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Abstract

X-ray Computed Tomography (CT) scans, while useful, emit harmful radiation which is why low-
dose image acquisition is desired. However, noise corruption in these cases is a difficult
obstacle. CT image denoising is a challenging topic because of the difficulty in modeling noise.
In this study, we propose taking an image decomposition approach to removing noise from low-
dose CT images. We model the image as the superposition of a structure layer and a noise
layer. Total Variation (TV) minimization is used to learn two dictionaries to represent each layer
independently, and sparse coding is used to separate them. Finally, an iterative post-processing
stage is introduced that uses image-adapted curvelet dictionaries to recover blurred edges. Our
results demonstrate that image separation is a viable alternative to the classic K-SVD denoising

method.
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Chapter 1. Introduction

X-Ray Computed Tomography (CT) is a valuable resource in medical imaging. It creates a
comprehensive representation of the body of patients and allows us to see all the different
tissues and bones in 2D image slices or in a 3D virtual reconstruction. However, it comes with
some risks for the health of the person being scanned because of the ionizing nature of x-ray
emissions. As a result, lowering the x-ray dosage during image acquisition is desired. It is well
known that as the dose is decreased, noise and streak artifacts become more prominent,
degrade the image and lower the Signal to Noise Ratio (SNR) [1]. Therefore, methods of

lowering noise in low-dose images are required.



The main source of noise in the raw data (sinogram) is quantum noise which is due to an
insufficient number of x-ray photons reaching the detector. Lowering the radiation dose has a
direct restrictive effect on how many photons penetrate the patient, thus causing an increase in
noise. This noise can be modeled as a Poisson process. After image reconstruction from the
sinogram occurs, the noise no longer has a known distribution and becomes non-stationary. As
a result, usual denoising methods are not appropriate for dealing with CT images. We propose
taking an image decomposition approach to separate the main image structures from
unwanted artifacts that arise in low-dose CT images.

Many CT denoising techniques have previously been proposed. They mainly fit into three
categories. The first two are similar in their goal to take the statistical nature of CT data and
noise into account and then construct the image from the projection data. To achieve this we
can either optimize a function whose parameters are image pixels [2] or we can denoise the
projection data first and then perform the image reconstruction [3]. The former in particular
has recently garnered great attention with the class of algorithms called Statistical Iterative
Reconstruction (SIR). With the increase in computing power, newer scanners incorporate this
type of image reconstruction rather than the traditional Filtered Back Projection (FBP) method
[4]. However, this is still a relatively new movement, and the most common noise removal
method is to take the reconstructed image and perform signal denoising on it. This report will
focus on this approach.

Edge preservation is a critical aspect of medical image denoising because edges often
contain important diagnostic information. Many signal and image denoising algorithms exist.

Wavelet thresholding [5] [6], diffusion [7], and total variation (TV) denoising [8] methods are a



few such algorithms. More recently, sparse representation and dictionary learning methods [9]
have shown great potential in adaptively analyzing and denoising images.

Many sparse transforms have been proposed over the years. Wavelets [10], curvelets
[11], contourlets [12], and shearlets [13] are just a few of the many transforms that can
sparsely represent images over a fixed dictionary. More recently, Aharon et al. proposed the K-
SVD algorithm for adaptively learning the dictionary from image patches [14]. This method is
able to find better and sparser representations of images with complex patterns which would
not be possible with fixed dictionaries.

The task of image decomposition can be considered a generalization of denoising.
Morphological diversity is the idea that an image can be decomposed into two or more layers,
each having a different morphology. In 2004, Starck et al. introduced a sparse representation
approach called Morphological Component Analysis (MCA) [15]. It aims to use mutually
incoherent analytical dictionaries, each one good in representing one layer but not the others.
The success of this method depends on the choice of each dictionary and how efficient it is in
sparsifying the intended layer while being highly inefficient in doing so for the other layers.

Peyré et al. extended the MCA algorithm by combining fixed and learned dictionaries
[16]. The reason is that some complicated textures may not be effectively represented with any
fixed dictionary. In that case learning the dictionary will result in better image separation.
Shoham et al. showed in [17] that if pre-learned dictionaries exist for each layer, the separation
can be done by a directly degenerated block-coordinate-descent algorithm. If pre-learned
dictionaries do not exist, they can be alternatively learned and their corresponding layers

separated iteratively as Li et al. showed in [18].



In this thesis we propose treating noise and unwanted streaks in low-dose CT images as
texture that needs to be separated from the main structures. The contributions are outlined
here. First the image is smoothed using TV denoising [19] and a dictionary representing the
noiseless image is learned from it. A second dictionary representing the noise is learned from
the residual between the original image and its smoothed version. Each of these dictionaries is
better in coding its own intended morphological content, and sparse representation will result
in a piecewise smooth (main structures) layer and a noise layer. Finally, the curvelet transform
and dictionary learning are combined to recover edges that falsely end up in the noise layer.

This report is organized as follows. In chapter 2, an overview of CT imaging and its risks is
provided; sources of noise and their effect on image quality are examined, and a few methods
of dealing with noise are surveyed. In chapter 3, the development of mathematical transforms
from orthogonal to overcomplete dictionaries, pursuit methods for seeking sparse
representations of signals, and dictionary learning methods are studied. Chapter 4 contains the
details of the MCA algorithm leading to the specifics of our proposed method. In chapter 5, the
results of testing our algorithm on various CT and natural images are compared to the K-SVD
denoising method using the peak signal to noise ratio (PSNR) and structural similarity (SSIM)
metrics. Chapter 6 offers some concluding comments about this work and any potential future

extensions.



Chapter 2. X-Ray Computed Tomography
Imaging

X-ray Computed Tomography (CT) is a diagnostic tool that is used to scan the interior of
objects and present them as images based on the various degrees that different materials
absorb x-ray photons. It has both industrial and medical uses. The latter in particular is a
sensitive topic because of the risks that accompany this type of scanning. X-rays are energetic
photons that are able to create ions by liberating electrons from their molecular orbits. Such
ionizing radiation is harmful to biological tissue especially DNA which can increase the risk of

cancer [20]. By examining CT usage statistics from 1991 to 1996, estimations show that 0.4% of
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Figure 2.1 Basics of CT imaging [20]

all current cancers in the United States may be linked to CT use in the past [21] [22]. In another

study, 1 in every 1800 CT scans was followed by an excess cancer [23].

CT scanning has several advantages over 2D radiography which is another type of x-ray
imaging. The latter simply forms an image which is the superposition of all the structures in the
scanned object, whereas CT creates a series of image slices that can be viewed individually. This
improves contrast and gives the ability to view objects nested inside one another. Estimates
show that 67 million CT scans were conducted in 2006 in the U.S. alone [24]. Although the risk

to one person undergoing one CT scan may not be large, given how prevalent CT scanning has



Figure 2.2 Left: Shepp—Logan phantom [25], Right: Its sinogram

become it is considered a public health issue and measures need to be taken to reduce its
harm. One way of reducing the radiation absorbed by a person during a scan is to decrease the
dose which will consequently result in more noise and a lower Signal to Noise Ratio (SNR) [1].

The focus of this report is to examine methods of decreasing noise in low-dose CT images.

2.1. Procedure Overview

CT scanning involves a motorized bed for the patient with a rotating apparatus around it.
An x-ray source sends photons in a fan shaped beam towards the patient and several rows of
detectors at the opposite side record the photons that get through. As can be seen in Figure 2.1
this process continues as the source and detectors rotate and the bed is moved through the
middle. Consequently, a series of image slices are produced that correspond to slices of the
patient’s body. Each slice can be viewed individually as a 2D image or a 3D representation of

the body can be constructed using special software.



The raw data captured by the detectors, called a sinogram, consists of several projections
from different angles of the same body slice. These projections are essentially the radon
transform of the scanned object. Figure 2.2 shows the transform of the Shepp—Logan phantom

[25]. To get the image back the inverse radon transform of the sinogram needs to be solved.

2.2, Radiation Dose and Image Quality

CT imaging is susceptible to a number of artifacts that are detrimental to image quality.
Many factors contribute to these imperfections such as miscalibration of the scanner elements,
metallic implants in the patient, and patient motion during the scan. The most prevalent
artifacts are caused by beam hardening, Compton scattering, and photon starvation.

X-ray CT imaging takes advantage of the fact that different tissues absorb photons of a
given energy to varying degrees. Most CT scanners use polychromatic x-ray beams which mean
the photons have a range of energies. This causes the artifact known as beam hardening which
occurs when the lower energy photons in the x-ray beam get absorbed more than those with
higher energy [26]. It shows up as non-uniformities in the image of a uniform material. These
artifacts are usually small and not very noticeable, but they can become significant alongside
large bones or metallic objects [27]. Iterative and reconstructive methods of correcting this
anomaly have been proposed [28] [29].

Compton scattering involves an x-ray photon interacting with a free electron or one that’s
loosely bound to an atom. As a result the photon is redirected in a different direction and ends

up in a different detector than the one positioned to receive it. This causes the same kind of



440 mA, 120 kVp, slice thickness 5 mm

Figure 2.3 Effect of mA on Poisson noise. LEFT: Low dose CT image obtained during a CT-guided biopsy
shows extensive Poisson noise. These streaks are the same whether or not the abdomen or arms are
partially outside the field of view. RIGHT: Post-biopsy image obtained at 7.3 times higher dose has

V7.3 = 2.7 times less noise. The images show an enlarged retroperitoneal lymph node (arrow) and
infiltration of the right kidney in a patient with Hodgkin’s lymphoma. [31]

dark streaks as beam hardening because of a higher than expected number of photons in a

particular detector [30].

