
CONTEXT-AWARE RESOURCE

ALLOCATION AND SCHEDULING FOR

HYBRID

MOBILE CLOUD

by

Hager Mohamed Ghouma

B.Sc., Tripoli University, Tripoli, Libya,

2004

A Thesis

submitted in partial fulfillment of the requirements for the

degree of

Master of Applied Science

in the Program of Electrical and Computer Engineering

Ryerson University

Toronto, Ontario, Canada

©Hager Ghouma 2015

ii

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of

scholarly research.

 I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in

total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

 I understand that my thesis may be made electronically available to the public.

iii

Abstract
Hager Mohamed Ghouma

Context-Aware Resource Allocation and Scheduling of Hybrid Mobile Cloud
M.A.Sc, Electrical and Computer Engineering, Ryerson University, 2015

Cloud services can compensate for the resource constraints of mobile devices. However,

challenges of utilizing the cloud service by mobile users arise from inherent characteristics such

as user mobility and device energy. In this paper, we propose a scheme to monitor the energy level

and communication quality as a part of a mobile user context information, and develop a resource

allocation and scheduling scheme to adapt to the context changes by exploiting the slack time. The

objective is to reduce the execution cost of the jobs while meeting the jobs deadlines set by the

users. We developed Simulated Annealing based resource allocation algorithm and Earliest

Deadline First scheduling. Simulation of our scheme using CloudSim and synthetic workload

based on Google Cluster Traces shows benefits in reducing execution cost and improving resource

utilization.

iv

Acknowledgements

I would like to take this opportunity to express gratitude to my supervisor, Dr. Muhammad

Jaseemuddin. I am indebted to him for sharing his expertise and guidance extended to me.

I am also grateful to my sponsor for providing me with this invaluable opportunity.

I wish to express my sincere thanks to my husband, my family and friends who supported me

through this venture.

v

Dedicated to my loving family and to the memory of my beloved parents

vi

TABLE OF CONTENTS

AUTHOR'S DECLARATION ... ii

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

DEDICATION... v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

INTRODUCTION... 1

1.1 MOTIVATION ... 3
1.2 CONTRIBUTION .. 5
1.3 ORGANIZATION OF THESIS ... 6

BACKGROUND AND LITERATURE REVIEW 7

2.1 CLOUD COMPUTING ... 7
2.2 MOBILE COMPUTING: MOBILE USERS AND THE CLOUD .. 10
2.3 CONTEXT AWARE MOBILE COMPUTING... 11

2.3.1 Mobile Devices’ Network Connections .. 11
2.3.2 Cloud Service Location and User Location .. 12
2.3.3 Mobile Energy ... 12

2.4 RESOURCE MANAGEMENT IN THE CLOUD .. 13
2.5 LITERATURE REVIEW .. 15

2.5.1 Cloud Resource Provisioning For Mobile Environment: 15
2.5.2. Prediction of Host Load ... 18
2.5.3. Control Theory Applications for Cloud Resource Management 22
2.5.4. Data Placement in the Cloud .. 26
2.5.5. Task Scheduling in the Cloud .. 28

CONTEXT AWARE RESOURCE ALLOCATION AND SCHEDULING FO R
HYBRID MOBILE CLOUD .. 34

3.1. PROPOSED SYSTEM ARCHITECTURE... 34
3.1.1. Cloud Service Broker (CSB) .. 34
3.1.2. Cloud Controller CC .. 36

3.2. PROPOSED SYSTEM MODEL.. 38
3.2. 1. Mobile Application Model .. 39
3.2.2. Mobile Client Context Model .. 40
3.2.3. Mobile Client Request Model .. 42

3.3. CLOUD SYSTEM MODEL ... 43
3.3.1 Execution Time of a Task .. 44
3.3.2. Data Transmission Time ... 44
3.3.3. Total Processing Time .. 44
3.3.4. Turnaround Time of Request TATR ... 45

vii

3.3.5. Slack Time (Float Time) ... 46
3.3.6. Total Processing Cost ... 46

3.4. PROBLEM STATEMENT .. 46
3.5. RESOURCE ALLOCATION AND SCHEDULING .. 48

3.5.1. Resource Allocation Using Simulated Annealing Algorithm (SA) 48
3.5.2. Task schedule Generating Algorithm ... 49

PERFORMANCE EVALUATION ... 54

4.1 CLOUD WORKLOAD .. 54
4.1.1. Google Cluster Load .. 54
4.1.2. Google Cluster Trace Analysis and Extraction ... 55
4.1.3. Mobile Context Information Generation .. 59

4.2. PROPOSED CLOUD SYSTEM SIMULATION .. 60
4.3. PERFORMANCE EVALUATION .. 65

4.3.1 Experimental Setup .. 65
4.3.2. Performance Parameters ... 65

4.4. SIMULATION RESULTS AND ANALYSIS ... 66
4.4.1. Calculating Workflow Execution Deadline .. 66
4.4.2. Effect of Varying Task Lengths on the Execution Time of Workflows 67
4.4.3 Context Aware Provisioning .. 69

CONCLUSION AND FUTURE WORK .. 77

REFERENCES .. 80

viii

LIST OF TABLES

Table 4.1. Machine Events Table …… .. 56

Table 4.2. Machine Attributes Table…… .. 56

Table 4.3. Job Events Table…… ... 56

Table 4.4. Task Constraints Table…… .. 56

Table 4.5. Task Events Table…… ... 56

Table 4.6. User Table’s Fields…… .. 61

Table 4.7. New Generated User Table’s Fields…… ... 61

Table 4.8 Different Types of VMs Used in the Experiments .. 66

Table 4.9. Different Deadlines and the Number and Percentage of Violations 68

ix

LIST OF FIGURES

Figure 1.1 Diagram of proposed system changes…… .. 6

Figure 2.1 Cloud Deployment Models ... 8

Figure 2.2 System Architecture for a single service provider ... 24

Figure 2.3 Components of the Control Strategy for Dynamic Provisioning of Resources 25

Figure 3.1. Context Aware Hybrid Cloud System Architecture ... 35

Figure 3.2 Service Model of the Context Aware Cloud-Based System. 37

Figure 3.3. Example of a Task Directed Graph of a Sub Workflow. .. 40

Figure 3.4 User Jobs Schedule Timeline (JS-T) vs. User Context Timeline (C-T). 43

Figure 3.5. Pseudo Code for Simulated Annealing Allocation Algorithm. 50

Figure 3.6 Schedule Generation Algorithm ... 53

Figure 3.7 Flow Chart of the Simulated Annealing- Deadline Based Algorithm (SA-DB) 54

Figure 4.1. Cumulative Distribution Function for number of tasks in each unique Job ID 57

Figure 4.2. Cumulative Distribution Function for the number of tasks per each unique user ... 59

Figure 4.3 (a) Number Jobs per Each Unique User ... 59

Figure 4.3 (b) Number Tasks per Each Unique User. .. 60

Figure 4.4. Layered CloudSim Architecture. .. 62

Figure 4.5. Shows CloudSim Class Design Diagram ... 63

Figure 4.6. The Different Provisioning Policies for VMs and tasks .. 64

Figure 4.7. Different Workflow Deadline vs. Actual Execution Times of Workflows 69

Figure 4.8. Execution Times of Workflows by Varying the Task Lengths 69

Figure 4.9 Execution Times of SA-DB vs. CASA-DB System for Energy Level Context 71

Figure 4.10. Transmission Times using Different types ... 72

Figure 4.11. Execution Times of Users’ Workflow Delayed By Slack Time 73

Figure 4.12. Execution Times of Users’ Workflow Delayed by10% Of Slack Time 74

Figure 4.13. Average CPU Utilization Considering Only Energy Level Context 76

Figure 4.14. Average CPU Utilization considering only Communication Context 76

1

Chapter 1

 Introduction

Cloud computing is poised to play a big role in wireless networks by providing computing

service to an increasing number of mobile clients. The number of wireless cloud users

worldwide is expected to have grown at a rate of 69% in 2014 [1].

Increasingly cloud clients use personal wireless communication devices such as

smartphones, laptops and tablets with wireless connection to access the cloud. These devices

have limited computing power, limited storage, and limited battery power. They also suffer

from loss of their scarce energy when operating at full computing power. Cloud providers offer

scalable and reconfigurable services such as computing, storage and network services. The

cloud infrastructure can provide mobile devices access to scalable computation and storage

capabilities. The cloud can also provide location-aware and power-aware services that provide

energy savings at mobile devices. . However, the cloud providers providing services to mobile

clients face new challenges in terms of managing and providing services at the client’s

expectations of agreed upon quality while dealing with large variations in loads, such as

crowdsourcing.

The workflows of cloud-based applications are typically partitioned, such that the application

interface runs on mobile devices while the data-intensive and/or compute-intensive

components as a set of jobs are executed in the cloud. . Mobile clients interact with the cloud

via Cloud Service Broker (CSB). The CSB manages cloud services to the mobile clients as on-

demand pay-per-use service. The US National Institute of Standards and Technology (NIST)

2

defines the cloud service broker as “an entity that manages the use, performance and delivery

of cloud services, and negotiates relationships between Cloud Providers and Cloud Consumers”.

A cloud broker is responsible for service discovery, integration, data and service aggregation,

customization, quality assurance and optimization [2].

Personalization and customization of cloud services is also achievable using mobile clients’

context information. For mobile clients, context could be defined by: (1) user context; such as

the client ID, (2) device context; such as energy level of the device and location, (3) mobile

service context such as the quality of wireless networks, and (4) the time context that are the

time stamps at which the context information is gathered. In addition, mobile context

information could be described as the knowledge the cloud receives about the mobile clients at

a certain period of time. In the cloud, mobile context information could be used to optimize

service offerings to the clients in terms of time and cost.

The challenges of providing cloud service to mobile clients arise from the inherent

characteristics of the mobile devices, specifically mobile device’s energy level and mobility.

When the energy level of a mobile device drops below a critical level, then it may cause

disruptions in communication with the cloud, which results in loss of data. Mobility of devices

induces change in their locations. Moreover, mobility affects the quality of communication by

changing the connection type and/or data rate. For example, the connection type may change

from WiFi to cellular or vice versa. The change of location may also cause variation in data rates

even though connections type remains the same. The change in the connectivity and data rates

of the mobile clients plays a significant role in estimating the expected response time for the

service. The estimated response time has to be calculated such that it takes into account the

3

extra communication delay resulting from the connectivity changes to ensure that the cloud

provider meet the Service Level Agreement (SLA) agreed with the users. Estimation of response

time affects the allocation and scheduling of cloud resources that are constrained to meet the

deadline specified by the cloud-based mobile application. Erroneous estimation of the response

time may cause the management unit to allocate resources that would not satisfy the quality of

service expected by the cloud users that may result in violation of the SLA.

The cloud resources are distributed over a long distance and available both globally and

locally. The knowledge of user location can be incorporated in the cloud resource management

to optimize the selection and allocation of resources. The resource allocation decision based on

user’s proximity to a datacenter can potentially provide lower service latency than in case of

distant datacenter. However, the selection of location of the service could be hindered by the

availability of specific services or data required by the user as data transfers between

datacenters could accumulate significant costs and increase latency.

1.1. Motivation

The use of the scalable and powerful cloud services by mobile clients is attractive due to the

limited computation, storage, and energy of mobile devices. However, wireless connectivity

presents a bottleneck to mobile devices when taking advantage of the scalable resources

powerful computations in the cloud. The variation in data rate may increase the

communication time for the exchange of data between mobile clients and the cloud, which may

affect, especially delay-sensitive, applications at mobile devices. The deadline on the execution

of applications set by the mobile clients may unnecessarily restrain the system even when the

mobile client is unable to receive the results from the cloud. As it is shown in this thesis, the

4

cloud service broker can utilize user context information in making intelligent resource

provisioning decisions. For example, if a mobile device experiences long delays due to a drop in

its network connection data rate, then this information would be significant for the resource

provisioning unit in the cloud provider as the deadline on the execution of the application

provided by the client could be extended to relax constraints on the resource allocation.

Likewise, when the energy level of a mobile device is not sufficient to complete the transaction,

the mobile application in the cloud can be suspended and resources are withdrawn until it

replenishes enough energy to successfully communicate with the cloud. This scheme benefits

both the mobile user and the cloud provider. As for the mobile user, the resources are allocated

only when they are used for useful computation, thus relieving the mobile user from paying for

a service that could not possibly be received. When the mobile device regains sufficient energy

for communication only then the mobile application in the cloud resumes and the user is billed

for the service. In addition, for the cloud provider, the resource thus freed could be allocated to

other jobs that suffer from longer wait times, thus increasing the throughput of the cloud

provider resources.

We can summarize the above discussion in a problem statement as follows:

For a number of jobs N and a number of cloud resources R, an allocation map

that binds a job with a resource is needed such that the resource meet the job

deadline and the total cost of the resources do not exceed the client’s budget.

Once the resources are provisioned to the users, an adaptive algorithm reads the user

context information and makes a decision on whether the same resource allocation continues

or changes to reflect the changes of the mobile client context.

5

1.2. Contributions

This thesis aims primarily at cloud resource provisioning and scheduling for mobile users

using cloud-based mobile applications. The mobile user context information specifically the

mobile device location, connection quality and energy are used when allocating the services for

the application workflows that are dispatched and processed in the cloud as a set of tasks.

The main contribution of this research

• A system model for a context-aware resource provisioning and scheduling of a hybrid

cloud in mobile environments. The system mainly consists of three parts: mobile client

context engine, cloud broker and the cloud resources (datacenters). The functionality

components are the context information collector and monitor, resource allocation unit

and the resource scheduling unit.

• The resource allocation is implemented using a meta-heuristic algorithm; simulated

annealing. The adaptive simulated annealing algorithm takes into account the

turnaround time of the requests, the location of the mobile clients and the energy

consumed by the mobile devices when finding the best suited resources for the mobile

client’s requested jobs. Figure 1.1 shows a simple diagram of the proposed changes to

the cloud system.

• Task scheduling is done using Earliest Deadline First algorithm. The algorithm calculated

the start and end time for each tasks in the client job as well as updating the start lease

time and end lease time for the resources provisioned to these tasks.

