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Abstract

Medical imaging is one of the most common areas of computer vision research and algorithm

development. FLAIR-MRI is particularly useful in highlighting damaged and necrotic tissue in brain

images due to high contrast and resolution. Image registration is a method of warping images to

the same geometric space to quantify tissue changes with accuracy. With advances in deep-learning

via convolutional neural networks, complex problems can now move closer to some semblance of

a solution with purpose-built and domain specific models. To overcome the non-learnable nature

of current registration algorithms, ideas are adapted from video processing solutions of calculating

optical flow between temporally spaced frames using unsupervised CNN-based methods to warp

moving medical images to a fixed image space. The proposed total network loss combines pixelwise

photometric differences, flow smoothness, and intensity correlation. Registration accuracy of the

proposed and four other registration algorithms is measured by examining tissue integrity, pixelwise

alignment, orientation, and global intensity similarity. The results, tested on two large FLAIR-

MRI datasets consisting of 700 and 4000 brain volumes, show that the optical-flow registration

technique is able to obtain maximal alignment while maintaining structural tissue integrity.
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Chapter 1

Introduction

According to a study by United Nations, 16% of the total population will be over the age of 65

by 2050 [1]. As the aging population increases, there will be higher need for late-age medical

care due to an increased prevalence of age-related diseases. Multiple Sclerosis prevalence has

increased by 69% from 1991 to 2013 in Canada [2] and about 5.5 million people in the United

States and 24 million worldwide are affected by Alzheimer’s that leads to dementia [3]. These

staggering numbers have a significant burden on the healthcare system of every country. Much of

the analysis for these patients involves medical image processing prior to any given treatment.

Magnetic Resonance Imaging (MRI) offers a high resolution and specifically Fluid Attenuated

Inversion Recovery (FLAIR-MRI) is particularly useful in detecting age-related lesions (Figure 1.1).

Figure 1.1: FLAIR-MRI image is able to show lesions as bright hyper-intense regions of the brain

In medical image analysis, reliable data usage is of utmost importance when it comes to algorithm

design and clinical applications. As major medical centers are switching their imaging methods

to the digital domain, the amount of data can increase to unmanageable levels. Much of it has

to be normalized or placed in the same geometric domain so that meaningful information can

1



be obtained. An important part of all image processing workflow is geometric normalization

via image registration. Registration is the process of aligning two images, one fixed and one

moving so that they are in the same spatial domain (Figure 1.2). Image registration is particularly

useful in automatic image segmentation pipelines as a pre-processing tool and can be used on

two-dimensional images or three dimensional volumes. Since image components are non-uniform,

deformations can be done globally via affine transformations or on a per-pixel level through the

use of non-uniform deformation fields.

Figure 1.2: Registration involves transforming a moving image M(x, y) to the fixed image F (x, y) space.

This work proposes a registration method using Convolutional Neural Networks (CNNs) to predict

the deformation field needed to warp a moving image to the fixed image space. Recent advance-

ments in hardware development of graphic processing units (GPUs) have allowed a wide-spread

application and uses of CNNs in the image processing field [4, 5]. In the video processing field,

many have proposed methods to calculate velocities between temporally spaced frames via op-

tical flow [6, 7]. Recent unsupervised methods have shown promising flow calculation between

subsequent frames [8]. The implementation has been adapted to medical images to calculate the

deformation field between the moving and fixed image and thus perform registration.
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Alongside, this piece of writing will attempt to examine different image registration algorithms

via several validation metrics. The focus is to evaluate the efficacy of each registration modality

via intensity-based metrics, orientation metrics, and information theory metrics. From a clinical

perspective, the integrity of structures in the images will be assessed prior to and after each

registration technique. This chapter will serve as the foundation for the proposed work and its

clinical relevance, a description of medical imaging techniques in MRI, and a brief description of

the main technical parts.

1.1 Background

In neuronal tissue, specifically the cerebrum, the structural organization signifies underlying func-

tional significance. One method of classification is by subdividing the tissue into white and gray

matter. White matter consists of myelinated axons of the neurons while gray matter contains

the cell bodies of the neurons [9]. Neurodegenerative diseases such as Multiple Sclerosis [10],

Dementia [11,12], and Alzheimers disease [13] are typically seen in the white matter of the brain.

While the etiology of White Matter Lesions (WMLs) remains largely unknown, they are an indicator

of brain disease and neuroimaging research offers new insights and possible explanations for their

origination [14, 15]. A common method to observe these anatomical structures is to use Magnetic

Resonance Imaging (MRI), which is known for its high resolution when it comes to examining soft

tissue in the human body.

1.1.1 MRI, FLAIR

Magnetic Resonance Imaging (MRI) is an often-used medical imaging technique especially in brain

tissue. From an imaging perspective, the main advantage of MRI over radiographic imaging such

as X-Ray and CT is that it provides higher resolution and better contrast images of soft tissues, like

brain matter, due to the underlying physics involved in the process.

The principle of MRI is based on the abundance of hydrogen atoms in the human body. An atom

is composed of an inner core called the nucleus and is surrounded by fast spinning electrons. The
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nucleus contains the protons and electrons of an atom. Hydrogen, atomic number 1, contains one

proton and one electrons and zero neutrons. For that reason, it is common nomenclature to refer

to hydrogen as a proton.

In its resting state, the hydrogen nucleus is imbalanced due to the odd number of protons. As the

atom rotates, this imbalance causes the atom to have an angular momentum. This momentum on

a large scale can be measured as each atom spins and creates a small magnetic field. The magnetic

field can be measured by the following equation:

~µ = γ ~J, (1.1)

where ~µ is the magnetic moment, γ is the gyromagnetic constant, and ~J is the spin angular

moment. The gyromagnetic constant is measured in megaHertz/Tesla and is a known value for

most elements [16].

The protons spin with a specific energy and the axis about which it spins is oriented completely

randomly. The spinning, also known as precessing, is similar to a spin-top that is swaying as it

spins (Figure 1.3). In nature, due to random orientation of the spinning axis vectors, the net

energy is close to zero. In the presence of a magnetic field, the axis about which the precessing

occurs, become aligned and they are unidirectional. As the nuclei spin-axis becomes aligned, the

net magnetic energy of the nuclei in the direction of the field is higher than those that are aligned

transverse [16].
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Figure 1.3: The angular momentum of a hydrogen atom.

A strong magnetic field can be applied to align the protons in the direction of the magnetic field.

The spin-axes of the protons is in the same direction making the net magnetic vector point in

the same direction as the applied magnetic field. At this point, the nuclei are not in phase with

each other, meaning they are all spinning with different frequencies. One method to calculate the

precession frequency, is to find the Larmor frequency by differentiating Equation 1.1 to obtain:

ω0 = γH0, (1.2)

where γ is the same gyromagnetic ratio and H0 is the strength of the external magnetic field. By

finding the ω0, the Larmor frequency can be used to apply the RF pulses and change the spinning

orientation of the hydrogen atoms [16], [17].

Once the hydrogen atoms are all spinning with the same angular momentum, the net magnetic

vector now contains a y-component also known as a 90◦ pulse. This means that net magnetization

vector which was previously in the same direction as the magnetic field and had no y-component,

now will be pointing in the transverse direction of the applied magnetic field. This vector is now at

a higher energy state than previously. By applying another 90◦ RF pulse, the net magnetic vector is
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now pointing in the opposite direction than the applied magnetic field and thus being at the highest

possible energy state [16].

As the protons return to the initial resting state prior to the RF pulse induction, they emit RF pulses

themselves. These pulses can be detected by RF detector coils in the MR machine. The two types

of relaxation, T1 and T2 are longitudinal and transverse relaxation, respectively. If a proton flips

from a high-energy state to a low-energy state, this is known as the T1 relaxation or spin-lattice.

As the precessing protons move out of phase, the net magnetization vector returns from transverse

to zero xy-plane and this energy is known as T2 or spin-spin. Different tissues types vary in terms

of their relaxation times with respect to magnetization. In T1 water molecules return faster to the

initial magnetic field direction, while fatty tissue is slower. Similarly, T2 relaxation times also vary

with tissues (Table 1.1).

Table 1.1: T1 and T2 relaxation times for different tissue types [16].

Tissue T1(ms) T2(ms)
Fat 150 150

Liver 250 44

White Matter 300 133

Gray Matter 475 118

Blood 525 261

CSF 2000 250

As the net magnetic vector experiences relaxation, the RF coils are able to measure the decay

of the magnetic moment called Free Induction Decay (FID). The movement from transverse to

longitudinal axis, the coils are able to detect the FID and observe the reduction in energy over

time. This electromagnetic signal is received by the computer system and is converted from analog

to digital. The signal is temporarily stored in an imaging space called the k-space. The k-space is a

two- or three-dimensional representation of the frequency intensities and phase localization of the

signal. By performing an inverse Fourier Transform of the frequencies in the k-space, the image is

obtained. To obtain the localization of different slices, a magnetic gradient is used. One can think

of the gradient as a wedge that attenuates the applied external magnetic field. Since, the amount
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of attenuation is a known value, as the signal is being received by the RF coils, the location of

where the signal is coming from the target space is also known due to the attenuation factor of the

magnetic gradient. The magnetic gradients are located in all x, y, and z directions [16].

One method of improving the image quality such as contrast and resolution is by altering the

strength of the pulses and the sequencing. The spin-echo pulse usually consists of applying a 90◦

pulse, waiting, and then applying a 180◦ pulse. This effect cancels the external inhomogeneity

(T2*) of the external applied magnetic field. The result is an Echo that resembles a sinc function

and the time between the 90◦ pulse and the Echo is known as the time to echo (TE). At this point,

the protons return to relaxation and another 90◦ pulse can be applied which is measured as the

time to relaxation (TR) (Figure, 1.4). TE and TR are key factors to obtaining high contrast images.

By adjusting the TE and TR values, different pulse sequences are produced. Shorter TE and TR

results in T1 weighted images, long TR and short TE results in proton-density, and both long TE

and long TR results in T2 weighted images [18] [19].

Figure 1.4: Formation of a spin-echo [19].

Inversion Recovery is the application of a prepratory pulse of 180◦. As the nuclei begin to relax and

the net magnetization vector passes the transverse plane, a 90◦ pulse is applied and the normal

spin-echo sequence is applied. The time between the 180◦ and 90◦ is known as inversion time (TI).

This type of sequencing causes water, which has a low magnetization factor after the 90◦ pulse,
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appears dark during TI [20].

Figure 1.5: Inversion Recovery pulse sequencing [19].

Fluid Attenuated Inversion Recovery or FLAIR takes advantage of this technique to accurately de-

lineate brain lesions that are near or close to cerebrospinal fluid (CSF) locations like the ventricles.

This is because as the net magnetization vector that received the 180◦ preparatory pulse passes the

null transverse vector, water-containing-CSF, there is little to no longitudinal net magnetization

vector that is typical of water. Therefore, no signal is acquired by the RF coils of the machine and

true to its name, the fluid becomes fully attenuated (Figure 1.6).

Figure 1.6: Examples of images recovered using T1, T2, and FLAIR sequencing.
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1.1.2 White Matter Lesions

FLAIR imaging is particularly useful in examining White Matter Lesions (WML) in neurodegnerative

and in aging patients. As mentioned previously, this is particularly useful because fatty tissue along

with CSF is suppressed in FLAIR. In the brain, the white matter, which contains the axons of the

surrounding cell-body neurons is suppressed because the axons are surrounded by a fatty tissue

called the myelin sheath. The myelin sheath is particularly useful in neurons because it acts like

a blanket that insulates and allows for faster signal transmission from the cell body to the axon

terminal via saltatory conduction [9]. This suppression is similar as in T2 imaging seen above in

Figure 1.6, however, one other benefit of FLAIR is the CSF suppression. Many neurodegenerative

disorders consist of white matter hyperintensities that are next to the ventricles also known as

periventricular, which are well defined in FLAIR imaging [21].

FLAIR MRI is becoming a widely-used imaging modality among clinicians involved in nervous

disease treatment and research [21, 22, 23, 24], , which creates a need for robust and easy to

use tools to aid with diagnosis, treatment, disease monitoring, prognosis, and outcome. Image

processing algorithms are being developed for modality-specific purposes as part of a clinician’s

daily workflow [21]. Many tasks begin with a pre-processing step that can standardize all the

incoming data for a more robust algorithm result. Some of the most important tasks in algorithm

design such as WML segmentation or disease prediction lay in the early stages of data augmentation

and standardization. These steps can significantly improve algorithm performance due to the fact

that the raw data is now all on the same playing field and there aren’t any portions that have a

higher impact while others have less of an impact. One of the most important steps is to transform

images to the same geometric space via image registration.

1.2 Problem Statement

Typical registration algorithms involve an iterative-based approach that calculates an adequate

deformation parameter to warp a moving image to the fixed geometric space [25,26,27,28]. The al-

gorithms typically try to minimize a dissimilarity metric at every iteration through a process known
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as gradient descent. The main downside of such approaches is that the process is computationally

expensive and any calculated parameters are not saved or learned so that the following registration

procedure may be more efficient or accurate. This means that after calculating a transformation

parameter for a specific moving-fixed image pair, the parameters are discarded for the next pair

of images. The non-transferable nature of traditional image registration algorithms has created

a need for a learning-based registration method. These models should learn any transformation

parameter and accurately warp images from one pair to the next and thus be able to generalize to

larger data and other image pairs.

Image registration has become integrated in most medical image processing workflows as a method

of transforming images to be in the same space. Algorithms in white matter lesion segmentation

(WML) are highly reliant on registration to improve their performance [24]. Researchers and

clinicians often work side-by-side during algorithm development [29]. Specifically, there is a high

reliance on experts to provide an opinion in terms of disease progression, lesion annotation, or

efficacy of image processing algorithms [30]. The clinicians then have to take crucial time outside

of their practice to evaluate and be active participants in research. At the same time, if several

clinicians are asked to perform a task, such as annotating WMLs, there may be some variation

in the opinions of what pixels to include and which ones to exclude. While there are measures

to assess the different raters reliability in such segmentation results [31, 32], there is a need for

consistent measures of algorithm performance. This is especially true when it comes to image

registration.

As there is no Ground Truth (GT) when it comes to quality assessment of registration results,

most clinicians typically visually inspect for any major anomalies as the only means of evaluation;

this can create inconsistencies throughout different results. In a clinical setting, registration is

typically used to assess the evolution of a diseased tissue or of any major anatomic structures.

Similarly, researchers and algorithm developers typically register images to a certain space and

once a certain similarity metric reaches an optimum value, they may move forward with the

segmentation algorithm. In both cases, subtle changes in structure often times can signify major

developments in function, tissue evolution, or treatment efficacy. To accurately review these

changes, the images have to be warped so that they are in the same geometric space therefore

10



meaningful conclusions can be made. However, even before that, it is important to know whether

this warping or registration has been accurately done. To do that, there is a need for a consistent

method of evaluating registration quality and validating that the results are as accurate as possible

[33].

