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Abstract

The collapse of buildings often result in human victims becoming trapped within rubble. This

environment is dangerous for emergency first responders tasked with locating and extricating victims.

Recent work in scene mapping using photometric colour and metric depth (RGB-D) data suggest the

possibility of automatically identifying potential access holes into rubble interior. This capability would

improve search operation by directing limited resources to be concentrated on areas where access holes

might exist.

This thesis presents an approach to automatically identify access holes in rubble. The investigation

begins by defining access holes in terms of their functional utility, that allow for their algorithmic

identification. From this definition, a set of hole-related features extracted from RGB-D imagery are

proposed for detection. Experiments were conducted using data collected over a real-world disaster

training facility. Empirical evaluation indicates the efficacy of the proposed system for successfully

identifying potential access holes in disaster rubble scenes.
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Chapter 1

Introduction

1.1 Motivation

From the moment humanity started using material to construct structures for shelter, those same ma-

terials have posed dangers when they collapse with people inside. As buildings became more complex

and were more densely packed, we formed cities that compounded the problem when those buildings col-

lapsed. When buildings collapse on a scale that the aftermath is beyond the capability of local emergency

services to cope, the result is an urban disaster. Disasters involving collapsed buildings in urban areas

occur for a variety of reasons including natural and human-influenced. Due to the increased population

density in these areas, the likelihood of humans becoming trapped (entombed) in the resultant building

rubble is quite high. Examples of this type of disaster are not hard to find and include the 2001 World

Trade Center collapses due to terrorist attacks in the United States (Casper and Murphy, 2003), the

2009 earthquake in Haiti (Yates and Paquette, 2011), the 2011 Tohoku earthquake and tsunami off the

coast of Japan (Nakahara, 2011), the 2012 Algo Centre Mall collapse in Elliot Lake, ON caused by rust

(Belanger, 2014), and the 2013 Rana Plaza collapse in Savar, Bangladesh (Alamgir et al., 2014). Each

of these examples, shown in Figure 1.1, have resulted in thousands of people killed outright, severely
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of human-influenced and natural disasters. (from left-to-right) 2009 earthquake in
Haiti, 2011 Tohoku tsunami, 2012 Algo Centre Mall collapse, debris from the 2001 World Trade Center
attack, and the 2013 building collapse in Savar, Bangladesh.

injured and traumatized. In response to these events, organized teams of emergency first responders

with specialized training and equipment, called Urban Search and Rescue (USAR) Task Forces (TF),

are deployed to locate victims, medically stabilize and extricate victims to send them to hospitals and

other second line facilities (FEMA, 2009). Victims trapped in rubble will inevitably perish if they are

not found in a timely manner. When rescue personnel perform triage on a collapsed structure, they first

determine areas that are likely to contain trapped victims and then form a plan to access those struc-

tures’ interiors. If access holes already exist, these will be evaluated before rubble removal is considered

to save time and reduce the chances of creating secondary collapses (FEMA, 2009).

Two critical factors in the response planning process are the considerations of time and an under-

standing of what is actually happening at the scene, i.e., situational awareness. The likelihood of finding

and extracting a survivor is dependent on the amount of time that passes. Anything that safely decreases

the delay required to locate a survivor can lead to an increase in lives saved (Macintyre et al., 2006).

A USAR incident is inevitably a dangerous and chaotic environment, often containing elements that

pose threats to the safety of the responders working in it. It is important that any tools responders

use decrease the search time required to find trapped survivors and also decrease the risk of injury to

themselves.

2
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When a building collapses, the resulting rubble often contains areas where intact pieces of debris

resist the crushing force of the load, and act as shelters for the area under them. These areas are called

voids and are prime locations to contain survivors. One of the first actions of structural engineers is to

identify likely locations of voids and target them as key areas to search for survivors. Searching voids is

a dangerous task because the stability of the rubble pile is largely unknown. Typical methods of finding

entry into these areas involve visually inspecting the scene for “access holes” that may lead to subsurface

voids; however, interacting with the rubble pile at this point can trigger secondary collapses that put

victims and responders at risk of injury or even death.

This thesis proposes a novel vision-based approach that potentially extends the situational awareness

of first responders and reduces the time necessary for locating these access holes in USAR environments

within the domain of Computational Public Safety (CPS). This approach allows responders to perform

a subset of the inspection task before they arrive at an incident, removing them from direct danger and

potentially speeding up rescue efforts.

1.2 Problem Definition

The terms “hole” or “access hole” are not clearly defined within the USAR nomenclature. The challenge

lies in the amorphous nature of holes (e.g., the lack of prototypical shape, depth and orientation), thus

a definition is left open to the interpretation of each search team. To compound the difficulty of this

problem, disaster rubble typically contains many irregularities within the rubble pile. For instance,

inconsistency in the size, shape and types of the material constituting the rubble affect what is and is

not considered to be a candidate entry hole. Figure 1.2 shows an example of a rubble scene with multiple

access holes that can potentially be used for access to the rubble’s interior.

An access hole can be defined through its intended use. The goal is to locate holes that are sufficiently

large to permit human entry. In this way, an access hole is defined in the context of its functional utility

3



1.3. OBJECTIVES CHAPTER 1. INTRODUCTION

for search and rescue. This is analogous to the functional object recognition paradigm pursued in

computer vision (Dickinson, 2009) that models objects, such as chairs, in terms of their function, i.e.,

their ability to support a human, rather than the particulars of their appearance.

The instability of rubble can prevent USAR teams from safely traversing it to find access holes. This

situation has led researchers to investigate ways to minimize risk to human searchers, through the use

of unmanned vehicles (Murphy, 2004; Birk et al., 2011; Finn and Wright, 2012; Ferworn et al., 2011;

Onosato et al., 2006). Previous work (Ferworn et al., 2011) demonstrated the ability to equip a UAV

with a low-cost, off-the-shelf camera sensor that captures colour imagery with per-pixel metric depth

information (i.e., an RGB-D sensor) to survey disaster scenes from a safe distance. This information can

then be used to generate a scene-level model that can quickly provide first responders with important

details about the structure of the rubble (Ferworn et al., 2011) and provide input to an automated hole

detection system, as pursued in this thesis.

In addition to the challenges posed by dealing with large amounts of visual data, traumatic events can

overwhelm an individual, such as a building collapse disaster. This can lead to critical incident stress that

can impair the ability of personnel to function and perform tasks involving detailed observation required

for visual search (FEMA, 2009). This thesis argues that a system that automates the identification of

access holes potentially reduces the cognitive load faced by response personnel.

1.3 Objectives

Current approaches for identifying access holes rely on visual inspection by first responders. If responders

are precluded from entering the scene or not yet present, they must rely on imagery as their main source

of information. The ability to collect data far outpaces a human’s ability to deal with it. A large disaster

field would quickly tax a trained human observer. Assuming a human operator inspects data collected

with an RGB-D sensor, the amount of time required to review a video dataset would need to be equal

4
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Figure 1.2: An example of a real-world building collapse in Savar, Bangladesh. Holes into the rubble,
highlighted in green, may help first responders find trapped survivors.

to or greater than the time taken to record it. While an operator is capable of manually inspecting each

image for access holes, a large disaster field would render this task extremely difficult and prohibitively

time consuming.