The number of photons that reach the detectors is perhaps the most important factor in
determining image quality and consequently the radiation dosage applied to the patient. Under
ideal conditions without any of the problems discussed before, the number of photons reaching
each detector follows a Poisson distribution with the mean equal to the variance. Therefore,
low photon numbers result in poor SNR. Since the measurements of various x-ray projections
contribute to a pixel’s value in the final image, the noise becomes more complicated and
appears as small streaks mostly oriented in the direction of greatest attenuation. In the
extreme photon starvation case, the streaks appear as long straight lines. See Figure 2.3 for

illustration of this kind of noise.
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Figure 2.4 The bremsstrahlung energy distribution for a 90-kV acceleration potential difference. The
unfiltered bremsstrahlung spectrum (a) shows a greater probability of low-energy x-ray photon
production that is inversely linear with energy up to the maximum energy of 90 keV. The filtered
spectrum (b) shows the preferential attenuation of the lowest-energy x-ray photons. The vertical
arrow (c) indicates the average energy of the spectrum, which is typically 1/3 to 1/2 the maximal
energy. [32]

There are a few parameters that have a large impact on the photon numbers detected.
They can be changed at the start of the scanning process depending on the body part under
examination and other factors decided by the radiologist. The maximum voltage applied across
the x-ray tube, called the peak kilovoltage (kVp), relates to the peak energy of the emitted x-ray
spectrum (Figure 2.4). A higher value means an increase in the probability of each photon
penetrating the tissues. The x-ray tube current, measured as milliamperes (mA) determines the
intensity of the beam or the number of x-ray photons emitted. Increasing the current would
mean the peak of the x-ray spectrum is elevated upwards. Scan time is the duration of each

measurement which means how long the scanner stays in one position to gather photons. Since
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this value and the current are related, they are often combined as milliampere-seconds (mAs).
Slice thickness is the width of the beam entering each detector which affects the number of
photons detected. This parameter also affects spatial resolution which leads to a trade-off
between sharpness and noise.

The tube current and the scan time are often the only values that are changed in relation
to radiation dose. In the interest of the patient’s health they can be lowered which will result in
more noise. It is the purpose of this report to examine methods of removing noise in the CT
images resulting from low photon counts while leaving the actual structures intact.

Filtered Back Projection (FBP) is the most common method of obtaining an image from
raw scanner data [33]. First the sinogram is high-pass filtered and then the inverse radon
transform is performed on the result. The filtering is necessary to avoid the extensive blurring
that would otherwise occur. However, this also emphasizes noise because this algorithm
assumes the data is noiseless. Therefore, more complex filters are often used to also dampen
noise. This creates a trade-off between lower noise and sharper edges, and different filters are
used depending on the situation and achieve one in the expense of the other. The
reconstruction process changes the noise distribution to something unknown. Therefore,

simple denoising algorithms that assume a known noise model are not optimal for CT images.
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2.3. Introduction to Noise Reduction Methods

There are three areas of research that aim to reduce noise and streaks in low-dose CT
images: statistical iterative reconstruction, sinogram denoising, and image denoising. In the

following sections, they are briefly examined.

2.3.1. Statistical Iterative Reconstruction

Instead of the FBP algorithm, the newest scanners use some kind of iterative algorithm to
continually improve the reconstruction of the image by incorporating a statistical model of the
noise [2]. This class of algorithms is called Statistical Iterative Reconstruction (SIR). Taking into
account the Poisson nature of detected photons after attenuation by the scanned tissue, we
can write

y; = Poisson {l,e”"},i € {1,...,N} (2.1)
where y; are the recorded measurements for all positions and angles, I; are the incident x-ray
intensities, and [; = ) a;;u; are the line integrals through the tissue consisting of j € {1, ..., M}
voxels (3D equivalent of pixels). In this formulation, a;; represents the probability of detecting a
photon in sensor i that originated in voxel j, and each p; is the pixel value in the CT image that
we want to find. This relationship is often written in matrix form as I = Au. The matrix A, called
the system matrix, models the scanner and its geometry and needs to do this very accurately or
the algorithm will not work correctly. The amount of memory required to hold A grows rapidly

as the resolution of the image and the number of x-ray projections increases.
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Figure 2.5 Iterative reconstruction using Advanced Statistical Iterative Reconstruction (ASIR) and
Model-Based lterative Reconstruction (MBIR), both from General Electric (Milwaukee, WI, USA).
Coronal reformation of a non-contrast CT scan inadvertently obtained with 50 mA and reconstructed
with filtered back projection (FBP) shows excessive image noise (TOP LEFT), requiring a repeat scan
acquired at 750 mA (TOP RIGHT). Reconstruction of the 50 mA dataset using ASIR shows decreased
image noise (BOTTOM LEFT). Dramatic reduction of image noise is achieved by reconstructing the 50
mA dataset with the full iterative reconstruction (MBIR) (BOTTOM RIGHT), which compares favorably
with the 750 mA FBP image (TOP RIGHT) which was acquired at 15 times more radiation dose. [4]

One way of solving this problem is in a Bayesian framework as the maximum a posteriori
(MAP) estimate of P(u|y) which is equivalent to

ft = max{ln P(y|p) + In P ()} (2.2)

13



By using the second-order Taylor series expansion in terms of the unknown image and the

natural logarithm of the Poisson distribution for y; we can write the log likelihood term as

1
In P(ylu) = = (v — AW D(y — AW + f(¥) (2.3)
where f(y) is some function, and D is a diagonal matrix whose coefficients are proportional to

the inverse of the variance of the projection measurements: d; x y; = [;e™4 = 1/02. Finally
Vi

the image can be estimated as:

1
A = max{z = A" D(y - Aw) + R(w) (2.4)
where f(y) rewritten as R(u) is a regularization term.

These types of algorithms start from an initial estimate of the image iy which can be
from the FBP reconstruction, then iteratively update it. The regularization term R(u) is
important in enforcing smoothness in the image and without it the estimates become unstable.
It is usually set to the negative of InP(u) in equation (2.2) where P(u) represents prior
knowledge about the image. Markov random fields are commonly used for regularization.

For all its strengths iterative reconstruction was not used in the past because of high
computation times and large memory requirements to store the system matrix A. In the past
few years, advances in computing power have allowed these methods to become more
attractive compared to the traditional FBP reconstruction. Figure 2.5 illustrates some modern

realizations of the SIR approach.
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2.3.2. Sinogram Denoising

There are some algorithms that try to smooth the sinogram so that it becomes closer to a
noise-less set of data that one would get if the photon count was sufficiently high. The FBP
algorithm can then be applied to the smoothed sinogram to get the image. In the SIR algorithm
the optimization parameters are image pixels, but in this type of algorithm the optimization is
done in the projection space. In [34] an adaptive filtering approach was proposed by taking into
account the noise property. A multi-dimensional adaptive filtering approach was developed in
[35] to enhance the projection data. Penalized likelihood sinogram smoothing techniques have

also been proposed [3].

2.3.3. Image Denoising

In cases where the reconstructed low-dose CT image is noisy, image denoising techniques
can be used to denoise the image. Edge preservation is crucial in any CT denoising algorithm
because a diagnosis requires a sharp image with no small structures lost along with the noise.

Thresholding in the wavelet domain is a method that has showed promise for removing
white Gaussian noise in images [5] [6]. Either hard or soft thresholds can be applied to the
wavelet coefficients to dampen the effect of noise. This is based on the fact that coefficients
representing noise have lower magnitudes than those for structures. Hard thresholding simply
sets to zero the coefficients below a preselected value, while soft thresholding lowers all the

coefficients according to a continuous function. Therefore the main issue becomes how to

15



select the threshold to be used. The best results are attained from adaptive methods such as
[36] where soft thresholding based on a Bayesian framework is proposed.

Partial differential equations (PDE) have often been used in image processing. One of the
first PDE-based edge preserving denoising methods was proposed by Perona and Malik [7].
They introduced a partial differential equation method called anisotropic diffusion where a
diffusion tensor is chosen that varies along with the gradient of the image. As such it directs the
denoising in the directions with low gradient and does not cross edges, preventing blurring.

Another effective noise reduction method which also preserves edges was proposed by
Rudin, Osher, and Fatemi [8]. It is called Total Variation (TV) denoising and is based on
minimizing the total variation of a noisy signal subject to a regularization term. This method is
widely used in signal processing applications but for highly contaminated images it is unable to
differentiate between noise and actual structures which leads to oversmoothing, loss of fine
details, and a blocky appearance. Therefore it is often used in conjunction with other methods.
For example in [37] dictionary learning and total variation are used to improve magnetic
resonance image (MRI) quality.

Recently, the topic of sparse signal representation and dictionary learning has become
the subject of much attention. Transform methods such as Fourier and wavelet can be said to
sparsely represent signals using a fixed dictionary. For the Fourier transform the dictionary is
composed of complex exponentials, and for the wavelet transform it is the various scaled and
translated versions of a mother wavelet. Precisely because these dictionaries are predefined,
they are non-adaptive. In 2006 the K-SVD [14] algorithm vas introduced for learning a dictionary

that is adapted to the signal. Consequently, it was shown to be very effective at removing noise
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from images [9]. Because K-SVD creates an adaptive dictionary, it enables better and sparser
representation of signals. Using this scheme for CT image denoising has been explored in works

such as [38].

2.3.3.1. Wavelet Thresholding for Image Denoising

The wavelet transform is a multiscale operator that captures both frequency and spatial
information. By taking the inner product between a signal and an orthonormal wavelet function

at various scales and positions their similarity can be calculated. The wavelet coefficients are

given by
1 ‘ x—>b
- (2~ 2.5
C(a,b)—\/a_[of(x)lp< - >dx (2.5)

where a > 0 is the scale parameter, b is the position, and Y™ is the complex conjugate of the
wavelet function. The discrete wavelet transform (DWT) is defined for discrete intervals of the

wavelet function and is used in digital signal analysis applications.
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Figure 2.7 LEFT: Sub-bands of the 2D orthogonal wavelet transform, RIGHT: Coefficients of the wavelet
decomposition of a sample image

In using the DWT, the signal is both high pass filtered and low pass filtered using two
guadrature mirror filters. The results are downsampled by 2 to form the first level coefficients.
This procedure can be repeated on the low-passed part of the signal to form the next coarser
level and so on. The process is illustrated in Figure 2.6. For 2D signals this process is executed
on the rows and columns separately, thus each level contains the high frequency horizontal,
vertical, and diagonal details separately as shown in Figure 2.7.

For noisy images contaminated by high frequency noise such as additive white Gaussian
noise, the wavelet domain coefficients representing noise are mostly contained in the finer
scales. Those with the largest magnitudes have large SNR and mostly represent the image
structures. The rest are mostly due to noise. Applying a hard or soft thresholding scheme to the
coefficients and inverse-wavelet transforming them will result in an image with decreased noise

and well preserved edges.
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Selecting the threshold level to be used is difficult. Having a low noise tolerance may
result in destroying the actual structures and ending up with a blurry image. A high tolerance
may leave a lot of noise behind. Selecting a global threshold is also suboptimal since different

image areas might have different amounts of noise.

