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Abstract 
Hager Mohamed Ghouma 

Context-Aware Resource Allocation and Scheduling of Hybrid Mobile Cloud 
M.A.Sc, Electrical and Computer Engineering, Ryerson University, 2015 

 

Cloud services can compensate for the resource constraints of mobile devices. However, 

challenges of utilizing the cloud service by mobile users arise from inherent characteristics such 

as user mobility and device energy. In this paper, we propose a scheme to monitor the energy level 

and communication quality as a part of a mobile user context information, and develop a resource 

allocation and scheduling scheme to adapt to the context changes by exploiting the slack time.  The 

objective is to reduce the execution cost of the jobs while meeting the jobs deadlines set by the 

users.  We developed Simulated Annealing based resource allocation algorithm and Earliest 

Deadline First scheduling. Simulation of our scheme using CloudSim and synthetic workload 

based on Google Cluster Traces shows benefits in reducing execution cost and improving resource 

utilization.   
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Chapter 1 

  Introduction 

 

Cloud computing is poised to play a big role in wireless networks by providing computing 

service to an increasing number of mobile clients.  The number of wireless cloud users 

worldwide is expected to have grown at a rate of 69% in 2014 [1].  

Increasingly cloud clients use personal wireless communication devices such as 

smartphones, laptops and tablets with wireless connection to access the cloud. These devices 

have limited computing power, limited storage, and limited battery power. They also suffer 

from loss of their scarce energy when operating at full computing power. Cloud providers offer 

scalable and reconfigurable services such as computing, storage and network services. The 

cloud infrastructure can provide mobile devices access to scalable computation and storage 

capabilities. The cloud can also provide location-aware and power-aware services that provide 

energy savings at mobile devices. . However, the cloud providers providing services to mobile 

clients face new challenges in terms of managing and providing services at the client’s 

expectations of agreed upon quality while dealing with large variations in loads, such as 

crowdsourcing.    

The workflows of cloud-based applications are typically partitioned, such that the application 

interface runs on mobile devices while the data-intensive and/or compute-intensive 

components as a set of jobs are executed in the cloud. . Mobile clients interact with the cloud 

via Cloud Service Broker (CSB). The CSB manages cloud services to the mobile clients as on-

demand pay-per-use service. The US National Institute of Standards and Technology (NIST) 
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defines the cloud service broker as “an entity that manages the use, performance and delivery 

of cloud services, and negotiates relationships between Cloud Providers and Cloud Consumers”. 

A cloud broker is responsible for service discovery, integration, data and service aggregation, 

customization, quality assurance and optimization [2].  

Personalization and customization of cloud services is also achievable using mobile clients’ 

context information. For mobile clients, context could be defined by: (1) user context; such as 

the client ID, (2) device context; such as energy level of the device and location, (3) mobile 

service context such as the quality of wireless networks, and (4) the time context that are the 

time stamps at which the  context information is gathered. In addition, mobile context 

information could be described as the knowledge the cloud receives about the mobile clients at 

a certain period of time. In the cloud, mobile context information could be used to optimize 

service offerings to the clients in terms of time and cost.  

The challenges of providing cloud service to mobile clients arise from the inherent 

characteristics of the mobile devices, specifically mobile device’s energy level and mobility. 

When the energy level of a mobile device drops below a critical level, then it may cause 

disruptions in communication with the cloud, which results in loss of data. Mobility of devices 

induces change in their locations.  Moreover, mobility affects the quality of communication by 

changing the connection type and/or data rate. For example, the connection type may change 

from WiFi to cellular or vice versa. The change of location may also cause variation in data rates 

even though connections type remains the same. The change in the connectivity and data rates 

of the mobile clients plays a significant role in estimating the expected response time for the 

service. The estimated response time has to be calculated such that it takes into account the 
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extra communication delay resulting from the connectivity changes to ensure that the cloud 

provider meet the Service Level Agreement (SLA) agreed with the users. Estimation of response 

time affects the allocation and scheduling of cloud resources that are constrained to meet the 

deadline specified by the cloud-based mobile application. Erroneous estimation of the response 

time may cause the management unit to allocate resources that would not satisfy the quality of 

service expected by the cloud users that may result in violation of the SLA.  

The cloud resources are distributed over a long distance and available both globally and 

locally. The knowledge of user location can be incorporated in the cloud resource management 

to optimize the selection and allocation of resources. The resource allocation decision based on 

user’s proximity to a datacenter can potentially provide lower service latency than in case of 

distant datacenter. However, the selection of location of the service could be hindered by the 

availability of specific services or data required by the user as data transfers between 

datacenters could accumulate significant costs and increase latency.  

1.1. Motivation  

The use of the scalable and powerful cloud services by mobile clients is attractive due to the 

limited computation, storage, and energy of mobile devices. However, wireless connectivity 

presents a bottleneck to mobile devices when taking advantage of the scalable resources 

powerful computations in the cloud. The variation in data rate may increase the 

communication time for the exchange of data between mobile clients and the cloud, which may 

affect, especially delay-sensitive, applications at mobile devices.  The deadline on the execution 

of applications set by the mobile clients may unnecessarily restrain the system even when the 

mobile client is unable to receive the results from the cloud. As it is shown in this thesis, the 
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cloud service broker can utilize user context information in making intelligent resource 

provisioning decisions. For example, if a mobile  device experiences long delays due to a drop in 

its network connection data rate, then this information would be significant for the resource 

provisioning unit in the cloud provider as the deadline on the execution of the application 

provided by the client could be extended to relax constraints on the resource allocation. 

Likewise, when the energy level of a mobile device is not sufficient to complete the transaction, 

the mobile application in the cloud can be suspended and resources are withdrawn until it 

replenishes enough energy to successfully communicate with the cloud.  This scheme benefits 

both the mobile user and the cloud provider. As for the mobile user, the resources are allocated 

only when they are used for useful computation, thus relieving the mobile user from paying for 

a service that could not possibly be received.  When the mobile device regains sufficient energy 

for communication only then the mobile application in the cloud resumes and the user is billed 

for the service. In addition, for the cloud provider, the resource thus freed could be allocated to 

other jobs that suffer from longer wait times, thus increasing the throughput of the cloud 

provider resources. 

We can summarize the above discussion in a problem statement as follows: 

For a number of  jobs N and a number of cloud resources R, an allocation map 

that binds a job with a resource is needed such that the resource meet the job 

deadline and the total cost of the resources do not exceed the client’s budget.   

Once the resources are provisioned to the users, an adaptive algorithm reads the user 

context information and makes a decision on whether the same resource allocation continues 

or changes to reflect the changes of the mobile client context.  
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1.2. Contributions 

This thesis aims primarily at cloud resource provisioning and scheduling for mobile users 

using cloud-based mobile applications. The mobile user context information specifically the 

mobile device location, connection quality and energy are used when allocating the services for 

the application workflows that are dispatched and processed in the cloud as a set of tasks.  

The main contribution of this research  

• A system model for a context-aware resource provisioning and scheduling of a hybrid 

cloud in mobile environments. The system mainly consists of three parts: mobile client 

context engine, cloud broker and the cloud resources (datacenters).  The functionality 

components are the context information collector and monitor, resource allocation unit 

and the resource scheduling unit.  

• The resource allocation is implemented using a meta-heuristic algorithm; simulated 

annealing. The adaptive simulated annealing algorithm takes into account the 

turnaround time of the requests, the location of the mobile clients and the energy 

consumed by the mobile devices when finding the best suited resources for the mobile 

client’s requested jobs. Figure 1.1 shows a simple diagram of the proposed changes to 

the cloud system.  

• Task scheduling is done using Earliest Deadline First algorithm. The algorithm calculated 

the start and end time for each tasks in the client job as well as updating the start lease 

time and end lease time for the resources provisioned to these tasks. 
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• Simulation of the proposed system was done using a discrete event simulator, 

CloudSim.  The data used for the experiments was extracted from the Google Cloud 

Trace released in May, 2011 [3]. 

• Evaluation of the proposed system was achieved using three different parameters; 

violations of deadline, execution time for each user and CPU utilizations of the cloud 

provider machines. 

 

 

 

 

 

 

Figure 1.1 Diagram of proposed system changes. 

1.3. Organization of Thesis 

 The remainder of the thesis is organized as follows: in chapter 2, the benefits and challenges 

of using cloud computing for mobile environment were highlighted. In addition, the related 

work in the area of mobile cloud computing and resource management in cloud computing was 

reviewed. In chapter 3, the proposed system architecture and system model are presented. In 

addition, in chapter 4, the simulation of the proposed system model is done using CloudSim. 

Three parameters were used to evaluate the system and the results of the experimentations 

were analyzed. Chapter 5 is the conclusion and future work.  
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Chapter 2 

Background and Literature Review 

 

2.1 Cloud Computing  

Cloud computing is delivering hosted services over the internet at a cost. NIST [4] defined 

cloud computing as a model where service providers enable the cloud customers to run their IT 

infrastructure in the cloud using a pool of configurable compute resources that can be managed 

with minimal effort or interaction from the service providers. These compute resources are a 

dynamically provisioned collection of interconnected and virtualized computers; i.e. cloud 

computing offer computation, storage and network resources.   

The main characteristics of cloud computing are: on-demand self-service, resource pooling, 

elasticity, (which is the ability to use as many resources as needed to meet the cost and timing 

constraints), and pay-per-use measured service. Measurement, controlling and reporting the 

resource usage could also be done, which will provide transparency of the utilized services for 

both the cloud service consumer and the cloud service provider [4]. 

Cloud computing main deployment models are divided into the following models: private 

cloud, community cloud, public cloud and hybrid cloud. A private cloud could be hosted 

internally or externally and either managed by a third party or the organization that owns it or a 

combination of them. The key feature of the private cloud is that it is operated and provisioned 

to be used exclusively by a single organization. A community cloud is operated and provisioned 

to be used exclusively by multiple organizations sharing common concerns such as mission or 

security policies, and similar to a private cloud it is managed by one of the organizations or a 

third party or a combination of them. The community cloud also could exist internally or 
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externally.  A public cloud is hosted on the premises of the cloud provider and its infrastructure 

is provisioned to be used publicly over a network.  A hybrid cloud is combination of two or 

more clouds: private, public or community; each preserving their own unique entities although 

they are bound together. The hybrid cloud benefit by using different deployment models, cloud 

bursting is enabled such that the private cloud could use the resources of the public cloud as 

the demand increases. This is an advantage as the services of the public cloud will only be used 

when needed.  Figure 2.1 shows the cloud deployment models. 

 
 

Figure 2.1 Cloud Deployment Models 

 

The provided cloud services are divided into three service models: infrastructure as a service 

(IaaS), platform as a service (PaaS) and software as a service (SaaS). IaaS is the providing 

provisioning of servers, storage, networks in addition to other resources to be used by the 

consumers to run their software. The consumer could control the operating systems, storage 

and the consumer’s deployed applications. However, the consumer will not have the capability 

to control and manage the cloud infrastructure. PaaS is providing an infrastructure for a 

consumer to deploy applications as a solution stack. The consumer creates software and 

controls their deployment and configuration settings using the tools, libraries and programming 
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languages along with the infrastructures services provided by the service provider. SaaS is the 

service of providing packaged software running on the cloud infrastructure for the consumer. 

In SaaS the software and the data are hosted in the cloud and the consumer does not have 

the capability to manage the cloud infrastructure or the software capabilities, with the 

exception of the limited application configuration settings that are specific to the user. The 

consumer accesses these services through an interface; such as the web browser or a program 

interface.  The cloud resources in the system level and the components of the core middleware 

are responsible for delivering the IaaS. The user level middleware components are responsible 

for providing the PaaS and the top layer of the user level that consists of the cloud applications 

uses the services provides by the lower layers to provide the SaaS.  

Cloud resources are interconnected and distributed over different locations in the network 

to increase availability, and reduce both bandwidth cost and latency due to the distance 

proximity of the services to the users.  

 Cloud Computing Applications Workflows: Cloud customers build their applications in the cloud 

with almost no upfront or startup cost of the infrastructure. Cloud applications use APIs of 

Internet or network accessible services. This on demand scalable services has efficient resource 

utilizations capabilities and the scalability and management mechanisms are hidden from the 

cloud customer, i.e. self-management system. Different types of application could run on the 

cloud; however the application workload should have the ability to be arbitrarily partitioned 

into concurrent instances. In addition, if the communication between the concurrent instances 

is intensive, the application might not perform well as it will face bandwidth limitations due to 

the network-centric nature of the cloud computing system [5]. Examples of applications that 
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could use the cloud architecture include but not limited to processing pipelines such as 

document conversion pipelines and video transcoding pipelines, batch processing systems  such 

as log analysis and automated unit testing and deployments, and instant websites or seasonal 

websites. In addition, mobile interaction applications and science and engineering applications 

could be deployed on the cloud as they would benefit greatly from the massive storage and 

scalable computational power of the cloud system. 