The ability to assess an urban disaster scene with respect to the likely location of hidden human

survivors must be done quickly to increase the chances of finding victims alive within the structures

formed by the rubble. Finding and accessing victims can be a time consuming process, fraught with

danger as the structures are not always stable and are subject to secondary collapse. One way of

determining how to gain access to a rubble structure is through the identification of access holes into the

structure. Due to the unstable nature of disaster rubble, it is better to find an existing access hole than

to make a new one because of the dangers of secondary collapse. This thesis presents a novel vision-

based approach for automatically detecting access holes in disaster rubble imagery without unnecessarily

exposing disaster workers to the dangers of rubble structures, and potentially accelerating the structural
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1.4. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

triage process (see Chapter 2, Section 2.2).

This thesis examines the case of holes leading into subsurface voids to demonstrate the proof-of-

concept. The approach is naive by assuming an access hole possesses clearly marked boundaries and

a salient depth variation from the surrounding area. In addition, the potential access hole possesses a

minimum width and aspect ratio to accommodate the entry of an adult human searcher. It is conservative

by limiting detections of access holes to the proposed functional definition. While the focus in the current

work is on human searchers, other types of search entities are readily accommodated, such as search

dogs or robots.

1.4 Contributions

In light of the previous work, this thesis makes three contributions. First, a novel definition of an

access hole is presented based on a set of features derived from the functional form and photometric

characteristics in collapsed structure. Second, a novel approach is developed to identify access holes in

collapsed structures to be used by USAR personnel in accessing the collapsed structure. Analysis is

performed on aerial imagery obtained by a UAV outfitted with an RGB-D sensor to identify candidate

access holes. Third, this thesis is the first to introduce a publicly available dataset obtained from

a real-world USAR training rubble pile, where access holes are manually provided as ground truth.

Quantitative empirical evaluation on the introduced dataset indicates the potential of the proposed

approach for successfully identifying access holes in disaster rubble scenes.

1.5 Outline of Thesis

The remainder of this thesis is structured in the following way. Chapter 2 provides background informa-

tion related to this thesis, including an overview of emergency management with respect to USAR and a

survey of related work on data acquisition methods and image recognition methods. Chapter 3 presents

6



CHAPTER 1. INTRODUCTION 1.5. OUTLINE OF THESIS

the proposed approach by providing an operating definition of an access hole and describes the access

hole detection algorithm. Chapter 4, documents the introduced dataset used in evaluating the proposed

approach, the experimental evaluation of a software implementation of the proposed approach, and the

results of empirical evaluation. Finally, Chapter 5 presents a summary of this thesis, with a discussion

of limitations and directions for future research.

7





Chapter 2

Background

This chapter presents background information and related work drawn from the literature. This chapter

begins with an introduction to Disaster Emergency Management (Section 2.1) and Urban Search and

Rescue (Section 2.2). While knowledge of these domains is not paramount to understanding the concept

of access hole detection or the proposed detection system, it is important to understand the context within

which the work is applied, i.e., within the field of computational public safety. Next, an introduction

to data acquisition, in particular, response/rescue robotics with respect to their sensing capabilities.

Finally, this chapter concludes with a review of visual object detection approaches.

2.1 Disasters and Emergency Management

In the context of emergency management, the terms hazard, emergency and disaster have very specific

meanings (Lindell et al., 2006). A hazard is an event or situation with the capability of endangering

human life, property, or the environment in a particular location (Lindell et al., 2006). A hazard

represents the potential for damage, rather than the damage itself.

An emergency can have two different meanings, depending on the particular context that it is used

9



2.1. DISASTERS AND EMERGENCY MANAGEMENT CHAPTER 2. BACKGROUND

(Lindell et al., 2006). The first application is applied to minor emergencies, where there may only

be a limited amount of casualties or property damage. The second definition refers to an impending

calamitous event. This creates an emergency situation where there is very little time to respond; however,

the consequences of the event are likely to be major. The situation warrants a co-ordinated response

from local emergency services, such as fire, police and emergency medical services (EMS). In this thesis,

emergency refers to the latter definition.

A disaster is a major destructive event that cannot be managed with the resources of a single com-

munity (Lindell et al., 2006). A disaster may result in the loss of human life, destruction of property or

environmental devastation. An affected community must reach out to larger jurisdictions and commu-

nities for assistance, often at the regional or national level.

The immediate activity following the onset of a disaster incident is called response and is intended

to initiate recovery as quickly as possible. To effectively react to disasters, response agencies plan for

disasters by developing action plans that mitigate potential risks, allowing for appropriate reaction to

events, and provide continuity of operations and recovery. To effectively deal with the many types of

disasters requires specialized expertise and management ability. Response agencies typically employ

professional emergency managers to manage the copious effort required to mount the response effort and

mitigate the negative impacts of the incident (McEntire, 2007).

The Emergency Management Cycle represents a strategy for minimizing risk pre-, during and post-

disasters (Environment Canada, 2014). Recognizing and taking appropriate actions at each stage of

the cycle allows for greater awareness, preparedness and reduction in loss of life. Preparedness can also

help mitigate and prevent future disasters. Most jurisdictions recognize the following four stages in the

emergency management cycle, shown in Figure 2.1:

• Preparedness focuses on learning from past disasters, and outlining strategies. Specific action

plans are prepared in advance of a disaster occurrence.

10
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Emergency 

Management

Mitigation

Response

PreparednessRecovery

Figure 2.1: A diagram of the Emergency Management Cycle, reproduced from Canada’s Emergency
Management Basics (Environment Canada, 2014).

• Response represents the realization of the mitigation and preparedness phase. It includes allo-

cating necessary emergency services and first responders to a potential disaster to protect human

life and reduce property damage.

• Recovery begins once the threat to human life has been removed. Attempts to restore an affected

area to normality by focusing on rebuilding and repairing infrastructure.

• Mitigation focuses on long-term reduction or removal of risk by attempting to prevent or reduce

the severity of disasters.

The term “first responder” generally refers to personnel who respond to an emergency situation

first. During a physical event, such as a natural disaster or similar events, police, fire and/or EMS are

immediately deployed to an affected area during the response phase. It is during this phase that the

potential for loss of life is at its highest. Depending on the scale of a physical disaster, a local response

may be adequate. If a disaster is large enough, specialized response teams are deployed to assist. This

11



2.2. URBAN SEARCH AND RESCUE (USAR) CHAPTER 2. BACKGROUND

thesis proposes a novel approach with the goal of both increasing the situational awareness of these

responders and reducing the time needed to formulate response plans.

2.2 Urban Search and Rescue (USAR)

In urban environments, the structural collapse of buildings may result in people becoming trapped in

the resulting rubble. The term for these trapped people is “victims” or “patients”. USAR involves the

detection, extrication and medical stabilization of these victims and is used to describe a specialized

group of skills and activities related to Search and Rescue (SAR) operations in urban centres dominated

by numerous buildings in close proximity (Emergency Management Australia, 2004). This specialization

requires a multi-agency response that is beyond the capability of normal emergency service organizations.

Teams of first responders, often referred to as Task Forces (TFs), are typically organized as regional or

national resources that are available for quick deployment when required. USAR TFs typically consist of

fire, police, EMS, doctors, structural engineers, radio operators, canine handlers, and heavy equipment

operators (Murnane and Fortney, 2003). When a disaster is formally declared, a USAR TF may be

activated and dispatched to assist in the response to it. The components that make up a TF are:

• Search members are responsible for locating survivors.