2.3.3.2. Diffusion

One of the simplest denoising methods is Gaussian filtering which convolves the image

x%+y?
I(x,y) with a Gaussian kernel G(x,y) = ﬁe_ 202
(I +G)(x,y) =ZZI(x—u,y—v)G(u,v) (2.6)
u v

This is known as a linear isotropic filtering process. The parameter o determines the range of
the filter and subsequently the amount of smoothing. Based on a diffusion process, filtering the
image several times by various values of o produces a scale space for the image composed of
successively more blurred versions of the image. Gaussian filtering satisfies the Laplace

equation

ol(x,y,0) 0%1(x,y,0) 0°%I(x,y,0) (2.7)
e = My.0) ==

This equation, also known as isotropic diffusion, spreads out (in all directions) the intensity
values of the original image further and further with increasing . Although such a procedure is

effective for smoothing local noise, it is inadequate when treating images globally because of its

blurring effect on edges. As mentioned before, edge preservation is very important especially in
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medical imaging because important information is contained in those regions. Therefore, we
need some way of removing noise without effecting true edges.

Anisotropic diffusion replaces the linear Laplace equation with a non-linear PDE that
avoids the uniform smoothing of its predecessor. Perona and Malik [7] replaced the isotropic
formulation of (2.7) by the following:

%{i’ﬁ) = div(D(x,y)VI(x,y,0)) -

where D (x, y) is the diffusion tensor which controls the rate of diffusion. It is usually a function
of the image gradient which is designed to recognize edges and stop smoothing by following a
rule such that

D(x,y) » 0 when ||VI|| - o
For example the following functions can be used:

(vl
g

D= e_(”vTI“)Z and D= (1+( (2.9)

)27t
where g can be found experimentally or set to the noise variance.
Even though anisotropic diffusion is able to keep edges intact, it suffers in the actual noise

reduction of flat regions where false structures due to noise exist. In such cases, this method

can wrongly identify noise as edge information because of the high gradient value.
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2.3.3.3. Total Variation Denoising

The basis of total variation (TV) denoising is that noise and false structures that may arise

because of it have high total variation defined as
[ 1wytiay
Q

where y is an image defined on the region (). The task of denoising is to reduce oscillations with
high TV measures which are due to noise. This method is edge preserving and smoothing only

occurs in areas where uncorrelated details exist. The goal is the following minimization:

min fllVyIl dy subject to lx—vyll, <e (2.10)
y
Q

where y is the noiseless image we want, x is the noisy image and ¢ is an error tolerance. The

unconstrained form of this formulation in discrete space is

1
mins > Y@)) ~x@NE +A| ) VBT L) - y@DE + @i+ D -y@nr| 21
ij

ij

where A is a regularization parameter. The first term is there to enforce closeness to the input
and the second term is the total variation. In this algorithm A is very important and determines
the amount of smoothing that is allowed. Setting it to zero makes the output equal to the input
and as it is increased so is the aggressiveness of the algorithm. Some of the algorithms to solve
this optimization problem include [19] and [39].

Total variation denoising algorithms are effective in some cases, but the power of this
type of minimization is still limited. The TV constraint is global, which makes it unable to

directly reflect structures of an object. In addition, it cannot distinguish true structures and
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those due to noise. Subsequently, images denoised using TV minimization may lose some fine

features and in very noisy cases generate a blocky appearance.

2.3.3.4. Image Denoising Using Sparse Representation And

Dictionary Learning

The noise reduction methods discussed so far have been limited in their ability to adapt
to the specific signal they consider. With dictionary learning the aim is to create a set of
primitive vectors called atoms that are adapted to a specific signal. By selecting only a few
atoms and adding those together the original signal can be reconstructed thus the phrase
sparse representation. By setting the error tolerance of the reconstruction to the noise variance
we can find an approximation of the signal that is free of noise.

An image denoising methodology based on K-SVD dictionary learning was developed in
[9]. It was shown that to ease the computational difficulty, an image can be divided into small
patches. Then the dictionary is learned from the patches in an iterative manner. Finally each
patch of the image is reconstructed by a few dictionary atoms and the patches are combined to

form a whole image. The details of this process are examined in section 3.3.2.1.
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Chapter 3. Sparse Representation and
Dictionary Learning

Sparse representation is a way of reducing natural or artificial observations into their
elemental constituents. Often these signals have a much more concise representation in a
domain other than spatial or temporal where they usually appear. For tasks such as
compression or analysis, it is often more efficient and meaningful to transform the signal to
another domain or find its sparse representation among a set of basic signals, called atoms,
that form a dictionary.

Analytical dictionaries have precise definitions that make them convenient in some

situations but they are rigid and inefficient in general. In the pursuit of more adaptability,
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sparse coding methods such as [40] and [41] were introduced to allow atoms from the
combination of various dictionaries to be selected and added to represent signals. Following
this paradigm shift, Olshausen and Field [42] were among the first to propose a way to train a
dictionary on examples related to a desired signal. Others such as [43] and [44] soon followed
and the K-SVD [14] dictionary learning algorithm is widely used today. The following sections
discuss the topics of analytical dictionaries, sparse representation, and dictionary learning in

more detail.

3.1. Transforms and Dictionaries

Early in the modern signal processing history, mathematical transforms became
prominent tools for tasks such as compression and analysis. Amongst these, the Fourier
transform is one of the simplest and most widely known. The introduction of the Fast Fourier
Transform (FFT) [45] algorithm made it easy and efficient to implement which increased its
popularity. The Fourier transform aims to represent a signal as the summation of orthogonal
sinusoidal waveforms and describes it in terms of its global frequency content. The K lowest
frequency waveforms are added together to approximate the signal which makes it efficient at
dealing with smooth signals. However, in reconstructing discontinuities K needs to be much
larger creating a trade-off between efficiency and blurring of edges.

In most practical applications, signals are finite and the Fourier transform implicitly
assumes a periodic extension of the signal. This introduces a discontinuity at the boundaries.

The Discrete Cosine Transform (DCT) is similar to the Fourier transform but assumes an anti-
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symmetric extension of the signal, resulting in continuous boundaries. This makes it a more
efficient approximation. As an added benefit, the DCT produces non-complex coefficients.
Therefore it is typically preferred in practice.

Over time, more sophisticated transforms were proposed that would allow better
descriptions of signals. One issue that was investigated was to allow more localization. This
increases efficiency because representative functions more suited to the local characteristics of
the signal can be used. The Short Time Fourier Transform (STFT) [46] was created with this in
mind. The signal is first multiplied by a window function and then its Fourier transform is
calculated. This process can be repeated with a moving window which will result in a time-
frequency (or space-frequency) description of the signal (Figure 3.1). This transform allows us

to analyze the local properties of a signal.

With the realization that natural signals (especially images) have details at many scales
came the introduction of multi-resolution transforms. Among those, the wavelet transform is
very well-known. It can represent a signal as a series of dilated and translated versions of a

single function called the mother wavelet. Figure 3.1 shows a comparison of the STFT and the

Short Time Fourier Transform Wavelet Transform

Figure 3.1 Time (or space) resolution at different frequency bands for the short-time Fourier transform
and the wavelet transform
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wavelet transform in terms of their time-frequency relationships. The STFT has a fixed
frequency resolution for a given time window. The wavelet transform can analyze high
frequency phenomena with a great time resolution while having excellent frequency resolution
for low frequency events.

For all its strengths, the wavelet transform is not optimal for representing images or
higher dimensional signals. Towards the end of the 20™" century, new transforms were being
developed such as the wedgelet [47] and the ridgelet [48] transforms. These efforts ultimately
led to the powerful curvelet transform [49] [11] which can represent 2D piecewise smooth
functions with curve discontinuities at an optimal rate.

All the transforms discussed can be formulated as dictionaries. A dictionary is composed
of a collection of waveforms (called atoms), @,, and a signal x can be expressed as the

superposition of those waveforms scaled by a,,:

x = z @, 0, (3.1)

n

In the simplest case the waveforms form a basis and all of them can be combined to uniquely
represent every signal. For many years, orthogonal and bi-orthogonal dictionaries were used
because of their simplicity. However, they are limited in their representation abilities. This can
be seen by considering the principal component analysis (PCA) and the independent
component analysis (ICA) algorithms. PCA decomposes a signal into a set of orthogonal
functions called principal components which are the eigenvectors of the data covariance
matrix. The first principal component is in the direction of greatest variance of the data, the
second one in the direction of second-greatest variance, and so on. ICA tries to find the

underlying independent signals that produce an observation. The orthogonal constraint that
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Figure 3.2 Orthogonal DCT dictionary with 64 atoms of size 8x8

exists in these methods limits their expressiveness because they assume the number of causes
of an observation is limited to its dimension. This sparked the creation of algorithms that allow
the use of overcomplete dictionaries with the number of atoms larger than the dimension of
the signal.

The details of the most common analytical dictionaries are illustrated in the following

sections.

3.1.1. Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) represents a signal as the superposition of cosine
waveforms with different frequencies. It is similar to the Discrete Fourier Transform (DFT) but
deals only with real numbers. More importantly, the DCT is more efficient at representing finite
signals. The reason is that the Fourier transform implicitly assumes a periodic extension of a

signal which produces discontinuities at the boundaries for most signals. Conversely, the DCT
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Figure 3.3 Overcomplete DCT dictionary with 256 atoms of size 8x8

assumes an anti-symmetric extension to the signal. This leads to more sinusoids required to

represent a signal with DFT than is the case with DCT. The two-dimensional DCT transform of a

signal x with dimensions M and N is:

— + 1)”}9 (271 + 1)71(] 0<p<sM-1
S Sp s (3.2)

(2m
A(p,q)—apaqux(m,n)cos oM co N © 0<g<N-1
=0 n=0

_(1/VM, p=0 _ (1/¥N, q=0
=\ 2m, 1sp<M-1 YT\ /2/N, 1Sq<N-1

The inverse DCT transform is used to reconstruct the signal:

_M 1N- | 2m+ Dmp Cn+Dnq 0<p<M-1 (3.3)
x(mn —zzapaq (p;Q)COS 2M cos 2N ’ OSCISN_l

This  reconstruction is in the form of (3.1) where the basis functions

(em+1)mp cos (2nt1)mq form a dictionary and are weighted by the coefficients A(p, q). If

a,x,COS
p=q 2M 2N
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Figure 3.4 LEFT: 1D Haar wavelet, CENTRE: Three configurations of the Haar wavelet in 2D; black is
negative and white is positive, RIGHT: Orthogonal Haar dictionary made up of dilations and
translations of the Haar wavelets

p and q are integers then the number of atoms equals the size of the signal (M X N) and the
dictionary is orthogonal. An example is shown in Figure 3.2.

