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Abstract This paper investigates the vibrational characteris-
tics of a machining spindle over its life span. The experimental
investigation was carried out using tap testing, where the fun-
damental frequencies of the spindle system were recorded for
different spindle categories, namely, ‘production’ and ‘prove-
out’ spindles. Focussing on production spindles, the system
ageing translated through a reduction in the system’s natural
frequency is modelled as changes in the bearings’ stiffness.
The experimentally evaluated natural frequencies were then
used to calculate the equivalent bearings’ stiffness within the
spindle by means of a calibrated dynamic stiffness method
(CDSM) at various stages of spindle’s life. A comparison
between the stability lobes generated for two different in-
stances in time, in a full slotting cuts process, shows that over
the life span of a spindle, the stability lobes would shift suffi-
ciently to cause chatter after initially being stable. Therefore,
as the spindle ages, the presented methodology can be
exploited to predict the updated machining parameters neces-
sary to avoid unstable chatter conditions.

Keywords Spindle . Stability lobes . Dynamic stiffness
method (DSM) . Natural frequency . Updatedmachining
parameters

Nomenclature
Abbreviations
2D Two-dimensional
3D Three-dimensional
BC Boundary condition

CDSM Calibrated dynamic stiffness matrix
CNC Computer numerical control
DOF Degree of freedom
DSM Dynamic stiffness matrix
FEM Finite element method
FRF Frequency response function
RPM Rounds per minute
D=d/dξ Differentiation operator
F Load vector
K Coupled bending–torsion stiffness
[K] Static stiffness matrix
[M] Static mass matrix
T Kinetic energy
u In-plane bending displacement,

along x-axis
U Potential energy
v Out-of plane bending displacement,

along y-axis

Greek symbols
δ Variational operator
δ Displacement vector/vector of

degree-of-freedom/natural shape
φ Torsional twist
ω Rotary frequency of oscillations
ω Average frequency value
ωn Natural frequency
Ω Rotational/rotational speed
ξ=z/L Non-dimensional length

Superscripts/subscripts
Ktheo Theoretical tool stiffness
KS Bearing’s equivalent linear spring

stiffness (constant)
Ke(ω) DSM of a beam element
Mx Bending moment about ‘x’ axis
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My Bending moment about ‘y’ axis
Sx Shear force along ‘x’ direction
Sy Shear force along ‘y’ direction

1 Introduction

Machining efficiency has been the main focus of many
manufacturing firms for the past 50 years. As competition
tightens, companies started to look for more effective ways
to produce as many parts as possible in as little time as possi-
ble withminimal to no chatter. It has beenwell established that
chatter is related to the overall spindle stiffness [1, 2]. There
have been numerous research studies dedicated to predict the
machine spindle stiffness and, in turn, the bearing stiffness.
Lin et al. [3] summarised the multitude of dynamic models of
spindle and bearings found in the literature. Guo and Parker
[4] investigated the effect of different assumptions being made
in the literature on the bearing stiffness. They also studied the
effect of load on the overall bearing stiffness. Numerically
replacing bearings with springs has become common practice
in modelling spindles. Zhu et al. [5] used this bearing/spring
replacement to investigate its effect on the natural frequencies
of the spindle. The position of the bearing was also investi-
gated. Cao and Altintas [6] also modelled a full spindle and
replaced the bearings with springs, where they also investigat-
ed the effect of preloading the bearing on the natural frequen-
cy of the spindle through varying the stiffness of the spring
equivalent. Hajikolaei et al. [7] attempted the use of spindle
speed variation and adaptive force regulation to suppress re-
generative chatter in the turning process. It was found that
both methods reduce chatter but varying spindle speed re-
duces chatter faster. Traditional chatter theory assumes that
all cutting parameters stay constant. Graham et al. [8] took
into consideration the variation in these parameters and ob-
served their effects on stability lobes. Variation in tool tip
dynamics and cutting force coefficient were considered. Using
these variations, a stability range was suggested. Using a 2D
finite element model, and taking the residual deposition stress
and machine parameters into consideration, Qin et al. [9] also
investigated the effects of tip geometry on the performance of
diamond-coated cutting tools. It was found that there is a
correlation between residual stresses, tool geometry, and tool
performance.

The aim of the present paper is to examine the changes of
spindle natural frequency caused by ageing (i.e. use and
wear), and to present a systematic procedure for prediction
of the optimal ranges of machining parameters required to
maintain stable cutting conditions (as the spindle ages). The
effectiveness and practical applicability of the proposed meth-
odology is demonstrated through a real spindle example,