• Rescue workers are responsible for extricating trapped survivors.

• Technical crew specialize in inspecting and reinforcing structural components, operating special-

ized equipment and heavy machinery, and providing communication services.

• Medical personnel provide any medical care as required (including to other members of the TF).

In Canada and the United States, TFs are classified into the following three levels based on their

capability (Public Safety Canada, 2014):

12



CHAPTER 2. BACKGROUND 2.2. URBAN SEARCH AND RESCUE (USAR)

• Light USAR TFs respond to incidents within a single jurisdiction for a single operational shift

(up to 12 hours). They are trained and equipped to search and stabilize within structural wood

systems, light metal components and un-reinforced masonry.

• Medium USAR TFs respond within mutual aid boundaries for an operation time period of up to

one day (24 hours). They are equipped and trained to search and stabilize all collapsed structures

and can conduct USAR operations involving heavy timber and reinforced masonry.

• Heavy USAR (HUSAR) TFs respond to incidents nationally with an initial sustained operation

period of up to ten days, with resupply every three days thereafter. They are equipped and trained

to search and stabilize all collapses and include structural engineering components.

2.2.1 Triage and Prioritizing Search

Responding organizations must prioritize locations where finding and rescuing victims has the highest

probability for success. This assessment of initial reconnaissance, known as triage, is performed either

by local emergency response organizations or USAR TFs. Triage must be performed by qualified and

experienced individuals who usually have significant structural engineering and search experience. Pos-

sible voids (further discussed in Section 2.3) or access holes into the rubble are noted during this initial

inspection for use during the later search operations. This initial size-up involves traversing through

the debris field and individually identifying buildings and evaluating them for priority. By automating

the process of identifying access holes, as is pursued in this thesis, the search space of the debris field is

reduced, freeing trained TF members to perform other tasks.

Once a building has been triaged, a search plan is built around potential entry points, known victim

locations, hazards, and potential egress routes. Search teams are deployed with various strategies. Canine

teams (consisting of a trained USAR dog and its human handler) are employed to detect the human

scent of victims trapped and hidden within rubble. The dog signals the location of victims by standing

13



2.3. RUBBLE, VOIDS AND ACCESS HOLES CHAPTER 2. BACKGROUND

and barking in the vicinity of the strongest scent (International Fire Service Training Association, 2005).

Sound-sensing devices, such as microphones, can be used to listen for trapped survivors who may be

calling, breathing, tapping or otherwise producing sounds (FEMA, 2006). Recently, Ground Penetrating

Radar (GPR) has demonstrated the potential for locating victims by remotely sensing heart beats

(Crocco and Ferrara, 2014); however, these approaches require placing TF members in direct contact

with the disaster scene hazards. Employing unmanned vehicles to remotely survey rubble, as considered

in this thesis, can remove trained responders from this hostile environment.

During rescue operations, survivors who can be extracted easily are assisted first. Those survivors

who are trapped beneath debris require additional effort since material, such as concrete and metal,

must be carefully removed without causing secondary collapses. The automatic identification of areas

that can likely be accessed without further removal of debris provides TFs with access paths that can

be further prioritized by search specialists.

A disaster scene often exposes first responders to traumatic stimuli and contact with dead or injured

casualties. Studies have shown that contact with these kinds of experiences may overwhelm the ability

for a responder to cope, leading to critical incident stress (Harris et al., 2002). By remotely inspecting a

disaster scene, the approach proposed in this thesis removes TF members from direct contact with these

stressors. This can potentially reduce the cognitive load placed on search specialists.

2.3 Rubble, Voids and Access Holes

Rubble characterization is a difficult problem. There have been several investigations attempting to

contribute solutions to this problem (Molino et al., 2007; Lombillo et al., 2013; Binda et al., 2001;

Onosato et al., 2012); however, there is no universally accepted categorization method for rubble. These

early attempts to characterize rubble are unlikely to lead to better operational techniques for finding

trapped people faster. While characterising the semantics and physical characteristics of rubble is beyond
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Void Void

Void Void
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Figure 2.2: Examples of common types of structural collapse. Clockwise from top left: A-frame collapse,
Pancake collapse, V-shaped collapse and a Lean-to collapse.

the scope of this thesis, a specific sub-problem of rubble characterization is addressed, namely, structures

formed by its absence.

Components within newly created rubble can form spaces that may provide havens where victims

can temporarily survive. These spaces are known within USAR terminology as “voids” (FEMA, 2012).

A common way for TFs to survey rubble for areas that house potential voids is to exploit patterns in

the way buildings typically collapse. Examples of the forms that newly collapsed structures often take

are (shown in Figure 2.2):

• V-shaped floor collapse occurs when the exterior walls remain intact, with the upper floors

failing in the middle. Void spaces are found below the characteristic V-pattern caused by this type

of collapse.

• Pancake collapse form when all the exterior walls of a building fail simultaneously, resulting in
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floors that stack flatly on top of each. The name is given due to the resemblance to a stack of

pancakes.

• Lean-to floor collapse is the result of a single outer wall failing while leaving the other intact.

The floor on the side that is no longer supported falls to form a triangular collapse pattern. This

collapse pattern yields a void underneath.

• A-frame collapse occurs when floors on both sides of a centre wall fail and collapse inwards. The

resulting collapse is reminiscent of two opposing lean-to collapses. This type of collapse results in

the likelihood of two void spaces on either side of the centre wall.

While there are specific patterns of collapses that TFs look for when surveying a rubble pile, this ap-

proach does not consider ways of entering a collapse. This thesis presents an approach to visually identify

holes in rubble that can be further examined for human insertion or probing for further reconnaissance

and information gathering.

2.3.1 Survival Under Rubble

Extricating entombed survivors is a time sensitive operation. Statistics show that survival of victims

within rubble becomes drastically low beyond 72 hours, a window referred to within the response com-

munity as the “golden 72 hours” (Tadokoro, 2005). Even if rescue is performed before the 72 hour mark,

studies have shown that victims extricated beyond 48 hours are unlikely to survive beyond a few weeks

in hospital (Murphy et al., 2008). Events that require activation of HUSAR TFs often require many

hours of transit for specialists and heavy equipment to arrive on scene. This is critical time where early

reconnaissance is critical for planning and decision making. Our approach allows local responders to per-

form preliminary information gathering that automatically detects access holes that can be transmitted

to HUSAR TFs on-route and used by search specialists in decision making and planning.
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2.4 Data Acquisition

The instability of rubble can prevent USAR teams from performing their function without compromising

their own safety. These dangers have led researchers to seek alternatives that minimize risk to rescue

workers. Search and rescue operation are often time critical and sensory data is useful for determining

the quality of the environment and potentially assist with locating victims. Rescue robots may be able to

provide benefit to operations by providing a robust platform to carry various sensory apparatus, collect

data and deliver supplies to trapped victims (Murphy, 2000).

2.4.1 Ground-based Robotics

The military and law enforcement often use robots to remotely inspect and manipulate potential haz-

ards, such as bombs and other explosive devices (Costo and Molfino, 2004). A common term used by an

increasing number of robotics researchers is “response robot”, a robot that is used in the response phase

of the emergency management cycle. Early attempts at incorporating response robots into USAR appli-

cations utilized repurposed military and police ground robot technologies. In the earliest documented use

of SAR robots, the Center for Robot-Assisted Search and Rescue (CRASAR) deployed 17 tele-operated

robots to search the wreckage of the 2001 World Trade Center collapse in New York (Murphy, 2004).