6

• Simulation of the proposed system was done using a discrete event simulator,

CloudSim. The data used for the experiments was extracted from the Google Cloud

Trace released in May, 2011 [3].

• Evaluation of the proposed system was achieved using three different parameters;

violations of deadline, execution time for each user and CPU utilizations of the cloud

provider machines.

Figure 1.1 Diagram of proposed system changes.

1.3. Organization of Thesis

 The remainder of the thesis is organized as follows: in chapter 2, the benefits and challenges

of using cloud computing for mobile environment were highlighted. In addition, the related

work in the area of mobile cloud computing and resource management in cloud computing was

reviewed. In chapter 3, the proposed system architecture and system model are presented. In

addition, in chapter 4, the simulation of the proposed system model is done using CloudSim.

Three parameters were used to evaluate the system and the results of the experimentations

were analyzed. Chapter 5 is the conclusion and future work.

Mapping Scheduling

Context Monitoring Mapping Update
Client

Context

Aggregated Client

Requests

Schedule

Resources

Map

7

Chapter 2

Background and Literature Review

2.1 Cloud Computing

Cloud computing is delivering hosted services over the internet at a cost. NIST [4] defined

cloud computing as a model where service providers enable the cloud customers to run their IT

infrastructure in the cloud using a pool of configurable compute resources that can be managed

with minimal effort or interaction from the service providers. These compute resources are a

dynamically provisioned collection of interconnected and virtualized computers; i.e. cloud

computing offer computation, storage and network resources.

The main characteristics of cloud computing are: on-demand self-service, resource pooling,

elasticity, (which is the ability to use as many resources as needed to meet the cost and timing

constraints), and pay-per-use measured service. Measurement, controlling and reporting the

resource usage could also be done, which will provide transparency of the utilized services for

both the cloud service consumer and the cloud service provider [4].

Cloud computing main deployment models are divided into the following models: private

cloud, community cloud, public cloud and hybrid cloud. A private cloud could be hosted

internally or externally and either managed by a third party or the organization that owns it or a

combination of them. The key feature of the private cloud is that it is operated and provisioned

to be used exclusively by a single organization. A community cloud is operated and provisioned

to be used exclusively by multiple organizations sharing common concerns such as mission or

security policies, and similar to a private cloud it is managed by one of the organizations or a

third party or a combination of them. The community cloud also could exist internally or

8

externally. A public cloud is hosted on the premises of the cloud provider and its infrastructure

is provisioned to be used publicly over a network. A hybrid cloud is combination of two or

more clouds: private, public or community; each preserving their own unique entities although

they are bound together. The hybrid cloud benefit by using different deployment models, cloud

bursting is enabled such that the private cloud could use the resources of the public cloud as

the demand increases. This is an advantage as the services of the public cloud will only be used

when needed. Figure 2.1 shows the cloud deployment models.

Figure 2.1 Cloud Deployment Models

The provided cloud services are divided into three service models: infrastructure as a service

(IaaS), platform as a service (PaaS) and software as a service (SaaS). IaaS is the providing

provisioning of servers, storage, networks in addition to other resources to be used by the

consumers to run their software. The consumer could control the operating systems, storage

and the consumer’s deployed applications. However, the consumer will not have the capability

to control and manage the cloud infrastructure. PaaS is providing an infrastructure for a

consumer to deploy applications as a solution stack. The consumer creates software and

controls their deployment and configuration settings using the tools, libraries and programming

9

languages along with the infrastructures services provided by the service provider. SaaS is the

service of providing packaged software running on the cloud infrastructure for the consumer.

In SaaS the software and the data are hosted in the cloud and the consumer does not have

the capability to manage the cloud infrastructure or the software capabilities, with the

exception of the limited application configuration settings that are specific to the user. The

consumer accesses these services through an interface; such as the web browser or a program

interface. The cloud resources in the system level and the components of the core middleware

are responsible for delivering the IaaS. The user level middleware components are responsible

for providing the PaaS and the top layer of the user level that consists of the cloud applications

uses the services provides by the lower layers to provide the SaaS.

Cloud resources are interconnected and distributed over different locations in the network

to increase availability, and reduce both bandwidth cost and latency due to the distance

proximity of the services to the users.

 Cloud Computing Applications Workflows: Cloud customers build their applications in the cloud

with almost no upfront or startup cost of the infrastructure. Cloud applications use APIs of

Internet or network accessible services. This on demand scalable services has efficient resource

utilizations capabilities and the scalability and management mechanisms are hidden from the

cloud customer, i.e. self-management system. Different types of application could run on the

cloud; however the application workload should have the ability to be arbitrarily partitioned

into concurrent instances. In addition, if the communication between the concurrent instances

is intensive, the application might not perform well as it will face bandwidth limitations due to

the network-centric nature of the cloud computing system [5]. Examples of applications that

10

could use the cloud architecture include but not limited to processing pipelines such as

document conversion pipelines and video transcoding pipelines, batch processing systems such

as log analysis and automated unit testing and deployments, and instant websites or seasonal

websites. In addition, mobile interaction applications and science and engineering applications

could be deployed on the cloud as they would benefit greatly from the massive storage and

scalable computational power of the cloud system.

Cloud applications consist of a series of independent units of works to be performed in the

cloud known as tasks. The workflow is the simplified description of these tasks complex activity

that consists also of the data elements, control sequences and data dependencies [6].

2.2 Mobile Computing: Mobile Users and the Cloud

There are two types of mobile cloud computing according to a survey done by Khan et. al [7].

The first type is an ad-hoc mobile cloud where is all mobile devices within the vicinity of the

user act as cloud agents and provide the user with access to the cloud services residing in the

internet. Also, the near mobile devices might have a set of services that could be used by other

mobile devices, hence forming their own local cloud which is known as cyber foraging. Ad-hoc

mobile cloud interstice characteristic is the mobility of the services [7][8]. The second type of

mobile cloud is infrastructure based cloud, and unlike the ad-hoc mobile cloud, the services

remain static. The infrastructure based cloud provides services to the mobile devices via the

internet. The main focus of the work of this thesis is on the latter type, i.e. infrastructure based

cloud.

Smart mobile devices access the cloud by using one or more of various application

processing frameworks. The framework offloads the mobile application to the cloud such that

11

a part or the whole of the application is stored and processed in the cloud. Application

offloading could be done by either migrating the whole application to the cloud, partitioning

the application and migrating the computation-intensive and/or data-intensive partitions to the

cloud, or processing a VM image of the application to be sent and run in the cloud [7]. An

example of a mobile application partitioning that uses the cloud is voice to text conversion

applications such as Apple Siri, which is a voice command search engine. The voice is acquired

using the mobile device, iPhone or iPad, and then sent to the cloud to convert it to a text and a

search for the text will be performed. The search result are then sent back to the mobile device.

Cloud based mobile applications are presented as Task Interaction Graphs TIGs and

offloaded to the cloud for execution. The application will be executed in the cloud as a set of

jobs and each job consists of group of dependent and indivisible tasks. In addition to the jobs,

the requests also define other information such as the job’s requirements and jobs’ deadline.

2.3. Context Aware Mobile Computing

Mobile context information has been used recently to provide the mobile users with more

personalized and customized services that improve their over-all experience. Context aware

mechanism is based on three parts: (1) obtaining the context information at the user mobile

device, (2) sending this information to the cloud, (3) efficiently use this information for cloud

resource management to improve the user’s quality of service.

 2.3.1. Mobile Devices’ Network Connection

Mobile users access the cloud using either 3G/4G LTE via the mobile network or a Wi-Fi

connection via in-home Wi-Fi or a Wi-Fi hotspot. According to CEET white paper [1], 33% of

wireless cloud users connect via Wi-Fi and 67% of these users connect via 4G LTE. The level of

12

wireless connectivity of the access network is one of the main bottlenecks when achieving the

user requested quality of services. These mobile users experience variant data rates depending

on type of connection. While 3G networks offer wide area connectivity, they suffer from long

delay and slow data rate [9]. Alternatively, Wi-Fi connections offer low communication latency

[9]. Wi-Fi deployment is used to connect to either a local cloud or a public cloud via the internet

depending on type of the mobile application.

2.3.2. Service Location and User Location

Another inherent characteristic of mobile users using the mobile network is mobility.

Location of wireless cloud users is crucial to the cloud provider to determine the optimal

placement of the required services in distributed datacenters in the cloud[10][11]. The services

are provided according to the relevant location of the users to the distributed datacenters. It is

important to notice that in the mobile cloud, the location of the users and the location of

services are of finer granularity in the ad-hoc mobile cloud than in the infrastructure based

mobile cloud. As in the later the services reside in datacenters that cover larger areas where in

the former the mobile devices offer the services and the mobility plays a big role in changing

the location more frequently. In addition to the location, service placement techniques may

consider other factors such as the temporal and economical states of both the users and the

provider when the request was launched.

2.3.3 Mobile Energy

Battery lifetime is another challenge for mobile devices. Energy of the mobile device has a

significant impact on the quality of service the users will experience. The decision of offloading

the application to the cloud to save the mobile device energy must take into account the

13

energy consumed due to increased communication resulting from connecting to the cloud.

Therefore, mobile device must have an efficient level of energy to communicate with the cloud

while running the cloud based application. In addition, for the offloading process to be energy

efficient the mobile has to gain in time and computation capacity [12]. The time gain and

computation complexity of the partitioned mobile applications, which will be offloaded to the

cloud, are done using different methods and mechanisms and they are out of the scope of this

thesis.

2.4. Resource Management in the Cloud

The on-demand resource provisioning and pay-per-use features of the cloud services require

that the service providers use minimal infrastructure and maximize their resource utilization

while meeting the Quality of Service, QoS.

Quality of Service is the ability to provide different jobs with a service that guarantees a

certain level of performance to a job. Service level Agreement, SLA, is an agreement between

the user and the provider that specifies that required service level parameters the user requires

in terms of speed, size, bandwidth and delay.

The cloud is a group of datacenters interconnected and managed using a cloud controller.

Storage units are used in combination with network resources to synchronize between the

different datacenters. A datacenter is a group of interconnected computing units called hosts.

Hosts are equipped with hypervisor that enable them to run one or more virtual machines VMs.

Each datacenter has a local controller/broker that is responsible of managing the deployment

of VMs and execution of the different tasks.

14

In general, workflow management is done using three components: (1) user portal to

compose, submit and monitor workflow applications, (2) a workflow editor to facilitate the

workflow composition and virtualization, (3) and a resource broker that acts as a mediator

between the users and the resources, it performs the resource discovery and passes the

requests to the corresponding cloud controller that is responsible for allocation and scheduling

[11].

Cloud providers manage their resource on different levels using many different modules or

components such as service placement, data placement, resource provisioning, and task

scheduling strategies. As for the resources of the cloud, the management entails allocating the

resources to the users’ requests, sending the requests to the specified resource in the cloud

datacenters, scheduling the resources, and balancing the load between the cloud resources.

A resource is the unit(s) that carries out the operation of executing the job. Also as

mentioned before, the job will be executed on different types of resources such as a

computation unit (CPU), a storage unit (memory) and network link for data transporting

(bandwidth). To achieve efficient performance, effective resource allocation and scheduling

mechanisms are needed. Resource allocation is mapping tasks to given resources in a given

time period according to certain constraints and optimization criteria. This map is then

submitted to the corresponding datacenters and the jobs are executed according to criteria

defined by a scheduling policy.

In addition, the user sends a request in the form of a job (computational activity) consisting

of a set of tasks to be executed in the cloud; a task is an indivisible minimum computation unit

to be run on the resource. The user request also describes the tasks dependencies, the job

15

processing requirements, the input data, and job priority. In addition, the job description

might also include some constraints such application deadline and budget of the user. The job

constraints could be categorized into application centric such as user specified deadline or

budget and server provider centric that could be one or a combination of the following:

maximize resource utilization, number of successfully completed jobs or minimization of

response time.

Allocating and scheduling the job tasks to cloud resources could be done in many different

methods and using various algorithms depending on the requirement of the system. From this

point on in the literature, the term scheduling will be used for both allocating and scheduling

the tasks in the cloud. Scheduling could be static or dynamic. In static scheduling the data is

pre-fetched and the tasks are lined for execution according to their specified execution

durations required before runtime, which reduces overhead in the system. Alternatively, in

dynamic scheduling information about task execution duration is not known and the scheduling

is done in real time as the application executes. In the next section, a review of some resource

managements mechanisms is presented.

2.5. Literature Review

Several areas of cloud resource management will be reviewed in this section including load

prediction [13][14][15][16][17], data placement [18], resource allocation [11][19][[10][20],

resource sharing[13][22] and task scheduling[19][20][28][20].

2.5.1. Cloud Resource Provisioning for Mobile Environment

Ferber et. al. [19] presented a middleware based on Amazon Compute Cloud (EC2) to

relocate the Java computing intensive applications to the cloud resources, these application are

16

called the cloud-assisted mobile applications. It implements cloud server features such as

hosting the remote services, allocation and management of services and finally handling the

billing and accounting information. Two different resource allocation strategies were used; the

first strategy allows only one remote service to a single VM. This allows the remote service to

use the full capacity of the VM but generates overhead. The second strategy returns a VM

immediately upon request; the request will be multiplexed to an existing VM if there are no

available VMs on standby. This strategy reduces the overhead by reducing the wait time;

however, it increases the sharing of the same VM and may cause it to overload. Mei et. al.

[21]proposed a framework to outsource the latency-tolerant mobile application to the cloud.

The framework developed uses a scheduling mechanism that exploits the sharing of data across

multiple mobile applications; the data sharing is detected by using data mining techniques.