made available to the authors for experimental tests. The sys-
tem’s fundamental frequencies are first evaluated at various
stages of spindle’s life, both experimentally and analytically
by developing a calibrated dynamic stiffness method
(CDSM). The CDSM model is outfitted with linear spring
elements, where the spring constants are adjusted to reflect
the spindle ageing translated into reduced bearings stiffness.
Based on the resulting bearings stiffness values, the CDSM
model of the spindle is then exploited to evaluate equivalent
milling stiffness, which is, in turn, used to generate stability
lobes for machining spindles as they age. As it will be shown,
as the spindle ages and the bearings wear, the overall natural
frequency of the system decreases and the stability lobes shift.
A shift in the stability lobes could potentially move some
cutting parameters from the stable to the unstable regions.
To the best of authors’ knowledge, such a systematic proce-
dure to predict the updated machining parameters, necessary
for stable cutting conditions, has not been reported in the open
literature. Furthermore, while a DSM for the vibration analy-
sis of simple (one-segment), uniform, spinning beams has
been previously developed by Banerjee and Su [10], a CDSM
method for the modelling of entire spindle systems, and its
application to the chatter analysis and prevention, has not been
yet used by researchers. As it will be further discussed later in
the paper, the DSM formulation is based on the closed form
solution to the governing equations of motion, exact within
the limits of the theory [10]. In addition, the displacement field
within each DSM element is assumed to be continuous,
representing infinite number of degrees of freedom (DOFs)
[10], while in the conventional FEM formulation, each ele-
ment represents a limited number of nodal DOFs. Therefore,
contrary to the conventional finite element methods (FEMs),
each uniform segment of the spindle system can be advanta-
geously modelled as a single DSM element, resulting in a
much simpler model. Furthermore, a one-element per segment
DSM model can result in infinite number of natural frequen-
cies, exact within the limits of the theory, while the mesh in a
conventional FEM model must be further refined, should one
need to evaluate higher frequencies [10]. It is also worth not-
ing that, in the present study, the case of a non-spinning spin-
dle (Ω=0) is investigated, as the experimental modal analyses
have been carried out on a stationary machine spindle. As a
result, centrifugal and gyroscopic effects resulting from the
spinning speed, already investigated, both analytically and
numerically, in an earlier work by the authors [11], have not
been considered in the analyses.

The present paper is divided in five sections. First, the
development differential equations governing the bending–
bending–torsion vibrations of a uniform spinning beam,
exhibiting material couplings, followed by the corresponding
DSM formulation, is briefly discussed. Applied to a typical
spindle system, the DSM method is then validated against
conventional FEMmodels, where the bearings are represented
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as simply supported boundary conditions (BC). A CDSM
Model of the spindle system is then developed, where the
simply supported BC are replaced with linear springs, to in-
corporate the inherent bearings flexibility into the model, and
the stiffness values are determined through a comparison be-
tween the frequencies obtained using the DSM and experi-
mental modal analyses. Next, the calculation of the so-called
theoretical tool stiffness is briefly discussed. It is followed by
the development of stability lobes for a machining process
(aluminium) with a full slot axial depth of cut, and using a
two-tooth roughing tool, based on the resulting system param-
eters. The system stability is also investigated experimentally
to validate the theoretical method and code written to evaluate
the stability lobes. Finally, the shift in the stability lobes
caused by the spindle ageing (i.e. reduced frequencies) is
discussed, and it is shown that the updated machining param-
eters could be predicted to ensure continuous stability over
spindle’s life span. It is to be noted that that the inner working
parts of the spindle studied are proprietary and its full details
could not be disclosed.

2 Equations of motion for a rotating shaft

Consider a uniform spinning beam, exhibiting bending–bend-
ing–torsion vibrations in Fig. 1. As presented by Banerjee and
Su [10], the in- and out-of-plane bending displacements, u and
v, along the x- and y-axes, respectively, are coupled by the
spinning speed Ω. In addition, the flexural lateral displace-
ments, u and v, and torsional twist, ϕ, are also coupled by
bending–torsion stiffness K, if the beam is made of composite
material. In what follows, the triply coupled differential equa-
tions governing the bending–bending–torsion vibrations are
first briefly discussed, as the DSM formulation is readily
available [10]. However, the coupled bending–torsion stiff-
ness, K, will then be set to zero in the final equations, as in

the present study, the spinning shaft is assumed to be made of
metallic (i.e. homogeneous) material.

The kinetic and potential energies, T andU, of the spinning
beam are given by [10]:

T ¼ 1

2

Z L

0
vj j2mdz ¼ 1

2
m

Z L

0
u̇2 þ v̇2 þ 2Ω u v̇− u̇vð Þ þ Ω2 u2 þ v2

� �� �

dzþ 1

2
Iα

Z L

0
ϕ̇
2 þ Ω2ϕ2

h i
dz ða� 1Þ

U ¼ 1

2
EI

Z L

0
v″2dzþ 1

2
EI

Z L

0
u″2dzþ 1

2
K

Z L

0
v″ϕ0dz

þ K

Z L

0
u″ϕ0dzþ 1

2
GJ

Z L

0
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ð1� bÞ

Using the Hamilton Principle in the usual notation state
(where t1 and t2 are the time intervals in the dynamic trajectory
and δ is the variational operator)

δ
Z t2

t1

T−Uð Þdt ¼ 0 ð2Þ

substituting the kinetic and potential energies of the beam in
the Hamilton principle, collecting like terms and integrating
by parts, the following set of equations are obtained:

EIu″ ″−mΩ2uþ mü−2mΩ v̇ þ Kϕ‴ ¼ 0; ð3� aÞ

−2mΩ u̇−EIv″ ″þ mv̈−mΩ2vþ Kϕ‴ ¼ 0; ð3� bÞ

1

2
Ku‴ þ 1

2
Kv‴ þ GJϕ″−Iαϕ̇̇ þ IαΩ

2ϕ ¼ 0: ð3� cÞ

The resultant internal loads are then found to be in the form
of

Sx ¼ EIu‴ þ Kϕ″; and Sy ¼ EIv‴ þ Kϕ″ ð4Þ

for shear forces, Sx and Sy, along ‘x’ and ‘y’ directions, respec-
tively, and bending moments, Mx and My, about ‘x’ and ‘y’
axes, respectively, are:

Mx ¼ EIv″þ Kϕ0; and My ¼ EIu″þ Kϕ0 ð5ÞFig. 1 Spinning beam and degrees of freedom
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and the torsional Torque about z axis, T, is written as:

T ¼ − Ku″þ Kv″þ GJϕ0ð Þ: ð6Þ

Assuming the harmonic motion, displacements are written
as:

u z; tð Þ ¼ U zð Þeiωt; v z; tð Þ ¼ V zð Þeiωt; ϕ z; tð Þ ¼ Φ zð Þeiωt; ð7Þ

where ω is frequency of oscillation, and U(z), V(z) and Φ(z)
are the amplitudes of u, v and ϕ, respectively. Substituting
Eq. (7) into Eqs. (3-a), (3-b) and (3-c) leads to:

EI U″ ″−m Ω2 þ ω2
� �

U−2imΩωV þ KΦ‴ ¼ 0; ð8� aÞ

2imΩωU−EI V ″ ″−m Ω2 þ ω2
� �

V þ KΦ‴ ¼ 0; ð8� bÞ

1

2
KU ‴ þ 1

2
KV þ GJΦ″−Iα Ω2 þ ω2

� �
Φ ¼ 0: ð8� cÞ

Introducing ξ= z/L and D= d/dξ, which are non-
dimensional length and the differential operator, respectively,
into Eq. (3-a), (3-b) and (3-c) results in:

D4−
m Ω2 þ ω2
� �

L4

EI

" #
U−

2imΩωL4

EI
V þ KL

EI
D3Φ‴ ¼ 0; ð9� aÞ

2imΩωL4

EI
U þ D4−

m Ω2 þ ω2
� �

L4

EI

" #
V þ KL

EI
D3Φ‴ ¼ 0; ð9� bÞ

K

LGJ
D3U þ K

LGJ
D3V þ D2 þ Iα Ω2 þ ω2

� �
L2

GJ

" #
Φ ¼ 0: ð9� cÞ

One can then combine the three Eqs. (3-a), (3-b) and (3-c)
above into one 10th-order differential equation, written as:

D10 þ μηθD8−λη 1þ θð ÞD6−2μλθη2D4 þ λ2φθ2D2 þ μλ2ηη2θ
� �

W ¼ 0 ð10Þ

Equation (10) written in terms ofW, is satisfied by all U, V
and Φ, where

t ¼ Ω
ω
; μ ¼ Iαω2L2

GJ
; η ¼ 1þ t2; η ¼ 1−t2; λ ¼ mω2L4

EI
; θ ¼ 1−

2K2

EI GJ

� �−1

:

ð11Þ

The solution of the differential Eq. (10) is sought in the
form

W ¼ erξ ð12Þ

Substituting Eq. (12) into (10) leads to:

r10 þ μηθr8−λη 1þ θð Þr6−2μλθη2r4 þ λ2θη2r2 þ μλ2ηη2θ ¼ 0 ð13Þ

By solving the above Eq. (13), one obtains 10 roots for r.
Therefore, the solutions of U, V and Φ can be written as:

U ξð Þ ¼
X 10

j¼1
P je

r jξ; V ξð Þ ¼
X 10

j¼1
Qje

r jξ; Φ ξð Þ ¼
X 10

j¼1
Rje

r jξ ð14Þ

where rj, j=1,2,…, 10 are the 10 roots of Eq. (13) and Pj, Qj

and Rj, j=1,2, …, 10 are three separate sets of 10 (possibly
complex) constants. It can also be shown that [10]

P j ¼ f iRi; and Qj ¼ giRi ð15Þ

where,

f j ¼ −
KL

EI

r2j−ληþ 2iλt

r4j−λη
� 	2

−4λ2t2
r3j ; and g j ¼ −

KL

EI

r2j−λη−2iλt

r4j−λη
� 	2

−4λ2t2
r3j : ð16Þ

From the above solutions of U and V, as stated in Eq. (14),
the corresponding bending rotations (i.e. slopes) about X- and
Y-axes, Θx and Θy, respectively, are given by

Θx ¼ dV

dz
¼ −

1

L

dV

dξ
¼ −

1

L

Xj¼1

10

r jQje
r jξ ; and Θy ¼ dU

dz
¼ 1

L

dU

dξ
¼ 1

L

Xj¼1

10

r jP je
r jξ

ð17Þ

Similar substitutions in the load Eqs. (5) and (6), leads to:

Sx ¼ EI

L3
X10
j¼1

r3j f j þ
K

2L2
X10
j¼1

r2j

 !
Rje

r jξ ;

Sy ¼ EI

L3
X10
j¼1

r3j g j þ
K

2L2
X10
j¼1

r2j

 !
Rje

r jξ;

ð18� a; bÞ
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Mx ¼ EI

L2
X10
j¼1

r2j g j þ
K

2L2
X10
j¼1

r j

 !
Rje

r jξ ;

My ¼ EI

L2
X10
j¼1

r2j f j þ
K

2L2
X10
j¼1

r j

 !
Rje

r jξ

ð18� c; dÞ

T ¼ −
GJ

L

X10
j¼1

r j þ K

2L2
X10
j¼1

r2j f j þ g j

� 	" #
Rje

r jξ ð18� eÞ

By introducing the boundary conditions into the governing
equations (at ξ=0, and ξ=1), one finds

δ ¼ B R ð19Þ

where

δ ¼ U 1 V 1 Θx1 Θy1 Φ1 U2 V 2 Θx2 Θy2 Φ2

� �T
ð20Þ

R ¼ R1 R2 R3 R4 R5 R6 R7 R8 R9 R10½ �T ð21Þ

and

B ¼
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ð22Þ

Fig. 2 Simplified spindle sections

Table 1 Spindle natural frequencies; DSM vs. FEA for a non-spinning simply supported system

DSM B33 (Hz) C3D20R (Hz) C3D10M (Hz

Mode 13 sections 600 element 1200 element 16,965 elements 20,122 elements 34,465 elements 45,645 elements

1 1392.92 1393.00 1393.00 1308.00 1308.00 1301.001301.00

2 1393.24 1393.00 1393.00 1308.00 1308.00 1301.00 1301.00

3 4071.02 4071.00 4071.00 3208.00 3212.00 3335.00 3322.00

4 4071.34 4071.00 4071.00 3210.00 3212.00 3335.00 3324.00

Torsional 4528.12 5212.00 5212.00 – – – –

5 5668.14 5669.00 5669.00 4339.00 4311.00 4322.00 4291.00

6 5668.46 5669.00 5669.00 4341.00 4316.00 4323.004292.00
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and αi ¼ ri f i
L , and βi ¼ −rigi

L . Similar substitutions for the
force equations leads to:

F ¼ A R ð23Þ

where

F ¼ Sx1 Sy1 Mx1 My1 T1 Sx2 Sy2 Mx2 My2 T2

� �T ð24Þ

A ¼

a1;1 a1;2 a1;3 a1;4 a1;5 a1;6 a1;7 a1;8 a1;9 a1;10
a2;1 a2;2 a2;3 a2;4 a2;5 a2;6 a2;7 a2;8 a2;9 a2;10
a3;1 a3;2 a3;3 a3;4 a3;5 a3;6 a3;7 a3;8 a3;9 a3;10
a4;1 a4;2 a4;3 a4;4 a4;5 a4;6 a4;7 a4;8 a4;9 a4;10
a5;1 a5;2 a5;3 a5;4 a5;5 a5;6 a5;7 a5;8 a5;9 a5;10
a6;1 a6;2 a6;3 a6;4 a6;5 a6;6 a6;7 a6;8 a6;9 a6;10
a7;1 a7;2 a7;3 a7;4 a7;5 a7;6 a7;7 a7;8 a7;9 a7;10
a8;1 a8;2 a8;3 a8;4 a8;5 a8;6 a8;7 a8;8 a8;9 a8;10
a9;1 a9;2 a9;3 a9;4 a9;5 a9;6 a9;7 a9;8 a9;9 a9;10
a10;1 a10;2 a10;3 a10;4 a10;5 a10;6 a10;7 a10;8 a10;9 a10;10

2
666666666666664

3
777777777777775

ð25Þ

and

a1; j ¼ EI

L3
r j f j þ

K

L2

� �
r2j ; a2; j ¼ EI

L3
r jg j þ

K

L2

� �
r2j ð26� a; bÞ

a3; j ¼ EI

L2
r jg j þ

K

L

� �
r j; a4; j ¼ −

EI

L2
r j f j þ

K

L

� �
r j ð26� c; dÞ

a5; j ¼ −
GJ

L
þ K

L2
r j f j þ g j

� 	
 �
r j ; a6; j ¼ −

EI

L3
r j f j þ

K

L2

� �
r2j e

r j

ð26� e; f Þ

a7; j ¼ −
EI

L3
r jg j þ

K

L2

� �
r2j e

r j ; a8; j ¼ −
EI

L2
r jg j þ

K

L

� �
r je

r j ð26� g; hÞ

a9; j ¼ EI

L2
r j f j þ

K

L

� �
r je

r j ; a10; j ¼ GJ

L
þ K

L2
r j f j þ g j

� 	
 �
r je

r j

ð26� i; jÞ

The DSM of a spinning beam element, Ke(ω), is then de-
rived by eliminating R from Eqs. (19) and (23), leading to:

F ¼ Ke ωð Þδ ð27Þ

where Ke(ω), is the frequency-dependent DSM for the triply
coupled vibrations of a uniform spinning beam, written as:

Ke ωð Þ ¼ AB−1 ð28Þ

The element DSMs are then assembled to find the
global dynamic stiffness matrix, K(ω). Enforcing the
system boundary conditions and setting force vector
F=0 (for free vibrations), then leads to the following
nonlinear eigenproblem:

K ωð Þδ ¼ 0 ð29Þ

The solution of the problem then consist of searching for
system natural frequencies, ω, satisfying:

K ωð Þj j ¼ 0 ð30Þ

Fig. 3 Modified boundary conditions

280 Int J Adv Manuf Technol (2015) 80:275–292



The corresponding modes of free vibrations, δ (20), are
then extracted from expression (29).

3 Numerical results

The DSM formulation and the resulting element matrices (28)
were implemented in a MATLAB®-based code. The DSM
formulation was first validated for the free flexural and tor-
sional vibrations of simple cases of non-spinning uniform and
homogeneous beams, for which exact frequency results are
available in the open literature [12]. As expected, the DSM
fundamental frequencies, obtained using a single DSM ele-
ment were found to be in excellent agreement with exact data.
In addition, the DSM frequency results were also validated
against FEM-based ABAQUS® commercial software [13]
and an in-house FEM code [14].

Once the correctness of the DSM method is established, a
real spindle system (Fig. 2) was modelled, where the bearings
were modelled as simply supported frictionless pins. As it was
mentioned previously, the inner working parts of the spindle
are proprietary. Therefore, a low-resolution background pic-
ture has been intentionally used solely for the presentation
purposes (Fig. 2). As the spindle system in hand is made of
metallic, homogeneous material, the bending–torsion cou-
pling stiffness, K, must be set to a small value close to zero,

making torsional and bending vibrations of the system
uncoupled; the properties of tooling steel were used for all

Fig. 5 Blank tool

Fig. 4 System natural frequency vs. bearing equivalent spring constant, Ks, for a high speed spindle (in log scale)
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a) Blank Tool in Spindle 

b) Experimental Equipment 

Fig. 6 a Blank tool in spindle
and b experimental equipment

Fig. 7 Production spindle natural frequency vs. machine hours
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sections. Furthermore, to analyse the non-spinning configura-
tion at hand, spinning speed must vanish. However, it is worth
noting that due to the nature of the DSM formulation [10], Ω
cannot be set directly to zero. Therefore, the spinning speed is
set to a very small value, approaching zero (Ω≈0).

The DSM frequency results were compared with those ob-
tained from the models generated using a conventional FEM-
based commercial software (ABAQUS®) reported by Sada
[13] (see Table 1). Sada used several different FEM element
types and mesh sizes to ensure the model convergence; beam

Fig. 8 Prove-out spindle 1 fundamental frequencies vs. machine hours

Fig. 9 Prove-out spindle 2 fundamental frequencies vs. machine hours
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element B33 uses a two-node cubic beam, C3D20R is a
general-purpose quadratic brick element, and C3D10M is a
general-purpose tetrahedral element. The first six bending nat-
ural frequencies and fundamental torsional frequency of the
system were evaluated (see Table 1 for results). Unlike the
conventional FEM formulation, the DSM method results in
exact solution for all natural frequencies of spinning (and non-
spinning) uniform beams. Therefore, as the spindle system at
hand is made of 12 uniform sections, only a 12-element piece-
wise-uniform (stepped) DSM model was required. As also
discussed earlier in this paper, this is also one of the main
advantages of the DSM over the conventional FEM methods
[14–17]. The frequency results obtained from conventional
FEM beam element (B33 in ABAQUS®) yielded the best
agreement with the DSM results, which can be explained by
the fact that both elements share the same beam theories,
where the three-dimensional (3D) and shear effects are
neglected. However, the flexural fundamental frequency
values obtained based on the simply supported bearing bound-
ary conditions were found to be different from the experimen-
tal and nominal values reported by the manufacturer, i.e.
1393 Hz compared to nominal value of 1000±50 Hz.

3.1 Calibrated dynamic stiffness matrix model

As mentioned earlier, all the DSM and various FEM spindle
models [13], with bearing boundary conditions modelled as
simply supported pins, lead to larger fundamental flexural
frequency than the nominal value, i.e. rigid bearings.

However, the bearings are not fully rigid and have some in-
herent flexibility (see, e.g. [3] for a review on bearings stiff-
ness calculation). Therefore, the proposed DSM model was
then modified to account for the bearing flexibility, where
based on the small displacement theory, the rigid, pin and
simple supports were replaced by linear spring elements
(Fig. 3). The spring stiffness values, Ks, assumed to be iden-
tical for all bearings were then varied (Fig. 4), and a CDSM
method was developed to achieve a fundamental frequency
equivalent to the spindle system’s fundamental frequency re-
ported by the manufacturer.