There have been attempts to use ground-based robots for autonomous navigation and mapping rubble

interior spaces (Mobedi and Nejat, 2012); however, this approach does not attempt to locate access holes

for insertion into rubble. Using ground vehicles as platforms for automated, top-down, road inspection

has demonstrated some success (Sy et al., 2008). In this work, a sensor collects baseline information

about level road surfaces and detects variances that translate to detected surface cracks. Since disaster

rubble is often comprised of irregular shapes and materials, as opposed to level terrain, this approach is

not appropriate for USAR. Work has been carried out using autonomous vehicles equipped with GPRs

for detecting subsurface voids in mining operations (Wilson et al., 2009); however, this approach requires
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Figure 2.3: An example of a Matilda ground robot utilizing tracks for locomotion (Munkeby et al., 2002).

heavy equipment, level terrain and a mobile platform traversing the area of inspection. USAR terrain

is inevitably cluttered and chaotic, making effective ground traversal problematic for robots that utilize

wheels or tracks for locomotion. Figure 2.3 shows an example of such a tracked robot.

Research in terrain traversability has produced the concept of “negative obstacles”. Negative ob-

stacles are defined as obstacles that lie below the ground surface that return no sensor data and thus

should be treated as holes to be avoided (Heckman et al., 2007). Early investigations into detecting

negative obstacles analyzed ray traces of every pixel, comparing actual range values to expected ranges

(determined via the position of the ground plane) to determine the difference (Matthies et al., 1995).

This approach makes the assumption of a homogeneous terrain being traversed, making it unsuitable for

USAR. Further work in negative obstacle detection (Sinha and Papadakis, 2013) project 3D point cloud

data collected directly in front of the sensor to a 2D ground plane to detect gap contours. Detections

are then further analyzed for traversability of ground robots in the USAR domain. In contrast to these
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Figure 2.4: A Hex-copter UAV outfitted with a sensor package. Image courtesy of (N-CART, 2011).

previous works that are concerned with the avoidance of negative obstacles for terrain traversability, this

thesis is interested in the suitability of these negative obstacles for insertion of trained search personnel

in subsurface voids.

Ultimately, ground robots are limited in the areas they are able to successfully traverse, since the

terrain composition can adversely impact locomotion (Ollero, 2004). Consequently, there are documented

incidents where response robots have been abandoned during operations after becoming stuck on rubble

terrain (Murphy, 2004). This limits their utility for data collection in this thesis and has motivated the

use of UAVs to conduct surveying and reconnaissance tasks.
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2.4.2 Aerial Robotics

To avoid the limitations of ground robots and to investigate areas inaccessible by a human searcher

Unmanned Aerial Vehicles (UAVs) have been used to explore remote regions and collect data. Using a

UAV for USAR operations allows searchers to survey areas that would not ordinarily be accessible from

the ground and view the terrain in perspectives unattainable by terrestrial robots (Finn and Wright,

2012; Onosato et al., 2006). This rich information allows responders to carefully plan missions (Birk

et al., 2011; Goodrich et al., 2008) and has proven extremely useful in finding victims in search and

rescue operations (RCMP, 2013). A drawback with deploying UAVs is that they do not perform well in

inclement conditions and cannot be easily controlled in confined spaces where the threat of collision is

present.

Recent work has considered UAVs for data collection in both terrain mapping and 3D scene recon-

struction (Ferworn et al., 2011), shown in Figure 2.4. This previous work was used as a basis in collecting

the evaluation dataset introduced in this thesis.

2.4.3 Sensors

Sensors provide information about the environment they are surveying. A variety of sensors can be

employed by robots to gather information from an environment. Most pertinent to the current thesis

are sensors that determine distances. These include Laser Range Finders (LRFs) that calculate the

time-of-flight of a single laser pulse to be sent/reflected/received (Sedha, 2008) and sonar arrays that

calculate a distance measure by emitting a high frequency pulse of sound and receiving the reflected

echo (Moravec and Elfes, 1985). Currently, these sensor packages are cost prohibitive, which reduces

their accessibility and availability. The large financial costs associated with outfitting and potentially

losing a response robot has been one of the limiting factors for wide spread adoption of these devices.

In addition, these sensors have weights in excess of the lift capacity of most small scale UAVs.

Recently, affordable and compact stereo cameras have become available. Passive stereo cameras
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calculate depth using image pairs generated from photometric cameras placed side-by-side with a known

fixed separation. Depth is encoded as the difference in perspective between the left and right camera,

and is extracted by identifying a set of correspondence points between the two images. Once accurate

correspondences are found, rays are intersected between the two images to triangulate the 3D positions,

i.e., real world co-ordinates, (Trucco and Verri, 1998). A potential drawback of such passive stereo

cameras is the need for rich surface texture which is necessary to establish correspondences between the

same world points projected in each camera. Rubble created from structural collapse does not exhibit

sufficient unique texture to provide accurate depth estimates.

The introduction of light-weight, low-power, low-cost commercial off-the-shelf red-green-blue-depth

(RGB-D) sensors (Newcombe et al., 2011; Asus Xtion, 2014) have provided solutions to replace similar

but cost prohibitive sensors. RGB-D sensors differentiate themselves from passive stereo cameras by

actively emitting an infrared grid on the surface that is being sensed. The grid simplifies the correspon-

dence problem by providing texture to an infrared camera, thereby increasing the quality of the depth

information obtained by the sensor. A drawback of this type of sensor is the limitation of environments

where it can be deployed. In particular, strong sources of infrared light (e.g., the Sun) can wash out the

infrared grid, introducing errors into the distance measurements. In this thesis, data is collected using

the ASUS Xtion RGB-D sensor (Asus Xtion, 2014) shown in Figure 2.5, with sample output from the

sensor shown in Figure 2.6.

2.5 Visual Object Detection

The challenge this thesis addresses is closely related to the domain of object detection, found in computer

vision. The goal of object detection is to detect and localize object instances (i.e., an image pattern)

within an image . An extensive body of work has accumulated centred on appearance- and geometry-

based object recognition approaches (Grimson et al., 1990; Mundy, 2006; Dickinson, 2009; Andreopoulos

21



2.5. VISUAL OBJECT DETECTION CHAPTER 2. BACKGROUND

   A                    B          C

Figure 2.5: An Asus Xtion RGB-D sensor used to collect data in this thesis. The sensor uses (A) an
infrared emitter (B) a standard RGB colour camera and (C) an infrared camera. The infrared emitter
is used in conjunction with the infrared camera to recover metric depth.

and Tsotsos, 2013).

2.5.1 Appearance and Geometry-based Detection

Appearance-based approaches map a photometric input pattern to a label of a specific object instance

or class (Dalal and Triggs, 2005; Felzenszwalb et al., 2010; Lampert et al., 2008; Krizhevsky et al.,

2012). To perform object detection, an input image is abstracted into a set of features. This can include

low-level visual properties, such as colour or texture captured by SIFT (Lowe, 1999) or HOG (Dalal and

Triggs, 2005), to more sophisticated mid-level representations such as CNN (Krizhevsky et al., 2012).

