Introducing CGE Models to the Classroom Using EXCEL

Amy Peng
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/economics
Part of the Economics Commons

Recommended Citation

Peng, Amy, "Introducing CGE Models to the Classroom Using EXCEL" (2009). Economics Publications and Research. Paper 37.
http://digitalcommons.ryerson.ca/economics/37

Introducing CGE Models to the Classroom Using

EXCEL

Amy Peng ${ }^{1}$
Ryerson University

November 27, 2009
${ }^{1}$ Contact: Department of Economics, Ryerson University, 350 Victoria Street, Toronto, Ontario,

Abstract

This paper demonstrates how simple general equilibrium models can be solved with the help of Microsoft Excel. Two different general equilibrium models for tax incidence analysis are used as illustrative examples. The methods presented here are intended to be beneficial to both students and teachers working with general equilibrium theory in the classroom and can easily be extended to various policy analysis term projects. The techniques presented here are simple and effective tools for inclusion in any student's toolkit.

Key words: Excel, Solver, General Equilibrium, Optimization, Newton's Method JEL classification: A22, A23, C61, D58

The history of general equilibrium (GE) theory can be traced back more than 100 years to the work of Leon Walras (1874). However, only recently have computable general equilibrium (CGE) models become widely used in policy applications ${ }^{1}$. Since GE models are often thought to be too complicated to implement in a classroom setting and GE related computing packages are relatively expensive with significant learning curves, only a handful of instructors have taken CGE models into the classroom (for example, Professor Peter Wilcoxen at Syracuse University). This paper demonstrates how to build and solve simple CGE models using standard features in EXCEL.

It is important to point out that there is growing need to expose students to applied GE analysis. These models are not only an important part of applied economic research, they have been widely adopted by different levels of federal and provincial/state governments and the private sector as a useful tool for tax and environmental policy analysis. I have surveyed a number of economics instructors in terms of their teaching methods related to GE models. For those who have incorporated some kind of general equilibrium theory into their intermediate/advanced Micro (mostly undergraduate) courses, none of them have considered showing applications of the theory in simplified but practical settings. It is understandable that students who lack analytical math skills cannot easily understand the complicated structure of such models, the calibration process and the solution techniques used in applied GE models. However, teaching the abstract form of GE models, and existence proofs, involves even deeper mathematical sophistication and is of little practical relevance to non-specialists.

[^0]When faced with students with little programming experience (in software such as Matlab or SAS), instructors feel that it is necessary to avoid introducing computable solutions to economic problems, especially in the case of general equilibrium analysis, which typically only receives two or three weeks of coverage and usually at the end of the semester. If we could adopt an easy-to-use platform, such as EXCEL, to show how to construct simple GE models for policy analysis, it would give students an opportunity to fill in the gap between the formal theory and numerical reality of practical general equilibrium analysis.

Teaching economics with EXCEL has received growing attention. For example, studies such as Barreto (2001), Cheng and Fan (2003), Tohamy and Mixon (2003) and Naevdal (2003) are important examples of this trend ${ }^{2}$. The models I choose to demonstrate in this paper are 1) an example in the review by Shoven and Whalley (Journal of Economics Literature, 1984) and 2) a teaching example by Wilcoxen on the implementation of the Harberger's (1962) Model ${ }^{3}$. The first example is very straightforward and students (readers) who are familiar with basic spreadsheet calculations and the EXCEL tool "Solver" can easily implement it. The second example demonstrates the use of Newton's method as a solution technique in computable general equilibrium models which involve some simple Macro/VBA programming. I choose these two studies based on two considerations ${ }^{4}: 1$) both studies are well-known and provide benchmarks upon which our results can easily be compared; 2) I choose the tax policy area since it is easy for students to relate to and we can draw important

[^1]policy implications from the results.
The methods I present here are used in teaching a math review class for incoming master's students majoring in economics. The math review course is a preliminary course that is intended to acquaint students with some mathematical and economic methodologies typically used in graduate teaching. I usually spend a 3-hour lecture (in a computer lab) showing students the general framework of the CGE model and provide some spreadsheet examples. At the end of the class, quite a few of the students have indicated that this method is very effective and greatly improved their understanding of GE theory since they were given an opportunity for hands-on work with the model changing different parameter values and finding numerical solutions. For instructors who are interested in teaching GE theory and its applications, I also suggest a term paper be assigned to the students following the lectures. This will offer students an opportunity to improve their analytical skills.

1 CES Technology Model

The CES technology model corresponds to the original Arrow-Debreu model, elaborated on in Arrow and Hahn (1971) and then introduced as an applied study by Shoven and Whalley in their publication "Applied General - Equilibrium Models of Taxation and International Trade: an Introduction and Survey" in the Journal of Economics Literature (Vol. XXII, 1984). In this economy, we have two final goods (manufacturing and nonmanufacturing), two factors of production (capital and labor) and two types of consumer (rich, capital owners, and poor laborers). Consumers maximize their CES utility function

$$
\begin{equation*}
U^{c}=\left[\sum_{i=1}^{2} a_{i}^{c \frac{1}{\sigma_{c}}} \cdot X_{i}^{c \frac{\sigma_{c-1}}{\sigma_{c}}}\right]^{\frac{\sigma_{c}}{\sigma_{c}-1}} \tag{1}
\end{equation*}
$$

subject to household budget constraints

$$
\begin{equation*}
P_{1} X_{1}^{c}+P_{2} X_{2}^{c} \leq P_{L} L^{c}+P_{K} K^{c}=I^{c} \tag{2}
\end{equation*}
$$

and the firms minimize their production costs subject to their CES production technology

$$
\begin{equation*}
Q_{i}=\phi_{i}\left[\delta_{i} L_{i}^{\frac{\sigma_{i}-1}{\sigma_{i}}}+\left(1-\delta_{i}\right) K_{i}^{\frac{\sigma_{i}-1}{\sigma_{i}}}\right]^{\frac{\sigma_{i}}{\sigma_{i}-1}} \tag{3}
\end{equation*}
$$