The challenges with image registration can come from the variation of the data. As scanners present

intensity inhomogeneity across different manufacturers and models this can give a large variation

of image quality metrics in terms of sharpness, contrast, and noise levels. Similar variations

in brain anatomy between and within patients can give way to larger differences that have to

be accounted for when applying algorithms that involve segmentation and registration. Finally,

factors like hyperintense and hypointense regions of the brain can lead to drastic changes in local

intensities [33].

Since visual inspection of image registration quality is a daunting task, tools have to be designed to

accurately and consistently measure the alignment of images in registration tasks. The tool should

be fully automated and measure several aspects of image registration, from intensity similarity to

geometric and volumetric similarity. The tool should also be robust so that it can be used with the

results of any registration method and be able to provide these metrics instantly to a researcher or

a clinician so that adjustments and tunings can be done at the time of experiment and reduce the

need for repeat trials.

1.2.1 Objective

The aim of the work presented in this thesis is to adapt a model used in natural images to predict

optical flow to design an unsupervised CNN-based registration tool. Further, image registration

quality validation metrics algorithms from several similarity perspectives based on structural in-

tegrity, volumetric consistency, intensity levels, information theory, and geometric orientation.

Secondary objectives include:

• Generation of a FLAIR-specific atlas generation

• Longitudinal registration of repeat scan subjects
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The methods developed in this thesis can be used during algorithm development to ensure that

image registration is accurate prior to any implementation steps. The optical flow-based registra-

tion technique is based on deep learning with the use of convolutional neural networks (CNN)

to register volumes and generate necessary warp fields. The proposed registration validation

techniques were used to evaluate the most optimal registration for the generation of an atlas.

Longitudinal registration allows for quick evaluation of patient brain tissue change over time.

1.3 Proposed Techniques

This section will highlight the two major themes of image registration in FLAIR MRI.

The first portion proposes a new fast medical image registration technique via neural networks and

deep-learning methods based on optical flow. The network is trained on FLAIR MRI images and is

able to accurately predict the deformation fields via a dense per-pixel deformation field.

The second portion is related to a proposal of new validation metrics for measuring image similarity

and the efficacy of image registration techniques. Two metrics are related to evaluating the volu-

metric and structural changes of brain tissue. The first being percent volume (PV) change which

looks at the proportional change of brain structures as a function of total brain volume. The second

measure is a structural change to see how it warps with respect to the brain surface, named Surface

to Surface Distance (SSD). Both PV and SSD are implemented using binary masks that are warped

according to the same field that is generated for warping a moving image to the same space as

the fixed image. Image alignment is measured as a Head Angle (HA) measure. The typical image

similarity metrics were also implemented to confirm the efficacy of the aforementioned techniques.

Four common image registration algorithms were tested and evaluated according to the proposed

metrics.
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1.4 Contributions

The main contributions of this work is related to developing an optical-flow based registration

technique and evaluating and validating image registration techniques in FLAIR MRI according to

the following:

1. Propose an adapted optical flow-based fast FLAIR-specific registration technique.

2. Inclusion of a correlation loss component.

3. Image registration validation via volumetric, structural, and alignment metrics.

4. Test four existing algorithms with the proposed validation measures and existing measures.

5. Validate novel registration against existing ones with the use of the proposed validation

measures and existing measures.

The thesis is organized in the following manner: Chapter 2 will explore the methods and techniques

of image registration from the most basic concepts to most current methods, Chapter 3 will explore

the main contributions of this thesis, optical flow-based registration and registration validation met-

rics, Chapter 4 will describe the performed experiments and results, Chapter 5 explores the clinical

implications of image registration, and Chapter 6 will present a high-level overview summary of

the proposed methods along with the limitations and suggestions for future works.
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Chapter 2

Image Registration

Image registration is an iterative image processing technique used for matching one moving image

to a stationary or fixed one. The purpose is to find the optimal geometric transformation that

indicates the highest level of similarity between the two images. Registration can be multimodal,

images obtained via two different methods, Computer Tomography (CT) to MRI, T2 MRI to T1

MRI or they can be monomodal where images take via the same method are registered to each

other. Monomodal image registration is typically done for longitudinal measures where a patient

may receive multiple scans and to accurately analyze them, they have to be warped to the same

geometric space [34] [35].

Earlier methods of registration required input from a user to specify corresponding points between

two images defined as control points. Based on these control points, the images would align to

minimize the distance between the control points. This technique is seen often times, in older

software that is used to stitch multiple images together to form a panorama. The work presented,

will focus on automatic image segmentation, where no user input is required. Particularly it will

be focused on monomodal image registration in MRI. The contents of this chapter are organized in

the following manner: the types of transformations used, the method of image warping and pixel

sampling from the moving space to the new fixed space, a deep dive in the most common and some

newer image registration techniques, an explanation of the theory behind optical flow estimation

and Convolutional Neural Networks (CNNs).
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2.1 Transformation Matrix

To accurately understand the basics of image transforms, one must first understand the basics of

image composition. At the most simple level, a gray-scale image can be thought of as a matrix of

pixels, where each pixel has an intensity value, between a certain range, and a coordinate based on

its location in the image. A pixel is the smallest functional unit of an image, and together with all

the neighboring pixels makes an image. A voxel is a volumetric pixel that has a depth component.

Voxels are seen in medical images where three-dimensional scans of body tissue is obtained.

Transforming images involves moving a pixel from one pair of coordinates to another. Image

coordinates are different than typical coordinates, where the origin, (0, 0) is located at the top

left corner. In the description of an image as a matrix, the rows become the Y coordinates, and the

columns are the X coordinates in the (X, Y) form. Knowing this, images can now be transformed via

matrix operations. If an image I is multiplied with a transformation matrix T, the new transformed

image is I’:

I ′ = I × T. (2.1)

Using matrix multiplication one can now see mapping of (X,Y ) coordinates to the new (X ′, Y ′)

space according to the following operation:



X ′

Y ′

1


=



a b c

d e f

g h i





X

Y

1


. (2.2)

Through matrix multiplication, pixel coordinates in one image can be mapped to new location. It

is important to note, that in matrix multiplication the order of operations matter and to achieve

adequate results, the vector inputs of the pixel coordinates should always follow the transform

matrix. In the following section, the different types of transformations will be examined.
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2.2 Types of Transformations

Image transformations are typically classified into two types: rigid and non-rigid. Rigid transfor-

mation preserve distances, straightness of lines, and all non-zero angles between straight lines.

Non-rigid transformations do not preserve lengths of straight lines or non-zero angles. Affine

transformations describe how many transformations can be combined and projective transforms

involve the warping of angles in an image.

2.2.1 Rigid (Translation, Rotation)

If all the coordinates of an image I are stored in vectors (X,Y ), a rigid transformation can be

defined as follows:

T (v) = R(v) + t, (2.3)

where v is the one of the coordinate vectors, R is the rotation orthogonal transformation, and t is

the translation. The rigid transformation can perform both rotation and translation simultaneously.

One method of determining that indeed the transformation is a rigid transform is showing that:

det(R) = 1, (2.4)

if det(R) = −1 then a reflection has occurred. For example, if a pixel is located at the image

coordinate (1, 1) a rigid transformation may be represented by a rotation of θ = 15◦ and translation

of tx, ty = 10 in both vertical and horizontal axis. The rotation matrix is seen below and is based

on orthogonal transformations where the shape is preserved (Figure 2.1).



X ′

Y ′

1


=



cos θ − sin θ 0

sin θ cos θ 0

0 0 1





X

Y

1


. (2.5)
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Figure 2.1: Rotation by 30 degrees.

Translation is a linear remapping of pixels to a new coordinate system by simple movement of fixed

value and can be done using the transformation matrix in the following implementation (Figure

2.2): 

X ′

Y ′

1


=



1 0 tx

0 1 ty

0 0 1





X

Y

1


. (2.6)

Figure 2.2: Translation to the right by 20 pixels.

One can see from the matrix operations defined in 2.5 and 2.6 that the rigid transformation can be

done in one step by combining the two matrices and thus achieving the rigid transform in 2.3.



X ′

Y ′

1


=



cos θ − sin θ tx

sin θ cos θ ty

0 0 1





X

Y

1


. (2.7)

Returning to the example above, the mapping of the image coordinates is located at the new pixel
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location as described by the following expression:



10.7071

11.2247

1


=



cos 15 − sin 15 10

sin 15 cos 15 10

0 0 1





1

1

1


. (2.8)

If the coordinates of all pixels are stored in vector arrays, the matrix multiplication can quickly

relocate all pixels to the new vector space. One way to verify that a transformation is indeed

rigid is to measure the Euclidean distance between any two pixels in the original image and again

between the same two points in the transformed image. The Euclidean Distance between two

points p, q, is based on the Pythagorean formula and is described as follows:

d(p, q) =
√

(pX − qX)2 + (pY − qY )2. (2.9)

2.2.2 Non-rigid (Scaling, Shear)

Non-rigid transformations are especially useful in image registration problems where there may

have been some image distortion during acquisition. The simplest non-rigid transforms are scaling

and shear. Scaling can be defined by the following operation (Figure 2.3):

I ′ = S × I. (2.10)

where S is a diagonal matrix where each component along the diagonal is a scaling factor of the

corresponding coordinates:



X ′

Y ′

1


=



sx 0 0

0 sy 0

0 0 1





X

Y

1


. (2.11)
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Figure 2.3: Scaling by a factor of 2.

If the scaling is isotropic, the same in all directions, the transformation is defined as a similarity

transformation, also known as a dilation, even for values less than one [36]. Shear is defined as a

deformation by ”pushing” one portion of the image along an axis, such that parallel lines remain

parallel, but angles are not preserved 2.4. The transform matrix for shear is as follows:



X ′

Y ′

1


=



1 shx 0

shy 1 0

0 0 1





X

Y

1


. (2.12)

Figure 2.4: Shear to the right.

2.2.3 Affine

All the transform matrices mentioned above can be combined through matrix multiplication to

create one matrix that performs all transformations in one operation. Affine transformations inherit

all the properties of the rigid and non-rigid transforms. The straightness of lines, parallelism, and

the planes are all preserved, however angles are not (due to shear transform). A combination of all
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transforms may be as follows 1:



X ′

Y ′

1


=



cos θ − sin θ tx

sin θ cos θ ty

0 0 1





sx shx 0

shy sy 0

0 0 1





X

Y

1


. (2.13)

One important aspect of the affine transformation is the order that transformations are performed

since matrix multiplication is not commutative (AB 6= BA). If we take our earlier example of the

pixel coordinate (1, 1) and perform the following operations, a rotation by 15◦, translation by 10

pixels, scaling of 1.5, and no shear, in this order, the output is as follows:



11.0607

11.8371

1


=



cos 15 − sin 15 10

sin 15 cos 15 10

0 0 1





1.5 shx 0

shy 1.5 0

0 0 1





1

1

1


. (2.14)

If the order of the two transform matrices are switched the result is significantly different:



16.0607

16.8371

1


=



1.5 shx 0

shy 1.5 0

0 0 1





cos 15 − sin 15 10

sin 15 cos 15 10

0 0 1





1

1

1


. (2.15)

Therefore, it is important to choose a method that aligns with the scope of the problem at hand.

One convention for example, is to translate the center of the image to the origin of the coordinate

system, perform a rotation, translate back, perform the translation parameter, then scaling (RTS).

1Note: translation and rotation are combined in one matrix and shear and scaling are combined in another matrix.
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2.2.4 Projective

The same affine matrix can be used for projective transforms. Projective transformation preserves

straight lines and relates the image to a flat scene of the environment. One way to think of

projective transformations is that opposing lines of the image intersect on a flat plane in the

background at a point as seen in Figure 2.5.

Figure 2.5: Projective transformation visualization. The blue figure is an image for which the two vertical edges are transformed so that
their projections meet a point on the plane represented by the black line.

This type of projective transform is called a perspective transformation. Perspective transformations

use homogenous coordinates. Homogenous coordinates are the input vectors as we saw in all

the transformation matrix operations, where the first two vectors are the (X,Y) coordinates and

the third coordinate is 1. In an affine matrix (Equation: 2.2) the g and h denote the projective

transform vectors: 

X ′

Y ′

1


=



1 0 0

0 1 0

px py 1





X

Y

1


. (2.16)

As such, one can see that that projective transforms can be added to any affine matrix since affine

matrices have zero values for the projective components so that parallel lines can be preserved.
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2.3 Deformation Fields

Deformation fields can be easily understood as a field where each pixel in an image has a vector

representation of where it should be mapped in the transformed grid space. The vector magnitude

represents the amount of pixel displacement while the angle shows the direction. This type of

transformation is particularly useful in non-uniform image registration problems. Most commonly,

deformation vector fields are used in modern image registration algorithms due to the fact that

they can perform fine image adjustment (Figure 2.6), whereas affine matrix-based registration is

coarse adjustment.

Figure 2.6: Example of a deformation field used to warp a moving image.

2.4 Image Warping

After a transformation is applied to an image, the individual pixels are now remapped to a different

coordinate system. In an image, coordinates are integers, however after transformation is applied,

pixels are remapped to non-integer values (Figure 2.7).
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Figure 2.7: Forward mapping of a pixel from the image on the left to a new location in the image on the grid of the new image on the
right.

Calculating the new pixel values is computationally expensive, as such, to speed up the process of

pixel remapping, the backwards or inverse mapping is performed. For the known homogeneous

coordinates in the new warped space, every pixel is backwards sampled from the original image

according to the following equation:

I = A−1I ′g, (2.17)

where I is the original image, A−1 is the inverse of the transformation matrix A, and I ′g is the

grid coordinate system of the transformed image. This method has the advantage of not having to

create new pixel values, but rather sampling from the original image and placing into the new grid

space (Figure 2.8). To overcome the floating pixel coordinates, interpolation methods are applied

which will be discussed in the coming section (Section 2.4.1).

Figure 2.8: Backward mapping by sampling from the original image into the new image grid space.
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2.4.1 Interpolation (Nearest-Neighbour, Bilinear, Bicubic)

The quickest way to interpolate is via nearest neighbour interpolation. If the new pixel mapping is

located between four pixels, the Euclidean distance can be found and the new pixel value will take

the intensity of the closest pixel (Figure 2.9).

(Y, X+1)(Y, X)

(Y+1, X) (Y+1, X+1)

h

(Y’, X’)
w

Figure 2.9: Pixel intensity mapping of non-integer values of pixel (Y’, X’).

Since pixel coordinates are integers, the distance between two pixels is taken to be 1 and any num-

ber in between is a floating point value. As seen, the mapping often falls at these non-integer values.

The smallest distance is determined only from a pool of the four nearest pixels, and whichever is

smallest, that corresponding pixel’s intensity is assigned to the new mapping calculated by:

d =
√
a2 + b2, (2.18)

where a is the distance in the X direction and b is the distance in the Y direction2.