Detection is achieved by comparing features of the input image to object models that are learned from

sets of labeled training images (object vs. non-object). The learned models capture the variability in

appearance of the object of interest (Yang et al., 2002). A number of approaches have been proposed

to address the challenge of object detection. Sliding window approaches scan over patches of the input

image at multiple scales and compare the learned models against each window patch. This can be

computationally expensive since the search complexity is a product of the number of scales and patch

locations in the image. One way to address this issue is the use of detection window proposals based

on “objectness” detectors (Alexe et al., 2012). Objectness detectors produce a list of detection windows

22



CHAPTER 2. BACKGROUND 2.5. VISUAL OBJECT DETECTION

Figure 2.6: Sample imagery extracted from an ASUS Xtion RGB-D camera. A photometric image (left)
with a corresponding per-pixel registered depth image that has been colourized for visualization (right).

that represent a subset of the total locations and scales that are possible. This can have the benefit of

improving detection speed, but still does not address the problem that a classification window does not

segment out pixels of the object from the surrounding background. Object detection using regions is

one approach to addressing this concern (Fulkerson et al., 2009; Gu et al., 2009; Uijlings et al., 2013;

Carreira and Sminchisescu, 2010). This type of approach has the benefit of encoding boundary and

scale information into a detection (Gu et al., 2009). Most closely related to the approach used in this

thesis is segmentation by superpixels. Superpixels capture region information from contiguous areas by

aggregating pixels into superpixels. This approach creates accurate segmentations since the boundaries

of objects tend to be respected, provided the risk of merging unrelated pixels is minimized (Fulkerson

et al., 2009).

The problem of 3D object recognition has been of particular interest in the fields of pattern matching,

robotics and computer graphics (Tangelder and Veltkamp, 2008; Jain and Dorai, 2000; Bimbo and Pala,

2006). This approach leverages 3D models to build descriptors of the object of interest. A major

advantage of these approaches is their invariance to material properties, viewpoint and illumination over

appearance-based methods. Further, these approaches simplify the figure-background segmentation

problem compared to appearance-based approaches. Three-dimensional recognition has experienced a
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Figure 2.7: Examples of the variation in size, shape and orientation of access holes in disaster rubble.
This wide variation makes classification by appearance a difficult problem.

revived interest in both the robotics and vision communities due to the introduction of commodity priced

RGB-D sensors (Newcombe et al., 2011) and the abundant availability of three-dimensional models (Song

and Xiao, 2014).

An access hole lacks a standard shape, size or orientation and so no canonical definition exists

to perform a matching (see Figure 2.7), making appearance- or geometry-based detection a difficult

problem.

2.5.2 Functional Recognition

Most closely related to the approach proposed in this thesis are functional descriptions for object recog-

nition (Winston et al., 1983; Stark and Bowyer, 1991; Stark et al., 2008; Grabner et al., 2011), i.e.,

centering the object model on what one can do with the object rather than its appearance or shape.

Many object classes exhibit a large degree of variation in physical appearance.
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Figure 2.8: Chairs display large intra-class variation.

For some of these objects, their description could be more easily provided by their function rather

than their appearance or shape. In contrast to appearance-based detectors, “affordance” detectors use

the characteristics of an object to imply its functional definition. For instance, chairs exhibit a large

variety of shape and appearance (shown in Figure 2.8), e.g., the number of legs of a chair, while usually

four, may vary. It is difficult to classify a chair based on its appearance, but cues from its function are

useful in identification (i.e, “is this useful for sitting”?). In light of this, affordance based detectors have

become a focus within the robotics and cognitive vision domains (Yao and Fei-Fei, 2010; Aksoy et al.,

2010).

This idea is adapted to develop a working definition of an access hole and use the proposed function

of an access hole to classify it. In other words, rather than describing what a hole looks like, it is more

productive to define its function.
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Chapter 3

Technical Approach

3.1 Access Hole Definition

Before developing an approach that detects access holes, an operational definition is required. In this

thesis, an “access hole” is defined by its potential utility as a means of accessing a collapsed structure, i.e.,

its function. An access hole must be deeper in the interior than the surrounding terrain. Furthermore,

to be useful for USAR purposes, an access hole must be large enough to allow entry by a searcher, such

as a human, dog or robot. In the remainder of this thesis, a searcher is assumed to be an adult human.

This thesis has identified three attributes that characterize an access hole to perform a detection: (i)

depth disparity, (ii) hole size and (iii) photometric brightness.

3.1.1 Naive and Conservative Approach

The definition of an access hole is deliberately naive in that the assumptions imply another category:

non-access hole that is defined with the negative attributes of an access hole, i.e., it cannot fit a human-

sized entity. The assumptions are naive in the sense that there is no significant evidence to suggest that

a non-access hole does not offer some form of access to a trapped human, e.g., the insertion of a camera-
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equipped search pole. The approach is conservative by deliberately limiting the potential number of

visual features that might otherwise be identified as access holes. This is important in that there are

many visual features in rubble that may be useful for accessing interior rubble but would require too

many physical resources or be too dangerous to actually use. The intention has been to provide a useful,

metrics-based definition of access holes that can be algorithmically exploited without producing results

that would needlessly overwhelm any first responders.

3.2 Access Hole Attributes

The input to the proposed approach is an image pair extracted from an RGB-D sensor consisting of

photometric colour (RGB) and metric depth. The two images are registered such that they have a

one-to-one mapping. To perform detection, candidate regions that potentially contain access holes must

be identified from the terrain surrounding it. The proposed approach first over-segments the depth

input into regions, i.e., superpixels (Ren and Malik, 2003), with the purpose of isolating regions (i.e.,

potential holes) exhibiting depth measurement discontinuities. A superpixel is a perceptually meaningful

atomic image unit that contains pixels that are similar in some image property, such as depth, colour

and texture. It is implicitly assumed the constituent pixels of a superpixel belong to the same physical

entity in the world. An adjacency graph is next created by identifying the neighbours of each superpixel.

For each superpixel, a set of geometric and photometric feature scores is assigned, where each score

represents the likelihood of a hole. Feature scores for each superpixel are aggregated to realize a final

hole detection score. Figure 3.1 summarizes the data processing flow for the proposed approach to access

hole detection.
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Figure 3.1: Data flow for the proposed access hole detection approach. Using the input images, the depth
image is over-segmented and treated as an undirected graph. For each superpixel, a set of geometric and
photometric based feature scores is determined that are used to calculate a final detection score. The
final output is a set of localized access holes with a tightly fitted bounding box representing a candidate
detection.

3.2.1 Depth Disparity

Typically, rubble scene imagery is extremely cluttered and unstructured. A hole, the region of interest,

must be isolated from the area around it along the shared boundary. Due to the heterogeneous nature

of rubble, figure-ground separation (i.e., target entity versus background) of holes and rubble from

photometric appearance alone is rendered difficult.

Fortunately, RGB-D sensors provide an estimate of metric depth information, i.e., the underlying

geometry. The depth information is exploited to partition the image into a set of superpixels along

boundaries that exhibit a strong depth gradient. A publicly available superpixel algorithm is used to

partition the image. An inappropriate number of partitions results in a contiguous entity (e.g., a hole)

either being under-segmented or over-segmented, as shown in Figure 3.2. The assumption is made that

every superpixel overlaps with at most one hole and the set of superpixel boundaries are a superset of
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Figure 3.2: Examples of depth images segmented using a range of target superpixels. The images show
(left) an under-segmented image where the access hole is missed, (center) an image segmented with
the boundaries of the potential access hole captured and (right) an over-segmented image where the
potential access hole is sub-divided.

the hole boundaries; these are standard assumptions in the use of superpixels in vision applications, e.g.,

(Fulkerson et al., 2009; Liu et al., 2011).

