope retrofit designs for century houses in 

Toronto that delivered high R values and performed a detailed hygrothermal analysis to ensure 

that these wall designs would not cause any moisture issues. 

Jermyn continued the work of Blaszak [3], by developing an additional three-storey semi 

archetype and adapting the model created by Zirnhelt [18] to create three calibrated 

EnergyPlus models to predict the baseline energy use for the century detached, and wartime 

houses proposed by Blaszak [7]. An additional three-storey century semi archetype was also 

developed. Jermyn [3], conducted a field study of 5 urban Toronto neighbourhoods In order to 

determine the baseline dimensions and feature inputs required to build these EnergyPlus 

models. A brute force optimization was conducted to determine a cost-effective route to an 

energy intensity of 70kwh/m2. A brute force optimization was used because a full multi-

objective optimization was not computationally feasible.  

The three-storey century semi and three-storey century detached archetypes developed and 

the results of the field study conducted by Jermyn [3] were built upon in this research. 

2.1.3 Bottom-Up Archetype Research in Canada 

Several researchers have developed bottom-up archetype models for Canada. Swan et al. [21] 

developed the Canadian Hybrid Residential End-Use Energy and GHG Emissions Model (CHREM) 
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as a hybrid bottom-up model that is representative of the Canadian housing stock. Swan et al. 

[22] developed a nationally representative set of 17,000 real single-family homes referred to as 

The Canadian Single-Detached and Double/Row Housing Database (CSDDRD). The CSDDRD is a 

subset of the EnerGuide for Houses Database [23] which was developed by NRCAN [24] based 

on the data recorded during a nationwide energy audit program.  Swan et al. [21] simulated 

each house contained in the CSDDRD using ESP-r [25] as the building simulation engine. 

Artificial neural networks were used to assign appliance and district hot water loads to each 

house based on specific profiles. Retrofit options were evaluated by re-simulating all the 

relevant CSDDRD models and determining the resulting energy and resulting and green-house 

gas savings using carbon emission factors for each end-use energy component. The CSDDRD 

models are representative sample of the entire national stock, so the results or the CHREM 

simulation can be extrapolated to represent the entire Canadian housing stock. [21]  

Wills [26] revised the CHREM using an updated residential appliance and lighting model. Wills 

also included new envelope retrofit options and HVAC options such as ground source heat 

pumps in the CHREM model. This new model was used to perform a comprehensive analysis to 

determine the feasibility of retrofitting entire communities to net-zero using a variety of 

technologies. Community scale retrofits such as solar thermal, district heating and thermal 

energy storage were considered. In order to reach the net-zero target, a single-objective 

optimization was performed A multi-objective optimization was not feasible given the 

computational requirements [26]. 

In 2017 BC Housing and Integral conducted a large-scale optimization on small medium and 

large single-family houses in British Columbia. This report investigated the cost of achieving 



12 
 

various levels of a new building code based on predetermined code requirements that are 

required for each step on the path to net-zero. Hot2000 was used to reduce computational 

time compared to dynamic modelling. A built-in optimization tool, “Housing Technology 

Assessment Platform,” was used to perform the analysis. Eleven building features were 

included in the optimization, and between 4 to 8 options were included for each feature. 54 

million simulations were required to model a house with every combination of building features 

included in the design space. Running 54 million simulations was not feasible, so instead, a 

sample of 60,000-240,000 houses were simulated for each house.[27]  

2.1.4 Limitations of the Current Bottom-Up Archetype Approach 

Some common gaps in the current research on single-family archetypes are identified in this 

section. An archetype model is often based on insufficient real data and very general 

assumptions, which make the results unreliable for a large sample of the housing stock [3], [17]. 

Additionally, the current approach of using computationally expensive building simulation 

engines to build bottom-up models limits the potential application and analysis opportunities 

[21], [26]–[28]. 

Simplifications to the CHREM created by Swan et al. [21] were necessary due to inadequate 

data in the CSDDRD.  Complex house geometries were reduced to a basic rectangular form in 

order to use the data provided by the CSDRD, this will likely affect the accuracy of the results. A 

sensitivity analysis or optimization would also not be feasible with this model. To test a single 

retrofit option takes approximately 20 hours on average using two computers with four-core 

processors that had to be purchased for the project [21]. Using a single processor this would 

take approximately 300 hours [29].  
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Using CHREM as a base model, Wills [26] was forced to perform a simplistic optimization using 

only a single objective due to computational limitations. A full multi-objective optimization that 

included cost would be optimal when considering the actual implementation of retrofits on the 

housing stock. 

Jermyn [3] identified that simplifications often had to be made to energy models or 

optimization algorithms to enable optimizations. Instead of a full optimization, Jermyn used an 

iterative stepwise approach (brute force) that will not necessarily find the optimal solution. In 

the study conducted by BC Housing [27], only a small percentage of potential solutions could be 

tested due to the massive number of simulations required to model every combination. Even 

this small subset of potential combinations took several days to run for each archetype. 

Another limitation of the research conducted by BC Housing is that only one building form was 

analyzed to generalize the performance for many house shapes [27]. 

Jermyn [3] suggested that building an archetype model based on field measurements was 

challenging and potentially inaccurate. This potential limitation was also noted by Reinhart and 

Davila [17]. A single baseline model would not necessarily be representative of a large subset of 

the housing stock. Determining average house characteristics is challenging due to a small non-

random sample, and variations in building form [3].   

Surrogate modelling is investigated in the next section as a way to address the limitations of the 

current archetype approach. 
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Phase 2. Surrogate Modelling 

This section will provide background for the subsequent chapters in this research. Three recent 

(2018-2019) reviews of the state of the current research on building energy surrogate models 

were primarily used to guide the research in this section. Barnes [30] reviewed 22 papers in her 

review, Westermann and Evins[9] reviewed 57 papers, Seyedzadeh [12] reviewed 40 papers. 

These papers are often cited in this section and should be accessed directly if a reader desires a 

more comprehensive background review. 

2.1.5 What is Surrogate Modelling 

Surrogate modelling is a term used to describe the use of supervised learning algorithms in 

order to approximate the output of a computationally expensive simulation. Surrogate 

modelling can be especially helpful for optimization tasks in which computational demand can 

prevent full optimization analysis from being conducted. [11] 

 

Figure 4 Surrogate modelling process. 

It is important to differentiate the machine learning approach from the purely statistical 

approach. Statistical approaches often try to identify relationships and test hypotheses. The 

machine learning approach involves optimizing prediction accuracy using specific training and 

independent testing sets. “Statistics draws population inferences from a sample, and machine 

learning finds generalizable predictive patterns,” As stated by Bzdok et al. [31].  
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Supervised learning refers to an approach in which the inputs are known and labelled. In 

unsupervised learning, the algorithm determines a relationship without set inputs or labels 

[11]. 

Recently advancements have been made in the field of surrogate modelling for use in building 

energy simulation. Where energy models may take minutes to hours to run, surrogate models 

have been developed that can run in less than a second while still providing an accurate 

estimate of energy use.  This substantial reduction in computation time enables multi-objective 

optimization and quick estimates of energy use during the design stage.  

2.1.6 Model Intent 

Surrogate models have been developed for various applications and various target variables. 

The most common output is total annual energy[9], but often heating demand or cooling 

demand will be considered separately [32]. Although only one output is possible with 

multivariate linear regression, some researchers have considered using dummy variables to 

represent multiple outputs, such as end-use or monthly energy demand [30]. In artificial neural 

networks, it is possible to have multiple target variables by having an output node for each 

target considered. Models can be used to predict continuous numerical outputs (regression) or 

to group inputs (classification) [12]. Neural networks can be prone to overfitting and knowledge 

of hyperparameters and structure is essential to achieve high accuracy [12]. More complex 

algorithms such as Artificial Neural Networks (ANN) are ideal if prediction accuracy is 

important, and interpretability is not required.  
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Surrogate models are often used to reduce computing time for complex optimization problems. 

Linear regression models can be used to perform uncertainty or sensitivity analysis if care is 

taken to address collinearity among input variables [33], [9]. 

Westermann and Evins [9] found that surrogate models have been shown to significantly 

reduce computational times compared to using full dynamic models to test every iteration. 

Magnier and Haghighat developed a TRNSYS model of a single-family house, they found that it 

would take approximately ten years to run a full multi-objective optimization based on all the 

feature options. The entire simulation took only three weeks when using a surrogate model 

built with an artificial neural network to run the optimization. Simulation time to build the 

dataset was included in this estimate, running the optimization on its own only took 7 minutes 

[33]. 

Another important potential application for surrogate modelling is in guiding policy decisions 

for large scale retrofit projects or building energy codes [27]. Bottom-up surrogate models can 

be used to compare technology options and determine what energy reduction is possible. Top-

down models can be used for energy labelling and classification [15]. 

Westermann and Evins [9] identified a significant gap in the literature he reviewed. Of the 57 

papers, only a single paper had attempted to model multiple buildings to predict energy for a 

category of building types. Ascione et al. [13] created a model to estimate energy usage for 

office buildings in Italy and using artificial neural networks achieved an R2 between 0.96 to 

0.995 and a relative error between 2 to 11%. Although the number of floors and aspect ratio 

was modified, a basic rectangular shape was used for all models. Ascione et al. [13] proposed 
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that being able to model multiple building types would substantially improve the functionality 

of surrogate modelling. No research to date has attempted to develop a single surrogate model 

for multiple single-family houses using a bottom-up approach. 

 

2.1.7 Learning Algorithms 

The most common types of learning algorithms are multivariate regressions, followed by 

artificial neural networks [9]. Barnes[30] found that 19% of papers used artificial neural 

networks and 31% used multivariate regressions. Seyedzadeh et al. [12] found that artificial 

neural networks are one of the most common methods used in building energy surrogate 

modelling. Some other common algorithms include support vector machines (SVM)., random 

forest (RF) and multiple adaptive splines (MARS). Often the model intent informed the decision 

to use a particular model, and multivariate regressions were often favoured when 

interpretability of coefficients and sensitivity analysis was desired [9]. More flexible models 

such as artificial neural networks were chosen if prediction accuracy was the only 

consideration. Models can also be divided by classification and regression models; regression 

models predict a continuous output, whereas classification models are used to classify whether 

a building fits into a specific group using a binary output [9].  

Barnes[30] found that papers in which multiple learning algorithms were compared, 

hyperparameters selection was often not discussed or disclosed. Without tuning 

hyperparameters, the results of comparisons between learning algorithms are meaningless. 

Seyedzadeh et al. identified a need for a fair comparison between different machine learning 
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algorithms. The current research does not provide enough information on the structure of the 

model and whether hyperparameter tuning was used. If the proper structure is not determined, 

the performance of ANN models is not guaranteed [12].  

Multivariate Regression  

Multivariate regression is an extension of a simple linear equation and is commonly used in a 

range of applications, including statistical analysis. Instead of fitting a single input to an output 

(target variable) as in a simple univariate linear regression, in multivariate regression, the 

function is fit to a plane in multidimensional space by reducing the least-squares equation to a 

minimum. The basic multivariate regression equation is shown below. 

𝑦" = 𝛽% + 𝛽"𝑥" +⋯𝛽)𝑥) 

Artificial Neural Network 

Artificial Neural networks (ANN) are inspired by the architecture of neurons in the brain. The 

algorithm learns by iteratively re-adjusting weights in order to reduce the cost (error) function 

until a minimum value is achieved [34]. The basic structure of a feed-forward neural network 

can be seen in Figure 5.  
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Figure 5 Neural Network Structure 

 

Feed-forward neural networks (Multi-Layer Perceptron) are the most common types. A neural 

network consists of a set of input nodes (features) weights, one more hidden layers consisting 

of a number of hidden nodes, and one or more outputs nodes. The feedforward pass is shown 

in Figure 6. 
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Figure 6 Feed forward algorithm. 

Input features are multiplied by weights and then summed and transformed with an activation 

function before being fed to the next hidden layer or output node. [35],[36]. The result of a 

pass through the neural network is an estimate of the target value. This estimate is compared 

to the predicted value, and a cost(loss) function is used to compute the error. The neural 

network is trained through gradient descent in which the loss function is minimized. A 

feedforward neural network learns through a back-propagation algorithm. The slope of the 

error function with respect to each weight is calculated using partial derivatives and this value 

is used to update the original weight estimates through each backwards pass. The algorithm 

propagates back and forth and iteratively updates the weights until the loss function reaches a 

minimum. [35], [36] 

A rectified linear function is often used as an activation function. This function returns zero if 

the input is less than one, or else a continuous value. Different activation functions are used for 

different purposes; they are often used to map a continuous numerical value to a value 
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between 0 and 1 for classification purposes. If an activation function is not used on the output 

node, the neural network can be used to predict a continuous numerical output similar to a 

regression model.   

Many hyperparameters can be tuned in a neural network to improve performance. Without 

tuning hyperparameters in neural networks, high accuracy will not be likely [12]. Increasing the 

number of nodes in a hidden layer increases the complexity and flexibility of a model. This can 

lead to overfitting or underfitting. Some papers tuned the structure of the network, while 

others tested only one configuration. Very high prediction accuracy was possible in most cases 

with neural networks up to R2 of 0.99 [12]. Changing the number of “epochs” determines the 

number of times the full dataset is passed through the algorithm. One epoch is one full pass 

through the neural network. “Batch size” refers to how many samples are fed through the 

network in one pass in order to update weights. Modifying these parameters is critical to 

ensure that the model converges and does not become overfit to the data. [35] 

2.1.8 Evaluation Metrics 

Many different performance metrics are reported between studies. There is not one single 

accepted metric in the literature. Each has applications where they fit better than others. The 

best approach is to look at more than one to get a sense of how well a model is fitting.  

Barnes found that “mean absolute percent error” (MAPE), root mean squared error (RMSE)  

and “the coefficient of determination”( R2) were the most common performance metrics found 

in the papers that were reviewed, and that these metrics were used in 15%, 26%, and 26% of 

papers reviewed [30]. Westermann and Evins Most of these studies reported more than one 
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error metric to allow comparison to multiple studies. RMSE is a useful tool for tuning 

hyperparameters or selecting between features within a model, although popular this metric is 

not useful for comparing between studies because it requires the scale of the target variable to 

be the same.  

R2 allows for a comparison of the goodness of fit between different models and studies. This 

metric is a measure of the amount of variance in the target variable that can be explained by 

the model. R2 is a popular measure of the fit of the model to the data. Westermann and Evins 

[9] also found that R2 was one of the most commonly reported performance metrics. R2 will 

increase even with systemic error (all values are off by the same amount) or with a larger range 

of values being predicted, while average error may not improve. It will be easier to achieve high 

R2 in buildings with larger energy use ranges, so it is helpful to report an error estimate as well. 

[37] 

MAPE is a popular error metric because it measures the error as a percentage relative to the 

mean of the predicted result. MAPE can be used to compare between studies and has the 

advantage of being very simple and interpretable. This is important when considering a tool 

that may be used by non-practitioners who would not understand a metric such as RMSE or R2 

Acceptable error is difficult to quantify, given the limited number of studies that can be directly 

compared. If a comparison between studies is required, the papers would need to report the 

same metrics. In addition, the study would need to be looking at a similar-sized building in a 

similar climate zone. Ideally, the study would also need to report mean cross-validated 

performance metrics generated using the same learning algorithm. Westermann and Evins [9] 
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found that some regression models were able to achieve R2 higher than 0.95 and found 

prediction scores as low as 0.62, and in general, it is feasible to obtain R2 above 0.95.  

2.1.9 Preprocessing  

The relationship between the target variable and the input variables can often not be captured 

with a simple linear equation. Non-linear trends will introduce high bias to the model if a linear 

equation is used. Higher flexibility models can be used to capture non-linear trends, but these 

models often can often not be interpreted.  

A model can be transformed in order to fit the data more accurately, while still maintaining the 

underlying linear structure of a regression model. In some papers, the input or output features 

are transformed in order to improve the regression model to the underlying data structure.[9] 

Barnes [30] used a Box-Cox transformation to create a more normal relationship. The result 

ended up being a logarithmic transformation of the input and output features. Some common 

transformations include logarithmic, reciprocal and square root. 

Standardizing the input features is an important step that should be performed before the 

regression model is fit to ensure that the scale of the input features does not affect the fit of 

the model. Standardizing scales the input features to have a mean of 0 and a variance of 1, 

failing to standardize the results before running the regression will mean that the coefficients 

and their relationship between each other can not be interpreted. In regularized regression, 

this step is especially important because the scale of the variance and the input features will 

determine how the model is fit and which features are dropped [38]. Standardizing is not 

required for ordinary least squares regression, but failing to do so will mean that the coefficient 
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values cannot be compared to each other on the same scale [39]. Normalization is also 

sometimes used in regression. This means to scale inputs between 0 and 1. Although they mean 

different things, standardization and normalization are often used interchangeably. The mean 

of the input column is subtracted from each value and then divided by the standard deviation 

of the input column to standardize a dataset. 

𝑧 = +,-
.

  (1) 

2.1.10 Model Validation  

When creating a model, a dataset is split into a training and testing set. The model is fit on the 

training dataset and is validated using one or more performance metrics that measure how 

accurately this model can predict the target value in the testing set. A model must be chosen to 

minimize test error as opposed to training error. [38] 

• Training set: data split used to generate the model by fitting the relationship between 

the input and output features. 

• Validation set: Data split used to estimate error based on a hyperparameter value or 

addition of a feature. This split of data is used to make decisions on the structure of the 

model. Making models decisions using this set means that it is no longer an independent 

testing set, so validation accuracy is an optimistic estimate of the true error. 

• Test set: Independent Data split used to report the accuracy of the model developed 

with the training+validation set. [37] 
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 Training error only describes how well the model can predict based on data that it has already 

seen. A highly complex model such as a neural network may be able to fit a training set 

perfectly but will prove to be inaccurate when exposed to new data. Finding the right amount 

of complexity in order to predict accurately on the test set is referred to as the “bias-variance 

trade-off”[38]. 

 

Figure 7 Bias variance trade-off, a) underfit model b) a good fit c) overfitting 

  

Bias in a model refers to its complexity and how well it fits the training set. A low bias model is a 

complex model that minimizes training error. A low bias model may pick up on noise in the 

training data that does not follow the overall trend of the data; this example of overfitting can 

be seen in Figure 7. A high bias model is a simplistic model that has a higher training error and 

may miss some important trends in the data.  

A low variance model is a more simplistic model in which the difference between the testing 

and training scores is minimal; this model will be able to generalize well to new data. In a high 

variance model, the training error is a poor estimate of testing error, and often this occurs 

a) b) c)

Underfitting (High Bias, low variance) Good Fit (Balanced bias/variance) Overfitting (Low bias, high variance)
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when the model has low bias and therefore fits the training data too closely. When exposed to 

unseen data, the trends picked up in the training data are no longer present, and the error will 

be unpredictable. 

A dataset should be split into training, validation and test sets to allow model tuning without 

compromising the integrity of the accuracy estimate. The validation set is used to tune 

hyperparameters and select features, and the test set is used to report the accuracy. 

Hyperparameters and features should not be chosen on the same dataset with which the error 

is reported. Selecting the optimal set of parameters based on the test set is a form of training, 

meaning that the test set would no longer be independent. 

Resampling techniques such as cross-validation are commonly used to determine the mean and 

variance of the model that is more representative of the entire dataset instead of just one split 

of the data [38]. Using only a single split will not provide an accurate estimate of model 

prediction ability, especially with smaller datasets. 

Some common cross-validation techniques include bootstrapping and k-Fold cross-validation. In 

k-fold cross-validation, the dataset is sampled in k subsets; each subset is used as a validation 

set exactly once, and the remaining subsets are used to train the model. K-fold validation is less 

computationally demanding than bootstrapping and provides a reasonable estimate of model 

performance; five or ten splits are often used [38]. If feature selection and hyperparameter 

tuning is performed, a nested cross-validation approach should be used, different cross-

validation loops are required to report the accuracy and to tune the model [40]. An Inner cross-

validation step is performed on training+ validation sets to tune the model. an outer cross-
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validation step is used to vary the testing set [40]. No studies were found to employ nested 

cross-validation when hyperparameter tuning or feature selection was performed. Barnes [30] 

found that only 20% of the papers she investigated used cross-validation techniques. 

Westermann and Evins [9] did not mention cross-validation in the comprehensive review of the 

literature they conducted.   

 Barnes found that the number of samples and the proportion of training to test/validation sets 

varied between studies, and some studies did not perform analysis to determine if the sample 

size used was adequate given the number of inputs [30]. Hygh et al. [32] used regression and 

energy plus to predict the performance of buildings in various climate zones, 20000 samples 

were simulated initially. A sample size analysis was performed, which revealed that only 1000 

samples were sufficient to achieve the same level of accuracy for the building studied. Chen et 

al. [41] found that the RMSE and R2 stabilized in their analysis past 600 samples and that the 

number of input features was more significant at smaller sample sizes. Barnes[30] found that 

MAPE started to increase significantly only when the number of samples was dropped below 

1000.  

2.1.11 Sampling Methods 

When building a dataset, several common sampling techniques can be used. These techniques 

can be categorized as being either static or dynamic and can have a substantial effect on the 

accuracy of the model [42], [30]. Latin hypercube sampling creates a matrix of random space-

filling values between 0 and 1. A comprehensive analysis comparing performance with several 

sampling techniques has not been conducted. Westermann and Evins [9] found that the 
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majority of papers used Latin hypercube sampling, 81% used a static sampling technique 

compared to 19% that used an adaptive sampling technique.  

2.1.12 Preprocessing 

Features that cannot be described with continuous numerical ranges, or in which a linear 

relationship to the target variable is not expected can be modelled using categorical variables 

instead. 

There are several approaches to dealing with categorical variables, including “one-hot 

encoding” (dummy encoding) and “label encoding”. [43] [38]. When one-hot encoding is used, 

each option in a category feature is re-encoded into “dummy” binary features. 1 signals that an 

option is selected, a 0 signals that the option is not selected. An example of one-hot encoding is 

shown below in Table 1, the table on the left is the categorical variable pre dummy encoding, 

and the encoded version is shown on the right. 

Table 1 One hot encoding Example for Light Type 

  Light Type 

à 
 
à 

  Fluorescent Incandescent LED 
House 1 Fluorescent House 1 1 0 0 
House 2 Incandescent House 2 0 1 0 
House 3 Fluorescent House 3 1 0 0 
House 4 LED House 4 0 0 1 
House 5 LED House 5 0 0 1 
House 6 Incandescent House 6 0 1 0 
House 7 Fluorescent House 7 1 0 0 

 

When dummy variables are used, it is important to drop one of the features when used in 

unregularized regression. When using regularization steps such as lasso or ridge, all n options 

should be left in.[39] 
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Label encoding is another option for dealing with categorical variables. Label encoding replaces 

each option in a category with continuous numerical values, e.g. led=1, fluorescent =2, 

incandescent =3. The problem with this approach is that if the designer places a larger value to 

denote a certain option, the model will interpret this as 3>2>1 when this may not be the real 

relationship [38]. 