Cloud applications consist of a series of independent units of works to be performed in the 

cloud known as tasks. The workflow is the simplified description of these tasks complex activity 

that consists also of the data elements, control sequences and data dependencies [6]. 

2.2 Mobile Computing: Mobile Users and the Cloud 

There are two types of mobile cloud computing according to a survey done by Khan et. al [7]. 

The first type is an ad-hoc mobile cloud where is all mobile devices within the vicinity of the 

user act as cloud agents and provide the user with access to the cloud services residing in the 

internet.  Also, the near mobile devices might have a set of services that could be used by other 

mobile devices, hence forming their own local cloud which is known as cyber foraging. Ad-hoc 

mobile cloud interstice characteristic is the mobility of the services [7][8]. The second type of 

mobile cloud is infrastructure based cloud, and unlike the ad-hoc mobile cloud, the services 

remain static. The infrastructure based cloud provides services to the mobile devices via the 

internet. The main focus of the work of this thesis is on the latter type, i.e. infrastructure based 

cloud. 

Smart mobile devices access the cloud by using one or more of various application 

processing frameworks.  The framework offloads the mobile application to the cloud such that 
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a part or the whole of the application is stored and processed in the cloud. Application 

offloading could be done by either migrating the whole application to the cloud, partitioning 

the application and migrating the computation-intensive and/or data-intensive partitions to the 

cloud, or processing a VM image of the application to be sent and run in the cloud [7]. An 

example of a mobile application partitioning that uses the cloud is voice to text conversion 

applications such as Apple Siri, which is a voice command search engine. The voice is acquired 

using the mobile device, iPhone or iPad, and then sent to the cloud to convert it to a text and a 

search for the text will be performed. The search result are then sent back to the mobile device.  

Cloud based mobile applications are presented as Task Interaction Graphs TIGs and 

offloaded to the cloud for execution. The application will be executed in the cloud as a set of 

jobs and each job consists of group of dependent and indivisible tasks.  In addition to the jobs, 

the requests also define other information such as the job’s requirements and jobs’ deadline.    

2.3. Context Aware Mobile Computing  

Mobile context information has been used recently to provide the mobile users with more 

personalized and customized services that improve their over-all experience. Context aware 

mechanism is based on three parts: (1) obtaining the context information at the user mobile 

device, (2) sending this information to the cloud, (3) efficiently use this information for cloud 

resource management to improve the user’s quality of service.  

 2.3.1. Mobile Devices’ Network Connection  

Mobile users access the cloud using either 3G/4G LTE via the mobile network or a Wi-Fi 

connection via in-home Wi-Fi or a Wi-Fi hotspot. According to CEET white paper [1], 33% of 

wireless cloud users connect via Wi-Fi and 67% of these users connect via 4G LTE. The level of 
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wireless connectivity of the access network is one of the main bottlenecks when achieving the 

user requested quality of services. These mobile users experience variant data rates depending 

on type of connection. While 3G networks offer wide area connectivity, they suffer from long 

delay and slow data rate [9].  Alternatively, Wi-Fi connections offer low communication latency 

[9]. Wi-Fi deployment is used to connect to either a local cloud or a public cloud via the internet 

depending on type of the mobile application. 

2.3.2. Service Location and User Location 

Another inherent characteristic of mobile users using the mobile network is mobility. 

Location of wireless cloud users is crucial to the cloud provider to determine the optimal 

placement of the required services in distributed datacenters in the cloud[10][11]. The services 

are provided according to the relevant location of the users to the distributed datacenters. It is 

important to notice that in the mobile cloud, the location of the users and the location of 

services are of finer granularity in the ad-hoc mobile cloud than in the infrastructure based 

mobile cloud. As in the later the services reside in datacenters that cover larger areas where in 

the former the mobile devices offer the services and the mobility plays a big role in changing 

the location more frequently.  In addition to the location, service placement techniques may 

consider other factors such as the temporal and economical states of both the users and the 

provider when the request was launched.  

2.3.3 Mobile Energy 

Battery lifetime is another challenge for mobile devices. Energy of the mobile device has a 

significant impact on the quality of service the users will experience. The decision of offloading 

the application to the cloud to save the mobile device energy must take into account the 
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energy consumed due to increased communication resulting from connecting to the cloud. 

Therefore, mobile device must have an efficient level of energy to communicate with the cloud 

while running the cloud based application. In addition, for the offloading process to be energy 

efficient the mobile has to gain in time and computation capacity [12]. The time gain and 

computation complexity of the partitioned mobile applications, which will be offloaded to the 

cloud, are done using different methods and mechanisms and they are out of the scope of this 

thesis.  

2.4. Resource Management in the Cloud 

The on-demand resource provisioning and pay-per-use features of the cloud services require 

that the service providers use minimal infrastructure and maximize their resource utilization 

while meeting the Quality of Service, QoS.  

Quality of Service is the ability to provide different jobs with a service that guarantees a 

certain level of performance to a job. Service level Agreement, SLA, is an agreement between 

the user and the provider that specifies that required service level parameters the user requires 

in terms of speed, size, bandwidth and delay.  

The cloud is a group of datacenters interconnected and managed using a cloud controller. 

Storage units are used in combination with network resources to synchronize between the 

different datacenters. A datacenter is a group of interconnected computing units called hosts. 

Hosts are equipped with hypervisor that enable them to run one or more virtual machines VMs. 

Each datacenter has a local controller/broker that is responsible of managing the deployment 

of VMs and execution of the different tasks.  
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In general, workflow management is done using three components: (1) user portal to 

compose, submit and monitor workflow applications, (2) a workflow editor to facilitate the 

workflow composition and virtualization, (3) and a resource broker that acts as a mediator 

between the users and the resources, it performs the resource discovery and passes the 

requests to the corresponding cloud controller that is responsible for allocation and scheduling 

[11].   

Cloud providers manage their resource on different levels using many different modules or 

components such as service placement, data placement, resource provisioning, and task 

scheduling strategies. As for the resources of the cloud, the management entails allocating the 

resources to the users’ requests, sending the requests to the specified resource in the cloud 

datacenters, scheduling the resources, and balancing the load between the cloud resources. 

A resource is the unit(s) that carries out the operation of executing the job. Also as 

mentioned before, the job will be executed on different types of resources such as a 

computation unit (CPU), a storage unit (memory) and network link for data transporting 

(bandwidth). To achieve efficient performance, effective resource allocation and scheduling 

mechanisms are needed. Resource allocation is mapping tasks to given resources in a given 

time period according to certain constraints and optimization criteria. This map is then 

submitted to the corresponding datacenters and the jobs are executed according to criteria 

defined by a scheduling policy.   

In addition, the user sends a request in the form of a job (computational activity) consisting 

of a set of tasks to be executed in the cloud; a task is an indivisible minimum computation unit 

to be run on the resource. The user request also describes the tasks dependencies, the job 
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processing requirements, the input data, and job priority.   In addition, the job description 

might also include some constraints such application deadline and budget of the user.  The job 

constraints could be categorized into application centric such as user specified deadline or 

budget and server provider centric that could be one or a combination of the following: 

maximize resource utilization, number of successfully completed jobs or minimization of 

response time.  

Allocating and scheduling the job tasks to cloud resources could be done in many different 

methods and using various algorithms depending on the requirement of the system. From this 

point on in the literature, the term scheduling will be used for both allocating and scheduling 

the tasks in the cloud. Scheduling could be static or dynamic. In static scheduling the data is 

pre-fetched and the tasks are lined for execution according to their specified execution 

durations required before runtime, which reduces overhead in the system. Alternatively, in 

dynamic scheduling information about task execution duration is not known and the scheduling 

is done in real time as the application executes.  In the next section, a review of some resource 

managements mechanisms is presented.  

2.5. Literature Review 

Several areas of cloud resource management will be reviewed in this section including load 

prediction [13][14][15][16][17], data placement [18], resource allocation [11][19][[10][20], 

resource sharing[13][22] and task scheduling[19][20][28][20].  

2.5.1. Cloud Resource Provisioning for Mobile Environment 

Ferber et. al. [19] presented a middleware based on Amazon Compute Cloud (EC2) to 

relocate the Java computing intensive applications to the cloud resources, these application are 
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called the cloud-assisted mobile applications. It implements cloud server features such as 

hosting the remote services, allocation and management of services and finally handling the 

billing and accounting information. Two different resource allocation strategies were used; the 

first strategy allows only one remote service to a single VM. This allows the remote service to 

use the full capacity of the VM but generates overhead. The second strategy returns a VM 

immediately upon request; the request will be multiplexed to an existing VM if there are no 

available VMs on standby. This strategy reduces the overhead by reducing the wait time; 

however, it increases the sharing of the same VM and may cause it to overload. Mei et. al. 

[21]proposed a framework to outsource the latency-tolerant mobile application to the cloud. 

The framework developed uses a scheduling mechanism that exploits the sharing of data across 

multiple mobile applications; the data sharing is detected by using data mining techniques.  

Rahimi et. al [9][10] , presented  a hybrid, tiered cloud architecture consisting of local and 

public clouds that provide services to mobile applications.  A framework was developed to 

model the mobile application as a workflow of tasks. The Mobile usage patterns were directly 

translated from user mobility patterns. The user mobility pattern was presented by a trajectory 

of the mobile user and donated by a set tuples of location of the user and duration of time the 

user is residing in the location. In addition, the mobile application workflow consists of a 

sequence of logical and precise steps known as functions. Services that are capable of 

implementing a function were associated with that function.  The workflow is presented as 

location time workflow, LTW; which consists of a sequence of sub-workflows indexed by the 

user trajectory tuple (location and duration). Furthermore, a heuristic algorithm based on 

simulated annealing called MuSIC, Mobility-Aware Service AllocatIon on Cloud, was developed 
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to search for the best set of services for each mobile user LTW. Their contribution significance 

was considering the user mobility when allocating the resources by defining the workflow for 

each user depending on their mobility pattern. Two mobility models were used: Random 

Waypoint (RW) model and Manhattan model. To study the performance of MuSIC two rich 

mobile applications, OCRS and video streaming and transcoding, were developed. Three 

parameters were used to evaluate the system; delay, power, and cost. Furthermore, two types 

of connection were considered, WiFi and 3G, the relevance of the connection type to the 

system model was addressed using the power the mobile device consumes when using either 

to connect to the cloud, and the delay which was defined as the time it takes between 

launching the request either on local or public cloud and the time the request is terminated. 

The two parameters power and delay, are user-centric. Alternatively, the price which is the cost 

of the service when executing the public cloud is provider-centric. The authors in this paper 

measured the delay on the mobile device and the measure of delay was not a factor when 

deciding the resource allocation for the requests. In this thesis, the mentioned delay is 

estimated by the proposed cloud system and incorporated in the allocation scheme as it will be 

evident in chapter 3.  

Furthermore, another important aspect of mobile computing is Energy. Balakrishnana et. al 

[22] used a slack time, which is the difference between the deadline of the offloaded mobile 

workflow, which is presented as a TIG, and the actual response time of the cloud system for the 

same offloaded workflow. Whenever the slack time is larger, dynamic voltage and frequency 

scaling DVFS is used to reduce the processing capacity of the cloud resources by scaling the 

frequency of the processor. The task-resource assignment and resource-frequency assignment 
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is done using the slack time for the whole offloaded workflow, named global slack time. The 

worst case global slack time is distributed among the workflow tasks and a two level genetic 

algorithm is used to find the optimal assignment of task to resource and operation frequency of 

the resource such that the deadline is met. Their method showed that there will be a decrease 

in mobile energy consumption up to 25% due to offloading the workflow.  

Alternatively, Zhang et. al. [22] investigated the partitioning of the mobile workflow. The 

mobile workflow is presented as a linear topology of tasks and each task is will be either 

executed on the mobile or the cloud. The decision of offloading considered achieving minimum 

energy consumption on the mobile device while meeting the application deadline. The task 

scheduling problem is this paper deals with whether the task would execute on the cloud or on 

the mobile and for that purpose the tasks were represented in a directed acyclic graph. The 

task scheduling problem was defined as a constrained shortest path problem and solved by 

using the Lagrangian Relaxation Based aggregated Cost (LARAC) algorithm.  Furthermore, the 

task scheduling policy was done under the Markovian Stochastic Channel. The task scheduling 

decision takes into account the state of the wireless channel and if the state is “bad” leading to 

high communication delay then the task will be executed on the mobile instead of offloading it 

to the cloud. The experiment of this method considered only a one-climb policy, meaning only 

one time offloading from mobile to cloud.  