The absolute depth value of a region does not alone determine if a region is an access hole. An access

hole by definition must be deeper than its surrounding terrain. As such, it is the depth discontinuity

between adjacent regions that are important. For each superpixel, an adjacency graph is built to obtain

a list of its neighbouring regions. A natural way to express the superpixel image is by an undirected

graph G = (V,E), where each vertex, vi ∈ V , corresponds to a superpixel and the edges (vi, vj) ∈ E,

denote the set of neighbouring superpixels. Figure 3.3 shows an example of the superpixel extraction

and neighbourhood discovery steps.

For each superpixel, vi, its average depth is compared against all other superpixels that share an

edge with it. Superpixels that correspond to a local depth maxima compared to its neighbours serve as

access hole candidates for scoring. The higher the mean depth for a candidate region, the more likely

it is indeed an access hole. For each superpixel, a relative depth score, Sd, is calculated. The depth

threshold used for scoring is based on data collected from anatomical models (Panero and Zelnik, 1979).

This threshold establishes the minimum depth a region must be from its surroundings to be a valid

candidate. A linear score, between 0 and 1, is assigned for any relative depth between the minimum

and maximum thresholds derived from the anatomical model. Any depth greater than the maximum
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threshold is assigned a score of 1 and any depth less than the minimum threshold is assigned 0.

3.2.2 Access Hole Size

An access hole must have an appropriate size for the potential entry of rescue personnel or similarly

sized entities. Based on this function, two size-based attributes are computed: (i) width and (ii) aspect

ratio.

The width of the region is determined by fitting an ellipsoid around the superpixel from the metric

values provided by the depth sensor and projecting the points to a plane. Points that lie beyond three

standard deviations from the mean are filtered to exclude outliers, and then projected to a plane. An

ellipse is fit to the point cluster to calculate the major and minor axes. This yields the approximate

metric width and girth of a region in metric units. For a hole to be considered appropriate for insertion

of a searcher, the width of the major axis and girth of the minor axis were adopted based on anatomical

data of the average adult human (Panero and Zelnik, 1979). A feature score Sw is assigned, between

0 and 1, where a higher score indicates a higher likelihood of accommodating a searcher. A score of

1 is assigned to Sw if the measurement of the major or minor axis are both equal or greater than the

anatomical model. If the axis measurements are 50% or below, a score of 0 is assigned. To minimize

missed detections of holes due to partial occlusion or superpixel over-segmentation, a score is applied

linearly between 0 and 1 for measurements greater than 50% of the anatomical model measurements.

To limit the candidacy of holes that may be thin and curvilinear a score for the aspect ratio of the

region is introduced. The aspect ratio score is assigned linearly by calculating the ratio of the area of a

given superpixel to the area of the bounding box tightly outlining the major and minor axes. The higher

the percentage occupied in the bounding box, the better the candidacy of the detected region. A score,

Sr, is assigned linearly between 0 and 1 based on the percentage of the bounding box occupied by the

superpixel.
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Figure 3.3: Outline of the processing flow for segmenting a depth image and determining the neigh-
bours of a particular superpixel. (left) Raw depth image, (middle) superpixel segmentation with unique
identifier and (right) an undirected graph generated from adjacency discovery.

3.2.3 Photometric Appearance

Examining the depth information alone does not provide sufficient discriminatory information about

a hole. To account for this uncertainty photometric brightness derived from the RGB image is incor-

porated. It is assumed that access holes are poorly illuminated and thus appear darker in the RGB

image. To capture this attribute two feature scores are introduced: i) absolute brightness and ii) relative

brightness.

To compute the absolute brightness intensity of a superpixel, the RGB image is converted to the

YUV colour space (Black, 2009) and the average brightness from the Y-channel (i.e., the luminance)

for each superpixel is calculated, where Y ∈ [0, 1]. To determine the threshold for a valid brightness

intensity value, a dataset was compiled from images collected via Google Image (Google, 2014). The

dataset contains 118 images depicting collapsed buildings and rubble from disaster scenes. Holes were

hand labeled and the mean brightness intensity was collected. A linear score, Sb, is assigned ranging

between 0 and 1, where a higher score is assigned to regions lower than a pixel intensity threshold that

was empirically determined from the training data.

Since holes are typically darker than the region surrounding them, each region is also scored based

on its relative brightness intensity. Using the Y-channel, the difference between the average bright-

ness of a superpixel with the average brightness of all pixels within (directly) neighbouring superpixels
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is calculated. A minimum threshold was empirically determined using the image training set contain-

ing the hand labeled ground truth. A linear score, Sc, is a assigned to a given superpixel between 0 and 1.

3.3 Detection

Each superpixel is assigned a final detection score, S. Higher scores indicate a stronger likelihood of a

superpixel being a hole. The resulting detection score, S, is calculated as follows:

S =
∑
Si∈F

wiSi + b, (3.1)

where F = {Sd, Sw, Sr, Sb, Sc} is the set of feature scores, wi denotes the weighting given to the

corresponding feature, and b is a bias term. The detection algorithm produces a list of spatial bounding

boxes for each image. Each detected access hole is represented by a bounding box that tightly outlines

the image region. The final output of the approach consists of the coordinates of the bounding boxes

and their corresponding detection score.
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Chapter 4

Experimental Results

4.1 System Setup

Evaluation of the proposed approach was performed on a novel rubble scene dataset, described below

in Section 4.2. Throughout the evaluation, the various thresholds of the approach are fixed to the same

values for all images. The minimum and maximum depth used for computing the depth score, Sd, is

based on an anatomical human model (Panero and Zelnik, 1979) and is set to 200mm and 1951mm,

respectively. The same anatomical model was used to set the minimum width and girth thresholds used

for computing the size score, Sw, and aspect ratio score, Sr, set at 655mm and 368mm, respectively. The

threshold used to compute the photometric brightness score, Sb, was empirically set to the luminance

value of 0.274. Similarly, the brightness difference between a superpixel with its neighbouring regions

used to compute the relative brightness score, Sc, is empirically set to the luminance value of 0.267. Due

to the limited amount of data available for learning parameters, an equal weighting of wi = 1
5 is given to

each feature and the bias term, b, is set to zero. This is done to remain agnostic to features that may be

stronger and avoid over-fitting to the introduced dataset. Consequently, detection scores range between

0-1.
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Figure 4.1: The OPP reference rubble pile, located in Bolton, Ontario, Canada.

4.2 Dataset

The proposed access hole detection approach was evaluated on a challenging dataset containing images

of a real rubble scene. Data was collected by mounting an ASUS Xtion RGB-D sensor and capture

device under a UAV (shown in Figure 2.4). The Xtion outputs two images: (i) a 32-bit colour image

captured at a resolution of 640×480 and (ii) a depth matrix of distances in metric measurement, mapped

per-pixel onto the RGB image. The device captures images at a rate of 30 frames per second (FPS)

with a field of view (FOV) of 58◦ horizontal, 45◦ vertical and 70◦ diagonal, respectively. The sensor

has an optimal distance of use between 0.8 meters and 2.5 meters. Figure 2.6 shows a sample output

of the ASUS Xtion, an RGB image and a registered per-pixel depth image that has been colourized for

visualization purposes.