A list of parameters is given by
$\alpha_{i}^{c} \quad$ share parameters $i=1,2$
$\sigma_{c} \quad$ substitution elasticity
$\phi_{i} \quad$ scale parameter, $i=1,2$
$\delta_{i} \quad$ distribution parameter, $i=1,2$
$\sigma_{i} \quad$ elasticity of factor substitution, $i=1,2$
$I^{c} \quad$ income of consumer c
$P_{i} \quad$ price of good i
$P_{L, K} \quad$ price of labor and capital respectively
$L^{c}, K^{c} \quad$ consumer's endowment of labor and capital
Utility maximization subject to budget constraints given the following product demand functions

$$
\begin{equation*}
X_{i}^{c}=\frac{\alpha_{i}^{c} I^{c}}{P_{i}^{\sigma_{c}}\left(\alpha_{1}^{c} P_{1}^{\left(1-\sigma_{c}\right)}+\alpha_{2}^{c} P_{2}^{\left(1-\sigma_{c}\right)}\right)} \tag{4}
\end{equation*}
$$

similarly, factor demands can be derived from cost minimization:

$$
\begin{equation*}
L_{i}=\phi_{i}^{-1} Q_{i}\left[\delta_{i}+\left(1-\delta_{i}\right)\left[\frac{\delta_{i} P_{k}}{\left(1-\delta_{i}\right) P_{L}}\right]^{\left(1-\sigma_{i}\right)}\right]^{\frac{\sigma_{i}}{1-\sigma_{i}}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{i}=\phi_{i}^{-1} Q_{i}\left[\left(1-\delta_{i}\right)+\delta_{i}\left[\frac{\left(1-\delta_{i}\right) P_{L}}{\delta_{i} P_{K}}\right]^{\left(1-\sigma_{i}\right)}\right]^{\frac{\sigma_{i}}{1-\sigma_{i}}} \tag{6}
\end{equation*}
$$

The equilibrium conditions in the models are found by choosing all prices $\left\{P_{1}, P_{2}, P_{k}, P_{L}\right\}$ and quantities $\left\{X_{1}^{1}, X_{2}^{1}, X_{1}^{2}, X_{2}^{2}, K_{1}, K_{2}, L_{1}, L_{2}\right\}$ so that (1) Factor Markets clear

$$
\begin{align*}
K_{1}+K_{2} & =\bar{K} \tag{7}\\
L_{1}+L_{2} & =\bar{L} \tag{8}
\end{align*}
$$

(2) Goods Markets clear

$$
\begin{align*}
& X_{1}^{1}+X_{1}^{2}=Q_{1} \tag{9}\\
& X_{2}^{1}+X_{2}^{2}=Q_{2} \tag{10}
\end{align*}
$$

and (3) Zero Profit Conditions are met:

$$
\begin{align*}
& P_{K} K_{1}+P_{L} L_{1}=P_{1} Q_{1} \tag{11}\\
& P_{K} K_{2}+P_{L} L_{2}=P_{2} Q_{2} \tag{12}
\end{align*}
$$

In actuality, only the relative price of capital needs to be defined as the product prices come from the zero profit conditions. In order to use EXCEL's "Solver" to find an equilibrium solution to the model we consider this problem as an optimization program. We can minimize the sum of three market clearing conditions (Factor and Goods market demand minus supply equals to zero as well as zero profit condition) by changing our choices of prices and quantities. The first step is to set up the appropriate parameter values. In order to compare my results, I use the same parameter values as in Shoven and Whalley (1984, table I, p1011). The household and production parameters are set up in the spreadsheet as Table 1

Insert Table 1 here

The second step is to set up the minimization problem as in Table 2:

Insert Table 2 here

I have organized the minimization problem into three sections: solution variables (A26:B31), market clearing conditions (A33: D45) and the minimization cell (D46). The problem can be interpreted as minimizing the sum of square errors of three market-clearing conditions by choosing solution variables $\left\{P_{k}, Q_{1}, Q_{2}\right\}$. I choose to select optimal values of Q_{1} and Q_{2} instead of factor demand and production demand variables specified in equation (1) to (12) to simplify the setting. P_{L} is normalized to 1 as in Shoven and Whalley (1984). Since there are 3 variables to solve, I have specified them into three market-clearing equations so that the system is just identified. The supply (or TR) and demand (or TC) are calculated as follows:

Insert Table 3 here

Table 3 shows the spreadsheet section which defines the calculation process for the general equilibrium conditions. Formulas are input based on equation (1) to (12). For example, cell 28 specifies the capital demand in equation (5) using all the parameters and variables that I have already set up in Table 1 and 2. (Cell B22, C22 and D22 are specified in Table 1; Cell B29 and B30 are the solution variables specified in Table 2). Factor supply is simply the capital and labor endowments from the households. Product demands are calculated based on equation (4) and the variable $P I, I^{c}, P_{1}^{\sigma_{c}}$, and $P_{2}^{\sigma_{c}}$ are price indices and income functions (specified in equation (2) and (4)) used in the calculation of product demands. Product supplies are given by production amounts $\left\{Q_{1}, Q_{2}\right\}$ and Total Revenues and Total Costs are given by equation (11) and (12). In Column I, I sum up the factor demand and product supply for both manufactured and non-manufactured goods, factor supply and product demand for both rich and poor households and total income from the production process.

The final step is to use "Solver" to solve the problem:

Insert Figure 1 here

The Target Cell reference is set to cell D26 which represents the minimization equation and the Changing Cells are the solution variables (B27:B31). In Table 2, I have set up the starting values, I choose to set all price variables to 1 as the starting values. If we used up all the capital (25 units) and labor (60 units) in the economy to only produce manufactured goods (based on equation (3)), we can produce approximately 66 units, so I have set the starting value for Q_{1} as 66 units and Q_{2} equal to 0^{5}. I have further specified a constraint in the "Solver" utility so that all the solution variables are greater than or equal to 0 .

Insert Table 4 here

The exact values after the Solver process finished are given in Table 4. As can be seen, at the optimal solution, all the market-clearing conditions are met. The equilibrium solutions calculated from the "Solver" application are exactly the same as reported in Table 2 in Shoven and Whalley (page1012, 1984). The manufactured goods are selling at a higher price than the non-manufactured goods and the economy will produce more non-manufactured goods. All capital and labor is used up. The "poor" household will receive a higher income than the "rich" household.

To illustrate how a general-equilibrium model can be adapted for policy evaluation, Shoven and Whalley further incorporate a tax policy regime into their baseline model. For a given tax program (it could be a tax imposed on capital, labor or manufactured/nonmanufactured product), I need to modify the baseline model to incorporate these changes.

[^2]The example shown in Shoven and Whalley's paper is based on a 50 percent tax rate on capital income generated in the manufactured goods sector. I would like to present a more generalized tax-policy model which includes seven tax parameters.

Insert table 5 here

t_{1} and t_{2} are taxes imposed on manufactured and non-manufactured products respectively, t_{L} and t_{K} are taxes imposed on labor and capital, τ is a output tax and $\tau_{k 1}$ and $\tau_{k 2}$ are taxes imposed on capital income generated in manufactured and non-manufactured product sectors. I also add a new parameter θ in the household parameter section to indicate the distribution of tax revenue ${ }^{6}$. As in Shoven and Whalley, I assume that the rich household receives 40 percent or the tax revenue with the remaining 60 percent going to the poor household.