2.5.2. Prediction of Host Load 

Provisioning of server capacity to distributed applications is categorized into proactive or 

reactive. In the proactive measure the application models are trained to predict how much 

capacity is needed to provide certain mean response time for a given workload [13].  
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Cloud load changes vastly in the short term due to different cloud workloads; it is also 

difficult to model. Predicting load in the cloud is one of the measures taken to make task 

scheduling or load balancing decisions, thus enhancing system scalability and reducing network 

overload by optimizing the utilization of the system resources. The load data of the cloud have 

many different patterns and there yet to be a global prediction algorithm or method that can 

applied to all of them. However, many different prediction techniques and algorithms were 

developed to help solve the prediction problem of the server loads and all of these techniques 

and algorithms use a set of past and current cloud load measures to predict future load due to 

the repetitive nature of the human behavior.  

Di et. al [13] used Bayes model to predict the cpu and memory load for the Google Compute 

Cloud. A new exponentially segment pattern was introduced and used in the prediction model.  

Google compute cloud platform was used for their prediction study; the study was based on 

load measurements of a Google data center that were traced by Google over a one-month 

period. The load traced events at minute resolution across 12,000 machines. The host load is 

defined in this study as the load of all the tasks that are running in that host (machine).  A closer 

look at the Google load leads to the conclusion that it has frequent fluctuation and high noise. 

The mean load value is predicted over a single time interval and over consecutive time 

intervals. First, to characterize the host load fluctuation over a specific time period, a new 

metric is defined; the exponentially segmented pattern (ESP). The time interval is divided into 

segments of exponentially increasing lengths and the mean load is predicted over each 

segment. The evidence interval is also defined as the interval of which the recent samples used 

in the predictions are extracted from. Secondly, this segment pattern is transformed so that 
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each interval to be predicted is adjacent to the evidence window. An algorithm is used to first 

predict the mean load ηi, the predictor is a function of the length of each segment and the 

length of the evidence window. Secondly, the segment mean load l is calculated. The third step 

was to define nine feature of load fluctuation to be used with the Bayes model. These features 

are the mean load, the weighted mean load, fairness index, noise-decreased fairness index, 

type state, first-last load and N-segment pattern. Bayes theorem assumes that the features to 

be used are independent of each other, therefore linear correlation coefficients and 

Spearman’s rank correlation coefficients are used to distinguish between the highly correlated 

features and low or non-correlated features. Based on this, a compatibility between the 

features is set such that two features are compatible if the correlation coefficient are less than 

0.83 and non-compatible if the correlation coefficient is larger than 0.96. By using this 

compatibility, the features are divided into four groups where the elements in the same group 

cannot be used together. Fourth, the mean load prediction based on Bayes Model is 

constructed. The decision to choose the prediction value is made using two ways; the Naïve 

Bayes Classifier (N-BC) and the Minimized MSE (MMSE) based Bayes Classifier (MMSE-BC). 

Finally, the Bayes estimator was implemented as well as seven other prediction methods; 

namely, the last-state based method, the simple moving average method, the linear weighted 

moving average method, the exponential moving average method, the prior probability based 

method, the auto-regression method and the hybrid model that integrated the Kalman filter 

and Savitzky-Golay filter. The authors concluded that there are four selective features that can 

accurately characterize the mean load for the future; these features are the mean load, the 

fairness index, the type state and the first-last load. The MMSE-BC was found to be more 
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accurate, with higher success rate and lower MSE, than the N-BC, therefore it was the method 

used when comparing the different load prediction techniques.  

Saripalli et al. [15] used a two-step method to predict the load of a web-based cloud 

platform called the Runaware enterprise cloud platform. First, the measured raw data is used 

to help represent the load trend. Second, a prediction algorithm was applied to the load trends. 

The load was tracked and represented using cubic spline interpolation [17]. An algorithm for 

hot spot detection is also used with the prediction algorithm. A hot spot of the cloud load is a 

sudden spike of traffic and the ability to detect is of vast importance in the cloud environment 

as it could be used to ensure the requirements of elasticity of the cloud are met. The hot spot 

detection is done using auto-correlation functions and linear least squares extrapolation as the 

basis [16]. The hotspot level H is defined as the maximum capacity of the server managing the 

load that is being studied; this value depends on the type of the application. The load prediction 

of the SaaS seasoning using the CS method was able to predict the load with a 25-75% margin 

of error and the authors state that it would still be a valuable tool to be used for resource 

provisioning during runtime as the cubic spline based load tracking provide high correlation 

among the load values [17].  

Research has also been conducted on prediction of the load of mobile phones and the 

outsourcing the computational problems from the mobile to the cloud.  Heo et. al. [14] 

proposed a user demand prediction method to predict the execution time and average volume 

of the transmitted application data of smart phones. The long-term logged application usage 

pattern from a virtual smartphone is statistically analyzed to be used in the prediction. Each 

smart phone saves battery power and uses the computational power of one exclusive VM 
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machine that is an image of the mobile operation system and applications. The application is 

executed within the VM and data is exchanged between the mobile and the VM using a 3G and 

a Wi-Fi connection environment.  The prediction was done using double exponential smoothing 

with Holt’s linear method. However, the prediction values were not compared to the actual 

values and only the trend prediction was documented. 

2.5.3. Control Theory applications for cloud resource management 

A resource management system could be designed by using concepts of the control theory; 

the objective function of the system representing multiple performance requirements and 

constraints could be expressed as the cost functions. The main components of the control 

system are: the inputs (sensors), the control system (monitors and actuators) and the outputs. 

The inputs could be but not limited to the workload of the system and admission control 

policies or the capacity allocation. The control system components are the used to estimate the 

performance measures and implement system policies. The output is the resource allocation to 

the application tasks requesting the resources. The control system could face instability, the 

adjustments of the control system should be only done after the system has stabilized and 

measurement of the time for stabilization and adaptation for an application should be done by 

the controller [5]. Additionally, the upper and lower thresholds should be set apart enough 

from each other as the workload fluctuation is very large and may cause instability of the 

system [5]. 

Zhang et al. [11] used both the control theory and game theory for dynamic service 

placement decisions in geographically distributed clouds. Figure 2.2 shows the control 

architecture for a single service provider. The system consists of:  request routers also known as 
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redirectors that are responsible for redirecting the requests to the appropriate servers, 

monitoring modules ware used for collecting statistics of the demand received by the different 

request routers and the prices of the services offered by each data center. The other 

components of the system are the analysis and prediction module that is responsible of 

modeling the demand and the price changes and also for predicting the future values for them, 

and the resource controller that is responsible for dynamically adjusting the number of servers 

leased in each data center while satisfying the SLA requirements by minimizing the latency and 

resource rental cost. It also communicates with the request routers and informs them of the 

number of servers in each data center, the request routers in return will find the best 

assignment for the demands to the servers available.  The goal of the system designed is to 

minimize the total cost of server allocation and reconfiguration cost while meeting the demand 

constraint, the data center capacity constraint and the SLA performance constraint. The 

resource management of the multiple providers is modeled as a multiplayer non cooperative 

game theory.  

Another application of the control theory was used to control overloading of servers. As the 

cloud workloads fluctuates greatly, the chance of spikes or flash crowds in the load could not be 

prevented, this might cause the cloud servers to overload causing delay in the response time of 

the applications below acceptable levels. Guitart [23] proposed an overload control strategy in 

secure environments to deal with overload in web applications in SMP hosting platforms. The 

strategy involves an admission policy and dynamic resource provisioning. The admission control 

was based on SSL connections: accept the requests with the already initiated SLL connections 

before the requests with the new requested SSL connections. 
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The control system designed is shown in Figure 2.3 and it consists of the following 

components: eDragon CPU Manager (ECM) which distributes the resources among the different 

running applications using a scheduling policy. The applications and the ECM communicate to 

relay information to each other of the resources needed and the resources available 

respectively. This communication is done using a shared memory, and a new JAVA class was 

developed to achieve the allocation of the resources (i.e. processors) to the application by the 

ECM. The application would then apply an admission control policy using the eDragon 

Admission Control (EAC) component to limit the requests according to the number of the 

resources available given by the ECM, this limitation is done to prevent degrading the QoS. The 

admission control policy accepts a certain number of requests containing new SSL connections 

and the entire requests with existing SSL connections. 

 
Figure 2.2 System Architecture for a single service provider [11]. 

 

The ECM would then assign the requests to the resources using a scheduling policy that 

would be explained in the task scheduling section. The eDragon Load Monitor (ELM) 

component is added within the server that runs the web application, and it is responsible for 
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continuously monitoring the incoming secure connections to the server, it distinguished 

between the new SSL connections Oi(kAPL) and the resumed SSL connections Ni(kAPL) and counts 

them every sampling interval kAPL. Both ELM and EAC are responsible for monitoring the 

incoming SSL connections, where ELM estimates the resources requirements for the 

application, the EAC decides on the accepting of the new SLL connections. The average 

computation time of a resumed SLL CTOi connection and the average computation time of a 

new SLL connection CTNi were measured using static profiling of the application.  

 
 

Figure 2.3 Components of the control strategy for dynamic provisioning of resources [23]. 

 

The EAC calculates ANi(kAPL), the maximum number of new SLL connections that the 

application i could accept without overloading and degrading the QoS. This value depends on 

the number of processors allocated to the application Ai(kAPL) and the computation time of 

resumed SLL connections that were accepted during kAPL. The rest of the SSL connections were 

refused. These calculations are done prior to accepting or negotiating any SSL connections; 

therefore the overhead caused by them is not noticeable. The results of this study showed that 

the control policy strategy allowed the server to attend to more users than a server that uses its 

own dynamic provisioning by refusing new SLL connections. This SSL refusal is also showed to 

be less than the timed out connection in the server than is not using the control strategy.  
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2.5.4. Data placement in the cloud 

Data management in cloud computing is a challenge especially for some types of workflows 

i.e. scientific workflows that have enormous data amounts that reaches up to terabytes of size. 

Cloud data is distributed among different centers and the connections between them has 

bandwidth limitation that would put a constraint on their movement. Additionally, the 

distributed data sets have dependencies between them and oftentimes the application tasks 

needs to use more than one data set making the data set movement an inevitable process. The 

cost of the moving the datasets could be more than the cost of scheduling the tasks [18], hence 

the data sets need to be placed in the data centers in such a way that their movement will be 

minimized during application tasks executions.  

Yuan et al. [18] proposed a matrix based k-means clustering strategy for data placement in 

scientific workflows. The data sets in scientific workflows were categorized according to their 

flexibility. The data sets were divided into fixed location data sets that could not be moved and 

flexible location data sets that could be moved. The inflexibility of the movement of data set in 

scientific workflow could be due to many reasons: some data might need to be on one location 

to be processed by specific equipment, some very large data sets could not be moved 

efficiently or the reason could be a matter of the ownership and limited access rights of the 

data set that could hinder it from being moved from a specific datacenter. The structure of the 

data was not considered. 

The clustering of the data sets was done first by defining the dependency between the 

datasets. The datasets are dependent on each other if the same task used them. To execute a 

task, all the datasets need to be located in the same datacenter. By storing the dependent data 
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sets in the same data center, less movement of the datasets would be required and most of the 

datasets needed by the task were found in the same datacenter. Each dataset i is given two 

attributes: Ti a set of tasks that use this particular dataset and the si  size of the dataset. The 

dependency between two datasets i and j  is then defined as: ������������ = 
���
	(�� 	∩

��)			Where Ti is the task that will use the dataset i and Tj is the task that will use the dataset j. 

Based on this dependency, then the datasets were clustered in different data centers using k-

means clustering strategy consisting of two stages build-time and runtime. The k-initial 

partitions representing the existing datasets were clustered into k datacenters for the k-means 

algorithm in the build time state. And the newly generated datasets during the workflow 

execution were clustered in k datacenters during the runtime stage according to their 

dependencies that were calculated dynamically.  

During the build-time stage, a dependency matrix DM is setup and clustered.  The clustering 

in the build-time stage was done using the Bond Energy Algorithm (BEA) which is a permutation 

algorithm used to group the similar items together by vertical partitioning of large tables. The 

dependency matrix DM was used as an input and a clustered dependency (CM) matrix was 

generated using the BEA. The second step of the build-time stage is partitioning and 

distribution of datasets. A recursive binary partitioning algorithm was developed and used to 

partition the clustered dependency matrix while trying to find the best data centers that have 

storage capacity matching the datasets’ sizes. This is done by placing the datasets that have 

higher dependencies with each other together in one partition and lower dependencies with 

the datasets in the other partitions. Distribution of datasets is done by examining the datasets 

in the system for flexibility. Furthermore, the datacenters were assumed to have enough 
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storage to host all the application data in the system. The k-means clustering algorithm was 

used dynamically in the runtime stage to calculate the to place the generated data to one of the 

k data centers. Simulation of these algorithm showed the movement of the datasets were 

greatly reduced when using the build-time algorithm, however, the movements were not 

affected when using the run-time algorithm only because of the pre-allocation of the datasets 

to the wrong datasets due to it being prior to the task scheduling that was based on the data 

placement not their dependencies to the datasets. All the results show that the build-time and 

run-time algorithms when used together are found to reduce the datasets movement by 50.8% 

compared to the random situation. The simulation done in the different experiments only 

measured the data movements of datasets. No other parameters were measured to show the 

effectiveness of the algorithms in terms of execution cost or communication cost. In addition, 

the cost of placing the data in the different datacenters was not included in the study.  

