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Abstract

Detection of dysphonia is useful for monitoring the progression of phonatory impairment for patients with Parkinson’s
disease (PD), and also helps assess the disease severity. This paper describes the statistical pattern analysis methods to study
different vocal measurements of sustained phonations. The feature dimension reduction procedure was implemented by
using the sequential forward selection (SFS) and kernel principal component analysis (KPCA) methods. Four selected vocal
measures were projected by the KPCA onto the bivariate feature space, in which the class-conditional feature densities can
be approximated with the nonparametric kernel density estimation technique. In the vocal pattern classification
experiments, Fisher’s linear discriminant analysis (FLDA) was applied to perform the linear classification of voice records for
healthy control subjects and PD patients, and the maximum a posteriori (MAP) decision rule and support vector machine
(SVM) with radial basis function kernels were employed for the nonlinear classification tasks. Based on the KPCA-mapped
feature densities, the MAP classifier successfully distinguished 91.8% voice records, with a sensitivity rate of 0.986, a
specificity rate of 0.708, and an area value of 0.94 under the receiver operating characteristic (ROC) curve. The diagnostic
performance provided by the MAP classifier was superior to those of the FLDA and SVM classifiers. In addition, the
classification results indicated that gender is insensitive to dysphonia detection, and the sustained phonations of PD
patients with minimal functional disability are more difficult to be correctly identified.
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Introduction

Dysphonia is a type of phonation disorder with an impairment

in the ability to produce normal voice sounds [1]. Manifestation of

dysphonic voice is characterized by hoarseness or weakness in

phonation [2]. As the functional causes of dysphonia, neurological

disorders sometimes make neurogenic interruptions in the

laryngeal nerve paths that could interfere in normal vibration of

vocal folds during exhalation [3]. Dysphonia is detrimental to

quality of life, because the speech impaired patient often

encounters difficulty in personal communication that leads to

depression and further social handicap [4]. A large number of

patients with idiopathic Parkinson’s disease (PD) suffer from

dysprosody and dysarthria [5]. According to the survey of

Hartelius and Svensson [6], over 70% of the PD patients

experienced speech deficit and voice impairment after the onset

of their disease, and only 3% of the patients had received speech

therapy. Ho et al. [5] utilized the clinical-perceptual method to

study the speech difficulties in PD. They sampled the two-minute

conversational speech of 200 PD patients, and examined the

speech deficit profiles (i.e., voice, articulation, and fluency) [5].

Their study showed that voice was the leading deficit in the initial

stage of PD, and articulatory and fluency deficits manifested in the

severe stage of PD [5].

Quantitative measures of speech impairment could help assess

the severity levels of speech impairment in PD patients and study

the specific impaired speech parameters [7]. The simultaneous

qualitative and quantitative investigations are able to characterize

the exaggerated vocal tremor, weak voice, roughness, and other

dysphonic symptoms in idiopathic PD, which sometimes would be

confused with spasmodic dysphonia (a laryngeal abnormality

characterized by spasm of the vocal cord) in clinical diagnosis [8].

Recently, telemedicine systems with advanced network access have

been effectively used for remote monitoring of patients with vocal

impairment [9]. The telemedicine technology provides relatively

low-cost clinical monitoring solutions that help reduce frequent

physical visits for patients [10]. As suggested by Little et al. [10],

such telemedicine systems call for more reliable clinical tools and

speech measurements for accurate detection and monitoring of

vocal symptoms in PD.
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A number of novel speech measurement methods have been

developed to assess dysphonic symptoms in the last decade

[2,3,11–13]. The purpose of such speech measurements is to

characterize the features of the acoustic signals associated with

phonation disorders. Impairment of vocal folds often causes the

irregular movement in one or both sides of the glottis that leads to

pathological vibration patterns, such as pitch frequency fluctua-

tions, changes of airflow volume, and amplitude alteration [2].