2.1.13 Collinearity 

When two or more features are highly correlated to each other, the result is collinearity. 

Collinearity does not affect accuracy, but the presence of collinearity means that there is more 

than one optimal solution to the linear equation. Collinearity will result in the inflation of the 

variance of the regression coefficients, which can make it challenging to interpret the 

coefficient values. Severe collinearity can even result in the signs of the estimated coefficients 

being reversed [39]. Additionally, if two collinear features are included in a model, if the model 

is trained on a dataset with a collinear relationship, it can not be expected to predict well on a 

dataset without the same collinearity structure [44]. 

A common method to address collinearity is pre-filtering to remove collinear features before 

training. Pearson correlation calculates the univariate pairwise relationships between each 

feature, a value between -1 to 1 is expected. A value above .7  is considered a cause for 

concern.  Variance inflation factor (VIF) is calculated by regressing each feature on all other 

input features in the model. The equation is shown below. A VIF value above 1 indicates some 

multicollinearity if the R2 value is close to 1, the VIF value will approach infinite. The VIF value 

represents the amount of inflation of the variance of coefficient estimates that can be expected 

for each feature [44].  
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𝑉𝐼𝐹2 =
1

1 − 𝑅62
 

The Pearson correlation on its own will often not be able to diagnose a multicollinearity 

problem. This occurs when a variable can be described by a combination of other features in 

the model. For example, volume may not have a strong correlation to any single feature 

(Pearson correlation greater than 0.7) but when regressed on width, depth and height, the VIF 

value can be almost infinite because most of the variability in volume can be explained by the 

other input features [44]. A filtering method such as VIF that addresses multivariate 

relationships is a much more robust tool for addressing collinearity than Pearson correlation 

that only addresses univariate relationships. A comprehensive linear algebra-based explanation 

of the cause of collinearity in regression models can be found in [45], this paper also confirms 

that Pearson correlation is not always effective on its own at addressing multicollinearity. 

The threshold in which VIF is considered a problem is somewhat arbitrary and depends on the 

purpose of the model. A value between 5 and 10 is often used as a threshold to determine 

what features can be included, 10 is considered the point in which there is problematic 

collinearity [44], [46], [47], [39]. 

Regularization to Address Collinearity 

Regularization is an embedded technique in which a penalty is added to the least-squares 

estimate. Ridge, elastic net and lasso are the most common regularization techniques. Ridge 

regression adds a squared value to the estimate, which reduces coefficients towards 0 but not 

to 0. Lasso regression adds an absolute penalty, which can shrink coefficients all the way to 0 

given a large enough choice of tuning parameter (l). Elastic net is a combination of ridge and 
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lasso that averages the two effects [38]. Adding a penalty to the estimate introduces bias, 

which pulls the coefficients towards 0. Adding bias will counter the large effect that an outlying 

data point can have on the least-squares estimate and the resulting coefficients. When features 

are almost fully collinear, there can be an infinite number of potential solutions planes and the 

variance will be very large.[48] The equations for ridge and lasso are shown in the equations 

below. 

Regularization is a popular way to remove collinearity in a set of features and has been shown 

to produce a more interpretable model than complex tools such as Principal component 

analysis in removing collinearity [44],[39]. 

2.1.14 Feature selection 

Often the base inputs used in a surrogate model do not predict the target variable well; in 

addition, often, the base inputs include features that do not have significance in predicting the 

target variable. Features may also be collinear, and in order to improve interpretability, some 

features could be dropped. 

The goal of feature selection is to include only useful predictors and remove irrelevant or 

redundant features. Feature selection methodologies can be categorized into filter, wrapper 

and embedded selection. Filter selection uses univariate rankings to determine the optimal 

features prior to training models. Wrapper selection uses trained models with subsets of 

features and compares performance metrics to select features. Embedded selection selects 

features with the learning algorithm Forward stepwise feature selection is a technique in which 
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features are tested iteratively by adding features from a list to the model one at a time and 

keeping only the feature that improves the accuracy the most. [49] 

Elastic net for Feature Selection 

Elastic Net and Lasso regression are popular tools to reduce collinearity and improve 

generalization ability. Regularized regression can also be used to select features. Lasso will 

perform continuous shrinkage of the coefficients and feature selection simultaneously. If two 

highly collinear features are included in a model, lasso will tend to drop one feature at random. 

Elastic net was developed to address the shortcomings of lasso regression. Elastic net tends to 

group collinear features and average the effect on the target variable instead of dropping one 

feature randomly [50]. The equations for ridge, lasso and elastic net are shown below  

𝑅𝑆𝑆 + 𝜆∑ 𝛽:6
;
:<" 			(ridge)  

𝑅𝑆𝑆 + 𝜆∑ ?𝛽:?	
;
:<" 			(lasso) 

𝑅𝑆𝑆 + 𝜆 @",A
6
∑ 𝛽:6
;
:<" + 𝛼 ∑ ?𝛽:?

;
:<" C   (elastic net) 

In the equation for elastic net, a is known as the L1 penalty coefficient. The L2 penalty 

coefficient is 1-a. When a is 0, the properties of elastic net are the same as ridge, and 

coefficients will be shrunk but not dropped all the way to 0. If a=1 elastic net functions as lasso 

regression, features will be shrunk all the way to 0.  

Forward Stepwise Feature Selection 

Currently, forward stepwise selection has some disadvantages. This tool will not always arrive 

at the most accurate model. In order to determine the true optimal combination of features, 
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every possible combination of features would need to be considered; this would be 

computationally limiting. Instead, forward stepwise tests features iteratively by adding them 

one at a time. Forward stepwise selection also traditionally does not address collinearity when 

adding new features to the model that may be linear combinations of other features in the 

model [39].  

Using stepwise selection Hygh et al. [32] improved the R2 of their regression model from 

between 0.859 to 0.977 to greater than 0.96, by increasing the number of features in the model 

from 27 to between 37-45. It is unclear whether features were selected independently from the 

test set, there was no mention of a validation set in the study, which would optimistically skew 

the reported accuracy. Significant collinearity issues due to the addition of features that were 

combinations of the original input features would be expected after the stepwise selection. 

There was no mention of this issue, which would affect the interpretability of the standardized 

regression coefficients used in a subsequent sensitivity analysis.  

Only one paper was found which integrated a multicollinearity threshold into the feature 

selection process. Vu et al. proposed a backwards stepwise methodology to select the optimal 

features for a regression model and address multicollinearity. In this study, climatic features 

were selected to estimate electricity use. All features were included in the model initially, and 

features were removed iteratively in order of highest collinearity, VIF was tested again after 

each feature was removed a backwards stepwise regression was then performed on the 

features that remained when the VIF for each feature fell below the threshold of 5. The 

backwards selection was then performed using hypothesis testing with a two-tailed p-value. 
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This methodology addresses multicollinearity effectively by running VIF calculations iteratively. 

[45] 

 A flaw in this approach is that features with high collinearity, in this case, would be removed 

first. These features are likely collinear because they capture the effects of the largest number 

of coefficients and, therefore, would have the most explanatory power. Using the methodology 

outlined above, features with the most substantial relationship to the target variable may be 

removed before the actual backwards stepwise selection begins.  

 

Barnes [30] used a novel combination of stepwise and lasso regression to select features. 

Forward stepwise selection was used to test linear combinations of the 71 original input 

features. Features were added in order of decreasing Pearson correlation. Features that 

improved the model were included, and the features used to generate these combined features 

were removed, in an attempt to reduce collinearity. This methodology reduced the number of 

features from 71 to 45 and improved the validation R2 from 0.9643 to 0.9710. Barnes [30] 

performed a lasso regression to remove any redundant features remaining in the model and 

further reduce the complexity of the final model.  Twenty additional features were removed 

without significantly affecting accuracy. A univariate correlation analysis was performed on the 

remaining features and found Pearson correlations up to 0.9 in the remaining features. The 

lasso regularization step would reduce collinearity, so a univariate analysis of the unregularized 

coefficients would not necessarily diagnose collinearity in this context.  The extent to which 
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collinearity is reduced through elastic net, lasso or ridge regression has not been studied in the 

context of building science surrogate modelling.  
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3 Methodology 

Phase 1: 

The general steps taken for phase 1 is outlined below. 

Steps: 

1. Prepare and obtain Research Ethics Board approval. 

2. Identify common century semi house types and geometry features in a defined 

neighbourhood in Toronto neighbourhood. 

3. Measure accessible features of selected houses (e.g.: width, height, window to wall 

ratio, roof shapes, number of floors.) 

4. Based on field measurements, model two new archetypes in EnergyPlus following the 

methodology proposed by Jermyn [3]. 

5. Using Data from Jermyn [3], field measurements and background research determine 

the range of feature values that will reasonably capture the population of century house 

configurations in Toronto (from baseline existing performance to passive house 

performance targets). 

An urban Toronto neighbourhood (“The Pocket”) east of downtown Toronto was targeted to 

develop two-storey semi archetypes. Jermyn Identified that finding willing homeowners to be 

included in the study as challenging. The community group in this targeted neighbourhood was 

already actively engaged in researching potential strategies to reduce the carbon footprint of 

their neighbourhood through targeted retrofitting strategies. The Pocket neighbourhood was 

designated by the City of Toronto as one of two “Community-Led projects on house 
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retrofitting” [51]. The presence of willing participants and a high density of two-storey semi 

archetypes made this an ideal neighbourhood to target for the field study.  

Two-storey semi houses made up 46% of single-family century house archetypes in surveyed 

neighbourhoods; for this reason, they were targeted by this study [3]. Google street view and 

observational study in the neighbourhood were used to identify house shapes that frequently 

appeared (more than ten times). These houses were recorded and grouped. Google Earth [52] 

has a 3d view that can be used to measure dimensions in 3 dimensions in order to get an 

estimate of the building geometry and define sub-groups. If homeowners agreed to participate 

in the study, a visit was set up to perform data collection. Houses were measured to determine 

whether preliminary groupings were accurate and determine the range of characteristics as 

outlined in Table 2. Occupants were contacted through door to door canvassing, and an email 

announcement from the pocket neighbourhood committee. A series of forms were created in 

order to record information, a set of standard dimensions were developed for each house in 

order to simplify the measurement of exterior dimensions and allow average baseline 

dimensions to be calculated once the data collection was finished. Only accessible building 

parameters were measured, roof dimensions estimated using laser measures from ground level 

and interior dimensions. Some houses had access to the attic, which allowed non-destructive 

exploration of the building envelope.  The methodology used to determine the baselines was 

based on an iterative approach of refining groups of houses into more specific sub-groups 

based on measurements of 18 houses and observational study. 

A description of the data collected is outlined in Table 2. 
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Table 2 General overview of data that was collected in the field study 

Geometry 

Building footprint 
Storey height 

Exterior Dimensions 
Glazing and doors dimensions and locations 

Floor plan and Dimensions 
Shading devices and overhangs 

Envelope 

Materials and material properties 

Window constructions including frame, divider, reveal, and sill 

Basement materials and material properties 

Wall and floor thickness 

Depth of wall below grade 

Height of wall above grade 

Internal Gains 

Types of major appliances 

Occupancy schedules more detailed (appliances and setpoints) 

HVAC 

Thermostat location 

Type of heating and cooling 
Furnace air conditioner efficiency and sizing 

Utility Data 
 

Standard dimensions that were recorded for each house type were organized in an excel 

spreadsheet. The data was organized and mean values were calculated for each dimension. 

Developing a set of standard dimensions to measure between houses was a critical step that 

simplified the process. 

A survey was developed to determine occupancy scheduling, and the results of this survey are 

reported in the appendix. A survey was also used to determine what were considered the 

biggest obstacles in conducting energy efficiency renovations, potential budget ranges, energy 
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savings goals, and what building characteristics, if any, should be preserved if retrofits were 

considered. The survey and the door to door letter are included in the appendix. 

Phase 2: Surrogate Modelling 

The general steps taken in phase 2 are outlined below. 

1. Develop synthetic dataset of 6000 total EnergyPlus models (.idfs) 

2. Run multivariate regression with 30 base input features. 

3. Develop 37 additional geometry features (volume, total surface area, house type) to test 

if better accuracy is possible with combinations of the base input features. 

4. Develop automated feature selection methodology with collinearity threshold to 

determine optimal set of features for high accuracy and interpretability. 

5. Use this methodology to develop surrogate models for each archetype and develop a 

single surrogate model for all four archetypes combined in to one model to answer the 

second research question.  

6. Answer the third research question by testing two alternative methodologies for the 

combined model. Test elastic net regression as an alternate learning algorithm/feature 

selection methodology. Test artificial neural networks as an alternate learning algorithm 

to achieve higher accuracy. 

In this research, the application of surrogate modelling was further developed and served to fill 

in gaps and add value to the existing body of work. The main objective of phase 2 was to 

investigate the use of a single surrogate model to predict energy for multiple archetypes and 

compare methodologies for feature selection and model development.  
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A novel approach to forward stepwise feature selection that addresses collinearity was 

developed. Using the stepwise feature selection methodology, a series of models were 

developed to investigate how surrogate models could be used to predict the energy use for a 

category of archetypes. An elastic net regression approach that is simpler to implement was 

compared to the stepwise approach for the combined model to see if one feature selection 

methodology offered clear advantages over the other. 

A preliminary analysis was carried out to investigate the application of artificial neural networks 

and compare the pros and cons of multivariate linear regression compared to a more complex 

learning algorithm based on accuracy and research objectives. 

The workflow for this thesis is laid out in Table 3.  The framework of this table is based on a 

helpful best-practice strategy proposed by Barnes [30] in which important model decisions and 

strategies are clearly reported to allow another researcher to quickly compare their model and 

assess the validity of their findings.   

Table 3 Surrogate model development methodology 

Da
ta

se
t D

ev
el

op
m

en
t 

Model Intent 
-Early stage design tool 
-Tool for optimization 
-Sensitivity analysis  

Target Variable -Total Annual Energy 

Building Archetype -Single-family Residential (4 archetypes, Including 2 Storey Semi 3 Storey 
Semi and 3 Storey Detached 

Location+Climate -2016 Toronto City Centre, Ontario, Canada – CWEC weather file [53]  

Energy Simulation 
Software -EnergyPlus v8.9 [54] 

Statistical Analysis And 
modelling tool -Python v 3.7.4 [55] 

Base model -Based on existing calibrated model, updated with IECC prototype models 

Features+Ranges -see  Table 4, Table 7, Table 9,  
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Sampling Plan -Latin Hypercube 
Da

ta
 P

re
pr

oc
es

sin
g  

Train/Validation/Test Split 
-kfold cross-validation (20% Test, 8% Validation, 72% Training), 10-fold inner 
loop, 5-fold outer loop 
- Used: sklearn.model_selection.KFold [56] 

Feature Engineering 
 -Input feature Standardization, mean of 0 standard deviation of 1  
-Used: sklearn.preprocessing.StandardScaler() [56] 
-Logarithmic Transformation of input and target variables 

M
od

el
 D

ev
el

op
m

en
t 

Feature Selection 
-Stepwise Selection, with VIF threshold of 5 to prevent collinearity 
-Elastic Net Regression 
 -Used: sklearn.linear_model.ElasticNet [56] 

Learning Algorithms  

 -Multivariate Regression  
Used: sklearn. linear_model.Linear_Regression() [56] 
-Elastic Net regression 
-Artificial Neural Network using: Kera’s and TensorFlow[57] 

Error Metrics 
-MAPE 
- R2 
-RMSE 

 

The three major components of surrogate model development include dataset development, 

data preprocessing and model development. Without a dataset, a surrogate model can not be 

created. The dataset provides the training examples from which the machine learning algorithm 

learns. The surrogate model Is only as robust as the base model used to develop the dataset so 

ensuring this model was built on correct assumptions was critical.  

Data preprocessing is an essential step in which the inputs and outputs are converted into a 

form that can be interpreted by the machine learning algorithm. Non-linearities in the results 

are addressed in this step by transforming the input feature or target variables if required.  

The training, validation and testing of the surrogate model occurs in the model development 

step. 
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3.1.1 Dataset Development   

Creating the dataset for this thesis followed the methodology shown in Figure 8.   

 

 

Figure 8 Dataset development methodology 

Determine input features 
and ranges

set of 6000 .idfs

Field Data 
Collection
& Research

Deveope baseline archetype and 
energy plus model

Generates Latin 
hypercube matrix of 
random values evenly 
distributed from 0-1

eppy.modeleditor
Reads CSV file containing randomized feature 
ranges for houses

Write script to automatically update energy -
plus .idfs using csv.

Generate 4x1500 .idf files representing the 
range of potential geometry and performance 
parameters

=40

Multiply each column in the latin 
hypercube matrix by its associated 
feature range. 

(min+ (random value*range)

Create matrix of input features

Import Input/target csv into python 
Develop surrogate model using 
scikit learn

Export input matrix 
to python as csv

Extract energy use data and 
append to input matrix to 
create csv containing an 
array of input features for 
6000 house samples with 
annual energy as the target 
variable

Run 6000 
.idfs

.idfs

results
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In order to create a dataset to train a machine learning algorithm, a set of 6000 EnergyPlus 

models (.idfs) were generated. Based on the findings of the literature review 500-1000 training 

examples are required per archetype model. To be safe 1500 .idfs were simulated for reach 

archetype . These energy models were generated based on a set of randomized input ranges 

that describe the design space that the surrogate model will cover. The only data that is 

required from each energy model is the set of input feature values and the total annual energy 

use. The total annual energy is the target variable. The surrogate model will be trained to use a 

set of input feature values to predict the target variable. 

The baseline energy models were developed based on the input values used by Jermyn [3]. 

These inputs are listed below in Table 4. These inputs are the characteristic values that describe 

the baseline archetypes, and these inputs were modified in phase 2 to produce the surrogate 

models.  
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Table 4 Baseline Energy model inputs adapted from Jermyn [3] 

  Semi Archetypes  Detached Archetype Reference: 

Roof Assembly 

Structure Double Wythe Birck Double Wythe Brick Blaszak and Richman [7] 

Cladding Brick Brick Jermyn and Richman [3] 

Insulation 
Ceiling (RSI) 2.64 2.64 

Blaszak and Richman [7] Walls (RSI) 1.01 1.01 

Foundation (RSI) 0.55 0.55 

Ceiling Assembly 
 Shingle Shingle 

Blaszak and Richman [7]  
 OSB OSB 
 100mm Fibreglass 100mm Fibreglass 
 Lath and Plaster Lath and Plaster 

Wall Assembly 
 Double Wythe Brick Double Wythe Brick 

Blaszak and Richman [7] 
 20mm Air Space 20mm Air Space 
 25mm Fibreglass 25mm Fibreglass 
 Lath and Plaster Lath and Plaster 

Foundation Assembly 
 Quadruple wythe Brick Quadruple wythe Brick Blaszak and Richman [7] 

Air Leakage (ACH 
50pa) 11.7 10.4 EcoEnergy Database [58] 

HVAC System 

Type Forced Air Gas Forced Air Gas 

Jermyn and Richman [3] Control Location Dining Room Dining Room 

Vent Flow Rate (m3/s) 1.3 1.3 

Internal Gains 

Lighting(w/m2) 1.9 and 3.07 1.9 and 3.07 Zirnhelt [18] 

Appliances Kitchen/Hot Water Kitchen/Hot Water 
Jermyn and Richman [3] 

Occupancy 4 people 4 people 

Framing Factor 

Exterior Wall (%) 31 31 Qasass et al. [59] 

Interior Wall (%) 15 15 Zirnhelt [18] 

Floor (%) 11.7 11.7 
Qasass et al.  [59] 

Roof (%) 8.6 8.6 
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For the surrogate model, 17 numerical features and four categorical features representing 13 

total options were chosen based on the inputs used by Jermyn [3]. The ranges for these 

features were designed to capture the existing observed baseline condition in the field all the 

way to a high-performance level (i.e. ‘passive house ready’ as defined by [3]). The sources for 

each range can be seen in Table 5, Table 6 and Table 7. Most of the ranges were selected based 

on past research on Toronto archetypes [3], [7]. The maximum and minimum measurements 

found across both the current and 2013 field studies were used to create the range of geometry 

values. Each geometry range was expanded by ±10%. The range of values was expanded to 

create a more inclusive range representative of the population of houses in Toronto, given the 

limited sample size available. 

Some features are best represented by options instead of numerical ranges or are unlikely to 

exhibit a linear monotonic relationship between input and target variables. In these cases, 

categorical features can be used instead of continuous numeric features. Orientation is an 

example of a feature that will likely not have a linear relationship to energy use throughout a 

range from 0 to 360. 

Regression models can only interpret numeric inputs, so One-hot encoding was used to convert 

categorical features into individual columns with binary values for each option. In the 

multivariate regression 1 option was dropped to eliminate collinearity, the option that is 

droppedd is considered the baseline with which the other options are compared. All options 

are included in elastic net regression.  
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Categorical features are listed in Table 5. 

 

Table 5 Categorical Features 

Category Options 

Light Type Incandescent, Fluorescent, LED 

HRV Efficiency 0,60,85,90 
Orientation Azimuth 343/0, 73/90, 153/180, 253/270) 

Neighbouring House Distance 1m , 10m  

 

EnergyPlus v8.9 [54] was used as the building simulation engine to generate samples.  The 

energy plus inputs for each light type are shown in Table 6. The radiant and convective fractions 

of heat gain were adjusted based on the light type used. These inputs are necessary because 

the effect of the choice on heating and cooling demand should be considered in addition to the 

effect on electricity demand. It is not clear if these values were changed in other studies. 