2.5.5. Task scheduling in the cloud 

The problem of mapping tasks to distributed resources from an optimization perspective is 

an NP-hard problem, therefore, meta-heuristic techniques could be applied for solving the 

problem. The resource allocation mechanism is usually done using algorithms that will find the 

near optimal solution for an objective function. The objective function of the resource 

allocation algorithm is designed using different criteria and constraints depending on the aim of 

the optimization. The resource allocation algorithm will map jobs to resources either by 

maximizing or minimizing the objective function.  

Scheduling workflows can be according to different objectives that vary from application to 

another. Some applications are data intensive applications while other are compute intensive. 
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The objective are either user-center and/or provider/centric. Provider centric objectives could 

be, but not limited to, any (or a combination) of the minimization of the following: total data 

transfer time/cost (communication cost), total execution time/cost and storage space usage.  

User- centric objectives might be defined as minimum amount of completion time or minimum 

cost to be procured by executing the job. When scheduling is done, different tasks will achieve 

different execution times and costs depending on the computer nodes that they are assigned 

to. These computer nodes will have different bandwidths between them, thus will cost 

different amount when transferring the data between them.  Scheduling the tasks could be 

done by assigning the tasks to compute nodes that have less execution cost without 

disregarding the communication cost that will take effect due the dependency between the 

data and the tasks.   

Pandey et. al. [24] presented a model for task scheduling in cloud computing to minimize the 

total execution cost and developed a heuristic algorithm using particle swarm optimization to 

assign the tasks to the compute resources. A Directed Acyclic Graph (DAG) was used to denote 

the application workflow. Particle Swarm optimization (PSO) is a self adaptive, global 

optimization technique. It optimizes the problem by using a population of candid solution. The 

heuristic algorithm used the PSO algorithm to map the tasks to the resources according to the 

provided objective function. The scheduling heuristic algorithm was designed as follows: first 

initiating of parameters was done by calculating the average computation cost of all tasks in all 

compute resources and calculating the average cost of (communication/size of data) between 

resources. Secondly, setting the task node weight wkj as the average computation cost and 

setting edge weight ek1,k2 as size of file transferred between tasks. The next step was to compute 
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PSO({ti}). Then the mapping of the tasks started, where all the ready tasks were mapped to 

resources according to the solution provided by PSO. After finishing the mapping, all the tasks 

were dispatched to be executed by the resources. The scheduler was designed to wait for the 

tasks status to be acquired and get all the new ready tasks, the ready task list was then updated. 

Additionally, the average cost of communication between resources was updated according to 

the current network load and the new PSO is calculated for the new ready tasks. This whole 

process was repeated until there were no more scheduled tasks. The performance metric that 

was used is the cost in cents of the complete execution of an application and transferring of 

data; the pricing was obtained from the AWS Amazon packages. The results obtained from this 

study showed that the algorithm performed better than the best selection algorithm that was 

used for comparison. However, the study does not take into account the disproportion between 

the pricing of the execution costs values on the computer resources and the values for the cost 

of transferring the data between these resources. The execution cost is far greater than the 

communication cost such that when calculating the cost the significance of the communication 

cost was trivial in the total cost of executing the tasks. This disproportion needs to be addressed 

in the cost function equation.  

Guo et. al [25] had a similar target but different modelling of the system than Pandey [24]. 

The objective was to minimize the communication time and execution time to reduce data 

movement. A Task Interaction Graph (TIG) was used to denote the task scheduling. It is 

presented by G(V,E), where: V={1,2,…..n} is the set of tasks of an application and E={Cij} is the 

information exchange between the tasks. .  
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Minimizing Total (M) = Cexe(M) + Ct(M) is the objective function. Particle Swarm optimization 

again was used achieve this goal. Results show than not only that converges faster than the 

other algorithms used for comparison, it also runs faster than those algorithms in a large scale. 

However, the assumption was made that the tasks won’t take longer than an hour to complete 

their execution and the cost function didn’t take into account the execution time of the tasks, 

which significantly effects the cost function of their model. 

The scheduling policy in [24] concerns scheduling applications to processors; it considers an 

e-business indicator by giving customers different priority classes, e.g. Gold, Silver, or Bronze. Pi 

denoted a priority class that indicated a customer domain’s priority in relation to other 

customer domains. And according to this differentiation the customer with higher priority 

would get better service than the one’s with lower priority. In this policy, the ECM (eDragon 

CPU Manager) is responsible of distribution of resources to different applications. Each 

application i receives a number of processors Ai(KECM)  at every sampling interval KECM. Ai(KECM) 

is proportional to application i’s request of processors Ri(KECM) and to the application’s priority 

class (Pi).  The scheduling policy also allowed a processor sharing mechanism to achieve higher 

resource utilization in the hosting platform. The granularity used in this sharing mechanism is 

0.5 processor, and processors where distributed such that application i would share its 

processors if it was assigned all the processors it needed and application j assigned a number of 

processors less than the requested. In this case even if a fraction of 0.5 processor was not used 

by processor i, it could be assigned to application j if it was needed.  

One of the cloud desired characteristics is its elasticity. Applications are able to grow and 

scale in the cloud, the growth is met by transitioning the application components from one 



32 

 

capacity configuration to another either by replication or migration [26]. Sharma et. al. [26] 

developed kingfisher, a cost-aware elasticity provisioning system that choses between 

replication and immigration when processing the application in the cloud. The choice is made 

by kingfisher such that most cost effective server configuration is achieved.  

Due to the heterogeneity and virtualization which enables sharing of the infrastructure, the 

performance of the CPU is not stable and suffers from variation in terms of execution time [20]. 

This performance variation may cause the application to miss its deadline. As many of the 

scheduling and mapping algorithms depend on the VM execution times, the tasks may be 

delayed beyond expectations of the system which might affect the overall execution of the 

workflow and performance of the system. Rodriguez et. al. [20] presented a solution by 

designing a resource provisioning and scheduling algorithms based on deadline and cost to 

avoid the problems caused by performance degradation delay by encompassing the VM 

variation and VM boot time when computing the execution times for the tasks. Three 

calculations were presented; execution time of tasks, communication times between different 

computing units that are processing dependent tasks, and the processing times of the tasks 

which is the combination of the execution times and the communication times of the same 

tasks.   

First, the provisioning is done using Particle Swarm Optimization PSO to find an optimal set 

of resources from a pool of available resources. The set of resources was selected if it meets 

the specified deadline while minimizing the total cost of executing all the tasks. Furthermore, 

the PSO used considered a heterogeneous infrastructure and more than one VM type was used. 

The PSO produced a map of task-resource pairs is produced and the next step was scheduling 
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the resources that were choosing for executing the tasks. Secondly, a scheduling algorithm was 

developed to calculate the start and end time of each task in the map. A schedule S =(R, M, TEC, 

TET) was produced were: R is the set of resources that indicates the resource ID along with its 

start and end lease time, M is set of task-resource maps each containing the task end and start 

time along with the assigned resource , TEC is the total execution cost of all the tasks in the 

selected resources and TET is the total execution time of the tasks on the selected resources. In 

addition, earliest deadline first algorithm is used to map tasks to running VMs. The workflow 

that was used to evaluate the algorithm is the scientific workflow and evaluation of the system 

showed that the proposed meta-heuristic PSO algorithm have given better results than the 

base algorithms in terms of meeting the deadline while maintaining the least cost. However, 

the authors have indicated that their algorithm is more time consuming than the other two 

heuristic based algorithms and rationalized that with the fact that it is an offline algorithm that 

produces better schedules.   

 Finally, after reviewing different resource provisioning and scheduling algorithms, a 

characterization could be made such that the different schemes can be divided from the 

perspective of cloud user and/ or cloud provider. It is evident in the literature that the 

provisioning either considers user-centric or provider-centric parameters. The user-centric 

provision takes into account parameters that affect the users such as location of the user, 

application deadline, and cost. While the provider-centric provision considers for example the 

CPU utilization and energy consumption by cloud machines. 
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Chapter 3 

Context Aware Resource Allocation and Scheduling for Hybrid Mobile Cloud  

 

A hybrid cloud consists of a public cloud and a private cloud or a number of them. Mobile 

applications access the hybrid cloud services using an API on the mobile device. A cloud service 

broker CSB works as an intermediary between the mobile clients and the cloud provider. A 

detailed description of the architecture of a context aware hybrid cloud system is presented in 

section 3.1. Further, a mathematical system model is presented in section 3.2 along with the 

system service model. In section 3.3, the mathematical formulation of the problem and the 

deadline-based algorithm used to solve the problem are explained. 

3.1. Proposed System Architecture 

Figure 3.1 shows the system architecture of the context aware hybrid cloud. The system 

consists of four main components: Cloud-Based Mobile Application, Mobile Cloud API, Cloud 

Service Broker (CSB), and the Cloud Services Provider (CSP).  

Each component consists of a number of functional units. The cloud-based mobile 

application interacts with an API specifically designed to collect certain context information 

using the mobile device sensors and built-in functions. The details for the cloud-based 

application and the API is beyond the scope of this thesis.  The following explanation applies to 

the remaining components, namely the CSB and the CSP.  

3.1.1. Cloud Service Broker (CSB) 

The CSB functions as an intermediary between the clients and the cloud services. When a 

mobile client request services from the cloud, the CSB will authenticate the client. In addition, 
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the CSB uses the context engine to record and monitor the client context information that is 

sent periodically by the client’s Context API.  CSB has a service discovery unit as shown in Figure 

3.1, which is responsible for collecting and maintaining a record of the cloud services 

information. 

 

Figure 3.1. Context Aware Hybrid Cloud System Architecture. 

 

The CSB receives the clients’ requests with a set of constraints and the context information. 

It queries the cloud provider for resources that guarantee meeting SLA requirements. The 

Cloud Monitor  

Resource 
Allocation 

CSB 

CSB 
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Service Level Agreement (SLA) between the cloud clients and the cloud provider ensure that the 

client receives cloud services that satisfy the Quality of Service (QoS) requested by the clients.  

3.1.2. Cloud Controller CC 

Each cloud service provider has one Cloud Controller CC for each cloud service cluster. The 

CC is responsible for controlling the volume of requests to be allocated resources in the cloud 

during admission control. Resource allocation is done by mapping the requests to resources 

while minimizing response time experienced by the client and the cost of running the resource 

in the cloud. In our proposed scheme, client contexts include location, connection quality, and 

mobile energy level that is used to make the allocation decision, as explained in the next 

section. The CC scheduler receives updates if there is a change in the client context, and the 

allocation of the resources to the requests is modified according to the new context 

information.  

Figure 3.2 shows the service model of the proposed system. The mobile client application 

uses the mobile cloud API to gather the relevant context information and send it to the CSB. 

The CSB stores this information in the client context profile and monitors the new incoming 

context information from clients. The context analyzer evaluates the context information and 

triggers an event to change the allocation of resources to the jobs that are scheduled to run in 

the VMs located in cloud datacenters machines. In our scheme, the trigger is designed to set off 

when the context analyzer detects a change in either the connection quality or the energy level 

of the mobile device. In addition, the   provider performs resource monitoring and discovery by 

finding available idle resources suitable for the request of the clients. The resources are 

monitored to determine their availability. Acquiring and releasing resources on demand is one 
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of the cloud providers’ responsibilities. The jobs are processed in batches. After discovering the 

resources, they are assigned to the jobs in the list using a meta-heuristic algorithm, which in our 

scheme is simulated annealing algorithm. A Scheduling algorithm is an abstract model to define 

the order of execution for a set of tasks. The scheduler finds the needed resources for these 

tasks according to the resource-task map generated by the allocation algorithm. Finally, the 

VMs are scheduled to run on the physical machine and a VM manager is responsible for 

monitoring the VMs and launching and killing the VMs instances according to the demand.  

 

Figure 3.2 Service Model of the Context Aware Cloud-Based System. 

 

In this work it is assumed that the requests are already collected from mobile clients. These 

requests constitute a job that contains one or more tasks which are indexed to show their order 

in the job. The indexed tasks are paired with their job IDs.  

A job consists of more than one tasks. The job type defines the way the tasks in a job are 

executed. Sequential-task job type means that a job contains tasks that are executed one by 

one and that the execution of the tasks never overlaps. The second type is the batch-task job 

Cloud Provider 
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where the tasks are executed in parallel and one job could not contain less than two tasks. The 

mix-mode type is a combination of sequential-tasks and batch-tasks. In addition to the list of 

the jobs to be executed, the requests are embedded with user context information as 

mentioned previously. This information includes user’s current location, power level of mobile 

device, expected response time (deadline), network information such as connection type, delay 

tolerance.  