In order to incorporate the tax policy parameters, I need to modify equations (4) to (6) as follows:

$$
\begin{equation*}
X_{i}^{c}=\frac{\alpha_{i}^{c} I^{c}}{\left.\left.P_{i}^{\sigma_{c}}\left[\alpha_{1}^{c}\left(t_{1}+P_{1}\right)^{\left(1-\sigma_{c}\right)}\right)+\alpha_{2}^{c}\left(t_{2}+P_{2}\right)^{\left(1-\sigma_{c}\right)}\right)\right]} \tag{4a}
\end{equation*}
$$

and

$$
\begin{gather*}
I^{c}=\left(1-t_{L}\right) P_{L} L^{c}+\left(1-t_{K}\right) P_{K} K^{c} \tag{2a}\\
L_{i}=\phi_{i}^{-1} Q_{i}\left[\delta_{i}+\left(1-\delta_{i}\right)\left[\frac{\delta_{i}\left(P_{K}+\tau_{K_{i}}\right)}{\left(1-\delta_{i}\right) P_{L}}\right]^{\left(1-\sigma_{i}\right)}\right]^{\frac{\sigma_{i}}{1-\sigma_{i}}} \tag{5a}
\end{gather*}
$$

and

$$
\begin{equation*}
K_{i}=\phi_{i}^{-1} Q_{i}\left[\left(1-\delta_{i}\right)+\delta_{i}\left[\frac{\left(1-\delta_{i}\right) P_{L}}{\delta_{i}\left(P_{K}+\tau_{K_{i}}\right)}\right]^{\left(1-\sigma_{i}\right)}\right]^{\frac{\sigma_{i}}{1-\sigma_{i}}} \tag{6a}
\end{equation*}
$$

[^3]Total revenue and total cost functions change to

$$
\begin{align*}
& \left(1+\tau_{K_{1}}\right) P_{K} K_{1}+P_{L} L_{1}=(1-\tau) P_{1} Q_{1} \tag{11a}\\
& \left(1+\tau_{K_{2}}\right) P_{K} K_{2}+P_{L} L_{2}=(1-\tau) P_{2} Q_{2} \tag{12a}
\end{align*}
$$

Given the above parameters, the total tax revenue the government collects is given by the sum of the tax from the consumer $T^{c}=\sum\left(t_{i} P_{i} X_{i}^{c}\right)+t_{L} P_{L} L^{c}+t_{K} P_{K} K^{c}$ and from the producer of manufactured and non-manufactured products $T^{s}=\sum\left(\tau P_{i} Q_{i}+\tau_{k_{i}} P_{k} K_{i}\right)$.

I assume the same values of the parameters and exogenous variables as given in the baseline model. In order to solve the model including the tax policy parameters, I add a new solution variable T to the minimization problem and an additional constraint that T is equal to the total revenue specified above. Table 6 illustrates the modified minimization program.

Insert Table 6 here

As can be seen, the tax variables are added in cell B32 and the new constraint is added in row 48. Then we simply run the "Solver" utility again. The new equilibrium solution is shown in Table 7.

Insert Table 7 here

Comparing Table 4 and Table 7^{7}, one can illustrate how a simple general equilibrium framework can be used in tax policy analysis. After a 50 percent tax on manufacturing capital is imposed, the marginal cost of capital increases, leading to a higher price for manufactured products (1.474 vs. 1.399) and a lower price for non-manufactured products (1.093 vs. 1.105)

[^4]and the price of capital after tax falls (1.153 vs. 1.373). In the household sector, the rich household, which owns capital, receives lower income so its demand for both manufactured and non-manufactured goods decreases. The poor household receives higher transfers of tax revenue from the government, its income rises and demand for both manufactured and nonmanufactured goods increases. Due to a lower price and a lower demand for manufactured goods, total revenue from manufactured goods also falls and only 2.428 worth of taxes are collected ${ }^{8}$.

A frequent question policy makers ask is whether or not a proposed policy is welfare improving. We can utilize widely employed measures to follow up on the above analysis. The measures used here are Hicksian compensating variation and equivalent variation (CV and EV) associated with the household utilities and incomes before and after the tax policy at their equilibrium solutions. CV is given by $\frac{U^{A}-U^{B}}{U^{A}} I^{A}$, superscripts A and B denote "After" and "Before" the policy changes. CV tells how much income is lost or gained compared to utility level before the change. EV is given by $\frac{U^{A}-U^{B}}{U^{B}} I^{B}$, so we use the income and utility level before the change as the base value. For a tax policy to be welfare improving, we would observe CV and EV having a positive sign. The result of the simple welfare analysis is reported in Table 8. As can be seen, although the capital tax has increased the income of the poor household, the total effect on welfare is a loss. This is due to the fact that this tax policy cannot raise enough tax revenue to distribute to the poor at the same time, it has also lowered total production of manufactured goods in the economy, which in turn, substantially affects income and the utility of the rich.

[^5]
Insert Table 8 here

After introducing the model, we can further ask students to experiment with the model by changing parameters and initiate group discussions ${ }^{9}$. For example, if we change the endowment of capital and labor for the poor and the rich, or the elasticity of substitution of the two products, the corresponding equilibrium solution will change and will result in different welfare values. We also can ask students to change the tax parameters to conduct further policy analysis. For example, instead of a 50 percent capital tax on the manufactured product, students can simply impose the 50 percent tax on capital used in both manufactured and non-manufactured products, or on output or on the manufactured product itself. They can see easily if taxes are imposed on capital used to produce the non-manufactured product, it will increase tax revenue, but still lead to welfare losses. However, a 50 percent output tax can increase the price of both products substantially, raise tax revenue substantially and through the transfer program, increase the income of both rich and poor. Although there is no welfare loss at the society level, poor households can afford smaller amounts of manufactured and non-manufactured products and their utilities fall. We can easily separate students into different groups, and ask them to discuss the pros and cons of different tax policies and ask them to provide comments and suggestions to improve the design of the tax system. Therefore, a simple CGE model is a very effective teaching tool. If we allow students to engage in constructing and experimenting with the model, instead of lecturing based on mathematical equations, it will enhance their analytical abilities especially as it relates what they have learned to a more practical setting.

[^6]
2 The Harberger Model

The Harberger model was originally developed by Arnold C. Harberger (1962, the Journal of Political Economy). The specification I am using here is based on the computable version developed by Peter J. Wilcoxen (2005, Syracuse University). The documentation for this model is available at http://wilcoxen.cp.maxwell.syr.edu/pages/2141/harberger-doc.pdf as maintained by Professor Wilcoxen. The Harberger model is very similar in setting as the CES model in the previous section. I still use a CES production technology in two business sectors X and Y, X is the capital intensive sector and Y is the labor intensive sector. The cost of capital may vary by sector $(r$, the rental rate of the capital, is the same for both sectors apart from the fact that the capital tax rates may be different for different sectors). Households also have CES utility functions, but instead of two, we have four types of households A, B, C and D. A and B are "rich" households which own both labor and capital. C and D are "poor" households which own only labor. Four types of households have different preferences: A and C have preferences for the capital intensive product X, while B and D have preferences for the labor intensive product Y. Government, the fifth household "G" can impose different taxes : a tax on capital, output or income with the total revenue given by the sum of the taxes collected from different sectors. In this model, the government uses tax revenue to purchase goods for its own consumption. In equilibrium, we choose appropriate prices and quantities so that factor markets and product markets clear.