Because of the simplicity, orthogonal dictionaries were often used in the past, but
relaxing this constraint allows sparser representations for signals. This is achieved by allowing
non-integer values for p and g thereby increasing the number of atoms beyond the size of the

signal. An example of such an overcomplete dictionary is displayed in Figure 3.3.

3.1.2. Wavelet Transform

As previously discussed in section 2.3.3.1, the wavelet transform can be calculated by

C(a,b)z% ff(x)t/;*(?)dx (3.4)

The basic wavelet i is designed to be reversible and computationally efficient. In practice, the
translation and scaling parameters are discretized as a = ai', b = nbyay' where m,n € Z and

ap > 1,by > 0. In this case, the Discrete Wavelet Transform (DWT) becomes
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0

1 3 x — nbyay*
C(m’ n) = — f f(X) l/)* <+> dx (35)
vagy' . a
The signal f can be reconstructed by summing the weighted wavelets:

= Contmn 3.6)

Commonly the following values are used a, = 2,b, = 1. There are choices of 1 where
the collection of wavelets 1, , creates an orthonormal basis in which case the wavelets are
critically sampled in each scale to exactly span the new detail introduced at that scale. The
simplest such wavelet is the Haar wavelet (Figure 3.4). Various other wavelets have been
designed by Stromberg [50], Meyer [51], Daubechies [52], and others. In higher dimensions, the
DWT is just a separable one-dimensional transform. Therefore for an image, first the columns
then the rows are individually transformed by the same methodology as any 1D signal. This
makes the DWT translation and rotation sensitive in higher dimensions [53]. To overcome this
issue, the Stationary Wavelet Transform (SWT) was introduced by Beylkin [54] which abandons
orthogonality in favour of overcompleteness. This is achieved by eliminating the sub-sampling

and gathering all translations of the wavelet atoms.

3.1.3. Curvelet Transform

Similar to the wavelet transform, curvelets are waveforms at different scales and
locations but with the addition of an orientation parameter. As can be seen in Figure 3.5
curvelets have specific anisotropic support which follows a parabolic scaling law

width~length?. This is useful for the efficient representation of smooth curves.
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Like the wavelet transform, the curvelet transform of a continuous signal f(x) can be

calculated by the inner product of the signal and the curvelet function ¢ (x):

CG,Lk) = ff(x) @ik (x)dx (3.7)
where j, I, and k are variables of scale, direction and position. Given the basic curvelet ¢; 4 o, the

family of curvelet functions is provided by

Pk = @jo0 (jo_l(x - b,]c"l)>, J €Ny (3.8)

where jol indicates the rotation matrix with angle 8;; = %an‘U/ZJ,l ={0,1,...10 < 6, < 27}

. . , J
and b)' = b,](’ll‘k2 = jol (k12"1,k22_5),k1, k, € Z indicates the position.

The Fast Discrete Curvelet Transform (FDCT) [11] is able to find the representation of

digital signals.

Figure 3.5 A few curvelet atoms at different scales, and orientations
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3.2. Sparse Representation

A signal can have more than one optimal representation among the many transforms that
exist. The idea to select the best atoms from a set of different analytical dictionaries took shape
in such works as [40] and [41] that introduced signal decomposition by matching pursuit and
basis pursuit, respectively.

Consider D € R¥*K to be an overcomplete (N « K) dictionary made up of normalized

atoms in the form of RV*1

column vectors. Then the problem of sparse representation is to
find a sparse vector with very few non-zero elements to represent a signal x € R¥*! using a
few dictionary atoms. Put formally, vector a € RK*1 is sparse when |la|l, < K and the

optimization problem is

min ||a|l, subjectto  x = Da (3.9)
a

where ||. || is the I, norm which is simply a count of the non-zero entries. In general, finding an
exact representation of a signal is not feasible which might be due to the presence of noise.
Therefore (3.9) is relaxed to allow some error tolerance € = 0:

min ||a|l,  subject to l|x — Dal|, < ¢ (3.10)
a

where the [, norm indicates the presence of Gaussian noise. Alternative loss functions can be
used for other types of noise. The problem (3.10) seeks the sparsest representation vector
given the constraint. An equivalent reformulation is to seek the vector that results in the least
error given a sparsity tolerance L > 1:

min ||x — Da|l,  subjectto |la|lo <L (3.11)
a
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It is also possible to consider the square of the [, norm such that [|x — DaII% < £2. Then with
an appropriate Lagrange multiplier A(e), the above problems can be written as an

unconstrained minimization:

min Zllx — Dell3 + Allally (3.12)

a

Solving this minimization problem is NP-hard and exact solutions cannot be obtained.
Nevertheless algorithms exist that find suboptimal solutions in reasonable time. These methods
mainly fit into two categories: greedy pursuit and convex relaxation. Greedy algorithms select
the locally optimal choice in an iterative process with the hope of reaching a global optimum.
By adding or refining a set of selected atoms, they try to minimize the error between the
approximated signal and the original, and gradually increase the precision of the estimation.
Examples include the matching pursuit (MP) [40] and the orthogonal matching pursuit (OMP)
[55].

The [, norm is the limit of p-norms as p approaches zero, but it is not a true norm and is
non-convex. Replacing it by the [; norm makes the problem convex and allows us to take
advantage of the powerful tools that exist for these types of optimization problems. Then (3.12)

becomes:

min Z||x — Datl|3 + Allall, (3.13)

a

The optimization principles of basis pursuit denoising [41] and Least Absolute Shrinkage
and Selection Operator (LASSO) [56] are closely related to this problem. Some algorithms that
can be used to solve it include interior point, simplex, homotopy, and gradient descent

methods.
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3.2.1.  Greedy Algorithms

Greedy algorithms for sparse representation are pursuit methods. Starting from an
estimate of the sparse vector, they iteratively refine it by changing the set of selected atoms
and their weights to decrease the signal approximation error. These types of algorithms
abandon the brute force approach of exhaustively searching every possible subset of the
dictionary. Instead they pick locally optimal solutions. This means selecting the atom, in each
iteration, that decreases the reconstruction error the most. Therefore they are able to find one

of the many possible solutions in a timely manner.

3.2.1.1. Matching Pursuit

Matching pursuit was introduced in [40] to find time-frequency representations of signals
from a dictionary of Gabor functions. Given any redundant dictionary, this algorithm selects
atoms iteratively to approximate a signal as closely as needed. First, it selects the atom that
produces the maximum inner product with the residual vector (which is just the signal at the
start) and calculates the weight attributed to that atom. Then it subtracts the contribution of
this atom from the residual vector. The algorithm iterates these steps until the [, norm of the
residual is equal or less than the required error. Alternatively, the stopping criterion can be the
maximum number of atoms to represent the signal. Table 3.1 illustrates the details of the

algorithm.
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Table 3.1 Matching Pursuit Pseudo-Algorithm

Goal: approximate the solution of min||a||, subject to ||[x — Dea||, < €
a

Input: dictionary D = {d;| k = 1,2, ..., K}, signal x, error tolerance &

Initialization:
e iteration number:i =0
e initial vector: a® = 0
residual: 7® = x — Da® = x
e setof selected atoms: S* = {}

Iteration:
o =141
i—1112 . . . Eri_l
e Calculate error e(k) = ||dek —rt ||2, Vk using the optimal solution z;, = TEATE
kll2

e Find the minimum kg, of e(k) Yk & S'~1, such that e(k,) < e(k)
e Add the index of the new atom to the set: ' = St~ U {k,}

e Update atom weight a' (ko) = a' (ko) + 2,

e Update residual ! = x — Da*

e Stopif ||ri||2 < ¢, otherwise apply another iteration

Output: a = o'

3.2.1.2. Weak Matching Pursuit

The Weak Matching Pursuit is a computationally more efficient modification of the
original algorithm that allows for suboptimal choices of the dictionary atoms. Rather than
looking for the atom that maximizes the inner product with the residual, the algorithm settles
on the first atom that is a factor t away from the optimal choice. Using the Cauchy-Schwartz

inequality we have

(dzﬁr"‘l)z (dgri_l)z i—1112 (3.14)
— 05— < max —————— < ||r ||
ldkll3 1sksm ||dy |3 2
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Table 3.2 Weak Matching Pursuit Pseudo-Algorithm

Goal: approximate the solution of min||a||, subject to |[x — Da||, < €
a

Input: dictionary D = {d,| k = 1,2, ..., K}, signal x, error tolerance ¢, scalar 0 <t < 1

Initialization:
e teration number:i =0
e initial vector: a® = 0
residual: 7 = x — Da® = x
e set of selected atoms: S° = {}

Iteration:
o [=i+1
i—1 2 . . . d;{?"i_l .
e Calculate errore(k) = ||dkzk —-r ||2 using the optimal solution z;, = PR until the
kll2

dT i-1
following is satisfied: (g™ )

lldoll,
e Find the minimum ky, of e(k) Vk ¢ S*=1, such that e(k,) < e(k)
e Add the index of the new atom to the set: §* = St~ U {k,}
e Update atom weight a’ (ko) = a’~* (ko) + 2,
e Update residual ! = x — Da*
e Stopif ||ri||2 < ¢, otherwise apply another iteration

=t

Output: @ = at

which sets an upper bound on the maximum possible inner product. Therefore, by calculating
2
||7‘l_1||2 at the beginning of each iteration and searching for the k, that gives the smallest error

e(k), we can select the first one that gives the following:
(df,r 1’

T..i—1\2
— = t2||ri‘1||z > t? max ™ )
I,

3.15
12Em [|d |12 319

The details are in Table 3.2.
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3.2.1.3.  Orthogonal Matching Pursuit (OMP)

The Orthogonal Matching Pursuit (OMP) algorithm [55] is an extension of matching
pursuit which ensures the same atom is never selected twice in representing the signal. This
means an N-dimensional vector converges after a maximum of N steps. To achieve this, the

weight update of the selected atoms is changed. In each iteration i, a new atom is added to the
selected subset S! and all their weights agi are updated by minimizing ||x - Dsiasi”z. The
solution can be found by setting the derivative with respect to ag: to zero:

Di(x — Dgiagi) = =Djir' = 0 (3.16)
which suggests the atoms that are included in S¢ are essentially orthogonal to the residual 7.