3.2. Proposed System Model 

Mobile devices are resource constrained, and they have limited computing and storage 

capabilities. By offloading computation intensive applications to cloud, mobile devices can use 

the unlimited resources offered by cloud providers.  The cloud services offered to the mobile 

users could be categorized as applications-specific services known as PaaS and mobile 

computation offloading services known as IaaS. The objective is to enhance the mobile user 

experience by reducing computation time and battery consumption and offering services to 

enhance the mobile device capabilities.  

The most important issues for mobile users using the cloud are network connectivity, 

amount of data transmitted, mobile device energy, and bandwidth.  Mobile devices connect to 

the cloud via internet either by using the cellular/satellite network connections through base 

stations, or by using Wi-Fi connections through access points.   

 It is the responsibility of the application developer to design the cloud-based mobile 

application and decide about partitioning of the application such that some parts are executed 

locally in the mobile device and some parts are executed remotely in the cloud. The cloud- 

based mobile application workflow could be modeled in a method or module granularity [27]. 
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In [28], the application partitioning is achieved by modeling the application at the functional 

level rather than at the class or object level, while in [29] methods and/or classes that are 

expected to be offloaded to the server as remotable methods which are the methods that could 

be executed remotely without disrupting the functionality of the application. 

One scheme for the developers to estimate the application requirements and measure their 

CPU requirements is through the simulator presented in [30].  

 Mobile application partitioning is beyond the scope of this research and we assume that the 

application is already partitioned and the mobile cloud API sends the request as an indexed task 

graph associated with a unique Job ID to be executed in the cloud. We also assume that the 

cloud provider has a copy of the code to be executed; which is downloaded once when the 

application is launched for the first time. Hence, it involves onetime communication to the 

cloud to reduce size of the request. Once the request arrives in the cloud service broker, the 

unique job ID is linked with the appropriate code, and the code along with the data submitted 

with the request is launched on a suitable virtual machine.   

3.2. 1. Mobile Application Model 

The cloud based mobile application consists of a set of tasks to be executed in the mobile 

device and another set to be executed in the cloud. It consists of a combination of sequential 

and concurrent tasks. 

The mobile application workflow W = (T, E) is modeled as a Directed Acyclic Graph (DAG), 

where T = {t1, t2,  t3,… tn} is the set of tasks and E is a set of directed edges. An example of DAG 

is shown in Figure 3.3. If there is a data dependency between ti and tj, then an edge eij ϵ E 

between these two tasks indicates this dependency, and ti is said to be the parent of the child tj. 
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The data output size of task ti is denoted by �����
��  . In addition, each workflow is associated 

with a deadline called Wd based on the user’s desired QoS. The workflow execution time is 

constrained by Wd. The notation T represents one job to be offloaded and executed in the cloud 

and the tasks are indexed as i = {1, 2, …. n}. 

3.2.2. Mobile Client Context Model 

The context manager in the mobile device collects data from different sensors, packages 

them into a context, and transfers the mobile context to the CSB. It also monitors the context 

information and updates the cloud broker if any change in the context occurs. In our scheme, 

the context includes energy level of the device, its location, and network type (data rate).  

 

 

 

 

 

 

 

                       Figure 3.3. Example of a Task Directed Graph of a Sub Workflow. 

 

 

Mobile Device Connection and Data Rate Model:  

Modeling of connection type could be done by using some measures to model the quality of 

the channel from the user’s context perspective. These measurements include: data rate 

(Bandwidth), SNR and request round-trip times. Two connection types are used: 3G/4G cellular 

connection and Wi-Fi (WLAN) connection.  Typical data rates for 3G interface DR3G is 24 Mbps 

whereas that for Wi-Fi DRwifi is 54 Mbps.   
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Mobile Device Energy: 

The mobile device measures its energy level Ɛlocal periodically and the user context manager on 

the API embeds this information in its context transfer to the CSB.  The energy level sent to the 

cloud represents the residual energy of the device at the time of transfer. 

Mobile devices consume energy while transmitting and thus the energy will decrease after the 

context is transferred to the CSB. An estimation of the mobile energy consumption could be 

calculated in the cloud to estimate the expected mobile energy level.  The current mobile 

energy level is then calculated as: 

                                                                     E� = 	E������ − E�                                                                 (1) 

Where Edevice is the energy level of the mobile device and Et  is the energy consumption due to 

transmission. 

 

Mobile Location:  

The physical space in which Mobile clients and cloud resource are located is divided into k 

zones {z1 , z2 , …., zk}. One zone is defined as an area where a cloud data center is located at the 

center of the zone and mobile clients are spread around the data center.  Each service request 

is assigned to a zone according to the location it is originated from.  

                                                              � =	  !"# , !"% , …… . , !"()                                                             (2) 
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3.2.3. Mobile Client Request Model 

A set of mobile users * = +�,, �-, ……�./ receives services from the cloud offering 

services. Each user makes a service request, which is a job that consists of a set of tasks, T = { t1, 

t2,  t3,… tn}.   Where n is the total number of tasks contained in one job submitted by the user.  

 Each job includes a CPU and memory requirements of each task. These requirements could be 

a measured value or defined a priori by the application developer.  We assume that the 

requirements are available to the mobile application API and they are sent with the request. 

The cloud provider has to ensure that the task is assigned to a resource that fulfills its resource 

requirements. In addition to the computing resource requirements, the request contains time 

of submission, unique user and job identifications. The job of a user �	 is modeled as: 

                                                                        0� 	 �1 , �23	, 	0�423 , ��                                                   (3) 

Where task i of T is modeled as:          
� 	 �
�5�"�, ������� 	, 
6*,787�	                                           (4) 

In addition, the context of user ui , as specified below, is periodically monitored and sent to the 

broker: 

                                                                	
��
�9
� 		 �:, ��, 8������, ;�                                              (5) 

Where: 


�  Task indexed i  

1  Job Submission time  

CPU The requested number of CPU cores  

MEM The requested amount of memory 

Wd The Job’s whole duration 


�5�"� Size of the task i in millions instructions in task i 

�������  Task output data size 

�� Location of user u 

: Time the user context information is logged 

Edevice Energy level of mobile device 

; Data Rate of the mobile device: Wi-Fi connection or 3G connection 
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The context engine in CSB periodically monitors context information from user devices, 

which is shown in Figure 3.4 as { C0 , C1 , C2 ,C3  …..}. The figure also shows the job submission 

time when the cloud receives requests from users to launch their jobs.  

Figure 3.4 shows the two timelines are aligned, that is the job submission time related to 

context period. . Each job J is associated with a context C, which refers to the context that is 

used by the broker to allocate and schedule the required resources for the job. For example, 

starting at time  1< , job J0 is associated with context C0. Similarly, at 1,, job J1 is associated with 

context C2 and so on. Only the context attached with the jobs are used in our allocation and 

scheduling scheme. 

 

〈0<, 1<〉       〈0,, 1,〉      〈0-, 1?〉         〈0?, 1@〉        〈0A, 1A〉          

 

 

                C0    C1     C2     C3    C4     C5   C7    C8     C9    C10   C11      

 

Figure 3.4 User Jobs Schedule Timeline (JS-T) vs. User Context Timeline (C-T). 

 

3.3. Cloud System Model 

The cloud service provider offers Infrastructure as a Service. The hybrid cloud service, H, is 

composed of private cloud services Sprv and public cloud services Spblc.  

                                                                    B: �DE�	 ∪ �DGH�                                                                        (6) 

The cloud services and associated resources are identified by Virtual Machines of different 

types. A VMi is a virtual machine of type i that has a computing capacity of PVMi , memory 

JS-T 

C-T 
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capacity of µVMi  and cost per unit of time CVMi . We assume that the VMs have sufficient 

memories to execute mobile applications workflows.  

3.3.1 Execution time of a task 

The size of task i submitted by a user to the clouds is assumed in terms of MI (Million 

Instructions). The execution time of task i on VMj is calculated using the task size 
�5�"� as shown 

in the equation below, where degVMj is a performance degradation percentage used to model 

performance variation of the computing capacity of VMj. 

																																																												89��IJ� 		

�5�"�

6IJ�	 ∗ L1 − ��NIJ�O
																																																		�7� 

s.t    ∑ 89��IJ�R
�   ≤ Wd ; ∀ 
�	T	W�	T, E)                                                                                                     (8) 

3.3.2. Data Transmission Time 

The data transfer or transmission time between two tasks ti and tj is calculated using the 

equation: 

                                                                          ���WX = 	3YZ[\
\W

]                                                                      (9) 

Where ^  is the bandwidth between the VMs when calculating the transfer time between two 

tasks ti and tj executing on two different VMs. 

3.3.3. Total Processing Time 

Finally, the total processing time of a task in a VM is the sum of its execution time on a VM and 

the total transmission times it takes the task to transmit its output data to all its children tasks.  

                                                         6��� =	89�� +	`∑ ���WX ∗ 	aD
D
, b                                                 (10) 

Where: p is the number of tasks dependent on ti, and aD is 0 whenever ti and tj run on the same 

VM.  And the total processing time of all the tasks is ∑ 6���
R
�c, .  



45 

 

3.3.4. Turnaround time of Request TATR 

The turnaround time of a service request launched from the mobile device is defined as the 

duration from the submission time of the request to the time when the results are back to the 

device from the cloud provider. It is also referred to as latency [7].  

If �d	 is the data rate of the mobile device at the submission of the job to the cloud, and tj is 

the last task executed in the cloud, then the transmission time of the result to the mobile 

device is: 

                                                                       ��J�GeH 		3Y\X
Z[\

3f                                                                   (11) 

The total turnaround time of the job is the sum of the data transmission time from the mobile 

to the cloud, the total execution time of all the tasks in the cloud, and the transmission time of 

the result to the device.  

                                                  	�g�f 	 ∑ 6���R
�c, +	��J�GeH +	��eHJ�G                                            (12) 

The data rate that a mobile device varies due to mobility and wireless channel condition. For 

example, a mobile device may move from one network type (e.g. cellular) to another (e.g. 

WiFi), or it may move from one cell to another within the same network. When the mobile gets 

high data rate connection, the task’s execution could be slowed down without major noticeable 

change in user experience. This can offer cloud provider an opportunity to reduce its cost by 

exploiting the elongated deadline. Alternatively, when the data rate is low, execution times in 

the cloud have to be faster to make up for the lost time due the communication delay. This 

concept is facilitated by introducing the slack time [33], as explained and computed below.  
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3.3.5. Slack Time (float time) 

The workflow has a deadline Wd that needs to be met when executing the workflow tasks in the 

cloud. The turnaround time of the workflow TAT should be equal to or less than Wd. The 

difference between Wd and TAT is called slack time Tslack . If the slack time is small, than the 

workflow needs to be executed closer to the deadline.  

                                                                               �5Hh�i 		�� − �g�                                                 (13) 

 

Alternatively, if the slack time is large, than the cloud can slow down the execution to reduce 

computing and resource usage cost. The slowdown process is further explained in section 3.4.  

3.3.6. Total Processing Cost 

A task is executed in one VM, and the user is billed on bases of VM usage time.  

Assume CVMi is the cost of using VMi for a time unit Θ . The cost of executing tj  for a period  θ�X  

time units on VMi is :  


�X 		`
IJW ∗ 	θ�Xb  Where θ ≤ 	Θ and is calculated in multiples of Θ. 

Hence, the total cost for executing n of tasks is: 

                                            
m��hH 	 	∑ 
�XR
�c,  = ∑ �
IJW ∗	θ�X�R

�c,                                                  (14) 

n. 
. 	
m��hH ≤ 
o_q��r�� ; Where 
o_q��r�� is the price the consumer pays to the cloud provider.  

3.4. Problem Statement 

The objective of this work is to exploit the slack time in reducing the cost of execution of and 

resource allocation to a job in the cloud. The slack time is computed based on the changes in 

the user context, more specifically energy level and connection data rate. We develop an 

adaptive approach to integrated resource allocation and scheduling in cloud offering IaaS. The 
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slack time provides adaptive control.  First, we focus on finding a schedule S for all the tasks in 

the workflow to execute on cloud servers such that the total execution cost is minimized while 

meeting the workflow deadline Wd. The CSB periodically monitors user context information, 

more specifically the connection data rate, the energy level of the mobile device and the 

location of the user. It defines thresholds for context data and updates the cloud controller if 

the data exceeds the threshold. The cloud controller may revise resource allocation and 

scheduling.  

The schedule is defined similar to Rodgriguez et al. [20].  The schedule S = (R, M, 
m��hH, TET, 

TAT) contains the best suitable set of resources R ={r1, r2, …rk} to execute all the tasks in T. The 

schedule defines this assignment by a set of maps M where each map m in M is s��
E� 	

�
�	, t� , ���� , 8���), where ���� , 8��� 	 are the expected start execution time and expected end 

execution time respectively for the task ti. Furthermore, schedule S also includes the workflow’s 

total execution cost 
m��hH, total execution time TET, and the Turnaround time TAT.  

