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Abstract 
 

ROBUST ROBOTIC VISUAL SERVOING FOR UNCERTAIN SYSTEMS 

Doctor of Philosophy, 2015 

Akbar Assa 

Department of Mechanical and Industrial Engineering, Ryerson University 

The control of robotic manipulators in unstructured environments is a challenging task. 

Exploiting the camera images for that purpose, known as visual servoing, offers an interesting 

solution to the problem. Classic visual servoing techniques were the first attempts towards this 

goal. However, these methods suffered from system’s shortcomings such as ones imposed by the 

limited camera’s field of view and the robot’s reachability. Numerous approaches were proposed 

to overcome these limitations. Nevertheless, most of these techniques assumed full knowledge 

about the system and did not account for uncertainties. 

Uncertainties in visual servoing systems are introduced by multiple sources such as camera 

image noise and robot parameters. The lack of knowledge about system’s parameters may lead to 

reduced accuracy or even total failure. Adaptive techniques were introduced previously to cope 

with this matter. However, those techniques were usually useful for deterministic uncertainties 

(e.g., camera calibration errors). Alternately, robust methods were employed to improve the 

performance of the system under uncertainties. Yet, those methods were usually conservative 

and more concerned with the stability of the system, rather than its accuracy. 

This work proposes three steps towards robust and accurate visual servoing. First, the pose 

estimation algorithm, used in many visual servoing systems, is revised by introducing novel 

sensor fusion techniques. Multiple fusion algorithms at different levels of estimation are 

introduced to enhance the accuracy and robustness of the estimation against system uncertainties. 

Second, a novel uncertainty estimation technique is presented to approximate the level of 

uncertainties induced by image noise at different levels of the system. A general approach is used 

for that matter which has applicability over a wide range of controllers. Finally, multiple 

constraint-aware and robust controllers with improved stability and numerical feasibility are 
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proposed to enhance the performance of the visual servoing systems in presence of uncertainties. 

The developed uncertainty model is exploited in robust control design. The effectiveness of each 

proposed technique is verified through numerous simulations and experiments. As it is expected, 

the proposed methods are capable of handling the uncertainties and enhancing the accuracy, 

while accounting for system constraints.     
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Chapter 1 

Introduction 

1.1 Overview 

The fast movement towards globalization has made the competition in most markets tighter than 

ever. The exceeding needs for reduction in production costs and time has turned automated 

manufacturing into an important asset to many companies. Industrial robots and particularly 

manipulators play a major role in manufacturing automation. These manipulators facilitate fast 

and accurate production, while reducing high costs. Many applications such as welding, painting, 

cutting, and assembling have benefited from the exploitation of industrial manipulators and the 

demands for these approaches in new applications are ever-increasing.  

In order to produce the required quality, manipulators usually require a highly-structured 

workspace. In many applications, the tool (e.g., welding gun, spray nozzle, etc.) is mounted on 

the robot’s end-effector and is brought to the desired location with respect to the object of 

interest to carry out the required task. Therefore, the relative pose (i.e., position and orientation) 

of the object with respect to the tool should be known a priori. Structuring the workspace is 

usually very demanding for each task and requires a few days to several months, depending on 

the size of the workspace and the number of robots involved. In addition, the kinematics of the 

robot might not be accurate enough (due to system uncertainties and nonlinearities such as 

backlash and slippage) to be used for such purposes. In summary, conventional robotic 

manipulation is time-consuming, expensive and requires major revisions and programming 

efforts for each task. 

Vision-guided robot control, also known as robotic visual servoing (RVS), offers an attractive 

remedy to this problem. In this technique, the images of the camera taken from the object of 

interest are exploited to provide the system with adequate information about the current pose of 

the robot with respect to the object. Contrary to previous trends in which images are used in the 

planning level (also known as “look-and-move”), RVS involves use of images directly in the 
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execution control level. Two major groups of RVS schemes were introduced previously [1.2]. In 

the first group, the difference between the current and desired images (usually that between the 

image features) is directly exploited for servoing purposes. Therefore, this structure is known as 

image-based visual servoing (IBVS). In IBVS systems, the interest points of each image (i.e., 

image features) are extracted (denoted by s) and compared with those of the desired image 

(denoted by *s ). A controller is employed to reduce the image difference. The image space 

control action is then mapped to the camera velocity through the image Jacobian matrix (or 

interaction matrix). The robot is then moved based on this velocity. The process is repeated till 

the robot gets to its desired pose. Figure 1.1 demonstrates the block diagram of an IBVS system. 

Alternately, each image from the camera might be used to acquire the relative pose of the object 

with respect to the robot. The difference between desired and current poses (denoted by 
*c

oH and 

c
oH , respectively) is then passed to the control unit for robot control. As a result, this structure is 

called pose-based visual servoing (PBVS). The relative pose of the object with respect to camera 

is estimated for each image by using the image features. Various pose estimation algorithms are 

available for that purpose, which will be introduced in the coming chapters. Figure 1.2 exhibits 

the block diagram of a PBVS system. 

The properties of the aforementioned RVS structures were thoroughly investigated by the 

previous works [1.3, 1.4]. It was shown that IBVS has a good robustness against robot or camera 

uncertainties. These methods are simple to implement and does not require a model of the object. 

However, the robot trajectory of these methods might not be feasible, as a result of controlling in 

2D space. In addition, the methods suffer from possible systems local minima and singularity of 

image Jacobian. Moreover, the visibility of the object is not guaranteed. On the other hand, 

PBVS systems offer smooth robot trajectories in Cartesian space and have global stability. 

Nevertheless, the pose estimations used in these methods are sensitive to the uncertainties of the 

system and usually require a 3D model of the object. Likewise, the object is likely to leave the 

camera’s field of view (FOV), which leads to system failure. Hybrid visual servoing (HVS) 

schemes were introduced to alleviate the aforementioned shortcomings of IBVS and PBVS [1.5]. 

By sharing the control action between the image and Cartesian space, i.e. decomposing of 

position and orientation control, these methods were able to successfully guide the robot towards 



3 
 

the goal, providing global stability. However, the satisfaction of all system constraints was not 

guaranteed. Figure 1.3 depicts a block diagram view of this scheme. 
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Figure 1.1 The block diagram of an IBVS system.
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Figure 1.2 The block diagram of a PBVS system. 
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Figure 1.3 The block diagram of an HVS system. 



4 
 

Despite their impressive performance in theory, RVS systems may not be as successful in 

practical cases. As a matter of fact, RVS systems usually suffer from system’s uncertainties 

which lead them to accuracy reduction or even total failure. Multiple factors are responsible for 

system’s uncertainties. One source of uncertainties in the system is improper calibration of the 

camera or the robot. These uncertainties remain the same throughout the servoing and are 

therefore deterministic. Image noise and feature extraction algorithms could be counted as other 

sources of uncertainties. Examples include noise or uncertainty due to the the angle of the view, 

lighting, etc. [1.6]. These uncertainties change throughout the servoing and have a stochastic 

nature. Adaptive techniques were previously introduced to compensate for uncertainties of the 

system (e.g., [1.7]). However, these methods are more suitable for deterministic uncertainties. 

Alternatively, robust systems were presented to relieve the effects of uncertainties (e.g., [1.8]); 

yet, most of these systems targeted specific uncertainties in the system and were mainly 

concerned with the stability of the system, and not its accuracy. In short, robustness of visual 

servoing techniques is critical to the successful integration of RVS techniques into the practice, 

and there are still open problems before achieving a reliable RVS approach for industry. This 

work presents novel approaches for robust RVS to deal with the system uncertainties.  

First, sensor fusion is introduced as an effective remedy to accurately estimate the pose of the 

object in spite of system uncertainties, since most RVS approaches require full or partial pose 

estimation during servoing. Multiple sensor fusion algorithms are introduced for fast and 

accurate pose estimation. For this matter, fusion at different levels of pose estimation is practiced 

and the results are compared to highlight the strengths and weaknesses of each algorithm. The 

wide range of provided fusion methods enables us to select the most efficient algorithm, 

considering the available resources and required characteristics.  

Second, in order to simulate and predict the performance of RVS techniques, a good model of 

uncertainties and errors is needed to be developed. Such model can also serve as the basis of a 

robust control system design. In this thesis, a novel uncertainty modeling for closed-loop RVS is 

developed to accurately model the propagated noise in different levels of the system. For this 

matter, the effect of image noise on different parts of different visual servoing systems is 

investigated and a proper general model is proposed. The proposed approach considers the 



5 
 

discrete-time and closed-loop nature of the visual servoing system and therefore leads to high 

accuracy noise estimation. This model is then exploited for robust control of the system. 

Ultimately, several robust controllers are introduced for RVS as the main goal of this work, in 

further attempts of improving the system accuracy and incorporating the system constraints. For 

that matter, in this thesis, several controllers are developed which are capable of dealing with the 

system constraints and expand the stability region of the system. In addition to that, other 

controllers are proposed to minimize the system uncertainties and provide robust performance. 

Robust control is made possible by introducing a novel two-stage controller structure which 

increases the speed of the system and predicts the outcome of the system. It is shown that this 

control structure is capable of minimizing the effect of uncertainties and compensate for the 

remaining errors effectively. 