Bilinear interpolation is a weighted average between pixels to create new pixels with new interpo-

lated values. If the location of a new pixel is known, then the new image intensity can be calculated

2Note that distance from X+1 pixel coordinate to X’ is 1 − w and from Y+1 to Y’ is 1 − h.
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as follows:

I ′(X ′, Y ′) = WX,Y I(X,Y ) +WX+1,Y I(X+ 1, Y ) +WX,Y+1I(X,Y + 1) +WX+1,Y+1I(X+ 1, Y + 1),

(2.19)

where the WX,Y is the area made by w×h, WX+1,Y is the area made by (1−w)×h, WX,Y+1 is the

area made by w × (1− h), and WX+1,Y+1 is the area made by (w − 1)× (h− 1). The advantage of

bilinear interpolation over nearest neighbour interpolation is that the pixel values are not repeated

and the image is smoother and edges are preserved.

Bicubic interpolation involves fitting a bicubic spline to a linear gradient of two points. The idea

is that if a pixel is located in between four pixels, the interpolation is now based not only on the

four pixels surrounding the new location, but also the further out area. This is because when the

gradient of the neighbouring pixels is found, they rely on the neighbouring pixels to produce the

gradient. Based on that curve, one can now calculate the intensity value of the new pixel. This

method creates even smoother images than bilinear interpolation, but because of the derivative

calculations and increased sampling area, it is significantly more computationally intensive. The

bicubic interpolation summation formula can be seen below:

I(X,Y ) =
3∑
i=0

3∑
j=0

aijx
iyj . (2.20)

The scope of the equation is to solve for the a values. This can be done via matrix multiplication

since, and the I(X,Y ) intensity values form a 4 × 4 area of 16 pixels, from which the derivatives

have to be calculated. The matrix approximation is as follows:

I ′(X ′, Y ′) =
[
X ′3 X ′2 X ′ 1

]


a00 a01 a02 a02

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33





Y ′3

Y ′2

Y ′

1


. (2.21)
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Solving for the a values can be done through the following matrix operation:



a00 a01 a02 a02

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


=



1 0 0 0

0 0 1 0

−3 3 −2 −1

2 −2 1 1


×



f(0, 0) f(0, 1) fy(0, 0) fy(0, 0)

f(1, 0) f(1, 1) fy(1, 0) fy(1, 1)

fx(0, 0) fx(0, 1) fxy(0, 0) fxy(0, 1)

fx(1, 0) fx(1, 1) fxy(0, 0) fxy(0, 1)





1 0 −3 2

0 0 3 −2

0 1 −2 1

0 0 −1 1


,

(2.22)

where the f are the derivatives of the four corners in four directions for each corner around the

pixel of interest. The derivatives in an image are calculated as differences in intensity of one

pixel to the previous pixel in the coordinate system. Since cubic interpolation create new pixels,

sometimes, overshooting of the spline curves occurs and new intensity values are created that are

higher than the maximum an image format can display (Ex: 256) so the new values may be clipped

and this may create unnatural fuzzy edges around areas of high contrast. Further interpolations

exist via bicubic convolution and cubic splines which will not be explored, for the sake of brevity,

since bicubic interpolation is the most common method of resampling an image in most image

processing algorithms [37].

2.5 Registration Algorithms

Although there are point-based registration techniques, where fiducial landmarks between two im-

ages are known, the focus of this body of work is established on automatic registration techniques.

Automatic image registration techniques are based on intensity measures between two images.

These types of registrations have become some of the most widely used methods, particularly
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in medical images. The advantage of intensity-based registration measures is that the similarity

problem can be solved for images that are taken via different modalities. For example images that

are obtained via CT can be registered to MR, PET to MR, and even Ultrasound to MR.

Intensity-based registration involves finding a deformation field between images based only on

intensities. This is typically an iterative process that involves calculating a similarity metric based

on intensity values. While, all pixels can be used for image registration, the implementation is

done on a portion of the image. This can significantly improve the speed of the algorithm. The

following sections describe the most commonly used registration algorithms in research and clinical

environments. Most novel registration algorithms are compared to one or two of the mentioned

registration modalities.

2.5.1 Demons

In image processing, researchers often take inspiration from other fields and incorporate those

concepts in a novel way of producing desirable results. An interesting application of this type of

transfer learning is described by Thirion’s demons [25]. The idea is based on thermodynamics and

Maxwell’s demons. In thermodynamics of diffusion, typically the entropy is decreased by having

high energy molecules move to a lower energy state and achieve equilibrium. Maxwell introduced

some demons that act as controllers of gated channels that allow only high energy molecules on

one side of a container and low energy on another side. From a palpable perspective, this would

mean that a warm object would get warmer and a cold object would get colder [38].

In terms of registration, the same concept was first proposed by Thirion. He suggested that if

demons are placed at certain locations along the perimeter of the moving image, they would act

as the controllers that sort particles or pixels in one side or another. The particles would move the

image inward if it is larger than the static reference image and move it outward if it is contained

within the static reference image (Figure 2.10) [26].
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Figure 2.10: The action of the Demons to deform the contour of a moving a image according to a static image.

Thirion’s registration method is based on a gradient descent algorithm. Specifically, if there are

two images R and T and there is a demon d at an (x, y) position which exerts a force p. This force

depends on the gradient of R and the image difference R(d)− T (d). The force deforms the image

with a positive gradient if R(d) < T (d) and with a negative gradient if R(d) > T (d).

One of the most apparent properties of images registered with the demon’s algorithm is that it is

an iterative process which requires several considerations. One of the considerations is the number

and types of demons. This is determined via the optical flow equation which is as follows:

0 = d
dt
R(x, t) = ∂tR(x, t) + (∇R(x, t))T∂tx. (2.23)

Since a pixel intensity does not change with time, the equation is equated to zero and can be

easily solved. By setting v = ∂tx and rearranging the equation 2.23, Thirion suggests adjusting the

equation such that the value of v is reduced. This is because if there are any small perturbations

they may lead to amplified errors [26], [34]. Due to these constraints, the algorithm becomes

susceptible to small errors and is somewhat computationally expensive in terms of operational

time (1-5 minutes runtime). The calculated displacement is smoothed with a Gaussian filter:

G(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 , (2.24)

where σ is the standard deviation of the distribution and is what is used to adjust the amount of

blurring or smoothing.
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2.5.2 ANTs

Diffeomorphisms are differentiable map for which the inverse is also differentiable [39]. Avants

[28] has proposed a diffeomrphic registration technique that is based on Lagrangian diffeomorphic

registration. They proposed that when an image I is being deformed to match another static image

J the deformation field path from one to another is the same. As one image moves along the

diffeomorphism, the image warps to match the other. The same is true for the static image moving

along the deformation path to match to the moving path. In a sense, this path is symmetric and

therefore it is not dependent on the optimizer or similarity metric. This is advantageous over typical

registration processes because the direction of the path does not matter and backward or forward

transforms can be calculated without having any interpolation errors. Yet another advantage of this

symmetric approach is that the difference between the two images can be thought of as a linear

timescale of how one image warps to become another. This symmetry means that the path between

the two images can be divided in half and the deformation can be calculated from both directions

simultaneously (Figure 2.11).

Figure 2.11: Illustration of the symmetric normalization path between images I and J .

The diffeomorphism ϕ is in domain Ω and used to transform image I according to

ϕI = I ◦ ϕ(x, t = 1), (2.25)

where t is time, x is a spatial coordinate, v(x, t) on Ω is a velocity field that is square-integrable

and continuous. The deformation fields are found by performing an integration with respect to t:

φ(x, 1) = φ(x, 0) +
∫ 1

0
v(φ(x, t), t)dt, (2.26)
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and the distance is found by:

D(φ(x, 0), φ(x, 1)) =
∫ 1

0
||v(x, t)‖Ldt, (2.27)

where L is the linear operator required to regularize the velocity. It is known that diffeomorphisms

can be decomposed into two portions ϕ1 and ϕ2. This fact allows the transformation path to be

divided in half and have the image I have equally as much contribution as the image J as previously

seen in Figure 2.11.

The registrations is performed such that t ∈ [0, 1] and is indexed in both ϕ1 and ϕ2 but in opposite

directions and to find the similarity metric ϕ1(x, 1)I = J . Using the property that diffeomorphisms

are symmetric, the result of derivation of the above equation as two fields is as follows:

φ1(x, t)I = φ2(z, 1− t)J, (2.28)

where x and z are the spatial coordinates of the image I and J , respectively. For example if two

anatomical landmarks x are known, then the calculation from two different directions along t

takes half the time and the error becomes the minimization of the distance predicted by the two

warp field, also known as symmetric normalization (SyN). The symmetry distance formula can be

calculated for t = 0.5 for the two respective fields, therefore the integration in 2.27 only has to be

done from 0 to 0.5 for the two fields due to the following constraint:

D (ϕ1(x, 0.5)) = D (ϕ2(x, 0.5)) . (2.29)

Avants [28] also proposes to use Cross-Correlation (CC) as opposed to Mutual Information (MI) as

a similarity metric. Their argument states that MI works quite well for rigid problems, however, CC

is more suitable for multi-modal registration because it can adapt well to local intensity variance.

The images are first transformed according to the respective fields:

I1 = I (ϕ1(x, 0.5)) ,

J2 = J (ϕ2(x, 0.5)) .
(2.30)
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The local mean µ is then found over a local window nD where typically n = 5 and D is the image

dimension, centered at position x. The mean is subtracted from the warped images I1 and J2 to

obtain I(x) and J(x). With this information, the CC can be calculated which is dependent on ϕ1

and ϕ2 as follows:

CC(I, J,x) = < I, J >2

< I >< J >
= A2/BC. (2.31)

The optimization can then be calculated via Error measurement of the gradients for both de-

formation fields3. The values A, B, and C are image representations of the products of mean

differences seen in the CC equation (Equation 2.31). These three values can be computed prior to

any deformation changes and be stored for any subsequent derivative calculations that may be

necessary. Because the diffeomorphisms and velocity fields at time 0.5 are known, as the CC

is being calculated, the velocity fields and diffeomorphism become updated by calculating the

gradient between the current estimation of ϕi and the inverse ϕ−1
i one. This way the gradients

can be calculated and convergence can be achieved.

The symmetric normalization model steps can be summarized by the following steps:

1. Initialize ϕ1 = Id = ϕ−1
1 and ϕ2 = Id = ϕ−1

2 .

2. Repeat the following steps until convergence.

3. Deform I by ϕ1(0.5) and J by ϕ2(0.5), calculate I and J , calculate CC and store images

representing A, B, C.

4. Calculate each vi by smoothing results in step 3.

5. Change ϕi by vi through ordinary differential equations.

6. Generate the time 1 solutions from φ1(1) = φ−1
2 (φ1(x, 0.5), 0.5) and

φ−1
1 (1) = φ2

(
φ−1

1 (x, 0.5), 0.5
)
.

The results of the ANTs algorithm has shown significant improvement and faster implementation

of image registration algorithms, particularly being useful in being able to simultaneously predict

forward and backward images mapping [28].
3For a detailed derivation of all error and derivative formulas, the author directs the reader to the Avants paper [28]
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2.5.3 Elastix

The Elastix toolkit is an open-source software that has been developed as a means to test several

registration strategies [27]. It works via command-line interface and is built on the popular Insight

Toolkit [40]. The registration framework consists of several components that can be adjusted

accordingly. As with any registration problem, the main idea is to minimize a cost-function C that

denotes the difference between a fixed image and warped moving image:

µ̂ = arg min
µ
C (T µ; IF , IM ) . (2.32)

In the equation above, µ shows that the transformation has been parametrized, which can be

applied with the transformation T µ. The fixed image is represented as IF and the moving image is

IM . Several strategies are employed when choosing the components of the registration framework

that can affect the results of registration. The cost function C is used to determine the similarity

between the warped moving image and the fixed image. The following cost functions are available

in Elastix:

1. Mean Squared Difference (MSD):

MSD (T µ; IF , IM ) = 1
N

∑
x∈ΩF

(IF (x)− IM (T µ(x)))2 , (2.33)

where ΩF is the fixed image space from which the pixels x are sampled.

2. Normalized Correlation:

γ =
∑
IF ,IM

(IF − IF )(IM − IM )p(IF , IM ){(∑
IF ,IM

p(IF , IM )(IM − IM )2
) (∑

IF ,IF
p(IF , IM )(IF − IF )2

)}1/2 , (2.34)

where p(IF , IM ) is the probability of the fixed image have a pixel correspond to a pixel in

the moving image, IF is the local mean of the fixed image, and IM is the local mean of the

moving image [41].

3. Mutual Information (MI) as seen in Equation 3.23.
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4. Normalized Mutual Information (NMI) as seen in equation 3.24.

5. α-MI defined by:

αI(X;Y ) = 1
α− 1 log

∑
y∈Y

∑
x∈X

pα(X,Y )(x, y) (pX(x)pY (y))1−α

 , (2.35)

where p(X,Y )(x, y) is the joint probability distribution and pX(x) and pY (y) are the marginal

probabilities. [42], [43].

6. κ - statistic defined by:

κ = po − pc
1− pc

, (2.36)

which measures similarity between raters [44].

For monomodal images, the MSD similarity metric typically works well, while multimodal regis-

tration problems are best described by MI-based similarity metrics. The κ-statistic can be used for

registering binary masks. For non-rigid transforms, a regularizer term is used as penalty term for

any unwanted deformations.

An example of an affine transformation using the coordinate system T µ using the following equa-

tion:

T µ(x) = Ax+ t, (2.37)

where A is the transform matrix and t is the translation vector. The components of µ is composed

of six degrees of freedom for 2D and and nine degrees of freedom in 3D. B-spline representations

are used from physics-based approaches, which benefit from user-defined control points. These

B-spline function control points ensure that no overtly large deformations are learned. One other

advantage of Elastix is that it allows for user specific transformations. For example, if a user has a

pre-defined transformation matrix, then it is applied according to the following equation:

T µ(x) =
∑
i

wiT i(x). (2.38)

The equation is a weighted sum of the predefined user transforms where the weights wi are the
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components of the parameter vector µ. This approach is particularly useful because it offers the

ability to perform several levels of transforms. As such, coarse rigid and non-rigid transforms can

be applied prior to a finer registration field is learned.

The optimizer is used to solve the iterative problem of finding the most optimal transform parame-

ters according to the following:

µk+1 = µk − akdk, (2.39)

where µk is the transform parameter at iteration k in the direction dk at a step size ak. One

method of calculating direction is to find the derivative of the cost function at the current position.

The optimization can be done via several methods: gradient descent, quasi-Newton, and stochastic

gradient descent. The Robbins-Monro stochastic gradient descent method has been shown as the

best performing due to its fast computation time per iteration and it uses a small portion of the

fixed image voxels to compute the derivatives of the cost function [45], [46].

The cost function requires a sampling strategy such that not the entire fixed image is used. This

approach would significantly reduce computation time. One proposed method is to use salient

features such as edges. A sampler can also simply just pick random points in an image. Picking

random points has shown to improve the smoothness of the cost function C. A user-supplied mask

can force the sampling algorithm to look at the areas specified by the mask. For every iteration of

the gradient descent, if the algorithm samples from a new area, or if using localized MI, it picks

random samples from within a neighbourhood as opposed from the entire fixed image.