As can be observed from Fig. 4, as the spring stiffness
value increases, the natural frequency of the system in-
creases. The natural frequency then levels out and reaches
an asymptote as the springs start behaving more like simple
supports at high values of spring stiffness. Figure 4 also
shows that, at spring stiffness value of Ks=2.1 ×108N/m,
the system achieves the natural frequency reported by the
spindle manufacturer (1000±50 Hz). This value of spring
stiffness is used for any further analysis of the system. These
results were also confirmed using ABAQUS® software
[13].

Using the graph in Fig. 4, and the usable range of the
spindle at hand (between 790 and 1050 Hz), it was found that
the relationship between the spindle fundamental frequency
(in Hertz) and the bearings stiffness (in N/m) can be best
represented as follows:

Ks ¼ 246 ω2
n−5:9319� 104ωn þ 2:1408� 107 ð31Þ

Fig. 10 Prove-out spindle 3 natural frequency vs. machine hours
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developed based on the assumption that all the bearings have
the same stiffness coefficient, and would wear evenly and at
the same time as the spindle ages. Consequently, if an equa-
tion for the spindle fundamental frequency in terms of sys-
tem’s age is established, i.e. ωn=f(machine hours), then one
could use it in conjunction with Eq. (31), to develop relation-
ship between Ks and the spindle age. Therefore, as it will be
further discussed in the next section, experimental data were
collected to observe the change in the spindle fundamental
frequency over time. To this end, frequency response function
(FRF)-based modal analysis was carried out through tap test-
ing, and the system natural frequencies were calculated. The
resulting experimentally evaluated spindle’s fundamental fre-
quency is then used to calculate the equivalent bearing stiff-
ness constants, Ks, and spindle system overall milling stiff-
ness, Ktheo. The resulting data can then be used to generate
the stability lobes in order to identify the shift in the stable vs.
unstable region caused by spindle ageing, i.e. reduced bearing
stiffness.

4 Experimental procedure

The experimentally evaluated FRF data were collected for
several machines over a period of time. A 1-in diameter blank
tool with a 2-in protrusion was used. A typical shrink fit tool
holder was also used. This type of holder was selected for its
rigid contact surface with the tool (Fig. 5).

The tool and holder were inserted into the spindle. The
spindle was set to be horizontal or neutral position shown in
Fig. 6a. The accelerometer was then attached to the edge of the
tool holder using the wax supplied by the kit. The spindle was
struck 10 times in the x direction, and the average FRF graph
was generated. Similarly, the spindle was also tested along the
y direction.

The experimental equipment is comprised of (see Fig. 6b):

1. 352A21 (light, 0.8 g) accelerometer
2. 086C04 (5000 N hammer) hammer
3. SIM3 module photon+data acquisition
4. Metalmax Software (TXF).

The natural frequency of the spindle was calculated verses
the machine time used over the life cycle of the spindle. Metal
Max Software was used, and several different spindles were
monitored.

Fig. 11 Stability chart for a varying natural frequency spindle (two tooth cutter)

Table 2 Spindle vibrational characteristics using different tools

Tool Direction Natural frequency (Hz) Damping K (N/m)

IMCO x 893.921 0.028267 4.3226E+07

y 878.540 0.031472 3.9634E+07

Helical x 889.526 0.030877 4.2798E+07

y 879.639 0.030183 3.9895E+07

Merlin x 860.596 0.039788 3.9222E+07

y 859.497 0.036643 3.9236E+07
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Fig. 12 Stability chart with test cuts (IMCO tool)

Fig. 13 Stability chart with test cuts (IMCO tool) zoomed in
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A production spindle, running similar type jobs over its life
span, was the first to be investigated. The spindle has never
been abused or ran over the manufacturers’ recommended
parameters. It has never alarmed out due to vibrations, nor
had any collisions since the programme running the produc-
tion machines has been thoroughly tested and fine-tuned.
Therefore, the change in the spindle natural frequency can
be assumed to be due to bearing wear from typical use. The
natural frequency changed from 930 Hz to just below 800 Hz
over the spindle’s life span, i.e. 13,000 h (see Fig. 7). It is also
evident that the natural frequency change is gradual and pre-
dictable. The deviation between the system’s vibrational be-
haviour (i.e. natural frequencies) in x and y directions can be
associated with uneven wear of the bearings caused by un-
equal use of spindle in different directions. The R2 values for
the fitted curves in the x and y directions are 0.974 and 0.957,
respectively.

The second type of spindles investigated was a prove-out
spindle. A prove-out spindle is one that is used to run new
computer numerical control (CNC) programmes for the first
time, in order to validate the parameters specified by the pro-
grammer. These particular spindles have not gone through any
collisions; however, they have alarmed out due to vibration
alerts due to aggressive machining, whose parameters have
been updated in subsequent runs. Two spindles of this type
were monitored and, as can be seen in Figs. 8 and 9, the
fundamental frequencies start at the nominal value (1000±
50 Hz), and changes of fundamental frequency vs. machine

hours (i.e. spindle age) in both cases are observed to be grad-
ual, although not fully predictable.