Table 6 Lighting Inputs 

 Incandescent Fluorescent LED Source: 

Light Intensity (up/downstairs) 1.94/3.07 w/m2 0.605/0.958 w/m2 0.314/0.498 w/m2  

Fraction Radiant 0.73 0.37 0 [60] 

Fraction Convective 0.8 0.21 0.25  

 

The ventilation rate was set based on the ASHRAE 62.2 Standard for each house [61], shown in 

the equation below, where Q total is the total mechanical ventilation, Qfan is the amount of 

required mechanical ventilation in L/s after the infiltration credit is calculated based on the air 

changes of the house. The infiltration credit Qinf can not be more than 2/3 of Qtot.  Aext is the 

ratio of exterior surface area to the shared area (attached garage, semi-detached etc..). A value 

of 1 is used for Aext in detached houses.  
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𝑄EFE = 0.15 ∗ 𝐹𝑙𝑜𝑜𝑟	𝐴𝑟𝑒𝑎 + 3.5 ∗ (𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐵𝑒𝑑𝑟𝑜𝑜𝑚𝑠 + 1) 

𝑄[\) = 𝑄EFE − ]𝑄^)[ ∗ 𝐴_+E` 

 

Houses with lower ACH50 values will have a higher requirement for mechanical ventilation, so 

the model must capture this effect. When running regressions, this meant that ventilation and 

various features such as volume were very highly correlated. The mechanical ventilation rate 

was normalized by the building footprint to eliminate collinearity.   

The ranges of input features for numerical features are shown in Table 7.  

Table 7 Base energy plus inputs 

    Final Range     

Feature: Unit Min Max Max-Min Source: 

Depth m 8.035 17.265 9.23 

Field Study 
and  [3] 

Width m 3.6365 7.0335 3.40 

Above Grade Foundation Height m 0.6 1.3425 0.74 

Below Grade Foundation Height m 0.8 1.93 ` 

Ceiling Height Average m 2.1 3.255 1.16 

WWR Left/Right Side ratio 0.003 0.138 0.13 

WWR Front ratio 0.008 0.265 0.26 

WWR Back ratio 0.008 0.265 0.26 

Window U-Factor w/m2k .125* 1* .875 Field Study 
and [62], 

[3] SHGC none 0.200 0.700 0.50 

R-Value Slab m2K/W 0.208 6 5.79 

Field Study 
and [3], [19] 

R-Value Basement  m2K/W 0.706 10 9.29 

R-Value Wall m2K/W 0.652 10 9.35 

R-Value Roof m2K/W 0.479 14 13.52 

Air Changes per Hour ACH 1 21.77 20.77 [63] 

Furnace Coil Efficiency % 0.692 0.98 0.29 Field Study 
and [3] COP Air Conditioning COP 2.05 5 2.95 

*The U-factor range should be 0.7 to 2.7 the range used is unrealistically low due to an error in unit conversion.  
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Most of these values are taken from the current field study and the field study conducted by 

Jermyn for a total of 35 houses from which to build the ranges. The same ranges were used for 

each house type. Using the same ranges allowed for comparison between models. The data 

collected for each individual archetype was not considered sufficient to estimate the true range 

accurately, so the range developed from the much larger set of all archetypes measured was 

used for each archetype individually. The maximum air changes per hour value represents the 

95th percentile of the values found in the EcoEnergy Database for single-family homes built pre 

1940 [58]. 

In order to develop the dataset, a matrix of random values was required to create a 

corresponding matrix of input feature values. MATLAB’s lhsdesign [64] sampling was used to 

generate a latin hypercube matrix of 1500x22 randomized values covering a range from 0 to 1. 

Each column of the latin hypercube matrix was used to generate a set of random feature values 

for a single feature. Each element in the column was multiplied by the range(max-min) and 

then added to the minimum value. Each row of the resulting matrix represents a single house 

example based on a set of randomized building features. This step was repeated four times to 

create four csv files; containing 1500 training examples representing four house types. 

Table 8 Dataset development using Latin hypercube sampling 

  Column 1 Column 2 Column 3 Column 4 … Column 
21 

Row 1 0.9502 0.7208 0.5973 0.7063  0.7703 

Row 2 0.6284 0.7032 0.3816 0.9435  0.6087 

Row 3 0.7733 0.3287 0.0370 0.4914  0.9890 

… 
Row 1500 0.2981 0.4544 0.9825 0.8835  0.3642 

Latin Hypercube Sample * (max -min)+min 
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  Depth Width WWR 
Front RSI Exterior Wall … RSI Roof 

min 8.035 3.637 0.008 0.652  0.479 

range(max-min) 9.230 3.397 0.256 9.348  13.521 

Output dataset of feature randomized house examples 

  Depth Width WWR 
Front RSI Exterior Wall … RSI Roof 

House 1 16.8057 6.0852 0.1614 7.2549  10.8936 

House 2 13.8350 6.0254 0.1062 9.4716  8.7092 

House 3 15.1725 4.7530 0.0178 5.2454  13.8515 

… 
House 1500 10.7860 5.1802 0.2602 8.9111  5.4031 

 

Figure 9 shows the distribution of some of the base feature inputs that were generated using 

latin hypercube sampling, note the even distribution of values throughout the range. 

 

Figure 9 Distribution of features generated with latin hypercube sampling 

 

The geometry of the baseline house models was modelled using an Openstudio [65] plugin for  

Sketchup [66] this geometry was exported into Input data file (.idf)  form to be read directly in 
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EnergyPlus. The rest of the energy modelling was conducted with EnergyPlus directly, 

Openstudio was only used to create the geometry of the baseline archetypes.  

Using the eppy.modeleditor [67] package in Python, a script was developed to automatically 

modify the baseline energy plus .idfs based on the input feature matrix values. Modifying most 

EnergyPlus objects was very simple, but modifying geometry objects was quite complicated. 

Creating a set of 6000 .idf files was one of the most challenging and time-consuming portions of 

the research. Four different geometries with more than 100 coordinates and complicated 

shapes were modified. A small sample of the code used to modify geometry can be found in the 

appendix. 

A range of sizes from small to large and a range of aspect ratios were used for each archetype. 

Multiple geometries were modelled to make the archetype model more reflective of the 

Toronto housing stock. The existing baseline archetypes were confined within the scope of the 

neighbourhood that was targeted during the field study. The existing baseline archetype 

approach uses only one house size per archetype. There is a range of house sizes within an 

archetype, and one size will not necessarily describe every house if optimizations are 

performed. A range of house sizes for each different archetype helps to address the small 

sample size used to determine the baseline model for each archetype, and expand the 

application of the current bottom-up archetype approach in Toronto. The same range of length, 

widths and heights were used for each archetype. Although the “small” and “large” two-storey 

semi archetypes had slightly different average baseline geometries, the difference was small, 

and the sample size was also small. The small and large labels are representative only of the 



51 
 

baseline energy model, not the surrogate model. The same size range was used to enable 

horizontal comparison between archetypes. 

Modifying 6000 energy plus .idfs by hand would have been unfeasible, therefore writing a script 

to do this automatically was required. The script had to apply to four distinct house shapes so a 

script that could work on almost any house type shape was developed. In order to simplify the 

process of modifying house geometry, all proportions on the x, y and z axes were kept constant 

and multiplied by a factor based on the depth, width and height respectively. The house is 

essentially stretched in the x, y and z axes. This created a range of aspect ratios.  

  House a) House b) 
Width (m)  6.19 4.44 

Ceiling Height (m)  3.08 2.69 
Depth (m)  17.25 8.48 

Above Grade Foundation Height (m)  0.81 1.11 
Below Grade Foundation Height (m)  1.01 1.39 

 

Figure 10 shows an example of two different small century semi samples used for training the 

surrogate model.  
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  House a) House b) 
Width (m)  6.19 4.44 

Ceiling Height (m)  3.08 2.69 
Depth (m)  17.25 8.48 

Above Grade Foundation Height (m)  0.81 1.11 
Below Grade Foundation Height (m)  1.01 1.39 

 

Figure 10 Geometry modification example showing two differently sized house models used as training examples 

The above examples show the geometry features that are modified for each training example. 

House a) is an example of a house with a larger footprint, house b) is an example of a house 

with a smaller geometry footprint. The width, ceiling height and depth parameters change the 

proportions of the house. The base geometric proportions on each axis are maintained. An 

example is that the length of the attic space in relation to the depth stays the same in both 

houses while the depth changes. The height of the attic space in relation to ceiling height stays 

constant between houses but the ceiling height changes. Width, ceiling height, depth, and 
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above and below grade foundation heights vary independently in each house example. The 

window to wall ratio also changes independently between houses. 

Once the script was created, 6000 .idfs were generated based on the randomized feature 

matrix. The process of generating the full set of .idf files took less than a minute. The .idf files 

were split into four batches and run simultaneously by assigning each batch to one of the 

available CPUs. A script was written to extract the annual energy data from each output file. 

Each .idf file generated represents a single sample, the inputs used to generate the .idf are the 

features, and the target variable is the energy use. 

3.1.2 Preprocessing  

Based on best practices for model development recommended in [38],  the dataset was split 

into training, validation and test sets for model development. The training set was used to train 

the model; the validation set was used to tune hyperparameters and select features, and the 

test set was used to test the model and report the accuracy.  

Train/Validation/Test Splits 

Nested Kfold cross-validation was implemented with sklearn.model_selection.KFold [56] Nested 

cross-validation was used because one of the objectives of this research was to see if a 

generalized combined model can achieve the same accuracy as individual models. Mean 

prediction accuracy offers a better comparison point than a single estimate of accuracy. Nested 

cross-validation refers to the use of an inner cross-validation loop within an outer cross-

validation loop. Nested provides a mean test accuracy for a model and offers insights into the 
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model. As an example, the stability of the selected model can be determined by comparing the 

models selected between different splits.  

The entire dataset was split into five equal subsets using 5-fold cross-validation. One subset was 

used as the test set, and the remaining subsets were used for training/validation. Each of these 

subsets is referred to as an outer fold. The outer 5-fold cross-validation split determines the 

test set and training/validation sets. In each outer fold, the training/validation set refers to the 

remaining four folds of the data that do not include the test set. 

For each outer cross-validation fold, an inner cross-validation was performed with the 

training/validation by splitting this set into ten equal subsets with 10-fold cross-validation. Each 

of these subsets was used exactly once as the validation set while the other subsets were used 

for training. Once the optimal set of hyperparameters was chosen, the model was retrained 

using all the data in the training/validation set and evaluated on the test set. Including the data 

from the validation set in the training set increases the number of training examples the model 

sees and will improve the accuracy of the model when tested on the independent test set. This 

inner cross-validation is performed for each fold of the outer cross-validation loop. 
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 The cross-validation methodology used in this research is explained further in Figure 11. 

 

Figure 11 Nested cross-validation methodology. 

 

The result of nested cross-validation is five different models, as different features and 

hyperparameters can be chosen within the inner loops for each outer loop. Multiple splits allow 

for the mean test scores to be estimated. Test scores generated from one split might be an 

optimistic estimate of true test scores, so training on multiple splits was required. The model 

was fully retrained, and stepwise feature selection was performed for each outer loop.  

x 10 (Each split is used as validation set once)
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Train model on training set, select features and tune 
Hyperparameters using mean scores calculated on 
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Re-train model on train+ 
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or features. 
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using test set

Inner Loop (Train+Validation)

Outer Loop (Full Dataset)

Test

x 5 (Each split is used as test set once)

Output: 
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MAPE, RMSE)
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When the same features or hyperparameters were selected in each outer fold, the model was 

considered stable. If the selected model varied substantially between outer cross-validation 

loops, this was a sign that more samples were required. Unstable model can be difficult to 

interpret because the features or hyperparameters selected differ based on the split of data 

selected for training. 

Feature engineering 

Four different transformations (“non-transformed”, “reciprocal”, “logarithmic” and “square 

root”) were applied to the input and output features to determine what transformation would 

result in the best fit to the validation set Testing all potential combinations of these 

transformations to the input and output features resulted in 16 unique combinations of 

input/output feature transformations. The mean cross-validation R2 scores were used to 

compare the accuracy and select the best model.  

Input features were standardized so that the feature values had a mean of zero and a standard 

deviation of one, using sklearn.preprocessing.StandardScaler() [56] . Standardizing the data is 

an important step that puts the features on the same scale and allows for sensitivity analysis 

using the feature coefficients. Standardizing is also required if regularization is used [38]. 

The mean and standard deviation both contain information about the test set. When the 

dataset is split, the test set can no longer be considered a set of unseen samples because the 

mean and standard deviation have been used to standardize the dataset. The standardization 

step should occur within each split of the cross-validation to avoid data leakage. 



57 
 

A script was written with the help of sklearn.Pipeline [56] to simultaneously perform the 

required preprocessing steps on the categorical and numerical features and then fit the data to 

the desired estimator, with less risk for accidental data leakage. 

3.1.3 Creating Features for the combined model. 

No research could be found on the development of features for use across multiple building 

types. Using a single model for multiple houses adds a level of complexity to determining 

features to investigate. The same set of features may not be defined in each house type. 

Often the base inputs on their own do not yield high enough accuracy, combining features to 

create new inputs can result in an improvement to model performance. A set of 37 additional 

geometry features was created to find features that can be used to predict energy use more 

accurately than the base feature inputs on their own.  For example, instead of window to wall 

ratio, window area was investigated in addition to window area per orientation. In total, 

including the base feature inputs 45 geometry feature options were considered. Additional 

features values were calculated during the creation of the dataset with eppy. These features 

are not just simple combinations of input features due to the geometry of the houses and the 

way the dataset was developed.  

The goal when creating features was to describe the geometry in multiple ways individually and 

then in increasing levels of generalization. As an example, depth or height are more specific, 

above-ground wall area, and volume are more general geometry features.  

The distribution of numeric feature values across house types is an issue that was not 

anticipated. Input features should either be continuous numeric values or categorical features. 
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Combining these two can create a complex problem. Examples of semi-continuous features 

include some Exposed Wall Area features. In semi houses, the right side of the house is a 

shared wall (party wall) that is not exposed to the outdoors, so the area will be 0. In detached 

houses, this wall will be defined as a continuous numeric value determined by the range. In 

order to include semi-continuous features in the combined model, the effect of combining the 

wall areas on both sides of the house was investigated as a way to produce a continuous input 

out of two semi-continuous inputs. Although these features could be excluded to eliminate any 

issues with these features, this would mean that geometry features would not capture the 

effect of the additional exposed wall in the case of the detached house. Because combining 

semi-continuous features created continuous features, these features were included in the 

combined model. 

Some features, such as wall front area and wall back area, were almost completely collinear in 

some archetypes. Adding these highly collinear features together created continuous input 

features that did not have strong collinearity to each other. Window to wall ratios were set to 

be different for each side of the house, as there was no risk of collinearity within window 

features. 

Orientation originally included eight categorical inputs in order to describe 0, 90, 180 and 270 

degrees in addition to 343, 73, 163 and 253 degrees in order to capture the tilt of Toronto’s grid 

17 degrees west from true north. The 17-degree tilt did not significantly change the energy use 

compared to a north aligned grid, so 343 and 0 degrees were grouped into a feature called 

“North”, 90 and 73 degrees were called “East”. South and west were created in the same way. 

The reference orientation is shown below in Figure 12. 
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Figure 12 Reference building orientation 

 

Several different subsets of features were included in the stepwise feature selection analysis 

depending on the subset of archetypes being investigated. In Table 9 the features options that 

are included for the feature selection analysis in all the archetype subsets (semi, detached and 

combined) are shown. The + refers to two features being added together in a linear 

combination in order to address collinearity or non-continuous behaviour. 

 

Table 9 Feature options considered in stepwise regression, for all archetype subsets. 

Semi, Detached and Combined  

Base Features Lengths/Heights Combined Wall Areas Generalized Geometry Descriptors 

U-factor Windows Depth Window Area North + South Roof Area 

Solar Heat Gain Coefficient Width Window Area East + West Total Exposed Wall Area 

 RSI Slab Above Grade Foundation 
Height Wall Area North + South Below Ground Foundation Area 

Front

Back

Right Side 
(Party wall 
for Semi)

Left Side

North 
(Reference)

Front
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 RSI Foundation Wall Below Grade Foundation 
Height Wall Area East + West Slab Area 

RSI Exterior Wall Building Height Window Side Area Left + Right Total Below Ground Area 

RSI Roof Ceiling Height Floors 1,2 Wall Side Area Left + Right Conditioned Volume 

Air Changes per Hour   Wall Front + Back Area Surface to Volume Ratio 

Furnace Coil Efficiency     Total Exposed Surface Area 

COP Cooling      Above Ground Exposed Surface Area 
Light Type (LED, Incandescent, 

Fluorescent)  
  

    Conditioned Floor Area 

HRV Efficiency 
(0%,60%,85%,90%) 

  
      

Orientation (North, East, South, 
West) 

  
      

Neighbouring House Distance 
(1m, 10m)       

 

The above features are subdivided into columns based on their descriptions. The features that 

are only included in a specific subset of archetypes are grouped in Table 10. 

Table 10 Feature options that are only included in a single subset of archetypes. 

Semi and Detached Only Detached Only Combined Only 

Window Side Area Left Window Side Area Right Number of Conditioned Floors (Two storey, Three-storey) 

Window Front Area Wall Side Area Right House Type (Semi, Detached) 

Window Back Area WWR Right Side   

Wall Side Area Left North Window Area   

Wall Back Area East Window Area   

Wall Front Area South Window Area   

WWR Front West Window Area   

WWR Side Left North Wall Area   

WWR Back East Wall Area   

Wall Front + Back Area South Wall Area   

  West Wall Area   

 

Base features are the original inputs to the model that are not related to geometry. These 

features were not included in the feature selection process because they do not have 

collinearity issues or geometry components.  



61 
 

Semi Feature Set 

Semi-Detached Houses did not include any features that described the right side of the house 

on its own. The right side of the house is a party wall. This means the features describing this 

wall will not be defined, individual wall areas defined by orientation could not be included 

because when the party wall is facing a direction, the area at that orientation will be zero. 

Combined areas and combined orientation areas were included because these features did not 

include any 0 values. 

Detached Houses Feature Set 

All features were defined for detached houses because they have no shared walls. Categorical 

features describing the number of floors and type of house were not included because these 

options only apply to the combined dataset.  

Combined Dataset Feature Set 

The combined Dataset contains a mix of two and three-storey semi-detached and three-storey 

detached houses. Features describing specific walls of the house were not included because 

different walls of the houses are defined between detached and semi-detached houses. Only 

generalized geometry terms and combined terms were included in the model in order to 

answer the question of how a generalized model can be used to describe the housing stock. 

In addition, the features chosen for the combined model are features that are general enough 

that they can be defined in all future archetypes considered. 

The stepwise regression approach that will be used to select the features listed above is 

outlined in the following section. 
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Stepwise Multivariate regression  

Some preliminary work has been conducted by Barnes [30] and Vu et al. [45] to develop a 

feature selection methodology using stepwise and lasso regression. An opportunity to add 

value to these existing methodologies is proposed through streamlining and simplifying the 

process, investigating collinearity in more depth, and addressing potential shortcomings. A 

stepwise selection process was developed. Elastic net was also used to create a model to 

compare the two feature selection methodologies and identify the pros and cons.  

One of the issues in stepwise regression is that collinearity issues are not addressed or can be 

worsened [44]. Barnes addressed this issue by removing features that were known as linear 

combinations of other inputs in the model. Later in the process, univariate correlations were 

examined, and issues collinearity was detected still. This suggests that a more thorough analysis 

of collinearity should be addressed if stepwise is used. 

 A novel approach was developed to add a VIF threshold to a forward stepwise selection 

process. Often features are removed by filtering based on a VIF threshold prior to running a 

regression. In the case of a building energy model, combinations of geometry features will all 

be highly correlated because they can be calculated using linear combinations of other 

features. The challenge is determining which combination of features will improve the model 

performance without inflating collinearity to the point that the model can no longer be 

interpreted.  

An opportunity to improve the methodology proposed by Vu et al. [45] was identified. This 

methodology looked at one rule at a time to select features, VIF value was targeted until a 
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threshold was reached, and then p values were used to test significance. By removing features 

by the highest VIF value, this process likely inadvertently removed features in order of the 

strength of their relationship to the target variable [45].  

Using forward stepwise selection and testing if each feature was below a VIF threshold of 5 as it 

was added eliminated the issues identified in the methodology proposed by [45]. In this 

approach, features that would have been removed first due to collinearity are instead added to 

the model first because they showed the strongest correlation to the target variable. 

During forward stepwise selection a base subset of original input features that were highly 

correlated to the target variable and not correlated to any other features by design were set as 

the base inputs to simplify the modelling process. Instead of starting with 0 features in the 

model, the feature selection process started with these base features already selected. During 

preliminary analysis, these features were always selected, so this simplification was justified. 

These features are identified in the first column in Table 9. 

Forward Stepwise selection was performed by creating a script that iterates through a list of 

feature options. Each feature is added to the base features to create a new intermediate subset 

of input features. The VIF score for each feature in the new subset is calculated by regressing 

each feature on all other features. The amount of multicollinearity at each step is calculated. 

The VIF value is dependent on the features included in the model so it must be done for each 

subset, and not in a filtering step before. If any VIF score is above the threshold when a feature 

is tested, that feature is not selected, and the next feature is tested. If the VIF criteria is met, 

this feature is added to the base set of features, and it is trained and validated using 10-fold 
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cross-validation. If the feature decreases the cross-validation error, then the feature is marked 

as the top option; each feature in the list is tested in the same way, and the feature that 

provides the most substantial reduction to the cross-validation error is kept. The feature that is 

kept is removed from the list of options and added to the base feature list to create a new set 

of base features. The remaining options are rerun through the process until the validation 

accuracy stops improving, or the VIF threshold is too high to include new features. The 

proposed methodology is explained in Figure 13. 

 

Figure 13 Proposed forward stepwise feature selection methodology 

Run loop again 
Test remaining features

Feature 1
Feature 2
 ...
Feature n

for i in n:
Base Features =Base features +Feature i

Base Features

Calculate VIF for test subset

Test

Back to start
Test next Feature (i=i+1)

Run regression
Calculate 10 fold cross validation 
error (RMSE)

Min RMSE=RMSE 
Best Feature = Feature i

VIF<5VIF>5

RMSE > Min RMSE RMSE < Min RMSE

Back to start
Test next feature (i=i+1)

Add best feature to base feature list 
Remove best feature from Feature Options

End of Feature Options i=n

Back to start
Test next feature (i=i+1)

i != n

RMSE has decreased
Stepwise Complete

RMSE has stopped decreasing

U factor Windows / Solar Heat Gain Coefficient / RSI 
Slab / RSI Foundation Wall / RSI Exterior Wall / RSI Roof 
/ Air Changes per Hour / Furnace Coil Efficiency / COP 
Cooling / Light Type / HRV efficiency / Orientation

Feature Options

Feature i
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Nine different models were developed with stepwise regression in order to model and predict 

the target output for different subsets of the data. For each experiment, a model was trained 

using the stepwise methodology for each outer cross-validation split using the methodology 

outline. In total, 45 different models (9 models using 5-fold cross-validation) were created. 