All types of interpolations are supported including nearest-neighbour, bilinear, and N-th order

B-spline interpolation. With the use of hierarchical approaches a pyramid of multiresolutions is

implemented. The types of pyramids available are Gaussian with or without downsampling. The

purpose of the pyramid strategy is that lower resolution images can be used for coarse registration

via affine transforms. Gradually as the resolution increases, finer control is regained over the

images. Therefore, elastix offers a complete toolbox with many user-adjustable parameters and

techniques that can create custom and user-defined methods of image registration for a desired

task [27].
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2.5.4 Voxelmorph

Advances in computational power has led to development of new algorithms using deep learning

and convolutional neural networks (CNNs). One such paper and algorithm has been suggested to

significantly reduce the computation time for image registration, namely Voxelmorph [47]. The

overarching idea is the authors try to match the learning process to that of a human learning. An

analogy serves that if someone sees enough pairs of shoes in a house enough times they are then

able to learn to match any unmatched shoes together. The authors suggest that a similar approach

can be performed using CNNs. Through a learning process, a model can be created that allows

for fast generation of deformation fields to warp a moving image to match a fixed one. Similar

to ANTs, Voxelmorph works via diffeormophisms that have a zero-velocity field representation. If

φ is the deformation field that maps coordinates from the fixed image to the moving, then using

ordinary differential equations (ODE) one can define the deformation field as:

∂φ(t)

∂t
= v

(
φ(t)

)
, (2.40)

where φ(0) = Id is the identity transform and t is time, v is the stationary velocity field integrated

over t = [0, 1]. One portion of the Voxelmorph algorithm is the scaling and squaring. Integration

of stationary ODE is a one-parameter subgroup of diffeomorphisms. Using group theory that

can be used to represent vector spaces, particularly useful in deformation fields. Group theory

is particularly useful in incorporating many geometric transformations such as rotation matrices

and reflections. One particular group, known as a Lie group has a differentiable property and

can be used to calculate object symmetry [48]. To better understand the generation of the dif-

feomorphisms in Voxelmorph, some of the derivation of the obtained fields are described. Taking

the exponent of v one can obtain φ(1) = exp(v). As such, applying scalars to the exponentiated

equation such as t and t′ can be used to expand into a composition map via pointwise operation

exp((t + t′)v) = exp(tv) ◦ exp(t′v). Using the previously mentioned method of decomposing the

exponential function, one can break down φ(1) = φ(1/2) ◦ φ(1/2). If φ(1/2T ) = p+ v(p) where p is a

map of spatial locations the parameter T can be chosen such that v ≈ 0.
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Generating a transform map φz from image x and y is done via a generative model based on a

variational inference method using CNNs. The unsupervised model learns the network parameters

by using a fixed and moving image as the input and generating a deformation field that is used to

warp the moving image. The difference between the fixed and warped moving image is used as a

similarity metric. The details of the generative model are described via the following equation:

p(z) = N (z; 0,Σz) , (2.41)

where N is a multivariate normal distribution with mean µ and covariance Σ. The velocity field is

defined by the ODE in Equation 2.40. Using a Laplacian L of a neighbourhood graph defined on

a voxel grid, it can be described by L = D − A, where D is the graph degree matrix (a diagonal

matrix describing the degree of each vertex) and A is the voxel neighbourhood adjacency matrix (a

square matrix used to represent a finite graph). Spatial smoothness is achieved via Σ−1
z = Λz = λL

where Λz is the precision matrix (inverse of the covariance matrix). Noise is added to the x image

based on the warped image y, with σ2 variance noise using the following equation:

p(x|z; y) = N
(
x; y ◦ φz, σ2

)
. (2.42)

The deformation field is approximated by finding the posterior probability p(z|x; y) and maximizing

a posteriori estimation for a new image pair (x, y). Although, computing this posterior probability is

unmanageable, a variation is introduced via qψ(z|x; y) with parameter ψ. The learning is performed

by minimizing the KL divergence according to the following:

min
ψ

KL [qψ(z|x; y)‖p(z|x; y)] = min
ψ
Eq [log qψ(z|x; y)− log p(z|x; y)]

= min
ψ

KL [qψ(z|x; y)‖p(z)]− Eq[log p(x|z; y)].
(2.43)

The approximate posterior is then modelled using the same noise equation as 2.42 as follows:

qψ(z|x; y) = N
(
z;µz|x,y,Σz|x,y

)
, (2.44)

where Σz|x,y is a diagonal matrix. Both µz|x,y and Σz|x,y are estimated via the CNN computation
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according to parameter ψ. Stochastic gradient descent used to minimize the KL-div equation in

2.43 and obtain the loss given by:

L(ψ;x,y) = KL [qψ(z|x; y)‖p(z)]− Eq[log p(x|z; y)]. (2.45)

The deformation field is learned via a 3D U-net style architecture [5] with the first arm being an

encoding side to obtain low-level features and the last portion is the decoder that upsamples and

concatenates previous layers for learning higher-level features and obtaining a deformation field

that is the same size as the moving and fixed images. The network is composed of a convolutional

layer with 16 filters, four downsampling layers with 32 convolutional filters and a stride of 2, and

three upsampling layers with 32 filters. LeakyReLu are the activation functions for all convolutional

layers with 3x3x3 kernels. The learned field deforms the moving image such that it matches the

fixed image and then the squared difference is found. Voxelmorph is implemented using Keras [49]

with Tensorflow backend [50] using the ADAM optimizer [51].
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Chapter 3

FlowReg: Optical flow-based Image Registration

This chapter will describe the main contributions of the thesis. It begins with an explanation of

the basics of optical flow and how traditional algorithms operate. Modern deep-learning models,

namely FlowNet, are explored. The next portion of the chapter describes the FlowReg model

architecture along with the improved loss function. Key differences between the original FlowNet

and FlowReg models are explored. Finally, the several registration validation metrics are shown

that measure registration quality by analyzing tissue integrity and pixel alignment.

3.1 Optical Flow

Optical flow is a vector that shows the movement or displacement of a specific pixel between two

images. A video is composed of a number of frames. As each frame is shown on the screen at a

certain frame rate per second, Fs , motion is perceived by the human visual system. Frames are just

images that are captured by a video camera in sequence and thus can be analyzed from an image

processing perspective using pre-existing tools. Hence, optical flow is often used in video processing

to calculate velocity and acceleration of objects in a scene [6]. The next subsections will describe

the basics of optical flow and the methods by which optical flow is calculated. Some aspects of

optical flow that are used in real-world applications include motion-based segmentation, obtaining

three-dimensional representation from motion, and global alignment such as compensation for

camera motion. The global alignment property was the reason why optical flow was selected as a

possible method of image alignment in medical image registration.
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3.1.1 Basics of Optical Flow

To calculate the optical flow between two frames, let t be the time variable, then I(~x, y) is the

intensity of the image I warped by vector ~x = (x, y)T [52].

I(~x, t) = I(~x+ ~u, t+ 1), (3.1)

where ~u is the 2D velocity vector ~u = (u1, u2). One assumption in the calculation of optical flow

is brightness constancy. Brightness constancy is a concept from perceptual psychology that says an

object appears the same to the human eye regardless of the lighting conditions. In optical flow,

brightness constancy does not hold because the difference in brightness between two pixels is very

small, thus the intensity of pixels is conserved. As such, the derivative of the same pixel with respect

to time is equal to zero. Estimation of the optical flow can be done by Taylor series expansion of

the following equation:

f1(x− d) = f1(x)− df ′1(x) +O
(
d2f ′′1

)
, (3.2)

where f ′ = df(x)/dx and d is the displacement [52]. Generalizing to a two-dimensional image, the

equation becomes:

I(~x+ ~u, t+ 1) ≈ I(~x, t) + ~u · ∇I(~x, t) + It(~x, t), (3.3)

where ∇I = (Ix, Iy), It is the spatial and temporal partial derivatives of the image I, and ~u =

(u1, u2)T is the two-dimensional velocity vector. Substituting using Equation 3.1 the derivation

gives the gradient constraint equation:

∇I(~x, t) · ~u+ It(~x, t) = 0. (3.4)

One can now use two frames to approximate the temporal and spatial gradient by simple subtrac-

tion δI(~x, t) = I(~x, t + 1) − I(~x, t). Equation 3.4 cannot be easily solved because ~u is a vector

with two components u1 and u2. One method to overcome the problem of one equation and two

unknowns is to place more constraints. This can be done by observing the movement of nearby

pixels within a certain region [52], [53]. As it is unfeasible to have a single velocity vector to
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describe the movement of multiple pixels within a region, Least Squares Estimation (LSE) can be

used:

E(~u) =
∑
~x

g(~x) [~u · ∇I(~x, t) + It(~x, t)]2 , (3.5)

where g(~x) is a weighting function that describes the amount of influence from the nearby pixels,

which is commonly Gaussian and thus the center pixels have a higher influence than others. The

lowest value for E(~u) can be found where its derivative with respect to ~u is zero. Equation 3.5 can

be converted to matrices for ease of computation:

M~u = ~b, (3.6)

where M =


∑
gI2
x

∑
gIxIy

∑
gIxIy

∑
gI2
y

 and ~b = −


∑
gIxIt

∑
gIyIt

. As such, the optical flow estimate is

calculated by rearranging to obtain:

û = M−1~b. (3.7)

Therefore, M should be of order two or higher and thus invertible so that it can be used for optical

flow estimation û. In the coming section, the established Lucas-Kinade iterative algorithm will be

discussed along with its implementation [53].

3.1.2 Classic Algorithms

Assuming the displacement of the pixels d is relatively small, iteratively the optical flow can be

calculated through Equation 3.5. The calculated displacement is then used to undo or warp the

pixel motion in the second image until the two images are relatively similar:

I0(~x, t+ δt) = I
(
~x+ ~u0δt, t+ δt

)
, (3.8)

where I0 is the warped image according to the estimated displacement field ~u0. Since the warp

vector is made up by the current vector plus the residual ~u = ~u0 + δ~u, the residual can then be

calculated as the temporal derivative. As such, the difference between two frames, let’s say I0
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and I1, is the displacement vector described by their corresponding displacement vectors plus the

residual as shown in:

~u1 = ~u0 + δû. (3.9)

Every iteration j through the LSE updates the residual δû until it is zero and the following holds

true ~u1 = ~u0 as seen in the following:

E(δ~u) =
∑
~x

g(~x)
[
Ij(~x, t)− Ij(~x+ δ~u, t+ 1)

]2
, (3.10)

which is the iterative version of LSE described in Equation 3.5.

Temporal aliasing may occur due to images having a lower sampling frequency than the established

Nyquist frequency. This is often seen in images as the banding effect or the squaring lego-effect

of round edges when the resolution of the image is higher than the display resolution, thus being

sampled at a much lower frequency [54].

To address the aliasing problems, a coarse to fine estimation has been proposed [55], [56]. If

an image is sufficiently blurred, then the motion vector size is larger because the neighbourhood

contents of the central pixel become similar to one another. Gaussian blurring pyramids are then

used to blur the images and calculate the displacements from a coarse of the most blurred image

to a fine estimation until the original image resolution is obtained. This is similar to the iterative

method, except that the calculated displacement field has to be upsampled from a blurred level of

the pyramid to a finer resolution level. One disadvantage of the coarse to fine estimation is that if

a vector is calculated inaccurately at a low resolution level, the error will propagate through all of

the layers.

One assumption of the neighbourhood pixel approach is that the estimated optical flow in the local

neighbourhood is smooth by means of non-parametric estimation. Horn and Schunck [6] proposed

global smoothing according to the following energy equation:

E(~u) =
∫

(∇I · ~u+ It)2 + λ
(
‖∇u1‖2 + ‖∇u2‖2

)
dxdy. (3.11)
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The proposed equation is especially useful in calculating large distances due to the global smoothing

such as camera movement. It examines an even surface like a wall because global approaches can

interpolate movement in between known displacement values1. The main disadvantage of Equation

3.11 lies in the expensive computation. The following section will examine some of the modern

approaches via Convolutional Neural Networks.

3.1.3 Deep Learning

In recent years, due to advancements in hardware development, CNNs have garnered attention

and have become widely used in attempts to provide solutions to various problems throughout

many fields in arts, science, and engineering [4]. CNNs have become particularly useful in image

processing fields and one of the regions that has seen some major advantages and a disruption of

established methods is in the field of optical flow calculation [7]. Convolutions in the discrete two

dimensional domain involve using a kernel across an image to generate feature maps. Typically

several kernels are used to generate numerous features across multiple layers. Graphics processing

units (GPUs) in modern computers are particularly useful in performing the fast simple operations

of multiplication and addition due to their fast memory and parallel computing power.

One major drawback of CNN-based approaches is that there is a need for ground truth labels. A

CNN model learns the response to these labels and then generalizes when new data is introduced to

the model without labels. Optical flow has very limited ground truth data and most of the current

methods have been implemented via the Lucas-Kanade method previously mentioned [53]. One

way to overcome the lack of data is to use subsequent frames in a video to calculate the optical

flow of the pixels from one frame to the next [8]. The approach is similar to reducing the residual

displacement vector value via an iterative process, except the features are learned via convolutional

layers.

One suggested approach, named FlowNet, has shown significant progress in predicting optical flow

from subsequent frames. The network structure (seen in Figure 3.1) is composed of an encoder and

1A more detailed explanation of the iterative algorithms, Euler-Langrange solutions, and implementation of the Horn-
Schunck equation can be found in Fleet and Weiss paper [52]
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a decoder arm similar to the U-net style. The encoder arm is composed of several convolutional

layers that reduce the resolution of the image, but are able to encode smaller features with each

level of convolution. This is a coarse to fine approach, where there is a need for many more features

maps to be able to encode small features, as opposed to large features which have a more general

structure. The decoder arm is able to upscale the obtained features so the output is the same size

as the input. Through skip connections, the model, termed FlowNet-Simple can then concatenate

the large-scale features with the small upscaled features. This technique provides a more accurate

representation of the learned feature maps.

Figure 3.1: FlowNet convolutional model to learn optical flow between two moving frames [7].

Given enough labeled data, a network can eventually learn the optical flow between two frames.

Dosovitskiy et al. [7], suggest a parallel feature map learning path for the two images. This

approach produces some meaningful representations of the two images prior to a combination

at a higher level. To further aid the network to learn, a correlational layer has been proposed.

Patches from each image are compared via the following equation:

c (x1,x2) =
∑

o∈[−k,k|×[−k,k]
〈f1 (x1 + o) , f2 (x2 + o)〉 , (3.12)
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where x1 and x2 are patches centered in feature map f1 and feature map f2, respectively, and

K := 2k + 1 is the size of the square patch. This implementation, termed FlowNet-Corr is a

similar technique as performing convolution with a kernel, but instead of the random kernel, the

convolution is being performed with a patch of another image. Since the values of the correlation

are significantly larger than convolutions with kernels, the displacement of x2 is constrained in a

neighborhood D := 2d + 1. The rest of the network is similar to FlowNet-Simple. The experiments

with optical flow in this thesis have been performed the FlowNet-Simple architecture.