Numerous simulations and experiments are conducted to certify the effectiveness of the proposed 

methods. While the simulations are important to verify the proposed systems in theory, 

experimentation is necessary to emphasize the applicability of these methods in real world tasks. 

It is shown that the proposed methods are capable of improving the accuracy of the system, 

while surviving undesired situations such as partial occlusion. In addition, these methods enable 

the system to fulfill the constraints in spite of system uncertainties.        

1.2 Motivation and Approach 

Pose estimation plays a crucial role in many of visual servoing systems as they require full pose 

(PBVS) or partial pose (IBVS and HVS) for servoing. The success of these visual servoing 

methods highly depends on the accuracy of the estimated pose. Most of the previously proposed 

pose estimation methods provide accurate estimations of the pose in the absence of system 

uncertainties (e.g., inaccurate object model, camera calibration error, etc.). However, the 

performance of these methods declines drastically once the uncertainties of the system are 

increased. Therefore, robust and accurate pose estimation is of great importance.   

Traditionally, monocular vision is used for that purpose. The camera may be installed on the 

robot’s end-effector and move with it, or alternatively set apart from the robot at a known pose 

with respect to the object. The former configuration is known as eye-in-hand (EIH), while the 
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latter is usually referred to as the eye-to-hand (ETH) [1.9]. The EIH cameras have the advantage 

of higher accuracy as they can get very close to the object of interest; however, their FOV 

become limited for the very same reason. The reverse is true for ETH cameras. These cameras 

usually provide a large FOV which usually include the robot and the object of interest, while 

their accuracy is comparatively low. In order to benefit from both of these configurations, multi-

camera systems were introduced. 

Multi-camera systems were used in many of previous works; yet in most of those works the data 

from the cameras were complementary rather than redundant. Therefore, their information could 

not be used to improve the overall robustness and accuracy. Sensor fusion provides a tool to 

combine the data from multiple cameras synergistically to enhance the accuracy of the systems. 

A few sensor fusion works were available for improving the accuracy of pose estimation. 

However, those methods had limited accuracy and applications. A detailed survey of sensor 

fusion methods is provided in the coming chapter. 

As a part of robust RVS, this work presents a comprehensive design tool for pose estimation 

through sensor fusion. Sensor fusion is carried over three different levels of pose estimation. 

First, fusion at measurement level is discussed. Novel methods are proposed for measurement 

fusion, which are shown to have higher accuracy and degrees of robustness compared to their 

previous rivals. These methods process all the data from different cameras simultaneously, which 

result in a high-accuracy output. As a result, they are computationally expensive. Sensor fusion 

at the state level is presented as an alternative. These methods have reduced accuracy compared 

to measurement fusion techniques; however, they are more efficient computationally. This 

difference becomes more significant as the number of cameras increases. Finally, a fusion 

technique at the pre-processing stage is introduced. Unlike the previous methods, this scheme 

may be practiced with any pose estimation method. Once again, the outcome of this fusion 

technique is shown to be more accurate than monocular systems, but not as accurate as 

measurement fusion techniques. 

Despite their usefulness, the proposed fusion techniques can only reduce the effect of uncertainty 

in the system and are not able to fully resolve this issue. In addition, these techniques do not 

address the limitations of the system (e.g., those caused by the camera’s FOV or robot’s 
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reachability). These problems can be handled at the control level but before that, an accurate 

model of uncertainty seems to be necessary. This model helps to estimate the impact of 

uncertainties at different levels of the system which in turn facilitates the treatment of errors 

through robust controllers. Without this model, the control actions taken against the possible 

uncertainties might be conservative. Current models of uncertainty in RVS are either 

conservative [1.10] or restricted to a particular controller [1.11]. 

In order to resolve this issue, a novel methodology is proposed to estimate the effect of 

uncertainties at different levels of RVSs. This methodology enables us to calculate the error 

covariance of various signals in the system, assuming known error covariance of the image 

features. The main advantage of this approach is its practicality over a wide range of controllers. 

In addition, the discrete-time and closed-loop nature of the system is taken into account which 

makes the method more realistic compared to the previous modeling attempts. It is noteworthy 

that only the effect of image noise is considered in this work and other sources of uncertainties 

are left for future works. 

Once the uncertainty model is complete, control strategies may be taken to address the 

aforementioned problems of visual servoing systems. As it was discussed before, RVS systems 

suffer from several limitations. One important limitation of these systems is their inability to 

address the constraints, imposed by the structure of the system. Cameras usually have a limited 

FOV. This means that each image can capture only a part of the environment, usually the part 

that is directly in front of the camera. This limitation is a burden to RVS systems as the object of 

the interest may fall out of camera’s FOV. Moreover, the robots used for servoing have limited 

reachability and motion. The length of robot’s links and robot’s joint limits set a boundary for 

the space which the robot can reach. The acceleration of the robot is usually limited by the 

payload and the dynamics of the robot. The velocity of robots is usually restricted for safety 

reasons. In summary, the system constraints are mainly imposed by the camera’s limited FOV 

and robot’s restricted reachability and motion, which are considered as the system’s limitation in 

this work. 

Another major shortcoming of RVS systems is their sensitivity to system uncertainties. In 

particular, image noise contributes to the errors of camera velocity, which in turn affects the 
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accuracy of robot’s trajectory. As a result, the robot may experience irradic motions or the 

system may fail if the constraints are violated. Therefore, it is important to minimize the effect of 

image noise on the system and compensate for any undesirable influence.    

This work proposes a two-level controller for this purpose. In this proposed technique, an offline 

controller is employed to predict the trajectories of the system and its camera velocities in the 

absence of any uncertainties. Next, an online controller is engaged to guide the robot as close as 

possible to the predicted trajectories, using the pre-calculated velocities as a part. Model 

predictive control (MPC) strategies are then taken to guarantee the satisfaction of system 

constraints. Proper changes had been made to these systems to enhance their feasibility and 

stability. It has been shown that the proposed control technique have the capability to minimize 

the error covariance of the system, while maintaining the global stability by taking the 

constraints of the system into consideration. Moreover, it is shown that the method can be 

benefited from the developed error modeling technique to predict the violation of constraints at 

offline stage and avoid them accordingly. As a result, the system is capable of handling the 

uncertainties and constraints very well. 

1.3 Robotic Visual Servoing Structures 

In this section, the main basic RVS techniques are introduced. This introduction helps the reader 

to better understand how the RVS systems work. For that matter, IBVS, PBVS, and HVS 

systems are briefly presented as follows. 

1.3.1 IBVS  

In IBVS systems, a controller is applied to guide the image features towards their desired 

locations. For this purpose, the image features are extracted at each time step and compared with 

those of the desired image (taken prior to the servoing). The servoing error is formed as the 

difference between these features, i.e.,  

 *
se s s  , (1.1) 

where s and *s are the current and desire image feature vectors, respectively. One simple way to 

reduce this error exponentially to zero is to employ a proportional controller, i.e.,  
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 0s se e  , (1.2) 

where  is the controller gain. It is known that the image features are a nonlinear function of 

object pose with respect to the camera, formulated as follows, 

 ( )k ks F  , (1.3) 

where k is the vector of pose parameters. Having the time derivative of both sides of (1.3) 

yields, 

 
( )k

k k
k

F
s

 






 . (1.4) 

The time derivative of the pose is related to the camera velocity. Consequently, (1.4) may be 

rewritten as follow, 

 ,k k c ks J V , (1.5) 

where ,c kV is the camera velocity in camera frame and ,s kJ  is the image Jacobian (or interaction 

matrix) at time step k, respectively. Using (1.5) along with (1.1) and (1.2) results in, 

  * *
, ,s k c kJ V s s s   , (1.6) 

which yields, 

  † * † *
, , ,c k s k s kV J s J s s   . (1.7) 

Here the pseudo-inverse of the Jacobian matrix is denoted by †
,s kJ . The camera velocity is 

recomputed at each time step to find the new camera velocity. The camera velocity is transferred 

to robot’s angular joint velocities in turn to move the robot accordingly. As it can be seen from 

(1.7), the camera velocity will be zero if the feature error happens to be in the inverse Jacobian’s 

null space. In addition, singularities of the image Jacobian may render the inverse of the Jacobian 

used in (1.7) impossible. Therefore, local minima and Jacobian singularities are some of the 

main shortcomings of IBVS systems. Moreover, the stability of these systems are guaranteed 

only locally as the Jacobian matrix is a local linearization between the Cartesian and image 

spaces. Furthermore, the camera trajectories created by (1.7) might not be feasible for the robot 

due to its limited workspace.  

 

 



10 
 

1.3.2 PBVS 

In these systems, the image features extracted from camera images are exploited to estimate the 

relative pose of the object with respect to the camera. This pose is denoted by the transformation 

matrix between the object and camera frame, 

 
1

c c
c o o
o

R t
H

0

 
  
 

, (1.8) 

where c
oR  and c

ot  are the rotation matrix and translation vector between the object and camera 

frames, respectively. Once the desired pose (
*c

oH ) is estimated, the pose error is formed as a 

function of the current and the desired pose. Various pose errors may be formed for this purpose. 