The first set of models was developed to predict energy use for each individual archetype, 

resulting in four models. The 1500 samples for each house were divided up into multiple testing 

training and validation sets as per the cross-validation methodology.  Mean prediction scores 

for each house were recorded in order to be able to compare the accuracy between models. 

The Feature options used in stepwise selection for each house are listed in Table 9 and Table 

10. The methodology used to develop the archetype specific models is outlined in Figure 14. 

  

Figure 14 Training stepwise regression models on individual archetypes. 

The datasets for each house type were merged to form a combined dataset representative of 

four archetypes. This dataset of 6000 houses was used to train and evaluate a new model. The 

feature options used for the combined model included only the generalized geometry 

Three-Storey Semi Small Two-Storey SemiLarge Two-Storey Semi Detached

x x x x

Develop and test four individual models using a subset of 1500 training examples representing each archetype

INDIVIDUAL ARCHETYPE MODELS

=10 Houses Training Validation Test
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descriptors than for individual house archetypes because many features did not have 

continuous values when looking at multiple archetypes together. The set of starting features is 

listed in Table 9 and Table 10. The test set of 1200 samples was split into four parts in order to 

create a test subset composed of each archetype. Accuracy was calculated for each subset and 

on the entire subset. The combined model methodology is outlined in Figure 15. 

 

Figure 15 Training a model on combined dataset including all four archetypes. 

 

The third set of models were developed to determine how well a model might predict on an 

unseen archetype. Creating a base energy model representative of every potential house 

geometry is not feasible, so the performance of a model, when tested on an archetype with a 

different geometry than it has been trained on, was investigated. For each model, three 

archetypes were used to train the model and perform the stepwise selection. The fourth 

archetype is used as a test set for the model that was developed. Nested cross-validation was 

Three-Storey Semi Small Two-Storey SemiLarge Two-Storey Semi Detached

x

Develop and test a model representing all four archetypes by merging the subset of 
training examples from all the archetypes into one combined dataset

Divide the test set into subsets for each archetype to determine the 
accuracy for each house type with the combined model

COMBINED MODEL

=10 Houses Training Validation Test
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used to determine the mean prediction scores. The same set of feature options that were used 

for the combined model was used in the stepwise selection for each group of houses. The effect 

of the House Type category was also investigated to see if including house type (semi or 

detached) increased the accuracy, if not, this would suggest that the difference between house 

types can be captured entirely by generalized geometry features. The unseen archetype tests to 

test the generalization ability of the model are described in Figure 16. 

 

Figure 16 Unseen archetype tests to estimate generalization performance. 

Figure 16 shows one out of four models that will be developed during the unseen archetype 

tests. Each archetype will be used as the test set once for a model trained on the remaining 

archetypes. 

Embedded feature selection 

Elastic net regression on its own as a feature selection tool on a large set of collinear features 

has not been investigated in the literature. Elastic net helps reduce variance in the model by 

Three-Storey Semi Small Two-Storey SemiLarge Two-Storey Semi Detached

x

Develop four more models using training examples from three archetypes and a test set 
composed of the fourth archetype. Each archetype will be excluded from the training 

examples and used as a hold out test set once

x

UNSEEN ARCHETYPE MODELS

=10 Houses Training Validation Test
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introducing bias, which will help reduce generalization error. Elastic net is designed to reduce 

collinearity through shrinkage of the coefficient estimates and elimination of some collinear 

features [68]. Elastic net combines the behaviour of ridge and lasso regression. The L1 

parameter determines how elastic net behaves. The L1 value falls between 0 and 1. 0 

corresponds to ridge regression, and 1 corresponds to lasso regression. The tendency of lasso 

regression to drop collinear features randomly was not desired, so a range of L1 values were 

tested to determine the optimal characteristics. The choice of L1 parameter depends on the 

application. It is more important to determine the optimal tuning parameter value. A sparser 

model was desired; therefore, L1 values of 0.5, 0.65, 0.8, 0.95 were tested. The model was run 

with a range of l from 0.0001 to .1 for each l1 value. Plotting the prediction scores compared to 

the number of features is used to determine the desired tuning optimal tuning parameter value 

by finding the point at which prediction accuracy starts rapidly decreasing. This graph shows 

what potential accuracy is possible based on the number of coefficients to enable comparison 

to the stepwise model. The elastic net model was compared to the stepwise model based on 

the stability of the predicted coefficients and the number of features that are included in both 

models at the same accuracy.  

To compare the stability of coefficients between the model’s, the standard deviation of 

coefficient estimates were compared between the stepwise and elastic net regressions. The 

elastic net regression shrinks the absolute value of coefficients so the standard deviation will be 

different between the two models. In order to allow a comparison of coefficient stability on a 

relative scale, the coefficients were plotted with standard deviation as an error bar for each 

coefficient estimate. This allows a comparison of the magnitude of the coefficients relative to 
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the amount of deviation and helps diagnose the possibility for changes in the relative 

importance of features based on the range of potential estimates.  

Artificial Neural Networks 

The primary focus of this research is to develop a simple and interpretable model to predict 

energy usage for single-family houses. If interpretability is not a concern, it is helpful to know if 

a black-box approach could fit the data better and whether future research should take this 

approach. Current research suggests that accuracy can be higher when using an artificial neural 

network  (ANN) model, especially if non-linearity exists in the data [12].  A preliminary analysis 

was carried out to determine what level of accuracy can be achieved using ANN.  TensorFlow  

[69]and Keras [70] were used to develop an artificial neural network, perform the analysis and 

build the architecture of the network. Tuning an ANN model is crucial to develop an acceptable 

accuracy and prevent overfitting [12]. Several important hyperparameters define the structure 

of an ANN and how it learns. The number of epochs which defines how many times the weights 

are estimated through backpropagation was selecting by adding a callback which stopped the 

training process when the validation accuracy stopped improving. The average number of 

epochs in which the model converged was used as the input for a model trained on the training 

and validation set and evaluate on the test set.  Batch size, which defines how many samples 

are used before weights are updated, was set to 80 based on trial and error. Most researchers 

have only used one hidden layer and were able to achieve high accuracy without serious 

overfitting problems that can arise when multiple hidden layers are added. Seven different 

hidden node configurations were tested using cross-validation to determine where the 

validation scores reached a minimum, and the validation error started increasing. The residuals 
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and predicted vs. actual energy use plot and performance metrics were used to compare the fit 

of the ANN to the fit of the models generated with regression techniques.  
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4  Results and discussion 

Phase 1 field research and energy modelling baselines 

The results of phase 1 are summarized in this section. Phase 1 included:  

• the results of a field study conducted in an urban Toronto neighbourhood 

•  the creation of new baseline energy models and updates to existing models 

• Development of ranges 

• Dataset development  

4.1.1 Data Collection and Determining Archetypes 

Collecting data from houses and determining baselines was conducted in 2019. Eighteen 

houses were measured, 13 of these were used directly to determine ranges for baselines.  

Some houses were measured and then not included based on the findings. For example, a few 

houses were found to have major renovations, which made taking average measurements 

difficult. Initially, an additional three-storey semi was included, the measurements showed the 

dimensions were similar to the existing three-storey model. Multiple two-storey semis were 

initially included in different sub-groups.  

Data collection results for the two-storey semi archetypes are included in the appendix. 

Small Two-Storey Semi 

Figure 17 Figure 18 show two subsets of small Two-storey semis that were grouped separately 

during preliminary surveying work.  
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Figure 17 Small two-storey semi houses in the Pocket [52] 

  

 

Figure 18 Small two-storey semi houses without peaked roof detail  [52] 

Although they appear different from the front, the dimensions are very similar, and the 

conditioned spaces have the same geometry. The only difference was found in the amount of 

unconditioned attic volume; the comparison between roof shapes of small two-storey semis 

can be seen in Figure 20. This small increase in unconditioned attic space would not have a 

significant effect on energy demand, so these house types were grouped into one archetype. 

This archetype is prevalent throughout urban Toronto neighbourhoods based on a preliminary 

observational study. Some neighbourhoods in Toronto, including Chatham Avenue, In the 

Pocket neighbourhood, are predominantly made up of this house shape.  
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The small two-storey semi was defined as the small semi for clarity purposes. This house was 

only slightly smaller than the large-two storey semi based on the field study results. This house 

is characterized by a cantilevered second floor with a large sloped roof extending from the attic 

to create a porch overhang. The floor to ceiling height was constant across the second floor in 

all houses measured. The area under the peak roof and above the ceiling was unconditioned 

attic space. In some cases, there was a division between the attics of both houses. In other 

cases it was a continuous attic space between the shared houses. The second-floor overhang 

and jog in creates a greater exposed surface area in this house compared to a simple 

rectangular shape. The shape of the roof is very different than other houses measured, this is a 

very common design throughout Toronto.[52] 

 

Figure 19 Small Two-Storey Semi peak roof. 
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Figure 20 Small two-storey semi, comparison of roof details. 

The baseline models generated using the OpenStudio plugin for Sketchup are shown in Figure 

21. 

 

Figure 21 Small Two-Storey Semi  OpenStudio model. (front & back) 

the purple surface plane on the side of the house is a shading surface that captures the effect of 

a neighbouring house. A shading overhang surface is used over the porches of all houses. The 

third floor zone for the two-storey semi houses is an unconditioned attic space. 

An example floor plan is shown in Figure 22. In many cases, the main floor had been converted 

into an open floor plan while the upstairs was divided up into bedrooms. 
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Figure 22 Example floor layout in a small two-storey semi.  

 

Large two-storey semi 

The large two-storey semi archetype was common throughout the Pocket neighbourhood; 

these houses were easily grouped and identified. Some large two-storey houses had attics with 

a peak above the front window, while others did not have this feature. The area beneath the 

roof was an unconditioned attic space in all houses. These houses have a simple rectangular 

layout and geometry. 
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Figure 23 Large two-storey semis  found in the Pocket [52] 

 

Figure 24 Large two-storey semi. 
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Figure 25 Large two-storey semi OpenStudio  model (front & back) 

Three-storey Semi 

The three-storey semi is defined by having a conditioned third floor, sometimes the roof space 

was extended to increase the area underneath the roof on the third floor to increase living 

space. The third floor zone does not extend the length of the house. 

  

Figure 26 Three-storey semi in Riverdale, Toronto [52] 

The open studio baseline model developed by Jermyn[3] is shown below. 
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Figure 27 Three-storey Semi baseline developed by Jermyn [3] (front & back). 

Detached 

The detached archetype has 3 floors and a rectangular geometry. This archetype does not share 

any walls with neighbours, the third floor zone is located in the area underneath the roof. 

  

Figure 28 Detached baseline developed by Jermyn [3]. 

A summary of the baseline dimensions for each archetype can be found in Table 11 Baseline 

dimensions for each house type 
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Table 11 Baseline dimensions for each house type. 

  

  
New Research Contribution   Existing Research 

  

  

Large two-
storey Semi  

Small two-
Storey Semi  

Three-
storey Semi  

Three-
storey 

Detached 
Plan Shape Rectangle Rectangle L-Shape Rectangle 

Depth 13.3m 11.6m 13.7m 13.4m 
Width 4.7m 4.57m 5.1m 5.8m 

Ceiling Height Floors 1,2 2.7m 2.6m 2.75m 2.75m 
Basement Height Below Grade 1.2m 1m 1.3m 1.4m 
Basement Above Grade Height 1.2m 1.1m 0.8m 0.9m 

Heated Floor Area 187.5 m2 164.0 m2 225.21 m2 250.9m2 
 Glazing % Front 12.6 13.4 15.6 19 
 Glazing %  Left 4.9 4 3.6 5.7 
 Glazing % Right - - - 3.2 
 Glazing % Back 11.9 5.7 10.8 15.6 

  Reference: Field Study Jermyn  [3] 
 

In addition to the measurements, a survey was conducted. The survey can be seen in the 

appendix. The results of the survey suggested that cost was the largest barrier to carrying out 

retrofits in their homes, this reinforces the need to find the lowest cost retrofit solutions 

possible. A scale of 1 to 5 was used with 1 representing no barrier, and 5 representing a 

substantial barrier to performing a deep energy retrofit. On average cost received a 3.15, 

aesthetics received a 2.94. Unclear savings goals also received an average of 2.76. Unclear 

saving goals ranks as a substantial barrier to performing retrofits. This finding also reinforces 

the need to quantify the potential savings for each house through modelling.  

Residents were also asked how much energy reduction they would hope to achieve with 

retrofits and what their budget would be, the results are included in the appendix.  On average, 

residents hoped to reduce energy use by 46.43% for a cost of $ 33600. This represents 

unrealistic energy savings goals given the budget expectations. Clearly quantifying the steps 
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required to achieve an energy performance target and the cost is important for homeowners 

considering retrofitting their homes.  

4.1.2 Updating Energy Plus Model 

The existing baseline archetype energy models created by Jermyn provided a model from which 

to build the models that were used in the surrogate model. Jermyn’s[3] models were calibrated 

to the monthly energy usage of a typical house by adjusting occupant behaviour.  

Although these models were able to be used to accurately predict the energy usage of a fixed 

baseline archetype house, they were not suitable for use in a surrogate modelling application.  

The IECC prototype single-family models were used as a reference for updating the baseline 

models. The most significant changes to the model included: auto-sizing HVAC components, 

simplifying the window model, updating the mechanical ventilation/heat recovery system and 

changing the ground heat transfer model.  

System Sizing: 

In Jermyn, fixed values were used for HVAC sizes across Century Detached, Century Semi and in 

all retrofit cases analyzed. This approach will create a system that is likely to be oversized or 

undersized if parameters affecting building performance are modified. Certain zones may be 

significantly above or below setpoints temperatures, especially in retrofit cases. These single-

family homes only have one control zone, which makes it difficult to meet setpoint 

temperatures in all zones. Proper sizing of heating coils and airflow rates will result in a building 

that is more accurately modelled across all zones. In the updated baseline models, the heating 

and cooling system was fully auto-sized following the approach used in the IECC prototype 
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buildings [72]. Ann Htg 99.6% Condns DB and  Ann Clg .4% Condns were used as the design day 

objects for sizing calculations. The system heating and cooling airflow rate and coil capacities 

were sized on the total sensible load of all zones. The fraction of the total heating airflow going 

to each zone Air terminal was sized based on the sensible load in each zone.  

Windows 

The window construction object created by Jermyn was replaced with 

WindowMaterial:SimpleGlazingSystem. This window object approximates a complex fully 

specified window and frame using only Solar Heat Gain Coefficient and U-Factor. Switching to a 

simple window allows for easy modification of window performance values with eppy. The 

simple window construction has been shown to effectively model a more complex window in 

EnergyPlus and is used in the IECC models for this reason [72] 

Basement Model 

Jermyn’s [3] model used a slightly outdated approach to basement heat transfer calculations 

that requires the use of an auxiliary software tool called Basement. Foundation Kiva, is a more 

recent alternative to Basement which approximates these calculations within 3% mean 

absolute standard deviation from the values calculated with Basement and takes only seconds 

[73]. This is a simplification of the modelling process that will simplify the process of generating 

.idf files and maintain a high level of accuracy.  

Mechanical Ventilation 

The IECC model does not include mechanical ventilation, Jermyn specifies a heat exchanger 

with a constant flow of 0.05 l/s throughout baseline and all retrofitted cases. The  
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AirLoopHVAC:Unitary:Furnace:HeatCool object used to model the furnace accepts only on/off 

or constant volume fan selections. An on and off fan is used in the IECC prototype and correctly 

models the behaviour found in archetype houses. When fan onoff is used, the furnace fan and 

heating/cooling coils are cycled on and off in unison in order to meet the setpoint in the control 

zone. When the furnace fan is on mechanical ventilation will be supplied at the set rate, when 

the furnace fan is off no mechanical ventilation will be provided. The actual mean daily mass 

flow rate of outdoor air is for the baseline model is shown in  Figure 29. The amount of outdoor 

air fluctuates throughout the year in relation to heating demand and total system airflow. The 

ASHRAE 62.2 standard determines the required mechanical ventilation in a retrofitted house 

based on building footprint, number of bedrooms and an airtightness credit. The amount of 

mechanical ventilation required is inverse to the airtightness in order to ensure acceptable air 

indoor air quality. In the most air-tight model presented by Jermyn, the mechanical ventilation 

requirement should be the greatest, the results in Figure 29 show the opposite to be true. The 

combined effect of an oversized heating system that is rarely turned on and a mechanical 

ventilation system tied to furnace operation results in a negligible amount of outdoor air being 

supplied to the building. 
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Figure 29 Mechanical ventilation supplied in various model iterations. 

The existing heat exchanger object and outdoor air loop were removed from the model. In its 

place the ZoneHVAC:EnergyRecoveryVentilator was used as a zoneHvac object  in the main floor 

control zone. This object delivers a constant outdoor airflow rate independent of the heating 

and cooling system operation. The airflow rate in the updated baseline detached model can be 

seen above in Figure 29, a constant mechanical ventilation rate is provided throughout the 

year. 

The annual energy use and energy use intensity calculated using the original modelling 

approach and the updated approach were reported below for the two new two-storey century 

semi archetypes. The energy performance of the three-storey century semi and century 

detached is also reported. The original values for these existing baseline models differ slightly 

from the original values as reported by Jermyn, due to the use of an updated CWEC weather 

file. 
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The updated modelling approach yielded a consistently lower energy use and energy use 

intensity over the typical meteorological year. Floor area for EUI calculation is based on total 

floor area as calculated by energy plus (depth times width) not treated floor area. The 

simulated EnergyPlus results are shown below in Table 12 and Figure 30 , the shaded region in 

the table includes the results of the energy models developed and run by Jermyn [3]. 

Table 12 Predicted energy use for each archetype compared [3] 

  Existing Model Methodology Updated Model 
% Difference 

Overall Energy  
  

Overall 
Energy(kwh) EUI (kwh/m2) Overall 

Energy(kwh) EUI (kwh/m2) 

 Small Two-Storey Semi  34,728 192 34,416 190 0.90 
Large Two-storey Semi  40,439 199 37,594 184 7.29 
Three Storey Semi [3] 43,419    198 41,980 191 3.37 

Detached [3] 59,283 194 53,769 176 9.75 

  

 

Figure 30 Energy use for baseline homes visualised 

The total energy for the new Two-storey Semi archetypes is lower than the existing Three-

storey archetypes. This result is expected based on the size difference and number of floors and 

Three-Storey Semi

Small Two-Storey Semi

Large Two-Storey Semi

34416.94 kwh

190.35 kwh/m2

191.52 kwh/m2

41,980 kwh

184.95 kwh/m2

37,594 kwh

EUI
Total Energy Usage

Detached
176 kwh/m2

53,769 kwh
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anticipated when compared to the existing archetype energy usage. The Small Two-storey Semi 

has the lowest overall energy of the group at 33,536  kWh. It is interesting that the Two-storey 

Semis have the highest EUI. The Detached archetype would be expected to have the highest EUI 

because it has an additional wall, however it has the lowest EUI. The high EUI in the two-storey 

semi case may be due to a larger unconditioned surface area per zone. Out of 3 conditioned 

zones only one shares two surfaces with neighbouring zones (the main floor zone with the 

basement and second floor), whereas the century Detached archetype has two zones that 

share two surfaces with neighbouring zones (both the second floor and main floor). The 

Detached Archetype also has a third floor with the equivalent floor area as the other zones but 

a fraction of the volume due to the peak roof, this will result in significantly larger floor area 

and not a significantly larger conditioned volume. 

The percent difference between the original baseline and updated baseline ranges from 0.46% 

for the Two-storey Semi 1 to 9.75% for the Detached house type. The large discrepancy 

between the two detached models can likely be attributed to an improperly sized heating and 

cooling system that is delivering too much heat to the third and second floors. The mean daily 

temperatures across the four zones of the Detached Archetype in the original model can be 

seen in Figure 31. The third-floor zone is consistently more than 5 degrees higher than the 

setpoint. Each zone in this model is receiving the same airflow rate despite significant 

differences to sensible load that would be expected between zones due to differences in 

exposed surface area and volume. 
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Figure 31 Zone temperatures in baseline detached model 

The zone temperatures in the updated model are shown in Figure 32. Uncontrolled zone 

temperatures are much closer to the expected setpoint temperature, and therefore, the 

estimated energy usage for the updated model will be more accurate and lower than the 

original baseline model. The same trends were noted for all updated models when compared to 

the original model.

 

Figure 32 Zone temperatures in updated baseline detached model 
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The updated energy model using autosizing of HVAC components shows that the temperatures 

in the uncontrolled (slave zones) in the house are a much closer fit to the setpoint temperature, 

but they are still not meeting the setpoint temperature. This behaviour is inherent to the HVAC 

and control system used. Different house types, geometries and combinations of building 

features will result in slightly different temperatures in uncontrolled zones. Compared to a 

building where each zone is controlled, there will be a lot more inherent unpredictability in the 

annual energy use because the temperatures in each uncontrolled zones will vary slightly across 

houses. The temperature profile in the third floor zone is plotted for two houses with the same 

geometry but different insulation levels. The temperature is consistently higher in the insulated 

case on the third floor, even though the setpoint temperature is the same in both cases. 

 

Figure 33 Third floor temperatures with varying levels of insulation. 

The thorough analysis of the existing models, and the updates were essential in order to ensure 

the energy models were performing as expected. The surrogate model developed in phase 2 Is 

only as robust as the baseline energy model that is used to build the dataset. The results of the 
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field study were used to inform ranges of building characteristics that were then used to modify 

the updated baseline energy models for each archetype. The result was a set of 6000 .idfs that 

were used in phase 2 to build the surrogate models. 

Phase 2: Surrogate modelling 

The results of phase 2 are summarized in this section. In phase 2 the dataset of energy models 

was used to explore the application of surrogate models for bottom-up archetype 

development. This section begins by analyzing the results of the preprocessing and feature 

engineering steps. 

4.1.3 Transformations and preprocessing 

Using only the base inputs and a linear model with no input or output transformations, the 

model had poor accuracy (MAPE of 16.9% and R2 of 0.76) and evidence of non-linearity. For 

these reasons, several transformations were tested to see if a transformed model would 

perform better. Three different transformations were tested to determine which would provide 

the best fit to the data. These transformations were applied to the input features and target 

features in every potential combination for a total of 16 different combinations of unique 

input/ouput transformations. The 16 combinations included the untransformed inputs and 

target. A sample of the transformations applied to the input and target features can be seen in 

Table 13 The log input, and output transformation (referred to as a power transformation), 

resulted in the highest R2.  