3.1.4 Model Architecture - FlowReg

The major drawback of the FlowNet implementation is that there is a requirement for ground truth

labels. The authors have created a synthetic database, Flying Chairs, for which they artificially move

the chairs around via pre-defined flow vectors [7]. Unsupervised methods have been proposed to

calculate optical flow between image pairs by warping subsequent video frames and generating the

pixel-flow between the two time points [8]. The implementation by Yu et. al [8] was adapted to

medical images. The original loss function (Eqn: 3.13) is composed of photometric and smoothness

loss components as seen below. Further details are described in the FlowReg desription.

L(u,v;F (x, y),Mw(x, y)) =γ`photometric(u,v;F (x, y),Mw(x, y))+

λ`smoothness(u,v).
(3.13)

The proposed network structure is identical to FlowNet-Simple [7] composed of an encoder and

decoder arm with skip-connections (Figure 3.2), similar to the U-net structure [5]. The encoder

arm is composed of several convolutional layers that reduce the resolution of the image, but are

able to encode smaller features with each level of convolution. This is a coarse-to-fine approach,

where there is a need for many more features maps to be able to to encode smaller features, as

opposed to the large features which have a more general structure. The decoder arm is able to

upscale the obtained features through strided convolutions such that the output is the same size as

the input.
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The key difference between the proposed implementation and FlowNet-Simple and the proposed

registration method lies in the loss function. As FlowNet-Simple is trained on a synthetic database,

the ground-truth is known and thus is able to learn the optical flow from temporally spaced

video frames and dissimilarities are calculated as a simple endpoint-error (EPE). To employ a

fully unsupervised optical flow generation method, the strategy of Yu et al [8] was employed.

At various resolutions of the decoder arm, the generated flow, is used to warp the moving image

and compared to the fixed image. The recently proposed Spatial Transformer Network (STN) [57]

is used to warp the moving image with the predicted flow. The differentiable nature of STNs are

particularly useful to be able to create the sampling grid and warp the moving image according to

the learned deformation field.

Figure 3.2: Model architecture used to predict optical flow from a moving and a fixed image. The input to the network is two images
of size H = 256, W = 256. The number of feature maps is indicated above each convolution operation. The kernel size and stride are
indicated in the block of each convolution operation along with the activation function (Leaky ReLu). Upsampling is done via strided
Deconvolution operations. The flow at seven resolution levels is indicated in the output of the network.

Similar to Yu et al.’s [8] work, the loss function is a combination of comparisons between the

warped moving image and the fixed image and a flow loss function component. The total loss

function is a weighted summation of three components, photometric loss, correlation loss, and
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smoothness loss as described below:

L(u,v;F (x, y),Mw(x, y)) =γ`photometric(u,v;F (x, y),Mw(x, y))+

ζ`correlation(u,v;F (x, y),Mw(x, y))+

λ`smoothness(u,v),

(3.14)

where F (x, y) is the fixed image, Mw(x, y) = M(x+u, y+ v) is the warped moving image, u,v are

the horizontal and vertical vector fields, and γ, ζ, and λ are regularizing parameters that can be

tuned to control the amount of influence or weight of the various loss components.

The photometric loss is a simple difference measure between the fixed and the warped moving

image. This loss component evaluates to what degree the predicted optical flow is able to warp the

moving to match the fixed image on a pixel-by-pixel basis:

`photometric(u,v;F (x, y),Mw(x, y)) = 1
N

∑
i,j

ρD(F (i, j)−Mw(i, j))). (3.15)

The Charbonnier penalty function ρD is used to reduce any overtly large displacements that may

occur due to outliers of pixels and is defined by:

ρ(x) = (x2 + ε2)α, (3.16)

where ε is a small number and a α is a tunable parameter. To encourage an overall global alignment

of the mean intensities between the fixed and warped moving images, the correlation loss was

implemented as an additional loss component:

`correlation(u,v;F (x, y),Mw(x, y)) = cov(F (x, y),Mw(x, y))
σ(F (x, y))× σ(Mw(x, y)) , (3.17)

where the covariance is calculated by:

cov(X,Y ) = 1
N − 1

∑
(X − x̄)× (Y − ȳ), (3.18)

and σ is the standard deviation of the respective image. An ablation study was performed to observe
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the effect of the correlation loss `correlation by removing the component from the total loss function.

The outcome is described in the Results Chapter (Ch. 4. The smoothness loss is implemented to

reduce discontinuity of optical flow at object boundaries. The loss component encourages small

differences between neighbouring flow vectors in the height and width directions:

`smoothness(u,v) =
H∑
j

W∑
i

[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)+

ρS(vi,j − vi+1,j)] + ρS(vi,j − vi,j+1)].

(3.19)

A summary of the loss components is seen in Figure 3.3.

Figure 3.3: Overview of the loss components calculations.

3.2 Registration Validation Metrics

As medical images are typically organized in volumetric stacks of two-dimensional images, there

is a need for volumetric and structural measures of anatomic integrity. The suggested metrics

are focused on quantifying registration quality based on volumetry, structural deformation, and

orientation. Volumetry is measured by calculating a structure’s volume proportional to the whole
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brain, named proportional volume (PV). Structural measures are defined as a surface-to-surface

distance (SSD) between a brain structure and the surface of the brain. Head Angle (HA) is an

orientation measure calculated by finding the angle of rotation with respect to the saggital plane.

For the sake of completion, the typical registration quality measures are also evaluated such as MI

and CC.

An anatomical atlas provides a representation of key structures with corresponding coordinates.

Current neurological FLAIR-specific atlases are of low resolution and do not account for brain

WMLs. One of the secondary goals of this work is to propose a FLAIR-specific atlas as a fourth

measure of registration by averaging registered volumes.

3.2.1 Validation of Image Registration

In image registration, the calculated transformations can typically be extracted to be used to warp

the moving image to the fixed space or to deform the warped image back to the original space.

These transformations can typically be applied to binary masks. A binary mask is defined as pixels

that are included in an area of interest. The included pixels are typically labeled with a value of

1 and the remainder are 0. These areas of interest can be obtained via manual annotations or

automatic segmentations.

The calculated transformations can also be used to warp corresponding binary masks of the moving

image. This is particularly useful, because now different metrics can be calculated to measure how

different areas in the image have changed after registration. One method of measuring similarity

of two areas is to measure the overlap between the ground truth and a predicted value. There

are several methods of measuring overlap. One method mentioned derived by Dice [58] the Dice

Similarity Coefficient:

DSC = 2TP
2TP + FP + FN

, (3.20)

where TP is the True Positive, FP is the False Positive, and FN is the False Negative area of the

overlap as seen in Figure 3.4.
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GT Pred

FN TP FP                                                                TN

Figure 3.4: Overlap visualization. TP = True Positive, FP = False Positive, TN = True Negative, FN = False Negative.

Other methods of measuring overlap is by using the Jaccard Similarity or Overlap Coefficient. The

Jaccard Similarity is described by the intersect divided by the union of two sample sets as seen in

the equation below:

J(A,B) = |A ∩B|
|A ∪B|

. (3.21)

The intersect (A ∩ B) describes only the area where two data sets overlap as seen in Figure 3.4

marked by TP. The union (A ∪ B) is the area in two sets that includes all of Set A and all of Set

B, except the union. Figure 3.4 is all of GT and all Pred but not TP so as to not repeat TP twice.

Another way to interpret is FN + TP + FP . The overlap similarly uses the intersect, divided by

the smallest of the two sets:

OC(A,B) = |A ∩B|
argmin(|A|, |B|) . (3.22)

Information theory can be used to also describe the similarity between two images. For every image

a probability density function (PDF) can be calculated via histogram binning. For a number of bins,

the proportional number of pixels from all pixels in an image X falling within a certain intensity

range can be easily calculated (pX(x)). The joint PDF between two images can be found by finding

the probability that each pixel in one image X falls within a histogram bin range and also falls

within the histogram bin range of another image Y denoted by (pX,Y (x, y)).
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Since images are considered as discrete random variables one can use the joint probability and the

marginal probabilities to calculate the similarities between images by using Mutual Information.

This metric is defined as the amount of information shared between two random variables. It can

also be thought of as the similarity between the joint probability and the product of the marginal

probabilities of two random variables. In the discrete domain, the variables can be images X and Y,

and the double sums are calculated as seen below:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y) log
(
pX,Y (x, y)
pX(x)pY (y)

)
. (3.23)

For two images that are exactly the same, the mutual information should be a high number

(typically between 2 and 3 for MR volumes, depending on the number of pixels and intensity

ranges). As images are more dissimilar, the MI value drops. Since there is no upper bound,

normalized variants have been proposed that are based on the marginal Entropy Measure of each

random variable as seen below:

NMI(X;Y ) = 2× I(X;Y )
H(X) +H(Y ) , (3.24)

where I(X;Y ) is the mutual information between two random variables X and Y, the H(X) is the

marginal entropy of the random variable X, H(Y ) is the marginal entropy of the random variable

X as seen in Figure 3.5.
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Figure 3.5: Entropy representation of Mutual Information. The violet area is the mutual information, the entire pink circle is the entropy
of random variable X, denoted by H(X) and the entire blue circle is the entropy of Y, denoted by H(Y).

To find the entropy measures of each random variable, let’s say random variable X, one can calculate

the sum of the logarithmic probabilities that a pixel will fall within an intensity range.

H(X) =
∑

log(pX(x)). (3.25)

The same equation can be applied to random variable Y. In Figure 3.5, one can see that the

conditional entropy H(X|Y ) can now be calculated by subtracting the I(X;Y ) from marginal

entropy H(X). The Normalized Mutual Information can now be easily calculated and will give

values that are bound between 0 and 1 [59]. This is particularly useful because it provides a more

relative scale for many variables to be compared with a particular one, not unlike registered images

and an atlas template.

Some aspects of image registration that have to be considered consist of how different areas of an

image are affected during registration. Volumetric changes are not accounted for when measuring

overlap or when using any of the information theoretic metrics. Since deformation fields are not
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uniform, some areas of brain tissue may be affected more than others. Ventricles are filled with

CSF and as was discussed above (Figure 1.6), in FLAIR, these water-filled cavities are nulled and

therefore are some of the hypointense or darkest areas of a brain. Hyperintense regions of the

brain are the WMLs and they can also be affected by registration. This presents a need to observe

how registration affects these particular regions after registration from a volumetric and structural

perspective.

Measures of alignment are needed to assess the level of agreement between the transformed

moving image and the fixed one. Correlation measures such as Pearson’s correlation determine

the pixel-wise relationship agreement between two images.

3.2.2 Percent Volume (PV)

In MRI, volumetric measurements are calculated voxel-wise. Each voxel V has a real-world di-

mensionality defined by the MRI scanner typically measured in mm3. The Vx and Vy dimensions

correspond to the pixel width and height, respectively, while the Vz dimension is found from the

slice-thickness measure. With all the known parameters, the volume of a structure can be easily

calculated by counting the number of total voxels nv in a structure and the following multiplication:

vol = Vx × Vy × Vz × nv. (3.26)

Pre-registration volumetric measures are calculated through the use of manually segmented binary

masks and then summating across nv, then translating to real-world measures. The volumes of the

WMLs, ventricles, and whole brain are calculated via the same method as described above. The

proportional volume (PV) is then obtained by dividing the volume of the structure (ventricles or

WML) volS by the total brain volume volB as seen below:

PV = vols
volb

× 100. (3.27)

Since all brain structures are contained within the brain, the proportional volume should remain

constant no matter which three-dimensional space it is located in. This measure should then be
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able to assert the amount that proportional volumes of hyperintense regions, such as WMLs, or

hypointense CSF-containg regions, such as ventricles, change before and after registration. The

finest performing registration algorithms should not drastically change this ratio.

3.2.3 Surface to Surface Distance (SSD)

Structural measures should be able to measure how the overall formation of brain tissue warps.

This is a difficult measure, due to the non-uniformity of human anatomy. One method to examine

this structural change is based on the surface to surface distance. Based on the Hausdorff distance

[60], the idea is to find the closest point of a surface to another surface. The distance was found

from the surface of the ventricles to the surface of the brain (Figure 3.6). The ventricles were

selected as the structure of choice due to their consistent presence within a brain at approximately

the same location. The formula for the SSD measure is as follows:

SSD = 1
N

[
N∑
i=1

argmin
(√

S2
xyz −B2

xyz

)]
. (3.28)

Figure 3.6: Two dimensional representation of SSD computation.

For every voxel in the ventricle structure S, the shortest distance to the surface of the brain B,

is found and the average of all the minimum distances provides one numerical value for the SSD

metric. In theory, the overall structural integrity of the ventricles should be maintained with respect

to the brain structure post-registration. Any differences in this metric can amount to significant
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structural changes in the shape and organization of the ventricles with respect to the surface of the

brain.

3.2.4 Head Angle

The Head Angles (HA) measure is an orientation measure that examines to what extent the head

is rotated with respect to the midsaggital plane. The process involves a combination of Principle

Component Analysis(PCA) and an angle sweep as described in [61].

An MRI volume is first binarized using a combination of adaptive thresholding and opening and

closing techniques. Otsu’s method was chosen for adaptive thresholding due to rapid and accurate

performance [62]. This adaptive method is able to divide the intensities in an image into two

classes by minimizing the intra-class variance according to the following equation:

σ2
w(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t). (3.29)

where σ2 are the corresponding class variances and w are the corresponding weight classes. The

algorithm is dependent on the PDF of the image and iterates through all intensity probabilities until

the the intraclass variance is minimized [62].

Image closing and opening are two techniques used to more accurately define the outlines of

images and remove noise. Specifically, image closing is defined by a dilation and then erosion [63].

Dilation can be applied using two-dimensional kernels, for example 3 × 3 and widening any areas

of an image such that structures that were separated, can now be clustered together (Figure 3.7).

Erosion essentially does the opposite where images that contain an undesired noise outside the

kernel, are ignored, and thus the noise or structure is removed (Figure 3.8).
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Figure 3.7: Binary image dilation example [64].

Figure 3.8: Binary image erosion example [64].

Image opening is essentially the reverse order of closing, first an erosion and then a dilation is

performed [63]. After the binary head-masks are obtained, the coordrinates of each non-zero pixel

are stored into two X and Y arrays. PCA analysis on these two arrays allows for efficient eigenvector

calculation with the use of a covariance matrix which is calculated with the following equation:

Px = 1
n− 1

n∑
i=1

(Xi −mx) (Xi −mx)T , (3.30)

where mx is the row-vector mean. The results is a symmetric matrix with a size 2 × 2. The values

in the matrix are the variance of each column, and the joint variance denoted by f , h, and g:

Px =

 f g

g h

 . (3.31)

Solving for the two eigenvectors can now be done by solving the following quadratic equation:

λ2 − λ(f + h) +
(
fh− g2

)
= 0, (3.32)
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for which the λ1 and λ2 values can be used to calculate the two eigenvectors according to:

ej = 1√
g2 + (λj − f)

 g

λj − f

 , (3.33)

where j is 1 or 2 specifying the two eigenvectors and two λ values. Once the two eigenvectors are

known, the angle between them can be easily found through an inverse tangent operation:

θ1 = tan−1
(
vy
vx

)
. (3.34)

This θ1 value represents the coarse angle and it is the first step in finding the HA rotation. PCA

angle calculation was performed on every second slice from the middle transverse slice to the top

of the head. These slices are some of the closest approximations of an ellipse and most useful in

angle of rotation calculation. The lowest three angles are taken as candidates due to the fact that

head irregularities and errors in segmentation may produce large numbers that cannot be corrected

in the second step.