Since the basic set up of the model is very similar to the CES model above, I will not waste space and the reader's time to explain how to fill in the spreadsheet with all the parameters, variables and formulas again. The detailed spreadsheet and its explanation can be found in Appendix 1. It demonstrates that, we can choose to solve for the price of
capital (rental rate, r) and the quantity of production from sector $\mathrm{X}\left(q_{x}\right)$ and sector $\mathrm{Y}\left(q_{y}\right)$ by minimizing the sum of square errors of three market conditions: capital market equilibrium and two-product market equilibrium. This model can also be easily solved using "Solver" as in the previous case. However, for a more advanced level class, students may be interested to see how the equilibrium can be reached through alternative methods. This model can be used as a perfect example to demonstrate how to use Newton's method to compute the equilibrium solutions.

The general concept of Newton's method is easy to illustrate:

Insert Figure 2 here

Assume a function $f(x)$ actually has a root. In order to find the root of $f(x)$, construct a tangent line through the point $\left(X_{0}, f\left(X_{0}\right)\right)$ with the slope $f^{\prime}\left(X_{0}\right)$. This line intercepts the x-axis at the point X_{1} which may be a better approximation to the root than X_{0}. We iterate according to the relation $X_{n+1}=X_{n}-\frac{f\left(X_{n}\right)}{f^{\prime}\left(X_{n}\right)}$ until convergence occurs. In the case of the Harberger model, there are three variables to solve for, the rental rate of capital, r, and the outputs q_{x} and q_{y}. Unlike the univariate case above, x is the vector of $\left(r, q_{x}, q_{y}\right)^{\prime}$ and $f(x)$ is a vector valued function of equilibrium conditions. The derivative is replaced by its multivariate analogy, the Jacobian. The set up of the model is illustrated in Table 9. I used a centered difference formula to approximate the partial derivatives (cell B51: H53) with a step size of 0.02 . The partial derivative estimates (H51:H53) are copied into the corresponding columns of the Jacobian matrix (B57:D59). I then use an EXCEL matrix function to invert the Jacobian (B64:D66). The vector $d x$ is calculated based on the rule $d x=-J^{-1}\left(X_{n}\right) f\left(X_{n}\right)$ (see cells F64:F66). Finally X_{n+1} is updated using $X_{n+1}=X_{n}+\phi d x$
(see cells H64:H66) ${ }^{10}$. The above procedure completes one Jacobian iteration step. In order to automate the iteration step, a simple VBA Macro program is used to construct the Jacobian matrix and shuffle numbers between designated cells. The detailed program can be found in Appendix 2.

Insert Table 9 here

An iteration step starts with a Macro key combination of CTRL-j, students will be able to observe how the solutions are reached through each iteration. With the starting value set to $(1,100,100)^{\prime}$, the program converges within 10-15 iteration steps. After setting up the model, we can conduct different kinds of policy analysis to compare any baseline model and alternative tax schemes (please refer to appendix 1, cells B6:D11). I chose a similar tax policy as in section 2 - imposing a 50 percent capital tax on the capital intensive industry X , however in this case, the government will keep all of the tax revenue and use it for its own consumption. The solution is obtained by taking Jacobian steps, by pressing CTRL-j, until convergence occurs followed by CTRL-s to copy selected statistics to the analysis page. Once the base and alternative case have been solved (and statistics copied to the analysis page) using CTRL-r will calculate and report various welfare measures. The summary of the experimental results are calculated by VBA Macro and reported in Table 10^{11}.

Insert Table 10 here

The baseline case (no capital tax) is compared to the alternative case (50 percent capital tax). The first section of the results shows the price and quantity variables before and after imposing the tax. As can be seen, the price of the capital-intensive product X is increased while the price of the labor-intensive product Y is decreased, in the meantime, output of X

[^7]is falling while that of Y is rising. Row 8 to Row 10 show three different kinds of price index measures, Paasche, Laspeyres and Fisher price indices. All of them indicate rising inflation after the tax change. Based on the total output and price index, we can calculate how real GDP is affected by the tax policy change. Row 19 to 21 report that although nominal GDP is increased from the baseline model to the alternative case, there is a loss of real GDP due to the rising price of capital intensive product X. Lastly, I also compute the welfare change for both cases. In order to take into consideration the effect of the price and output changes, I choose a different approach from the previous section. Equivalent Variation (EV) is calculated as
$E V_{i}=\left[\alpha\left(P_{x}^{0}\right)^{1-\sigma}+(1-\alpha)\left(P_{y}^{0}\right)^{1-\sigma}\right]^{-\frac{1}{\sigma-1}} \Delta u_{i}$, superscript 0 refers to the base case prices, and Compensating Variation (CV) is calculated as $C V_{i}=\left[\alpha\left(P_{x}^{1}\right)^{1-\sigma}+(1-\alpha)\left(P_{y}^{1}\right)^{1-\sigma}\right]^{-\frac{1}{\sigma-1}} \Delta u_{i}, \quad$ superscript 1 refers to the alternate case prices.

Column B and C report the utility changes from the baseline case to the alternative case. Imposing the capital tax has lowered the utility level of households A, B and C. The utility loss of A and B comes from their income loss resulting from the capital tax and an additional utility loss for A and C comes from their consumption loss on the capital intensive product X . It is not hard to show that both EV and CV have a negative sign for households A, B and C but A has the biggest welfare loss. The only household type that benefits from the tax change is household D (as well as the government sector.) However, a deadweight loss incurs since the sum of the EVs or CVs is negative which indicates that there is an overall deadweight loss resulting from this tax change.

To further this analysis, one could ask students to plot out the utility maximization
problem of the households from this excise. Figures 3 and 4 show an example for this question. Given the amount of good X and Y consumed, we can easily calculate the utility and budget constraint based on the parameters chosen above. The solid curves represent the baseline case while the dotted curves represent the alternative case. Since household A and B have the same endowment, their utility functions are subject to the same budget constraint. Given the budget constraint and household preferences, household A will always consume more of X than Y and household B will always consume more Y than X. Similarly, households C and D follow the same pattern. Imposing a capital tax of 50 percent is equivalent to a price increase so the budget constraints rotate down. We can observe that the indifference curves of households A, B and C all shift down while D's shifts upward moderately, illustrating the fact that it is the only household that is better off as a result of this tax change. This is primarily due to the fact that household D does not care as much about the taxable good as the other households do. We can also draw the conclusion that the tax burden does not only affect households which own the taxable factor, it also affects households who have preferences for the goods that depend most on that factor. Tax incidence is more complicated than the statutory incidence would otherwise suggest. This provides another excellent opportunity for class discussion.