Rahimi et. al [9][10] , presented a hybrid, tiered cloud architecture consisting of local and

public clouds that provide services to mobile applications. A framework was developed to

model the mobile application as a workflow of tasks. The Mobile usage patterns were directly

translated from user mobility patterns. The user mobility pattern was presented by a trajectory

of the mobile user and donated by a set tuples of location of the user and duration of time the

user is residing in the location. In addition, the mobile application workflow consists of a

sequence of logical and precise steps known as functions. Services that are capable of

implementing a function were associated with that function. The workflow is presented as

location time workflow, LTW; which consists of a sequence of sub-workflows indexed by the

user trajectory tuple (location and duration). Furthermore, a heuristic algorithm based on

simulated annealing called MuSIC, Mobility-Aware Service AllocatIon on Cloud, was developed

17

to search for the best set of services for each mobile user LTW. Their contribution significance

was considering the user mobility when allocating the resources by defining the workflow for

each user depending on their mobility pattern. Two mobility models were used: Random

Waypoint (RW) model and Manhattan model. To study the performance of MuSIC two rich

mobile applications, OCRS and video streaming and transcoding, were developed. Three

parameters were used to evaluate the system; delay, power, and cost. Furthermore, two types

of connection were considered, WiFi and 3G, the relevance of the connection type to the

system model was addressed using the power the mobile device consumes when using either

to connect to the cloud, and the delay which was defined as the time it takes between

launching the request either on local or public cloud and the time the request is terminated.

The two parameters power and delay, are user-centric. Alternatively, the price which is the cost

of the service when executing the public cloud is provider-centric. The authors in this paper

measured the delay on the mobile device and the measure of delay was not a factor when

deciding the resource allocation for the requests. In this thesis, the mentioned delay is

estimated by the proposed cloud system and incorporated in the allocation scheme as it will be

evident in chapter 3.

Furthermore, another important aspect of mobile computing is Energy. Balakrishnana et. al

[22] used a slack time, which is the difference between the deadline of the offloaded mobile

workflow, which is presented as a TIG, and the actual response time of the cloud system for the

same offloaded workflow. Whenever the slack time is larger, dynamic voltage and frequency

scaling DVFS is used to reduce the processing capacity of the cloud resources by scaling the

frequency of the processor. The task-resource assignment and resource-frequency assignment

18

is done using the slack time for the whole offloaded workflow, named global slack time. The

worst case global slack time is distributed among the workflow tasks and a two level genetic

algorithm is used to find the optimal assignment of task to resource and operation frequency of

the resource such that the deadline is met. Their method showed that there will be a decrease

in mobile energy consumption up to 25% due to offloading the workflow.

Alternatively, Zhang et. al. [22] investigated the partitioning of the mobile workflow. The

mobile workflow is presented as a linear topology of tasks and each task is will be either

executed on the mobile or the cloud. The decision of offloading considered achieving minimum

energy consumption on the mobile device while meeting the application deadline. The task

scheduling problem is this paper deals with whether the task would execute on the cloud or on

the mobile and for that purpose the tasks were represented in a directed acyclic graph. The

task scheduling problem was defined as a constrained shortest path problem and solved by

using the Lagrangian Relaxation Based aggregated Cost (LARAC) algorithm. Furthermore, the

task scheduling policy was done under the Markovian Stochastic Channel. The task scheduling

decision takes into account the state of the wireless channel and if the state is “bad” leading to

high communication delay then the task will be executed on the mobile instead of offloading it

to the cloud. The experiment of this method considered only a one-climb policy, meaning only

one time offloading from mobile to cloud.

2.5.2. Prediction of Host Load

Provisioning of server capacity to distributed applications is categorized into proactive or

reactive. In the proactive measure the application models are trained to predict how much

capacity is needed to provide certain mean response time for a given workload [13].

19

Cloud load changes vastly in the short term due to different cloud workloads; it is also

difficult to model. Predicting load in the cloud is one of the measures taken to make task

scheduling or load balancing decisions, thus enhancing system scalability and reducing network

overload by optimizing the utilization of the system resources. The load data of the cloud have

many different patterns and there yet to be a global prediction algorithm or method that can

applied to all of them. However, many different prediction techniques and algorithms were

developed to help solve the prediction problem of the server loads and all of these techniques

and algorithms use a set of past and current cloud load measures to predict future load due to

the repetitive nature of the human behavior.

Di et. al [13] used Bayes model to predict the cpu and memory load for the Google Compute

Cloud. A new exponentially segment pattern was introduced and used in the prediction model.

Google compute cloud platform was used for their prediction study; the study was based on

load measurements of a Google data center that were traced by Google over a one-month

period. The load traced events at minute resolution across 12,000 machines. The host load is

defined in this study as the load of all the tasks that are running in that host (machine). A closer

look at the Google load leads to the conclusion that it has frequent fluctuation and high noise.

The mean load value is predicted over a single time interval and over consecutive time

intervals. First, to characterize the host load fluctuation over a specific time period, a new

metric is defined; the exponentially segmented pattern (ESP). The time interval is divided into

segments of exponentially increasing lengths and the mean load is predicted over each

segment. The evidence interval is also defined as the interval of which the recent samples used

in the predictions are extracted from. Secondly, this segment pattern is transformed so that

20

each interval to be predicted is adjacent to the evidence window. An algorithm is used to first

predict the mean load ηi, the predictor is a function of the length of each segment and the

length of the evidence window. Secondly, the segment mean load l is calculated. The third step

was to define nine feature of load fluctuation to be used with the Bayes model. These features

are the mean load, the weighted mean load, fairness index, noise-decreased fairness index,

type state, first-last load and N-segment pattern. Bayes theorem assumes that the features to

be used are independent of each other, therefore linear correlation coefficients and

Spearman’s rank correlation coefficients are used to distinguish between the highly correlated

features and low or non-correlated features. Based on this, a compatibility between the

features is set such that two features are compatible if the correlation coefficient are less than

0.83 and non-compatible if the correlation coefficient is larger than 0.96. By using this

compatibility, the features are divided into four groups where the elements in the same group

cannot be used together. Fourth, the mean load prediction based on Bayes Model is

constructed. The decision to choose the prediction value is made using two ways; the Naïve

Bayes Classifier (N-BC) and the Minimized MSE (MMSE) based Bayes Classifier (MMSE-BC).

Finally, the Bayes estimator was implemented as well as seven other prediction methods;

namely, the last-state based method, the simple moving average method, the linear weighted

moving average method, the exponential moving average method, the prior probability based

method, the auto-regression method and the hybrid model that integrated the Kalman filter

and Savitzky-Golay filter. The authors concluded that there are four selective features that can

accurately characterize the mean load for the future; these features are the mean load, the

fairness index, the type state and the first-last load. The MMSE-BC was found to be more

21

accurate, with higher success rate and lower MSE, than the N-BC, therefore it was the method

used when comparing the different load prediction techniques.

Saripalli et al. [15] used a two-step method to predict the load of a web-based cloud

platform called the Runaware enterprise cloud platform. First, the measured raw data is used

to help represent the load trend. Second, a prediction algorithm was applied to the load trends.

The load was tracked and represented using cubic spline interpolation [17]. An algorithm for

hot spot detection is also used with the prediction algorithm. A hot spot of the cloud load is a

sudden spike of traffic and the ability to detect is of vast importance in the cloud environment

as it could be used to ensure the requirements of elasticity of the cloud are met. The hot spot

detection is done using auto-correlation functions and linear least squares extrapolation as the

basis [16]. The hotspot level H is defined as the maximum capacity of the server managing the

load that is being studied; this value depends on the type of the application. The load prediction

of the SaaS seasoning using the CS method was able to predict the load with a 25-75% margin

of error and the authors state that it would still be a valuable tool to be used for resource

provisioning during runtime as the cubic spline based load tracking provide high correlation

among the load values [17].

Research has also been conducted on prediction of the load of mobile phones and the

outsourcing the computational problems from the mobile to the cloud. Heo et. al. [14]

proposed a user demand prediction method to predict the execution time and average volume

of the transmitted application data of smart phones. The long-term logged application usage

pattern from a virtual smartphone is statistically analyzed to be used in the prediction. Each

smart phone saves battery power and uses the computational power of one exclusive VM

22

machine that is an image of the mobile operation system and applications. The application is

executed within the VM and data is exchanged between the mobile and the VM using a 3G and

a Wi-Fi connection environment. The prediction was done using double exponential smoothing

with Holt’s linear method. However, the prediction values were not compared to the actual

values and only the trend prediction was documented.

2.5.3. Control Theory applications for cloud resource management

A resource management system could be designed by using concepts of the control theory;

the objective function of the system representing multiple performance requirements and

constraints could be expressed as the cost functions. The main components of the control

system are: the inputs (sensors), the control system (monitors and actuators) and the outputs.

The inputs could be but not limited to the workload of the system and admission control

policies or the capacity allocation. The control system components are the used to estimate the

performance measures and implement system policies. The output is the resource allocation to

the application tasks requesting the resources. The control system could face instability, the

adjustments of the control system should be only done after the system has stabilized and

measurement of the time for stabilization and adaptation for an application should be done by

the controller [5]. Additionally, the upper and lower thresholds should be set apart enough

from each other as the workload fluctuation is very large and may cause instability of the

system [5].

Zhang et al. [11] used both the control theory and game theory for dynamic service

placement decisions in geographically distributed clouds. Figure 2.2 shows the control

architecture for a single service provider. The system consists of: request routers also known as

23

redirectors that are responsible for redirecting the requests to the appropriate servers,

monitoring modules ware used for collecting statistics of the demand received by the different

request routers and the prices of the services offered by each data center. The other

components of the system are the analysis and prediction module that is responsible of

modeling the demand and the price changes and also for predicting the future values for them,

and the resource controller that is responsible for dynamically adjusting the number of servers

leased in each data center while satisfying the SLA requirements by minimizing the latency and

resource rental cost. It also communicates with the request routers and informs them of the

number of servers in each data center, the request routers in return will find the best

assignment for the demands to the servers available. The goal of the system designed is to

minimize the total cost of server allocation and reconfiguration cost while meeting the demand

constraint, the data center capacity constraint and the SLA performance constraint. The

resource management of the multiple providers is modeled as a multiplayer non cooperative

game theory.

Another application of the control theory was used to control overloading of servers. As the

cloud workloads fluctuates greatly, the chance of spikes or flash crowds in the load could not be

prevented, this might cause the cloud servers to overload causing delay in the response time of

the applications below acceptable levels. Guitart [23] proposed an overload control strategy in

secure environments to deal with overload in web applications in SMP hosting platforms. The

strategy involves an admission policy and dynamic resource provisioning. The admission control

was based on SSL connections: accept the requests with the already initiated SLL connections

before the requests with the new requested SSL connections.

24

The control system designed is shown in Figure 2.3 and it consists of the following

components: eDragon CPU Manager (ECM) which distributes the resources among the different

running applications using a scheduling policy. The applications and the ECM communicate to

relay information to each other of the resources needed and the resources available

respectively. This communication is done using a shared memory, and a new JAVA class was

developed to achieve the allocation of the resources (i.e. processors) to the application by the

ECM. The application would then apply an admission control policy using the eDragon

Admission Control (EAC) component to limit the requests according to the number of the

resources available given by the ECM, this limitation is done to prevent degrading the QoS. The

admission control policy accepts a certain number of requests containing new SSL connections

and the entire requests with existing SSL connections.

Figure 2.2 System Architecture for a single service provider [11].

The ECM would then assign the requests to the resources using a scheduling policy that

would be explained in the task scheduling section. The eDragon Load Monitor (ELM)

component is added within the server that runs the web application, and it is responsible for

25

continuously monitoring the incoming secure connections to the server, it distinguished

between the new SSL connections Oi(kAPL) and the resumed SSL connections Ni(kAPL) and counts

them every sampling interval kAPL. Both ELM and EAC are responsible for monitoring the

incoming SSL connections, where ELM estimates the resources requirements for the

application, the EAC decides on the accepting of the new SLL connections. The average

computation time of a resumed SLL CTOi connection and the average computation time of a

new SLL connection CTNi were measured using static profiling of the application.

Figure 2.3 Components of the control strategy for dynamic provisioning of resources [23].

The EAC calculates ANi(kAPL), the maximum number of new SLL connections that the

application i could accept without overloading and degrading the QoS. This value depends on

the number of processors allocated to the application Ai(kAPL) and the computation time of

resumed SLL connections that were accepted during kAPL. The rest of the SSL connections were

refused. These calculations are done prior to accepting or negotiating any SSL connections;

therefore the overhead caused by them is not noticeable. The results of this study showed that

the control policy strategy allowed the server to attend to more users than a server that uses its

own dynamic provisioning by refusing new SLL connections. This SSL refusal is also showed to

be less than the timed out connection in the server than is not using the control strategy.

26

2.5.4. Data placement in the cloud

Data management in cloud computing is a challenge especially for some types of workflows

i.e. scientific workflows that have enormous data amounts that reaches up to terabytes of size.

Cloud data is distributed among different centers and the connections between them has

bandwidth limitation that would put a constraint on their movement. Additionally, the

distributed data sets have dependencies between them and oftentimes the application tasks

needs to use more than one data set making the data set movement an inevitable process. The

cost of the moving the datasets could be more than the cost of scheduling the tasks [18], hence

the data sets need to be placed in the data centers in such a way that their movement will be

minimized during application tasks executions.

Yuan et al. [18] proposed a matrix based k-means clustering strategy for data placement in

scientific workflows. The data sets in scientific workflows were categorized according to their

flexibility. The data sets were divided into fixed location data sets that could not be moved and

flexible location data sets that could be moved. The inflexibility of the movement of data set in

scientific workflow could be due to many reasons: some data might need to be on one location

to be processed by specific equipment, some very large data sets could not be moved

efficiently or the reason could be a matter of the ownership and limited access rights of the

data set that could hinder it from being moved from a specific datacenter. The structure of the

data was not considered.

The clustering of the data sets was done first by defining the dependency between the

datasets. The datasets are dependent on each other if the same task used them. To execute a

task, all the datasets need to be located in the same datacenter. By storing the dependent data

27

sets in the same data center, less movement of the datasets would be required and most of the

datasets needed by the task were found in the same datacenter. Each dataset i is given two

attributes: Ti a set of tasks that use this particular dataset and the si size of the dataset. The

dependency between two datasets i and j is then defined as: ������������ =
���
	(�� 	∩

��)			Where Ti is the task that will use the dataset i and Tj is the task that will use the dataset j.