The fine angle calculation consists of an angle sweep and determines the final θ2 angle calculation of

the three candidate slices. Each of the three slices are inversely rotated using their corresponding

θ1 values. The images are then mirrored and rotated at 0.5◦ angle increments according to the

following angle sweep strategy:

−2× θ1 < θ2 < 2× θ1. (3.35)

At every increment of rotation, the cross-correlation between the mirrored rotating and the original

coarsely rotated image is calculated and a score is recorded. The angle at which the highest score is

found, denotes the θ2 value [65]. The final angle is found by addition θ = θ1 +θ2. Of the three final

angles, the lowest angle is chosen because large rotations are typically indicative of poor headmask

binarizing.
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3.2.5 Mutual Information

Mutual information is calculated according to Equation 3.23 between a fixed atlas and a moving

volume.

3.2.6 Correlation

Pearson’s correlation coefficient r was used as the second intensity-based measure between two

volumes according to the following equation:

rxy =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2 , (3.36)

where n is the number of voxels, xi and yi are the corresponding voxels, and x and y are the volume

mean intensities.

3.2.7 Pixelwise Agreement

Pixelwise Agreement (PWA) is a measured across every slice in the registered volumes compared

to the atlas template. From slice to slice there can be major structural differences especially at the

extremities (Figure 3.9). PWA measures how similar the pixel values are at corresponding slices to

the atlas by calculating the Mean-Squared Error per slice.

MSE(x, y) = 1
N

∑
(x− y)2. (3.37)

Once the slice PWA is obtained for each registered, the average across the entire database is

obtained as one error value for each slice.
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Figure 3.9: A typical brain volume is composed of many tissue-types that vary from slice to slice.
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Chapter 4

Experiments and Results

This portion of the thesis presented will detail the experiments performed and results obtained. The

discussion will begin with an analysis of the data used, experimental setup, the different registration

settings for FLAIR registration, an overview of the Optical Flow models tested, and finally the results

obtained.

4.1 Data

The FLAIR MRI scans were obtained from two databases. The first is the Canadian Atherosclerosis

Imaging Network (CAIN) and second being the Alzheimer’s Disease Neuroimaging Initiative. Both

databases consist of aging population. CAIN is made up of 700 multi-patient and longitudinal

patient volumes. All 700 volumes were used for Head Angle, Mutual Information, Correlation, and

Synchronized Averaging metrics. PV and SSD calculations require manual segmentations of the

brain, ventricles, and WMLS. Fifty volumes were segmented by trained medical students according

to a predefined protocol. The mean age for CAIN was 73.87±8.29 of which 410 were Male (74.47±

8.26 years old), 266 were Female (72.96 ± 8.25, and 24 had anonymized information. The fifty

volumes were randomly selected from the CAIN database. The age of 47 of the participantrs ranged

from 60 to 85 (74.6 ± 6.1) years old, of which 15 were female (75.5 ± 5.5) and 32 were male

(74.2± 6.4). Three participants had anonymized age and gender. The scans for the entire CAIN set

were obtained from February 2010 until January 2016 from various centers across Canada.
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A second dataset from the ADNI database was used, consisting of 4263 volumes [66]. The total

mean age was 73.48 (±7.37) of which 1981 were Female (72.5±7.4), 2280 were Male (74.34±7.24),

and 2 were unknown (82.76). From the ADNI database, 78 volumes were excluded due to severe

artifacts sucah as hyperintense noise regions and missing or blank slices. Twenty volumes had

their ventricles and white matter lesions annotated by the same experts and according to the same

protocol used in the CAIN annotations.

For CAIN, the FLAIR MRI data came from several centers throughout North America that used a

various number of scanner models from three manufacturers, General Electric Medical Systems

(Discovery MR750, n=181), Phillips Medical Systems (Achieva, n=230), and Siemens (Skyra,

n=162; IteraMR, n=14; TrioTim, n=113). The corresponding scanner settings are summarized

in the Table 4.1.

Table 4.1: FLAIR MRI acquisition criteria for the CAIN database.

Manufacturer TR(ms) TE(ms) TI(ms) V oxelSize(mm3)
GE Discovery MR750 9700 140.84 - 150.24 2200 2.2157

Phillips Achieva 1100 125 2800 1.1020

Siemens Skyra 9000 119 2500 3.0

IteraMR 9000 119 2500 3.0

TrioTim 9000 122 2500 3.0

The ADNI database consisted of three MR scanner manufacturers with 15 total models. The three

manufacturers were Philips Medical Systems (Intera, n=191; Achieva, n=520; Ingenia, n=83;

Ingenuity, n=19; Gemini, n=35; total=848), Siemens (Verio, n=633; TrioTim, n=1401; Skyra,

n=286; Prisma, n=5; Biograph-MR, n=13; SymphonyTim, n=2; total=2340), and General Electric

Medical Systems (SignaHDx, n=23; SignaHDxt, n=438; Discovery MR750, n=600; Discovery

MR750w, n=14; total=1075). The acquisition settings are shown in table 4.2.
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Table 4.2: FLAIR MRI acquisition criteria for the ADNI database.

Manufacturer TR(ms) TE(ms) TI(ms) V oxelSize(mm3)
GE SignaHDx 11002 153.98 2250 3.6927

SignaHDxt 11002 147.93-192.17 2250 3.6927

DiscoveryMR750 11000 149.67 2250 3.6927

DiscoveryMR750 11000 151.40 2250 3.6927

Phillips Intera 9000,6000 90, 140 2500,2000 3.6927,4.3945

Achieva 9000 90 2500 3.6927

Ingenia 9000 90 2500 3.6927

Ingenuity 9000 90 2500 3.6927

Gemini 9000 90 2500 3.6927

Siemens Verio 9000 91 2500 3.6927

TrioTim 9000 90 2500 3.6927

Skyra 9000,11900 91 2500,2753.4 3.6927

Prisma 9000 122 2500 3.6927

Biograph-MR 9000 122 2500 3.6927

SymphonyTim 10000 125 2200 4.3945

The standardized volumes had the intensity histograms aligned and the background was nulled

according to [67].

4.2 Validation Metrics Experimental Setup

The FLAIR volumes from both databases were registered to the FLAIR template space provided by

Brainder via the four registration methods [68]. An overview of the metrics extraction pipeline is

seen in Figure 4.1.
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Figure 4.1: Registration metrics extraction process. HA = Head Angle, MI = Mutual Information, R = Correlation Coefficient, PV =
Percent Volume, SSD = Surface to Surface Distance

For the corresponding brain, ventricle, and WML masks, the resultant deformation field from

each registration method is applied to warp to the same space as the registered volume. The

PV calculations of the ventricles and WMLs are with respect to the whole brain volume. The SSD is

computed between the ventricle surface and the brain surface. Finally, for all registration methods,

the large-scale metrics are computed: Head Angle with respect to the saggital plane, MI and R

were both calculated between the registered volumes and atlas. For a baseline comparison, all

metrics are computed prior to any registration on the volumes and masks. No pre-processing was

done to any of the volumes other than resizing to the atlas (resolution 256, 256, 55). The warped

masks were binarized with a threshold of 0.1 so as to avoid the non-integer values obtained from

interpolation.

For the Voxelmorph training procedure, both the atlas and the moving volumes were resized to
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256, 256, 64. This particular resolution was chosen to be a binary multiple of 2n to ensure that the

decoder arm of the U-net network is able to rebuild the learned feature maps to the original input

size and warp the volumes accordingly.

4.3 Optical Flow Implementation Details

The FlowReg model was trained solely on the CAIN database, using 400 volumes of 55 slices for a

total of 22, 000 images. As a pre-processing step, the volumes were first affinely registered using

ANTs [28]. The fixed volume is the the template from Brainder database [68]. The optimizer used

was Adam [51] with a β1 = 0.9 and β2 = 0.999, and a learning rate of lr = 10−4. Training was done

for 100 epochs using a batch size of 32 image pairs at seven resolutions (Figure 3.2). In the loss

function, the Charbonnier penalty function (3.16) played a major role in both reducing overfitting

and overtly large deformations (Figure 4.2). For both smoothness and photometric loss, the chosen

α value was 0.2.

Figure 4.2: Charbonnier function (Eqn 3.16) showing the effect of various α values of 0.5, 0.4, 0.3, and 0.2.

The training procedure consisted of hyper-parmater tuning by varying the α value and compound-

ing the correlation loss (Eqn: 3.17) to the total loss and some results are seen in Figure 4.3).

63



(a) α = 0.45. (b) α = 0.4.

(c) `corr only with smoothness. (d) α = 0.3.

(e) α = 0.25. (f) α = 0.2.

Figure 4.3: The results of testing different α values in the Charbonnier penalty function during the training phase (Eqn: 3.16).
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Once the desired model was attained, an ablation study was performed by removing key portions of

the loss function 3.14 to observe what effect the included components played. The first experiment

was to remove the correlation loss 3.17 and keep only the photometric and smoothness loss. The

major result that was noticed is that there was subpixel level of vector movement. This was evident

by examining the vector field magnitude at various slices as seen in Figure 4.4. Essentially, the

moving image looked exactly as it was prior to registration as the highest vector magnitudes are in

the 10−3 magnitude range.

Figure 4.4: Vector field magnitudes. The index value represents the magnitude or how far that pixel should move.

The last ablation experiment was to train using only correlation without photometric or smooth-

ness. One example was already shown in Figure 4.3c and the same was confirmed in Figure 4.5.

Wheras in the

(a) Slice 15. (b) Slice 25. (c) Slice 35

Figure 4.5: Ablation study using only the correlation component of the loss function.
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The regularization parameters for the total loss function (Eqn: 3.14) were set as follows: γ = 0.5,

ζ = 1.0, and λ = 1.0. The specific values were chosen because of the inherent nature of the

warping. It was desired to obtain the similarly distributed intensity distributions, with low variance

between the fixed and moving warped and high covariance (Eqn: 3.17). As a balancing act, the

smoothness loss (Eqn: 3.19) implements a weight factor of λ = 1.0 to reduce overfitting and any

large distortions. The photometric loss (Eqn: 3.15) has a weight of 0.5 to also reduce any large

distortions and smoothing as seen in Figure 4.3a.

4.4 Registration Settings

Four validation metrics were used to asses the efficacy of FLAIR MRI registration via all registration

methods. All four registration algorithms use different strategies to achieve warp moving images

to a fixed image space, thus giving an insight into their real-world practicality. Registration was

performed in the Python programming language, while the metrics were calculated in Matlab [69].

The data was stored as three dimensional arrays and saved as .MAT files which allows quick

interchange in both programming languages for registration and metric extraction. Three of the

four registration methods were performed on a Windows 64-bit system, that has a 3.2GHz Intel

Core i7, 32Gb of RAM, and an nVidia GTX1080-TI with 11Gb of video-RAM. ANTs registration

currently only works on Unix-based systems (although workarounds are available via Ubuntu

command line and Virtual machines, but are highly inefficient since resources are taken by these

pseudo-Unix machines on top of the actual registration algorithms) and thus was performed on

a Macbook Pro 13” with macOS Mojave (10.14.5), 3.5GHz Intel Core i7, 16Gb DDR3 RAM, and

integrated Intel graphics.

4.4.1 Demons

Demon’s registration was done using SimpleITK’s implementation of the original Demon’s algo-

rithm based on Thirion’s paper [25] [26] [70] [40]. This method uses intensity histogram matching

to make the intensities similar prior to registration. The settings used were as follows:
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1 matcher = sitk.HistogramMatchingImageFilter()
2 matcher.SetNumberOfHistogramLevels(1024)
3 matcher.SetNumberOfMatchPoints(7)
4
5 demons = sitk.DemonsRegistrationFilter()
6 demons.SetNumberOfIterations(50)
7 demons.SetStandardDeviations(1.0)

The number of bins for joint histogram and marginals were 1024, 50 iterations, and the σ for the

Gaussian smoothing of the deformation field was set to 1.0 as seen in Equation 2.24. Once the

displacement field is calculated, the binary masks are warped into the fixed image space.

4.4.2 ANTs

The Advanced Normalization Tools (ANTs) algorithm was used via the Python implementation and

using the classic (Symmetric Normalization) option. These options include affine and a deformable

transformation. The optimization metric is Mutual Information (MI).

1 mytx = ants.registration(fixed=fixedVol, moving=movingVol, type_of_transform=’SyN’,
verbose=1)

2 regvol = mytx[’warpedmovout’]
3 fwdtform = mytx[’fwdtransforms’]
4 invtform = mytx[’invtransforms’]

where the regvol is the registered volume, fwdtform is the transform to move from moving to

fixed space, and invtform is the inverse transform from fixed to moving (Figure 2.11) [28].

4.4.3 Elastix

The Elastix algorithm was implemented using the Python API designed for SimpleITK [40]. A

Python package was designed by Marstal et al [71] to allow ease of implementation. The algo-

rithms uses a four level Gaussian smoothing pyramid. The deformations are rigid, affine, and

b-spline transforms with the following similarity measures for each, respectively: Normalized

Cross-Correlation, Mutual Information, and Mutual Information with a transform energy penealty

that constrains any large erroneos transforms. For all three transforms the Adaptive Stochastic

Gradient Descent (ASGD) optimizer and a B-spline image interpolator were used.
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4.4.4 VM

Voxelmorph (VM) is a Convolutional Neural Network (CNN) based approach implemented in Ten-

sorflow using the Keras wrapper [50] [49] [47]. The U-net style network consists of Convolutional

Layers followed by Rectilinear Activation functions which learns the vector flow of individual

voxels [5]. The last layer consists of a Dense Deformation to warp the moving image according

to the learned deformation vector field to the fixed image space. The loss function between the

transformed and fixed volumes is a sum of the 3D cross-correlation and l2 gradient loss using the

Adam optimizer [51]. Training was done on all 700 volumes, with a 80/20 training validation

split for 10 epochs. The weights were saved at every epoch, noticeable errors were noticed

after the seventh epoch, as such, all experiments trained for 7 epochs, similar to the author’s

experiments [47].

4.5 Manual Masks Registration Results

All metrics were calculated in MATLAB prior and post registration for comparison purposes. The

Mean-Error (ME) metric was used to assess the amount of difference between the Before and after

registration. For FlowReg as AffineANTs was used as a preparatory step, the difference was found

with respect to the Before and to AffineANTs. This is due to the additive effect that may be perceived

after the affine registration with ANTs. To test the true effect of FlowReg on PV and SSD, it is

important to isolate it from the error that may be induced by the affine transform that was done

via AffineANTs. The equation is as follows:

ε(A+B) = ε(A) + ε(B), (4.1)

where A is AffineANTs and B is FlowReg registration errors in the PV of the structure in question.
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4.5.1 PV

The proportional volume calculations for both ventricles and white matter lesions in the CAIN

database were calculated as seen in Figure 4.6 and Figure 4.7.