3 Conclusion

Computable general equilibrium models have received growing attention from policy makers and academic researchers. However, in the past, teaching general equilibrium theory often focussed on a more abstract approach based on difficult mathematical equations and reason-
ing. Such an approach affords students lacking programing skills little chance to experiment with a computable general equilibrium framework and develop improved understanding of what is being taught. This paper provides a simple method to illustrate the use of general equilibrium models in tax policy analysis with the help of EXCEL. Two classic models are introduced and solved with two alternative methods: optimization based on the "Solver" and an iterative solution using a multidimensional Newton's method. Since EXCEL is one of the most widely used applications in the world, and it has an user friendly interface and tools for great graphic presentations, students or researchers will definitely benefit from adopting the method presented here to further their understanding of general equilibrium theory and to conduct simple policy analysis.

References

[1] Barreto, Humberto (2001), "Teaching Comparative Statics with Microsoft Excel", Journal of Economic Education, Vol. 32, No. 4, p397.
[2] Cheng, Wai-yan and C. Fan (2001) "Comparison Study of Different Implementations of Derivative Pricing Models", Journal of Economic Education, Vol. 32, No. 2, p192.
[3] Harberger, Arnold C. (1962), "The incidence of Corporation Income Tax", Journal of Political Economy, Vol. 70, No. 3, p215-240.
[4] Jones, Ronald W. (1965), "The Structure of Simple General Equilibrium Models," Journal of Political Economy, Vol. 73, No. 6, p 557-72.
[5] Kehoe, Patrick J. and Timothy J. Kehoe (1994), "A Primer on Static Applied General Equilibrium Models," Federal Reserve Bank of Minneapolis Quarterly Review, Spring, Vol. 18, No. 1.
[6] Naevdal, Eric (2003), "Solving Continuous-time Optimal-Control Problems with a Spreadsheet", Journal of Economic Education, Vol. 34, No. 2, p99-121.
[7] Scarf, Herbert (1969), "An Example of an Algorithm for Calculating General Equilibrium Prices," American Economic Review, September, Vol. 59, No. 4, part 1, p 669-77.
[8] Shoven, John B. and J. Whalley (1984), "Applied General-Equilibrium Models of Taxation and International Trade", Journal of Economic Literature, Vol. XXI, p1007-1051.
[9] Shoven, John B. and John Whalley (1992), Applying General Equilibrium, Cambridge University Press.
[10] Tohamy, Soumaya M. ad J. W. Mixon, Jr. (2003), "Lessons from the Specific Factors Model of International trade", Journal of Economic Education, p139-150.
[11] Wilcoxen, Peter J. (2005), "A Numerical Implementation of the Harberger Model", http://wilcoxen.cp.maxwell.syr.edu/pages/2141/harberger-doc.pdf.

Table 1: Household and Production Parameters

	A	B	C	D	E	F
14	Household Parameters					
15	Rich Households Poor Households	$\alpha_{1}{ }^{\text {c }}$	$\alpha_{2}{ }^{\text {c }}$	$\sigma^{\text {c }}$	$\mathrm{K}^{\text {c }}$	$L^{\text {c }}$
16		0.5	0.5	1.5	25	0
17		0.3	0.7	0.75	0	60
18						
19						
20	Production Parameters					
21	i Manufacturing Nonmanufacturing	ϕ_{i}	δ_{i}	σ_{i}		
22		1.5	0.6	2		
23		2	0.7	0.5		

Table 2: The Minimization Problem

	A	B	C	D
26	Sol'n Variables	Values		
27	P_{1}	1		
28	P_{2}	1		
29	P_{K}	1		
30	Q_{1}	66		
31	Q 2	0		
32				
33	Goods Market Eq'm			
34	i	Supply	Demand	Minimization
35	1	=G37	= 134	=B35-C35
36	2	=H37	= 135	=B36-C36
37				
38	Factor Market Eq'm			
39	i	Supply	Demand	
40	K	=I31	= 128	=B40-C40
41	L	= 132	= 129	=B41-C41
42				
43	Zero Profit Condition			
44	i	TR	TC	
45	1	=G39	=G40	=B45-C45
46	Minimization		SSE	=SUMPRODUCT(D35:D45,D35:D45)
47			$\log _{10}$ SSE	=LN(D46)/LN(10)

Table 3: Calculating the Market Clearing Conditions

	F	G	H	I
26	Variable			
27	Factor Demand	Manufacturing	Nonmanufacturing	Sum
28	K_{i}	= $\mathrm{B}^{\text {2 }}$ ^ $(-1)^{*} \mathrm{~B} 30 *(\mathrm{C} 22 *((1-\mathrm{C} 22) * 1 / \mathrm{C} 22 / \mathrm{B}$	=B23^(-1)*B31*(C23*((1-C23)*1/C23/E	=G28+H28
29	L_{i}	=B22^(-1)*B30*(C22+(1-C22)*(C22*B2	=B23^(-1)*B31*(C23+(1-C23)*(C23*B'	$=\mathrm{G} 29+\mathrm{H} 29$
30	Factor Supply	Rich	Poor	
31	$\mathbf{K}^{\text {c }}$	=E16	=E17	=G31+H31
32	$L^{\text {c }}$	=E17	=F17	=G32+H32
33	Product Demand	Rich	Poor	
34	$\mathrm{X}_{1}{ }^{\text {c }}$	=B16*G43/G44/G42	=B17* $\mathrm{H} 43 / \mathrm{H} 44 / \mathrm{H} 42$	=G34+H34
35	$\mathrm{X}_{2}{ }^{\text {c }}$	=C16*G43/G45/G42	= $\mathrm{C} 17 * \mathrm{H} 43 / \mathrm{H} 45 / \mathrm{H} 42$	=G35+H35
36	Product Supply	Manufacturing	Nonmanufacturing	
37	$\mathrm{Q}_{\mathbf{i}}$	=B30	=B31	
38	Profit Maximization			
39	TR	=B27*B30	=B28*B31	
40	TC	=B29*G28+1*G29	=B29*H28+1*H29	
41	Other related variables			
42	PI	=B16*B27^(1-D16)+C16*B28^(1-D16)	=B17*B27^(1-D17)+C17*B28^(1-D17)	
43	$\mathrm{I}^{\text {c }}$	=1*F16+B29*E16	=1*F17+B29*E17	$=\mathrm{G} 43+\mathrm{H} 43$
44	$\mathrm{P}_{1}{ }^{\sigma_{c}}$	=B27^D16	=B27^D17	
45	$\mathrm{P}_{2}{ }^{\text {oc }}$	=B28^D16	=B28^D17	
46	$\mathbf{U}^{\text {c }}$	=(B16^(1/D16)*G34^((D16-1)/D16)+C1	$=\left(\mathrm{B} 17 \wedge(1 / \mathrm{D} 17)^{\star} \mathrm{H} 34 \wedge((\mathrm{D} 17-1) / \mathrm{D} 17)+\mathrm{C} 1\right.$	
47				