Thus, dysphonia is often observed in the production of vowel

sounds. The fundamental frequency (F0) in vowels, mean of F0,

variation of F0 (jitter), the variation of speech amplitude

(shimmer), intensity from one vocal cycle to another are the most

frequently used electroglottographic measures in standard speech

tests [14–17]. Zwirner and Barnes [14] reported that the standard

deviation of F0 in prolonged vowels is much larger for PD patients

compared with healthy control subjects. The study of Hertrich and

Ackermann [15] indicated increased jitter and higher mean of F0

in prolonged vowels for PD patients. Goberman et al. [16,17]

compared the acoustic-phonatory characteristics of Parkinsonian

speakers before and after taking medication, and found greater F0

variability and decreased intensity range (difference between the

loudest and quietest prolongations) in the disfluent speech of PD

patients. Cnockaert et al. [18] used the wavelet analysis technique

to extract the phonatory frequency trace and low-frequency vocal

modulation in sustained vowels. Their study suggested that the

average phonatory frequency is significantly higher for male

subjects with PD, and the modulation amplitude is significantly

larger for female PD patients [18]. Recently, nonlinear dynamics

analysis tools have been utilized to study the vocal oscillation

patterns in Parkinsonian phonatory impairment. Rahn et al. [19]

employed the phase space reconstruction and correlation dimen-

sion methods to measure the perturbation nature in the aperiodic

voices of idiopathic PD. Their results showed that the correlation

dimension values are significantly higher in PD patients than those

of control subjects, which implies an increased complexity of

phonatory signals in PD vocal pathology [19]. In order to

overcome the limitations of vocal perturbation measurement in the

time scale and Fourier transform in the frequency domain, Little

et al. [13] proposed the time-delay state-space recurrence analysis

and the fractal scaling analysis to exploit the nonlinearity in

pathological phonation voices. The detrended fluctuation analysis

and quadratic discriminant analysis methods were used to

investigate the self-similarity properties (in terms of scaling

exponent) of vocal fluctuations associated with PD [10,13]. In

the present work, we aim to study the mutual correlations among

the different parameters in vocal measurements, and also to

develop an effective method for the vocal pattern classification. It

is hypothesized that the most informative features with regard to

fundamental frequency, amplitude variability, and dynamics in

vocal fluctuations could be properly selected and used in the

nonlinear analysis methods for the accurate classification of PD

patterns.

Materials and Methods

Dataset Preparation
The data set used in this study was donated by Little et al. [10],

and is also online available via University of California at Irvine

(UCI) machine learning repository [20]. The phonation data

contain 195 sustained vowel records uttered by total 31 subjects.

There were 8 healthy control subjects (3 males and 5 females), with

the averaged age of 60.2 years (standard deviation: 8.6 years),

participating in the speech tests. The PD patients included 16

males and 7 females (mean and standard deviation of age:

67.869.7 years). The disease stage of each PD patient was assessed

with the Hoehn and Yahr (H&Y) scale [21], a widely used PD

progression rating method in clinical practice. Figure 1 shows the

detailed numbers of the PD patients with different H&Y stages. It

can be observed that majority (82.6%) of the PD patients

underwent the intermediate course of the disease (1,H&Y,3.5).

The vocal vowels were recorded using a head-mounted

microphone positioned at 8 cm from the lips. The microphone

was calibrated with a Class 1 sound level meter (Brüel & Kjær

Type 2238 Mediator) placed 30 cm in front of each subject [10].

The acoustic signals were digitized with the resolution of 16 bit

and the sampling rate of 44.1 kHz, and the signal samples were

normalized in amplitude [10]. Little et al. [10] implemented the

Kay Pentax multidimensional voice program (MDVP) to measure

the perturbations in the sustained vowel records. Such perturba-

tion measures include the period (jitter) and amplitude (shimmer)

perturbations and harmonics-to-noise (and noise-to-harmonics)

ratios. They also computed the nonlinear parameters such as

correlation dimension (D2), recurrence period density entropy

(RPDE), detrended fluctuation analysis (DFA), and pitch period

entropy (PPE) [10]. Based on the vocal perturbation and nonlinear

measures, the standard support vector machine (SVM) was applied

to distinguish the normal and pathological vocal patterns [10].