The details are shown in Table 3.3.

Table 3.3 Orthogonal Matching Pursuit Pseudo-Algorithm

Goal: approximate the solution of min||a||y subject to ||x — Dal|, < ¢
a

Input: dictionary D = {dy| k = 1,2, ..., K}, signal x, error tolerance &

Initialization:
e jteration number:i =0
e initial vector: a® = 0
e residual:7® =x —Da’ =«
e set of selected atoms: S° = {}

Iteration:
o i=i+1
i-1]|? i i i air
e Calculate error e(k) = ||dek —r ||2, Vk using the optimal solution z;, = TPAE
kll2

e Find the minimum ky, of e(k) Vk & S*=1, such that e(k,) < e(k)
e Add the index of the new atom to the set: §* = St~ U {k,}

. 2 ;
e Update the vector a* = imin”x - DsiaSiHZ subject to S*
S

e Update residual ! = x — Da*
o Stopif||r||, < €, otherwise apply another iteration

Output: a = at
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3.3. Dictionary Learning

The dictionaries discussed in previous sections were based on precise mathematical
functions that are supported by proofs of their optimality and error bounds, as well as fast
implicit implementations. However, these analytical dictionaries are too generic and lack
enough flexibility in optimal representation of complicated signals. An adaptive dictionary
trained from examples close to a signal can allow better and more efficient representations of
that signal. Figure 3.6 shows a comparison of learned and analytical dictionaries to illustrate
this point. Olshausen and Field [42] were among the first to work on a methodology for signal-
adapted dictionaries. The dictionary learning method they developed was based on maximum

likelihood estimation.

Given the generative model x = Da for signal x € RV*!, with D € RV*X an
overcomplete dictionary and @ € RX*1 a sparse vector, the goal of the ML learning method is

to maximize the likelihood that x has a sparse representation in D:

D = max log P(xID)] = max|log [ P(xla, D)P(a)da (3.17)

LTI AR AR

Figure 3.6 Dictionary learned by the K-SVD algorithm and compared to analytical dictionaries [14],
LEFT: Learned dictionary, CENTRE: Overcomplete Haar dictionary, RIGHT: Overcomplete DCT
dictionary
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In general this computation is very difficult. To simplify it, certain constraints have to be
put in place such as the assumption that the distribution of P(a) is Laplacian and that the
approximation noise error can be modeled as zero-mean Gaussian noise. Other probabilistic
dictionary learning methods have been proposed that follow the maximum likelihood [57] or
the maximum a posteriori (MAP) [44] frameworks.

The task of dictionary learning is to find a dictionary as well as its corresponding sparse

vector to represent a given signal. Put formally, solve

(D,a} = min > Allelly + 1Dt = il 3.1

D T

where the signal has been split into I smaller sections. For images this is accomplished by
breaking it down into overlapping patches of size n X n with n = 8 being a common choice.
This is because of the enormous computational cost of operating on large signals. Solving (3.18)

is a 2-step iterative process. The first step is to fix D and find sparse representations with

expressions synonymous to (3.10) and (3.11) for every image patchi € I:

a; = min||a;|l, subjectto ||Da;—x;l|5<e Vi (3.19)
ai

a; = min||Da; — x;||5  subjectto |lajllo <L Vi (3.20)
ai

All the sparse coding methods previously discussed are applicable here.

The second step is to fix a; for all i € I and update the dictionary D. Several methods
exist to accomplish this. Olshausen and Field used gradient descent. Two other ways of learning
the dictionary are the method of optimal directions (MOD) [43] and K-SVD [14] which will be

discussed in the following sections.
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3.3.1. Method Of Optimal Directions (MOD)

The MOD algorithm [43] follows the 2-step dictionary learning process to solve (3.18).
Engan et al. used OMP for the sparse representation step, and proposed a closed form solution
for the dictionary update step based on the least squares method. Consider the representation
mean square error e; = ||Da; — x;||5 for all i €1 expressed as a matrix with each e; as a

column:
IEI3 = ) lledls = DA = X3 321)
i

Assuming A is kept constant, we can find a new D to minimize this error by setting the
derivative with respect to D to zero: (DA — X)XT = 0. The solution is obtained using the

Moore-Penrose pseudo-inverse:
Doy = XAT(AAT) 1 (3.22)
The MOD algorithm typically converges after a few iterations; however it is hampered by

the relative high complexity of the matrix inversion.

3.3.2. K-SVD Algorithm

The K-SVD algorithm [14] is designed to be a natural generalization of K-means clustering.
K-means aims to assign Q observations into K < Q sets and is a 2-step algorithm similar to
dictionary learning. First the observations are grouped into K sets such that their [, distance to
a given centroid is minimal. This can be considered the extreme case of sparse coding where

each observation (signal) vector is only allowed to be represented by a single atom with a
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weight of 1. In the second step, the centroids are updated such that the overall distance in each
set of observations is minimized. This is synonymous to updating the dictionary.

Similar to dictionary learning algorithms discussed before, K-SVD tries to solve (3.18) by
iterating between sparse representation and dictionary updating. The former can be done by
any pursuit algorithm and OMP is a common choice because of its simplicity and fast execution.
The latter is where the main contribution of K-SVD lies. The dictionary atoms along with their
weights are updated one at a time making use of SVD decomposition to minimize
approximation error. This greatly reduces computation time and complexity. For a given column
(atom) d, and its corresponding row 1 in the sparse matrix A, the approximation error (3.21)

can be written as:

2

IX — DA||2 = = ||Ex — dyrielz 3-23)

<X - z mem) - dka

m#k

2
2

K
X - z AdmTm
m=1

The next step is to use SVD to decompose Ej and find alternative dj and ;. However,

2

this will result in filling t;, with non-zero entries. Therefore to avoid losing sparsity, we need to
select the subspace of 7, that contains non-zero elements. The equivalent term to be

minimized is denoted as:

|EE — il 3.24)
Performing the SVD decomposition on Ej¥ gives us Eir = UAVT. The solution to d; becomes the
first column of U, and the solution to %,75 becomes the first column of V multiplied by A(1,1).

Now the entries in %f can replace their corresponding values in 7. More details of the K-SVD

algorithm are provided in Table 3.4.
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Table 3.4 K-SVD Pseudo-Algorithm

Goal: find a dictionary D to sparsely represent signal X = {x; € R¥*1|i = 1,2, ..., I} by solving
rgt}qllDA —X|I3 subjectto |laillo <L Vi

RNXI

Input: signal matrix X € , error tolerance &, sparsity measure L, number of atoms K

Initialization:
e iteration number:j =0
e initial dictionary: set D® € RN*X to an overcomplete analytical dictionary or K randomly
chosen columns from X and l, normalize each column

Iteration:
« j=j+1
e Sparse Coding: find sparse vectors a; for each signal x; by solving the following using any
pursuit algorithm:

. . i 2 : [
o " =min|Di " — x|, subjectto feylly <L vi
i

e Dictionary update: for each dictionary atom {d,, € R¥*'|k = 1,2, ..., K} in D/~ follow
these steps
— Define the group of column signals that use atom dj:

Q ={ilt<i<1al 7' (k) # 0}

- Given the row 1 in A corresponding to d, calculate the residual matrix Ej:

Ek:X—deTm

m+k
- Select only the columns in Ej, corresponding to (), to get E,Ze

- Apply SVD decomposition E,Zz = UAVT. The updated atom dk is the first column of U.

The updated coefficient vector i becomes the first column of V multiplied by A(1,1).
Now the entries in f,ze can replace their corresponding values in 7;,

e Stopif ||DjAj - X||§ < ¢, otherwise apply another iteration

Output: D
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3.3.2.1. Image Denoising by K-SVD

In [9] Elad and Aharon formulated how an image can be denoised by sparse
representation using a dictionary learned by K-SVD. Consider an image x corrupted with an

additive white Gaussian noise n; then the noisy image is:
y=x+n (3.25)
The problem of minimizing noise while sparse representation and dictionary learning

occur can be written as:
X = ;YLl)l'Z{l_ Ally —x|I5 + § tillallo + 11Da; — Eix|I3 (3.26)
U, & -
l

where E; extracts patches from x. Patches are chosen to be small to ease the computational
load. They are also overlapping so that blocking artifacts do not plague the reconstructed
image.

Two approaches can be followed to obtain the dictionary. It can be learned from training
images that are noise-free, or it can be learned from the patches of the noisy image. It was
shown in [9] that the second option leads to comparable results to the first. The reason is that
after each iteration, dictionary learning gradually makes the atoms approach the underlying
structure of the image. As a result, noise is not learned and the underlying structure of the
image can be reconstructed without noise. Solving (3.26) amounts to first fixing x and following
the familiar 2-step iterative algorithm composed of:

e Sparse representation: solve (3.19) or (3.20) using any pursuit algorithm

e Dictionary updating: use K-SVD as described in Table 3.4
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After the final dictionary and its sparse representation are obtained, the denoised image

can be reconstructed by the following closed-form expression:

-1
x = (AI + Z EiTEi> (AY + 2 EiTDai> (3.27)

This is essentially a weighted average of all the patches with some moderation introduced by

averaging with the noisy image.
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Chapter 4. Methodology

Conventional image denoising methods usually assume a simple noise model such as
additive white Gaussian. However, noise in CT images does not have a known distribution. The
projection measurements of CT scans are non-stationary [58] [59], and the reconstruction
process itself affects the noise in the final image. Looking at CT images in general, the noise and
the actual structures can be thought of as a texture layer and a piecewise smooth layer,
respectively, superimposed on one another. Recently, the Morphological Component Analysis
(MCA) [15] algorithm was introduced that aims to separate texture from the piecewise smooth

(cartoon) parts of an image by sparse representation. With the advent of dictionary learning
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algorithms in recent years we were motivated to combine these two techniques and
decompose low-dose CT images into two morphologically distinct layers thus extracting and

discarding unwanted streaks and noise from the main structures.