Based on this dependency, then the datasets were clustered in different data centers using k-

means clustering strategy consisting of two stages build-time and runtime. The k-initial

partitions representing the existing datasets were clustered into k datacenters for the k-means

algorithm in the build time state. And the newly generated datasets during the workflow

execution were clustered in k datacenters during the runtime stage according to their

dependencies that were calculated dynamically.

During the build-time stage, a dependency matrix DM is setup and clustered. The clustering

in the build-time stage was done using the Bond Energy Algorithm (BEA) which is a permutation

algorithm used to group the similar items together by vertical partitioning of large tables. The

dependency matrix DM was used as an input and a clustered dependency (CM) matrix was

generated using the BEA. The second step of the build-time stage is partitioning and

distribution of datasets. A recursive binary partitioning algorithm was developed and used to

partition the clustered dependency matrix while trying to find the best data centers that have

storage capacity matching the datasets’ sizes. This is done by placing the datasets that have

higher dependencies with each other together in one partition and lower dependencies with

the datasets in the other partitions. Distribution of datasets is done by examining the datasets

in the system for flexibility. Furthermore, the datacenters were assumed to have enough

28

storage to host all the application data in the system. The k-means clustering algorithm was

used dynamically in the runtime stage to calculate the to place the generated data to one of the

k data centers. Simulation of these algorithm showed the movement of the datasets were

greatly reduced when using the build-time algorithm, however, the movements were not

affected when using the run-time algorithm only because of the pre-allocation of the datasets

to the wrong datasets due to it being prior to the task scheduling that was based on the data

placement not their dependencies to the datasets. All the results show that the build-time and

run-time algorithms when used together are found to reduce the datasets movement by 50.8%

compared to the random situation. The simulation done in the different experiments only

measured the data movements of datasets. No other parameters were measured to show the

effectiveness of the algorithms in terms of execution cost or communication cost. In addition,

the cost of placing the data in the different datacenters was not included in the study.

2.5.5. Task scheduling in the cloud

The problem of mapping tasks to distributed resources from an optimization perspective is

an NP-hard problem, therefore, meta-heuristic techniques could be applied for solving the

problem. The resource allocation mechanism is usually done using algorithms that will find the

near optimal solution for an objective function. The objective function of the resource

allocation algorithm is designed using different criteria and constraints depending on the aim of

the optimization. The resource allocation algorithm will map jobs to resources either by

maximizing or minimizing the objective function.

Scheduling workflows can be according to different objectives that vary from application to

another. Some applications are data intensive applications while other are compute intensive.

29

The objective are either user-center and/or provider/centric. Provider centric objectives could

be, but not limited to, any (or a combination) of the minimization of the following: total data

transfer time/cost (communication cost), total execution time/cost and storage space usage.

User- centric objectives might be defined as minimum amount of completion time or minimum

cost to be procured by executing the job. When scheduling is done, different tasks will achieve

different execution times and costs depending on the computer nodes that they are assigned

to. These computer nodes will have different bandwidths between them, thus will cost

different amount when transferring the data between them. Scheduling the tasks could be

done by assigning the tasks to compute nodes that have less execution cost without

disregarding the communication cost that will take effect due the dependency between the

data and the tasks.

Pandey et. al. [24] presented a model for task scheduling in cloud computing to minimize the

total execution cost and developed a heuristic algorithm using particle swarm optimization to

assign the tasks to the compute resources. A Directed Acyclic Graph (DAG) was used to denote

the application workflow. Particle Swarm optimization (PSO) is a self adaptive, global

optimization technique. It optimizes the problem by using a population of candid solution. The

heuristic algorithm used the PSO algorithm to map the tasks to the resources according to the

provided objective function. The scheduling heuristic algorithm was designed as follows: first

initiating of parameters was done by calculating the average computation cost of all tasks in all

compute resources and calculating the average cost of (communication/size of data) between

resources. Secondly, setting the task node weight wkj as the average computation cost and

setting edge weight ek1,k2 as size of file transferred between tasks. The next step was to compute

30

PSO({ti}). Then the mapping of the tasks started, where all the ready tasks were mapped to

resources according to the solution provided by PSO. After finishing the mapping, all the tasks

were dispatched to be executed by the resources. The scheduler was designed to wait for the

tasks status to be acquired and get all the new ready tasks, the ready task list was then updated.

Additionally, the average cost of communication between resources was updated according to

the current network load and the new PSO is calculated for the new ready tasks. This whole

process was repeated until there were no more scheduled tasks. The performance metric that

was used is the cost in cents of the complete execution of an application and transferring of

data; the pricing was obtained from the AWS Amazon packages. The results obtained from this

study showed that the algorithm performed better than the best selection algorithm that was

used for comparison. However, the study does not take into account the disproportion between

the pricing of the execution costs values on the computer resources and the values for the cost

of transferring the data between these resources. The execution cost is far greater than the

communication cost such that when calculating the cost the significance of the communication

cost was trivial in the total cost of executing the tasks. This disproportion needs to be addressed

in the cost function equation.

Guo et. al [25] had a similar target but different modelling of the system than Pandey [24].

The objective was to minimize the communication time and execution time to reduce data

movement. A Task Interaction Graph (TIG) was used to denote the task scheduling. It is

presented by G(V,E), where: V={1,2,…..n} is the set of tasks of an application and E={Cij} is the

information exchange between the tasks. .

31

Minimizing Total (M) = Cexe(M) + Ct(M) is the objective function. Particle Swarm optimization

again was used achieve this goal. Results show than not only that converges faster than the

other algorithms used for comparison, it also runs faster than those algorithms in a large scale.

However, the assumption was made that the tasks won’t take longer than an hour to complete

their execution and the cost function didn’t take into account the execution time of the tasks,

which significantly effects the cost function of their model.

The scheduling policy in [24] concerns scheduling applications to processors; it considers an

e-business indicator by giving customers different priority classes, e.g. Gold, Silver, or Bronze. Pi

denoted a priority class that indicated a customer domain’s priority in relation to other

customer domains. And according to this differentiation the customer with higher priority

would get better service than the one’s with lower priority. In this policy, the ECM (eDragon

CPU Manager) is responsible of distribution of resources to different applications. Each

application i receives a number of processors Ai(KECM) at every sampling interval KECM. Ai(KECM)

is proportional to application i’s request of processors Ri(KECM) and to the application’s priority

class (Pi). The scheduling policy also allowed a processor sharing mechanism to achieve higher

resource utilization in the hosting platform. The granularity used in this sharing mechanism is

0.5 processor, and processors where distributed such that application i would share its

processors if it was assigned all the processors it needed and application j assigned a number of

processors less than the requested. In this case even if a fraction of 0.5 processor was not used

by processor i, it could be assigned to application j if it was needed.

One of the cloud desired characteristics is its elasticity. Applications are able to grow and

scale in the cloud, the growth is met by transitioning the application components from one

32

capacity configuration to another either by replication or migration [26]. Sharma et. al. [26]

developed kingfisher, a cost-aware elasticity provisioning system that choses between

replication and immigration when processing the application in the cloud. The choice is made

by kingfisher such that most cost effective server configuration is achieved.

Due to the heterogeneity and virtualization which enables sharing of the infrastructure, the

performance of the CPU is not stable and suffers from variation in terms of execution time [20].

This performance variation may cause the application to miss its deadline. As many of the

scheduling and mapping algorithms depend on the VM execution times, the tasks may be

delayed beyond expectations of the system which might affect the overall execution of the

workflow and performance of the system. Rodriguez et. al. [20] presented a solution by

designing a resource provisioning and scheduling algorithms based on deadline and cost to

avoid the problems caused by performance degradation delay by encompassing the VM

variation and VM boot time when computing the execution times for the tasks. Three

calculations were presented; execution time of tasks, communication times between different

computing units that are processing dependent tasks, and the processing times of the tasks

which is the combination of the execution times and the communication times of the same

tasks.

First, the provisioning is done using Particle Swarm Optimization PSO to find an optimal set

of resources from a pool of available resources. The set of resources was selected if it meets

the specified deadline while minimizing the total cost of executing all the tasks. Furthermore,

the PSO used considered a heterogeneous infrastructure and more than one VM type was used.

The PSO produced a map of task-resource pairs is produced and the next step was scheduling

33

the resources that were choosing for executing the tasks. Secondly, a scheduling algorithm was

developed to calculate the start and end time of each task in the map. A schedule S =(R, M, TEC,

TET) was produced were: R is the set of resources that indicates the resource ID along with its

start and end lease time, M is set of task-resource maps each containing the task end and start

time along with the assigned resource , TEC is the total execution cost of all the tasks in the

selected resources and TET is the total execution time of the tasks on the selected resources. In

addition, earliest deadline first algorithm is used to map tasks to running VMs. The workflow

that was used to evaluate the algorithm is the scientific workflow and evaluation of the system

showed that the proposed meta-heuristic PSO algorithm have given better results than the

base algorithms in terms of meeting the deadline while maintaining the least cost. However,

the authors have indicated that their algorithm is more time consuming than the other two

heuristic based algorithms and rationalized that with the fact that it is an offline algorithm that

produces better schedules.

 Finally, after reviewing different resource provisioning and scheduling algorithms, a

characterization could be made such that the different schemes can be divided from the

perspective of cloud user and/ or cloud provider. It is evident in the literature that the

provisioning either considers user-centric or provider-centric parameters. The user-centric

provision takes into account parameters that affect the users such as location of the user,

application deadline, and cost. While the provider-centric provision considers for example the

CPU utilization and energy consumption by cloud machines.

34

Chapter 3

Context Aware Resource Allocation and Scheduling for Hybrid Mobile Cloud

A hybrid cloud consists of a public cloud and a private cloud or a number of them. Mobile

applications access the hybrid cloud services using an API on the mobile device. A cloud service

broker CSB works as an intermediary between the mobile clients and the cloud provider. A

detailed description of the architecture of a context aware hybrid cloud system is presented in

section 3.1. Further, a mathematical system model is presented in section 3.2 along with the

system service model. In section 3.3, the mathematical formulation of the problem and the

deadline-based algorithm used to solve the problem are explained.

3.1. Proposed System Architecture

Figure 3.1 shows the system architecture of the context aware hybrid cloud. The system

consists of four main components: Cloud-Based Mobile Application, Mobile Cloud API, Cloud

Service Broker (CSB), and the Cloud Services Provider (CSP).

Each component consists of a number of functional units. The cloud-based mobile

application interacts with an API specifically designed to collect certain context information

using the mobile device sensors and built-in functions. The details for the cloud-based

application and the API is beyond the scope of this thesis. The following explanation applies to

the remaining components, namely the CSB and the CSP.

3.1.1. Cloud Service Broker (CSB)

The CSB functions as an intermediary between the clients and the cloud services. When a

mobile client request services from the cloud, the CSB will authenticate the client. In addition,

35

the CSB uses the context engine to record and monitor the client context information that is

sent periodically by the client’s Context API. CSB has a service discovery unit as shown in Figure

3.1, which is responsible for collecting and maintaining a record of the cloud services

information.

Figure 3.1. Context Aware Hybrid Cloud System Architecture.

The CSB receives the clients’ requests with a set of constraints and the context information.

It queries the cloud provider for resources that guarantee meeting SLA requirements. The

Cloud Monitor

Resource
Allocation

CSB

CSB

36

Service Level Agreement (SLA) between the cloud clients and the cloud provider ensure that the

client receives cloud services that satisfy the Quality of Service (QoS) requested by the clients.

3.1.2. Cloud Controller CC

Each cloud service provider has one Cloud Controller CC for each cloud service cluster. The

CC is responsible for controlling the volume of requests to be allocated resources in the cloud

during admission control. Resource allocation is done by mapping the requests to resources

while minimizing response time experienced by the client and the cost of running the resource

in the cloud. In our proposed scheme, client contexts include location, connection quality, and

mobile energy level that is used to make the allocation decision, as explained in the next

section. The CC scheduler receives updates if there is a change in the client context, and the

allocation of the resources to the requests is modified according to the new context

information.

Figure 3.2 shows the service model of the proposed system. The mobile client application

uses the mobile cloud API to gather the relevant context information and send it to the CSB.

The CSB stores this information in the client context profile and monitors the new incoming

context information from clients. The context analyzer evaluates the context information and

triggers an event to change the allocation of resources to the jobs that are scheduled to run in

the VMs located in cloud datacenters machines. In our scheme, the trigger is designed to set off

when the context analyzer detects a change in either the connection quality or the energy level

of the mobile device. In addition, the provider performs resource monitoring and discovery by

finding available idle resources suitable for the request of the clients. The resources are

monitored to determine their availability. Acquiring and releasing resources on demand is one

37

of the cloud providers’ responsibilities. The jobs are processed in batches. After discovering the

resources, they are assigned to the jobs in the list using a meta-heuristic algorithm, which in our

scheme is simulated annealing algorithm. A Scheduling algorithm is an abstract model to define

the order of execution for a set of tasks. The scheduler finds the needed resources for these

tasks according to the resource-task map generated by the allocation algorithm. Finally, the

VMs are scheduled to run on the physical machine and a VM manager is responsible for

monitoring the VMs and launching and killing the VMs instances according to the demand.

Figure 3.2 Service Model of the Context Aware Cloud-Based System.

In this work it is assumed that the requests are already collected from mobile clients. These

requests constitute a job that contains one or more tasks which are indexed to show their order

in the job. The indexed tasks are paired with their job IDs.

A job consists of more than one tasks. The job type defines the way the tasks in a job are

executed. Sequential-task job type means that a job contains tasks that are executed one by

one and that the execution of the tasks never overlaps. The second type is the batch-task job

Cloud Provider

38

where the tasks are executed in parallel and one job could not contain less than two tasks. The

mix-mode type is a combination of sequential-tasks and batch-tasks. In addition to the list of

the jobs to be executed, the requests are embedded with user context information as

mentioned previously. This information includes user’s current location, power level of mobile

device, expected response time (deadline), network information such as connection type, delay

tolerance.