The data set also contained two nonlinear measures of

fundamental frequency variation: Spread1 and Spread2. All the

subjects recruited in the experiments of Little et al. [10] provide

their written informed consent as supervised by University of

Oxford, United Kingdom, and U.S. National Center for Voice

and Speech, Denver, Colorado. The data analysis methodology

documents of this study were approved by the Institutional Review

Board of Xiamen University.

Feature Analysis
Feature dimension reduction. The correlation matrix

between pairs of vocal measures is shown in Fig. 2. It is noted

that a number of vocal measures are highly correlated with the

others, because some measures indicated the similar characteristics

of the acoustic signals in the data set. The similar vocal measure

groups are period perturbations (MDVP: Jitter (%), MDVP: Jitter

(Abs), MDVP: RAP, MDVP: PPQ, Jitter: DDP), amplitude

perturbations (MDVP: Shimmer, MDVP: Shimmer (dB), Shim-

mer: APQ3, Shimmer: APQ5, MDVP: APQ11, Shimmer: DDA),

and nonlinear measures (DFA, PPE). In particular, the Shimmer:

DDA and Shimmer: APQ3 measures exhibit completely collinear

relationship (the correlation coefficient equal to 1). Little et al. [10]

first normalized the feature values in the numerical range [21, 1]

to ameliorate the classification performance of support vector

machine (SVM). Then they searched through the pairs of highly

correlated measures (the correlation coefficient larger than 0.95),

and removed an arbitrary measure in each pair [10]. The

correlation filtering procedure excluded the following measures:

MDVP: Jitter (%), MDVP: RAP, MDVP: PPQ, MDVP:

Shimmer, MDVP: Shimmer (dB), Shimmer: APQ3, Shimmer:

APQ5, with the remaining ten measures for further SVM

classification [10].

In this investigation, we performed the sequential forward

selection (SFS) method [22] to select the dominant measures and

exclude the similar measures that contribute the redundant

information. The logistic regression [23] was employed in the

SFS selection process to evaluate the performance. The SFS is a

greedy searching algorithm that starts from an empty feature set,

and then sequentially adds and combines with the features to

maximize the logistic regression performance. The feature set

Dysphonia Detection for Parkinson’s Disease
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obtained by the SFS method included: MDVP: F0, MDVP: Jitter

(%), DFA, Spread2.

We also implemented the kernel principal component analysis

(KPCA) to project the SFS features onto the two-dimensional

mapping space. The PCA makes the orthogonal transformation to

convert multivariate measures into some linearly uncorrelated

principal components. The KPCA is a kernel-based extension of

PCA method that conducts a nonlinear feature mapping in the

kernel Hilbert space [24]. In the present work, the KPCA was

performed with the polynomial kernel which can be expressed as

[23]:

Q(xi,xj) ~ (xT
i xjzt)d , ð1Þ

where x represents the vector of SFS-selected vocal measures, d

denotes the polynomial order, and t is the intercept. We searched

the polynomial kernel parameters in the range from 1 to 10, and

chose d~3 and t~1, which could make a maximum Euclidean

distance of vocal patterns between the healthy control and PD

subject groups.

Feature density estimation. In the present work, we used

the nonparametric kernel density estimation technique in order to

provide the vocal pattern distribution of the KPCA-mapped

features. The principle of the kernel density estimation uses the

finite observed pattern scatters to approximate the nature of class

distributions. Let the vector m~ m1,m2½ �T denote the KPCA

feature set, where m1 and m2 are used to express the first and

second principal components. The class label of the vocal pattern

is represented as v, with vCO and vPD denoting the groups of

healthy controls and PD patients, respectively. Based on the N

vocal patterns from a particular subject group, the kernel density

estimation method can approximate the class-conditional feature

density with kernel functions as [25]

p(m vj ) ~
1

N

XN

n~1

k(m vj ): ð2Þ

The bivariate Gaussian kernel function is presented as

k(m vj ) ~
1

2p
P
j j1=2

exp {
1

2
(m{mn)T

X
{1(m{mn)

� �
, ð3Þ

where mn~ mn
1,mn

2

� �T
indicates the center location of the n-th vocal

pattern in the subject group v.