Each resource in R, is defined as t� = Lu7E	W , 
IJvW	, ���E	W , �8�E	WO.	 The terms, ���E	W , �8�E	W  are 

the lease start time and the lease end time of resource ri,, respectively. Also, for each task 

assigned to a resource, the expected start time is the lease start time of the resource if the task 

has no parent tasks. If the task has one or more parent tasks then the start time of the task is 

the maximum of the largest end time of all the parents’ tasks and the lease start time for the 

resource.  In addition, the expected end time is defined using 6��� 	in the  equation below. 

                                                                         8��� = 		6��� − ���� 	                                                      (15) 

The total execution time TET is the maximum of the expected end times of all the tasks’ end 

times in the workflow.  
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                                                                    �8� 	 max{	8���:	
�	 ∈ �/                                                 (16) 

The problem could be defined as finding a schedule S such that: 

                                                                         Minimize 
m��hH                                                               (17) 

                                                                            s.t.  �g� ≤ ��                                                            (18) 

The schedule is updated if a new slack time is calculated when the user context changes, for 

example the new energy level of the mobile device, which recalculates a new deadline. 

3.5. Resource Allocation and Scheduling 

Each workflow that a user sends contains a number of tasks to be allocated resources for their 

execution. Resource allocation is a process of locating the most suitable set of resources (VMs) 

from a pool of resources for the specified number of tasks. The selection of the resources is 

done such that the total cost of the resources allocated is minimized and the deadline of 

executing the workflow is met. The algorithm used for resource allocation in this work is based 

on the Simulated Annealing Algorithm.  

3.5.1. Resource Allocation Using Simulated Annealing Algorithm (SA) 

Simulated annealing is based on the idea of “melting” a system with a very high temperature 

then cooling the system gradually until the point of “freeze” [34]. The system starts with a very 

high temperature and the cooling is done in small steps of lowering the temperature. The 

pseudo code of  SA algorithm is shown in Figure 3.5 [35]. The first step is to initialize the system 

parameters; in this case the set of tasks to be assigned and the initial set of resources residing 

in the resource pool, which are defined using a Vector M known as the map. The vector M 

defines a mapping of resource to task such that the row index indicates the task index and the 

columns value is the resource ID.  In the algorithm, the initial map is generated by selecting 
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resources randomly for each task. The constants tmax and tmin are defined. The variable τ is the 

temperature that cools down until it reaches the freezing temperature tmin.  

3.5.2. Task schedule generating algorithm 

A schedule specifies the start time and the end time of the execution of each task on the 

resource allocated for the task. It also specifies the start lease time and the end lease time of 

each resource allocated to a task. We use Earliest Deadline First scheduling algorithm that is 

based on the work of Rodriguez et. al. [20]. Figure 3.6 shows the pseudo code for the schedule 

generating algorithm. The algorithm starts with a set of tasks T of a workflow and the 

corresponding set of resources Rinit. It keeps track of resource allocation to tasks in a pool of 

maps, and the allocated resources in a pool of resources. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Pseudo Code for Simulated Annealing Algorithm[35] used for resource allocation in      

Figure 3.7. 

 

 The algorithm also calculates two matrices: task execution matrix and data transfer matrix. The 

execution matrix shows the execution time of the task on the resource such that the rows 

1. Initialization: initial map M= M0 (randomally generated); 

Initial temperature τ = tmax(50), end temperature tmin(1). 

2. While (τ  > tmin) do loop: 

 

a) Get a new solution M1 by the following way: 

i. Select two different resources r1 and r2 randomly. 

ii. Select a task t1 scheduled to r1 in M0 randomly. 

iii. Map the task t1 to resource r2. 

 

b) Calculate the probability p= Math.min (1.0, exp (- (f(V1) -f(V0)/t )). 

 

c) Generate a random number Nmbr from 0.0 to 1.0(not included) 

if Nmbr  <p then M = M1 

 

d) Modify the temperature τ = 0.9* τ. 

 
3. Return M 
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indices are the task IDs and the columns indices are the resource IDs. The data transfer matrix 

shows the transmission time between two tasks when they are scheduled in two different VMs. 

The task with no parent starts as soon as the resource becomes ready. The task with a parent 

starts when both the parent finishes its execution and the resource is ready for the task. Hence, 

its start time is after whatever takes longer, the execution time of the parent or time when the 

VM becomes ready. The data transfer time between the task and its parents is calculated only 

when the two tasks are assigned to VMs on different physical machines.  Then, the processing 

time is calculated as the sum of the transfer times and the execution time of the task. This 

processing time is used to calculate the end time of the task as in step number 4.5. Once all the 

information needed for a task are calculated, a map is constructed that includes the task, 

resource to execute the task, start time of the task and end time of the task. The resource is 

added to the pool of resources if it is not in the pool, and the lease end time of the task is 

calculated as in 4.8. The final two steps of the algorithm calculates the total cost of executing all 

the tasks that are  assigned resources TEC, total execution time of all the tasks in the workflow 

TET, and the total turnaround time TAT. The simulated annealing algorithm choses the 

resources that satisfy the TAT constraint while minimizing the total cost of execution. Figure 3.4 

shows the flow chart of the modified simulated annealing algorithm that uses the deadline 

based task scheduling algorithm. The objective function is calculated according to the TEC 

obtained from the scheduling algorithm. The constraint TAT < Wd has to be satisfied to choose a 

schedule otherwise the schedule is discarded.  

Adapting the system to the new slack time: 
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• The slack time is calculated periodically after receiving a change in context reading, such 

that the Tslack = Wd – TAT.   

• If the slack time increases by a margin Δ, then the start time of the task could be 

delayed. This may release a resource that can be given to a long awaited task belonging 

to another workflow. This arrangement can work only for the workflows that are 

executed in the same datacenter.  

Adapting the system to the new energy level: 

• If the context received from a mobile device shows that it is running low on energy, 

which is not sufficient for the mobile to receive the result back from the cloud, then the 

scheduler can put the user jobs on hold. The user context is periodically monitored and 

when the user regains the necessary energy level, then the workflow will be resumed 

and scheduled. Descheduling a task frees up the resource assigned to the task that can 

be used to reduce the wait time of another workflow. 
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Figure 3.6 Schedule Algorithm 

// Algorithm Schedule (M) 
Input: M 
Output: Schedule S = (R,M,TEC,TET,TAT)  

Where R= {r1,r2….rk},  r ={ r j, LST rj, LET rj } 

 M = 	{	s�,	
E� , , …		s�R

Ei} , 	s��
E� ={ 
�	, t�, ����, 8���} 

1. Initialize all schedule variables 
2. Calculate 89��{s�||�| ∗ |d�R�|~    
3. Calculate �t�n���t�{s�n||�| ∗ |�|~ 
4. For each task ti ∈ T assigned to resource r j ∈ d�R� from M 

4.1.   If ti is independent (no parent) 
���� =	�8�E� 

else 
 8��h. = s�98���{s�
�(8�
�: 
� ∈ ��t��
(
{	)) 
���� = 	s�9(	8��h.	, �8�E�) 

End If 
4.2.   exe = 89��{s�|
�~�t�� 
4.3.   for each child tc of ti 


t��n��t = �t�n���t�{s�n|
�~|
�~ 
end for each 

4.4.    6���
E� = �9� + 
t��n��t 

4.5.    8��� = 	6���
E� −	���� 

4.6.   	s��
E� = (
�	, t� , ���� , 8���) 

4.7.    if t� 	∉ d 
                       	���E� = s�9(����, 4��
�{s�) 
    																						d = d	 ∪ 	+t� } 

End If 
4.8.  �8�E� =	6���

E� +	���E� 
5. Calculate TEC 
6. Calculate TET, TAT 
7. Schedule S =(R, M, TEC, TET, TAT) 
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Figure 3.7 Flow Chart of the Simulated Annealing- Deadline Based Algorithm (SA-DB). 
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Chapter 4 

Performance Evaluation 

 
In this chapter, we discuss simulation-based performance study of our proposed scheme. 

First, the cloud workload used in the experiments is discussed, which is the trace of workloads 

running on Google compute cells provided by Google Inc. The traces are data from a cell of 

12,000 machines over about a month-long period in May 2011 [36]. These traces are first 

studied and then filtered to extract the required fields to be used in the system. A Java program 

is written to extract the information. The tables were read and the related fields were extracted 

and written into new tables to be used in our experiments of the proposed system. 

The second section is about the simulation of the proposed cloud system. The simulation 

was done using a discrete event simulator called CloudSim. CloudSim Toolkit software is 

developed by The Cloud Computing and Distributed Systems (CLOUDS) Laboratory, University 

of Melbourne, Australia and it is released as open source under the LGPL license. It is a java 

library that provides a simulation framework for enabling the modeling, simulation, and 

experimentation of cloud computing infrastructures and cloud application services.  

4.1 Cloud Workload 

4.1.1. Google cluster load  

Google Inc. released a load trace [3] of more than 12000 machines, for a period of one 

month of May 2011. The data is available online in the form of Google buckets that can be 

downloaded using gsutil tool or manually, it consists of 39 GB of trace data. There are 6 folders 

each containing file(s) in the csv format. The folders are machine events, machine attributes, 

job events, task events, task constraints and task usage folder. All the folders contain 500 files 
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except for the machine attribute folder and the machine event folder, both of which contains 

only one file. A detailed explanation of each table is provided by Google in a schema csv 

file[36]. Table 4.1 shows the fields for the tables in each folder. The fields in gray are the fields 

we used to extract the cloud workload that will be used in this thesis simulation. 

 

Table 4.1. Machine Events 

Table 

1. Time Stamp 

2. Machine ID 

3. Event Type 

4. Platform ID 

5. Capacity: CPU 

6. Capacity: Memory 

 

Table 4.2. Machine 

Attributes Table 

1. Time Stamp 

2. Machine ID 

3. Attribute Name  

4. Attribute Value 

5. Attribute Deleted 

 

Table 4.3. Job Events 

Table 

1. Time Stamp 

2. Missing Info 

3. Job ID 

4. Event Type 

5. User Name 

6. Scheduling Class 

7. Job Name 

8. Logical Job Name 
 

 

Table 4.4. Task Constraints 

Table 

1. Time Stamp 

2. Job ID 

3. Task Index 

4. Attribute Name  

 (Machine Attribute) 

5. Comparison Operator 

6. Attribute Value 

 

Table 4.5. Task Events Table 

1. Time Stamp 

2. Missing Info 

3. Job ID 

4. Task Index – within the job 

5. Machine ID 

6. Event Type 

7. User Name 

8. Scheduling Class 

9. Priority 

10. Resource Request for CPU cores 

11. Resource Request for RAM 

12. Resource Request for Disk Space 

13. Different Machine Constraints 

 

4.1.2. Google Cluster Trace Analysis and Extraction 

Table 4.2 shows the machine attributes table. There are 1048578 fields entries in the 

machine attribute table and the fields titles are as follows: time stamp, machine ID, machine 

attribute, machine value, attribute deleted.  There are 12583 machine attributes that starts 

with the unique name of “GKAYWlOFlntxaxF”.  In an analysis of the Google trace, Reiss et. al 

[37] concluded that the GK attribute is used as a machine location identifier. There are 253 of 
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the users who specified constraints on the machines and 17% of those users used the GK 

attribute in their constraint [37].  

In this work, the users that have specified the GK attribute were extracted from the tables 

and collected in one table to construct the user set. These are the users who have specified the 

physical locations of the machines they want their jobs and tasks to be placed in.  

Table 4.4 shows the task constraint table. The fields are: Time stamp, Job ID, Task index, 

Comparator operator, Attribute Name, Attribute Value.  Records that contained “GK” in their 

attribute name field were extracted from the 500 task constraint tables. The next step was 

extracting the records with unique pairs of Job ID and Task Index field values, resulting in 500 

tables that were then combined and the repeated fields were omitted.  

 

Figure 4.1. Cumulative Distribution Function (CDF)  for number of tasks in each unique Job ID.  
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In Google load, a user launches a set of jobs while each job is a workflow that includes one 

more tasks. We count number of jobs a user has launched by extracting the unique job Id and 

task index pairs from the task constraints tables, which in turn is accomplished by searching the 

maximum value of the task index field for each unique Job ID. The results show that the 

number of unique job ids is 402. Also it shows that the number of combined job task pairs is 

94128 pairs. Of these pairs there are 42373 different job task pairs that consist of only one task.   

Figure 4.1 shows the CDF of the number of tasks in each unique job ID, it shows that 75% of 

jobs consist of less than 500 tasks. In addition, the job/task events table include any jobs that 

are active (Running) or eligible to run but waiting to be scheduled (pending) at any point in the 

trace.   