4.1. Morphological Component Analysis

The image decomposition problem is of the form
y=x +x, (4.1)
where x; and x, are two morphologically distinct layers that are to be extracted from y € RV,
The MCA model assumes that there exist two mutually incoherent overcomplete dictionaries.
Each one can very sparsely represent one of those layers but results in a non-sparse solution
when applied to the other layer. Formally the following assumptions hold true:
e There exists an overcomplete dictionary D; € RVN*X1 (K; > N) for signal x; such that

solving @y = min||a||, subject to: x; = D;a, leads to a sparse solution.
a

e There exists an overcomplete dictionary D, € RV*Xz (K, > N) for signal x, such that

solving @, = min||a||, subject to: x, = D,a, leads to a sparse solution.
a

e For signal x;, solving @y = min||a||, subject to: x; = D,a, and for signal x, solving
a

a, = min||a||, subject to: x, = D,a, both lead to non-sparse solutions.
a

where ||. ||, is a count of non-zero entries. Therefore, the two dictionaries D, and D, are able to

discriminate between the two morphologically distinct layers x; and x,.
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Figure 4.1 TOP: Original simulated mixture, BOTTOM LEFT: Recovered cartoon image using the
curvelet transform, BOTTOM RIGHT: Separated texture part using DCT. [15]

The Original MCA algorithm called for selecting an appropriate fixed dictionary for each of
x, and x,. For example, we can select the overcomplete discrete cosine transform (DCT) to
represent oscillatory texture content and the curvelet transform can be used to represent the
piecewise smooth parts of the image as shown in Figure 4.1. For an image y with the
dictionaries selected, the optimization task becomes

{ay, a2} = {énian}”%”o + llazllo subjectto: y = Dia; + Dya, (4.2)
1,42
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The problem as it is posed in (4.2) is non-convex and hard to solve. Additionally, in general
it is not possible to cleanly separate the two layers as there might be some content that does
not belong to either dictionary. Fortunately the matching and pursuit algorithms are able to
find an approximate solution [40] [41]. So the [y-norm can be relaxed to an [;-norm and the
constraint is changed to a penalty:

{a, a,} = min |la|l; + llazll; + Ally — Dyay — Dyasll3 (4.3)
{al'az}

In [15], an iterative shrinkage algorithm based on the block coordinate relaxation method was
used to solve this problem.

In general, images might contain complicated textures which may not be effectively
represented with any fixed dictionary. Therefore, using dictionary learning to create a set of

atoms adapted to the image will result in better image separation.

4.2, Learning the Morphological Content

Peyré et al. [16] extended the MCA algorithm by combining fixed and learned
dictionaries. They suggested using a fixed dictionary such as wavelets or curvelets to represent
the piecewise smooth content and learning a dictionary based on patches of the image
(manually selected) that contain mostly texture. This would allow better image separation as
the learned dictionary is adapted to the texture content.

With the success of dictionary learning and its ability to adapt to any image, it makes
sense to represent both the smooth and texture parts of an image by learning their content

separately. Indeed this is possible as shown in [17]. The same paper also argues that given two

48



previously learned dictionaries, it is faster (with no noticeable degradation in the results) to use
a direct degenerated block-coordinate-descent algorithm rather than an iterative one as was
done previously in [15] and [16].

The task of sparse representation is usually done by the Orthogonal Matching Pursuit
(OMP) algorithm which needs to operate on small patches to be computationally feasible.
Consider an image broken down into I patches of size VN x VN and each patch i € I formed
into a column vector of size N X 1. The image decomposition problem can be formulated as the

generalization of the denoising problem in [9]:

min Ay —x;— x,lI3 +Z.ui”ai”0 + ID1a; — Exxi |13 + pillBillo + 1I1D25; — Eix, I3 (4.4)
i

X1,%2,21,B;
where E; extracts the /™" patch from the image, u and p are Lagrange multipliers, and 1 is a
regularization parameter. The first term exists to enforce input-output proximity in the
presence of noise. The rest express our belief that two distinct dictionaries D; and D, can
sparsely represent x; and x, respectively.

We do not have initial values for x; and x,, so to solve (4.4) the following approximation

is used:
2 2 @i ? 4
D i = Bl + Y 106~ el = ) [[191,021 () — i +x2) (45)
i i i ¢ 2
which is true with uncorrelated separation errors:
(Eixq — D1ai)T(Eix2 — D) =0 (4.6)
Therefore we can write (4.4) as
. 2 a; 2
min 2y = ot 2IE+ ) wllallo + pillBllo + 10221 () = B + x| (47)
X1,%2,01,B; - ,Bi

2
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Dictionaries D,
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Image Edge
Decomposition Reconstruction

Figure 4.2 Main stages of the proposed algorithm

Solving this problem involves three stages. First we need to learn dictionaries D; and D, from
training patches that represent piecewise smooth structures and noise respectively in a CT
image. Then we can set y = x; + x, in (4.7) and find the sparse vectors using OMP. Finally
having found the parameters to represent x; and x,, we can proceed to construct them. After
this process is completed, there is a need to recover some edges that may end up in the wrong
layer. Figure 4.2 shows the overall profile of the proposed algorithm and Figure 4.5 presents a

more detailed flowchart. The details are provided in the following sections.

4.2.1. Pre-learning of Dictionaries

To ensure successful image decomposition the two dictionaries that are to be used need
to be mutually incoherent to avoid ambiguity in the sparse representation stage. The first
dictionary needs to represent the noiseless structures of the CT image. We propose using a
simple and fast denoising method on the given image to prepare training samples for dictionary
learning. This denoising method should be edge preserving and smooth away all the noise. Even
if some small details get lost at this stage, the impact on the final outcome is negligible. The

purpose of this stage is to provide us with a noiseless starting point from which a dictionary
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representing only the main structures can be produced. Total Variation (TV) denoising [8] is a
good candidate that meets our requirements.
Using Chambolle’s method [19] we solve the TV minimization for the low-dose CT image y

to smooth away the noise and unwanted streaks and find y;:

1
minz > 1950 =y NP +2| Y VBG+ L) =3 @DP + B+ D-5GHP | 48)
ij ij

In the algorithm, the regularization parameter A controls the strength of the smoothing. We
need to find the optimum value of A that does not blend or destroy small structures yet is able
to produce a reasonably smooth output. This is achieved experimentally by running the TV
algorithm a few times with a series of linearly increasing A values as inputs and finding the
corner of the L-curve [60].

The L-curve is a plot of the [,-norm of the solution ||J;||, against the [,-norm of the
residual ||9; — y|l, as shown in Figure 4.3. The corner of the curve is identified as the point
where the change in slope is most rapid. This can be calculated to be where the magnitude of
the second derivative of ||J;||, with respect to ||y — y||, is at its maximum. In the example in
Figure 4.3, this point occurs at ||Js — ||, = 9 X 10? where the second derivative is furthest
from zero. Therefore the corner corresponds to the value of A that resulted in that residual
value. The regularization parameter is chosen in this manner and a dictionary representing

image structures is learned from the corresponding TV smoothed output.
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Figure 4.3 TOP: Log-log plot of the solution norm ||¥;|, against residual norm ||9; — y||,,
BOTTOM: Second derivative of ||¥;||, with respect to ||¥; — ¥||,

To learn the dictionary representing noise we subtract the TV denoised image from the
original noisy one and discard patches that inevitably have leftover edges in them. What is left
is a fairly accurate representation of the noise without any strong edge information. We then

learn the dictionary from these patches. The next step is to find the sparse vectors.
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4.2.2. Sparse Coding and Image Separation

Now that we have the dictionaries, we need to find their corresponding sparse vectors.
Fixing D; and D, to the obtained dictionaries and setting y = x; + x, in (4.7) leads to the

sparse representation expression

n 2 |(s)
min
a;,Bi - Bi

Note that for the right choice of i and p, the following equality ” (gi) ”O = ||la;llo + |1B;llo holds

2
<g Vi (4.9)
2

0 s.t. H[DI,DZ](Zz)—Eiy

true [9].

This problem can be solved by the OMP algorithm the same way it is done for a single
dictionary because we are essentially concatenating D; and D, together and seeking a sparse
vector to represent the input image using all the atoms contained in both dictionaries. After
finding the sparse vector, it is easy to split it into @ and [ according to which dictionary they
belong to. Therefore each patch of the noisy image is approximated as closely as we want (by
setting €). The atoms from one dictionary are better at capturing structural information in each
patch while atoms from the other dictionary are better at doing so for the unwanted artifacts
and noise.

Since we are trying to capture all the information in a given image and send them to their
respective layers (x; or x,), € should ideally be zero. However for time constraints and because
there is no reason to capture all the noise, € can be set to an estimated Gaussian noise

variance.
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To get x; and x,, fix the dictionaries and the sparse vectors in (4.4) and we have

X1,X2

min Ally = 2= %03 + ) 1D = Ball3 + ) 12— Eexall (4.10)
i i

the solution of which amounts to the following:

X, = </11 + z EiTEi>_1 (/1 (y ~ Z EiTDzﬁi> . 2 E{Dlal) (4.11)
Xy = (AI + inTEl)_l( ( ZE Dlal> ZETDZ[?1> (4.12)

Despite trying to separate only noise from the actual image, some edges will end up in
the wrong layer blurring the desired layer. The reason is that the high frequency nature of noise
makes it morphologically similar to the edges of actual image structures. Therefore atoms from
the noise dictionary tend to represent some edge information as well as unwanted streaks. In
the next section we develop an iterative procedure based on the curvelet transform to

reconstruct the edges in the denoised image.

4.2.3. Iterative Edge Reconstruction Using Curvelets

In the decomposition process, it is inevitable that some edges are wrongly attributed to
the noise dictionary and are sent to the noise layer. Therefore some processing is required to
identify the missing edges and restore them to the structure layer. We use the curvelet
transform [11] to produce a dictionary of adapted curvelet atoms and extract the edges from
the noise layer. This transform is similar to the wavelet transform but better in representing

curves. This property makes it useful in recovering CT image edges.
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Figure 4.4 TOP LEFT: Phantom CT image [61], TOP RIGHT: Low frequency components of image
represented by coarsest curvelets (scale=1) in a 3-scale transform, BOTTOM LEFT: Mid-range
frequency components of image represented by curvelets at scale=2, BOTTOM RIGHT: Highest
frequency components of image represented by curvelets at scale=3

The curvelet transform is a multiscale operator. Consider the conversion of an image into
an M-scale curvelet representation. The coefficients at the coarsest scale essentially contain the

lowest frequency components of the image which is not of interest here. In fact for our purpose

55



( )
Total Variation Separate Highest
Denoising Frequency Content
1 | Ve Using the Curvelet
Transform
7T\ . J
y v .
Residual
l Learn
Learn Noise Structure Learn D,
Dictionary D, Dictionary Dy
N\ X1 (
Find Sparse | Iteratively
. mage
Representation . Move Edges
, Decomposition Xo
Using (4.9) from x, to x;
J
L

X1

NS

of edge recovery, the two finest scales are all that is needed. By setting the coefficients of all

Figure 4.5 Flowchart of the proposed algorithm

but the finest scale to zero, and performing the inverse transform, we end up with the image
edges at the highest curvelet resolution (Figure 4.4). We can use this result to learn a dictionary
of high resolution curvelet atoms adapted to the image. Following the same procedure with the
second-finest scale gives us a set of adapted curvelet atoms at the two highest resolutions.