3.2. Proposed System Model

Mobile devices are resource constrained, and they have limited computing and storage

capabilities. By offloading computation intensive applications to cloud, mobile devices can use

the unlimited resources offered by cloud providers. The cloud services offered to the mobile

users could be categorized as applications-specific services known as PaaS and mobile

computation offloading services known as IaaS. The objective is to enhance the mobile user

experience by reducing computation time and battery consumption and offering services to

enhance the mobile device capabilities.

The most important issues for mobile users using the cloud are network connectivity,

amount of data transmitted, mobile device energy, and bandwidth. Mobile devices connect to

the cloud via internet either by using the cellular/satellite network connections through base

stations, or by using Wi-Fi connections through access points.

 It is the responsibility of the application developer to design the cloud-based mobile

application and decide about partitioning of the application such that some parts are executed

locally in the mobile device and some parts are executed remotely in the cloud. The cloud-

based mobile application workflow could be modeled in a method or module granularity [27].

39

In [28], the application partitioning is achieved by modeling the application at the functional

level rather than at the class or object level, while in [29] methods and/or classes that are

expected to be offloaded to the server as remotable methods which are the methods that could

be executed remotely without disrupting the functionality of the application.

One scheme for the developers to estimate the application requirements and measure their

CPU requirements is through the simulator presented in [30].

 Mobile application partitioning is beyond the scope of this research and we assume that the

application is already partitioned and the mobile cloud API sends the request as an indexed task

graph associated with a unique Job ID to be executed in the cloud. We also assume that the

cloud provider has a copy of the code to be executed; which is downloaded once when the

application is launched for the first time. Hence, it involves onetime communication to the

cloud to reduce size of the request. Once the request arrives in the cloud service broker, the

unique job ID is linked with the appropriate code, and the code along with the data submitted

with the request is launched on a suitable virtual machine.

3.2. 1. Mobile Application Model

The cloud based mobile application consists of a set of tasks to be executed in the mobile

device and another set to be executed in the cloud. It consists of a combination of sequential

and concurrent tasks.

The mobile application workflow W = (T, E) is modeled as a Directed Acyclic Graph (DAG),

where T = {t1, t2, t3,… tn} is the set of tasks and E is a set of directed edges. An example of DAG

is shown in Figure 3.3. If there is a data dependency between ti and tj, then an edge eij ϵ E

between these two tasks indicates this dependency, and ti is said to be the parent of the child tj.

40

The data output size of task ti is denoted by �����
�� . In addition, each workflow is associated

with a deadline called Wd based on the user’s desired QoS. The workflow execution time is

constrained by Wd. The notation T represents one job to be offloaded and executed in the cloud

and the tasks are indexed as i = {1, 2, …. n}.

3.2.2. Mobile Client Context Model

The context manager in the mobile device collects data from different sensors, packages

them into a context, and transfers the mobile context to the CSB. It also monitors the context

information and updates the cloud broker if any change in the context occurs. In our scheme,

the context includes energy level of the device, its location, and network type (data rate).

 Figure 3.3. Example of a Task Directed Graph of a Sub Workflow.

Mobile Device Connection and Data Rate Model:

Modeling of connection type could be done by using some measures to model the quality of

the channel from the user’s context perspective. These measurements include: data rate

(Bandwidth), SNR and request round-trip times. Two connection types are used: 3G/4G cellular

connection and Wi-Fi (WLAN) connection. Typical data rates for 3G interface DR3G is 24 Mbps

whereas that for Wi-Fi DRwifi is 54 Mbps.

e35

e13

e12

e24
e46

e56

��

t0
t10 t1

t2

t3

t4

t5

t6
e01

e6-10

41

Mobile Device Energy:

The mobile device measures its energy level Ɛlocal periodically and the user context manager on

the API embeds this information in its context transfer to the CSB. The energy level sent to the

cloud represents the residual energy of the device at the time of transfer.

Mobile devices consume energy while transmitting and thus the energy will decrease after the

context is transferred to the CSB. An estimation of the mobile energy consumption could be

calculated in the cloud to estimate the expected mobile energy level. The current mobile

energy level is then calculated as:

 E� = 	E������ − E� (1)

Where Edevice is the energy level of the mobile device and Et is the energy consumption due to

transmission.

Mobile Location:

The physical space in which Mobile clients and cloud resource are located is divided into k

zones {z1 , z2 , …., zk}. One zone is defined as an area where a cloud data center is located at the

center of the zone and mobile clients are spread around the data center. Each service request

is assigned to a zone according to the location it is originated from.

 � =	 !"# , !"% , …… . , !"() (2)

42

3.2.3. Mobile Client Request Model

A set of mobile users * = +�,, �-, ……�./ receives services from the cloud offering

services. Each user makes a service request, which is a job that consists of a set of tasks, T = { t1,

t2, t3,… tn}. Where n is the total number of tasks contained in one job submitted by the user.

 Each job includes a CPU and memory requirements of each task. These requirements could be

a measured value or defined a priori by the application developer. We assume that the

requirements are available to the mobile application API and they are sent with the request.

The cloud provider has to ensure that the task is assigned to a resource that fulfills its resource

requirements. In addition to the computing resource requirements, the request contains time

of submission, unique user and job identifications. The job of a user �	 is modeled as:

 0� 	 �1 , �23	, 	0�423 , �� (3)

Where task i of T is modeled as:
� 	 �
�5�"�, ������� 	,
6*,787�	 (4)

In addition, the context of user ui , as specified below, is periodically monitored and sent to the

broker:

 	
��
�9
� 		 �:, ��, 8������, ;� (5)

Where:

� Task indexed i

1 Job Submission time

CPU The requested number of CPU cores

MEM The requested amount of memory

Wd The Job’s whole duration

�5�"� Size of the task i in millions instructions in task i

������� Task output data size

�� Location of user u

: Time the user context information is logged

Edevice Energy level of mobile device

; Data Rate of the mobile device: Wi-Fi connection or 3G connection

43

The context engine in CSB periodically monitors context information from user devices,

which is shown in Figure 3.4 as { C0 , C1 , C2 ,C3 …..}. The figure also shows the job submission

time when the cloud receives requests from users to launch their jobs.

Figure 3.4 shows the two timelines are aligned, that is the job submission time related to

context period. . Each job J is associated with a context C, which refers to the context that is

used by the broker to allocate and schedule the required resources for the job. For example,

starting at time 1< , job J0 is associated with context C0. Similarly, at 1,, job J1 is associated with

context C2 and so on. Only the context attached with the jobs are used in our allocation and

scheduling scheme.

〈0<, 1<〉 〈0,, 1,〉 〈0-, 1?〉 〈0?, 1@〉 〈0A, 1A〉

 C0 C1 C2 C3 C4 C5 C7 C8 C9 C10 C11

Figure 3.4 User Jobs Schedule Timeline (JS-T) vs. User Context Timeline (C-T).

3.3. Cloud System Model

The cloud service provider offers Infrastructure as a Service. The hybrid cloud service, H, is

composed of private cloud services Sprv and public cloud services Spblc.

 B: �DE�	 ∪ �DGH� (6)

The cloud services and associated resources are identified by Virtual Machines of different

types. A VMi is a virtual machine of type i that has a computing capacity of PVMi , memory

JS-T

C-T

44

capacity of µVMi and cost per unit of time CVMi . We assume that the VMs have sufficient

memories to execute mobile applications workflows.

3.3.1 Execution time of a task

The size of task i submitted by a user to the clouds is assumed in terms of MI (Million

Instructions). The execution time of task i on VMj is calculated using the task size
�5�"� as shown

in the equation below, where degVMj is a performance degradation percentage used to model

performance variation of the computing capacity of VMj.

																																																												89��IJ� 		

�5�"�

6IJ�	 ∗ L1 − ��NIJ�O
																																																		�7�

s.t ∑ 89��IJ�R
� ≤ Wd ; ∀
�	T	W�	T, E) (8)

3.3.2. Data Transmission Time

The data transfer or transmission time between two tasks ti and tj is calculated using the

equation:

 ���WX = 	3YZ[\
\W

] (9)

Where ^ is the bandwidth between the VMs when calculating the transfer time between two

tasks ti and tj executing on two different VMs.

3.3.3. Total Processing Time

Finally, the total processing time of a task in a VM is the sum of its execution time on a VM and

the total transmission times it takes the task to transmit its output data to all its children tasks.

 6��� =	89�� +	`∑ ���WX ∗ 	aD
D
, b (10)

Where: p is the number of tasks dependent on ti, and aD is 0 whenever ti and tj run on the same

VM. And the total processing time of all the tasks is ∑ 6���
R
�c, .

45

3.3.4. Turnaround time of Request TATR

The turnaround time of a service request launched from the mobile device is defined as the

duration from the submission time of the request to the time when the results are back to the

device from the cloud provider. It is also referred to as latency [7].

If �d	 is the data rate of the mobile device at the submission of the job to the cloud, and tj is

the last task executed in the cloud, then the transmission time of the result to the mobile

device is:

 ��J�GeH 		3Y\X
Z[\

3f (11)

The total turnaround time of the job is the sum of the data transmission time from the mobile

to the cloud, the total execution time of all the tasks in the cloud, and the transmission time of

the result to the device.

 	�g�f 	 ∑ 6���R
�c, +	��J�GeH +	��eHJ�G (12)

The data rate that a mobile device varies due to mobility and wireless channel condition. For

example, a mobile device may move from one network type (e.g. cellular) to another (e.g.

WiFi), or it may move from one cell to another within the same network. When the mobile gets

high data rate connection, the task’s execution could be slowed down without major noticeable

change in user experience. This can offer cloud provider an opportunity to reduce its cost by

exploiting the elongated deadline. Alternatively, when the data rate is low, execution times in

the cloud have to be faster to make up for the lost time due the communication delay. This

concept is facilitated by introducing the slack time [33], as explained and computed below.

46

3.3.5. Slack Time (float time)

The workflow has a deadline Wd that needs to be met when executing the workflow tasks in the

cloud. The turnaround time of the workflow TAT should be equal to or less than Wd. The

difference between Wd and TAT is called slack time Tslack . If the slack time is small, than the

workflow needs to be executed closer to the deadline.

 �5Hh�i 		�� − �g� (13)

Alternatively, if the slack time is large, than the cloud can slow down the execution to reduce

computing and resource usage cost. The slowdown process is further explained in section 3.4.

3.3.6. Total Processing Cost

A task is executed in one VM, and the user is billed on bases of VM usage time.

Assume CVMi is the cost of using VMi for a time unit Θ . The cost of executing tj for a period θ�X

time units on VMi is :

�X 		`
IJW ∗ 	θ�Xb Where θ ≤ 	Θ and is calculated in multiples of Θ.

Hence, the total cost for executing n of tasks is:

m��hH 	 	∑
�XR
�c, = ∑ �
IJW ∗	θ�X�R

�c, (14)

n.
. 	
m��hH ≤
o_q��r�� ; Where
o_q��r�� is the price the consumer pays to the cloud provider.

3.4. Problem Statement

The objective of this work is to exploit the slack time in reducing the cost of execution of and

resource allocation to a job in the cloud. The slack time is computed based on the changes in

the user context, more specifically energy level and connection data rate. We develop an

adaptive approach to integrated resource allocation and scheduling in cloud offering IaaS. The

47

slack time provides adaptive control. First, we focus on finding a schedule S for all the tasks in

the workflow to execute on cloud servers such that the total execution cost is minimized while

meeting the workflow deadline Wd. The CSB periodically monitors user context information,

more specifically the connection data rate, the energy level of the mobile device and the

location of the user. It defines thresholds for context data and updates the cloud controller if

the data exceeds the threshold. The cloud controller may revise resource allocation and

scheduling.

The schedule is defined similar to Rodgriguez et al. [20]. The schedule S = (R, M,
m��hH, TET,

TAT) contains the best suitable set of resources R ={r1, r2, …rk} to execute all the tasks in T. The

schedule defines this assignment by a set of maps M where each map m in M is s��
E� 	

�
�	, t� , ���� , 8���), where ���� , 8��� 	 are the expected start execution time and expected end

execution time respectively for the task ti. Furthermore, schedule S also includes the workflow’s

total execution cost
m��hH, total execution time TET, and the Turnaround time TAT.

Each resource in R, is defined as t� = Lu7E	W ,
IJvW	, ���E	W , �8�E	WO.	 The terms, ���E	W , �8�E	W are

the lease start time and the lease end time of resource ri,, respectively. Also, for each task

assigned to a resource, the expected start time is the lease start time of the resource if the task

has no parent tasks. If the task has one or more parent tasks then the start time of the task is

the maximum of the largest end time of all the parents’ tasks and the lease start time for the

resource. In addition, the expected end time is defined using 6��� 	in the equation below.

 8��� = 		6��� − ���� 	 (15)

The total execution time TET is the maximum of the expected end times of all the tasks’ end

times in the workflow.

48

 �8� 	 max{	8���:	
�	 ∈ �/ (16)

The problem could be defined as finding a schedule S such that:

 Minimize
m��hH (17)

 s.t. �g� ≤ �� (18)

The schedule is updated if a new slack time is calculated when the user context changes, for

example the new energy level of the mobile device, which recalculates a new deadline.

3.5. Resource Allocation and Scheduling

Each workflow that a user sends contains a number of tasks to be allocated resources for their

execution. Resource allocation is a process of locating the most suitable set of resources (VMs)

from a pool of resources for the specified number of tasks. The selection of the resources is

done such that the total cost of the resources allocated is minimized and the deadline of

executing the workflow is met. The algorithm used for resource allocation in this work is based

on the Simulated Annealing Algorithm.

3.5.1. Resource Allocation Using Simulated Annealing Algorithm (SA)

Simulated annealing is based on the idea of “melting” a system with a very high temperature

then cooling the system gradually until the point of “freeze” [34]. The system starts with a very

high temperature and the cooling is done in small steps of lowering the temperature. The

pseudo code of SA algorithm is shown in Figure 3.5 [35]. The first step is to initialize the system

parameters; in this case the set of tasks to be assigned and the initial set of resources residing

in the resource pool, which are defined using a Vector M known as the map. The vector M

defines a mapping of resource to task such that the row index indicates the task index and the

columns value is the resource ID. In the algorithm, the initial map is generated by selecting

49

resources randomly for each task. The constants tmax and tmin are defined. The variable τ is the

temperature that cools down until it reaches the freezing temperature tmin.