Figure 4.6: Proportional ventricular volume of the pre- and post-registered binary masks for CAIN (n = 50).

Figure 4.7: Proportional ventricular volume of the pre- and post-registered binary masks for CAIN (n = 50).

Difference magnitutdes between registered and non-registered volumes are found and shown in

Figure 4.8 and Figure 4.9.
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Figure 4.8: Proportional ventricular volume difference between pre- and post-registered binary masks for CAIN (n = 50).

Figure 4.9: Proportional WML volume between pre- and post-registered binary masks for CAIN (n = 50).

The ME errors are shown in the figure below (Figure 4.10).
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Figure 4.10: Error of PV from Before registration for the CAIN database. FlowRegvsAffine is a comparison of the PV metric with respect
to the affine registration.

Overall, it can be seen that, on a general basis, the PV of both WMLs and ventricles are being

overestimated for most methods. Taking a closer look at the PV-WML, ANTs, Demons, and SE are

the closest to the Before for both Raw and Standardized data. VM has the highest difference. It is

important to keep in mind that FlowReg uses ANTsAffine as a preparatory step, thus any observed

effects are likely cumulative from the affine transformation. This effect is especially visible when

examining Figure 4.10 where the error is minimal when compared to ANTsAffine and thus equation

4.1 hold true where εFlowReg = εAffineANTS + εFlowRegvsAffine. The same trend can be observed

when comparing proportional ventricular volume where ANTs and SE perform well, and FlowReg

has a low error compared to ANTsAffine.

The ADNI manual segmentation were treated to the same metrics as the CAIN. Proportional volume
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calculations were performed for both ventricles and WMLs for all four registration modalities. For

the raw and standardized volumes the MSE compared to prior registration is observed. (Figures

4.11, 4.13, 4.15). The WML proportional volumes, similarly show no difference to pre-registration

except for Voxelmorph (Figures 4.12, 4.14, 4.15). This remains true for both non-standardized and

standardized volumes.

Figure 4.11: Proportional ventricular volume of the pre- and post-registered binary masks for ADNI (n=20).

Figure 4.12: Proportional WML volume of the pre- and post-registered binary masks for ADNI (n=20).
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Figure 4.13: Proportional ventricular volume difference between pre- and post-registered binary masks for ADNI (n=20).

Figure 4.14: Proportional WML volume between pre- and post-registered binary masks for ADNI (n=20).
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Figure 4.15: Error of PV from Before registration for the ADNI database. FlowRegvsAffine is a comparison of the PV metric with respect
to the affine registration.

4.5.2 SSD

Surface to surface distance (SSD) was calculated from the surface of the ventricles to the surface

of the brain. The average (Figure 4.16) and standard deviation SSD (Figure 4.17) are calculated.

Significant changes indicate that the overall surface of the ventricles has changed with respect to the

brain surface (Figure 4.18). Interestingly, FlowReg with ANTsAffine performs best when comparing

to FlowReg on its own as defined by equation 4.1.
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Figure 4.16: Mean Surface to Surface distance registered via the four methods of the CAIN volumes (n=50).

Figure 4.17: Standard Deviation Surface to Surface distance registered via the four methods of the CAIN volumes (n=50).

Examining the mean SSD, SE and FlowReg with AffineANTs registration show the largest differences

while ANTS, Demons, and VM have the lowest errors. Standardization does not change the out-

come showing that ANTs and Demons are still similar to pre-registration while SE and FlowReg are

different. The standard Deviation SSD metric shows Demons and VM as being the closest
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Figure 4.18: The Error of the SSD metric compared with prior to registration of the CAIN database. FlowRegvsAffine is a comparison of
the SSD metric with respect to the affine registration.

ADNI results show simlar trends as CAIN(Figures 4.19, 4.20). ANTs and SE both consistently

have higher mean SSD than prior to registration and Standardization does not change the results.

The standard deviation SSD is also higher for ANTs and SE which describes higher variation in

the distance between the ventricles and the brain in the ADNI database. The same is true when

examining the standardized volumes. Observing the mean error in 4.21 it can be seen that the

error effect as defined by 4.1 is especially apparent for this metric where FlowReg has a near null

error.
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Figure 4.19: Mean Surface to Surface distance registered via the four methods of the ADNI volumes (n=20).

Figure 4.20: Standard Deviation Surface to Surface distance registered via the four methods of the ADNI volumes (n=20).
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Figure 4.21: The Error of the SSD metric compared with prior to registration of the ADNI database. FlowRegvsAffine is a comparison of
the SSD metric with respect to the affine registration.

4.6 Large Scale Registration Metrics

Three metrics were used to assess the quality of registration on a large scale without the use of

binary masks. These metrics are the Head Angle, Pixelwise Agreement, Mutual Information, and

Correlation. Synchronized averaging has been used to create atlases based on the registration

modality.

4.6.1 Head Angle, Pixelwise Agreement, Mutual Information, Correlation

The Head Angle calculations were performed on the entire dataset for both databases, CAIN and

ADNI. The plots indicate the angle of all the volumes in the database with respect to the midsaggital

plane. Calculations were done for both Raw and Standardized volumes. For this metric, it is

important to reduce the angle with respect to the vertical. Thus, tightly clustered angles to the

0◦ line indicates highest performes in terms of vertical alignment (Figure 4.22). To measure the
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variability in angles we define spread, ς, as three times the standard deviation σ away from the

mean µ. Prior to registration of the CAIN database, the mean average angle is found to be µ = 0.37◦

with a spread ς = 15.64◦. FlowReg has the lowest spread of all the metrics ς = 1.52◦, followed by

AffineANTs ς = 2.52◦, and finally ANTs with a spread of ς = 6◦. Standardization significantly

improves the performance of the registration methods on this metric. Specifically, we notice ANTs

has a mean of µ = −0.21◦ with a spread of ς = 1.62◦. FlowReg again has the lowest spread at

ς = 1.6◦ for the standardized dataset.

The ADNI non-standardized pre-registered volumes have a mean angle of µ = 0.83◦ and a spread

of ς = 7.38◦ (Figure 4.23). The volumes registered via FlowReg have the tightest region of spread in

terms of angle via visual inspection, the mean is µ = −0.12◦ and the spread of ς = 1.68◦ followed

by SE with a spread of ς = 1.94◦, and ANTs ς = 2.26◦.. Voxelmorph is the sole registration modality

that has the highest measure of spread at ς = 7.53◦. Standardization reduces the spread of the

head angle measurement for all registration methods.

Pixelwise Agreement (PWA) is measured by calculating the per-slice MSE when compared to the

original atlas template and the average error at each slice is reported in Figure 4.24 for CAIN and

Figure 4.25. As MRI images vary considerably across a single volume due to structural differences

from one slice to the next, if registration is to be performed accurately, the level of agreement has to

be measured accordingly, which is the intent behind PWA. The highest error is seen by Demons, SE,

VM, while FlowReg holds the lowest by a large margin for the non-standardized dataset across all

slices. Interestingly, again we see that standardization significantly improve the ANTs registration,

bringing the error values in the FlowReg territory.
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Figure 4.24: PWA as a measure of alignment after various registrations for CAIN. The error is reported as an average across all volumes
on a per-slice basis.

Figure 4.25: PWA as a measure of alignment after various registrations for ADNI. The error is reported as an average across all volumes
on a per-slice basis.

Mutual Information (MI) is an information theoretic metric that is often used as a similarity metric

in many registration metrics. Thus, it is expected that those modalites should perform best.

Compared to pre-registration, FlowReg, ANTs, and ANTsAffine have the highest MI for the CAIN

database. Standardization improves the ANTs Registration (Figure 4.26). For the ADNI dataset, the

highest MI is seen by FlowReg, ANTs, and SE (Figure 4.27).

82



Figure 4.26: CAIN Mutual Information metric. Higher number indicate better correspondence between the probability distribution
functions.

For the ADNI volumes, the results are seen in Figure 4.27. FlowReg, ANTs, SE, and Demons have

the highest MI values. Standardization increases the results of all registration metrics.

Figure 4.27: ADNI Mutual Information metric. Higher number indicate better correspondence between the probability distribution
functions.
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Correlation coefficients are found for both CAIN and ADNI and are seen in Figure 4.28 and 4.29.

For CAIN, the highest correlation values are seen for FlowReg and ANTs. Standardization improves

ANTs significantly, and significantly reduces the spread of Demons and SE.

Figure 4.28: CAIN correlation coefficients are found by finding the Pearson’s r.

Similar trends are observed in the ADNI database. The highest correlation are seen in FlowReg and

ANTs and standardizing the volumes improves Demons and SE by reducing the spread significantly.
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Figure 4.29: ADNI correlation coefficients are found by finding the Pearson’s r.

To provide a visual representation of image registration quality, one moving volume’s registration

journey is shown below as it was registered across all registration modalities (Figure 4.30, Figure

4.31, Figure 4.32). One should begin examining the different visual characteristics of the moving

volume and the fixed volume. It is important to remember that for example looking at slice-wise

comparisons of these two volumes in Figure 4.30 there are major structural differences between

the moving and the fixed at slices 35. The most striking visual anomalies are seen in the Demons

registration with VM being a close second. While both of these registration perform poorly, they

are on the opposite extreme ends of the visual quality registration measures. Demons can be seen

(Figure 4.31) that there are some major distortions especially in the shape of the skull, eye orbits,

and brain tissue at the longitudinal fissure. VM shows that there was virtually no movement of

the tissue and this can be seen by examining slice 35. ANTs, SE, and FlowReg are the most similar

images to the fixed volume while still maintaining tissue integrity. The FlowReg registration effect

can be observed comparing each registered slice to the Affine pre-registered images.
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(a) Moving volume, slice 15. (b) Moving volume, slice 25. (c) Moving volume, slice 35.

(d) Fixed volume, slice 15. (e) Fixed volume, slice 25. (f) Fixed volume, slice 35.

(g) ANTs registered, slice 15. (h) ANTs registered, slice 25. (i) ANTs registered, slice 35.

Figure 4.30: One moving volume example across all registration methods.
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(a) Demons registered, slice 15. (b) Demons registered, slice 25. (c) Demons registered, slice 35.

(d) SE registered, slice 15. (e) SE registered, slice 25. (f) SE registered, slice 35.

(g) VM registered, slice 15. (h) VM registered, slice 25. (i) VM registered, slice 35.

Figure 4.31: One moving volume example across all registration methods.
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(a) Affine registered, slice 15. (b) Affine registered, slice 25. (c) Affine registered, slice 35.

(d) FlowReg registered, slice 15. (e) FlowReg registered, slice 25. (f) FlowReg registered, slice 35.

Figure 4.32: One moving volume example across all registration methods.
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Chapter 5

Clinical Applications

5.1 Image Registration in Clinical Applications

At its essence, image registration is a method of aligning one moving image to the same geometric

space as a fixed image. This is typically done via rigid and non-rigid transformations.

From a clinical perspective, the purpose of registration is associated with warping images so that

they can be analyzed with software tools and eliminate some of the variations that are associated

with the image acquisition process also known as the Multi-Center Effect [67]. As different centers

and scanner manufacturers have settings that can be tuned during a procedure, there are others that

are unchanged. For this reason, a patient may have several scans throughout his or her lifetime that

have to be analyzed for disease progression and treatment efficacy. To get an accurate measurement

it is of utmost importance to have the images be as similar as possible, even with all the variance in

manufacturer and scanner model setting. Registration is one of the methods to obtain consistency

by being able to warp these images so that they are in the same space and an objective and accurate

diagnosis can be made. This reduction in variation before any type of analysis is performed, can aid

in reduction of errors and misdiagnosis, provide more accurate treatment regimens, and reduce the

number of repeat scans. For these reasons, registration in medical image processing is an important

cogwheel in the machine of many healthcare systems throughout the world by reducing the patient

wait times and overall economic burden.

89



5.2 Atlas Generation

A fourth measure of registration accuracy was done by synchronized averaging. All volumes were

registered and synchronized voxel-wise averaging was performed to obtain an averaged represen-

tation of image alignment. This is particularly useful in observing rigid and affine transformations

calculated between the two images. It is also representative of images that are outliers and have

outright failed registration, which will form a ghosting phenomenon and thus lose sharpness.

The resulting volume is a novel brain atlas specific to the registered dataset and a single volume

representation of the database contents (Figure 5.1). Brain atlases such as the Talaraich [72] and

the Montreal Neuroimaging Institute (MNI) [73] are widely used template spaces to which many

volumes are warped to prior to any segmentation approaches. The Talraich atlas, first introduced

in 1988 is known as a coordinate system where a grid is proposed that denote particular structural

locations. The MNI atlas was suggested in 1992 as a replacement to the Talaraich for use in

minimal invasion surgery, namely stereotaxy [73]. The MNI space has templates for T1, T2, and

Proton Density weighted (PDw) MRI. Currently, there are no widely used atlases for FLAIR MRI

other than [68]. The Brainder template space has been co-registered to each other and then to

the MNI space using the Statistical Parametric Mapping (SPM) [74] toolbox developed to work in

Matlab [69] (Figure 5.2).
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Figure 5.1: FlowReg generated atlas via synchronized averaging of registered volumes.
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Figure 5.2: The FLAIR atlas provided by [68] Brainder.

5.2.1 Atlas Histograms

The synchronized averaging atlases were analyzed by examining the produced histograms and

probability distribution functions (PDF) (Figures 5.3, 5.4). In FLAIR MRI, histogram peaks can

typically represent significant and separable areas of the brain such as a brain matter and CSF.
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Figure 5.3: CAIN averaged registered volume atlas histograms.

Figure 5.4: ADNI averaged registered volume atlas histograms.

The MSE was found between the atlas and calculated atlases for the respective registrations as seen

in Figures 5.5 and 5.6. The lowest error and thus closest to the original atlas are observed by the

obtained atlases via ANTs, SE, and FlowReg. These results signify that the overall registered data is

similar to the original fixed atlas according to a low-reported error.
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Figure 5.5: MSE between the registration-specific atlas PDFs and original atlas for the CAIN database.

Figure 5.6: MSE between the registration-specific atlas PDFs and original atlas for the ADNI database.

Qualitative observation of averaged volumes was done by generating a heatmap of the several

anatomical areas that can be separated via thresholding from the atlas histograms. The background

was subtracted and all slices were summed to obtain the heatmaps observed in Figure 5.7. More

examples of all registration methods across both databases both regular and standardized are found

in the appendix A.

Similarly via thresholding techniques the two major separable areas that are denoted by the peaks

in the atlas histograms can be separated into CSF and brain tissue as seen in the figures below. The

reader’s attention is brought to the intensity histogram below each image that shows the upper and

lower bounds of each peak that can be used to separate the whole head, CSF, and brain tissue.
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(a) ANTs head (b) ANTs CSF (c) ANTs brain

(d) SE head (e) SE CSF (f) SE brain

(g) FlowReg head (h) FlowReg CSF (i) FlowReg brain

Figure 5.7: Heatmaps showing the separability of tissue for the non-standardized CAIN data.
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5.3 Longitudinal Registration

Longitudinal registration was performed on patients who had multiple scans. As mentioned pre-

viously, longitudinal scans are one of the main clinical applications for image registration. As

images are placed in the same geometric space, quantifiable metrics can be extracted with respect

to changes in brain volume, tissue loss, tumour evolution, and treatment efficacy. The coming

sections will explore the experimental setup for longitudinal registration and present the results as

a function of lesion change.