We learn the adapted curvelet dictionary from the TV denoised image to avoid the noise

of the original image. Then we iterate the following steps:
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Table 4.1 Pseudo-Algorithm of the Proposed Method

Goal: decompose input image y into a noiseless layer x; and a noisy layer x,
Input: noisy image y, number of atoms K, noise variance o?

1. Pre-learn D4 and D,
e Perform TV denoising on y to find y; using the optimum 4 as explained in section 4.2.1
e Learn D, from y;
e Remove the strongest edges from the residual y — y; and learn D, from it
2. Sparse Coding and Image Separation
e Solve (4.9) for y using OMP and the concatenated dictionary [D;, D,]
e Separate the sparse vector into @ and f corresponding to D; and D, respectively
e Using equations (4.11) and (4.12) decompose y into x; and x, corresponding to D, and D,
respectively
3. Edge Reconstruction
e Curvelet transform J; into 3 scales
e Repeat for m=2 and m=3
= Set all but the coefficients at scale m to zero
= |nverse curvelet transform
= Learn a dictionary from the result
e Combine the adapted curvelet dictionaries to form D,
e |terate until some error criterion is reached (e.g. highest PSNR and SSIM)
= k represents the current iteration

= Take the [, norm of xék_l) and set the lower 90% to zero so only the strongest edges £

remain

= Set [=2in equation (3.20) and use OMP and D_,., to represent £ thus forming noiseless
edges &;

= Update xik) = xik_l) + & and xék) — xgk—l) — &,

Output: denoised image x;

e Hard threshold the noise layer x, so only the strongest edges remain
e Sparsely represent the residual using OMP with no more than 2 atoms from the
curvelet dictionary
e Add the result to the structure layer x; and subtract it from the noise layer x,
This ensures only the strongest edges are added to x; in each iteration. By continuously

selecting edges and adding them to the structure layer a point is reached when only noise
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remains and we can stop. In our experiments we measure the Peak Signal to Noise Ratio (PSNR)
and the Structural Similarity (SSIM) index to stop the iterations when they reach their peak.

The flow of our proposed method is depicted in Figure 4.5 and the details are illustrated in

Table 4.1.
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Chapter 5. Results and Discussion

5.1. Setup of the Algorithm

The following sections outline the parameters of the proposed algorithm that were used
for testing and illustrate some of the dictionaries that were created. In section 5.2 the results of

our experiments are presented and compared to the K-SVD denoising method of [9].

5.1.1. Preprocessing and Dictionary Learning

In order to learn two dictionaries representing structure and noise artifacts respectively,

we apply the total variation (TV) denoising. As explained in the previous chapter, A is a
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Figure 5.1 Phantom images. TOP LEFT: low-dose, TOP RIGHT: not enough smoothing because of
small A, BOTTOM LEFT: optimal smoothing, BOTTOM RIGHT: too much smoothing with large 4

regularization term that determines the amount of smoothing that occurs. Figure 5.1 shows
various degrees of smoothing.

We need to produce a very smooth image to ensure the structure dictionary does not
learn the morphology of the unwanted artifacts. The procedure outlined in 4.2.1 finds the

optimal A for a good balance between denoising and distance to the original. To this end, we
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Figure 5.2 Dictionaries learned using the optimally smoothed image of Figure 5.1. LEFT: Structure
dictionary, RIGHT: Noise dictionary

run the TV algorithm several times using a fixed range of A values, and find the 1 suggested by
the corner of the L-curve. To ensure enough smoothing, we select the smoothed result
corresponding to the next highest A.

Next, a dictionary of 300 atoms is learned from 75% overlapping patches of size 8 X 8
from the smoothed image. The noisy residual is formed, patches containing edges removed
using the canny edge detector and another dictionary (same dimensions) representing noise is
learned from it. In both cases the K-SVD algorithm is used and the number of iterations is set to

10. The dictionaries corresponding to Figure 5.1 are shown in Figure 5.2.

5.1.2. Sparse Representation

Once the dictionaries are obtained the separation of their corresponding morphological

content can begin. OMP is used for the sparse representation stage because it is efficient and

61



quick. Our algorithm relies on morphology rather than noise variance; therefore, the stopping
criterion for OMP is the maximum number of atoms taken from both dictionaries to represent
the given image. In our experiments, the ratio of atoms taken from the noise dictionary
compared to the structure dictionary was very high; the latter only contributed around 2 to 3
atoms for each patch in all tests. Therefore, the stopping criterion for OMP is set to 20 atoms to

allow enough structure atoms to be selected.

R ’I°E’_
Imn_;.mw u—au

Figure 5.3 TOP: High frequency components of smoothed image in Figure 5.1 used to train
dictionary, BOTTOM: Learned dictionary. Left half and right half correspond to the top images
respectively
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5.1.3. Adapted Curvelet Dictionary

Following the procedure of section 4.2.3, the fast curvelet transform [11] is used to
isolate high frequency contents of the TV smoothed image and produce a dictionary to use for
edge recovery. Figure 5.3 shows the training images corresponding to Figure 5.1 and the
dictionary learned from them. Each half of the dictionary is learned from one of the training

images.

5.2. Results

Experiments were performed on 3 sets containing 8, 6, and 10 images respectively,
selected from low-dose CT scans of 3 different phantoms. Furthermore, 7 standard images
(cameraman, Lena, peppers, etc.) were corrupted by Poisson noise to various degrees to
produce 6 noisy images each, and these were tested. Altogether, 24 CT and 42 standard images
were processed by the proposed algorithm and K-SVD denoising [9] to compare the two
methods. All images are of size 512 x 512 pixels. More details are provided in the following
pages. To evaluate the effectiveness of the algorithms the peak signal to noise ratio (PSNR) and
the structural similarity (SSIM) index were calculated in each case. The same parameters used
to learn dictionaries for the proposed method were input to the K-SVD denoising algorithm:
300 column atoms of size 64, and 10 iterations.

The CT images are from scans of 3 different phantoms and contain several registered
high-dose (used as ground truth) and low-dose images that allow quantitative analyses to be

performed. For the first phantom, the following parameters were used to scan: voltage of
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120kVp, slice thickness of 0.75mm, effective dose of 210mAs for high-dose images, and
effective dose of 60mAs for the low-dose images. Eight images were randomly chosen from this
set, were denoised, and the results were recorded in Table 5.1. Figure 5.4 shows two of the
results and the zoomed views for better examination of details.

In the second group, another phantom was scanned once with slice thickness of 5mm,
and again with slice thickness of 1.25mm. For all the images, the effective dose of the high-dose
and low-dose images was 21mAs and 5mAs respectively, and the voltage was 120kVp. Table 5.2
shows the denoising results. The first two rows correspond to the 5mm slices, and the rest to
the 1.25mm slices. Figure 5.5 shows one of the results.

The third group are images of an anthropomorphic phantom [61] which was scanned
using the following parameters: voltage of 120kVp, slice thickness of 3mm, effective dose of
200mAs for high-dose images, and effective dose of 25mAs for the low-dose images. The results
of denoising 10 random images from this group are shown in Table 5.3 and Figure 5.6.

The PSNR results of the proposed method are always within close to 1dB of PSNR for K-
SVD denoising. However, the SSIM metric is a better indicator of visual quality which is very
important in medical imaging. The proposed algorithm is superior in that respect. K-SVD
denoising assumes that each update of the dictionary brings it closer to representing the true
image. However, the results show that this assumption is not always correct. Looking at Figure
5.4 and Figure 5.6 it can be seen that some parts of the images have been completely
smoothed while in other areas, streaks still remain. This is because K-SVD only learns the true
underlying structures if the noise is close to Gaussian. However, CT noise has a more complex

distribution.
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An important advantage for the proposed method over many denoising algorithms is that
it learns the morphological signature of the noise. It is a lot less dependent on knowing the
noise variance which is often difficult to find especially for CT images. For this reason, one
needs to run K-SVD denoising a number of times, inputting various estimates of the noise
variance to find the best result. Even then it tends to smooth out certain regions too much
while leaving others under-processed.

To test the effectiveness of the proposed algorithm in general, 7 natural images were
corrupted with Poisson noise to various degrees and were subsequently denoised. Some
examples can be seen in Figure 5.7 and Figure 5.8. Table 5.4 shows the PSNR and the SSIM
indices. Figure 5.9 plots the average over all 7 images and demonstrates that for lightly
degraded images, both methods work similarly. However, as the noise becomes more severe,
the proposed method out-performs K-SVD denoising.