3.5.2. Task schedule generating algorithm

A schedule specifies the start time and the end time of the execution of each task on the

resource allocated for the task. It also specifies the start lease time and the end lease time of

each resource allocated to a task. We use Earliest Deadline First scheduling algorithm that is

based on the work of Rodriguez et. al. [20]. Figure 3.6 shows the pseudo code for the schedule

generating algorithm. The algorithm starts with a set of tasks T of a workflow and the

corresponding set of resources Rinit. It keeps track of resource allocation to tasks in a pool of

maps, and the allocated resources in a pool of resources.

Figure 3.5. Pseudo Code for Simulated Annealing Algorithm[35] used for resource allocation in

Figure 3.7.

 The algorithm also calculates two matrices: task execution matrix and data transfer matrix. The

execution matrix shows the execution time of the task on the resource such that the rows

1. Initialization: initial map M= M0 (randomally generated);

Initial temperature τ = tmax(50), end temperature tmin(1).

2. While (τ > tmin) do loop:

a) Get a new solution M1 by the following way:

i. Select two different resources r1 and r2 randomly.

ii. Select a task t1 scheduled to r1 in M0 randomly.

iii. Map the task t1 to resource r2.

b) Calculate the probability p= Math.min (1.0, exp (- (f(V1) -f(V0)/t)).

c) Generate a random number Nmbr from 0.0 to 1.0(not included)

if Nmbr <p then M = M1

d) Modify the temperature τ = 0.9* τ.

3. Return M

50

indices are the task IDs and the columns indices are the resource IDs. The data transfer matrix

shows the transmission time between two tasks when they are scheduled in two different VMs.

The task with no parent starts as soon as the resource becomes ready. The task with a parent

starts when both the parent finishes its execution and the resource is ready for the task. Hence,

its start time is after whatever takes longer, the execution time of the parent or time when the

VM becomes ready. The data transfer time between the task and its parents is calculated only

when the two tasks are assigned to VMs on different physical machines. Then, the processing

time is calculated as the sum of the transfer times and the execution time of the task. This

processing time is used to calculate the end time of the task as in step number 4.5. Once all the

information needed for a task are calculated, a map is constructed that includes the task,

resource to execute the task, start time of the task and end time of the task. The resource is

added to the pool of resources if it is not in the pool, and the lease end time of the task is

calculated as in 4.8. The final two steps of the algorithm calculates the total cost of executing all

the tasks that are assigned resources TEC, total execution time of all the tasks in the workflow

TET, and the total turnaround time TAT. The simulated annealing algorithm choses the

resources that satisfy the TAT constraint while minimizing the total cost of execution. Figure 3.4

shows the flow chart of the modified simulated annealing algorithm that uses the deadline

based task scheduling algorithm. The objective function is calculated according to the TEC

obtained from the scheduling algorithm. The constraint TAT < Wd has to be satisfied to choose a

schedule otherwise the schedule is discarded.

Adapting the system to the new slack time:

51

• The slack time is calculated periodically after receiving a change in context reading, such

that the Tslack = Wd – TAT.

• If the slack time increases by a margin Δ, then the start time of the task could be

delayed. This may release a resource that can be given to a long awaited task belonging

to another workflow. This arrangement can work only for the workflows that are

executed in the same datacenter.

Adapting the system to the new energy level:

• If the context received from a mobile device shows that it is running low on energy,

which is not sufficient for the mobile to receive the result back from the cloud, then the

scheduler can put the user jobs on hold. The user context is periodically monitored and

when the user regains the necessary energy level, then the workflow will be resumed

and scheduled. Descheduling a task frees up the resource assigned to the task that can

be used to reduce the wait time of another workflow.

52

Figure 3.6 Schedule Algorithm

// Algorithm Schedule (M)
Input: M
Output: Schedule S = (R,M,TEC,TET,TAT)

Where R= {r1,r2….rk}, r ={ r j, LST rj, LET rj }

 M = 	{	s�,	
E� , , …		s�R

Ei} , 	s��
E� ={
�	, t�, ����, 8���}

1. Initialize all schedule variables
2. Calculate 89��{s�||�| ∗ |d�R�|~
3. Calculate �t�n���t�{s�n||�| ∗ |�|~
4. For each task ti ∈ T assigned to resource r j ∈ d�R� from M

4.1. If ti is independent (no parent)
���� =	�8�E�

else
 8��h. = s�98���{s�
�(8�
�:
� ∈ ��t��
(
{))
���� = 	s�9(8��h.	, �8�E�)

End If
4.2. exe = 89��{s�|
�~�t��
4.3. for each child tc of ti

t��n��t = �t�n���t�{s�n|
�~|
�~
end for each

4.4. 6���
E� = �9� +
t��n��t

4.5. 8��� = 	6���
E� −	����

4.6. 	s��
E� = (
�	, t� , ���� , 8���)

4.7. if t� 	∉ d
 	���E� = s�9(����, 4��
�{s�)
 																						d = d	 ∪ 	+t� }

End If
4.8. �8�E� =	6���

E� +	���E�
5. Calculate TEC
6. Calculate TET, TAT
7. Schedule S =(R, M, TEC, TET, TAT)

53

Figure 3.7 Flow Chart of the Simulated Annealing- Deadline Based Algorithm (SA-DB).

54

Chapter 4

Performance Evaluation

In this chapter, we discuss simulation-based performance study of our proposed scheme.

First, the cloud workload used in the experiments is discussed, which is the trace of workloads

running on Google compute cells provided by Google Inc. The traces are data from a cell of

12,000 machines over about a month-long period in May 2011 [36]. These traces are first

studied and then filtered to extract the required fields to be used in the system. A Java program

is written to extract the information. The tables were read and the related fields were extracted

and written into new tables to be used in our experiments of the proposed system.

The second section is about the simulation of the proposed cloud system. The simulation

was done using a discrete event simulator called CloudSim. CloudSim Toolkit software is

developed by The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, University

of Melbourne, Australia and it is released as open source under the LGPL license. It is a java

library that provides a simulation framework for enabling the modeling, simulation, and

experimentation of cloud computing infrastructures and cloud application services.

4.1 Cloud Workload

4.1.1. Google cluster load

Google Inc. released a load trace [3] of more than 12000 machines, for a period of one

month of May 2011. The data is available online in the form of Google buckets that can be

downloaded using gsutil tool or manually, it consists of 39 GB of trace data. There are 6 folders

each containing file(s) in the csv format. The folders are machine events, machine attributes,

job events, task events, task constraints and task usage folder. All the folders contain 500 files

55

except for the machine attribute folder and the machine event folder, both of which contains

only one file. A detailed explanation of each table is provided by Google in a schema csv

file[36]. Table 4.1 shows the fields for the tables in each folder. The fields in gray are the fields

we used to extract the cloud workload that will be used in this thesis simulation.

Table 4.1. Machine Events

Table

1. Time Stamp

2. Machine ID

3. Event Type

4. Platform ID

5. Capacity: CPU

6. Capacity: Memory

Table 4.2. Machine

Attributes Table

1. Time Stamp

2. Machine ID

3. Attribute Name

4. Attribute Value

5. Attribute Deleted

Table 4.3. Job Events

Table

1. Time Stamp

2. Missing Info

3. Job ID

4. Event Type

5. User Name

6. Scheduling Class

7. Job Name

8. Logical Job Name

Table 4.4. Task Constraints

Table

1. Time Stamp

2. Job ID

3. Task Index

4. Attribute Name

 (Machine Attribute)

5. Comparison Operator

6. Attribute Value

Table 4.5. Task Events Table

1. Time Stamp

2. Missing Info

3. Job ID

4. Task Index – within the job

5. Machine ID

6. Event Type

7. User Name

8. Scheduling Class

9. Priority

10. Resource Request for CPU cores

11. Resource Request for RAM

12. Resource Request for Disk Space

13. Different Machine Constraints

4.1.2. Google Cluster Trace Analysis and Extraction

Table 4.2 shows the machine attributes table. There are 1048578 fields entries in the

machine attribute table and the fields titles are as follows: time stamp, machine ID, machine

attribute, machine value, attribute deleted. There are 12583 machine attributes that starts

with the unique name of “GKAYWlOFlntxaxF”. In an analysis of the Google trace, Reiss et. al

[37] concluded that the GK attribute is used as a machine location identifier. There are 253 of

56

the users who specified constraints on the machines and 17% of those users used the GK

attribute in their constraint [37].

In this work, the users that have specified the GK attribute were extracted from the tables

and collected in one table to construct the user set. These are the users who have specified the

physical locations of the machines they want their jobs and tasks to be placed in.

Table 4.4 shows the task constraint table. The fields are: Time stamp, Job ID, Task index,

Comparator operator, Attribute Name, Attribute Value. Records that contained “GK” in their

attribute name field were extracted from the 500 task constraint tables. The next step was

extracting the records with unique pairs of Job ID and Task Index field values, resulting in 500

tables that were then combined and the repeated fields were omitted.

Figure 4.1. Cumulative Distribution Function (CDF) for number of tasks in each unique Job ID.

57

In Google load, a user launches a set of jobs while each job is a workflow that includes one

more tasks. We count number of jobs a user has launched by extracting the unique job Id and

task index pairs from the task constraints tables, which in turn is accomplished by searching the

maximum value of the task index field for each unique Job ID. The results show that the

number of unique job ids is 402. Also it shows that the number of combined job task pairs is

94128 pairs. Of these pairs there are 42373 different job task pairs that consist of only one task.

Figure 4.1 shows the CDF of the number of tasks in each unique job ID, it shows that 75% of

jobs consist of less than 500 tasks. In addition, the job/task events table include any jobs that

are active (Running) or eligible to run but waiting to be scheduled (pending) at any point in the

trace.

For each unique user name, the total number of requests (tasks) submitted by the user is the

total number of unique entries in the task events table. The requests per user are counted and

Figure 4.2 shows the Cumulative Distribution Function CDF of tasks per user. It shows that more

than 87% of users have 200 tasks or less. According to this statistic, the tasks selected for the

cloud workload are the tasks that belong to users that requested less than 200 tasks. The total

number of users that submitted jobs with 200 tasks or less is 42.

Figure 4.3 (a) shows the number of jobs for each of the 42 user and Figure 4.3 (b) shows the

number of task for each of the 42 users. After the tasks were extracted to be used as

workloads, the unique users are separated each with their own table that contains all the tasks

requested by the user. Table 4.6 shows the field for each user table that was cross referenced

and extracted from the Google cluster trace as explained previously. Furthermore, three fields

are added in the task table, namely Task length, Task input size, Task output size.

58

Figure 4.2. Cumulative Distribution Function for the number of tasks per each unique user.

Figure 4.3 (a) Number Jobs per Each Unique User.

The new fields are generated randomly for each user as shown in Figure 4.8. The task length

is the number of instructions in millions. It takes into account when generating the new data

59

that for computation offloading to be beneficial in terms of energy efficiency the workload

needs to perform more than 1000 cycles of computation for each byte of data [12].

Figure 4.3 (b) Number Tasks per Each Unique User.

The number of cycles per instruction depends upon its type, for example, load (store) takes

6, arithmetic takes 4, and other types take 3 cycles. Hence, the length should be 160 – 330

instructions for each byte of data transmitted. A random function was used to generate the

tasks input and output data sizes in the range 100-400 MB and the task lengths in the range

1000-3000 MIs.

4.1.3. Mobile Context Information Generation

The user tables that are discussed in the previous section are related to the users’ requests

generated from one location due to the fact that the tasks constraints specified the location of

the machines to be used. The data rate of the network used by the mobile devices is set

60

according to the type of the connection: 3G or Wi-Fi. An 802.11g Wi-Fi device in close

proximity to a network router will often connect at 54 Mbps. Wi-Fi network equipment use

dynamic rate scaling and the data rate defined ratings are 54Mbps, 48Mbps, 36Mbps, 24Mbps,

18Mbps, 12Mbps, 9Mbps and 6Mbps. As for the 3G network the data rate ranges are: 24Mbps,

16Mbps, 8Mbps and 4Mbps. The energy level is considered in the simulation as a binary state;

either the mobile has energy above the threshold (1), or below the threshold (0), where a

threshold is defined as the minimum energy level required for the mobile device to carry out

the job.

Table 4.6. User Table’s Fields

1. Job ID

2. Task Index – within the job

3. Scheduling Class

4. Resource Request for CPU cores

5. Resource Request for RAM

6. Resource Request for Disk Space

Table 4.7. New User Table’s Fields

1. Job ID

2. Task Index – within the job

3. Scheduling Class

4. Resource Request for CPU cores

5. Resource Request for RAM

6. Resource Request for Disk Space

7. Task Length in MI

8. Task Input Size in MB

9. Task Output Size in MB

4.2. Proposed Cloud System Simulation

The cloud system was simulated using CloudSim software framework [38]. CloudSim is a

discrete event simulator used to model cloud system architecture and application services. It is

a java library that was used in this work on NetBeans. The CloudSim multi-layered architecture

is shown in Figure 4.4.

The CloudSim employs layered architecture. The top layer is the user code layer that defines

the cloud scenario in terms of number of hosts, number of VMs and broker scheduling policies.

In addition, the application configuration defines the number of tasks, their requirements, and

61

the number of users. The CloudSim layer is used to model and simulate cloud-based

datacenters. The datacenter environment in CloudSim provides management interfaces for

VMs, memory, storage, and bandwidth.

Figure 4.5 shows CloudSim class diagram. A list of some of the classes follows to discuss the

usage and utilization of each class when modeling the cloud and the cloud based application

services.

Figure 4.4. Layered CloudSim Architecture [39].

• Cloudlet: It models the cloud-based application service that is executed in the

datacenters. Specifically, cloudlets are used in the experiments of this thesis to model the

tasks. Each cloudlet has a set of characteristics that are used to describe the task in terms

of its unique ID, task length in Million Instructions (MI), CPU (number of cores), task file

size, task output size, utilization model for the CPU, memory, and network bandwidth

62

(BW). The CloudletScheduler is also defined in the cloudlet and it refers to the type of

scheduler used to schedule the cloudlets on PE (Processing Elements or cores of the CPU).