Because the KPCA produces the orthogonal projection for the

principal components, the correlation coefficient between the first

and second principal components is equal to zero. Hence, the

covariance matrix that determines the spread width of the

Gaussian kernel function is a diagonal matrix, written as

S~diag ls2
1,ls2

2

� �
, in which s2

1~1:37|1013 and s2
2~2:55|109

are the variances of first and second principal components,

respectively. The scaling factor l is used to coordinate the spread

area of the Gaussian kernel function in the KPCA feature space. We

searched the scaling factor in the numerical range [0, 1] with an

increment of 0.01, and selected l~0:1 that could make the best

contour resolution of estimated KPCA feature densities in the

Figure 1. Severity of neurological impairment in terms of Hoehn and Yahr (H&Y) scale for the patients with Parkinson’s disease
(PD).
doi:10.1371/journal.pone.0088825.g001
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present study. Regulated by the scaling factor parameter l, the 2-

by-2 diagonal covariance matrix became S~diag 1:37|ð
1012,2:55|108Þ. In the computer experiment, the covariance

matrix was unique for both groups of healthy controls and PD

patients.

Vocal Pattern Classification
With the estimated class-conditional densities of KPCA features,

we employed the maximum a posteriori (MAP) rule (also referred to

as Bayes decision rule) [26], to perform the classification of vocal

patterns. In the present work, a posteriori probability P(vjm)
indicates the possibility of a vocal pattern with its observed feature

vector m belonging to either healthy control or PD voice record

group v. According to Bayes formula, a posteriori probability

P(vjm) can be computed from the class-conditional probability

density p(m vj ) as

P(vjm) ~
p(m v)P(v)

p(mvCO)P(vCO)zp(mjvPD)P(vPD)
,

v [ fvCO,vPDg,
ð4Þ

where the class-dependent a priori probability P(v) presents the

possible occurrence of a particular vocal record group. The MAP

classifier recognizes the observed vocal pattern m belonging to the

PD record if its a posteriori probability P(vPD mj )wP(vCO m), vice

versa.

In addition to the MAP classifier, we also implemented the

SVM for classification performance comparison. The SVM is a

kernel-based artificial neural network, which trains the network

parameters to minimize the structural risk [27]. The SVM is able

to perform the same function as the multilayer neural network

(such as multilayer perceptron or radial basis function network), by

Figure 2. Graph visualization of correlation matrix for the vocal measurements, with the color map ranging from blue (for negative
correlation coefficient) to red (for positive correlation coefficient).
doi:10.1371/journal.pone.0088825.g002

Table 1. Statistics of the vocal measurements selected by the
sequential forward selection (SFS) method.

Vocal measurements Mean ± Standard Deviation

CO records PD records

MDVP: F0 (Hz) 181.938652.731 145.181632.348

MDVP: Jitter (%) 0.00460.002 0.00760.005

DFA 0.69660.051 0.72560.055

Spread2 0.1660.063 0.24860.078

CO: healthy controls; PD: Parkinson’s disease; DFA: detrended fractal analysis.
doi:10.1371/journal.pone.0088825.t001
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choosing the corresponding nonlinear inner-product kernels.

During the SVM parameter optimization, the training data which

geometrically locate close to the decision boundary will be selected

as the support vectors, which are considered to be informative for

the classification. The SVM learning can be formulated as the

following constrained quadratic programming problem with

respect to the convex cost function [27–29]:

min J(w,e)~
1

2
wk k2

zc
XL

l~1

jl

such that ylw wT w(f l)zb½ �§1{jl , jl§0, l~1, � � � , L,

8>><
>>: ð5Þ

where w and e are the weight and error vectors, c is a positive real

constant, and f l denotes the KPCA-mapped feature vector of the

l-th vocal pattern. In the present work, we compared the

performance of the SVM with polynomial, sigmoid, and radial

basis function (RBF) kernels, and then chose the standard RBF

kernels K(f,f l)~w(f)T w(f l)~ exp {12 f{f lk k2
� 	

to construct

the support vectors.