In this section, transformation between the current and desired camera poses is exploited for that 

purpose, i.e., 

  * * 1c c c
c o oH H H


 . (1.9) 

The pose error is then defined as a vector including the translation vector and the angle and axis 

representation of the rotation matrix obtained in (1.9) [1.12], 

 
*

[ ]c
p ce t  . (1.10) 

Once again, the proportional controller similar to (1.2) is employed to reduce the error to zero 

exponentially. It can be shown that the camera velocity is calculated as follows [1.2], 

 
*

*

,

c c
cc

c k

R t
V




   
 

. (1.11) 

Such controller guides the camera to its desire pose through a straight line in Cartesian space, 

which is desirable. This method offers global stability assuming perfect pose calculation [1.2]. 

On the other hand, the features may leave the camera FOV at any time. Moreover, the pose 

information used for this control scheme is only an estimate of the real value and sensitive to 

uncertainties.  

1.3.3 HVS  

In order to combine the advantages of IBVS and PBVS systems, HVS systems were introduced 

which relayed the control partially to image space and partially to Cartesian space. For that 
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matter, the image feature used by IBVS were extended to include the logarithm of depth for each 

feature and the angle and axis of the rotation between the current and desired camera frames is 

added to the error, similar to PBVS, 

 *
he s s      , (1.12) 

where s  and *s are the vectors of current and desire image feature plus their depth logarithm. 

Using the aforementioned proportional controller to reduce this error to zero yields [1.5], 

 
† *

, ,
,

( )s v s
c k

J s s J
V  


     

   
, (1.13) 

where ,s vJ  and ,sJ   are the translational and rotational parts of the Jacobian matrix which relates 

the time derivative of the extended features to the camera velocity, 

 , , ,k s v s c ks J J V      . (1.14) 

Exploiting the camera velocity introduced in (1.13) improves the stability of the system and 

smoothness of the system trajectories, both in image and Cartesian spaces. However, none of the 

constraints of the system is yet guaranteed. 

1.4 Contributions 

The contributions of this work are listed as follows, 

 Introduction and development of iterative adaptive extended Kalman filter (IAEKF) for 

centralized sensor fusion. 

 Introduction and development of virtual visual servoing (VVS), its relation with Gauss-

Newton method, and the proof of its superiority. 

 Development of decentralized fusion techniques such as extended Kalman filter (EKF) 

and virtual visual servoing (VVS) for pose estimation. 

 Formulation of pose estimation error for ETH cameras. 

 Introduction and development of a pre-processing fusion technique for pose estimation. 

 Establishment of a closed-loop error modeling methodology for visual servoing systems. 

 Introduction and development of the two-stage control structure for robust RVS. 

 Development of novel model predictive controllers for constrained RVS. 

 Integration of control and uncertainty estimation for robust constraint handling. 
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1.5 Thesis Structure 

The steps towards robust visual servoing are presented in consecutive chapters as follows. 

 The pose estimation techniques are the focus of Chapter 2. First, Kalman filter is 

introduced as one of the most important pose estimation techniques which can be easiliy 

modified for sensor fusion. The tuning problems of this method are investigated and 

proper solutions such as adaptive methods, iterative techniques, and iterative adaptive 

schemes are discussed in details. In addition, Virtual Visual Servoing (VVS) and Gauss-

Newton methods are introduced as alternative optimization-based solutions. The close 

relation of these methods is investigated towards the end of this chapter. 

 Chapter 3 is dedicated to sensor fusion applications for robust and accurate pose 

estimation which is used in RVSs. The proposed sensor fusion techniques are discussed 

in three groups as centralized, decentralized, and pre-processing fusion schemes. It is 

shown that the centralized fusion techniques have the highest accuracy, while they are 

computationally expensive. Two novel schemes are introduced for that purpose. Next, 

decentralized fusion techniques are proposed as alternatives to centralized methods. The 

accuracy of these systems is lower than the centralized algorithms; however, they bring 

the advantages of reduced computational cost and straight-forward fault detection and 

isolation. Two methods are proposed for that reason. Finally, a pre-processing fusion 

technique is presented as an alternative method which could be used with any pose 

estimation technique. The effectiveness of each proposed techniques is demonstrated 

through numerous simulations and experiments. 

 The focus of Chapter 4 is on error modeling in RVS. A novel closed-loop error modeling 

strategy is proposed. Generality and simplicity are the main advantages of this method. 

Through such technique, the error covariance of different signals in visual servoing, 

including the camera velocities and robot pose, is estimated. The accuracy of the 

predictions is then validated through Monte Carlo simulations. These methods are then 

used for robust control design, introduced in the subsequent chapter. 

 The robust control design is discussed in Chapter 5. The goal of this chapter is to 

introduce novel controllers to improve the performance of RVS. First, model predictive 
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controllers with global stability are introduced for constrained visual servoing. Then, a 

novel two-stage controller is proposed for accurate and robust control in RVS. The first 

stage of this controller allows predictions to be made for the system without the 

uncertainties. Next, the prepared reference trajectories are exploited to reduce the effect 

of uncertainties in action. Model predictive controllers are exploited to protect the system 

against possible constraint violations. In addition, the error model of the system is 

employed to predict possible violations of constraints and avoid them accordingly. It is 

shown that the methods are efficient in handling system’s constraints and uncertainties, 

while providing global stability.   

 The summary of the thesis is presented in Chapter 6. The contributions of the works are 

highlighted in this chapter, and the directions for possible future works are presented. 
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 Chapter 2 

Pose Estimation 
 

2.1 Introduction 

Acquiring the relative position and orientation (pose) of an object with respect to a camera by 

means of the camera images is known as 3D object pose estimation which plays an important 

role in many applications including visual servoing. For this purpose, the interest regions of the 

object (i.e., image features) from camera images are extracted and used along with the 3D model 

of the object and camera calibration information. Since the projection on the camera image plane 

includes only 2D data from the 3D scene, the relative pose of the object could be estimated only 

up to certain accuracy.  

The accuracy of estimations depends on many parameters such as camera calibration and image 

noise. Lack of information about the system may result in inferior pose estimations. 

Traditionally, monocular (i.e., single camera) vision was exploited for this purpose which was 

prone to camera calibration errors, image noise, and partial occlusion. As a remedy, multi-

camera systems with sensor fusion techniques were introduced. Since sensor fusion techniques 

used for pose estimation are built up on monocular pose estimation methods, the structure of 

these methods need to be investigated first. The sensor fusion technique will be discussed 

afterwards. 

This chapter reviews the pose estimation methods that may be used for sensor fusion which will 

be discussed later in Chapter 3. Three major optimal techniques are introduced for this purpose. 

First, the Kalman filter-based methods are introduced as the most important group of pose 

estimation algorithms. The advantages of these methods include temporal noise filtering, 

recursive implementation, and expedition of dynamic windowing for feature selection, which 

have made these techniques very popular. Novel iterative and adaptive techniques are introduced 

to improve the robustness of these methods against the uncertainties of the system. Next, the 
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Gauss-Newton method is introduced as one of the most practiced optimization-based pose 

estimation techniques which can provide the RVS system with accurate estimations of the pose. 

This method is closely related to Levenberg-Marquardt and bundle adjustment techniques. In 

addition to that, VVS is introduced as an accurate method for pose estimation. In this technique, 

the pose of the object is acquired through virtually servoing the camera to a known pose. Next, 

the close relation between the VVS and Gauss-Newton method is proven and the superiority of 

VVS over the Gauss-Newton method in terms of accuracy and speed are discussed in details. 

The introduced methods will be used in sensor fusion which will be discussed in the coming 

chapter.  

This chapter is organized as follows. First a survey over the previous literature on pose 

estimation is presented in Sec. 2.2. Next, the configuration of the system is discussed in Sec. 2.3. 

Kalman filter-based pose estimation methods are the focus of Sec. 2.4. The Gauss-Newton and 

VVS methods are introduced in Sec. 2.5 and 2.6, respectively. The relation between these two is 

demonstrated in Sec. 2.7. Finally, the chapter is concluded in Sec. 2.8. 

2.2 Literature Survey 

The problem of 3D object pose estimation through camera images, also known as external 

camera calibration, is an old though fundamental problem in many vision related fields such as 

computer vision and photogrammetry [2.1]. Pose estimation was applied to numerous domains, 

such as virtual reality [2.2], 3D reconstruction [2.3], object recognition [2.4], 3D tracking [2.5], 

visual servoing [2.6] and simultaneous localization and mapping (SLAM) [2.7]. The pose of an 

object may be acquired through other sensors such as Inertial Measuring Units (IMUs) and 

Global Positioning System (GPS) sensors as well. However, the former is only accurate for short 

periods of time [2.8] and the latter is less accurate and reliable [2.9]. Vision is usually a better 

option since it can provide rich information, which if processed properly, can lead to accurate 

and dependable results. Moreover, vision sensor is able to provide the relative pose of the object 

with respect to the sensor, which is beneficial for many applications such as visual servoing. 