Two types of schedulers are available for Cloudlet in CloudSim: TimeShared-

CloudletScheduler and SpaceShared-CloudletScheduler.

Figure 4.5. Shows Cloudsim Class Design Diagram [6].

• DataCenter and DataceterCharacteristics: A Datacenter contains many hosts. The first

step in creating a datacenter is to create the hosts by calling the Host class and assigning

the properties of each host in the call function. The Host class defines the host ID, the

provisioning policy for both the host memory and the host bandwidth. It also defines the

size of the storage for the host, number of PE units, and the type of the VM scheduler

(more VM scheduler in the VMScheduler class). The second step is to define the

Datacenter-Characteristics object that stores the following properties of a data center:

architecture (e.g. x86), OS (e.g. Linux) , list of hosts created, the type of hyper visor used

by the datacenter to virtualize the hosts (e.g. Xen), time zone where the datacenter is

63

located, and cost of using the datacenter. The last step is create the datacenter by calling

the datacenter class and specifying the datacenter name, characteristics, the allocation

policy of VMs on the hosts, and the storage list for the SAN devices.

Figure 4.6. The Different Provisioning Policies for VMs and tasks [39]. (a) Space-Shared

Provisioning for VMs and tasks. (b) Space-Shared Provisioing for VMs and Time-Shared for tasks.

(c) Time-Shared Provisioing for VMs and Space-Shared Provisioing for tasks. (d) Time-Shared

Provisiong for both VMs and tasks.

• DataCenterBroker: The datacenter broker is an intermediatry between users and service

providers. The broker uses the Cloud Information Service (CIS) to find suitable resources

for the users that meet their QoS requirements. This class is used in our simulation to

implement the Simulated Annealing allocation algorithm and the deadline based

scheduling algorithm. The interface between the user and the cloud communicates with

this class and passes the user tasks that needs to be assigned suitable VMs.

• VirtualMachine (VM) and VmAllocationPolicy: VM class implements the Virtual Machine in

CloudSim. This class defines a method for creating the VM. The specification for the VM

defines the Million Instructions Per Seconds (MIPS) for each VM, image size in MB,

memory or RAM in MB, bandwidth in Mbps, the number of PEs, and the type of

64

hypervisor. The values for VM specification are defined in our simulation according to the

machine specification set by the cloud provider, Google Compute Cloud [40]

Scheduling policies for both VM and cloudlets can be further explained using the example in

Figure 4.6 from the CloudSim documentation [39]. In this example, there is a machine with two

CPU cores that is shared between two VMs. Also, there are eight tasks to be executed on this

machine. In Figure 4.6.(a), SpaceSharedScheduling of VMs and tasks shows that for each time

unit only one task unit executes on one VM that is given one core. Figure 4.6.(b) shows the

SpaceSharedScheduling of VMs and TimeShared-Scheduling for tasks. In this case,only one VM

is assigned to one core and two tasks for each VM in each core for every time unit. Figure 4.6.

(c) shows the TimeShared-Scheduling of VMs and SpaceShared-Scheduling for tasks. In this

case, two VMs are assigned to one core and each VM runs two task units for every time unit.

Finally, in Figure 4.6 (d) TimeShared-Scheduling of both VMs and tasks shows that for each time

unit, each core is assigned two VMs and each VM is assigned two tasks. For the tasks in the

workflow used in our experiments to be dependent and execute sequentially, the last VMs and

tasks allocation policy is used, that is TimeShared-Scheduler of VMs and TimeShared-Scheduler

for tasks. Then, a delay is introduced to each task that needs to wait for its previous task to

complete its execution. The delay is equal to the end time of the previous task as it is obtained

from the scheduling algorithm. After reviewing the basic functions of CloudSim, we discuss the

performance of the system evaluation in the next section.

65

4.3. Performance Evaluation

4.3.1 Experimental Setup

Four different types of VMs are used as shown in table 4.8. A datacenter is created with 10

hosts each has eight cores. There are 42 users each has a different number of jobs consisting of

indexed tasks. The tasks are read from the csv file sequentially, which are then submitted for

mapping and scheduling.

Table 4.8 Different types of VMs used in the experiments.
Type/Charc

.

MIPS RAM(MB) Number of

CPU Cores

1 40000 512 1

2 50000 1024 2

3 60000 2048 4

4 70000 4096 8

• Task- VM Mapping: The set of tasks are collected from all the users, then the set of VMs

are created to run those tasks, and later both sets are submitted to the broker for executing

them in the simulator. The broker calls the mapping and scheduling functions that we

programmed using the algorithms in chapter 3. Only sequential tasks are considered in our

simulation. The mapping and scheduling functions bind each task with a suitble VM and returns

the map with a schedule for each task and VM. The VMS are submitted to the hosts and the

tasks are executed following the start and end time specified in their schedule. The experiments

were repeated 10 times and the results are averaged for every point in a graph.

4.3.2. Performance Parameters

• Execution Time: the estimated execution time of all the tasks submitted by the user

calculated from the task-VM map. Each task is assigned to a VM using the simulated annealing

algorithm and the execution time is calculated as follows:

Estimated Task Execution time = Task Length (MI)/ VM Capacity (MIPS)

66

Total estimated execution time for a user is the sum of the estimated execution time of all

the tasks submitted by that user.

The actual total execution time of all the tasks of a user is obtained after all the tasks are

executed. The execution time for each user’s workflow is the maximum finish time of all the

tasks belonging to that user:

Actual Execution Time of All Tasks = Max (finish times of all tasks)

• Cost: User cost of executing a workflow is calculated by first calculating the cost of

using the VM multiplied by the time period the VM is used. Adding all the costs incurred by

different types of VMs in executing the workflow for a user gives the total cost for each user.

Another cost is the provider cost. Each data center has an associated cost in CloudSim.

• Average CPU utilization: CPU utilization of the cloud system physical machines was

monitored for the period of the workload execution (execution of 42 user jobs). The total

execution time for all the user jobs is divided into 10 seconds intervals and the average CPU

utilization of the datacenter’s machines is calculated for each time interval.

• Deadline Based Simulated Annealing algorithm (SA-DB) is used as the base algorithm for

the resource allocation and scheduling sub-system. The Context-Aware Deadline Based

Simulated Annealing algorithm (CASA-DB), is the algorithm that implements the context aware

resource allocation and scheduling. These two algorithms are used to compare the cloud

system performance for the context free and context aware scenarios.

4.4. Simulation Results and Analysis

4.4.1. Calculating Workflow Execution Deadline

67

An experiment prior to introducing the deadline of the workflow to the execution shows that

all of the users’ workflows actual execution times exceeded the expected execution times.

Therefore, a deadline for the tasks constraining the system to choose the VMs that meet the

workflow execution deadline was calculated. The deadline is then increased gradually while

monitoring the violation percentage.

The execution deadline is calculated in two steps. First, the minimum expected execution

time, EET, is calculated for each user’s workflow by assigning the fastest VM to all the tasks of

that user. Secondly, EET is multiplied by 2k, where k =1,2,3, generating three different deadlines

for each user’s workflow as shown in table 2.8.

Figure 4.7. shows different deadlines in comaprison with the actual execution times of each

user’s workflow. Table 4.9 shows the total number of workflows for all 42 users violating each

of the deadlines and their percentages. 8. It is evident that relaxing the deadline results in

fewer violations of the deadline and a strict deadline results in high number of violations.

Hence, for remaining simulations the deadline is set to 8* Min ET, which shows the least

number of violations.

Table 4.9. Different Deadlines and the number and percentage

of Violations.

Deadline # Violations

(total # users=42)

% Violations

2 * Min EET 35 83.33

4* Min EET 15 35.71

8 * Min EET 5 11.90

4.4.2. Effect of Varying Task Lengths on the Execution Time of Workflows

The execution time of a task running on a VM is the task length in MI divided by the VM

capacity in MIPS. It increases by increasing the task length. Figure 4.8 shows the execution

68

times for workflows of all the users by varying the task length from 10MI to 10,000MI. The

workflows with the task length equal to 10 MI complete executions within 4/10th of a second,

which is very small. Hence, as mentioned before, it is not energy efficient to offload small tasks

to the cloud as the communication cost far exceeds the gain in the execution time. The high

execution times are observed for the workflows with task lengths 1000MI and 10,000MI,

which take maximum values of 0.5 minute and 1.3 minutes respectively. For the remaining

simulations we select task lengths in the range of 1000-3000 MI, and they are generated

randomly from this range.

Figure 4.7. Different Workflow Deadline vs. Actual Execution Times of Workflows.

69

Figure 4.8. Execution Times of Workflows (in seconds) by Varying the Task Lengths for all 42 Users.

4.4.3 Context Aware Provisioning

Mobile Energy: Both context aware provisioning and scheduling take into account the energy

level of mobile devices. A mobile user sends a job (request) to the cloud, which also receives

the mobile context from the CSB that in turn periodically reads from the mobile device. The CSB

defines a threshold for energy level that is the minimum energy level required by a mobile

device to send data and receive results with the tasks in the cloud. It launches the workflow if

the energy level is above the threshold for the user to be able to receive the results of the

workflow. If the energy level is below the threshold the user workflow is delayed and the user

context is monitored until the mobile device replenishes its energy and is able to receive the

result. The workflow is then scheduled for execution. If a mobile device doesn’t replenish within

10 minutes, then the workflow is discarded after 10 minutes. The energy replenish time is

simulated as a delay in the workflow execution, which is a random value between 60 sec – 300

seconds. Figure 4.9 shows the execution times of the context free cloud system (SA-DB) and the

70

context aware cloud system (CASA-DB). In this simulation, workflows for the users with user ID

18 to user ID 42 are delayed due to their low energy level. The benefit to the cloud provider lies

in the fact that the context aware scheduling was able to delay execution of the workflows until

the users’ mobiles are able to get the results back. Alternatively, in the context free scheduling

the workflow is scheduled and executed, but the results are discarded as the connection with

the mobile device fails due to low energy level of the mobile device. The context aware cloud

system provides a cost effective mechanism to avoid wasting resources and it gives the users’

mobile devices the opportunity to resume their workflow execution after regaining their energy

level.

Figure 4.9 Execution Times (In Seconds) Of The Context Free Cloud System (SA-DB) And The Context

Aware Cloud (CASA-DB) System Considering Only Energy Level Context.

Mobile Data Rate and Slack Time: Mobile devices experience different data rates depending

on the connection type and communication quality of the wireless network. The data rate also

varies for the same connection type with the location of the device. The mobile device context

includes, as mentioned before, the data rate in units of Mbps. Transmission times TT between

71

the mobile and the cloud for both directions are calculated using the data rate and the data size

of the task to be transferred. From the cloud’s perspective, the transmission time from the

cloud to the mobile TTcm is calculated using the mobile download link data rate and the output

data size of the last task in the workflow. Alternatively, the transmission time from the mobile

to the cloud TTmc, is calculated using the upload link data rate of the mobile device and the

input data size of the first task of the workflow that is delegated for execution in the cloud. As

shown in Figure 4.10, two scenarios are plotted for the transmission time in minutes. The first

scenario is the dominant LTE, where 70% of mobile devices are set to use LTE connection while

30% of the mobile devices are set for Wi-Fi connection. The second scenario is the Wi-Fi

dominant scenario, which is set such that 70% of mobile devices are configured for Wi-Fi

connection while 30% of the mobile devices are configured for LTE connection.

Figure 4.10. Transmission Times Using Different Types of Connection Shown In Comparison With the

Workflow Deadline and the Slack Time Gained In the Wi-Fi Dominant Scenario.

72

In addition to transmission times, we also calculated deadline Wd for each workflow, which

we assumed comes with the user’s request to the cloud. It is calculated using the slowest data

rate that the user might experience, i.e. the lowest rate for LTE connection, which is 4Mbps.

Furthermore, the slack time is calculated using the workflow deadline Wd and the dominant Wi-

Fi connection scenario. The cloud system exploits the slack time gained by the mobile device

using the high speed Wi-Fi connection, as opposed vs. the LTE connection that the deadline Wd

was based upon.

• We calculated the slack time of the Wi-Fi dominant scenario. The increased slack time is

a time gain that the broker uses to its advantage. The broker delays the execution of the

workflows of the mobile users that are experiencing higher speed connections by a factor of

slack time. The delay in these workflows will not affect the SLA agreement as the deadline is

met regardless due to the decreased transfer time for the mobile device. Figure 4.11 and Figure

4.12 show the execution times of workflows of each user when the delay is set to be equal to

the slack time and delay is equal to 10% of slack time. Two cloud systems are compared in both

cases. The context free cloud system using the SA-DB and the context aware cloud system using

CASA-DB algorithm. The time gained by using the extra slack time and delaying the workflow is

used by the broker, to the cloud provider’s advantage, by mapping slower VMs for the same

workflow in the context aware scenario. Slower VMs achieve higher execution times and cost

less to operate. The cost of using the datacenter is calculated as the cost of machine multiplied

by the time period it is used. An example of provider cost is the energy cost of using the

machine. Machines operating with less PEs and slower processors consume less energy [33].

73

Figure 4.11. Execution Times Of Users’ Workflow When They Are Delayed By Slack Time (CASA-DB) Vs.

Execution Times When They Are Not Delayed (SA-DB).

Figure 4.12. Execution Times Of Users’ Workflow When They Are Delayed By 10% Of Slack Time

(CASA-DB) Vs. Execution Times When They Are Not Delayed (SA-DB).