We also employed the Fisher’s linear discriminant analysis

(FLDA) to perform the binary classification of vocal patterns. The

FLDA does not require the assumptions that the patterns of

different groups are with the normal distributions or equal class

covariances. The FLDA searches the parameter vector w that

maximizes the class separability in the feature space to perform the

linear discriminant as [23,30]

arg max
w

F (w)~ arg max
w

wT
Bw

wT
ww

, ð6Þ

where SW~
P
v

P
n[v

(xn{uv)(xn{uv)T is the within-class scatter

matrix as the sum of intra-class variances, and

SB~(uCO{uPD)(uCO{uPD)T is the between-class scatter matrix.

In the present study, we implemented the 5-fold cross-validation

method to evaluate the classification performance for each

classifiers. The whole data set was partitioned into five disjoint

subsets. Four subsets were used to train the classifiers, and the

remaining subset was used for testing. The procedure was repeated

for five trials, each time using a different subset for validation.

Results

The SFS method selects the MDVP: F0, MDVP: Jitter (%),

DFA, and Spread2 as dominant measurements. It can be observed

from Table 1 that four vocal measurements possess different

metric range. For example, the difference of mean values between

CO and PD records for MDVP: F0 is with a much larger order of

magnitudes than that for MDVP: Jitter (%), although both of these

two measurements present the vocal perturbations in fundamental

frequency. In previous work of of Little et al. [10], all of these

vocal measurements were normalized to diminish the influence of

Figure 3. Bivariate distributions of vocal patterns in the kernel principal component analysis (KPCA) mapping feature plane. Vocal
pattern distributions for the healthy controls (CO) and patients with Parkinson’s disease (PD) are displayed with the cold color map (blue for the
highest density) and hot color map (red for the highest density), respectively.
doi:10.1371/journal.pone.0088825.g003
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variant measurement magnitudes upon further classifications. In

our experiments, the KPCA was applied to reduce the feature

dimensions by projecting four vocal measurements onto a

bivariate space, in which the vocal patterns with the KPCA-

mapped features also exhibit distinct scatter distributions.

Figure 3 provides the estimated vocal pattern densities of CO

and PD groups in the KPCA-mapped feature space. In

accordance with the scatters located in Fig. 4, the aggregation

area of vocal patterns associated with PD patients shows a high

density in red. On the other hand, the vocal patterns of CO group

possess multimodal density characteristics. As depicted in Fig. 4,

majority of CO vocal patterns (30 records) disperses at the bottom

left side of the feature space. In addition, about a quarter number

of CO vocal patterns (18 records) converges as a small cluster in

the lower right corner (see the high density area in blue color). The

estimated feature densities make the vocal pattern distribution

visible in the bivariate space.

Figure 5 plots the classification results obtained by the three

classifiers. The MAP classifier successfully distinguishes 91.8%

(179 voice records among the total 195 records) vocal patterns,

with a sensitivity rate of 0.986 (145 correct PD records), a

specificity rate of 0.708 (34 correct CO records), and an area of

0.94 under the receiver operating characteristic (ROC) curve.

There are 167 voice records correctly distinguished by the SVM

(overall accuracy: 85.6%, ROC area: 0.85), including 127 PD

records (sensitivity: 0.864) and 40 CO records (specificity: 0.833).

The FLDA provides a linear classification with the accurate rate of

79% (154 correct voice records), sensitivity rate of 0.857 (126 PD

records), specificity rate of 0.583 (28 CO records), and an area of

0.83 under ROC curve.

It is worth noting from Fig. 5B that the MAP classifier

outperforms the other two classifiers with higher degrees of

accuracy, area under ROC curve, and sensitivity. Such results

imply that the MAP classifier has the superiority in recognition of

PD voice records over the SVM and FLDA. On the other hand,

the SVM classifier produces a higher specificity rate than either

the MAP or FLDA, which indicates some merits for categorization

of CO voice records. In general, the nonlinear classification (by

means of the MAP or the SVM) is better than the linear

classification (by means of the FLDA). The FLDA does not achieve

the results obtained by either of the nonlinear classifiers, in any of

classification evaluation criteria (i.e., accuracy, area under ROC

curve, specificity, and specificity).