Vast variety of methods has been introduced for pose estimation through camera images. Linear 

methods based on perspective n-points (PnP) were early responses to the problem [2.10, 2.11]. A 
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thorough review of these methods can be found in [2.12]. More recently, linear solutions based 

on polynomial constraints [2.1] and linear equations solved through singular value 

decomposition [2.13] have been proposed. These methods are fast and do not need initialization; 

however they usually suffer from image noise. Closed-form solution such as those in [2.14] and 

[2.15] were introduced for simple but fast estimations. In addition, numerical and iterative 

solutions were also introduced for simple pose estimation [2.16]; nevertheless, they were also 

shown to be sensitive to image noise. Nonlinear optimization-based pose estimation algorithms 

based on Gauss-Newton or Levenberg-Marquardt [2.17] and least-square estimators [2.18, 2.19] 

have shown to be relatively accurate in presence of image noise. These algorithms iteratively 

approach the correct pose from an initial guess using the task-function Jacobian. Recently, a new 

nonlinear scheme based on visual servoing control systems was introduced to solve the same 

problem [2.20, 2.21]. In this method, a virtual camera is servoed from an initial known pose to 

the current (i.e., desired) pose using the image features. Later, the method was extended to be 

robust against outliers [2.22]. The main drawback of nonlinear optimization-based algorithms 

was their stability. It was shown that these methods were only locally stable and therefore the 

final estimation was guaranteed to be accurate only if the initial pose guess was sufficiently close 

to the current one [2.20]. However, this problem is not very concerning for visual servoing 

systems, since consequent poses of the robot are close to each other due to high sampling rates of 

the camera(s). Kalman filter-based pose estimation offered another solution to the problem. 

Since the problem of pose estimation is nonlinear, extended Kalman filter (EKF) should be 

exploited. Early attempts on this scheme can be found in [2.23] and were later applied to robotic 

field for grasping [2.24] and visual servoing [2.25]. One big disadvantage of these approaches 

was their challenging tuning and initialization problems. The effectiveness of these methods 

dramatically decreased, once the filter was out of tune. Adaptive techniques were introduced as a 

remedy to filter tuning problem [2.26-2.29]; yet, these methods were prone to system 

initialization. Alternately, iterative methods were proposed to reduce the error caused by system 

linearization. It was shown that these methods reduced the sensitivity of the system to tuning and 

initialization problems [2.30]. Lately, a cooperative iterative and adaptive scheme was 

introduced which had the capacity to adapt to the changes of the system while following the 

system’s fast dynamics [2.31]. 
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This chapter reviews the advancements on pose estimation techniques and propose the iterative 

adaptive unscented Kalman filter as a powerful tool for robust and accurate pose estimation. The 

introduced pose estimation techniques are then exploited in the coming chapter. 

2.3 System Configuration 

A multi-camera robotic cell is considered in this work. Two types of camera configurations are 

employed for this purpose. Much of the previous work on multi-camera pose estimation assumes 

the relative pose between the cameras to be known a priori (e.g., [2.35-2.37]). Though this is a 

good assumption in many practical cases, it may not be viable in all scenarios. For instance, the 

relative pose of a camera mounted on an Unmanned Aerial Vehicle (UAV) may not be available. 

Moreover, the calibration between different cameras is a time-consuming procedure (especially 

for a large number of cameras) and is prone to errors. In this work, the EIH cameras have a direct 

look at the target object (OT) and the ETH cameras have the target object and the object on the 

robot end-effector (OR) in their FOV. Figure 2.1 demonstrates this configuration. Relevant 

coordinate frames are considered for the cameras, objects, and robot end-effector. 
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Figure 2.1 System configuration: The eye-in-hand (mobile) cameras have a direct view of the 

target object, while the eye-to-hand (fixed) cameras have the auxiliary object in their FOV. 

The relative pose between  and  coordinate frames is expressed by the transformation matrix,

H 
 . The transformation matrix is composed of rotation matrix ( )R 

   (where 

T   
          is the vector of Euler angles with roll, pitch, and yaw elements) and the 

translation vector (
T

t x y z   
       ) as follows, 

  
1 30 1×

R t
H

 
  


 
  
 

, (2.1) 

where 1 30 × is a row vector with 3 zero elements. The relative pose of the target object with 

respect to the robot end-effector is desirable and is obtained separately for EIH cameras,  
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i

T i T

Cme e
O Cm OH H H ,

 
(2.2)

 

and ETH cameras, 

  
  1

j j

T R R T

Cf Cfe e
O O O OH H H H


 .

 
(2.3) 

Here iCm , jCf , TO , RO , and e denote the coordinate frames of ith EIH camera, jth ETH camera, 

target object, end-effector object and end-effector, respectively. A few of these transformation 

matrices are obtained through calibration procedures (e.g., 
i

e
CmH and

R

e
OH ), while others are 

calculated directly or indirectly through camera images. 

The coordinates of a point of interest of the object in a camera frame is calculated using the 

transformation matrix, 

  ,
C C O

O i O iP H P  , (2.4) 

where 1
TO O O O

i i i iP x y z   
 is the vector of homogenous coordinates of point i in the object 

frame, which is known a priori from the Computer Aided Design (CAD) model of the object, and 

, , , , 1
TC C C C

O i O i O i O iP x y z   
 is the vector of homogenous coordinates of the same point in the 

camera frame. 

The pinhole camera model is considered for the image projection. Point features are exploited 

since they are simple to extract. A point in camera frame ,
C

O iP
 
is projected onto the camera image 

plane, i.e., 

  
  , ,

, , , ,
, ,

( )
C C
O i O iC C C C

O i O i O i i O i C C
O i O i

x y
p u v f P

z z

 
     

 
 ,

 
(2.5) 

where ,
C
O ip  is the image plane projection of point ,

C
O iP , ,

C
O iu and ,

C
O iv are its image coordinates. 

Without the loss of generality, the focal length in (2.5) is assumed to be unity. Here ,( )C
i O if P is a 

nonlinear function that maps the homogeneous coordinates of point i to its image plane 
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coordinates. The image plane projection of each point is obtained from image feature points 

using camera intrinsic parameters, which are provided by the camera calibration procedure. The 

image plane coordinates of the feature points are exploited to estimate the object pose afterward. 

It is worth mentioning that the extracted image features are noisy. In this work, the image noise 

is assumed to be a zero-mean Gaussian variable. 

In this chapter, pose estimation methods used for sensor fusion are discussed. The main focus of 

the chapter is on Kalman filter-based methods, which have several advantages over other pose 

estimation methods such as recursive implementation, capability to be used for sensor fusion and 

image feature windowing, and temporal filtering [2.64]. In addition, virtual visual servoing and 

Gauss-Newton methods are presented as alternatives. The latter methods are optimisation-based 

methods and are closely related as shown in the sequel. 

2.4 Kalman Filter-Based Methods  

Kalman filter-based techniques have been commonly used for pose estimation applications. As 

the pose estimation problem is nonlinear, extensions of Kalman filters for nonlinear systems, 

namely EKF and UKF are employed. This section briefly introduces the linear Kalman filter 

structure, followed by pose estimation methods through employing EKF and UKF. These 

methods are then robustified against uncertainties in estimation via novel iterative and adaptive 

techniques as follows. 

2.4.1 Linear Kalman Filter 

Kalman filter in general is a sequential procedure to optimally estimate the state of the system, 

 , through noisy measurements,  , in a linear system. For this purpose, a linear model of 

system dynamics and measurements is exploited. At each time step, the current state is assumed 

to be related to the previous state with some uncertainties. That is, 

 1k k k kA q    , (2.6) 
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where kA  represents the dynamics of the system and kq is a zero mean Gaussian noise with the 

covariance of kQ . In addition to that, the state of the system is related to system measurements 

through the measurement mapping matrix, kF , written as, 

 k k k kY F r  , (2.7) 

where kr is a zero mean Gaussian noise with the covariance of k . Here ˆ
k  denotes the state 

estimation. Equations (2.6) and (2.7) form the foundation of the optimal estimation through 

Kalman filtering, which is outlined as follows. First the initial value of the system state is 

estimated (usually through other methods, or directly through measurements). Moreover, the 

error covariance of this initial estimation is approximated, 

 0
ˆ (0)  , (2.8) 

 0 (0)C C , (2.9) 

where kC  denotes the error covariance matrix at time step k. Next, at each prediction step, the 

state and error covariance of the state are predicted based on the dynamics of the system, 

described in (2.5). 

 | 1 1
ˆ ˆ

k k k kA   , (2.10) 

 | 1 1k k k k k k
TC A C A Q   . (2.11) 

Here, | 1
ˆ

k k  and | 1k kC   are the predictions of the state estimation and error covariance matrix, 

respectively. Once the measurements are available, the state of the system and the associated 

error covariance are adjusted as follows, 

 | 1 | 1
ˆ ˆ ˆ( )k k k k k k k kK F       , (2.12) 

 | 1( ) ( )T T
k k k k k k k k k kC I K F C I K F K K     , (2.13) 
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where, 

 1
| 1 | 1( )T T

k k k k k k k k kK C F F C F 
    , (2.14) 

and I is the identity matrix. It is worth mentioning that if the measurements are accurate (i.e., 

0k  ),  (2.12) and (2.14) yield, 

 1ˆ
k k kF  . (2.15) 

On the other hand, noisy measurements cause the magnitude of the Kalman gain to be small and 

therefore, 

 | 1
ˆ ˆ

k k k   . (2.16) 

It can readily be noted that (2.6) and (2.7) model a system with linear dynamics and linear 

measurement functions. Since the measurement function in the pose estimation problem is 

nonlinear, the formulation of the filter requires proper modifications, which is discussed in the 

sequel.  