Table 13 Transformations of the input and target variables and their corresponding cross-validated scores 

Input Transformation Target Transformation Validation R2 Validation MAPE 
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log10(x) log10(y) 0.844 3.19 

sqrt(x) log10(y) 0.842 3.20 

log10(x) sqrt(y) 0.829 6.86 

sqrt(x) sqrt(y) 0.824 6.86 

x log10(y) 0.815 3.43 

log10(x) 1/y 0.799 15.11 

x sqrt(y) 0.799 7.24 

sqrt(x) 1/y 0.797 15.63 

log10(x) y 0.788 16.45 

sqrt(x) y 0.781 16.40 

x 1/y 0.770 16.83 

x y 0.757 16.95 

1/x log10(y) 0.748 4.10 

1/x sqrt(y) 0.744 8.54 

1/x y 0.718 19.30 

1/x 1/y 0.694 18.20 

 

The untransformed input and output in addition to the best transformation are shaded in Table 

13. The residual trends were also analyzed to determine the goodness of fit and verify that 

there are no trends in the residuals vs. predicted plots. The non transformed data can be seen 

in Figure 34. Note that “Actual Energy” refers to the energy use simulated with EnergyPlus.
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Figure 34,  Residuals vs. predicted and Predicted vs. Actual before the log-transformation 

The residuals follow a U shape instead of a random distribution which indicates non-linear 

behaviour in the data. The predicted energy vs. actual energy graph shows that an 

untransformed linear model is a poor fit to the data. Actual energy refers to simulated energy 

calculated with EnergyPlus throughout this research.   

 Figure 35 shows the same graphs with the log-log transformed dataset, and these graphs 

confirm that the log-log model is a much better fit to the data.  

 

Figure 35 Log-Log transformation on the output and target variables, residuals and predicted vs. actual plots. 

In order to interpret the results of the regression, the target variable had to be transformed 

back into units of Gj from units of log GJ by raising 10 to the exponent of the output value, this 

was referred to as back-transforming. The fit of the back-transformed model is shown in Figure 

34. The fit of the back-transformed model does not appear to be as good as the fit of the log-

transformed model for higher energy samples. The back-transformed model still fits the data 
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substantially better than the original non-transformed model. Barnes [30] reported similar 

findings. 

 

Figure 36 Back-transformed model showing residuals and predicted vs. actual plots in units of Gj 

The distributions of feature distributions before and after logarithmic transformation were 

plotted for the combined model, in order to gain insight into the features prior to training. 

When a logarithmic transformation was applied to the original input features, the distributions 

of the base input features ended up skewed to the right. The original distribution of input 

features is shown in Figure 37. The log-transformed input feature distributions are shown in 

Figure 38. 



92 
 

 

 

Figure 37 Input features before log transformation. 

 

Figure 38 Input features after log transformation. 

The target variable shows distribution that is slightly skewed to the left, applying a logarithmic 

transformation to the target variable creates a more normal distribution. These distributions 

are shown in Figure 39 and Figure 40 
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Figure 39 Energy use distribution before the transformation. 

 

Figure 40 Logarithmic Transformation of Energy Use. 

The geometry features that were generated by combining base input features, show 

approximately normal distributions before and after logarithmic transformation. Some 

examples of these features are shown in Figure 41. 

 

Figure 41 Generalized geometry feature distribution plots. 
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Features that had at large distributions of zero values were not included in the combined 

archetype model due to their apparent non-normal distributions and semi-continuous numeric 

properties. Examples of semi-continuous features are any features that include the right side of 

the house. In the detached archetype, this wall will be defined. In the semi archetype, this side 

of the house will be a shared wall.  Some examples of these features are plotted below in Figure 

42. 

 

Figure 42 Distribution plots of semi-continuous features. 

The effect of the log-transformation made the distributions significantly worse. This confirms 

that these features should be excluded from the potential options during feature selection. The 

log-transformed distributions of semi-continuous features are shown in Figure 43. 
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Figure 43 Log Transformed Distributions of semi-continuous features. 

Combinations of these features were included in the model, the effect of adding opposite wall 

areas together removed the distribution at zero, the effect of adding semi-continuous and 

continuous features together was a distribution slightly skewed to the left. The untransformed 

distributions for these features are shown in Figure 44. 

 

Figure 44 Distribution plots for combined semi-continuous features. 

When a logarithmic transformation is applied to these new combined terms, the distribution 

shows a more normal distribution. Linear combination of semi-continuous and continuous 

features was an effective way to create normal distributions out of non-normal input features 

while still capturing the effect of that feature. The log-transformed distributions for these 

features are shown in Figure 45. 

 

Figure 45 Distribution plots for combined semi-continuous features (log-transformed) 
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4.1.4 Stepwise Feature Selection 

A preliminary univariate analysis was conducted to determine whether collinearity might be an 

issue in the model, and what features show collinearity with each other. The Pearson 

correlations between each base input feature are shown in Figure 46. 

 

Figure 46 Pearson correlation original inputs and annual energy. 

The base inputs are based on random values so there is no correlation, the heatmap verifies 

that there are no signs of collinearity. The univariate correlations to energy use are seen in the 

bottom row. 
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The Pearson correlation between each feature included in the set of feature options used for 

the combined model can be seen in Figure 47. 

 

Figure 47 Pearson correlation all feature options for the combined dataset. 

Figure 47 shows obvious signs of collinearity between features, many features share a Pearson 

correlation above 0.9. Although univariate correlations do not address multicollinearity, they 

help determine which feature combinations are causing collinearity. The variance inflation 

factor (VIF) is used to determine the amount of multicollinearity in the model. Features such as 

conditioned volume have very high VIF values, suggesting these features can be almost 
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perfectly predicted using a combination of other features in the model. Wall areas have the 

highest VIF values of all the geometry features.  Window areas have the lowest VIF values. The 

VIF values for the set of feature options for the combined model are summarized in Table 14. 

Table 14 VIF values for features options for the combined dataset. 

Features: VIF 

Wall Area North+South inf 
Wall Area East+West inf 

Wall Side Area Left+Right inf 
Wall Front+Back Area inf 
Conditioned Volume 81581777013 

Total Exposed Surface Area 54820662159 
Surface to Volume Ratio 10653002993 

Width 1029699 
Conditioned Floor Area 493479 

Depth 259922 
Slab Area 99181 

Building Height 85408 
Above Ground Exposed Surface Area 2994 

Total Below Ground Area 586 
Total Exposed Wall Area 44 

Below Ground Foundation Area 338 
Ceiling Height Floors 1,2 286 

Below Grade Foundation Height 206 
Roof Area 141 

Above Grade Foundation Height 30 
Window Side Area Left+Right 4.7 

Window Area East+West 3.1 
Window Area North+South 2.9 

 

During stepwise feature selection, the choice of variance inflation factor (VIF) Threshold 

resulted in very different sets of features being selected.  A value of 5 was chosen as the VIF 

threshold based on research identified in Chapter 2. This implies that features can be included 

that have an R2 of up to 0.8 when regressed on all other features in the model. The effect of 

varying the VIF threshold on the feature selection results for the combined dataset can be seen 

below in Table 15. A higher VIF Threshold allows for more descriptive geometry features to be 

included in the model. The accuracy of the model increases as the threshold for acceptable 
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collinearity in the model increases. It is interesting to note that as the VIF threshold increases, 

the accuracy score improves but quickly plateaus at a VIF threshold close to 5. Allowing more 

collinearity in the model past this point results in marginal improvements to model 

performance at the expense of a significant decrease in model interpretability. This trend was 

consistent across all house types. This confirms that choosing a VIF threshold of 5 or below 

results in a negligible performance sacrifice on all house types tested. 

Table 15 Effect of VIF Threshold on stepwise feature selection. 

    VIF Threshold in Stepwise Selection 

Included Features 1.5 2 5 10 100 inf 

Window Area North+South     x   x x 

 Window Area East+West             

 Wall Area North+South     x x x x 

 Wall Area East+West     x x x x 

 Window Side Area Left+Right     x x x x 

 Wall Side Area Left+Right         x x 

 Wall Front+Back Area         x x 

 Roof Area             

 Total Exposed Wall Area           x 

 Below Ground Foundation Area     x x x x 

 Slab Area             

 Total Below Ground Area             

 Conditioned Volume x x x x x x 

 Surface to Volume Ratio     x x x x 

 Total Exposed Surface Area           x 

 Above Ground Exposed Surface Area           x 

 Conditioned Floor Area           x 

 Neighbouring House Distance x x x x x x 

 Number of Conditioned Floors x x x x x x 

 House Type x x x x x x 

 Grouped Orientation x x x x x x 

 Depth   x x x x x 

 Width             

 Above Grade Foundation Height x   x x x x 

 Below Grade Foundation Height x x x   x x 

 Building Height             
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 Ceiling Height Floors 1,2             

Max Included Vif 1.49 2 4.99 5.29 61.28 6.85E+10 
 Validation MAPE  1.9032 1.8640 1.7546 1.7547 1.7460 1.7398 

Validation R2 0.9413 0.9435 0.9495 0.9494 0.9498 0.9502 

 

4.1.5 Stepwise results: Individual Archetype models 

Using stepwise feature selection, the optimal set of features was developed for each outer 

cross-validation fold. All geometry feature options were added to the base parameters 

iteratively, the feature that produced the greatest reduction to the validation error without 

increasing the VIF above a threshold of 5 was kept. This was repeated until the validation error 

stopped decreasing, or there were no more features left. The mean prediction metrics for each 

house type are reported below. The model predicted energy use between 7.03% to 7.54% of 

the simulated value. 

Table 16 Results from training regressions on each archetype individually. 

  Back Transformed 

  R2 RMSE MAPE 

Small Two-
storey Semi  0.93 ± 0.009 5.87 ± 0.46 7.54 ± 0.42 

Large Two-
storey Semi 0.935 ± 0.013 6.01 ± 0.68 7.03 ± 0.66 

Three-storey 
Semi 0.939 ± 0.007 6.38 ± 0.28 7.35 ± 0.41 

Detached 0.934 ± 0.009 7.63 ± 0.26 7.33 ± 0.67 

 

The features selected using stepwise selection for each different split of the test, and training 

+validation sets are shown in the tables below and Figure 48. Depending on the archetype, 

different features were selected. Additionally, depending on the split of data being used, there 
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was inconsistency in the features selected. More training examples could potentially be used to 

increase the stability of these individual models. Figure 48 shows the number of times each 

feature is selected by each model type. 

 

Figure 48 Number of times features are chosen by each model during stepwise selection. 

The stepwise feature selection process is sensitive to small changes to accuracy when features 

are added. When not enough training examples were used the presence of a few outlying data 

points in the training or validation sets may be enough to cause the stepwise selection process 

to choose different features between folds. The features all have high multicollinearity so many 

of the features will have a similar effect on accuracy and a small change in data splits will result 

in different features being chosen. When more training examples were used the effect of 

outliers will be less significant, and the features selected in each fold will be more consistent. 
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The features selected in each outer cross-validation fold for each archetype are outlined in 

Table 17 to Table 20. 

Table 17 Features selected by forward stepwise selection for the large two-storey semi in each fold. 

Cross-validation Fold: 1 2 3 4 5 
Above Grade Foundation Height  X X X X 
Above Ground Exposed Surface 

Area X X X X X 
Below Grade Foundation Height   X X  
Below Ground Foundation Area X X   X 

Building Height X X X X X 
WWR Side Left X X X X X 

Wall Side Area Left X X X X X 
Window Back Area X X X X X 
Window Front Area X X X X X 

 

Table 18 Features selected by forward stepwise selection for the small two-storey semi in each fold. 

Cross-validation Fold: 1 2 3 4 5 
Above Ground Exposed Surface 

Area X X  X X 
Below Grade Foundation Height   X   

Building Height X X  X X 
Depth X     

Total Exposed Surface Area   X   
WWR Back X     
WWR Front X   X  

WWR Side Left X X X X X 
Wall Area East+West X  X X X 
Wall Side Area Left  X X X X 

Window Area East+West X     
Window Area North+South     X 

Window Back Area  X X X X 
Window Front Area  X X  X 

 

Table 19 Features selected by forward stepwise selection for the three-storey semi in each fold. 

Cross-validation Fold: 1 2 3 4 5 
Above Grade Foundation Height X X X X X 
Below Grade Foundation Height X X X X X 

Conditioned Volume X X X X X 
WWR Side Left  X X  X 

Wall Area East+West X  X X  
Wall Area North+South     X 

Wall Front Area  X    
Width X   X X 
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Window Area East+West X   X  
Window Area North+South X   X  

Window Back Area X X X X X 
Window Front Area X X X X X 

 

Table 20 Features selected by forward stepwise selection for the detached archetype in each fold. 

Cross-validation Fold: 1 2 3 4 5 
Above Grade Foundation Height X  X X  

Below Grade Foundation Height X X X X X 
Building Height X X    

Ceiling Height Floors 1,2   X X  

Conditioned Volume X X X X X 
Depth   X   

East Wall Area     X 
North Window Area    X  

South Window Area X X X  X 
WWR Back    X  

West Window Area  X    
Width X X  X X 

Window Area East+West X X X X X 
Window Area North+South X X X X X 

 

4.1.6 Stepwise results: Combined Archetypes 

The combined dataset included 6000 samples from all four archetypes. The combined model 

was developed using the same forward stepwise methodology used for the individual 

archetype models. The combined model is used to determine whether similar accuracy can be 

reached with a surrogate model for multiple house types compared to a surrogate model for a 

single house type. The features selected in each fold of stepwise selection were almost identical 

across cross-validation splits, confirming that the combined model is much more stable than 

the individual models.  

Using the stepwise methodology, the accuracy improved from an R2 of 0.844 to 0.942 for the 

combined model. On average 30 features (counting each categorical option) were included in 

the final combined model by the feature selection methodology, this included 11 out of 45 



104 
 

potential geometry features. The feature selection methodology resulted in substantial 

improvements to the accuracy and kept the VIF threshold below 5. Before feature selection, the 

VIF was nearly infinite for some features. Figure 49 shows the fit of the model prior to stepwise 

feature selection. 

 

Figure 49 Residuals and predicted vs. actual plots before stepwise feature selection. 

 

Figure 50 shows the fit of the model after the stepwise feature selection, the residuals are 

substantially smaller and the predicted vs. actual plot shows a better fit as well. 
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Figure 50 Residuals and predicted vs. actual plots after stepwise feature selection. 

There is evidence of heteroscedasticity (the variance of the variance in the target variable 

increases) even after the stepwise selection process. The percent error is relatively constant 

throughout the model but the absolute error increases in relation to the amount of energy use. 

It is important to consider the maximum and minimum percent error when considering using a 

surrogate model. The data used to train the model was generated using latin hypercube 

sampling. For this reason, the data was not cleaned up and outlying data points were not 

removed from the set of training examples (energy models). The energy use for some training 

examples was poorly estimated by the surrogate model. The highest absolute percent error in 

predicting simulated energy use with the surrogate model was 37%, the lowest absolute 

percent error was 0.0082%. The MAPE of 7 for the combined model represents the average 

percent error, most of the individual training examples will have more or will have less error 
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than this average value. Future research should consider whether some outlying data points 

should be removed to improve the performance of the model.  

The feature values for the 50 training examples which had the highest prediction error were 

studied to determine why the energy use for these houses could not be accurately represented 

by the surrogate model. One discernable pattern found in the houses with high percent error 

was that the R values for the roof, wall, foundation and slab had more variation. When the 

energy use was underestimated significantly the R value of the walls was substantially lower 

than average and the R value of the roof was higher than average. There is only a single control 

zone so it is very likely that this large range of R values between roof and wall for example will 

make it difficult for EnergyPlus to correctly size zones. This variation will create a larger 

variation in the energy performance of each zone and will make it harder to not undersize or 

oversize the amount of air delivered to each uncontrolled zone. The error may be coming from 

EnergyPlus overestimating or underestimating energy use, a more thorough investigation needs 

to be done to confirm. This high variation in R values does not represent a realistic combination 

of feature values that would be tested or found in an existing house. This is an important 

finding because the more realistic ranges of feature values are estimated more accurately by 

the surrogate model. 

Many of the houses that were associated with higher prediction error also had unrealistic 

aspect ratios, such as a more square shaped house which would not occur in reality due to lot 

size, or a very long and narrow shape. When the extreme ends of the feature ranges were 

included in a single training example the error was often higher. Future work could examine the 

application of a set of rules which would remove unrealistic combinations of inputs from the 
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model. The accuracy could also be adjusted to account for these outlying examples. Figure 51 

shows the effect of removing training examples with high absolute percent error. The training 

examples were sorted from highest percent error to lowest and removed one at a time and the 

MAPE was recalculated for each step.  

 

Figure 51 Mean absolute percent error as outlying training examples are removed. 

The plots above show that the MAPE decreases quickly especially as the 40 worst examples are 

removed. Removing training examples from the model to improve accuracy should not be done 

unless substantially more work is done in order to develop a set of rules that define what 

combination of features are considered unrealistic. Removing training examples to improve the 

accuracy can result in an optimistic estimate of accuracy when used on real houses. Care must 

be taken to validate the reason for removing certain training examples if this approach is 

considered.  

In order to verify that the combined model was predicting well for each archetype, the test set 

was subdivided into four archetype subsets. Each of these subsets was used as a test set and 
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the entire test set was also used as the test set. The prediction metrics reported in Table 21 

show that the combined model predicted energy use with lower test error than the individual 

houses. This confirms that a single model may be used for at least four different house types. 

The larger number of samples likely contributed to the higher accuracy found with the 

combined model. The number of samples per house did not change, but the number of overall 

samples increased. This suggests that adding samples from different house types improves the 

prediction accuracy for individual houses. The accuracy of the stepwise combined model for 

each archetype and the full test set using the combined model is shown in Table 21.  

 

Table 21 Combined stepwise model accuracy, predicting on subsets of the test set. 

  Back Transformed 

  R2 RMSE MAPE 

Full Test Set 0.942 ± 0.004 6.3 ± 0.16 7.03 ± 0.21 

Three-Storey 
Semi 0.949 ± 0.01 5.83 ± 0.51 6.91 ± 0.51 

Large Two-Storey 
Semi 0.936 ± 0.011 5.6 ± 0.69 7.22 ± 0.52 

Small Two-Storey 
Semi 0.933 ± 0.016 6.01 ± 0.38 6.69 ± 0.47 

Detached 0.936 ± 0.011 7.48 ± 0.58 7.26 ± 0.44 
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The features selected during each fold of the forward stepwise selection methodology for the 

combined model are shown in Table 22. The model selects the same features in nearly every 

fold of the outer cross-validation loop, the combined model with 6000 total samples is 

substantially more stable than the individual models generated with 1500 total samples. 

Table 22 Features selected in each fold by the combined model 

Cross-validation Fold: combined 1 2 3 4 5 
Above Grade Foundation Height X X X X X 
Below Ground Foundation Area X X X X X 

Conditioned Volume X X X X X 
Depth X X X X X 

Surface to Volume Ratio X X X X X 
Wall Area North+South X X X X  

Window Area East+West X X X X X 
Window Area North+South X X X X X 

Window Side Area Left+Right X X X X X 
Grouped Orientation X X X X X 

Number of Conditioned Floors X X X X X 
House Type X X X X X 

Neighbouring House Distance X X X X X 

 

The standardized regression coefficients generated by the regression model are shown in Table 

23, sorted from largest to smallest. Note that a smaller window U-factor range than intended 

was used so in reality the window related features might be slightly larger.  
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Table 23 Standardized regression coefficients generated using feature selection methodology 

stepwise Mean Sd 
Conditioned Volume 0.1599 0.00144 
Air Changes per Hour 0.1094 0.00044 

Ventilation/area 0.0456 0.00077 
Surface to Volume Ratio 0.0226 0.00204 

Neighbour:yes 0.0191 0.00034 
3 Storeys 0.0162 0.00138 

Window Side Area Left+Right 0.0139 0.00041 
U-factor Windows 0.0119 0.00024 

Depth 0.0084 0.00029 
West 0.0066 0.00065 
North -0.0011 0.00112 

Wall Area North+South -0.0016 0.00034 
Above Grade Foundation Height -0.0018 0.00020 

COP Cooling -0.0021 0.00025 
Fluorescent -0.0044 0.00074 

LED -0.0053 0.00034 
 RSI Slab -0.0116 0.00026 

 RSI Foundation Wall -0.0123 0.00023 
East -0.0130 0.00116 

Window Area East+West -0.0180 0.00053 
Window Area North+South -0.0183 0.00042 
Solar Heat Gain Coefficient -0.0191 0.00011 

Below Ground Foundation Area -0.0260 0.00041 
Furnace Coil Efficiency -0.0298 0.00019 

RSI Roof -0.0405 0.00050 
60% HRV -0.0515 0.00046 

RSI Exterior Wall -0.0718 0.00033 
85% HRV -0.0761 0.00107 
90% HRV -0.0818 0.00078 
Detached -0.0831 0.00327 
Intercept: 1.8175 0.00104 

 

The coefficients are shown in descending order. The inputs were standardized during 

preprocessing, so all features are on the same scale. A unit change in the input corresponds to a 

unit change to the output. Negative values correspond to decreasing the energy use when the 

input value increases. The importance of each feature can be seen here. Conditioned volume 
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has the largest positive absolute value, followed by air changes per hour at 50Pa and 

normalized mechanical ventilation rate. The efficiency of the heat recovery system was 

considered quite important because the ranges used cover baseline to passive house. The 

efficiency of heat recovery will be important when lower energy intensity and air changes per 

hour are achieved. Changing the wall insulation RSI value has a greater impact than changing 

the RSI of the roof, likely due to the larger surface area 

 

4.1.7 Stepwise Results: Unseen Archetype 

In order to investigate the ability of a surrogate model to predict energy use for a house type 

not included in the training set, a series of models were developed. Each archetype was held 

out from the dataset to be used as a test set, and a new model was trained on the remaining 

three archetypes. The results of these tests give a range of values that could be expected if a 

surrogate model was to be used to model any archetype within the century single-family 

category. In these tests, only three different house types are used for each test, and only 4500 

samples total. If all four archetypes were used to train these models, they would be even more 

comprehensive and be able to predict on a different house type more accurately. This error 

estimate can also be considered quite conservative because the variation between archetypes 

in this model quite large and considers different numbers of floors and semi and detached 

houses. The scope of a single model can also be improved further by adding additional training 

examples of different geometries to cover more variation in building form. 
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These models were developed using the stepwise feature selection methodology, and nested 

cross-validation was used to determine the mean prediction error for each house and SD. The 

holdout test scores are summarized in Table 24 and Figure 52. 

Table 24 Summary of test results using an unseen archetype as a hold out evaluation set. 