Average CPU Utilization: The average CPU utilization of datacenter is calculated to show the

advantage of using the context aware system. The datacenter consists of 10 hosts. For each

74

host, the CPU utilization was calculated by first logging the execution times known as the

ActualCPUTime () in CloudSim for each cloudlet that was executed in that particular host. The

execution start time and execution end time of each cloudlet in each host was also logged. The

logged period is divided into 10 seconds intervals. For each interval, the CPU time is the

summation of CPU times of all tasks executing in that interval (The CPU time of each interval is

calculated by adding up the ActualCPUTime of each task starting at an interval, to the interval’s

CPU time). If the ActualCPUTime is greater than the interval, then the CPU Time will be 10

seconds for that interval and the residual of the ActualCPUTime is calculated and distributed

among the following interval CPU times. The residual of the execution time equals

ActualCPUTime -10, will be added to the following interval’s CPU Time. If the residual is greater

than 10, then residual -10 will remain and it will be added to the following interval and so on

until the residual of the ActualCPUTime is distributed among the intervals. For example, if the

ActualCPUTime of a task is equal to 22 seconds and the task starts executing in interval 1, then

only 10 seconds will be added to CPU time of interval 1. The residual 22-10 = 12 seconds, is

greater than 10 thus only 10 seconds will be added to interval 2’s CPU Time. The new residual

12 -10 = 2 seconds will be added to interval 3’s CPU time.

Each interval of 10 seconds has its corresponding CPU time collected from the tasks that

were executed on the ten hosts of the data center during that interval. The CPU time calculated

for each interval is accumulated for the ten hosts. Hence, the CPU utilization calculated from

the accumulated CPU time represents the average value of the CPU utilization of the data

center in each interval. The average CPU utilization is calculated using the maximum CPU time

of all the intervals as follows:

75

g��t�N�	
6*	*
{!{��
{��	��	��	��
�t��! 	
6*	�{s�	��	��
�t��!	
7�9{s�s	
6*	�{s�	��	�!!	��
�t��!n

Figure 4.13 shows the CPU utilization for the context-aware system CASA-DB and the context

free system SA-DB for intervals from 1-14, for a total of 140 seconds. It has to be noted that the

actual CPU time does not take into account the wait each tasks incurs due to scheduling and

delay. CASA-DB in this case considers the energy context only, as mentioned before, the delay

is introduced to a number of users. From intervals 11 onward, only the context aware system

will remain executing the tasks, thus the CPU utilization for that period is the for the context

aware system only. The figure shows that for the first 11 time intervals, the CPU utilization for

context aware system (CASA-DB) is better in 70% of the intervals than the CPU utilization of the

context free system (SA-DB).

Figure 4.13 Average CPU Utilization Of SA-DB vs. Average CPU Utilization of CASA-DB System

Considering Only Energy Level Context.

76

Figure 4.14 Average CPU Utilization of SA-DB vs. Average CPU Utilization of CASA-DB System

considering only Communication Context (Slack Time).

Figure 4.14 shows the average CPU utilization for the context aware system (CASA-DB)

considering the communication context vs. the CPU utilization of the context free system (SA-

DB). The figure show that the context free system SA-DB, performs better in terms of CPU

utilization than the context aware system CASA-DB.

77

Chapter 5

Conclusion and Future Work

In this thesis we propose a context aware cloud system that monitors and uses the mobile

context information to make intelligent cloud resource allocation and scheduling decisions. The

cloud resource allocation and scheduling scheme’s objective is to minimize cost of execution

whilst meeting the mobile user jobs’ deadline. The rational of using a context aware cloud

system is validated through simulation, which shows that the context aware system could

reduce the cost of executing the mobile user jobs on the cloud.

Mobile cloud users present their own challenges when acquiring services from the cloud. The

inherent characteristics of the mobile user devices and their mobility induce these new set of

challenges. The context aware system considers the following user context information:

location, mobile device energy level and the data rate the mobile device is experiencing. Mobile

user jobs are allocated to data centers that are located in the same location zone where the

mobile device resides to reduce any additional latency that the user may encounter using

distant datacenters. Furthermore, in our scheme the context aware cloud broker monitors the

mobile device energy level that may drop below the threshold required for communication

resulting in data loss. The broker make a decision of either executing the mobile user job on the

cloud if the energy level is above the threshold, or hold the execution of the job if the energy

level is below the threshold. Once the mobile device regains the level of energy required for

successful communication, the cloud broker will execute the mobile user job. In contrast, in the

context free scenario, if the mobile device energy is low beyond the required energy for

78

receiving the cloud result and the mobile user launches their job on the cloud then the job will

be executed regardless of the user context and the user will not be able to receive the results

from the cloud. In this case the cost for the user is the cost of transmitting the job and its data

to the cloud in addition to the cost of executing the job on the cloud. The user will incur this

cost even when the user is not able to receive the results. Alternatively, in the energy context

aware scenario, the mobile user avoids incurring this cost because the context aware broker

will make the intelligent decision of delaying the execution of the job until the mobile device

regains the energy required to receive the result from the cloud. In addition to saving the user

the extra cost, our implementation of the cloud system shows better CPU utilization of

resources in the context aware scenario than in the context free scenario. Simulation shows

that the CPU utilization of the energy context aware system performs better in 70% of the time

intervals of the monitored period than the context free system.

In addition to the energy context, the mobile device’s data rate was considered in the

context aware system. The mobile device network connection type and/or data rate changes

affect directly the communication between the cloud users and the cloud provider. The change

in communication time is exploited to adapt the resource allocation and scheduling in the

cloud. A slack time is calculated to reflect the change in the data rate the mobile device is

experiencing. Slack time is the difference between the user deadline (Wd) and the turnaround

time for a user job which encapsulates the transmission time of the user jobs. The slack time

has to be more than zero for the cloud system to meet the deadline (Wd). If the data rate the

mobile device is experiencing becomes faster thus reducing the transmission time, then the

slack time will be increased which gives the cloud system additional time to delay executing the

79

job. The delay of job execution could be used to increase the system internal execution

deadline when allocating the resources for the jobs of the user who is experiencing higher data

rates. Thus the cloud system could allocate slower VMs to the user jobs. In the future, we plan

to design a model for the calculation of the delay in job execution introduced by the context

change.

The use of context aware system provides better cloud system utilization and potentially

better user experience. However, a design of a ‘context aware’ SLA agreement between the

cloud user and the cloud provider is needed to take advantage of the user context. The SLA

negotiation has to include the terms of which the mobile user and the cloud provider will agree

upon when using the user context information. These terms should include an agreement on

changes in costs and/or user defined deadlines that might take effect in the context aware

system. This topic will also be explored in our future work.

Furthermore, we plan to study the effect of using a context engine and monitoring the user

context information on the context aware cloud system scalability. Cloud mobile users’

numbers are growing rapidly and a context-aware cloud system has to provide the extra

processing and storage incurred from managing the context information of cloud mobile users.

80

References

[1] The_Centre_for_Energy-Efficient_Telecommunications, “The Power of Wireless Cloud,” Whitepaper,

2013.

[2] K. Bratanis, D. Kourtesis, I. Paraskakis, and S. Braun, “A Research Roadmap for Bringing Continuous

Quality Assurance and Optimization to Cloud Service Brokers,” Proc. eChallenges, 2013.

[3] J. Wilkes and C. Reiss, “Details of the ClusterData-2011-1 trace,” 2011. [Online]. Available:

https://code.google.com/p/.

[4] B. Snaith, M. Hardy, and a. Walker, “Emergency ultrasound in the prehospital setting: the impact of

environment on examination outcomes,” Emergency Medicine Journal, vol. 28. pp. 1063–1065, 2011.

[5] D. C. Marinescu, Cloud Computing: Theory and Practice. 2013.

[6] R. Buyya, J. Broberg, and A. Goscinski, Cloud Computing: Principles and Paradigms. 2011.

[7] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud computing

application models,” IEEE Commun. Surv. Tutorials, vol. 16, pp. 393–413, 2014.

[8] M. Proebster, M. Kaschub, T. Werthmann, and S. Valentin, “Context-Aware Resource Allocation for

Cellular Wireless Networks,” EURASIP J. Wirel. Commun. Netw., vol. 2012, no. 1, p. 216, 2012.

[9] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasilakos, “MAPCloud: Mobile applications

on an elastic and scalable 2-tier cloud architecture,” in Proceedings - 2012 IEEE/ACM 5th International

Conference on Utility and Cloud Computing, UCC 2012, 2012, pp. 83–90.

[10] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC: Mobility-aware optimal service

allocation in mobile cloud computing,” in IEEE International Conference on Cloud Computing, CLOUD,

2013, pp. 75–82.

[11] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, “Dynamic service placement in

geographically distributed clouds,” IEEE J. Sel. Areas Commun., vol. 31, pp. 762–772, 2013.

[12] A. P. Miettinen, “Energy efficiency of mobile clients in cloud computing,” Energy, p. 4, 2010.

[13] S. Di, D. Kondo, and W. Cirne, “Host load prediction in a Google compute cloud with a Bayesian model,”

in International Conference for High Performance Computing, Networking, Storage and Analysis, SC, 2012.

[14] J. Heo, K. Terada, M. Toyama, S. Kurumatani, and E. Y. Chen, “User demand prediction from application

usage pattern in virtual smartphone,” in Proceedings - 2nd IEEE International Conference on Cloud

Computing Technology and Science, CloudCom 2010, 2010, pp. 449–455.

[15] P. Saripalli, G. V. R. Kiran, R. R. Shankar, H. Narware, and N. Bindal, “Load prediction and hot spot

detection models for autonomic cloud computing,” in Proceedings - 2011 4th IEEE International

Conference on Utility and Cloud Computing, UCC 2011, 2011, pp. 397–402.

[16] Y. Baryshnikov, E. Coffman, G. Pierre, D. Rubenstein, M. Squillante, and T. Yimwadsana, “Predictability

of web-server traffic congestion,” in Proceedings - WCW 2005: 10th International Workshop on Web

Content Caching and Distribution, 2005, pp. 97–103.

[17] M. Andreolini and S. Casolari, “Load prediction models in web-based systems,” in 1st International

Conference on Performance Evaluation Methodologies and Tools, 2006.

81

[18] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data placement strategy in scientific cloud workflows,” Futur.

Gener. Comput. Syst., vol. 26, pp. 1200–1214, 2010.

[19] M. Ferber, T. Rauber, M. H. C. Torres, and T. Holvoet, “Resource allocation for cloud-assisted mobile

applications,” in Proceedings - 2012 IEEE 5th International Conference on Cloud Computing, CLOUD

2012, 2012, pp. 400–407.

[20] M. Rodriguez Sossa and R. Buyya, “Deadline based Resource Provisioning and Scheduling Algorithmfor

Scientific Workflows on Clouds,” IEEE Trans. Cloud Comput., p. 1, 2014.

[21] C. Mei, D. Taylor, C. Wang, A. Chandra, and J. Weissman, “Sharing-aware cloud-based mobile

outsourcing,” in Proceedings - 2012 IEEE 5th International Conference on Cloud Computing, CLOUD

2012, 2012, pp. 408–415.

[22] W. Zhang, Y. Wen, and D. O. Wu, “Energy-efficient scheduling policy for collaborative execution in mobile

cloud computing,” Proc. - IEEE INFOCOM, pp. 190–194, 2013.

[23] J. Guitart, D. Carrera, V. Beltran, J. Torres, and E. Ayguadé, “Dynamic CPU provisioning for self-managed

secure web applications in SMP hosting platforms,” Comput. Networks, vol. 52, pp. 1390–1409, 2008.

[24] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A Particle Swarm Optimization-Based Heuristic for

Scheduling Workflow Applications in Cloud Computing Environments,” in 2010 24th IEEE International

Conference on Advanced Information Networking and Applications, 2010, pp. 400–407.

[25] L. Guo, S. Zhao, S. Shen, and C. Jiang, “Task scheduling optimization in cloud computing based on

heuristic Algorithm,” J. Networks, vol. 7, no. 3, pp. 547–553, 2012.

[26] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “Kingfisher: Cost-aware elasticity in the cloud,” in

Proceedings - IEEE INFOCOM, 2011, pp. 206–210.

[27] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for computation-intensive applications

in mobile cloud computing,” in Proceedings - IEEE INFOCOM, 2014, pp. 352–357.

[28] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the cloud: Enabling mobile phones as

interfaces to cloud applications,” in Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, vol. 5896 LNCS, pp. 83–102.

[29] E. Cuervo and A. Balasubramanian, “MAUI: making smartphones last longer with code offload,” Proc. 8th

…, vol. 17, pp. 49–62, 2010.

[30] M. Shiraz, A. Gani, R. H. Khokhar, and E. Ahmed, “An extendable simulation framework for modeling

application processing potentials of smart mobile devices for mobile cloud computing,” in Proceedings -

10th International Conference on Frontiers of Information Technology, FIT 2012, 2012, pp. 331–336.

[31] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-optimal mobile cloud computing

under stochastic wireless channel,” IEEE Trans. Wirel. Commun., vol. 12, pp. 4569–4581, 2013.

[32] M. Zafer and E. Modiano, “Minimum Energy Transmission Over a Wireless Channel With Deadline and

Power Constraints,” Autom. Control. IEEE Trans., vol. 54, pp. 2841–2852, 2009.

82

[33] P. Balakrishnan and C. K. Tham, “Energy-efficient mapping and scheduling of task interaction graphs for

code offloading in mobile cloud computing,” in Proceedings - 2013 IEEE/ACM 6th International

Conference on Utility and Cloud Computing, UCC 2013, 2013, pp. 34–41.

[34] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing.,” Science, vol. 220,

no. 4598, pp. 671–680, 1983.

[35] M. Wang and W. Zeng, “A comparison of four popular heuristics for task scheduling problem in

computational grid,” in 2010 6th International Conference on Wireless Communications, Networking and

Mobile Computing, WiCOM 2010, 2010.

[36] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces: format+ schema,” Google Inc., …, pp.

1–14, 2011.

[37] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch, “Heterogeneity and dynamicity of

clouds at scale,” in Proceedings of the Third ACM Symposium on Cloud Computing - SoCC ’12, 2012, pp.

1–13.

[38] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable cloud computing

environments and the cloudsim toolkit: Challenges and opportunities,” in Proceedings of the 2009

International Conference on High Performance Computing and Simulation, HPCS 2009, 2009, pp. 1–11.

[39] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, “CloudSim: A toolkit for

modeling and simulation of cloud computing environments and evaluation of resource provisioning

algorithms,” Softw. - Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011.

[40] “Google Cloud Platform.” [Online]. Available: https://cloud.google.com/compute/docs/machine-types.