2.4.2 Nonlinear Kalman Filter 

The application of Kalman filters can be extended to systems with nonlinear dynamics and/or 

measurement functions. Two types of filters were introduced for this purpose. In EKF, the state 

of the system is estimated by linearizing the system around the current state, while sigma points 

are exploited in UKF to serve this purpose. These methods are explained for pose estimation as 

follows.  

Extended Kalman Filter 

Since the camera projection model is nonlinear, the extended Kalman filter (EKF) is considered 

as a base for pose estimation. The system state vector entails parameters of the relative pose of 

the target object with respect to the robot’s end-effector and its velocity, 

 T T T T

Te e e e
k O O O Ot t     

 ,
 

(2.17) 



23 
 

where k is the state vector at time step k. The system motion and measurement models are as 

follows, 

 1k k kA q    , (2.18) 

 ( )k k kF r   , (2.19) 

where A is the system dynamics matrix, k  and F denote the measurement vector and modeling 

function, kr  is the measurement noise, and kq  represents the process noise. Assuming a constant 

velocity model, the matrix A is defined as follows, 

 

6 6

606

I tI
A

I

 
  
 

,
 

(2.20) 

where I6 is a  66 identity matrix, 06 is a 66 matrix of zeros , and t  is the sampling time of the 

system. The camera measurement vector is defined as, 

 ,1 ,1 , ,. .C C C C
k O O O n O nu v u v     ,

 
(2.21) 

where n is the number of selected feature points for pose estimation. The measurement modeling 

function is described as, 

  1( ) ( ) . . ( )k k n kF f f   , (2.22) 

where, 

 
, ,

,
, ,

ˆ ˆˆ( ) ( )
ˆ ˆ

C C
O i O iC

i k i O i C C
O i O i

x y
f f P

z z


 
  
 

  . (2.23) 

Here ,
ˆ C
O iP  is the estimation of point i coordinates from the object (i.e., estimation of ,

C
O iP ). The 

EKF is formulated as follows. First in the prediction phase the system state and its error 

covariance are predicted based on the dynamics of the system, 
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 | 1 1
ˆ ˆ

k k kA   ,
 

(2.24) 

 | 1 1
T

k k kC AC A Q   ,
 

(2.25) 

where | 1
ˆ

k k  and 1
ˆ

k   are a priori and a posteriori state estimation vectors respectively.  

Moreover, 1kC  and | 1k kC  denote a priori and a posteriori estimation-error covariance matrices, 

respectively. The process noise matrix is denoted by Q and is defined as follows, 

 
 T

k kQ E q q ,
 

(2.26) 

where E  is the expectation function. Next, the state vector and error covariance are updated, 

based on the new measurements, in the estimation phase. 

 

1

| 1 | 1ˆ ˆ

( )( )( )
. . n

k

k k k k

ffF
F

   


  

  

        
,

 

(2.27) 

   1

| 1 | 1
T T

k k k k k k k k kK C F F C F


    ,
 

(2.28) 

  | 1 | 1ˆ ˆ ˆ( )k k k k k k kK F       ,
 

(2.29) 

    12 | 1 12

T T
k k k k k k k k k kI K F C I K F K KC      . (2.30) 

Here 12I  is a 1212 identity matrix, Fk is the Jacobian matrix, kK  is the Kalman gain, and k is 

the measurement noise covariance. It should be noted that the differentiability of the image 

mapping function ( f ) certifies the differentiability of the measurement modeling function (F). 

Each element of the Jacobian matrix is calculated as follows, 

 

, ,

,

( )( ) C C
i O i O ii

C
O i

f P Pf

P


 

 


  

 

 .
 

(2.31) 

The first term of the right hand side of (2.31) is derived as follows, 
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,

, ,,

, ,

, ,

1
0 0

( )

1
0 0

C
O i

C CC
O i O ii O i

C C
O i O i

C C
O i O i

x

z zf P

P y

z z

 
 

      
  



 ,

 

(2.32) 

whereas the calculation of the second term of (2.31) is followed separately for EIH and ETH 

cameras. Recalling from the previous section, the 3D Cartesian parameters of the jth point on 

target object in the ith EIH camera frame is calculated as follows, 

 ,
i i T

T T

Cm Cm Oe
O j e O jP H H P  .

 
(2.33) 

Therefore, in case of EIH cameras, 

 

,
j T

T Ti

Cm Oe
O i O iCm

e

P H P
H

 
 


 

 
,
 

(2.34) 

and for ETH cameras, 

   1

,
j j R

R T T R

Cf Cf Oe e
O j O O O jP H H H P


  ,

 
(2.35) 

 

 1
,
j R

T RR i

T

Cf Oe e
O O iO i Cf

O

H H PP
H

 




 


.
 

(2.36) 

Derivation of (2.36) is straightforward since 
R

e
OH and RO

iP  parameters are known a priori and the 

matrix 
T

e
OH is a function of .  

Unscented Kalman Filter 

The adaptation to nonlinearities of the system may also be performed through the unscented 

transformations [2.48]. UKF estimates the system’s state and its error covariance by means of 

data sampling. First the sampled data, known as sigma points, are selected, 

 | 1 1 1
ˆ ˆi

k k k k
i

n C 
  

     , (2.37) 



26 
 

where n is the size of the state,    1 1 1k k k

T
n C n C n C     , and | 1ˆ i

k k
 are the sigma points. 

Next, the sigma points are passed through the system’s dynamics to form the state and its error 

covariance predictions, 

 
2

| 1 | 1
1

1
ˆ ˆ

2

n
i

k k k k
in

 



 



  , (2.38) 

 
2

| 1 | 1 | 1 | 1 | 1
1

1
ˆ ˆ ˆ ˆ{( )( ) } .

2

n
i i T

k k k k k k k k k k k
i

C Q
n

   


 
    



   
  (2.39) 

Similar procedure is taken to calculate the state and it error covariance estimations, 

 | 1 | 1
ˆ ˆi

k k k k k
i

nC 
 

     , (2.40) 

  ˆ ˆi i
k i kY f   , (2.41) 

 
2

1

1ˆ ˆ
2

n
i

k k
i

Y Y
n






  , (2.42) 
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,
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1 ˆ ˆ ˆ ˆ( )( )
2

n
i i T

y k k k k k k
i

C Y Y Y Y
n


 



    
 , (2.43) 

 
2

, , | 1
1

1 ˆ ˆˆ ˆ( )( )
2

n
i i T

y k k k k k k
i

C Y Y
n  


 




  
 , (2.44) 

which result in, 

 1
, , ,k x y k y kK C C  , (2.45) 

 | 1 | 1ˆ ˆ ˆ( ( ))k k k k k k kK F       , (2.46) 

 | 1 ,
T

k k k k y k kC C K C K  . (2.47) 
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It was shown that UKF results in more accurate estimation for nonlinear systems when compared 

to EKF [2.69]. Yet, this algorithm also approximates the nonlinear system and it provides sub-

optimal estimates of the real system. It is worth mentioning that Kalman filters were designed 

under system’s zero-mean Gaussian noise assumption. If the noise of the system is non-

Guassian, Kalman filter remains the optimal linear estimator. However, particle filters (PFs) may 

work better in this case. Yet, these filters impose high computational burdens on the system and 

may not be desirable, especially for real-time applications. For such cases, UKF offers a balance 

between low computational costs of Kalman filters and high performance of particle filters. In 

this chapter, the accuracy of UKF is enhanced even further through the proposed IAUKF, which 

is explained in the sequel.  

The optimality (sub-optimality) of Kalman filters (EKF and UKF) is directly related to proper 

estimations of noise covariance matrices, k and kQ , tuning of which is non-trivial. Moreover, 

these parameters usually vary during the estimation procedure, making the initial adjustments 

less effective. Adaptive schemes were proposed as a remedy to these problems, which is 

explained in the sequel. 

2.4.3 Adaptive Schemes 

Different schemes were presented to deal with the lack of knowledge about system noise 

statistics. These methods were mainly categorized into multiple model systems and innovation-

based adaptive techniques [2.70]. The former was based on operation of multiple Kalman filters 

with different parameters in parallel. The closest filter output to true value was chosen as the 

state estimation. Since these techniques usually need a huge bank of filters and yet the optimality 

of the system is not guaranteed, they are not discussed in this chapter. Alternatively different 

adaptive schemes are introduced as follows. 