Archetype  Back Transformed Scores 

Detached Three-storey 
Semi 

Small Two-
storey Semi 

Large Two-
storey Semi R2 RMSE MAPE 

Holdout Set Train Set Train Set Train Set 0.760 14.608 14.431 

Train Set Holdout Set Train Set Train Set 0.931 6.801 7.796 

Train Set Train Set Holdout Set Train Set 0.906 7.242 8.064 

Train Set Train Set Train Set Holdout Set 0.816 9.569 14.599 

 

4.1.7.1 Detached Holdout 

 

When using a model trained exclusively on semi archetypes to predict the energy use of a 

detached archetype, the average MAPE was 14.43%. The quality of fit for this model on the 

detached archetype is shown in Figure 52. The residuals show a noticeable non-normal trend 

that suggests the model is underestimating energy use for the detached houses when it is only 

trained on semi detached houses. This was expected because a detached house would have a 

larger exposed surface area, and the model was not trained on any houses with shared walls.  

 

Three-Storey Semi Small Two-Storey SemiLarge Two-Storey Semi Detached

TEST
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Figure 52 Detached holdout test residual plot. 

4.1.7.2 Three-storey Semi Holdout 

 

Energy use for the Three-Storey Semi archetype was predicted using a model trained on the 

remaining models, this model predicted with an average MAPE of 7.79%. The effect of the 

house type parameter was investigated to see if this was a crucial feature in determining 

energy use. It was found that the house type feature substantially decreased accuracy when 

included in the model. The reported accuracies in Table 24 are for the models without house 

type included. 

 

Three-Storey Semi Small Two-Storey SemiLarge Two-Storey Semi Detached

TEST
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Figure 53 Three-storey semi hold out test (with “House Type” residual plot). 

4.1.7.3 Small Two-Storey Semi Holdout 

 

In Figure 54, the quality of fit can be seen for the model tested on the small two-storey semi. 

The fit of this model can be compared to Figure 55, the residuals are more centred on 0 and the 

predicted vs. actual plot shows a tighter fit and less evidence of non-normality.  

 

Three-Storey Semi Small Two-Storey SemiLarge Two-Storey Semi Detached

TEST
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Figure 54 Small two-storey semi house type hold out test (with “House Type”) residual plot. 

 

 

 

Figure 55 Small two-storey semi holdout test (without “House Type”) residual plot. 

4.1.7.4 Large Two-Storey Semi Holdout 

 Three-Storey Semi Small Two-Storey SemiLarge Two-Storey Semi Detached

TEST
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The accuracy when predicting using the large two-storey semi archetype as a holdout set was 

the lowest of all archetypes tested. This is surprising because it was assumed that the energy 

use for the detached house type would be the most difficult to predict because it is the only 

non-semi archetype. The two-storey semi geometry was the most simple, and potentially the 

exposed surface area to volume ratio would have been lowest in this house. This would explain 

why the results suggest an over-estimation of energy use for this house. Training the models 

using only archetypes with high energy use intensity because of higher surface to volume ratio 

will result in a model that places more significant weight to feature coefficients such as floor 

area or volume. The coefficient estimates would not be as representative of the more simple 

geometry seen in the large two-storey semi. The “House Type” feature made the predictions 

worse in this model as well. The comparison can be seen in Figure 56 and Figure 57.  

 

 

Figure 56 Large two-storey semi holdout test (without“House Type”) residual plot 
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Figure 57 Large two-storey semi  (with “House Type”) residual plot 

The average percent error drops from 20.55% to 14.6 when “House Type” is not included. This 

phenomenon is likely due to relationships between house type and other geometry features. 

The change in the exposed surface area associated with the difference between semi and 

detached houses is captured by other features already, which means the “house type” feature 

may be capturing other characteristics of the house unrelated to the party wall area. 

 

4.1.8 Stepwise results: Sample Size Analysis 

In order to ensure that the training sets were sufficiently large, and to further explore the 

stepwise regression model, a regression was run with a decreasing number of training samples 

(energy model simulations) and plotted against test error.  As the training sample size 

increases, the testing and training scores tend to converge towards each other. If the number 

of training examples is large enough, the training and testing scores should converge. An 

important finding from the sample size analysis is that the number of training samples required 
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for the individual archetypes does not vary substantially from the number of samples required 

for the combined model. 

The combined archetypes model included 6000 samples made up of 1500 from each Archetype. 

A test, train, and validation split of 25%,8% and 72% were used in the model. The training + 

validation set contained 4800 samples for the combined model and 1200 for the individual 

models. Figure 58 and Figure 59 show the results of the sample size analysis for the combined 

archetype model. The Testing and Training scores appear to converge and plateau at a or 

before a training size of only 2000. The number of total training examples could be reduced to 

approximately 2000 without sacrificing accuracy based on these findings. Results suggest that 

suggest the number of training examples from each archetype can be reduced to approximately 

500 without sacrificing accuracy.  

 

Figure 58 Combined model sample size analysis 0-5000 

Figure 59 was included to allow comparison of the combined model to the individual models on 

the same scale. 
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Figure 59 Combined model sample size analysis 0-1200 

 

The convergence of the testing and training scores also signifies that the variance in the model 

is low, this explains why regularization with elastic net only tended to increase error as the 

tuning parameter value increased, if there was a lot of variance in the model elastic net can 

reduce test error by reducing variance. The standard deviation of the test scores is also small 

and doesn’t change considerably; this reflects the stability of the model during feature 

selection. The standard deviation is represented by the shaded regions in the figures below. 

Using 1200 training examples to build a single archetype model, the test and training RMSE 

show approximately the same convergence as the combined archetype model with the same 

number of samples. This analysis shows that by combining four archetypes into a single model, 

the simulation time per house to build the database of energy models can be reduced by four 

times. More research is required, but these findings suggest that as the number of archetypes 

described by a single model increases, the number of training examples required does not 

increase linearly. As more archetypes are included in a model, the number of training examples 
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per archetype will decrease. The sample size analysis for the individual archetype models can 

be seen in Figure 60 to Figure 63.  

 

Figure 60 Detached sample size analysis 

 

 

Figure 61 Three-storey semi sample size analysis 
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Figure 62 Large two-storey semi  sample size analysis 

 

 

Figure 63 Small two-storey semi sample size analysis 

The sample size analysis for the individual archetypes also explain the slightly lower accuracy in 

the individual archetype models compared to the combined model, the testing and training 

results appear to be still converging slightly past the 1200 sample point. If the test and training 

scores are still converging, the test score will still increase slightly if more samples were 

included. 
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The instability identified in the nested cross-validation results of the stepwise selection for 

individual archetypes can also be explained by the failure of the training and test errors to 

converge fully. The larger standard deviations in the prediction accuracy also suggest instability 

in the individual models compared to the combined model. Using more samples rather than 

less is the most conservative approach if computational time allows. A larger number of 

training examples may not improve accuracy substantially but will likely increase the stability of 

the model and its coefficients for the individual model. 

 

4.1.9 Embedded Feature Selection Combined dataset model 

In order to compare between elastic net and stepwise feature selection, an additional model 

was developed for the combined dataset. The process of developing and running a stepwise 

algorithm can be very time consuming; in addition, the optimal combination of features may 

not be selected depending on the order that features are added.  

Elastic net regression was tested in this section as an alternative to the stepwise selection. The 

same set of 50 collinear feature options that were used for the stepwise regression were used 

as the starting feature set for the elastic net regression. An L1 value of 0.65 was found to 

provide the most desirable combination of lasso and ridge properties. A range of 1500 l values 

from 0.00001 to 0.06 were used to develop a set of models that were analyzed.  

Figure 64 shows the RMSE score resulting from various l values. The RMSE value is plotted 

against the number of non-zero coefficients in the model.  



123 
 

 

Figure 64 RMSE compared to number of coefficients.  

Figure 65 shows a zoomed-in snapshot of the results shown in the previous figure. The RMSE 

achieved by the stepwise is plotted as a horizontal dashed line.  

 

Figure 65 RMSE compared to the number of coefficients, zoomed in.  

Elastic net can produce a model with lower error than the stepwise model if more features are 

used, the elastic net and stepwise models appear to include approximately the same number of 
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features for a model with similar accuracy. The error starts rapidly increasing when there are 

approximately 30 features remaining in the model. 

Most of the features removed from the elastic net model at small l values include categorical 

options. A large number of categorical options are removed early in part because all options are 

included in elastic net regression. In unregularized regression, one categorical option is dropped 

during the pre-processing phase to eliminate collinearity between options.   

Models with a validation accuracy at or above the stepwise model accuracy(shown by the 

dashed line), included between 28 to 30 features depending on the split being trained on. The 

stepwise selection methodology selected a model with 30 features.  

The average estimated coefficient values are plotted against tuning parameter values in  Figure 

66.  Many coefficients are very quickly are reduced to zero or removed from the model at a very 

small tuning parameter.  
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Figure 66 Coefficients plotted against tuning parameter l. 

 

The erratic behaviour of estimated coefficients at a small tuning parameter value is due to 

collinearity, which causes coefficients with a high variance to be quickly driven to 0. Some 

features are reduced, and others are increased to compensate. The coefficients appear to 

stabilize at a certain point in the model and decrease at a steady rate. As features describing 

geometry are shrunk towards 0, the volume becomes a more critical predictive feature and 

eventually surpasses air changes per hour. Generalized full building geometry features are 

shrunk to zero due to very high collinearity; these features are all very close to linear 

combinations of each other. Some categorical features that are quickly dropped from the 
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model include light type, number of conditioned floors, house type categories. In a separate 

analysis that was not described in this research, light type was found to have a high correlation 

to electricity end-use in the archetypes. The reduction in heat gain from more efficient light 

types resulted in an increase in heating demand. The result was a marginal increase in total 

energy use 

The average tuning parameter selected is plotted as a vertical line in Figure 67 against the 

average coefficient values across five splits, this line was plotted on a smaller range of tuning 

parameters to illustrate the behaviour before and after the tuning parameter value. There 

appears to be a point on this plot where the estimated coefficient values begin to stabilize. 

When some coefficients shrink much quicker than others or change signs, it is a marker of 

collinearity in the model. Coefficients with higher variance are penalized more than other 

coefficients. Plotting coefficient estimates compared to tuning parameters could be an effective 

way to diagnose collinearity in a model and determine what tuning parameter will provide 

interpretable coefficients.   
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Figure 67 Coefficients plotted against tuning parameter l. 

 

The estimated coefficients for the combined archetype model are shown below in table 7 

ordered by descending value. These coefficients were calculated using the average of the 

tuning parameters from each split of the dataset, the full training/validation set. Insights on the 

importance of each feature can be taken from the sign and the magnitude of these coefficient 

values. Window features such as window area and window U-factor should be slightly more 

important than shown if the intended U-factor range was used. A smaller than intended range 

of U-factors was used. This research is intended as a methodology, so this unrealistic range will 

not affect the final conclusions. If this model was to be used in the future a more realistic U-

factor range should be used for the windows. 
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  Mean Sd 
Air Changes per Hour 0.1066 0.0003 
Conditioned Volume 0.0771 0.0030 

0% HRV 0.0513 0.0004 
Ventilation/area 0.0412 0.0005 

Roof Area 0.0284 0.0018 
Depth 0.0135 0.0005 

U-factor Windows 0.0113 0.0003 
Neighour:Yes 0.0108 0.0002 

Ceiling Height Floors 1,2 0.0062 0.0004 
Window Side Area Left+Right 0.0056 0.0006 

West 0.0034 0.0003 
Incandescent 0.0021 0.0005 

Wall Front+Back Area 0.0006 0.0007 
Semi  0.0004 0.0003 

Wall Area East+West 0.0003 0.0003 
COP Cooling -0.0016 0.0003 

Detached -0.0028 0.0020 
Neighbour:No -0.0056 0.0001 

 RSI Slab -0.0110 0.0003 
East -0.0113 0.0005 

Window Area East+West -0.0117 0.0007 
Below Grade Foundation Height -0.0117 0.0006 

 RSI Foundation Wall -0.0119 0.0002 
Window Area North+South -0.0125 0.0004 

Surface to Volume Ratio -0.0159 0.0021 
Solar Heat Gain Coefficient -0.0184 0.0001 

85% HRV -0.0190 0.0011 
90 % HRV -0.0251 0.0010 

Furnace Coil Efficiency -0.0290 0.0002 
RSI Roof -0.0400 0.0007 

RSI Exterior Wall -0.0712 0.0005 
Intercept 1.7543 0.0022 

 

Table 25 Estimated Coefficients after elastic net regularization 

The final model, with an average of 30 features, predicted energy use with 7.28% MAPE. The 

model was also tested on subsets of the test set attributed to each house type. The model 

predicted energy use between 6.87% MAPE for the Small Two-Storey Semi and 7.75%MAPE for 

the large two-storey semi. The MAPE of the four archetypes fell within 1% of each other. The 

prediction accuracy varied between house types, but not substantially, the range of results can 

be seen below. 
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Table 26 Prediction scores for the elastic net model on the combined dataset.  

  Back Transformed 

  R2 RMSE MAPE 

Full Test Set 0.941 ± 0.005 6.33 ± 0.18 7.28 ± 0.22 

Three-Storey 
Semi 0.946 ± 0.011 6.01 ± 0.51 7.13 ± 0.56 

Large two-storey 
semi  0.934 ± 0.01 5.66 ± 0.65 7.75 ± 0.49 

Small Two-Storey 
Semi 0.93 ± 0.017 6.16 ± 0.43 6.87 ± 0.47 

Detached 0.94 ± 0.009 7.28 ± 0.53 7.33 ± 0.36 

 

The results above confirm that an elastic net model can be used to effectively select features 

from a large group of highly collinear and produce a model that can predict energy use for 

unseen training examples from multiple different archetypes.  

Based on Figure 65 elastic net regression can be used to produce a model lower test error than 

the stepwise model. This improved accuracy will come at the expense of including additional 

features compared to the stepwise model. The elastic net regression model produced a model 

with the same number of features on average as the stepwise model for a model with the same 

accuracy. Reducing the number of features may not always be a priority for a designer. If elastic 

net regression is used to select between a large number of collinear features, it is essential to 

assess the stability of estimated coefficients to check the variance if interpretability is 

considered important. 
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4.1.10 Comparing Stepwise and Elastic net models 

The mean standardized regression coefficients were plotted with error bars representing 

standard deviation to assess the stability of the coefficients generated from various models. 

The coefficients estimated by the stepwise model are shown in Figure 68.  

 

Figure 68 Standardized Regression Coefficients for the stepwise model 

The error bars are not visible for most features. the Detached House option shows the highest 

variance. There appears to be collinearity between Surface to Volume Ratio and the Detached 

option. The differences in energy use between semi and detached houses are likely related to 

surface to volume ratio so both features describe similar effects. VIF was not calculated for 

categorical features during stepwise selection; house type would likely have been removed if 

this had been considered. A visual inspection of Figure 68 by looking at the magnitude of the 

error bars in relation to the magnitude of the coefficients suggests that there is no problematic 

collinearity. The order of the coefficients by magnitude appears to be conserved no matter 
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where the coefficient estimates fall within the range of expected values shown by the error 

bars. 

Figure 69 shows an elastic net model with 50 features included, corresponding to a tuning 

parameter(l) of 0.000001.  

 

Figure 69 Standardized regression coefficients generated using elastic net, showing high coefficient variance. 

This is a model with almost no shrinkage of the coefficients, no coefficients have been reduced 

to zero. Depending on where the coefficient estimates from each cross-validation split fall 

within the range of the error bars shown, the order of the absolute value of the coefficients will 

vary substantially. Generalized geometry features have very high variance, the two-Storey 

option has the highest variance, along with building height and ceiling height. The combined 

effect of floor to ceiling height and overall building height should be enough to predict whether 

a building is two or three storeys with very high accuracy, so this variance would be expected. 
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There is a lot of variance in all the geometry features in this model. The above figure shows that 

collinearity will not necessarily always be addressed by elastic net regression. A sufficiently 

large l value is required to reduce collinearity to an acceptable level to allow the interpretation 

of the coefficient values. It is difficult to quantify the amount of variance remaining in the 

model with regularized regression. Pearson correlation and VIF values can not be calculated 

easily for features that have been shrunk with elastic net. A benefit of the stepwise selection 

strategy is that the process was automated, and the amount of collinearity was quantified. With 

the elastic net approach, visual inspection was used to assess the variance in the coefficients. 

There is likely a way to quantify  the amount of collinearity for each l value, this was outside the 

scope of this research. 

The chosen elastic net model is shown in Figure 70, coefficients with a value of 0 are removed 

from this plot.  
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Figure 70 Standardized regression coefficients for the chosen elastic net model 

The variance in the coefficient estimates has been substantially reduced from the model with 

effectively no regularization to a model in which a l value of 0.0099 was chosen. The collinearity 

in the stepwise and the elastic net model with a l value of 0.099 both show very low variance in 

the standardized regression coefficients. 

The combined models developed with stepwise and with elastic net were both effective at 

creating an accurate and interpretable model. The updated stepwise approach effectively 

addressed the limitations found in the existing research and was a fully automated process. The 

elastic net regression was more simple than the stepwise approach and can potentially produce 

a more accurate model depending on the number of non zero coefficients included. The 

limitation of elastic net regression in this approach is that it is not as simple to quantify 

collinearity, this can likely be addressed in future research. 

4.1.11 Artificial Neural Networks Combined Dataset. 

A preliminary analysis using artificial neural networks was conducted to determine what level of 

accuracy can be achieved in a black box style model. The pros and cons of using this approach 

are compared with regression models. Careful tuning is required to optimize the performance 

of neural networks. Care was required to ensure that no data leakage occurred. In ANN’s 

overfitting is much more likely than in a regression model, so data leakage can have a large 

effect on the accuracy of the final model than in a regression model.  

Careful selection of features is not as important in neural networks because collinearity does 

not pose any problems. In order to reduce the scope of this analysis, the input features chosen 

by forward stepwise selection for the combined model were used. 
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 A single hidden layer was selected instead of testing multiple hidden layers. A single hidden 

layer was the most common structure for ANN’s found in the existing research [12]. Only a 

single hidden layer is required to capture non-linear relationships in the data. The optimal 

number of nodes in the hidden layer was determined by finding the minimum validation error 

scores. Models were trained using 40 to 100 hidden nodes, the validation error reached a 

minimum value and began increasing between 60-70 nodes. After reaching a minimum 

validation error the training error continued decreasing due to overfitting, and the validation 

error began increasing. The results of the hyperparameter tuning are shown in Figure 71. 

 

Figure 71 Validation vs. test scores for increasing numbers of hidden nodes. 

The number of epochs was determined for each run of the inner cross-validation loop by using 

an “overfitting call back”. The model automatically stopped fitting when the validation error 

stopped improving. The average number of epochs from these runs was used to train a model 

on the training + validation set with 70 hidden nodes based on the results found above. This 

model was trained and tested 10 times, in each instance a different random set of starting 

weights was used, running the model multiple times gives an estimate of the performance of 
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the neural network. A deterministic model could be developed by fixing the random seed used 

in generating the initial weights. The mean prediction scores for the ANN model are reported in 

Table 27. 

Table 27 Artificial Neural Network Results 

Subset: R2 RMSE MAPE 

Full Test Set 0.977 ± 0.002 4.061 ± 0.18 4.54 ± 0.149 

Three-storey Semi  0.976 ± 0.003 3.894 ± 0.263 4.54 ± 0.223 

Two-storey Semi 2  0.979 ± 0.001 3.137 ± 0.042 4.19 ± 0.073 

Two-storey Semi 1  0.969 ± 0.003 4.286 ± 0.188 5.07 ± 0.136 

Detached  0.978 ± 0.002 4.699 ± 0.217 4.37 ± 0.253 
 

The results are summarized in Table 27. The model was able to predict with between 4.19 to 

5.07% error on each archetype, with an R2 between 0.97 and 0.98. The training set was able to 

achieve an R2 greater than 0.99.  

The residuals and predicted vs. actual plots are compared below for the stepwise model (Figure 

73), elastic net model (Figure 72) and ANN model (Figure 74).  

 

Figure 72 Stepwise model fit 
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Figure 73 Elastic net model fit 

 

 

Figure 74 Artificial Neural Network model fit. 

The plots for the neural net model show a tighter fit on the predicted vs. actual plots; the fit at 

higher energy use is significantly better than for regression models. The residual plot also shows 

smaller residuals and less obvious trends in the ANN model, compared to the regression model. 

These results suggest that there was non-linear behaviour in the underlying data relationships 

that could not be fully captured by a linear model, even with the power transformation.  
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The preliminary analysis using neural networks shows that these models are better suited to fit 

the relationships found in the synthetic dataset developed for this study. With some tuning of 

structure and hyperparameters, these models can outperform linear models. The accuracy 

could further be improved by performing feature selection or adding additional features. The 

feature set was selected by stepwise regression and was not representative of the best set of 

features for a more complex model in which collinearity is not a concern.  

Although the accuracy was better with the neural net model, the linear regression in this study 

was only a 2-3% worse. The neural net model can not be interpreted and can not be easily used 

outside of python. It can not be exported into an excel spreadsheet, for example. The 

importance of individual features and underlying relationships can not be readily determined. 

Using elastic net regression and tuning only the l value is a simple methodology that will 

produce a relatively accurate, sparse and interpretable model.  

 Building and tuning a neural network requires more expertise than building a regression 

model. The impact of data leakage, overfitting, and improperly validating the model have more 

severe consequences with a more flexible algorithm such as a neural network that can perfectly 

fit the training data. The application of a neural network would be best suited to a problem in 

which high accuracy is required, and interpretability is not.  
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5 Further research 

Improving the practicality of the model 

There is room for future work to be conducted in several areas. Collaboration with industry 

partners, policymakers, designers and builders should be considered in order to guide the 

model intent and inform the feature selection process. This will be a key step in developing the 

practical application of this type of model. More work should be done on extending this model 

to cover all century houses within Toronto. This research investigated the feasibility of 

surrogate modelling approaches and identified some effective methodologies. Future research 

should be able to focus more on the application of surrogate modelling and less on 

methodology development and data science. Practical application must be considered for 

future research so that this tool can be implemented. To ensure that this work is practical, 

validating surrogate models against a database of actual houses would be a useful step in 

additional research in order to further validate this approach. Incorporating occupant 

behaviour in models as categorical variables would be a valuable addition to this research.  

Researchers should investigate the maximum absolute percent error in addition to mean 

absolute percent error. The percent error for an individual training example ranged between 

approximately 37% to 0.008%. 37% error is not acceptable, training examples with high percent 

error should be investigated to determine why the model is not fitting these houses well. A rule 

should be developed to determine what is an unrealistic combination of features in an 

example. This can be used to determine if certain training examples that are outliers which 
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reduce the accuracy of the model can be removed. Any cleaning up of the dataset should be 

done very carefully to ensure the model can still predict accurately on all houses that the 

surrogate model is being used to describe. Removing unrealistic training examples will likely 

improve the model substantially. 