Table 2 lists the detailed subject information related to the voice

records misclassified by the SVM and MAP classifiers. Only one

PD patient’s speech was not accurately identified by the MAP

classifier. Noting that the PD patient is with minimal functional

disability (with H&Y stage 1), such a misclassification could be

tolerated in clinical applications. A number of the voice records

misclassified by the MAP classifier were spoken by the subjects

S43, S49, and S50. Someone may suppose whether the MAP

classification tends to be subject-dependent. But we observe that

the same records are misclassified by the SVM classifier too. Such

results, in our opinion, are not persuadable to infer that the MAP

classification is subject-dependent. For the SVM classification, on

the other hand, the voice records of more subjects are not correctly

Figure 4. Scatter plots of the vocal patterns in the first and second kernel-based principal components plane for healthy controls
(CO) and patients with Parkinson’s disease (PD). The decision boundary provided by the maximum a posteriori (MAP) classifier separates the
vocal patterns associated with the CO and PD groups.
doi:10.1371/journal.pone.0088825.g004
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Figure 5. Diagnostic performance of the classifiers: (A) receiver operating characteristic (ROC) curves produced by the maximum a posteriori (MAP)
classifier, support vector machine (SVM), and Fisher’s linear discriminant analysis (FLDA); (B) results of classification accuracy, sensitivity, specificity,
and area under receiver operating characteristic (ROC) curve obtained by the three classifiers.
doi:10.1371/journal.pone.0088825.g005
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detected. Some subjects are with mild to moderate disability (with

H&Y stages 2 through 3), which implies the weakness of the SVM

classifier for pathological voice detection. We assume that the

limited size of data set could be one possible cause. The SVM

classifier needs to select informative support vectors to construct

the decision boundary, therefore a small number of phonation

data would result in a bias of the decision making. In addition, the

number of male subjects is not significantly different from that of

female subjects in either of two misclassification lists, which

indicates that the gender is insensitive in the pathological voice

detection for Parkinson’s disease.

Discussion

The selected features: MDVP: F0, MDVP: Jitter (%), DFA, and

Spread2 provided the useful information about pathological voice

in different clinical aspects. The fundamental frequency F0

quantifies the vibration frequency of the vocal folds. The period

perturbation measure jitter corresponds to the cycle-to-cycle

variation in fundamental frequency. The interruptions caused by

Parkinson’s disease in the nervous paths could result in neurogenic

paralysis of the recurrent laryngeal nerves, the superior laryngeal

nerves, or the vagus nerves. The irregular vibration of the vocal

folds would change the mean of F0, frequency variability (jitter),

and speech amplitude, which could be measured in the phonation

course of a sustained vowel. On the other hand, the DFA is used to

describe the stochastic self-similarity properties of the noise caused

by turbulent airflow in the vocal tract. Breathiness and other

dysphonic voice caused by incomplete vocal fold closure would

lead to an increase of the DFA value [9]. The nonlinear dynamical

complexity parameter Spread2 can also characterize the extent of

turbulent noise in the acoustic signal [10]. The Spread2 value is

quite strongly associated with the dysphonia response. The present

study demonstrated the predominant contributions of these four

features to the analysis of PD vocal patterns.

Figure 6 plots the scattered vocal patterns with pairs of the

selected features. It is worth noting that the vocal patterns

associated with the healthy controls and PD patients are still

overlapping in the two-dimensional feature spaces. Among these

combinations of the selected feature pairs, the feature pairs of

MDVP: F0–DFA and DFA–Spread2 could provide relatively

better separable pattern distributions in Fig. 6B and 6F. We

validated the performance of the MAP classifier with these two

feature pairs, using the 5-fold cross-validation method. The

accurate classification rates were 85.1% (ROC area: 0.9) and

85.6% (ROC area: 0.93) for the MDVP: F0–DFA and DFA–

Spread2 feature pairs respectively, which were worse than the

results obtained with the KPCA-based features. It is clear that the

KPCA method can project the selected vocal features, with the

nonlinear kernels, onto the visible bivariate space toward superior

separability and decision interpretation.