Correlation-based Algorithms 

In these methods, the unknown noise parameters are computed based on autocorrelation of the 

system measurements, 

  k i i k
TD E   ,

 
(2.48) 
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or autocorrelation of the system innovation term, 

   k i i k
TE E   ,

 
(2.49) 

where ( )
ii iF     is the innovation term of the system. The aforementioned autocorrelations 

are estimated over a number of sample set, 

  
1

1ˆ
N

i i k
i k

k
TD

N
  

 

  ,
 

(2.50)
 

 1

1ˆ
N

k i i k
i k

TE v v
N 

 

   , (2.51) 

where N is the number of samples. The noise matrices are then calculated based on the 

relationship of the autocorrelation and noise matrices, 

  0
ˆˆ TD FCF   ,

 
(2.52)

 

 

ˆ TQ C ACA  ,
 

(2.53) 

where C is the steady-state error covariance and is computed based on the estimates in (2.50) or 

(2.51). As it can be inferred, the relationship is usually based on the steady-state Kalman filter, 

which requires the system to be linear and stationary [2.71]. Also these methods usually perform 

less efficiently compared to maximum likelihood schemes [2.71], which are explained next. 

 

 

Maximum Likelihood Algorithms 

In these algorithms, the unknown parameters of the system are found by maximizing their 

likelihood, 

  arg max ( )L


  ,
 

(2.54) 
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where  is the vector of unknown noise parameters and  1( ) log ,..,iL p     is its likelihood 

function. The maximization procedure often involves iterative schemes, increasing the 

computational expense of the system. This problem can be solved by introducing the covariance 

matching algorithms. 

Covariance Matching Algorithms 

These methods compute the noise matrices based on system residuals [2.72]. The differences 

between state prediction and estimation, and also actual measurements and predicted 

measurements, are recorded as an estimation of process and measurement noise respectively, 

 | 1ˆk k k kq      , (2.55) 

  ˆ ( )k k kr F   . (2.56) 

On the other hand, it can be shown that, 

 1ˆ ˆcov( , ) T
k k k k k k kq q Q C A C A   , (2.57) 

 ˆ ˆcov( , ) T
k k k k k kr r F C F   . (2.58) 

Calculating the noise residues from (2.55), (2.56) and employing them in (2.57), (2.58) yields, 

    
1 1

1 1ˆ ˆ ˆ
1

N N
T T

i i i i i
i i

N r r r r FC F
N N 

    
   ,  (2.59) 

      1
1 1

1 1ˆ ˆ ˆ
1

N N
T T

i i i i
i i

NQ q q q q AC A C
N N 

 

    
   ,

 
(2.60) 

where, 

 
1

1
ˆ

N

i
i

r r
N 

  , (2.61)  
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1

1
ˆ

N

i
i

q q
N 

  . (2.62) 

Here ˆ
N and ˆ

NQ  are the estimates of measurement and process noise covariance, respectively. 

One main advantage of this form of estimation is its computation that can be performed 

sequentially as follows, 

 

  
1

ˆ ˆˆ ˆ
1

T
N N N N N

T

N N

r r r r F C F

N N
 

  


  ,    (2.63) 

 

   1
1

ˆ ˆˆ ˆ
1

.
T

N N N N

T

N N

q q q q AC A C
Q Q

N N



  




 
 

(2.64) 

This form of adaptation reduces the computational cost by almost N times (for this part) as 

iterating for N loops, shown in (2.59) and (2.60), is no longer required. It is worth mentioning 

that since the linearized modeling matrices (i.e., kA and kF ) are not calculated explicitly in UKF, 

(2.57) and (2.58) cannot be employed directly to estimate the noise parameters. It can be shown 

that [2.69], 

 | 1 1k k K k k K
TC Q A C A   , (2.65) 

 ,y k k k k
TC F C F , (2.66) 

which are used in conjunction with (2.57) and (2.58) to approximate the noise covariance 

matrices as follows, 

     ,
1 1

1 1ˆ ˆ ˆ
1

N N
T

i i y i
i i

N r r r r C
N N 

    
   ,  (2.67) 

     | 1
1 1

1 1ˆ ˆˆ ˆ
1

N N
T

i i i i i i
i i

NQ q q q q C Q C
N N 

 

     
   .

 
(2.68) 

In adaptive methods, the covariance of residues is approximated over a window of past 

measurements. The size of this window (N) is usually chosen empirically [2.71]. Large window 
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size offers a more accurate approximation at the cost of reduced flexibility to system dynamicity, 

while small window size may lead to system instability.  

It should be mentioned that despite their good performance, the adaptive methods are sensitive to 

initialization and camera calibration. Moreover, these schemes could not adapt to very fast 

changes in the system as the linearization made by EKF or UKF become less valid. To make the 

system more robust against fast dynamics of the system and its parameter errors, iterative 

schemes are introduced. 

2.4.4 Iterative Schemes 

The linearization method, used in EKF and UKF, is based on local system approximation. As a 

result, the estimations may deviate from the original states if changes in the system state are 

considerable. To alleviate this limitation, iterative schemes are applied through which, the state 

prediction and estimation (i.e., | 1ˆk k  and ˆ
k ) are recalculated iteratively, using the states from the 

last iteration in linearization. With enough number of iterations, the output of the system 

becomes steady, i.e., 

  1i i
k k   , (2.69) 

where i
k is the state vector at time step k after i iterations. Using (2.69) in (2.29) and (2.46) 

yields, 

     k
i
kF   . (2.70) 

Similar results are achieved by increasing the process noise (Q) or reducing the measurement 

noise ( ) in linear KFs, but not EKFs (nor UKFs). The benefit of iterative schemes is two-fold. 

First, these methods approximate the nonlinear functions closely, depending on the number of 

iterations. This property allows the system to follow highly dynamic systems. More importantly, 

these schemes alleviate the sensitivity of the system on the error covariance matrices (as was 

reported in [2.58]). Therefore, the system follows the measurements closely and does not 

diverge, in case of high error covariance mismatches. Higher dependency of system estimations 

on the measurements is rewarding when an accurate model of system’s dynamics is not available 
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(e.g., sensor data estimation). However, this benefit comes at the price of higher sensitivity to 

measurement noise. Moreover, iterations usually lead to high computational costs, which is not 

desirable for real-time systems. In such systems, the number of iterations should be selected as a 

compromise between the accuracy and time allowance. 

Equation (2.70) may be interpreted as a nonlinear optimization solution to find the pose of the 

system. As an example, Gauss-Newton and VVS methods may result in similar outcomes as are 

explained in the sequel. 

2.4.5 Iterative and Adaptive Schemes 

Previously, adaptive and iterative techniques were discussed separately. Despite their 

advantages, each of these approaches has their shortcomings. As was mentioned before, adaptive 

methods are vulnerable to system uncertainties such as initialization, while the iterative methods 

suffer from the lack of information about the system noise. This section reviews the previously 

introduced IAEKF and proposes IAUKF as a novel method under the same methodology.   

Iterative Adaptive Extended Kalman Filter (IAEKF) 

Iterative and adaptive schemes are employed in synergy for robust and accurate pose estimation 

[2.64]. The adaptive algorithm adjusts the noise parameters in the filter, while the iterative 

scheme reduces the estimation error caused by any maladaptation. Though various adaptive 

schemes might be used for filter tuning, this chapter focuses on the covariance matching method 

described before.  

It is noteworthy that the combination of these two techniques has to be conveyed carefully, not to 

make the system slow or unstable. For this reason, the adaptation of noise covariance matrices is 

performed out of the iteration loop. For a faster adaptation, only measurements of N previous 

samples are considered. Moreover, a fading-memory approach is taken to give higher weights     

( kw ) to more recent readings and lower weights (1 kw ) to initial samples. Finally, the 

covariance matrices are checked for positive definiteness. 

The number of iterations is an open parameter in the system, which augments the system with 

additional flexibility. This parameter may be regulated by the dynamicity of the system or the 
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convergence of the states. Alternately, the number of iterations may also be selected subject to 

system’s computational resources since extra iterations are performed at the cost of increased 

computational time. Yet, thanks to recent advancements in computing systems, such problem is 

deemed as insignificant. The pseudocode of IAEKF with fixed number of iterations is 

summarized as follows: 

______________________________________________ 

Pseudocode 1: IAEKF Pseudocode 

Initialize 0  and 0C . 

FOR k =1:M 

| 1 1k k k kA    

| 1 1k k k k k k
TC A C A Q    

1
| 1k k k    

FOR j =1:  

j
k

j
k

F
F

  





 

1
| 1 | 1( )j j j j

k k k k k k k k k
T TK C F F C F 

     

1 ( ( ))j j j j
k k k k kK F        

 END FOR 

, 1( ) ( )k k k k k k k k k k
T TC I K F C I K F K K     

      

1 1
| 1k k k kq   
   
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1
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k l
l k N

q q
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   
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1
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
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        
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          



 


 

END FOR 

 ______________________________________________ 

Iterative Adaptive Unscented Kalman Filter (IAUKF) 

Iterative UKFs were previously proposed to improve nonlinear estimation; however, IAUKF is 

proposed for the first time in this work. As in IAEKF, the state prediction and estimation are 

done through an iterative scheme, while the noise parameters are tuned based on most recent 

measurements. The iterations minimize the effect of system nonlinearities on the filter, while the 

noise adaptation adjusts the parameters of the system exploiting a fading memory scheme. The 

cooperative iterative and adaptive schemes work similar to IAEKF, benefiting the system with 

extra accuracy and robustness to system uncertainties.  