HVAC 

An important next step is including HVAC options in the model. This research looked at 

changing the efficiency of the HVAC system, but different systems should be tested as well. 

Electric systems such as air source or ground source heat pumps can significantly reduce carbon 

emissions and energy use compared to natural gas furnaces. Different HVAC systems can be 

modelled as categorical features. Likely more training examples will be required if multiple 

HVAC systems are considered. 

Occupancy 

Incorporating Occupant behaviour should also be considered in future models. Changing the 

scheduling of setpoints and incorporating natural ventilation, for example, will have an affect 

on energy use. Setpoint temperatures can be incorporated as a numerical feature, setpoint 

scheduling would be incorporated as categorical features. Appliance types and use profiles, for 

example, can be incorporated as categorical features in the model. This would be an 

improvement from the current archetype modelling approach in which only a single occupancy 

profile is generally used. A set of occupancy profiles could be developed based on low, medium 

or high energy use occupancy types. As an example, if a house had a certain set of appliances a 

certain occupancy profile could be applied. 



140 
 

Neural Networks to Predict Multiple Target Variables 

The artificial neural network methodology should be investigated more thoroughly. The 

artificial neural network model yielded higher accuracy than the multivariate regression model. 

One of the distinct advantages of using neural networks is that a single neural network can 

easily be trained on multiple target variables. Instead of total annual energy a neural network 

can be trained on multiple outputs such as each end-use energy components or monthly 

energy use. End-use energy components would enable an estimation of carbon emissions by 

using emissions factors for natural gas and the electrical grid. End-use components would also 

enable a more detailed analysis of retrofit solutions and their effects.  

As an example, upgrading the light type from incandescent to LED would reduce the electrical 

use but would increase the heating demand. If a natural gas furnace is being used for heating 

this would mean that switching to a more efficient light type would increase natural gas use to 

compensate. Depending on the emissions factor for the electricity grid, the result could be a 

substantial increase in carbon emissions from a slight decrease in total energy use. For this 

reason it is important to consider carbon and to consider end-use components of energy use. 

Training a neural network on monthly energy would enable a more robust calibration of a 

surrogate model to an existing home. Calibrating an energy model using annual energy use is 

not considered an adequate measure of how well a houses actual energy performance is being 

captured.  
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Elastic Net Feature Selection 

A method to quantify collinearity during elastic net regression should be investigated. A 

quantifiable measure of collinearity this would allow automation of the elastic net regression 

methodology for feature selection. In this research the only benefit stepwise regression had 

over elastic net was that the stepwise feature selection was fully automated, and the 

collinearity was quantified through a VIF calculation. 

Optimization 

There are many opportunities for future work in optimizing retrofit strategies using full multi-

objective optimizations. Current archetype research has been limited by model run times. 

Surrogate modelling allows full optimizations to be performed in substantially shorter time 

frames. Using a surrogate model could be used to run optimizations with various energy use 

targets and baseline conditions. 

Modifying Energy Models (.idfs) 

A script was written to randomly modify geometry for EnergyPlus .idfs in order to create four 

archetypes with a range of sizes and aspect ratios. The basic proportions of each archetype on 

each axis were maintained and stretched by a factor. The basement heights, ceiling heights and 

above ground basement height were randomized. More work could be done in this area to 

develop a larger number of random house geometries with less predictable dimensions. This 

could be used to create a model that would more comprehensively cover the housing stock. 
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Field Research 

More work can be done in determining baseline archetypes and applying a surrogate modelling 

methodology to model other house types such as modern, 1970s OBC and wartime. The data 

collection process should be updated. More data was collected than required during the field 

study; only data that is required for the modelling process should be recorded to simplify and 

speed up this process. Only exterior dimensions, window areas and floor heights need to be 

measured, and only energy modelling inputs should be considered to save time. Envelope 

related information can not be reliably determined through non-destructive field study in every 

house. Google earth can also be used to roughly measure a large number of houses using 3d 

measurement tools, more work could be done to investigate ways to streamline the data 

collection process, this process could potentially be automated. Future work could also 

investigate the application of the set of homes described by the CSDDRD [74], could be used to 

develop new archetype models in Toronto.  

User Interface 

Creating a user interface for surrogate models would be an important next step to consider. 

The end-user would have to be considered for a model interface. The application of surrogate 

modelling is more suited for groups with some knowledge of building systems and 

performance. This tool could be helpful as a design stage tool for an architect, or a builder who 

is looking to determine what energy savings are possible for a retrofit project based on the 

proposed design. If a tool was developed for homeowners, the inputs would have to be 

carefully explained, this would be more of an educational tool than a design tool.  
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Canadian Housing Stock Model 

There are limits to the scope of a single surrogate model, each model can only represent homes 

in the specific climate zone or city that was used to run the base energy models.  

Once a surrogate model has been developed for a certain subset of the housing stock such as 

century homes in Toronto. 
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6 Conclusions 

This research provides an important preliminary exploration into the application of surrogate 

modelling for bottom-up archetype development in Toronto. Models were developed to 

determine whether it is feasible for multiple archetypes to be described by a single model and 

whether a decrease in prediction accuracy would be expected. EnergyPlus was used to simulate 

6000 houses using performance parameters and geometry feature ranges through field study. 

Models were developed using simple multivariate linear regression, elastic net regression and 

artificial neural networks to enable rapid prediction of energy use for four distinct single-family 

house archetypes in Toronto, ON.  

A novel Forward stepwise selection methodology with a built-in collinearity threshold was used 

to select the best combination of features for two different two-storey semis, a three-storey 

semi and a semi-detached archetype. The entire surrogate modelling process with the stepwise 

methodology was automated. This process that was automated included creating the energy 

models for the dataset, determining the optimal feature transformations, preprocessing, 

selecting features and validating the model. The model produced for each house type predicted 

annual energy use with 7.02 to 7.53% error on average. A combined model that contained all 

four archetypes was developed to determine if a single model can replace multiple models. This 

model predicted annual energy use with 7.03% error on average. These results confirm that a 

single surrogate model can describe multiple single-family house archetypes.  Models were also 

trained using three archetypes and tested on a fourth in order to assess the accuracy of a 
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combined model, testing on archetypes not included in the training set. These models were 

developed to simulate the accuracy that can be expected when using a surrogate model to 

predict the energy use for any single-family century home in Toronto. These models predicted 

energy use with between 7.8 and 14.6% error on average.  

Currently, the surrogate modelling methodology is more applicable as a model of a large set of 

houses, the individual error for a single training example was as high as 37%. The worst 

prediction accuracy is potentially associated with unrealistic combinations of input features. On 

the other hand, training examples with more realistic combinations of parameters had percent 

error as low as .0082%. More work needs to be done to determine why the outlying data points 

exist and whether they can be removed to obtain a more accurate model. 

Using the stepwise feature selection the R2 improved from 0.84 to 0.94 and the variance 

inflation factor stayed below 5 for a model with 11 out of 45 potential geometry features 

included. Elastic net regression was tested as an alternative to the proposed stepwise 

regression. this methodology was simpler to implement and equally effective at producing a 

sparse model with high accuracy and low collinearity. More work should be done to quantify 

collinearity for each l value to allow automation of the surrogate modelling process.  

An artificial neural network was also built to determine the accuracy that is possible with a 

more flexible learning algorithm. This model predicted energy use with a MAPE of 4.5% 

suggesting that if accuracy is the only objective, an artificial neural network will provide a more 

suitable model than multivariate regression. A future researcher should consider whether it an 



146 
 

interpretable model is required and whether the compromise in prediction accuracy is worth it 

given the research objectives. 

 A sample size analysis was conducted to check if an adequate number of training examples 

were used for each stepwise model. The individual archetype models could have had better 

accuracy if more samples were included in training. The test scores were still improving at 1200 

samples. The accuracy of the combined model reached a maximum after only 2000 out of 6000 

total samples and this model did not appear to require more total samples than the individual 

models. Using a single surrogate model for all four archetypes included in this research reduced 

the number of simulated training examples that were be required to model each archetype by a 

factor of 3 to 4 compared to the number of samples required to model the archetypes 

individually. Combining multiple archetypes into one model did not cause a decrease in 

accuracy and instead was found to substantially decrease the time required to develop models 

in both dataset and model development. Using the methodology outlined in this research, 

accurate and interpretable models can be developed quickly to support the application of 

surrogate modelling to improve the current archetype modelling approach. This methodology 

increases the feasibility of using surrogate modelling to accurately model large subsets of the 

housing stock and enables more complex analysis that was previously not viable.  
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Glossary 

Feature An input that describes a specific building performance parameter in the model. For example 
window to wall ratio, wall RSI, Air changes per hour. 

Training Example An EnergyPlus model that represents a potential combination of feature values. The set of 
training examples is the synthetic dataset, this is used to build the surrogate model. 

Base Feature A feature that is directly input to EnergyPlus to create the training examples. 

Combined Feature A linear combination of multiple input features. 

Target Variable The value that the learning algorithm is trying to estimate using the features values. This is the 
output of the learning algorithm. 

Validation Set 
 Data split used to estimate test error to allow comparison between model types and tune 
hyperparameters. Using this set to choose the best hyperparameters means that it is not 

longer an independent test set. Validation accuracy is an optimistic estimate of the true error. 

Training Set data split used to generate the model by fitting the relationship between the input and output 
features. 

Testing Set / Holdout 
Set 

Independent Data split used to report the accuracy of the model developed with the 
training+validation set. This data has not been used to build the model. 

Mean Absolute Percent 
Error (MAPE) The mean of the percent error for each training example. Also called average error. 

Learning Algorithm A predictive algorithm that estimates an output based on a set of inputs by training it on a set 
of examples. 

Multivariate Regression 
(MAPE) Linear equation with multiple inputs. Y=b1+b1x1+b2x2… 

Artificial Neural 
Network (ANN) 

Learning algorithm that uses nodes to emulate the neurons in a brain. Considered a universal 
approximator that can model any linear or non linear function if the correct structure is used. 

Elastic Net Regression with shrinkage penalty used for feature selection as well 

Combined Model The surrogate model containing all four archetypes (6000 training examples) 

Individual Model Surrogate model for an individual archetypal house (1500 training examples). 

Hyperparameter A parameter that changes how a learning algorithm functions. 

Tuning Parameter An example of a hyperparameter in elastic net regression that determines how much the 
coefficients are shrunk. 

Standardization Puts features on the same scale by subtracting the mean and dividing by standard deviation. 

Cross-validation Splits dataset into equal components, validation and testing and determines average 
performance of model. K-fold cross validation is used in this research. 
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Nested cross-validation Uses a cross validation loop to evaluate accuracy and an inner loop to tune model 
hyperparameters. 

Fold A set  of training examples within the cross-validation loop. 

Split A specific set of training examples sampled from the full dataset. 

Latin Hypercube 
Sampling 

Sampling plan that creates random input values evenly distributed between 0 and 1 used in 
conjunction with the feature ranges to create a random set of training examples. 

Categorical Feature A feature that represents an option, described by a binary value 0 or 1. 

Numerical Feature A continuous numerical feature that represents a range of values. 

Back-transform Converting log transformed output into units of Gj by raising 10 to the exponent of the value. 

Actual Energy Refers to simulated annual energy use using EnergyPlus. 

 

 

 

  



149 
 

Appendices 

A1: Cross-Validation Results 

Elastic Net Nested Cross-Validation Results (Combined Model) 

   Log Transformed Scores Back Transformed Scores 

  Set R2 RMSE MAPE R2 RMSE MAPE 

Fold 1 

Validation 0.944 0.042 1.862       

Test 0.951 0.039 1.757 0.946 6.136 7.047 

Three Storey Semi 0.954 0.038 1.713 0.949 6.027 6.840 

Large Two-Storey Semi 0.929 0.042 1.987 0.922 5.717 7.888 

Small Two-Storey Semi 0.954 0.036 1.609 0.942 5.942 6.395 

Detached 0.957 0.039 1.707 0.953 6.863 7.036 

Fold 2 

Validation 0.946 0.041 1.842       

Test 0.940 0.043 1.903 0.934 6.510 7.506 

Three Storey Semi 0.936 0.044 1.951 0.932 6.570 7.654 

Large Two-Storey Semi 0.950 0.037 1.837 0.949 4.614 7.209 

Small Two-Storey Semi 0.925 0.045 1.956 0.910 6.551 7.611 

Detached 0.938 0.045 1.856 0.933 7.723 7.506 

Fold 3 

Validation 0.946 0.041 1.840       

Test 0.945 0.042 1.877 0.939 6.631 7.535 

Three Storey Semi 0.942 0.042 1.863 0.944 6.174 7.354 

Large Two-Storey Semi 0.936 0.042 2.033 0.923 6.041 8.187 

Small Two-Storey Semi 0.946 0.039 1.764 0.943 5.980 6.971 

Test_detached 0.942 0.044 1.852 0.932 8.108 7.650 

Fold 4 

Validation 0.945 0.041 1.840       

Test 0.948 0.041 1.861 0.942 6.310 7.392 

Three Storey Semi 0.943 0.042 1.874 0.935 6.557 7.374 

Large Two-Storey Semi 0.942 0.044 2.159 0.936 6.152 8.507 

Small Two-Storey Semi 0.951 0.038 1.714 0.943 5.636 6.706 

Detached 0.947 0.040 1.681 0.945 6.774 6.895 

Fold 5 

Validation 0.945 0.041 1.842       

Test 0.945 0.041 1.804 0.938 6.330 7.201 

Test_semi3 0.958 0.036 1.590 0.959 5.385 6.323 

Test_semi2 0.942 0.042 1.978 0.932 6.167 7.834 

Test_semi1 0.935 0.041 1.741 0.918 6.508 6.873 

Test_detached 0.934 0.044 1.896 0.932 7.107 7.730 

Mean Validation 0.945 0.041 1.845       

Test 0.946 0.041 1.840 0.940 6.383 7.336 
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Three Storey Semi 0.947 0.040 1.798 0.944 6.143 7.109 

Large Two-Storey Semi 0.940 0.042 1.999 0.932 5.738 7.925 

Small Two-Storey Semi 0.943 0.040 1.757 0.931 6.123 6.911 

Detached 0.944 0.042 1.798 0.939 7.315 7.364 

SD 

Validation 0.001 0.000 0.009       

Test 0.004 0.002 0.059 0.005 0.191 0.208 

Three Storey Semi 0.009 0.003 0.145 0.011 0.486 0.529 

Large Two-Storey Semi 0.008 0.003 0.116 0.011 0.654 0.482 

Small Two-Storey Semi 0.012 0.003 0.126 0.016 0.394 0.448 

Detached 0.009 0.003 0.097 0.010 0.578 0.375 
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Stepwise Feature Selection Nested Cross-Validation Results (Combined Model) 

    Log Transformed Back Transformed 

    R2 RMSE MAPE R2 RMSE MAPE 

Fold 1 

Test 0.954 0.038 1.683 0.948 6.067 6.756 

Three Storey Semi 0.957 0.036 1.660 0.951 5.885 6.685 

Large Two-Storey Semi 0.934 0.040 1.873 0.926 5.567 7.368 

Small Two-Storey Semi 0.956 0.035 1.553 0.942 5.919 6.193 

Detached 0.958 0.038 1.635 0.953 6.895 6.748 

Fold 2 

Test 0.944 0.042 1.827 0.935 6.439 7.218 

Three Storey Semi 0.942 0.042 1.882 0.939 6.198 7.410 

Large Two-Storey Semi 0.958 0.034 1.654 0.953 4.425 6.457 

Small Two-Storey Semi 0.931 0.043 1.900 0.911 6.532 7.466 

Detached 0.937 0.045 1.845 0.929 7.919 7.435 

Fold 3 

Test 0.949 0.040 1.786 0.942 6.468 7.179 

Three Storey Semi 0.948 0.040 1.775 0.952 5.726 7.046 

Large Two-Storey Semi 0.945 0.039 1.833 0.928 5.842 7.342 

Small Two-Storey Semi 0.953 0.037 1.671 0.947 5.741 6.654 

Detached 0.940 0.044 1.870 0.930 8.228 7.691 

Fold 4 

Test 0.951 0.040 1.794 0.942 6.306 7.140 

Three Storey Semi 0.947 0.040 1.835 0.939 6.309 7.286 

Large Two-Storey Semi 0.946 0.043 2.013 0.936 6.153 7.891 

Small Two-Storey Semi 0.954 0.037 1.650 0.944 5.608 6.482 

Detached 0.948 0.040 1.665 0.942 6.990 6.832 

Fold 5 

Test 0.948 0.040 1.718 0.940 6.228 6.867 

Three Storey Semi 0.963 0.034 1.523 0.964 5.026 6.135 

Large Two-Storey Semi 0.949 0.040 1.793 0.935 6.016 7.064 

Small Two-Storey Semi 0.939 0.039 1.679 0.924 6.265 6.653 

Detached 0.933 0.045 1.869 0.927 7.351 7.587 

Mean 

Test 0.949 0.040 1.762 0.942 6.302 7.032 

Three Storey Semi 0.951 0.038 1.735 0.949 5.829 6.912 

Large Two-Storey Semi 0.946 0.039 1.833 0.936 5.600 7.224 

Small Two-Storey Semi 0.947 0.038 1.691 0.933 6.013 6.689 

Detached 0.943 0.043 1.777 0.936 7.477 7.259 

SD 

Test 0.003 0.001 0.059 0.004 0.163 0.207 

Three Storey Semi 0.008 0.003 0.144 0.010 0.506 0.515 

Large Two-Storey Semi 0.008 0.003 0.130 0.011 0.692 0.523 

Small Two-Storey Semi 0.011 0.003 0.127 0.016 0.381 0.473 

Detached 0.010 0.003 0.117 0.011 0.581 0.438 
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A2: Survey Results 

Small Two-Storey Semi Data collection 

Geometry 

House: House 1 House 2 House 3 House 4 
Floor to Ceiling Basement 2.12 2.02 2.11 2.19 
Floor to Ceiling Main Floor 2.50 2.54 2.54 2.38 

Floor to Ceiling Second Floor 2.46 2.43 2.54 2.41 
Floor Thickness 0.20 0.27 0.25 0.30 

Above Grade Basement Height 1.10 1.15 1.12 1.08 
Ground Floor Width 4.34 4.17 4.89 4.90 

Second Floor Jog Width 3.59 3.52 4.20 4.19 
Depth Main Floor 11.78 11.61 11.57 11.40 

Depth Second Floor 12.92 12.77 12.99 12.82 
Porch Roof Depth 2.32 2.23 2.26 2.29 
Porch Roof Height 3.55 3.80 3.70 3.59 

Building Height (Flat Roof) 6.29 6.57 6.40 6.04 
Building Height (To Peak Roof) 7.49 7.82 7.53 7.50 

Attic Roof Depth 6.43 5.57 5.25 5.20 
Flat Roof Length 6.49 7.20 7.74 7.62 

Rear Addition Height1 na na 3.68 na 
Rear Addition Height2 na na 3.94 na 

Rear Addition Depth na na 3.40 na 
Rear Addition Width na na 2.40 na 

 

Window areas 

  house 1 house 2 house 3 house 4 average 
Basement Side 0.356128 0.304 0.686596 0.84494 0.547916 

Wall area basement side 12.958 13.3515 12.9584 12.255 12.88073 
WWR Side 0.027483 0.022769 0.052985 0.068947 0.042538 

Basement Back 0.301935 0.304 0.34 0.42247 0.342101 
Wall area basement back 4.774 4.79205 5.4768 5.2675 5.077588 

WWR basement back 0.063246 0.063438 0.06208 0.080203 0.067375 
Main Front 1.300643 1.8539 1.661932 1.3312 1.536919 

Wall area Main Front  11.9784 11.6551 13.692 12.9458 12.56782 
WWR Main Front 0.108582 0.159063 0.12138 0.102829 0.12229 

Main Side  1.3688 1.858061 1.3312 1.519354 
wall area side main 32.5128 32.47317 32.396 30.1188 31.87519 

WWR Side Main  0.044007 0.060844 0.046242 0.047666 
Main Back 0.838708 0.726 0.37823 0.4836 0.606635 

wall area back  main 11.9784 11.6551 13.692 12.9458 12.56782 
WWR Back 0.070018 0.06229 0.027624 0.037356 0.048269 

Second Fron 1.546449 2.3474 3.178058 1.8432 2.228777 
wall area front second 9.760338 9.47936 11.7656 11.16102 10.54158 
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WWR Front second 0.158442 0.247633 0.270114 0.165146 0.211427 
Second Side 1.110966 1.012 0.477418 1.94754 1.136981 

Wall area side second 35.11384 34.40038 36.3748 34.16797 35.01425 
WWR Side second 0.031639 0.029418 0.013125 0.056999 0.032472 

Second Back 0.697418 0.6545  0.9344 0.762106 
Wall area back second 11.79612 11.22173 13.692 13.0585 12.44209 

WWR Back second 0.059123 0.058324  0.071555 0.061252 
avg side 0.018206 0.033466 0.036977 0.053875 0.040169 

avg front 0.107386 0.162046 0.15646 0.108067 0.133597 
avg back 0.064384 0.060881 0.021857 0.058854 0.056862 

 

Structure 

 

Sides and back 
main 

Sructure Double Wythe Wood Frame double wythe  Wood frame 

Cladding    Brick Face   Face brick 

Insulation 3/4" foam   rsi 1.3   

Front main 
Sructure double wythe Wood frame double wythe Wood frame 

Cladding    Brick face   Face brick 

Insulation 3/4"xps   rsi 1.3   

Sides and back 
second 

Sructure wood frame Wood frame double wythe Wood frame 

Cladding  aluminum Cedar shakes   Aluminum siding 

Insulation blown in 3.5" old fib batt 3.5"   1"xps 

Front second 
Sructure wood frame Wood frame double wythe Wood frame 

Cladding  aluminum Cedar shakes   Aluminum siding 

Insulation blown in 3.5" old fib batt 3.5     

Roof insulation Flat     rsi 3.24(18.4) effective 3.01(17)   

Attic     rsi 3.24(18.4) effective 3.01(17)   

Basement Slab Structure Concrete  Concrete  Concrete  Concrete  

Insulation         

Basement 
foundation 

Sructure 
triple wythe triple wythe triple wythe triple wythe 

Insulation none       

Exposed floor Insulation         
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Large Two-Storey Semi Data collection 