Table 4: Equilibrium Solution for the CES Technology Model

	A	B	C	D	E	F	G	H	I
26	Sol'n Variables	Values				Variable			
27	P_{1}	1.399				Factor Demand	Manufacturing	Nonmanufacturing	Sum
28	P_{2}	1.093				K ${ }_{\text {i }}$	6.212	18.788	25.000
29	P_{K}	1.373				L_{i}	26.366	33.634	60.000
30	Q_{1}	24.943				Factor Supply	Rich	Poor	
31	Q ${ }_{2}$	54.378				$\mathrm{K}^{\text {c }}$	25.000	0.000	25.000
32						$L^{\text {c }}$	0.000	60.000	60.000
33	Goods Market Eq'm					Product Deman	Rich	Poor	
34	i	Supply	Demand	Minimization		$\mathrm{X}_{1}{ }^{\text {c }}$	11.515	13.428	24.942
35	1	24.943	24.942	0.000		$\mathrm{X}_{2}{ }^{\text {c }}$	16.674	37.704	54.378
36	2	54.378	54.378	0.000		Product Supply	Manufacturing	Nonmanufacturing	
37						Q_{i}	24.943	54.378	
38	Factor Market Eq'm					Profit Maximization			
39	,	Supply	Demand			TR	34.897	59.439	
40	K	25.000	25.000	0.000		TC	34.897	59.439	
41	L	60.000	60.000	0.000		Other related va	ariables		
42						PI	0.901	1.042	
43	Zero Profit Conditions					$\mathrm{I}^{\text {c }}$	34.337	60.000	94.337
44	i	TR	TC			$\mathrm{P}_{1}{ }^{\sigma_{\mathrm{C}}}$	1.655	1.286	
45	1	34.897	34.897	0.000		$\mathrm{P}_{2}{ }^{\text {J }}$	1.143	1.069	
46	Minimization		SSE	2.30391E-09		$\mathbf{U}^{\text {c }}$	27.872	50.891	
47			$\log _{10}$ SSE	-8.637534191					

Table 5: Tax Parameters

	A	B	C	D	E	F	G
4	Tax Parameters	Value					
5	t_{1}	0					
6	t_{2}	0					
7	t_{L}	0					
8	t_{K}	0					
9	τ	0					
10	$\tau_{\mathrm{K} 1}$	0.5					
11	$\tau_{\mathrm{K} 2}$	0					
12							
13							
14	Household Paramet						
15	c	$\alpha_{1}{ }^{\text {c }}$	$\alpha_{2}{ }^{\text {c }}$	θ	$\sigma^{\text {c }}$	$K^{\text {c }}$	$L^{\text {c }}$
16	Rich Households	0.5	0.5	0.4	1.5	25	0
17	Poor Households	0.3	0.7	0.6	0.75	0	60

Table 6: Minimization Problem with 50 percent Capital Tax

	A	B	C	D
26	Sol'n Variables	Values		
27	P_{1}	1		
28	P_{2}	1		
29	P_{K}	1		
30	Q_{1}	66		
31	Q_{2}	0		
32	T	1		
33				
34	Goods Market Eq'm			
35	;	Supply	Demand	Minimization
36	1	=G37	$=134$	=B36-C36
37	2	=H37	= 135	=B37-C37
38				
39	Factor Market Eq'm			
40	i	Supply	Demand	
41	K	= I31	= 128	=B41-C41
42	L	= 132	= 129	=B42-C42
43				
44	Zero Profit Condition			
45	i	TR	TC	
46	1	=G39	=G40	=B46-C46
47				
48	Tax	=B32	= 150	=B48-C48
49	Minimization		SSE	=SUMPRODUCT(D36:D48,D36:D48)
50			$\log _{10}$ SSE	=LN(D49)/LN(10)

Table 7: Equilibrium Solution with 50 percent Capital Tax

	A	B	C	D	E	F	G	H	I
26	Sol'n Variables	Values				Variable			
27	P_{1}	1.474				Factor Demand	Manufacturing	Nonmanufacturing	Sum
28	P_{2}	1.015				K_{i}	4.210	20.790	25.000
29	P_{K}	1.153				L_{i}	25.895	34.105	60.000
30	Q_{1}	22.512				Factor Supply	Rich	Poor	
31	Q2	57.216				$\mathrm{K}^{\text {c }}$	25.000	0.000	25.000
32	T	2.428				$L^{\text {c }}$	0.000	60.000	60.000
33						Product Demand	Rich	Poor	
34	Goods Market Eq'm					$\mathrm{X}_{1}{ }^{\text {c }}$	9.171	13.341	22.512
35	i	Supply	Demand	Minimization		$\mathrm{X}_{2}{ }^{\text {c }}$	16.044	41.172	57.216
36	1	22.512	22.512	0.000		Product Supply	Manufacturing	Nonmanufacturing	
37	2	57.216	57.216	0.000		Q_{i}	22.512	57.216	
38						Profit Maximization			
39	Factor Market Eq'm					TR	33.179	58.082	
40	i	Supply	Demand			TC	33.179	58.082	
41	K	25.000	25.000	0.000		Other related variables	Rich	Poor	
42	L	60.000	60.000	0.000		PI	0.908	1.033	
43						$\mathrm{I}^{\text {c }}$	29.804	61.457	91.261
44	Zero Profit Conditions					$\mathrm{P}_{1}{ }^{\text {of }}$	1.789	1.338	
45	i	TR	TC			$\mathrm{P}_{2}{ }^{\text {of }}$	1.023	1.011	
46	1	33.179	33.179	0.000		$\mathbf{U}^{\text {c }}$	24.579	53.934	
47						Tax			
48	Tax	2.428	2.428	0.000		Ti	2.428	0.000	2.42797
49	Minimization		SSE	$3.83721 \mathrm{E}-09$		$\mathrm{T}^{\text {c }}$	0.000	0.000	0
50			$\log _{10}$ SSE	-8.415984203					2.42797

Table 8: Welfare Analysis on the Tax Policy

	A	B	C	D
1	Welfare Analysis			
2				
3	URich UPoor IRich IPoor	Base	Alternate	Difference
4		27.872	24.579	-3.293
5		50.891	53.934	3.043
6		34.337	29.804	-4.532
7		60.000	61.457	1.457
8				
9	Rich Poor	CV	EV	
10		-3.993	-4.056	
11		3.467	3.588	
12		-0.525	-0.469	