For each unique user name, the total number of requests (tasks) submitted by the user is the 

total number of unique entries in the task events table.  The requests per user are counted and 

Figure 4.2 shows the Cumulative Distribution Function CDF of tasks per user. It shows that more 

than 87% of users have 200 tasks or less.  According to this statistic, the tasks selected for the 

cloud workload are the tasks that belong to users that requested less than 200 tasks. The total 

number of users that submitted jobs with 200 tasks or less is 42.  

Figure 4.3 (a) shows the number of jobs for each of the 42 user and Figure 4.3 (b) shows the 

number of task for each of the 42 users. After the tasks were extracted to be used as 

workloads, the unique users are separated each with their own table that contains all the tasks 

requested by the user. Table 4.6 shows the field for each user table that was cross referenced 

and extracted from the Google cluster trace as explained previously.  Furthermore, three fields 

are added in the task table, namely Task length, Task input size, Task output size. 
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Figure 4.2. Cumulative Distribution Function for the number of tasks per each unique user. 

 

Figure 4.3 (a)  Number Jobs per Each Unique User. 

The new fields are generated randomly for each user as shown in Figure 4.8. The task length 

is the number of instructions in millions. It takes into account when generating the new data 
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that for computation offloading to be beneficial in terms of energy efficiency the workload 

needs to perform more than 1000 cycles of computation for each byte of data [12]. 

 

Figure 4.3 (b) Number Tasks per Each Unique User. 

The number of cycles per instruction depends upon its type, for example, load (store) takes 

6, arithmetic takes 4, and other types take 3 cycles. Hence, the length should be 160 – 330 

instructions for each byte of data transmitted. A random function was used to generate the 

tasks input and output data sizes in the range 100-400 MB and the task lengths in the range 

1000-3000 MIs.  

4.1.3. Mobile Context Information Generation 

The user tables that are discussed in the previous section are related to the users’ requests 

generated from one location due to the fact that the tasks constraints specified the location of 

the machines to be used.  The data rate of the network used by the mobile devices is set 
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according to the type of the connection: 3G or Wi-Fi.  An 802.11g Wi-Fi device in close 

proximity to a network router will often connect at 54 Mbps. Wi-Fi network equipment use 

dynamic rate scaling  and the data rate defined ratings are 54Mbps, 48Mbps, 36Mbps, 24Mbps, 

18Mbps, 12Mbps, 9Mbps and 6Mbps. As for the 3G network the data rate ranges are: 24Mbps, 

16Mbps, 8Mbps and 4Mbps. The energy level is considered in the simulation as a binary state; 

either the mobile has energy above the threshold (1), or below the threshold (0), where a 

threshold is defined as the minimum energy level required for the mobile device to carry out 

the job.  

Table 4.6. User Table’s Fields 

1. Job ID 

2. Task Index – within the job 

3. Scheduling Class 

4. Resource Request for CPU cores 

5. Resource Request for RAM 

6. Resource Request for Disk Space 
 

Table 4.7. New User Table’s Fields 

1. Job ID 

2. Task Index – within the job 

3. Scheduling Class 

4. Resource Request for CPU cores 

5. Resource Request for RAM 

6. Resource Request for Disk Space 

7. Task Length in MI 

8. Task Input Size in MB 

9. Task Output Size in MB 
 

 

4.2. Proposed Cloud System Simulation 

The cloud system was simulated using CloudSim software framework [38]. CloudSim is a 

discrete event simulator used to model cloud system architecture and application services. It is 

a java library that was used in this work on NetBeans. The CloudSim multi-layered architecture 

is shown in Figure 4.4.  

The CloudSim employs layered architecture. The top layer is the user code layer that defines 

the cloud scenario in terms of number of hosts, number of VMs and broker scheduling policies. 

In addition, the application configuration defines the number of tasks, their requirements, and 
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the number of users. The CloudSim layer is used to model and simulate cloud-based 

datacenters. The datacenter environment in CloudSim provides management interfaces for 

VMs, memory, storage, and bandwidth.   

Figure 4.5 shows CloudSim class diagram. A list of some of the classes follows to discuss the 

usage and utilization of each class when modeling the cloud and the cloud based application 

services.  

 
Figure 4.4. Layered CloudSim Architecture [39]. 

• Cloudlet:  It models the cloud-based application service that is executed in the 

datacenters. Specifically, cloudlets are used in the experiments of this thesis to model the 

tasks. Each cloudlet has a set of characteristics that are used to describe the task in terms 

of its unique ID, task length in Million Instructions (MI), CPU (number of cores), task file 

size, task output size,  utilization model for the CPU, memory,  and network bandwidth 
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(BW). The CloudletScheduler is also defined in the cloudlet and it refers to the type of 

scheduler used to schedule the cloudlets on PE (Processing Elements or cores of the CPU). 

Two types of schedulers are available for Cloudlet in CloudSim: TimeShared-

CloudletScheduler and SpaceShared-CloudletScheduler. 

 
Figure 4.5. Shows Cloudsim Class Design Diagram [6]. 

• DataCenter and DataceterCharacteristics: A Datacenter contains many hosts. The first 

step in creating a datacenter is to create the hosts by calling the Host class and assigning 

the properties of each host in the call function. The Host class defines the host ID, the 

provisioning policy for both the host memory and the host bandwidth. It also defines the 

size of the storage for the host, number of PE units, and the type of the VM scheduler 

(more VM scheduler in the VMScheduler class). The second step is to define the 

Datacenter-Characteristics object that stores the following properties of a data center: 

architecture (e.g. x86), OS (e.g. Linux) , list of hosts created, the type of hyper visor used 

by the datacenter to virtualize the hosts (e.g. Xen),  time zone where the datacenter is 
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located, and cost of using the datacenter. The last step is create the datacenter by calling 

the datacenter class and specifying the datacenter name, characteristics, the allocation 

policy of VMs on the hosts, and the storage list for the SAN devices.  

 
Figure 4.6.  The Different Provisioning Policies for VMs and tasks [39]. (a) Space-Shared 

Provisioning for VMs and tasks. (b) Space-Shared Provisioing for VMs and Time-Shared for tasks. 

(c) Time-Shared Provisioing for VMs and Space-Shared Provisioing for tasks. (d) Time-Shared 

Provisiong for both VMs and tasks.  

  

• DataCenterBroker: The datacenter broker is an intermediatry between users and service 

providers. The broker uses the Cloud Information Service (CIS) to find suitable  resources 

for the users that meet their QoS requirements. This class is used in our simulation to 

implement the Simulated Annealing allocation algorithm and the deadline based 

scheduling algorithm. The interface between the user and the cloud communicates with 

this class and passes the user tasks that needs to be assigned suitable VMs.  

• VirtualMachine (VM) and VmAllocationPolicy: VM class implements the Virtual Machine in 

CloudSim. This class defines a method for creating the VM. The specification for the VM 

defines the Million Instructions Per Seconds (MIPS) for each VM, image size in MB, 

memory or RAM in MB, bandwidth in Mbps, the number of PEs, and the type of 
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hypervisor. The values for VM specification are defined in our simulation according to the 

machine specification set by the cloud provider, Google Compute Cloud [40] 

Scheduling policies for both VM and cloudlets can be further explained using the example in 

Figure 4.6 from the CloudSim documentation [39]. In this example, there is a machine with two 

CPU cores that is shared between two VMs. Also, there are eight tasks to be executed on this 

machine. In Figure 4.6.(a), SpaceSharedScheduling of VMs and tasks shows that for each time 

unit only one task unit executes on one VM  that is given one core. Figure 4.6.(b) shows the 

SpaceSharedScheduling of VMs and TimeShared-Scheduling for tasks. In this case,only one VM 

is assigned to one core and two tasks for each VM in each core for every time unit. Figure 4.6. 

(c) shows the TimeShared-Scheduling of VMs and SpaceShared-Scheduling for tasks. In this 

case, two VMs are assigned to one core and each VM runs two task units for every time unit. 

Finally, in Figure 4.6 (d) TimeShared-Scheduling of both VMs and tasks shows that for each time 

unit, each core is assigned two VMs and each VM is assigned two tasks.  For the tasks  in the 

workflow used in our experiments to be dependent and execute sequentially, the last VMs and 

tasks allocation policy is used, that is TimeShared-Scheduler of VMs and TimeShared-Scheduler 

for tasks.  Then, a delay is introduced to each task that needs to wait for its previous task to 

complete its execution. The delay is equal to the end time of the previous task as it is obtained 

from the scheduling algorithm.  After reviewing the basic functions of CloudSim, we discuss the 

performance of the system evaluation in the next section.  
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4.3. Performance Evaluation 

4.3.1 Experimental Setup  

Four different types of VMs are used as shown in table 4.8. A datacenter is created with 10 

hosts each has eight cores. There are 42 users each has a different number of jobs consisting of 

indexed tasks. The tasks are read from the csv file sequentially, which are then submitted for 

mapping and scheduling.  

Table 4.8 Different types of VMs used in the experiments.  
Type/Charc

. 

MIPS RAM(MB) Number of 

CPU Cores 

1 40000 512 1 

2 50000 1024 2 

3 60000 2048 4 

4 70000 4096 8 

• Task- VM Mapping: The set of tasks are collected from all the users, then the set of VMs 

are created to run those tasks, and later both sets are submitted to the broker for executing 

them in the simulator. The broker calls the mapping and scheduling functions that we 

programmed using the algorithms in chapter 3. Only sequential tasks are considered in our 

simulation. The mapping and scheduling functions bind each task with a suitble VM and returns 

the map with a  schedule for each task and VM. The VMS are submitted to the hosts and the 

tasks are executed following the start and end time specified in their schedule. The experiments 

were repeated 10 times and the results are averaged for every point in a graph. 

4.3.2. Performance Parameters 

• Execution Time: the estimated execution time of all the tasks submitted by the user 

calculated from the task-VM map. Each task is assigned to a VM using the simulated annealing 

algorithm and the execution time is calculated as follows: 

Estimated Task Execution time = Task Length (MI)/ VM Capacity (MIPS) 
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Total estimated execution time for a user is the sum of the estimated execution time of all 

the tasks submitted by that user. 

The actual total execution time of all the tasks of a user is obtained after all the tasks are 

executed. The execution time for each user’s workflow is the maximum finish time of all the 

tasks belonging to that user: 

Actual Execution Time of All Tasks  = Max (finish times of all tasks) 

• Cost:  User cost of executing a workflow is calculated by first calculating the cost of 

using the VM multiplied by the time period the VM is used. Adding all the costs incurred by 

different types of VMs in executing the workflow for a user gives the total cost for each user. 

Another cost is the provider cost. Each data center has an associated cost in CloudSim.  

• Average CPU utilization: CPU utilization of the cloud system physical machines was 

monitored for the period of the workload execution (execution of 42 user jobs). The total 

execution time for all the user jobs is divided into 10 seconds intervals and the average CPU 

utilization of the datacenter’s machines is calculated for each time interval.  

• Deadline Based Simulated Annealing algorithm (SA-DB) is used as the base algorithm for 

the resource allocation and scheduling sub-system. The Context-Aware Deadline Based 

Simulated Annealing algorithm (CASA-DB), is the algorithm that implements the context aware 

resource allocation and scheduling. These two algorithms are used to compare the cloud 

system performance for the context free and context aware scenarios.  

4.4. Simulation Results and Analysis 

4.4.1. Calculating Workflow Execution Deadline 
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An experiment prior to introducing the deadline of the workflow to the execution shows that 

all of the users’ workflows actual execution times exceeded the expected execution times.  

Therefore, a deadline for the tasks constraining the system to choose the VMs that meet the 

workflow execution deadline was calculated. The deadline is then increased gradually while 

monitoring the violation percentage.  

The execution deadline is calculated in two steps. First, the minimum expected execution 

time, EET, is calculated for each user’s workflow by assigning the fastest VM to all the  tasks of 

that user. Secondly, EET is multiplied by 2k, where k =1,2,3, generating three different deadlines 

for each user’s workflow as shown in table 2.8.  

Figure 4.7. shows different  deadlines in comaprison with the actual execution times of each 

user’s workflow. Table 4.9 shows the total  number of workflows for all 42 users violating each 

of the deadlines and their percentages. 8. It is evident that relaxing the deadline results in 

fewer violations of the deadline and a strict deadline results in high number of violations. 

Hence, for remaining simulations the deadline  is set to 8* Min ET, which shows the least 

number of violations.  

Table 4.9.  Different Deadlines and the number and percentage 

of Violations. 