Geometry 

House: House 1 House 2 House 3 House 4 House 5 

Floor to Ceiling Basement 1.97 2.28 2.42 1.93 1.80 

Floor to Ceiling Main Floor 2.60 2.75 2.62 2.72 2.40 

Floor to Ceiling Second Floor 2.45 2.48 2.46 2.60 2.56 

Floor Thickness 0.21 0.24 0.26 0.24 0.24 

Above Grade Basement Height 1.20 1.10 1.14 1.14 1.36 

Ground Floor Width 4.33 4.50 4.57 4.85 5.09 

Second Floor Width 4.33 4.50 4.57 4.85 5.09 

Depth Main Floor 12.28 15.76 13.39 12.30 12.87 

Depth Second Floor 12.28 15.76 13.39 12.30 12.87 

Porch Roof Depth 2.22 1.98 2.91 2.47 2.60 

Porch Roof Height 2.58 2.52 3.70 3.90 3.84 

Building Height (Flat Roof) 6.68 6.66 6.61 6.77 6.82 

Building Height (To Peak Roof) 8.80 8.95 9.03 9.16 8.57 

Attic Roof Depth 4.30 4.20 4.60 5.96 3.70 

Flat Roof Length 8.43 12.01 7.82 6.34 9.43 

Rear Addition Height1 3.97 6.66 na na 2.28 

Rear Addition Height2 4.43 6.66 na na 4.01 

Rear Addition Depth 2.75 2.90 na na 4.17 

Rear Addition Width   2.41 na na 2.76 

 

Window Areas 

  house 1 house 2 house 3 house 4 house 5 Average 
Basement Side 0.438709 0.614192 0.469676 0.659999 1.028385 0.642192 

Wall area basement side 14.736 17.336 15.2646 14.022 17.5032 15.77236 
WWR Side 0.029771 0.035429 0.030769 0.047069 0.058754 0.040716 

Basement Back 0 0.731611 0.234838 0.278709 0.318064 0.312645 
Wall area basement back 5.196 4.95 5.2098 5.529 6.92648 5.562256 

WWR basement back  0.1478 0.045076 0.050409 0.04592 0.056208 
Main Front 1.498062 1.561287 1.401933 0.516128 2.341157 1.463713 

Wall area Main Front  12.2972 13.455 13.08391 14.3463 13.45571 13.32762 
WWR Main Front 0.121821 0.116038 0.107149 0.035976 0.17399 0.109826 

Main Side 4.042895 1.755727 1.025804 1.4329 2.750317 2.201529 
wall area side main 34.8752 47.1224 38.33557 36.3834 34.00254 38.14382 

WWR Side Main 0.115925 0.037259 0.026759 0.039383 0.080886 0.057717 
Main Back 3.484697 3.497412 1.276909 1.576741 1.120643 2.191281 

wall area back  main 12.2972 13.455 13.08391 14.3463 13.45571 13.32762 
WWR Back 0.283373 0.259934 0.097594 0.109906 0.083284 0.164416 

Second Fron 1.709674 2.2192 1.678061 1.6129 2.308641 1.905695 
wall area front second 12.2972 13.455 13.08391 14.3463 13.45571 13.32762 

WWR Front second 0.13903 0.164935 0.128254 0.112426 0.171573 0.142988 
Second Side 1.300965 2.200044 1.424513 0.838708 1.987093 1.550265 
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Wall area side second 33.0332 42.85144 36.19317 34.932 35.99739 36.60144 
WWR Side second 0.039384 0.051341 0.039359 0.02401 0.055201 0.042355 

Second Back 0.922579 1.944888 1.00645 1.233546 1.237417 1.268976 
Wall area back second 11.6477 12.2355 12.35271 13.774 14.24512 12.85101 

WWR Back second 0.079207 0.158955 0.081476 0.089556 0.086866 0.098745 
avg side 0.069969 0.042587 0.032519 0.034353 0.065892 0.048543 

avg front 0.107677 0.118659 0.098159 0.062213 0.137414 0.126407 
avg back 0.15124 0.201495 0.082169 0.0918 0.077284 0.118866 

 

Structure 

Sides and 
back main 

Sructure Wood Frame Wood Frame Wood Frame Double Wythe Double Wythe 

Cladding  Brick Face Brick Face Brick Face   Angel Stone 

Insulation           

Front main 
Sructure Wood frame Wood frame Wood frame Double Wythe Double Wythe 

Cladding  Brick face Brick face Brick face   Angel Stone 

Insulation         na 

Sides and 
back 

second 

Sructure Wood Frame Wood Frame Wood Frame Double Wythe Double Wythe 

Cladding  Brick Face Brick Face Brick Face na Angel Stone 

Insulation           

Front 
second 

Sructure Wood frame Wood frame Wood frame Double Wythe Double Wythe 

Cladding  Brick face Brick face Brick face   Angel Stone 

Insulation           

Roof 
insulation 

Flat   3"batt   5" 5" 

Attic   3" batt   
r60 blown fib 

glass   

Basement 
Slab 

Structure Concrete  Concrete  Concrete  Concrete  Concrete  

Insulation           

Basement 
foundation 

Sructure triple wythe triple wythe triple wythe triple wythe triple wythe 

Insulation   r12     fib glass 3.5 
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Survey Results 

Barriers to performing retrofits ranked on scale of 1-5 from not an issue to major issue. 

House: a b c d a b c d a b c d a b c d a average 
Cost 4 1 2 5 4 2.5 1 4 5 2 1 5 1 5 5 5 1 3.15 
Time 2 3 5 1 1 1 3 3 2 1 5 4 3 1 3 2 2 2.47 

Displacement 2 2 2 3 5 1 2 2 1 4 4 2 4 1 3 4 3 2.65 
Disruption 1 4 2 3 3 1 4 1 3 2 3 4 2 1 3 3 4 2.59 
Aesthetics 3 5 3 1 3 3 6 5 1 2 2 2 5 1 1 2 5 2.94 

Unclear Savings 2 5 1 3 4 3 5 2 4 2 1 2 5 1 3 1 3 2.76 
 

 

Percent energy reduction goals, budget and building features that should be maintained. 

Percent Energy 
Reduction Goal 

(%) 
Budget goal ($) Aesthetic features to 

Maintain? 

Unspecified Unspecified nothing 
50 40,000 Brick facade 
25 40,000 Interior trim 
75 62,500 brick facade 
50 62,500 nothing 
75 15,000 front brick 

Unspecified 15,000 nothing 
Unspecified 10,000 nothing 

20 15,000 
brick facade, interior 

detailing 
15 10,000 nothing 
75 62,500 nothing 

Unspecified Unspecified brick facade 
50 62,500 oak front door 
50 10,000 nothing 
50 15,000 nothing 
25 87,500 brick front 
40 15,000 nothing 
50 15,000 nothing 
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A3: Sample Python Script 

Python/eppy Geometry Modification Script  

#bh=new below grade height (m) 
#width_x: new width (m) 
#base_z: new basement height (m) 
#height_z: new floor to ceiling height, main and second floor (m) 
#depth_y: new depth (m) 
#fh_z: new basement above grade height (m) 
 
#bh1=original below grade height (m) 
#width_x0: original width (m) 
#base_z0: original basement height (m) 
#height_z0: original floor to ceiling height, main and second floor (m) 
#depth_y0: original depth (m) 
#fh_z0: original basement above grade height (m) 
 
#geometry modification function 
def updategeo(): 
    bh=base_z-fh_z  
    bh1=base_z0-fh_z0 
    #update vertices in each zone  
    for s in surfaces: 
         
        if s.Zone_Name==basementzone and s.tilt==90 and s.Vertex_2_Zcoordinate==0 or s.Zone_Name==basementzone and s.tilt==180:  
            for field in s.fieldnames:   
                    if 'XCOORDINATE' in field.upper() and type(s[field])==float: 
                        s[field]=s[field]*(width_x/width_x0)      
                    if 'YCOORDINATE' in field.upper() and type(s[field])==float: 
                        s[field]=s[field]*(depth_y/depth_y0)          
                    if 'ZCOORDINATE' in field.upper() and type(s[field])==float: 
                        s[field]=s[field]*((bh)/(bh1)) 
             
        if s.Zone_Name==basementzone and s.tilt==90 and s.Vertex_2_Zcoordinate!=0 or s.Zone_Name==basementzone and s.tilt==0: 
            for field in s.fieldnames:   
                    if 'XCOORDINATE' in field.upper() and type(s[field])==float: 
                        s[field]=s[field]*(width_x/width_x0)      
                    if 'YCOORDINATE' in field.upper() and type(s[field])==float: 
                        s[field]=s[field]*(depth_y/depth_y0)          
                    if 'ZCOORDINATE' in field.upper() and type(s[field])==float: 
                        s[field]=(s[field]-bh1)*(fh_z/fh_z0)+bh 
     
        if s.Zone_Name != basementzone: 
                for field in s.fieldnames:   
                    if 'XCOORDINATE' in field.upper() and type(s[field])==float: 
                        s[field]=s[field]*(width_x/width_x0)       
                    if 'YCOORDINATE' in field.upper() and type(s[field])==float: 
                        s[field]=s[field]*(depth_y/depth_y0)          
                    if 'ZCOORDINATE' in field.upper() and type(s[field])==float: 
                        s[field]=s[field]*(height_z/height_z0)      
    #update zone origins                    
    for zone in zones: 
        if zone.Name==basementzone: 
              zone.Z_Origin *=(bh)/(bh1) 
        if zone.Name==firstfloorzone: 
            zone.Z_Origin =fh_z 
        if zone.Name==secondfloorzone: 
            zone.Z_Origin =fh_z+height_z 
        if zone.Name==thirdfloorzone: 
            zone.Z_Origin =fh_z+2*height_z 
            zone.Y_Origin*=depth_y/depth_y0               
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A4: Ethics Application Materials 

Information Sheet for Residents 

Hello!  

We are 2 master’s students from the Graduate Program in Building Science at Ryerson University working in 
collaboration with The Pocket Community Association. We are conducting research on renovations to increase 
energy efficiency for century homes.  

We are creating a series of computer energy models of homes in the Pocket neighbourhood to understand their 
current energy performance, and determine the effectiveness of various renovation strategies to lower heating 
and cooling energy usage. 

We have identified your home as a candidate for this research and are presenting you with an exciting 
opportunity to participate! 
 
Many homes built at the turn of the century follow similar blueprints, meaning there are a few common repeating 
house types (archetypes). Instead of creating an energy model for individual homes, our goal is to create a general 
model of a several housing archetypes that can accurately describe a significant portion of the pocket 
neighbourhood.  

In order to create the energy models, we need to visit specific homes in the neighbourhood that fit the archetype. 
If you are interested in participating, we require a short visit (1-2 hours) to your home to collect data. We have a 
flexible schedule so we should be able to work around your availability.  

What data will we collect if you decide to participate? 

- Measure the interior and exterior dimensions of your home 
- Record window measurements and types 
- Sketch the floor layout 
- Record exterior and interior wall types 
- Take a look at the HVAC system 

What is required of you if you decide to participate? 

- Be present during our data collection 
- Fill out a small questionnaire on your energy use habits 
- Allow us access to your hydro and gas bills (ideally for the last 2 years,  

however, we will accept whatever you have J) 
The research findings will be shared when completed. This is an opportunity to learn about your home and its 
energy usage. This study will identify the major sources of energy loss in your home and some renovation 
strategies to save on your energy bill and help the planet. 

If you are interested in participating please let us know, and if you have any questions feel free to ask. Thank you 
and we hope to hear from you!  

Cecilia Skarupa – Cskarupa@ryerson.ca 
Cameron Lawrence –Cameron.lawrence@ryerson.ca 
Supervisor: Professor Russell Richman, Ph.D, P.Eng. –Richman@ryerson.ca 
 
*Note: All data collected from your home will remain confidential. The data collected will only be used to calculate averages or 
to determine general construction practices. No information or photos will be included in the research. If you chose to 
participate, you are permitted to discontinue participation at any time or decline to answer any questions. This study, the 
questionnaire survey, and the data collection methods have been approved by the Ryerson University Research Ethics Board.  
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Consent Form 

Ryerson University 
Consent Agreement 

 
You are being invited to participate in a research study.  Please read this consent form so that 
you understand what your participation will involve.  Before you consent to participate, please 
ask any questions to be sure you understand what your participation will involve.  

 
TORONTO HOUSING ARCHETYPE STUDY 
 
INVESTIGATORS: This research is being conducted by Cameron Lawrence and Cecilia 
Skarupa for the partial completion of their graduate studies in the Building Science program at 
Ryerson University. The research is being supervised by Dr. Russell Richman from the 
Department of Architectural Science at Ryerson University. 
 
This study is not funded. 
 
If you have any questions or concerns about the research, please feel free to contact: 
Cameron Lawrence – cameron.lawrence@ryerson.ca or 416 879 5759 
Russell Richman - richman@ryerson.ca or 416-979-5000 ext.  
Cecilia Skarupa -Cecilia.skarupa@ryerson.ca 
 
 
 
PURPOSE OF THE STUDY:  
The purpose of this study is to categorize the house types in the pocket neighbourhood, and 
determine the effectiveness of various retrofit strategies to achieve high levels of energy 
efficiency for these homes. 4 different house types(archetypes) will be investigated, data will be 
collected in order to create an energy model of each house type. A model of the existing house 
performance will be generated and compared to further models in which various retrofit 
strategies are tested to increase energy efficiency. This study will focus on century detached and 
semi-detached homes. The study requires measurements inside 4 homes for each archetype 
considered to collect sufficient data. 20 people with homes matching the archetype descriptions 
will be recruited for this study. 
 
 
WHAT YOU WILL BE ASKED TO DO:  
If you volunteer to participate in this study, you will be asked to do the following things: 
 
Data will be collected from your home including housing dimensions, interior wall locations, and 
heating system information. The data will be used to prepare computer energy models to test 
energy efficiency and the effectiveness of various renovation strategies.  
You will be asked to: 
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- Fill out a questionnaire survey about your home, the heating system, and appliances (for 
example: In what room is the thermostat located? How is your home heated? What 
appliances are typically used? At what time of the day are they used?) 

- Provide access to the outside and inside of your home so that the researcher can take 
measurements and photographs and document the locations of interior walls 

- Provide access to the heating system of the home and any manuals for the heating system 
(i.e. furnace manuals) 

- Provide access to utility bills for a two year timespan, these can be obtained directly 
through the utility provider. Participant can choose to remove identifying/personal 
information from this data. Energy data will be copied into a spread sheet stored in the 
Ryerson google drive, utility bills will be electronically deleted once the energy data has 
been collected. 

 
The research will take place at your home for an expected duration of two (2) hours. The study 
will be scheduled at a time when you will be home and can be present for the duration of the 
study. 
 
 
 
POTENTIAL BENEFITS:  
 
Participants that participate in this study will be able to better understand the energy profile of 
their home and how their usage relates to the community average. The participants will be 
provided with the most effective renovation designs to reduce energy use and improve comfort in 
their homes. This will simplify the renovation process for the homeowner if they are interested, 
key areas for improvement that will offer the greatest reduction in energy use will be clearly 
identified.  
 
A potential benefit to society is the potential to use this research to achieve reductions in energy 
use and greenhouse gas emissions if the proposed renovations can be applied to multiple homes.  
 
The potential benefit to science is a framework that can be used to conduct similar research in 
other neighbourhoods in Toronto and abroad.  
 
I cannot guarantee, however, that you will receive any benefits from participating in this study.    
 
WHAT ARE THE POTENTIAL RISKS TO YOU AS A PARTICIPANT:  
You may experience discomfort with the researcher entering your home or property and 
collecting data and taking photographs. You may also experience discomfort in answering the 
survey questions. To minimize the risk of discomfort, the researcher will not make public any 
information specific to your home and your identity and address will remain confidential. The 
data collected will be averaged or used to make generalizations about construction practices. Any 
photographs taken will be used for the researcher’s reference and will not be made public. If you 
begin to feel uncomfortable you may discontinue participation in the study. If you are 
uncomfortable with photographs being taken you may inform the researcher and photographs 
will not be taken.   
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CONFIDENTIALITY: 
You will not be asked to identify yourself for the purpose of the study. All information gathered 
will be confidential. Your address and information specific to your home will not be reported in 
the study. The data collected from your home will only be used to determine averages or to make 
generalizations about construction practices. All collected data will remain anonymous in the 
report and be made available only to researchers and supervisor.  
 
DATA STORAGE 
All data will be stored on the Ryerson Google Drive.  Access will be provided only to the 
researchers and faculty supervisors. No identifying data will be stored past the conclusion of the 
project. Data will be electronically erased. 
 
DATA DISSEMINATION 
Data will be used to generate scholarly research articles and two dissertations. All dissemination 
is public and participants will be directed to all publications generated. 
 
VOLUNTARY PARTICIPATION AND WITHDRAWAL: 
Participation in this study is completely voluntary. You can choose whether to be in this study or 
not. If any question makes you uncomfortable, you can skip that question. If you choose to stop 
participating, you may also choose to not have your data included in the study. Your choice of 
whether to participate or not will not influence your future relations with Ryerson University or 
the investigators (Cameron Lawrence and Cecilia Skarupa) involved in the research.    
 
 
 
 
QUESTIONS ABOUT THE STUDY: If you have any questions about the research now, please 
ask. If you have questions later about the research, you may contact. 
 
Cameron Lawrence – cameron.lawrence@ryerson.ca or 416 879-5759 
Russell Richman - richman@ryerson.ca or 416-979-5000 ext.  
Cecilia Skarupa -Cecilia.skarupa@ryerson.ca 647 923-5413 
 
 
This study has been reviewed by the Ryerson University Research Ethics Board. If you have 
questions regarding your rights as a participant in this study please contact: 

Research Ethics Board 
c/o Office of the Vice President, Research and Innovation 
Ryerson University 
350 Victoria Street 
Toronto, ON M5B 2K3 
416-979-5042 
rebchair@ryerson.ca 
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TORONTO HOUSING ARCHETYPE PROJECT 
 
CONFIRMATION OF AGREEMENT: 
 
Your signature below indicates that you have read the information in this agreement and have 
had a chance to ask any questions you have about the study. Your signature also indicates that 
you agree to participate in the study and have been told that you can change your mind and 
withdraw your consent to participate at any time. You have been given a copy of this agreement.  
You have been told that by signing this consent agreement you are not giving up any of your 
legal rights. 

 
____________________________________  
Name of Participant (please print) 
 
 
 _____________________________________  __________________ 
Signature of Participant     Date 
 
 
 _____________________________________  __________________ 
Signature of Investigator     Date 
 
 
PHOTOGRAPHY CONSENT AGREEMENT: 
 
Your signature below indicates that you have read the information above and give researchers 
consent to take photos in the participants home. The photos will include, HVAC system, and/or 
building envelope. They are for the investigators and supervisors reference only, and will not be 
included in any paper or presentation, so the participant confidentiality will be maintained. The 
photos will be stored on Ryerson Google Drive until two years after the end of the project, at 
which point they will be deleted. 

 
____________________________________  
Name of Participant (please print) 
 
 
 _____________________________________  __________________ 
Signature of Participant     Date 
 
 
 _____________________________________  __________________ 
Signature of Investigator     Date 
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RYERSON UNIVERSITY 
Questionnaire Survey 

 
TORONTO HOUSING ARCHETYPE PROJECT  

 
1) Have you made any renovations to your home? (Please circle) YES  NO 

If yes, please list the renovations made and when they occurred: 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
________________________________________________________________________ 
 

2) Are you aware of any renovations made by previous owners? YES  NO  
If yes, please list the renovations made: 

 ________________________________________________________________________ 
 ________________________________________________________________________ 
 ________________________________________________________________________ 
 ________________________________________________________________________ 
 
3) How is your home heated? 

 ________________________________________________________________________
 ________________________________________________________________________ 
 

4) Where is the thermostat located? 
 ________________________________________________________________________
 ________________________________________________________________________ 

 
 

5) What temperature set point do you maintain for heating and cooling, fill in an estimate for 
temperature set points on your thermostat at each time interval during the heating and cooling 
season. Include below the estimated date you typically start using your heating and cooling 
system. 

 
Heating 

Weekday hours 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am never Rarely 
Set point: (˚C)               
Weekend hours 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am never Rarely 
Set point: (˚C)               

Cooling 
Weekdays hours 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am never Rarely 
Set point: (˚C)               
Weekend hours 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am never Rarely 
Set point: (˚C)               
        
 Start date       

Heating         
Cooling          



164 
 

 
6) When are major appliances typically used in your house? (fill in the table below by including the 

duration of use for each time interval, leave blank or 0 if the appliance is not used at this time. 
Circle the Rarely/Never option if this applies instead) 

  

Kitchen Fan 
Weekdays 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
Weekend 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
Kitchen Stove 

Weekdays 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 
Rarely/Never Hours/time interval           

Weekend 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 
Rarely/Never Hours/time interval           

Kitchen Oven 
Weekdays 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
Weekend 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
Dishwasher 

Weekdays 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 
Rarely/Never Hours/time interval           

Weekend 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 
Rarely/Never Hours/time interval           

Clothes Washer 
Weekdays 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
Weekend 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
Bathroom Fan 

Weekdays 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 
Rarely/Never Hours/time interval           

Weekend 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 
Rarely/Never Hours/time interval           

Clothes Dryer 
Weekdays 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
Weekend 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
Refrigerator 

Weekdays Always     Never     
Weekends Always     Never     

Other 
Weekdays 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
Weekends 6am-9am 9am-1pm 12-5pm 5pm-9pm 9pm-6am 

Rarely/Never Hours/time interval           
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7) What would you describe as the significant barriers that would prevent you from carrying out 
renovations to improve the energy efficiency of your home? Rank the following from 1 to 5 (5 
being a major barrier and 1 being no issue)  
 
Barrier Ranking (1-5) 

Cost  

Time Commitment  

Displacement from home  

Disruption (Noise, privacy, loss of 
functionality) 

 

Aesthetics (conservation of historic façade)  

Unclear Energy reduction results  

 
9. What energy savings goal would you hope to achieve through renovations? 

_______________________________________________________________________ 
________________________________________________________________________ 

 
 

10. Considering this savings goal what budget range would you consider reasonable (circle one)? 
a) $0-10,000  b) $10-20,000   c) $30-50,000   d) $50-75,000   e) $75-100,000 

 
 
      11. Are there any architectural features of your home that you would not consider changing through 

energy saving renovations? i.e. Windows, doors, brick façade. 
 
Additionally are there any exterior facades that you would not consider over cladding to improve 
energy performance, if it meant minimizing disruption to interior spaces. 

 ________________________________________________________________________
 ________________________________________________________________________ 

________________________________________________________________________ 
________________________________________________________________________ 
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