Table 9: Newton's Method

	A	B	C	D	E	F	G	H
43	Step	0.02						
44								
45	Name	x		Condition	$f(x)$			
46	r	1		k-mkt	=F17-C30		SSE	=SUMPRODUCT(
47	q_{x}	100		l-mkt	=G17-B30		log10 SSE	=LN(H46)/LN(10)
48	q_{Y}	100		q_{Y}	=B48-H30			
49								
50	Iteration	x	dx	x+dx	$f(x+d x)$	x-dx	$f(x-d x)$	df
51	r	1	0	= B51+C51		=B51-C51		
52	q_{x}	100	0	=B52+C52		=B52-C52		
53	q_{Y}	100	0.01	=B53+C53		=B53-C53		
54								
55	Jacobian,							
56		1	2	3		CTRL-j	Run a jacobian iteration	
57	1					CTRL-s	Copy stats	
58	2					CTRL-r	Report results	
59	3							
60								
61							ϕ	0.75
62	J^{-1}							
63		1	2	3		dx		$\mathrm{x}_{\mathrm{n}+1}$
64	1	=MINVERSE(B57:D59)	=MINVERSE(=MINVERSE		=MMULT(B64:D66,E46:E48)		=B51-\$H\$61*F64
65	2	=MINVERSE(B57:D59)	=MINVERSE	=MINVERSE		=MMULT(B64:D66,E46:E48)		=B52-\$H\$61*F65
66	3	=MINVERSE(B57:D59)	=MINVERSE(=MINVERSE\|		=MMULT(B64:D66,E46:E48)		=B53-\$H\$61*F66

Table 10: Equilibrium Solutions for the Harberger Model

	A	B	C	D	E
1	Summary of Experimental Results				
2					
3		Base	Alternate		
4	p_{X}	1.439	1.524		
5	p_{Y}	1.710	1.628		
6	q_{X}	599.133	571.692		
7	q_{Y}	518.989	541.012		
8	p_{P}	1.000	1.002		
9	p_{L}	1.000	1.004		
10	P_{F}	1.000	1.003		
11					
12	Household	Base	Alternate	EV	CV
13	A	445.045	411.579	-50.760	-67.482
14	B	415.359	400.792	-23.675	-11.631
15	C	131.860	128.673	-4.835	-9.789
16	D	123.064	125.300	3.633	7.201
17	G	0.000	45.945	72.143	72.143
18					
19	Output	Base	Alternate		
20	GDP	1750.053	1751.832		
21	RGDP	1750.053	1746.176		
22					

Figure 1: Set up "Solver"

Figure 2: Illustration of Newton's Method

Figure 3: Impact of Capital Tax Applied in Sector X

Figure 4: Impact of Capital Tax Applied in Sector X

Appendix 1

Parameter and Variable Explanation (The Harberger Model)
 Parameter specifications

$\tau_{k X}$ Capital Tax on product in Sector X
$\tau_{k Y} \quad$ Capital Tax on product in Sector Y
$\tau_{w} \quad$ Tax on labour income
$\tau_{X} \quad$ Tax on production in Sector X
$\tau_{Y} \quad$ Tax on production in Sector Y
$\tau_{m} \quad$ Tax on Capital Income
$\alpha_{h} \quad$ Share parameter in household utility function
σ Subsitution elasticity in utility function, identical across households
w wage rate, normalize to 1
$k_{h} \quad$ Capital endowment for the households
l_{h} Labour endowment for the households
σ_{i} Substitution elasticity in production function
δ_{i} Share parameter in production function

Variable specifications

- Business Sector $(i=X, Y)$

CES Cost function $C_{i}=\left(\delta_{i} r_{i}^{1-\sigma_{i}}+\left(1-\delta_{i}\right) w_{i}^{1-\sigma_{i}}\right)^{\frac{1}{1-\sigma_{i}}}$
Cost of Capital $r_{i}=r+\tau_{k i}, r$, capital rental rate, solution variable
Capital Demand $k_{i}=\delta_{i}\left(\frac{C_{i}}{r_{i}}\right)^{\sigma_{i}} q_{i}, q_{i}$, output in section i, solution variables
Labour Demand $l_{i}=\left(1-\delta_{i}\right)\left(\frac{C_{i}}{r_{i}}\right)^{\sigma_{i}} q_{i}$
Price $p_{i}=C_{i}+\tau_{i}$

- Household Sector $(i=A, B, C$ and $D)$

CES Utility function $u_{i}=\left(\alpha_{i}^{\frac{1}{\sigma}} x_{i}^{\frac{\sigma-1}{\sigma}}+\left(1-\alpha_{i}\right)^{\frac{1}{\sigma}} y_{i}^{\frac{\sigma}{\sigma-1}}\right)^{\frac{\sigma-1}{\sigma}}$
Budget Constraint $m_{h}=r k_{h}+w\left(1-\tau_{w}\right) l_{h}$

Demand for product in sector X $x_{i}=\frac{\alpha_{i} m_{i}}{p_{c h}}\left(\frac{p_{c h}}{p_{x}}\right)^{\sigma}$
Demand for product in sector Y $y_{i}=\frac{\left(1-\alpha_{i}\right) m_{i}}{p_{c h}}\left(\frac{p_{c h}}{p_{y}}\right)^{\sigma}$
Price index $p_{c h}=\left(\alpha_{i} p_{x}^{1-\sigma}+\left(1-\alpha_{i}\right) p_{y}^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$
Government Budget $m_{g}=\tau_{k x} k_{x}+\tau_{k y} k_{y}+\tau_{w} w \sum l_{i}+\tau_{x} q_{x}+\tau_{y} q_{y}$