Data was collected at the Reference Rubble Pile of the Ontario Provincial Police (OPP), located in

Bolton, Ontario, Canada (U.C.R.T., 2013). The rubble pile is used for training purposes, and consists
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of heterogeneous terrain comprised of concrete, metal and wood debris fields, purpose-built simulation

buildings, shipping containers and partially crushed and buried vehicles (shown in Figure 4.1). Commod-

ity RGB-D sensors, such as the Microsoft Kinect and Asus Xtion, are notoriously sensitive to external

sources of infrared light (Ferworn et al., 2011). To minimize the corruption of depth estimates for

the experiments, data was captured during sunrise or dusk when the influence of the Sun’s infrared

emissions was minimal. The dataset is comprised of 254 image pairs consisting of an RGB image and

corresponding registered depth map, with an image resolution of 640 × 480. Out of this set, there are

166 RGB-D images that contain 18 unique holes that meet the definition of an access hole. Ground

truth was marked by hand labeling the location of each access hole with a tight bounding box. Figure

4.4 shows a sample of the data used for evaluation. The image dataset and ground truth is publicly

available at: http://ncart.scs.ryerson.ca/research/access-hole-detection.

4.3 Evaluation

To quantitatively evaluate the detection accuracy of the approach on the introduced dataset, Precision-

Recall (P-R), a standard evaluation tool in information retrieval (Rijsbergen, 1979) is used. The curve

captures the trade-off between accuracy and noise as the detection threshold is varied. “Precision”

denotes the number of correctly detected holes over the total number of detections and is defined as

follows:

Precision = TP/(TP + FP), (4.1)

where TP denotes the number of true positives (i.e., correctly detected holes) and FP denotes the number

of false positives, i.e., the number of detections where no hole is present. “Recall” is the fraction of true

positives that are detected rather than missed and is defined as follows:

Recall = TP/nP, (4.2)
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number of superpixels
5 7 9 11 13 15 18 20

AP 0.43 0.43 0.43 0.37 0.37 0.36 0.38 0.36

Table 4.1: Comparison of average precision (AP) for a range of target superpixel values used to partition
each image.

where nP is the total number of positives present in the dataset. A detection is considered a true

positive if there is a spatial overlap greater than 50% with the hand labeled ground truth. A detection is

represented as a (rectilinear) bounding box that spatially outlines the candidate access hole along with

the associated detection score, S.

4.3.1 Segmentation

To over-segment the depth image a publicly available superpixel segmentation algorithm is used. In

particular, the Entropy Rate Superpixel (ERS) (Liu et al., 2011) algorithm is used to produce a user

specified number of superpixels with roughly similar sizes and compact shapes. Other segmentation

algorithms are also applicable, e.g, Mean Shift (Comaniciu and Meer, 2002) and Normalized Cuts (Shi

and Malik, 2000). An inappropriate number of partitions results in a contiguous surface either being

under- or over-segmented beyond the ability to register a detection. An example of this is shown in

Figure 3.2. To evaluate the sensitivity of the proposed approach to the number of selected superpixel

segments, the detection approach was run against the introduced dataset with ground truth, using a

range of segmentation targets. To summarize the results for each P-R curve, the average precision was

computed over the recall interval 0− 1. Table 4.1 shows the average precision for the approach using a

range of superpixels.

Table 4.1 shows that the average precision is fairly stable at 0.43 up to 9 partitions. Beyond 9

segments the average precision begins to slowly decrease. To avoid the case of missed detections due

to under- or over-segmentation, 9 segments with an average precision of .43 was selected for all further

evaluations.
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single feature scores
depth width aspect ratio brightness relative brightness

AP 0.11 0.07 0.14 0.21 0.28

Table 4.2: Comparison of average precision (AP) for individual feature scores.

combined feature scores
geometric photometric combined

AP 0.25 0.38 0.47

Table 4.3: Comparison of average precision (AP) for geometric features, photometric features and all
features combined.

4.3.2 Ablative Analysis of Features

The approach captures information from both photometric and geometric features. To systematically

determine the relative effectiveness of each feature and their combination, the detection system is run

using various combinations of the feature scores to calculate the final detection score. To summarize the

results for each P-R curve, the average precision was computed over the recall interval 0− 1. To begin,

the most basic case of isolating each feature score is examined. Table 4.2 shows the average precision

for each feature.

When considering the results of single feature evaluation, the geometric features do not perform very

well on their own. For the depth feature, this can be explained by the large height variations in rubble

terrain, where a disparity in depth from the surrounding regions may not necessarily translate to a hole.

The hole size features (e.g., width and aspect ratio) perform poorly as well, since there is no discriminative

information beyond the human anatomical model to reject false detections. The remaining features (e.g.,

photometric brightness and relative brightness) outperform the geometric features. Intuitively this makes

sense, since access holes are expected to exhibit poor illumination and have effectively used the geometry

to pre-process the depth image by over-segmenting the image along the boundaries of contiguous areas.

To improve the AP, the system is next evaluated by combining geometric-only, photometric-only and all

features. Table 4.3 shows the average precision of the approach for combining the features.
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Figure 4.2: Evaluation of the overall system for detecting holes. The Precision-Recall (PR) curve is
computed across the entire introduced dataset; the number of superpixels is set to nine.

Combining geometric features results in a higher AP than any single geometric feature alone. This

can be accounted for by recognizing that combining the features now permits the exclusion of false

detections that satisfied a single feature’s criteria but not the others. Similarly, combining photometric

features boosts the AP of any individual photometric feature. Finally, by combining all the geometric and

photometric features the proposed approach is able to outperform any individual feature or feature subset

combination. Figure 4.2 shows the PR curves generated from this evaluation. The plot demonstrates that

the PR curve for the combined features outperforms the geometric-only and photometric-only features

for the same recall value. Furthermore, the combined features attain a higher recall than either geometric

or photometric features alone, while maintaining a moderate precision value.
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4.3.3 Runtime

Experiments were performed with unoptimized code, using MATLAB version R2012b, running on a 64-

bit Intel Core I5 2.50GHz machine with 6GB of RAM. To detect access holes in a single RGB-D image

with a resolution of 640× 480 segmented into 9 superpixels, the system requires ∼9 seconds. Increasing

the number of superpixels to 20 yields a runtime of ∼14 seconds per input image pair. Significant

runtime improvements are anticipated via optimizing the code and leveraging parallel computation, e.g.,

a graphics processing unit (GPU). These results suggest that our experimental system could effectively

process large amounts of imagery in realistic time-frames1.

4.4 Discussion

The motivation for this system is identifying and localizing access holes for disaster scenarios, thus this

thesis is interested in high recall for detections with moderate to high precision. The system performs

well in this regard as it is able to detect all labeled ground truth holes with ∼.16 precision when recall

is 1, i.e., all holes in the ground truth detected. Precision is lowered by the number of false positive

detections. The ultimate goal is to provide detections to response personnel that correctly identify all

access holes with minimal false detections. Since a missed detection can result in the potential loss

of life, a high false positive rate is accepted so not to exclude any potential access holes. Figure 4.3

shows sample detection outputs. On examining the detections it is found that a number of false positive

detections occur in areas that the geometric features score high, but are not excluded through the scoring

of photometric properties.