Deadline # Violations 

(total # users=42) 

% Violations 

2 * Min EET 35 83.33 

4* Min EET 15 35.71 

8 * Min EET 5 11.90 

 

4.4.2. Effect of Varying Task Lengths on the Execution Time of Workflows 

The execution time of a task running on a VM is the task length in MI divided by the VM 

capacity in MIPS. It increases by increasing the task length. Figure 4.8 shows the execution 
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times for workflows of all the  users by  varying the task length from 10MI to 10,000MI. The 

workflows with the task length equal to 10 MI complete executions within 4/10th of a second, 

which is very small. Hence,  as mentioned before, it is not energy efficient to offload small tasks 

to the cloud as the communication cost far exceeds the gain in the execution time. The high 

execution times are observed for  the workflows with task lengths  1000MI and 10,000MI, 

which take maximum values   of 0.5 minute and 1.3 minutes respectively. For the remaining 

simulations we select task lengths in the range of 1000-3000 MI, and they are generated 

randomly from this range. 

 

Figure 4.7. Different Workflow Deadline vs. Actual Execution Times of Workflows. 
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Figure 4.8. Execution Times of Workflows (in seconds) by Varying the Task Lengths for all 42 Users. 

 

4.4.3 Context Aware Provisioning 

Mobile Energy: Both context aware provisioning and scheduling take into account the energy 

level of mobile devices. A mobile user sends a job (request) to the cloud, which also receives 

the mobile context from the CSB that in turn periodically reads from the mobile device. The CSB 

defines a threshold for energy level that is the minimum energy level required by a mobile 

device to send data and receive results with the tasks in the cloud. It launches the workflow if 

the energy level is above the threshold for the user to be able to receive the results of the 

workflow. If the energy level is below the threshold the user workflow is delayed and the user 

context is monitored until the mobile device replenishes its energy and is able to receive the 

result. The workflow is then scheduled for execution. If a mobile device doesn’t replenish within 

10 minutes, then the workflow is discarded after 10 minutes.  The energy replenish time is 

simulated as a delay in the workflow execution, which is a random value between 60 sec – 300 

seconds. Figure 4.9 shows the execution times of the context free cloud system (SA-DB) and the 
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context aware cloud system (CASA-DB). In this simulation, workflows for the users with user ID 

18 to user ID 42 are delayed due to their low energy level. The benefit to the cloud provider lies 

in the fact that the context aware scheduling was able to delay execution of the workflows until 

the users’ mobiles are able to get the results back. Alternatively, in the context free scheduling 

the workflow is scheduled and executed, but the results are discarded as the connection with 

the mobile device fails due to low energy level of the mobile device. The context aware cloud 

system provides a cost effective mechanism to avoid wasting resources and it gives the users’ 

mobile devices the opportunity to resume their workflow execution after regaining their energy 

level.  

 
Figure 4.9 Execution Times (In Seconds) Of The Context Free Cloud System (SA-DB) And The Context 

Aware Cloud (CASA-DB) System Considering Only Energy Level Context.  

 

Mobile Data Rate and Slack Time: Mobile devices experience different data rates depending 

on the connection type and communication quality of the wireless network. The data rate also 

varies for the same connection type with the location of the device. The mobile device context 

includes, as mentioned before, the data rate in units of Mbps. Transmission times TT between 
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the mobile and the cloud for both directions are calculated using the data rate and the data size 

of the task to be transferred. From the cloud’s perspective, the transmission time from the 

cloud to the mobile TTcm is calculated using the mobile download link data rate and the output 

data size of the last task in the workflow. Alternatively, the transmission time from the mobile 

to the cloud TTmc, is calculated using the upload link data rate of the mobile device and the 

input data size of the first task of the workflow that is delegated for execution in the cloud. As 

shown in Figure 4.10, two scenarios are plotted for the transmission time in minutes. The first 

scenario is the dominant LTE, where 70% of mobile devices are set to use LTE connection while 

30% of the mobile devices are set for Wi-Fi connection. The second scenario is the Wi-Fi 

dominant scenario, which is set such that 70% of mobile devices are configured for Wi-Fi 

connection while 30% of the mobile devices are configured for LTE connection.  

Figure 4.10. Transmission Times Using Different Types of Connection Shown In Comparison With the 

Workflow Deadline and the Slack Time Gained In the Wi-Fi Dominant Scenario.  
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In addition to transmission times, we also calculated deadline Wd for each workflow, which 

we assumed comes with the user’s request to the cloud. It is calculated using the slowest data 

rate that the user might experience, i.e. the lowest rate for LTE connection, which is 4Mbps. 

Furthermore, the slack time is calculated using the workflow deadline Wd and the dominant Wi-

Fi connection scenario. The cloud system exploits the  slack time gained by the mobile device 

using the high speed Wi-Fi connection, as opposed  vs. the LTE connection that the deadline Wd 

was based upon.  

• We calculated the slack time of the Wi-Fi dominant scenario. The increased slack time is 

a time gain that the broker uses to its advantage. The broker delays the execution of the 

workflows of the mobile users that are experiencing higher speed connections by a factor of 

slack time. The delay in these workflows will not affect the SLA agreement as the deadline is 

met regardless due to the decreased transfer time for the mobile device. Figure 4.11 and Figure 

4.12 show the execution times of workflows of each user when the delay is set to be equal to 

the slack time and delay is equal to 10% of slack time. Two cloud systems are compared in both 

cases. The context free cloud system using the SA-DB and the context aware cloud system using 

CASA-DB algorithm. The time gained by using the extra slack time and delaying the workflow is 

used by the broker, to the cloud provider’s advantage, by mapping slower VMs for the same 

workflow in the context aware scenario. Slower VMs achieve higher execution times and cost 

less to operate.  The cost of using the datacenter is calculated as the cost of machine multiplied 

by the time period it is used. An example of provider cost is the energy cost of using the 

machine. Machines operating with less PEs and slower processors consume less energy  [33].  
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Figure 4.11. Execution Times Of Users’ Workflow When They Are Delayed By Slack Time (CASA-DB) Vs. 

Execution Times When They Are Not Delayed (SA-DB). 

 

 
Figure 4.12. Execution Times Of Users’ Workflow When They Are Delayed By 10% Of Slack Time 

(CASA-DB) Vs. Execution Times When They Are Not Delayed (SA-DB). 

 

Average CPU Utilization: The average CPU utilization of datacenter is calculated to show the 

advantage of using the context aware system.  The datacenter consists of 10 hosts. For each 
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host, the CPU utilization was calculated by first logging the execution times known as the 

ActualCPUTime () in CloudSim for each cloudlet that was executed in that particular host. The 

execution start time and execution end time of each cloudlet in each host was also logged. The 

logged period is divided into 10 seconds intervals. For each interval, the CPU time is the 

summation of CPU times of all tasks executing in that interval (The CPU time of each interval is 

calculated by adding up the ActualCPUTime of each task starting at an interval, to the interval’s 

CPU time). If the ActualCPUTime is greater than the interval, then the CPU Time will be 10 

seconds for that interval and the residual of the ActualCPUTime  is calculated and distributed 

among the following interval CPU times. The residual of the execution time equals 

ActualCPUTime -10, will be added to the following interval’s CPU Time. If the residual is greater 

than 10, then residual -10 will remain and it will be added to the following interval and so on 

until the residual of the ActualCPUTime is distributed among the intervals.  For example, if the 

ActualCPUTime of a task is equal to 22 seconds and the task starts executing in interval 1, then 

only 10 seconds will be added to CPU time of interval 1. The residual 22-10 = 12 seconds, is 

greater than 10 thus only 10 seconds will be added to interval 2’s CPU Time. The new residual 

12 -10 = 2 seconds will be added to interval 3’s CPU time. 

Each interval of 10 seconds has its corresponding CPU time collected from the tasks that 

were executed on the ten hosts of the data center during that interval. The CPU time calculated 

for each interval is accumulated for the ten hosts. Hence, the CPU utilization calculated from 

the accumulated CPU time represents the average value of the CPU utilization of the data 

center in each interval. The average CPU utilization is calculated using the maximum CPU time 

of all the intervals as follows: 



75 

 

g��t�N�	
6*	*
{!{��
{��	��	��	��
�t��! 	 
6*	�{s�	��	��
�t��!	
7�9{s�s	
6*	�{s�	��	�!!	��
�t��!n 

Figure 4.13 shows the CPU utilization for the context-aware system CASA-DB and the context 

free system SA-DB for intervals from 1-14, for a total of 140 seconds. It has to be noted that the 

actual CPU time does not take into account the wait each tasks incurs due to scheduling and 

delay.  CASA-DB in this case considers the energy context only, as mentioned before, the delay 

is introduced to a number of users. From intervals 11 onward, only the context aware system 

will remain executing the tasks, thus the CPU utilization for that period is the for the context 

aware system only.  The figure shows that for the first 11  time intervals, the CPU utilization for 

context aware system (CASA-DB) is better in 70% of the intervals than the CPU utilization of the 

context free system (SA-DB).  

 

Figure 4.13 Average CPU Utilization Of SA-DB vs.  Average CPU Utilization of CASA-DB System 

Considering Only Energy Level Context.   
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Figure 4.14 Average CPU Utilization of SA-DB vs.  Average CPU Utilization of CASA-DB System 

considering only Communication Context (Slack Time).  

Figure 4.14 shows the average CPU utilization for the context aware system (CASA-DB) 

considering the communication context vs. the CPU utilization of the context free system (SA-

DB). The figure show that the context free system SA-DB, performs better in terms of CPU 

utilization than the context aware system CASA-DB. 
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Chapter 5 

Conclusion and Future Work 

 

In this thesis we propose a context aware cloud system that monitors and uses the mobile 

context information to make intelligent cloud resource allocation and scheduling decisions. The 

cloud resource allocation and scheduling scheme’s objective is to minimize cost of execution 

whilst meeting the mobile user jobs’ deadline. The rational of using a context aware cloud 

system is validated through simulation, which shows that the context aware system could 

reduce the cost of executing the mobile user jobs on the cloud. 

Mobile cloud users present their own challenges when acquiring services from the cloud. The 

inherent characteristics of the mobile user devices and their mobility induce these new set of 

challenges. The context aware system considers the following user context information: 

location, mobile device energy level and the data rate the mobile device is experiencing. Mobile 

user jobs are allocated to data centers that are located in the same location zone where the 

mobile device resides to reduce any additional latency that the user may encounter using 

distant datacenters. Furthermore, in our scheme the context aware cloud broker monitors the 

mobile device energy level that may drop below the threshold required for communication 

resulting in data loss. The broker make a decision of either executing the mobile user job on the 

cloud if the energy level is above the threshold, or hold the execution of the job if the energy 

level is below the threshold. Once the mobile device regains the level of energy required for 

successful communication, the cloud broker will execute the mobile user job. In contrast, in the 

context free scenario, if the mobile device energy is low beyond the required energy for 
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receiving the cloud result and the mobile user launches their job on the cloud then the job will 

be executed regardless of the user context and the user will not be able to receive the results 

from the cloud. In this case the cost for the user is the cost of transmitting the job and its data 

to the cloud in addition to the cost of executing the job on the cloud. The user will incur this 

cost even when the user is not able to receive the results. Alternatively, in the energy context 

aware scenario, the mobile user avoids incurring this cost because the context aware broker 

will make the intelligent decision of delaying the execution of the job until the mobile device 

regains the energy required to receive the result from the cloud. In addition to saving the user 

the extra cost, our implementation of the cloud system shows better CPU utilization of 

resources in the context aware scenario than in the context free scenario. Simulation shows 

that the CPU utilization of the energy context aware system performs better in 70% of the time 

intervals of the monitored period than the context free system.   

In addition to the energy context, the mobile device’s data rate was considered in the 

context aware system. The mobile device network connection type and/or data rate changes 

affect directly the communication between the cloud users and the cloud provider. The change 

in communication time is exploited to adapt the resource allocation and scheduling in the 

cloud.  A slack time is calculated to reflect the change in the data rate the mobile device is 

experiencing. Slack time is the difference between the user deadline (Wd) and the turnaround 

time for a user job which encapsulates the transmission time of the user jobs. The slack time 

has to be more than zero for the cloud system to meet the deadline (Wd). If the data rate the 

mobile device is experiencing becomes faster thus reducing the transmission time, then the 

slack time will be increased which gives the cloud system additional time to delay executing the 
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job. The delay of job execution could be used to increase the system internal execution 

deadline when allocating the resources for the jobs of the user who is experiencing higher data 

rates. Thus the cloud system could allocate slower VMs to the user jobs. In the future, we plan 

to design a model for the calculation of the delay in job execution introduced by the context 

change.  

The use of context aware system provides better cloud system utilization and potentially 

better user experience. However, a design of a ‘context aware’ SLA agreement between the 

cloud user and the cloud provider is needed to take advantage of the user context. The SLA 

negotiation has to include the terms of which the mobile user and the cloud provider will agree 

upon when using the user context information. These terms should include an agreement on 

changes in costs and/or user defined deadlines that might take effect in the context aware 

system. This topic will also be explored in our future work.  

Furthermore, we plan to study the effect of using a context engine and monitoring the user 

context information on the context aware cloud system scalability. Cloud mobile users’ 

numbers are growing rapidly and a context-aware cloud system has to provide the extra 

processing and storage incurred from managing the context information of cloud mobile users.  
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