The final spindle studied was a prove-out spindle similar to
the second type, except that it has faced multiple collisions.
This happens when the tool collides with the material or the
fixture holding the material while moving around the ma-
chine. These collisions usually cause significant damage to
the internal components of the spindles, particularly bearings.
It is also known that these collisions change the vibrational
characteristics of the spindle significantly. As can be observed
from Fig. 10, in this case, the changes are erratic and unpre-
dictable, especially around the collision point. It is suspected
that, when collisions happen, the bearings deform excessively,
leading to permanent distortion and change of their form,
which in turn causes them to seize or loosen on the spindle
shaft. Consequently, as the spindle is being used and the bear-
ings undergo further wear, the system’s vibrational response
would spike or drop.

Referring to Figs. 7, 8, 9 and 10, it was also determined that
the spindle life can be broken down into three major sections,
namely spindle settling, normal operation and spindle failure.

The ‘spindle settling’ zone happens when the spindle is
newly installed and has been turned on for the first time. At
this stage, all the components are settling and wearing togeth-
er. It is observed that, at this stage, the natural frequency
changes very rapidly with time (3–5 % decrease).

Roughly after 1000–2000 h, the ‘normal operation’ zone
starts. If the spindle was used with care and was not subjected

Fig. 14 Stability chart with test cuts (helical tool)

Int J Adv Manuf Technol (2015) 80:275–292 287



to high vibration levels or collisions, the change in natural
frequency in the ‘normal operation’ zone would then be grad-
ual and predictable, i.e production spindle (Fig. 7). Otherwise,
the changes can be erratic and unpredictable.

Finally, the ‘spindle failure zone’ is where the spindle be-
haviour is no longer predictable and varies inconsistently. At
this stage, the spindle is approaching the end of its life cycle
and is no longer dependable.

Referring to Figs. 7, 8, 9 and 10, in general, and focussing
on the production spindle (Fig. 7), in particular, one notices
that, once the spindle has been settled, the natural frequency
stays within a very specific range that does not change signif-
icantly (max. 10 %). This behaviour is observed to last for
about 5000–7000 h. After this period, the spindle goes into
failure mode, i.e. when the natural frequency is unpredictable
and can spike up or drop down. At this stage, the spindle needs
to be replaced. Therefore, it can be suggested that, instead of
tap testing the spindle constantly (e.g. once a week or once a
month, as commonly carried out during the spindle’s normal
operation), one can tap test the system at its brand new stage.

Then, after the settling period (drops 3–5 % drop in the natural
frequency), the spindle can then be used without further inter-
ruptions, and possibly checked every 2000 h looking for the
failure zone. Within the spindle’s ‘normal operation’ zone,
one could then account for a reduction in the natural frequency
from its brand new/nominal value (e.g. 10 %) to evaluate the
stability lobes. Potential sources of error in tap test data in-
clude, but not limited to, repeatability of the hammer strikes,
overall system temperature and the mass of the accelerometer
attached to the monument tool while testing.

In what follows, a procedure is presented that can be used
in conjunction with the presented CDSM method, to evaluate
the shift in the stability lobes caused by the decreased funda-
mental frequency of the system, over its ‘normal operation’
zone. As a result, it will be possible to evaluate safe machining
parameters, or predict updated values, satisfying the chatter-
free, stable machining for the life of the spindle until it fails,
i.e. once the failure (unpredictable) zone has been reached.
The application of the proposed procedure is demonstrated
through the above-mentioned ‘production spindle’.

Fig. 15 Stability chart with test cuts (helical tool) zoomed in
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5 Stability lobes

Using the experimental data presented in the previous
section and the method described in [16], the stability
lobes are calculated for the production spindle, for two
different frequencies (i.e. 930 and 800 Hz). The 930-Hz
frequency is the frequency measured at the beginning of
the life cycle of the spindle, and the 800 Hz represents the
frequency of the spindle at the last test before the spindle
was no longer operational.

Following the procedure presented in [16], the stability
lobes are generated based on a spindle system modelled as a
1-DOF, subjected to end force. However, as discussed earlier
in the paper, the spindle models investigated here consist of
continuous DSM elements, or large number of beam/3D FEM
elements, and the supporting bearings represented by multiple
linear spring elements. Therefore, one needs to first convert
the rotating system to a spring damper system, in order to
evaluate the equivalent stiffness of the entire system, Ktheo.
In what follows, the process of evaluating Ktheo is briefly
presented.

The dynamic stiffness matrix of the system is first con-
verted to a static stiffness matrix by linearising the non-
linear eigenvalue problem of the system, as described by
Hashemi [17]. Based on this method, the static stiffness of
the system can be evaluated at zero frequency (i.e. no
vibration, ω=0), or in the neighbourhood of any given
frequency [18].