Non-uniform weighting of the various feature scores via learning may ameliorate some of these issues;

however, a lack of sufficient training data currently limits the ability to tune the system without over-

fitting to the current dataset. Ultimately, these false positives can be rejected by further visual inspection

1The intended use for our approach is to create access hole information for first responders in-transit to a disaster scene.
The realistic time-frame should be considered to be on the order of many hours, e.g., the main body of Canada Task Force
3 (Toronto HUSAR) arrived at the Algo Centre Mall Collapse in roughly 14 hours after their activation (Belanger, 2014).
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Figure 4.3: Sample output of the proposed access hole detection approach. (left) Input RGB image,
(middle) superpixel segmentation with ground truth label given in red and (right) detected regions given
in green. The first two rows show successful detections and the last row a successful detection with a
false detection. This image is best viewed in colour.

with minimal effort, as compared to evaluating all inputs manually.
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Figure 4.4: A sample of RGB and depth image pairs from the introduced dataset used to evaluate the
detection system. This image is best viewed in colour.





Chapter 5

Summary and Conclusions

5.1 Summary of Findings and Contributions

This thesis presented a novel approach for the automated detection of access holes in rubble scenes.

Access holes represent areas of particular interest for first responders. They represent the possibility

of accessing subsurface voids where live humans may be hidden. This thesis is the first to define the

characteristics of an access hole through both functional and photometric attributes inherent to a valid

entry point. A novel approach for identifying candidate access holes in RGB-D data was proposed, a real

rubble pile dataset was introduced and an evaluation protocol to validate the approach was provided.

Empirical evaluation has shown promising results for detecting access holes.

There are numerous positive implications of the current contribution. First, the introduced approach

can potentially reduce the need for the dangerous task of humans performing the general visual inspection

of an urban disaster incident for potential areas of access. Second, the approach is able to reduce the

cognitive load of response workers tasked with identifying access points through visual inspection. Third,

a UAV can investigate regions beyond line of sight, meaning searching and analyzing areas that might

not have been accessible before. Finally, significant reductions can be made in the search space of a
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large collapse to a manageable number of locations, thus saving time. Search and rescue operations are

extremely time-critical, as life expectancy of victims under buried rubble is limited. Identifying and

localizing access holes in this way makes better use of limited time.

Since the detection approach is intended for planning purposes, it provides a search team advanced

warning of “potential” access paths that can then by prioritized by human search specialists. The

intent is to provide a means of indicating holes that can then be explored or eliminated from further

consideration by the search team. These on-scene teams would then transmit the simulation to inbound

TFs whose search teams and structural specialists would use the data as input to forming their plans

prior to arriving at the scene.

5.2 Limitations and Restrictions

Despite having achieved the goals set for the detection system, some limitations in the approach have

been identified.

Current commodity RGB-D cameras, such as the Xtion, do not work well outdoors in full daylight

conditions. This is a well-known challenge within the field robotics community. To simplify the stereo

correspondence problem for establishing depth, a grid of IR light illuminates the scene. This technique

is easily corrupted by an external IR source, notably the Sun. Sunlight will wash out the IR grid and

cause the sensor to provide erroneous data across the depth map. To date, (photometric) stereo-based

algorithms have not achieved the same level of depth accuracy as RGB-D sensors. The consideration of

other, more sophisticated sensors is possible in the future; however, they are currently cost prohibitive

and heavier than the payload capacity of our UAV. The RGB-D sensor can be replaced with a more

reliable sensor provided that the input to the system remains an RGB image with a reliable, registered

metric depth map. Nonetheless, this thesis has presented a novel approach and demonstrated it in the

field. An alternative approach is to investigate ways of improving the depth data estimates, such as

46



CHAPTER 5. SUMMARY AND CONCLUSIONS 5.3. DIRECTIONS FOR FUTURE RESEARCH

integrating the data over time rather than sampling a single frame. This approach could reduce the

number of areas with missing or corrupted depth estimates.

The lack of a large real-world dataset is a current limiting factor. While the dataset introduced in this

thesis takes a first step, it is insufficient for providing examples of the multitude of debris configurations

that rubble fields can present. Furthermore, the limited amount of data restricts tuning the weight

of features when calculating the detection score, (Section 3.3). This thesis purposely remains agnostic

to these weights to avoid the problem of over-fitting performance biased to our current dataset. The

availability of other disaster scene datasets would allow for learning the weight parameters. Sensitivity

to specific features could be tuned to provide better performance. In addition, a more diverse dataset

would also provide a more thorough evaluation of the approach. Overall, as more data becomes available,

improvements in the algorithm may be realized.

5.3 Directions for Future Research

Further developments can be made to the approach by improving the attributes identified in this thesis

and augmenting the set with additional ones. The criteria used to identify holes can be expanded, the

nomenclature around the terms “access hole” and “non-access holes” can be widened and other methods

for discovering and validating them can be investigated. For instance, the characterization of pore space

or “macropores” is well understood within the field of soil sciences (Cary and Hayden, 1973; Nimmo,

2004; Luo et al., 2010; Glab, 2007) but is not used in rubble terminology at all. Further investigation

in this domain may yield insights that may be beneficial to USAR classification of access holes and the

larger problem of rubble characterization.

Since this thesis is interested in high recall when detecting access holes, false positives are expected.

These can quickly be ruled out by visual inspection or through the use of corroborating ancillary data

collected over multiple flights or using complementary techniques. For instance, holes in rubble tend
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to have different thermal properties than the terrain surrounding them (Matthies and Rankin, 2003).

The use of Forward Looking Infrared (FLIR) sensors to detect secondary thermal effects present around

potential holes with humans inside may help reduce errors.

The long-term goal of this approach is to perform on-board analysis in real-time while raw image

data is being gathered by a UAV. When an access hole is detected, its geographic coordinates will

be provided by the UAV and transmitted wirelessly to ground teams to flag the location for further

investigation. This approach will not only reduce processing time but will improve access hole location

accuracy. The intention is to include this information in a physics-aware disaster scene model (Ferworn

et al., 2013), with the access hole information represented and clearly marked for searchers inside the

spatially accurate simulation.

From an application perspective, it should be noted that this technique of collecting hole data and

rendering a scene model would ideally be used by the advance parties of any inbound TF or the local

first responders at the scene1. To date, this goal has not been realized due to the limited number of

opportunities available.

1While the approach presented in this thesis can reduce the need for visual inspection by first responders physically co-
located with the incident, it should not be the impression that this system can stand alone without additional confirmatory
physical inspections by expert USAR practitioners.
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Glossary 
 

 

3D   Three-dimensional 

CRASAR   Center for Robot-Assisted Search and Rescue 

Disaster  A major destructive event that cannot be managed with the resources of a    

          single community 

Emergency  An impending calamitous event 

EMS  Emergency Medical Services 

FEMA  Federal Emergency Management Agency 

FOV  Field of View 

GPS  Global Positioning System 

GPR  Ground Penetrating RADAR 

Hazard  The potential for damage 

HUSAR  Heavy Urban Search and Rescue 

IR  Infrared 

N-CART  Network-Centric Applied Research Team 

OPP  Ontario Provincial Police 

RADAR  RAdio Detection And Ranging 

RGB-D  Red-Green-Blue-Depth 

SAR  Search and Rescue 

TF    Task Force 

Triage  The assessment of initial reconnaissance 

UAV  Unmanned Aerial Vehicle 

USAR  Urban Search And Rescue 
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