5.3.1 Setup

Longitudinal registration was performed on the CAIN database on 361 patients. Each of them had

a time-0 scan and then at least one other subsequent scans. 236 patients had just two scans and

103 patients had three scans. All scans following time-0 were registered to time-0. To reiterate,

if a patient had a scan at the present time, and then a second scan six months from now, then a

third scan one year from now, the two subsequent scans were registered to the volume obtained

today. This approach allows to have a timeline of different brain scans that can be compared to the

baseline via metric extraction according to the time passed. These metrics can then be compared to

each other without having to register volumes from time-2 to time-1 and still provide salient results

of tissue change, but significantly reduce computation time.

5.3.2 Lesion Change

Lesion change has been chosen as a metric of longitudinal registration. It can be observed in Figure

5.8 the WML tissue change in longitudinally registered volumes. As time progresses the volume

and overall area has increased. To more adequately observe the amount of change, a voxel-wise

subtraction was performed (Figure 5.9).
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time 0 time 1 time 2

Figure 5.8: Longitudinally registered volumes. Time 1 was registered to time 0 and time 2 was also registered to time 0.

diff 1 diff 2

Figure 5.9: Differences between longitudinally registered volumes. Diff 1 = time1 - time0; diff 2 = time2 - time0.

The most significant difference in tissue change is seen in the largest time difference. Quantification

of lesion change can be done via several methods, via manual or automatic segmentation. As

automatic WML segmentation is a problem that is an active and ongoing research topic [75] a
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combination of automatic and manual segmentation was adopted for this work. The total lesion

volume was calculated prior to registration, after affine registration, and after FlowReg as seen in

Figure 5.10.

Figure 5.10: Longitudinal WML volume progression of one patient.

The overall trend suggest that this patient’s WML volume is decreasing with subsequent scans

based on the obtained manual segmentations. One curious aspect to analyze is examining FlowReg

it seems the overall volume does not change from time point 1 to time point 2. This could be due to

lesions being present in some places but not in others and due to issue during image binarization. It

is important to also remember that the training procedure did not include any longitudinal training.

The fixed volume was the atlas provided by Brainder. Thus, the fixed volume features learned by

the network during atlas registration cannot be transferred to longitudinal registration where the

fixed volume is the time point 0. To observe the actual effect one may subtract the registered time

point 1 from the original fixed volume at time point 0. The same can be done for time point 2

with respect to time point 0. Three slices of each difference are shown below prior to registration

(Figure 5.11).
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(a) Slice 21. (b) Slice 26. (c) Slice 33

(d) Slice 21. (e) Slice 26. (f) Slice 33

Figure 5.11: Difference of lesions prior to registration. The lesion at subsequent time points was subtracted from time 0. (Ex: time0−
time1.)

It can be noted that prior to registration, because there is no correspondence between the volumes,

there are large difference at almost every slice level. It is for this reason that the images shown in

Figure 5.11 appear as binary mask. The subtraction shows that at one time point the lesions are

not lined up and thus the entire lesion is beign subtracted from an area where there may no other

lesion. After registration, one can now notice more variation in lesion change 5.12. Since the lesion

are now in correspondence with one another, it is apparent that lesions vary. There are areas where

the lesion has decreased in size and other areas where it has increased in size.
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(a) Slice 21. (b) Slice 26. (c) Slice 33

(d) Slice 21. (e) Slice 26. (f) Slice 33

Figure 5.12: Difference of lesions after FlowReg registration. The lesion at subsequent time points was subtracted from time 0. (Ex:
time0− time1.)

In the figure above, the dark areas represent areas where the lesion has decreased in size, while

bright areas where it has increased in size. The gray area is a net-zero change and can be matched

with the background for a qualitative assessment of lesion change.
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Chapter 6

Conclusion

The concluding portion of this thesis describes the primary and secondary contributions. Potential

clinical applications of the proposed validation metrics and optical flow registration model are

outlined. Finally, the limitations of the proposed methods along with possible future improvements

on the design of the metrics and registration model are suggested.

6.1 Summary of Contributions

The work proposed in this thesis is related to proposing an image registration method that has

been adapted from natural images using optical flow. An unsupervised model that is able to

generate a deformation field for a moving image to the fixed image space was designed using

deep learning convolutional neural networks with custom loss functions altered to suit medical

images. To assess the accuracy of image registration, validation metrics were proposed. The

validation metrics are based on evaluating volumetric and structural changes in tissue morphology.

A third metric, measured orientation with respect to the saggital plane. Intensity-based and pixel

alignment measures explored the amount of correspondence between the warped moving image

and the fixed. Global alignment was measured via synchronized averaging and generation of an

atlas. Longitudinal intrapatient registration was performed and lesion change was observed via a

pixel-wise subtraction.

Chapter 1 presented an introduction to WMLs in the context of neurodegenerative disorders. The
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concepts of MRI, in particular related to FLAIR MRI were inspected from a physics perspective and

the advantage of imaging neurological tissue were discussed. The importance of image registration

in the medical imaging workflow pipeline was analyzed from a clinical and research viewpoint. The

objective of the thesis with respect to validation of image registration algorithms were examined

and problems with existing measures were outlined. Finally the major and secondary contributions

of the thesis were described.

Image registration algorithms were analyzed in Chapter 2. The chapter began with a gentle

introduction to image transforms with the use of a transformation matrix. Rigid, non-rigid, and

affine transforms were described. Image interpolation techniques were introduced to overcome the

non-integer pixel coordinates after a transformation has been applied. Nearest-neighbour, bilinear

interpolation, and bicubic interpolation techniques were described. Image registration processes

were examined in detail from the most basic methods of aligning images to iterative processes that

is inherent to most registration algorithms. Four registration algorithms were examined in detail,

Thirion’s Demons, Symmetric Normalization by ANTs, Elastix, and finally Voxelmorph.

Chapter 3 described the main contribution by describing optical flow registration methods and the

validation metrics for medical image registration. The chapter examined optical flow as a means

of warping images via a deformation field generated from subsequent video frames. The basics of

optical flow generation were described via the Lucas-Kanade algorithm and ending with modern

fast optical flow generation via deep learning methods such as FlowNet. The FlowReg model

architecture is described along with the proposed loss functions. The registration metrics were

described and how they analyze the quality of image registration from a volumetric, structural,

orientation, pixelwise alignment, and intensity standpoint. Volumetry changes of brain tissue was

examined by finding the proportional volume change of structures after registration. To observe

structural changes the closest distance from the surface of the ventricles to the surface of the brain

was observed and how it changes after image registration. Saggital orientation was measured as

the Head Angle metric. Overall alignment was measured via synchronized averaging of generating

atlases and pixel-wise alignment. MI and CC were calculated for obtaining intensity measures of

image registration quality.
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The experimental setup and results are described in Chapter 4. The chapter begins with a de-

scription of the data used from a demographics and acquisition perspective. Registration metrics

were obtained via a pipeline described in Figure 4.1. For the four tested registration algorithms

the relevant metrics were detailed. The optical flow model structure was described along with the

training procedure. The final portion of the chapter describes the results of all four metrics for the

four registration metrics used on the two datasets. The ventricular and WML PV change show that

the best performing algorithms do not alter both structures after registration. Similar performance

was seen for the SSD metric. For both metrics the best performing algorithms are Demons and

Ants. For the large scale measures, HA, MI, and CC the top performing are ANTs and SE with the

lowest spread ς, and highest MI and CC values.

Chapter 5 examines the clinical applications of medical image registration. Particularly, the newly

generated atlases provide a true representation of a FLAIR-FLAIR atlas. These atlases were made

with the intent to be made public for use in future FLAIR registration projects. Heatmaps of The

generated atlases were then analyzed using Mean Error to the original target atlas. Longitudinal

intrapatient registration was assessed by visual inspection of lesion change.

6.2 Applications

The proposed optical flow registration process is particularly useful because it is based on deep

learning conventions. The major advantage of this approach over conventional registration algo-

rithms is that the deformation fields have already been learned and the model is trained to predict

the deformation field in one single iteration. The model This significantly reduces the computation

time and can thus perform large-scale registrations at a rate of one volume per 10 seconds as

opposed to several minutes that typical registration algorithms require. Further, as the model is

deep learning based, further improvements can be added by retraining and improving the accuracy

of the model. A naive analogy states that once a person has seen a number of pairs of shoes enough

times, when given a large cluster of unpaired images, they would be able to find the correct pairs

quickly based on features.
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From a clinical perspective, the assessment of image registration has several major advantages

were highlighted. As more and more image processing algorithms are developed in medical

imaging, there is a need for constancy of the data used. Image registration is one method of

normalizing data in a geometric way. The transformations used can place the images in the same

space so that algorithms and analysis can extract salient information. An expert can make more

informed decisions in regards to a patient’s scan if the images are in the same geometric space and

there are as few variations as possible. Tumour evolution and treatment efficacy can be assessed

more accurately with image registration. Similarly image registration is an essential tool in most

automatic WML segmentation algorithms. For this reason it is important to assess whether the

registration is as accurate as possible and if it may adversely affect these hyperintense regions

of interest. The validation metrics offer a measurement to see whether the volume or structure

has changed after registration with respect to the whole brain. Any undesired effects can then

be accounted for when designing any subsequent segmentation tools that use registration as a

geometric normalization factor.

Similarly, the HA measurement can be used as a metric at the image acquisition time to ensure that

a scan is as accurate and in line with all other scans taken. The orientation metric can also reaffirm

the point that images have been correctly aligned during the affine registration process. Pixel-wise

averaging is especially useful because ultimately new atlases are produced through these image

registration processes. The atlases are database specific and can be used in the future for further

registration to a more accurate and representative atlas.

6.3 Pitfalls and Limitations

The optical flow deformation field estimation has been performed on a per slice basis. The reason

for this choice has been because of the large number of over 3 million feature parameters. As such,

the deformation fields predicted by the optical flow algorithm are limited to two dimensions. This

may create some unwanted deformations at the extremities of the brain. For example, if the moving

image has a slice close to the bottom, the nose and orbits of the eye, but the fixed image is mostly

empty, the deformation predicted may be of poor quality. The same can be said about the top

104



portions where little of the skull and brain are represented in both the moving and fixed images.

A further limitation is the training procedure. Convolutional neural networks require an extensive

training regimen for the model to learn meaningful features. Powerful computers equipped with

modern high-RAM GPUs are required. The time to train is significant from several hours to

multiple days for some models. This is not only computationally inefficient, but environmentally

unfavourable due to high power consumption of said GPUs [76]. The result, or the weights learned

by the model can be saved and then used in further experiments which are not as computationally

intensive, however the path to reach that stage typically requires multiple iterations of the same

model, testing of varying epoch lengths, and loss functions, all of which will have a significant

impact on power consumption. One method to overcome this, is to used pre-trained networks

and through transfer learning researchers can build on existing weights to obtain desired results in

novel applications such as medical imaging [77].

Image registration algorithms are inherently a computationally intensive process and to analyze

such complex algorithms to ensure that structural and volumetric cohesiveness is maintained,

the metrics themselves should be as robust and easy to use as possible. One limitation of the

proposed metrics is their inherent dependability on manual structural segmentations. Volumetric

and structural changes rely on warping binary masks with the calculated deformation field, thus

obtaining accurate and consistent annotations of relevant structures is of the utmost importance.

Further, the orientation measure, HA, is designed to measure affine transforms. Thus for images

at which the affine transform has been the most accurate the measure of HA may be high, but it is

unknown whether the registration itself is accurate on the pixel-wise warping when the deforma-

tion field is been used. HA is calculated with respect to the vertical saggital plane, however it is

possible to also calculate the rotation in the two other planes for a more robust three-dimensional

representation. A counter-argument could be proposed that rotation in the transverse or coronal

plane are less probable due to the anatomy of the body. In a laying down, supine resting state, it

is more likely to slightly rotate the head left or right in the transverse plane as opposed to front or

back in the saggital plane, or tilting left or right in the coronal plane.
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6.4 Future Works

The work presented in this paper is far from complete when it comes to proposing novel image

registration methods and measuring the quality of registrations in FLAIR MRI. Some of the biggest

improvements can be made in the areas of image registration speed and computational efficiency.

Through experiments of different model architectures, loss functions, and data aughmentation, an

efficient and fast performing FLAIR-specific registration method can be achieved in 3D.
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Chapter A

Tissue Heatmaps

(a) ANTs head (b) ANTs CSF (c) ANTs brain

(d) Demons head (e) Demons CSF (f) Demons brain

Figure A.1: Heatmaps showing the separability of tissue for the non-standardized CAIN data.
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(a) SE head (b) SE CSF (c) SE brain

Figure A.2: Heatmaps showing the separability of tissue for the non-standardized CAIN data.
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(a) VM head (b) VM CSF (c) VM brain

(d) Affine head (e) Affine CSF (f) Affine brain

(g) FlowReg head (h) FlowReg CSF (i) FlowReg brain

Figure A.3: Heatmaps showing the separability of tissue for the non-standardized CAIN data.
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(a) ANTs head (b) ANTs CSF (c) ANTs brain

(d) Demons head (e) Demons CSF (f) Demons brain

(g) SE head (h) SE CSF (i) SE brain

Figure A.4: Heatmaps showing the separability of tissue for the standardized CAIN data.
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(a) VM head (b) VM CSF (c) VM brain

(d) Affine head (e) Affine CSF (f) Affine brain

(g) FlowReg head (h) FlowReg CSF (i) FlowReg brain

Figure A.5: Heatmaps showing the separability of tissue for the standardized CAIN data.
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(a) ANTs head (b) ANTs CSF (c) ANTs brain

(d) Demons head (e) Demons CSF (f) Demons brain

(g) SE head (h) SE CSF (i) SE brain

Figure A.6: Heatmaps showing the separability of tissue for the non-standardized ADNI data.
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(a) VM head (b) VM CSF (c) VM brain

(d) Affine head (e) Affine CSF (f) Affine brain

(g) FlowReg head (h) FlowReg CSF (i) FlowReg brain

Figure A.7: Heatmaps showing the separability of tissue for the non-standardized ADNI data.
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(a) ANTs head (b) ANTs CSF (c) ANTs brain

(d) Demons head (e) Demons CSF (f) Demons brain

(g) SE head (h) SE CSF (i) SE brain

Figure A.8: Heatmaps showing the separability of tissue for the standardized ADNI data.
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(a) VM head (b) VM CSF (c) VM brain

(d) Affine head (e) Affine CSF (f) Affine brain

(g) FlowReg head (h) FlowReg CSF (i) FlowReg brain

Figure A.9: Heatmaps showing the separability of tissue for the standardized ADNI data.
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