Consider a very small natural frequency in the vicinity of
zero (ω≈0), referred to as ωL. A very small frequency incre-
ment, Δω, is then added to ωL, to find

ωU ¼ ωL þΔω ð32Þ
and an average frequency value, ω, is then defined as:

ω ¼ ωU þ ωLð Þ=2 ð33Þ

The eigenvalue problem (29) can then be linearised, in the
vicinity of ω, written as:

K ωð Þ½ � ¼ K½ �−ω2 M½ � ð34Þ

where K ωð Þ is the system DSM, and [K] and [M] are the static
stiffness and mass matrices, respectively, evaluated in the vi-
cinity of ω frequency. The mass matrix of the system can then
be written as:

M½ � ¼ −
d K ωð Þ½ �
d ω2
� � ð35Þ

Finally, substituting Eq. (35) back into Eq. (34), the system
static stiffness matrix is obtained as:

K½ � ¼ K ωð Þ½ � þ ω2 M ωð Þ½ � ð36Þ

Fig. 16 Stability chart with test cuts (Merlin tool)
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Once the static stiffness matrix of the system, [K], has been
evaluated, one can then apply any force to the node
representing the tool tip in the spindle model and calculate
the deflection, U, in the same direction as the applied force,
F, using the following expression:

U½ � ¼ K½ �−1 F½ � ð37Þ

This deflection, U, is then used to calculate the theoretical
tool stiffness, as follows:

K theo ¼ Fx

x
ð38Þ

Now, consider a machining process (aluminium) with a full
slot axial depth of cut, and using a two-tooth roughing tool.
The following parameters were used to generate the stability
lobes:

& System natural frequencies, ωn1=930 Hz and ωn2=
800 Hz

& Equivalent system damping, ζ1=0.032 and ζ2=0.036;
both the natural frequency and damping values were ob-
tained from the FRF charts using the peak picking method
described in [17]

& Calculated equivalent system cutting stiffness, Ktheo1=
3.1359e7 N/m, and Ktheo2=3.0309e7 N/m

& Tangential cutting constant for aluminium Kt=8.00e8 N/
m [17]

& Force angle β=68° [17].

Figure 11 shows that, as the natural frequency decreases,
the stability lobes tend to shift to the left and downwards. The
two natural frequency values were taken from Fig. 7. It is clear
that, for the spindle with reduced frequency, the cutting pa-
rameters assumed at the beginning of the life cycle of the
spindle will not generate chatter free cuts unless the shift in
the lobes is taken into consideration. The optimal spindle
speed for a 25-mm depth of cut is approximately 27,000

Fig. 17 Stability chart with test cuts (Merlin tool) zoomed in
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rounds per minute (RPM) for the 930-Hz spindle. However, as
can be seen from Fig. 11, a spindle speed of 27,000 RPM will
very likely generate chatter as the spindle ages to 800 Hz. The
optimal speed for the 800 Hz spindle is approximately 23,
500 RPM. It is worth noting that, if an initial spindle speed
of 24,500 RPM is selected, chatter would be controlled
throughout the life of the spindle based on the stability lobe
shift in Fig. 11.

6 Stability lobe experimental results

In order to validate our stability lobes calculation procedure,
developed based on the method described in [17], a spindle
equipped with a set of two cutting-edge tools, made by three
different manufactures (IMCO, Helical and Merlin), was used
and several test cuts were taken.

The spindle was tap tested prior to performing the test cut,
and, for each cutting tool, the spindle’s fundamental frequen-
cy, damping coefficient, and system’s stiffness, k, were ex-
tracted from the FRF data (see Table 2), based on which sta-
bility lobes were generated (see Fig. 12, 13, 14, 15, 16 and
Fig. 17); similar to the previous case (Fig. 11), the tangential
cutting constant for aluminium, Kt=8.00e8 N/m, and force
angle, β=68° [17], were used. The ideal spindle RPM was

also determined. Full slot with varying axial depth of cuts
were used at that RPM to perform the test cuts.

Test cuts were also performed at the spindle maximum
allowable RPM as well as 33,000 RPM. The machine vibra-
tional sensors were used to detect the chatter, i.e. excessive
machine vibration. As can be seen from Table 3, when test
cuts are taken outside the stable zone, higher vibration num-
bers are observed, which corroborate the stability lobe charts.
An acceptable level of vibration, as per the spindle system
manufacturer’s instructions, is 2.5 mm/s.

7 Conclusion

A CDSM for the vibration analysis of machine tool spindles
was presented and was shown to be an accurate technique to
calculate the natural frequencies of production spindle sys-
tems. Based on the bearing stiffness values calculated from
the CDSMmodels, the overall stiffness of spindle system, also
called the theoretical tool stiffness, was evaluated, which, in
turn, was used to generate the stability lobes for an illustrative
production spindle example. It was found that the stability
lobes would shift significantly over the life span of the spindle.
If this shift is not taken into consideration, chatter-free ma-
chining will not be maintained throughout the life of the spin-
dle. The presented procedure can be effectively used to predict
the changes in the spindle system fundamental frequency over
a period of time caused by ageing, i.e. reduced bearings stiff-
ness. As a result, decreased machine down time resulting from
frequent tap testing commonly practiced to evaluate system’s
actual fundamental frequency used to extract the stability
lobes could be achieved.
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