Appendix 1 (Table): Set up the Harburger Model

Appendix 2

VBA Macro Code

```
Option Explicit
Public Sub CalcJacobian()
Dim src As Range
Dim i As Integer, j As Integer, k As Integer, iter As Integer
Dim sum As Double
Set src = Range("Sheet1!$A$1")
For i = 46 To 48
    'set increment
    For j = 46 To 48
        If i = j Then
            src.Cells(j + 5, 3).Value = src.Cells(43, 2).Value / 2
        Else
            src.Cells(j + 5, 3).Value = 0
        End If
    Next j
    'copy x+dx to x
    For j = 46 To 48
        src.Cells(j, 2).Value = src.Cells(j + 5, 4).Value
    Next j
    'copy f(x) to f(x+dx)
    For j = 46 To 48
        src.Cells(j + 5, 5).Value = src.Cells(j, 5).Value
    Next j
    'copy x-dx to x
    For j = 46 To 48
        src.Cells(j, 2).Value = src.Cells(j + 5, 6).Value
    Next j
    'copy f(x) to f(x-dx)
    For j = 46 To 48
        src.Cells(j + 5, 7).Value = src.Cells(j, 5).Value
    Next j
    'calculate df
    For j = 46 To 48
        src.Cells(j + 5, 8).Value = (src.Cells(j + 5, 5).Value - src.Cells(j + 5,
7).Value) / src.Cells(43, 2).Value
    Next j
    'copy df to jacobian
    For j = 46 To 48
        src.Cells(j + 11, i - 44).Value = src.Cells(j + 5, 8).Value
    Next j
Next i
'copy x back
For i = 46 To 48
    src.Cells(i, 2).Value = src.Cells(i + 5, 2).Value
Next i
'copy update to x
For i = 46 To 48
    src.Cells(i + 5, 2).Value = src.Cells(i + 18, 8).Value
Next i
End Sub
```

```
Public Sub CopyStats()
Dim src As Range, dst As Range
Dim sw As Integer, i As Integer
Dim alpha As Double, sigma As Double, x As Double, y As Double
Dim siginv As Double, sm1os As Double, sosm1 As Double
Set src = Range("Sheet1!$A$1")
Set dst = Range("Sheet2!$A$1")
If src.Cells(6, 6).Value > 0.5 Then sw = 1 Else sw = 0
'copy px, py, qx and qy to summary area
dst.Cells(4, 2 + sw).Value = src.Cells(15, 9).Value
dst.Cells(5, 2 + sw).Value = src.Cells(16, 9).Value
dst.Cells(6, 2 + sw).Value = src.Cells(15, 8).Value
dst.Cells(7, 2 + sw).Value = src.Cells(16, 8).Value
'calculate utility for each household
sigma = src.Cells(40, 2).Value
siginv = 1 / sigma
sm1os = (sigma - 1) / sigma
sosm1 = 1 / sm1os
For i = 25 To 29
    alpha = src.Cells(i, 4).Value
    x = src.Cells(i, 7).Value
    y = src.Cells(i, 8).Value
    If (x>0) And (y>0) Then
        dst.Cells(i - 12, 2 + sw).Value = (alpha ^ siginv * x ^ sm1os + (1 - alpha) ^
siginv * y ^ sm1os) ^ sosm1
    Else
            dst.Cells(i - 12, 2 + sw).Value = 0
    End If
Next i
End Sub
Public Sub CalcResults()
Dim src As Range, dst As Range
Dim alpha As Double, sigma As Double, s1 As Double, s2 As Double, U0 As Double, U1 As
Double
Dim px0 As Double, px1 As Double, py0 As Double, py1 As Double
Dim qx0 As Double, qx1 As Double, qy0 As Double, qy1 As Double
Dim PNum As Double, PDen As Double, LNum As Double, LDen As Double
Dim eP0U0 As Double, eP0U1 As Double, eP1U0 As Double, eP1U1 As Double
Dim i As Integer
Set src = Range("Sheet1!$A$1")
Set dst = Range("Sheet2!$A$1")
px0 = dst.Cells(4, 2).Value: px1 = dst.Cells(4, 3).Value
py0 = dst.Cells(5, 2).Value: py1 = dst.Cells(5, 3).Value
qx0 = dst.Cells(6, 2).Value: qx1 = dst.Cells(6, 3).Value
qy0 = dst.Cells(7, 2).Value: qy1 = dst.Cells(7, 3).Value
PNum = px1 * qx1 + py1 * qy1: PDen = px0 * qx1 + py0 * qy1
LNum = px1 * qx0 + py1 * qy0: LDen = px0 * qx0 + py0 * qy0
'Report price indices
dst.Cells(8, 2).Value = 1
dst.Cells(9, 2).Value = 1
dst.Cells(10, 2).Value = 1
'Paasche index
If PDen > 0.0001 Then
    dst.Cells(8, 3).Value = PNum / PDen
Else
    dst.Cells(8, 3).Value = 0
End If
```

```
'Laspeyres index
If LDen > 0.0001 Then
        dst.Cells(9, 3).Value = LNum / LDen
Else
    dst.Cells(9, 3).Value = 0
End If
'Fisher index
dst.Cells(10, 3).Value = Sqr(dst.Cells(8, 3).Value * dst.Cells(9, 3).Value)
'Calculate GDP & RGDP
dst.Cells(20, 2).Value = px0 * qx0 + py0 * qy0
dst.Cells(21, 2).Value = dst.Cells(20, 2).Value
dst.Cells(20, 3).Value = px1 * qx1 + py1 * qy1
dst.Cells(21, 3).Value = dst.Cells(20, 3).Value / dst.Cells(10, 3).Value
'Calculate EV & CV
sigma = src.Cells(40, 2).Value
s1 = 1 - sigma
s2 = 1 / s1
For i = 1 To 5
    alpha = src.Cells(i + 24, 4).Value
    U1 = dst.Cells(i + 12, 3).Value
    U0 = dst.Cells(i + 12, 2).Value
    eP0U0 = (alpha * px0 ^ s1 + (1 - alpha) * py0 ^ s1) ^ s1 * U0
    eP0U1 = (alpha * px0 ^ s1 + (1 - alpha) * py0 ^ s1) ^ s1 * U1
    eP1U0 = (alpha * px1 ^ s1 + (1 - alpha) * py1 ^ s1) ^ s1 * U0
    eP1U1 = (alpha * px1 ^ s1 + (1 - alpha) * py1 ^ s1) ^ s1 * U1
    dst.Cells(i + 12, 4).Value = eP0U1 - eP0U0
    dst.Cells(i + 12, 5).Value = eP1U1 - eP1U0
Next i
End Sub
```


[^0]: ${ }^{1}$ A brief historical survey of developments in GE theory and CGE applications including Jones (1965), Scarf (1969), Shoven and Whalley $(1984,1992)$ may be of interest to students.

[^1]: ${ }^{2} \mathrm{~A}$ list of papers using EXCEL to teach economics can be found at http://econltsn.ilrt.bris.ac.uk/advice/spreadsheets.htm
 ${ }^{3}$ http://wilcoxen.cp.maxwell.syr.edu/pages/371.html
 ${ }^{4}$ Although, this framework can be easily extended to more complicated examples of computable general equilibrium models, such as the examples given in Kehoe and Kehoe (1994)

[^2]: ${ }^{5}$ We could choose other starting values for the above specified equations. However, the starting values need to be reasonable, otherwise, the system may converge to corner solutions with no production or not coverage at all.

[^3]: ${ }^{6}$ In this case, the government simply collects and redistributes revenue. In other models, the government may also consume goods and services.

[^4]: ${ }^{7}$ Our results in Table 7 slightly differ from the numbers reported in Table 3 of Shoven and Whalley (1984, p1013). Some form of calculation or transcription error is present in the Shoven and Whalley results such that the market clearing conditions are violated.

[^5]: ${ }^{8}$ Naively, a student may think that a 50 percent capital tax will generate half of the capital income in the baseline case $(0.5 \times 1.373 \times 6.212=4.265)$. However, only 2.428 is collected as tax revenue. This is an opporunity for the class to discuss distortions introduced by the tax system.

[^6]: ${ }^{9}$ All of the results for the following discussion questions are available upon request.

[^7]: ${ }^{10} \phi$ is used to smooth convergence by taking smaller steps than would otherwise be called for.
 ${ }^{11}$ The detailed program can be found in Appendix 3.