Our tests show that for low-dose CT images or other severely corrupted images where it
is difficult to distinguish true edges and false structures, the proposed method performs well to

reconstruct the real image beneath the noise.
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Table 5.1 PSNR and SSIM values for the results of the first set of phantom CT images

Low dose K-SVD Proposed
# PSNR SSIM PSNR SSIM PSNR SSIM
1 35.6831  0.8656 37.7097  0.9129 36.6571  0.9106
2 36.0689  0.8721 41.3300 0.8847 40.4529  0.9463
3 40.9773  0.9392 44,9002  0.9152 443386 0.9614
4 42.0507  0.9563 46.7823  0.9178 45.8201 0.9743
5 42.1265 0.9621 46.7936  0.7761 45.5155  0.9840
6 38.7550 0.8584 39.7400 0.8247 39.6555 0.8769
7 44.7696  0.9775 49.1444  0.9495 48.5232  0.9903
8 41.8519  0.9592 46.8806  0.8089 46.2781  0.9845
Average 40.2854  0.9238 44,1601  0.8737 43.4051  0.9535
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PSNR=44.76, SSIM=0.97 PSNR=49.14, SSIM=0.95 PSNR=48.52, SSIM=0.99

Figure 5.4 Results of denoising the first set of phantom CT images with their zoomed views below them. From
the left: FIRST COLUMN: High-dose, SECOND COLUMN: Low-dose, THIRD COLUMN: K-SVD denoising, FOURTH
COLUMN: Proposed method

67



Table 5.2 PSNR and SSIM values for the results of the second set of phantom CT images. First two rows
correspond to images with 5mm slice thickness. Last four rows correspond to images with 1.25mm slice

thickness
Low dose K-SVD Proposed

# PSNR SSIM PSNR SSIM PSNR SSIM

1 46.9374 0.9911 48.7634 0.9345 48.2077 0.9959

2 47.0486 0.9912 48.8657 0.9053 48.1017 0.9956

3 41.8767 0.9632 43.7096 0.9017 43.4323 0.9836

4 41.8661 0.9629 43.7103 0.8855 42.8274  0.9790

5 41.8188  0.9622 43.6533  0.9006 43.2037 0.9834

6 41.9235 0.9632 43.7923  0.9098 42.8346  0.9737
Average 43.5785  0.9723 45.4158  0.9063 447679  0.9852

PSNR=46.93, SSIM=0.99 PSNR=48.20, SSIM=0.99

PSNR=48.76, SSIM=0.93

N

N

Figure 5.5 Results of denoising the second set of phantom CT images (5mm thickness) with their zoomed views
below them. From the left: FIRST COLUMN: High-dose, SECOND COLUMN: Low-dose, THIRD COLUMN: K-SVD
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Table 5.3 PSNR and SSIM values for the results of the third set of phantom CT images

Low dose K-SVD Proposed
# PSNR SSIM PSNR SSIM PSNR SSIM
1 36.6155  0.9378 40.7097  0.8445 39.8581  0.9706
2 37.7416  0.9450 41.4014 0.8762 40.9290 0.9684
3 37.7706  0.9650 40.9806  0.8972 39.8865  0.9862
4 38.4865 0.9758 40.2136  0.8910 39.6846  0.9875
5 39.3263  0.9796 41.5197  0.8820 40.7554  0.9916
6 39.7248  0.9793 42.0855  0.9054 40.9162  0.9914
7 40.0498  0.9806 42.2478  0.8918 41.4509  0.9922
8 39.5338  0.9799 41.5934  0.8983 40.8602  0.9917
9 39.5098  0.9801 41.4765  0.8794 40.8934  0.9901
10 40.8774  0.9827 43.1494  0.9105 42.3225  0.9918
Average 38.9636  0.9706 41.5378  0.8876 40.7557  0.9862

PSNR=36.61, SSIM=0.93 PSNR=40.70, SSIM=0.84

Figure 5.6 Results of denoising the third set of phantom CT images [62] with their zoomed views below them.
From the left: FIRST COLUMN: High-dose, SECOND COLUMN: Low-dose, THIRD COLUMN: K-SVD denoising,
FOURTH COLUMN: Proposed method
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Table 5.4 PSNR (TOP) and SSIM (BOTTOM) values for the results of the natural images corrupted with Poisson
noise. Standard deviation values are average estimates across all similarly corrupted images.
LEFT: Low-dose, TOP RIGHT: K-SVD, BOTTOM RIGHT: Proposed method

c 5.77 9.17 12.01 24.68 34.50 75.96
41.09 35.62 33.24 27.47 24.92 18.65
cameraman | 36.66 29.65 26.64 19.66 16.64 9.65
39.45 34.12 32.27 29.56 28.05 23.48
39.13 35.64 33.83 29.31 27.18 22.58
lena 36.85 29.86 26.83 19.86 16.84 9.86
38.62 34.02 31.90 30.07 28.47 23.81
36.48 34.36 32.82 28.31 25.97 20.24
peppers 37.00 30.04 27.01 20.06 17.02 10.04
37.78 32.77 31.65 29.93 28.50 24.23
30.28 28.41 27.17 23.42 21.70 18.99
baboon 36.14 29.16 26.13 19.13 16.12 9.14
36.43 29.92 27.77 21.68 20.73 19.19
37.98 34.53 32.58 27.50 25.38 21.07
barbara 37.02 30.01 27.01 20.04 17.01 10.04
37.96 32.34 30.42 24.69 23.31 21.63
36.61 33.99 32.37 28.22 26.39 22.43
boat 37.02 30.01 26.98 20.00 17.00 10.01
37.80 32.60 30.74 27.57 26.62 23.07
38.06 34.26 32.37 27.85 26.01 22.12
couple 37.26 30.28 27.27 20.28 17.30 10.27
38.03 32.87 30.82 26.95 26.18 23.02
— |
37.09 33.83 32.05 27.44 25.36 20.87
average 36.85 29.86 26.84 19.86 16.85 9.86
38.01 32.66 30.80 27.21 25.98 22.63
c 5.77 9.17 12.01 24.68 34.50 75.96
0.98 0.95 0.93 0.81 0.74 0.49
cameraman | 0.97 0.90 0.84 0.63 0.53 0.26
0.98 0.96 0.94 0.88 0.87 0.65
0.98 0.96 0.94 0.85 0.76 0.53
lena 0.98 0.90 0.84 0.64 0.53 0.27
0.98 0.95 0.93 0.89 0.80 0.59
0.97 0.96 0.94 0.86 0.78 0.53
peppers 0.98 0.92 0.87 0.65 0.53 0.24
0.99 0.96 0.95 0.92 0.86 0.68
0.94 0.92 0.90 0.76 0.65 0.35
baboon 0.99 0.96 0.92 0.71 0.55 0.22
0.99 0.96 0.94 0.76 0.70 0.50
0.98 0.97 0.94 0.82 0.73 0.40
barbara 0.98 0.93 0.89 0.70 0.58 0.27
0.99 0.95 0.93 0.80 0.74 0.59
0.98 0.96 0.94 0.85 0.77 0.48
boat 0.98 0.93 0.88 0.68 0.55 0.25
0.99 0.95 0.92 0.86 0.82 0.61
0.98 0.96 0.94 0.85 0.76 0.51
couple 0.99 0.95 0.90 0.71 0.58 0.27
0.99 0.96 0.93 0.85 0.82 0.62
- —
0.97 0.95 0.93 0.83 0.74 0.47
average 0.98 0.93 0.88 0.68 0.55 0.25
0.99 0.96 0.93 0.85 0.80 0.61
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PSNR=19.86, SSIM=0.64

e

‘g

i . [ e 3t h e
, SSIM=0.76 PSNR=21.68, SSIM=0.76

PSNR=19.13, SSIM=0.71 PSNR=23.2

Figure 5.7 Results of denoising natural images corrupted with Poisson noise. From the left: FIRST COLUMN:
Original, SECOND COLUMN: Noisy images (TOP o = 12.01, BOTTOM ¢ = 24.68), THIRD COLUMN: K-SVD
denoising, FOURTH COLUMN: Proposed method
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=20.06, SSIM=0.65  PSNR=28.31, 5SIM=0.86  PSNR=29.93, S5IM=0.92
Figure 5.8 More results of denoising natural images corrupted with Poisson noise. From the left: FIRST COLUMN:
Original, SECOND COLUMN: Noisy images (TOP ¢ = 12.01, BOTTOM o = 24.68), THIRD COLUMN: K-SVD

denoising, FOURTH COLUMN: Proposed method
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Figure 5.9 Average PSNR and SSIM values for natural images with increasing noise standard deviation
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Chapter 6. Conclusion and Future Works

6.1. Total Variation Dictionary Learning

In order to separate noise from the true structures in an image we presented a
preprocessing stage where a noisy image is smoothed by minimizing the total variation. The
regularization method known as L-curve is used to find an optimally smoothed image that is
balanced in terms of retaining structural detail and discarding noise. This smoothed image is
used to train a dictionary representing the piecewise smooth parts of the image. Subsequently,
the residual of the smoothed image is used to learn another dictionary representing noise and
false structures. Care is taken to discard patches of the residual that may contain any strong
edge presence. This makes sure that the dictionary atoms do not adapt to edge information.
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This methodology creates two mutually incoherent dictionaries. When they are used together
to represent the noisy image, it becomes possible to accurately reconstruct it and separate the
morphological content represented by each dictionary. The goal is to decompose the image to

the superposition of a noisy layer and a structure layer.

6.2. Sparse Representation and Image Separation

Once the dictionaries are obtained, they can be concatenated together and used to
sparsely represent the noisy image. We use the OMP algorithm and set the stopping condition
as the maximum number of atoms to use to represent each patch. The result is a sparse matrix
that can be split according to which dictionary they belong to. This allows us to reconstruct the
image layers individually according to which dictionary they belong to.

There is a problem that is encountered in this separation process. Despite our best
efforts, certain edges are represented by both dictionaries simultaneously and some are
completely mistaken as noise. Because of this we developed an iterative method of identifying

edges that appear in the noise layer, and add them back to the structure layer.

6.3. Edge Recovery using Adapted Curvelets

The curvelet transform provides an optimal way of representing smooth curves and image
discontinuities. For this reason we chose it as the basis for learning a dictionary adapted to
edges. As mentioned before, we want to capture the edge information imbedded in the noise

layer. Naively using this dictionary to represent edges in the noise layer will result in capturing
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some noise as well. Therefore, we showed how to iteratively select the strongest edges and
very sparsely represent them to make sure only the main structures are returned back to the
main layer. Continuing this procedure, a point is reached when most edges are recovered and
the algorithm should stop. Our results show the superiority of our noise removal method

compared to simple K-SVD denoising.

6.4. Future Improvements

The success and accuracy of image decomposition into distinct morphological
components using sparse representation is highly dependent on the dictionaries assigned to
each layer. In this report we used the smoothed image and its residual to learn the dictionaries.
More accurate descriptions of noise could help design a more adaptive dictionary.
Furthermore, it could be worthwhile to explore some recently proposed analytical dictionaries
which could help distinguish true edges from random streaks in CT images. For example, the
bandelet transform [62] [63] fits a specifically optimized dictionary to an image by taking
advantage of geometric regularities. Another dictionary is obtained from the directionlet
transform [64] which builds oriented and anisotropic wavelets based on local image

directionality.
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