The pseudocode of IAUKF with fixed number of iterations is summarized below. 

______________________________________________ 

Pseudocode 2: IAUKF Pseudocode 
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Initialize 0 and 0C . 

FOR k =1:M 

1 1
1

| 1
1

(
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END FOR 

 ______________________________________________ 

2.5 Gauss-Newton Method 

Another approach to solve the pose estimation problem is to find a solution that totally relies on 

the system measurements. The goal is then to find the state vector k  such that (2.70) holds. In 

this method, pose estimation problem is treated as a non-linear least-square minimization 

problem. All features from the cameras are gathered in a single vector such as s, 

 1 1 2 2 . .c c c c c c
j js u v u u u u 

  . (2.71) 

In addition, a set of features is calculated based on pose estimation, 

 1 1 2 2

1 1 2 2

ˆ ˆˆ ˆ ˆ ˆ
ˆ . .

ˆ ˆ ˆ ˆ ˆ ˆ

c cc c c c
j j

c c c c c c
j j

x yx y x y
s

z z z z z z

 
 
  

 , (2.72) 

where ˆ ˆ ˆ ˆc c c c
j j j jP x y z 

  is calculated as follows, 
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 ˆ ˆ ˆi ic cc o
o oj jP R P t  . (2.73) 

Here, the estimated values are denoted by a “hat”. The pose parameters used in (2.73) are 

calculated based on estimated pose of the target object with respect to the end-effector and 

known transformation which were mentioned in (2.2) and (2.3). The cost function is defined as 

the difference between current image features and estimated image features, 

 
2

ge s  , (2.74) 

where, 

 ˆs s s   . (2.75) 

One way to minimize this cost function is to employ a simple proportional control law, 

 s s    . (2.76) 

where   is the control gain. This control law leads to an exponential decrease in the cost 

function. The changes in the cost function are related to the changes of the pose, 

 ˆˆ
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e
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 and is calculated as follows for a set of feature coordinates 

(i.e., i ic c
j ju v 
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Here, ( )
T

e
oD  is a pose dependent matrix which is computed differently for eye-in-hand cameras, 
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    ˆ ˆ ˆˆ ˆ( ) T

T T Ti i

oe e T e T e e
o cm cm o ojD R R S R P T  

  
  , (2.79) 

and eye-to-hand cameras, 

    ˆ ˆ ˆ ˆ ˆˆ ˆ( ) R

T R R T Ti i

oe e T e T e e e e
o o o o ojcf cfD R R S R P t t T  

  
    . (2.80) 

Using (2.76) and (2.77), the time update of pose is calculated, 

 †ˆ
T

e
o J s    . (2.81) 

This time update is used to estimate the pose through integration from an initial guess, 

 , 1 ,ˆ ˆ ˆ
TT T

e e e
oo k o k      , (2.82) 

which leads to the same estimation of the pose as calculate by Lowe in [2.17]. The inverse of the 

J matrix may be calculated through Moore-Penrose pseudo-inverse (which leads to the Gauss-

Newton solution) or damped least-square inverse (which is equivalent to Levenberg-Marquardt 

solution). Generally, the latter is preferred since it was proven to have stronger stability; 

however, assuming sufficiently closed initial guess and avoidance of singularity of the image 

Jacobian matrix (due to high number of features from multiple cameras), the Gauss-Newton 

provides the system with high accuracy estimation of the pose.  

It is also worth mentioning that the measurement error s and also the update equation (2.82) are 

very similar to innovation term and update equation in EKF-based pose estimation methods. In 

fact, it can be shown that if the measurements of the system are fully trusted (i.e. the 

measurement error covariance is equal to an all zero matrix), the Iterative EKF (IEKF) approach 

is equivalent to Gauss-Newton solution to the problem. However, the Gauss-Newton approach 

has the advantage of lower computation time compared to IEKF, while preserving the same or 

better accuracy. The major drawback of this method is sensitivity to measurement noise, which is 

not accounted for.  
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2.6 Virtual Visual Servoing 

Image-based visual servoing was employed in previous works to obtain the object relative pose 

[2.20]. A virtual camera was servoed through an initial known pose to a pose that minimizes the 

image space error, s . The reached pose was considered as an estimation of the current pose. 

The same idea is proposed in this work for fast and accurate fusion of the cameras.  

Given an initial pose for the virtual manipulator, the measurements of each camera from object 

of interest are simulated using, 
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ˆ ˆ
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j jc

j c c
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x y
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z z

 
 
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 ,   (2.83) 

where virtual point ˆ ˆ ˆ ˆc c c c
j j j jP x y z 

  is calculated through known transformations between 

objects and cameras, 
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(2.84) 

 
ˆ ˆ ˆR

R R

i i icf cf cfo
o oj jP R P t  .

 
(2.85) 

It worth mentioning that, since the relative pose between object and the end-effector (
T

e
oH ) is 

assumed to be known during virtual servoing, an estimation of all pose parameters used in (2.2) 

and (2.3) is virtually available at each time step. The velocity of the virtual camera is related to 

the changes in its image features, 

 , is ci is J V , (2.86) 

where i
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is the velocity of ith camera in its own frame, is is the time derivative of the 

feature vector of ith camera ( is ), and , , ,, ,1 . .
T

T T
s i s i ns iJ J J 

  , where n is the number of 

features detected in the ith camera and, 
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Here 
ict and 

ic  are the translational and angular velocity of the ith camera in its own frame, 

respectively. Now the virtual end-effector should be moved, exploiting the calculated velocities 

of all cameras. The velocity of each camera is transferable to the equivalent end-effector 

velocity, i.e., 

 i
i i

c
c e eV V , (2.88) 
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


is the velocity of the virtual end-effector in its own frame coordinates, based on 

the velocity of the ith camera. It is straight-forward to realize this velocity transformation for the 

eye-in-hand virtual cameras, since they are assumed to be fixed to the robot, 
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where  ˆ icm
eS t is the skew-symmetric matrix of the vector ˆ icm

et , defined as follows, 
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On the other hand, the equivalent velocity of the end-effector should be computed in case of eye-

to-hand virtual cameras. Similar velocity transformation matrix has been derived, with a sign 

difference, 
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The details of the calculations are forwarded to the Appendix. The velocity of the virtual end-

effector is calculated based on IBVS control law as follows, 

  ,

†
i

i

c
es i ie J sV    . (2.92) 

Once the velocity of the virtual end-effector is achieved, the pose parameters updates are 

calculated as follows, 

 ( )e e
o e oR S R , (2.93) 

 ( )e e
o e e ot t S t   , (2.94) 

and the pose parameters are updated through integration. 

In order to speed up the algorithm even further, the use of Jacobian matrix calculated at the 

desired pose is proposed for calculation of (2.87). For this matter, the desired feature points are 

available (i.e., currant feature measurements) and the initial depth is acceptable as estimation of 

depth at desired location since the initial guess is sufficiently close to the desired pose. 

In the next step, the velocity of different cameras should be fused into a single velocity, guiding 

the virtual robot towards the current pose accurately. Two different approaches are discussed for 

fusion of different virtual camera velocities, which are explained in the sequel. 

2.7 Comparison of Optimization-Based Algorithms    

In this part, it will be shown that the pose estimation through VVS leads to the same solution as 

Gauss-Newton. The velocity of the virtual end-effector is connected to the time derivation of the 

pose, 

 ˆ
T

e
e oV G  , (2.95) 

where, 
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Here ˆ( )
T

e
oT   is the transformation matrix that relates the time derivation of the Euler angles to the 

angular velocity, 

 ( )
T T T

e e e
o o oT    . (2.97) 

It is worth mentioning that while (2.95) relates the velocity of the virtual end-effector, eV , to the 

time derivation of the pose, ˆ e
o , this conversion does not happen in VVS algorithm. Instead, 

(2.93, 2.94) are exploited to calculate the pose update parameters. By comparing (2.95) with 

(2.93, 2.94), one can notice that the position is updated similarly, while the orientation update is 

different. 

Using (2.86), (2.88) and (2.89) the relation between image features time derivation and pose 

changes is calculated as follows, 

 ˆ
T

e
os M  , (2.98) 

where, 

 ,
ic

es iM J G  . (2.99) 

Image Jacobian Js,i, used in (2.87), can be rewritten as, 
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Using (2.89), (2.95), and (2.99) it can be shown that for eye-in-hand cameras, 
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The skew-symmetric matrix in (2.101) can be calculated as, 
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Replacing (2.102) in (2.101) will give the same result as was calculated by (2.78) and (2.79). In 

case of eye-to-hand cameras, 
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The skew-symmetric matrix in (2.103) is rewritten as, 
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which makes the matrix M similar to its counterpart in Gauss-Newton method, described in 

(2.78) and (2.80).  

It is very important to know that these two approaches are basically equivalent; however, their 

minor differences separate them from each other in terms of accuracy and speed. The first major 

difference between the two algorithms comes from the variation in the formation of the Jacobian 

matrix in these two methods. The Jacobian matrix in VVS is composed of two parts, i.e., image 

Jacobian Li which is dependent of virtual features, and the velocity transformation matrix ic
e
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which is depending only on virtual pose parameters. Therefore, the Jacobian matrix is calculated 

quickly via a single multiplication of the image Jacobian of all features by the velocity 

transformation matrix. On the other hand, the Jacobian matrix used in the Gauss-Newton method 

is composed of two matrices that are both dependent on the feature, as was shown in (2.78-2.80). 