The present study does not require the input data normalization

procedure. Little et al. [10] implemented the rescaling of feature

values in the numerical range from 21 to 1, with the motivation of

improving the SVM classification performance. Such data

preprocessing, in our opinion, may cause some obstacles in data

analysis. First, the rescaling or normalization is not robust for the

data set of small size (the total number of voice records lower than

200 in the data set). Additional recruited voice records which

exceed the current extreme of feature values would require

another rescaling, such that the SVM classifier should be re-

trained which consumes much more computation time. On the

other hand, the physical magnitude information about the voice

measurements would be lost after the data normalization. It is

therefore not convenient for medical experts to use the data

located around the discriminant boundary, for example the

support vectors, as the important indicators for screening of

pathological voice records. In addition, without the data normal-

ization, the MAP classifier is able to achieve the overall accuracy

of 91.8%, which is better than the previous related work (91.4%

accuracy obtained by the SVM with ten normalized features) of

Little et al. [10], and also comparable to the results (92.8%

accuracy) performed by the SVM with bootstrap resampling of

data in the work of Sakar and Kursun [3].

Table 2. Details of subject information on the records misclassified by the maximum a posteriori (MAP) and support vector
machine (SVM) classifiers.

MAP SVM

Subject ID
Failure
records Gender Age Group

H&Y
stage Subject ID

Failure
records Gender Age Group

H&Y
stage

S32 2 M 50 PD 1.0 S02 1 M 60 PD 2.0

S42 1 F 66 CO N/A S04 1 M 70 PD 2.5

S43 6 M 62 CO N/A S08 1 F 48 PD 2.0

S49 4 M 69 CO N/A S19 1 M 73 PD 1.0

S50 3 F 66 CO N/A S20 1 M 70 PD 3.0

S25 2 M 74 PD 3.0

S26 3 F 53 PD 2.0

S27 1 M 72 PD 2.5

S32 5 M 50 PD 1.0

S42 1 F 66 CO N/A

S49 3 M 69 CO N/A

S50 3 F 66 CO N/A

M: male; F: female; CO: healthy controls; PD: Parkinson’s disease; H&Y stage: Hoehn and Yahr stage; N/A: not applicable for healthy subjects.
doi:10.1371/journal.pone.0088825.t002

Dysphonia Detection for Parkinson’s Disease

PLOS ONE | www.plosone.org 8 February 2014 | Volume 9 | Issue 2 | e88825



Figure 6. Scatter plots of the vocal patterns associated with the healthy controls (CO) and patients with Parkinson’s disease (PD) in the two-
dimensional feature spaces of (A) MDVP: F0 and MDVP: Jitter (%), (B) MDVP: F0 and detrended fluctuation analysis (DFA), (C) MDVP: F0 and Spread2,
(D) MDVP: Jitter (%) and DFA, (E) MDVP: Jitter (%) and Spread2, and (F) DFA and Spread2, respectively.
doi:10.1371/journal.pone.0088825.g006
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Conclusion

Effective dysphonia detection provides more quantitative

analysis of phonation disorders, toward better medical or

behavioral treatments for speech improvement. In the present

study, we studied the correlation matrix of the vocal measures that

indicate the period, amplitude, and nonlinear perturbations in

sustained vowel records. The dominant vocal measures of MDVP:

F0, MDVP: Jitter (%), DFA, and Spread2 were selected by the

SFS method, which could reduce the dimensions for pattern

analysis. The nonparametric kernel density estimation method

established the visible bivariate distributions of the KPCA-mapped

feature densities. Based on the estimated feature densities, the

MAP classifier was able to provide excellent classification

performance, superior to that of the FLDA classifier and the

SVM with RBF kernels. The experimental results demonstrated

the merits of feature dimension reduction and kernel density

modeling for vocal pattern analysis. The highest true positive rate

(sensitivity) and minimal number of misclassified subjects also

showed the effectiveness of the MAP classifier in the detection of

phonation disorders. The relatively small size of phonation data

limited the nonlinear classification capability of the SVM classifier.

From the present work, we also conclude that the gender is not a

sensitive factor for phonation disorders, and the PD patients with

minimal functional disability are more likely to be incorrectly

identified in the dysphonia detection. Noting that half of the SFS-

selected vocal measures were generated by the nonlinear dynamics

analysis tools, it is believed that the development of nonlinear

vocal oscillation measurements has high potential in monitoring

the progression of phonatory impairments in future studies.
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