As a result, the Jacobian is formed by concatenating the multiplications shown in (2.78) for each 

set of features. In programs that are optimized for matrix operations (such as MATLAB®), the 

former implementation is performed faster, despite their similarity in the hypothetical 

computational costs. 

 The second major deviation occurs in the orientation updates of these methods. The VVS 

algorithm exploits the virtual end-effector velocity, eV , to update the rotation matrix as was 

described in (2.93). On the other hand, the Gauss-Newton algorithm calculates the Euler angles 

at each iteration using (2.95), and then revert them back to update the rotation matrix, used in 

(2.79-2.80). The transformation of end-effector angular velocity to Euler angles and then back to 

rotation matrix causes an additional operation which may increase the system uncertainty. In 

order to follow this matter more closely, the error propagation from the end-effector angular 

velocity to the rotation matrix is examined for each of these two methods. The methodology of 

error propagation presented in [2.73] is exploited for this purpose. By employing (2.95), the 

noise of the rotation matrix update (
T

e
oR ) in the VVS method is found as, 

 ( )e
e ToT

e
oR

S R 
 , (2.105) 

where e
oT

R
   and 

e are the noises of e
oR  and e , respectively. After the integration, the resultant 

noise of the rotation matrix in the VVS fusion method is calculated as, 

 ( )e
e ToT

e
oR

S R t   . (2.106) 

In case of the Gauss-Newton method, the noise of the end-effector angular velocity is initially 

transferred to the Euler angles and is calculated using (2.97), i.e., 

 1( )e
T eoT

e
on T n t
   . (2.107) 
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The noise of the rotation matrix is found as, 
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where zR , yR , xR are the rotation matrix components related to Euler angles (i.e.,
T z y x

e
oR R R R ), 

and e
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
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  are the noise of the Euler angles 

T

e
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e
o , respectively. 

Reformulating (2.108) results in, 
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where,  
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It can be shown that, 
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Using (2.107-2.111), the rotation matrix noise may be formulated as, 
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Comparing (2.112) with (2.106), it is obvious that noise of the rotation matrix in Gauss-Newton 

method is a function of changes in orientation, which is a direct function of the convergence 

speed of the algorithm. High rates of change in orientation may lead to high noise projection in 

the estimated pose. It is worth mentioning that the noise in the orientation affects the translation 

as well, through matrix G, described in (2.96). Therefore, it may be concluded that the VVS 

method is more robust to noise, compared to the Gauss-Newton method. 
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2.8 Summary 

Accurate pose estimation of the object is a crucial part of many RVS systems. Various 

techniques were introduced previously to address this concern. However, only a few of these 

methods are suitable for sensor fusion. In addition, the accuracy and robustness of these methods 

vary from one to another. This chapter was devoted to robust and accurate pose estimation 

techniques which had application in sensor fusion. For this purpose, Kalman filter-based 

methods were introduced as the most important pose estimation technique with several 

advantages. The shortcomings of these methods were alleviated through the introduction of 

iterative and adaptive techniques. In particular, IAEKF and IAUKF were proposed for robust and 

accurate pose estimation. In addition, well-known Gauss-Newton method for pose estimation 

was developed. Moreover, VVS for pose estimation was reformulated as an accurate 

optimization-based technique. It was shown that this method outperforms Gauss-Newton 

approach in terms of accuracy and speed. The developed pose estimation techniques are to be 

used for sensor fusion in the coming chapter. The performance assessment of these techniques is 

therefore referred to the next chapter. 
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Chapter 3 

Sensor Fusion 
 

3.1 Introduction 

As it was mentioned ealier, robust and accurate pose estimation is required by many RVS 

systems. The performance of these RVS systems is dependent on the accuracy of the estimated 

pose. Usually, single camera systems are exploited for this purpose; however, the performance of 

monocular vision is limited. Multi-camera systems are proposed as a remedy to this problem. 

Then, sensor fusion techniques are employed to combine multiple sensor data synergistically, 

enhancing the richness of the outcome data. Therefore, the goal is to use the data from multiple 

cameras to reach a highly accurate and robust estimation of the object pose. Previously EKF-

based central fusion and bundle adjustment were introduced as effective methods for sensor 

fusion to obtain accurate pose estimations. However, these methods were prone to system 

parameter uncertainty and measurement noise. Moreover, the data from cameras were fused 

without discrimination, which could lead to inferior results. 

This chapter proposes three fusion structures for pose estimation, namely centralized, 

decentralized, and pre-processing fusions. Centralized fusion offers high accuracy at the price of 

increased computation time. Two novel centralized fusion techniques, namely Iterative Adaptive 

Extended Kalman Filter (IAEKF) and VVS are introduced for this matter and their performance 

was shown to be superior compared to their previously introduced competitors. On the other 

hand, decentralized fusion provides the system with a faster estimation by sacrificing the 

accuracy partially. This work proposes two decentralized fusion methods based on extended 

Kalman filter (EKF) and VVS for pose estimation. Finally, a pre-processing fusion technique is 

discussed which enables the system to fuse the image information from multiple cameras prior to 

their processing. The main advantage of this method is its independency from the pose 

estimation technique involved, which makes it suitable for any available pose estimation method. 
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3.2 Literature Survey 

Multi-camera configurations were previously proposed to overcome the deficiencies of a single 

camera. These systems were capable of enhancing the overall accuracy and robustness of the 

estimation and also increasing the total FOV. Multiple cameras could benefit different situations. 

In most scenarios, all of the cameras had the target object in their field-of-view. The 

transformations between the individual cameras were known through pre-calibration of the 

system (for fixed cameras) or forward kinematics of calibrated robots (for end-mounted 

cameras). The visibility of the object (in at least one of the cameras) was crucial for such 

schemes. In addition, the common presence of errors in object modeling (e.g., object CAD 

modeling errors) impaired the overall estimation significantly. Only few works have addressed 

this problem so far. For instance, multiple eye-in-hand cameras with different FOVs were 

employed for visual servoing in [3.1]. In addition, a recent work has benefited from using several 

eye-in-hand/eye-to-hand cameras to control the robot more accurately [3.2]. Moreover, multiple 

fixed cameras were used in [3.3] for accurate visual servoing. A combination of eye-in-hand and 

eye-to-hand cameras was exploited to overcome occlusion using epipolar geometry-based visual 

servoing [3.4]. A multi camera system was utilized to servo a robot and a stereo rig 

simultaneously [3.5]. Several eye-in-hand cameras were used for accurate visual servoing in 

[3.1]. Also control level fusion of multiple eye-in-hand/eye to-hand cameras was implemented 

for robust servoing [3.6]. In addition, multi-camera configurations were previously employed for 

3D reconstruction [3.7] and object recognition [3.8]. However, none of these works focused on 

the pose estimation problem. Multiple camera pose estimation schemes were traditionally based 

on stereo vision technique [3.9], thus facing several issues such as system calibration and camera 

correspondence problems. In order to fully utilize the data from each camera and improve the 

estimation robustness, data fusion techniques were introduced. 

A full realisation of potential capacity given by multiple sensors was achieved by techniques 

known as sensor fusion methods. These methods were generally categorized into centralized and 

decentralized fusion algorithms. Centralized fusion methods, also known as measurement fusion, 

took all measurement data into a central unit and estimated the pose based on all available 

measurements. A well-known example of this method (i.e., bundle adjustment) was proposed in 

[3.10], where a weighted least square approach was taken to acquire the pose estimation. A 
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similar method based on Extended Kalman Filter (EKF) was also introduced in [3.11, 3.12] for 

the same purpose. The advantage of centralized fusion methods was the minimal loss of 

information, whereas their computational cost grew drastically as the number of sensors 

increases. Moreover, they were prone to faulty measurements or outliers since they combine all 

data from every sensor without discrimination.  

Decentralized fusion methods, on the other hand, relied on local estimators that each processed 

the data from a single sensor. The outcome of all estimators were then fused together to form the 

optimal/suboptimal estimation. These methods were generally less accurate than centralized 

methods, yet the fused information was more accurate than any local estimation [3.13]. In return, 

they were computationally lighter and could survive false measurements by isolating the 

corresponding estimator [3.14]. Aside from the aforementioned fusion structures, the fusion 

techniques also played a major role in the success of the overall fusion. Various strategies were 

employed for sensor fusion, among which Kalman filtering remained one of the most popular 

methods [3.14-3.17]. 

Kalman filter was a well-known sequential estimation method which could provide optimal 

results under certain conditions. The main advantages of Kalman filtering were its optimality and 

simplicity, which made it appealing for real-time applications. Due to the nonlinearities of many 

measurement systems, extended Kalman filter (EKF) was developed and exploited for fusion in 

many applications such as odometry [3.18], tracking [3.19], navigation [3.20, 3.21] and pose 

estimation [3.22]. However, EKF performance was degraded drastically when the system noise 

conditions were unknown. Moreover, EKF was sensitive to high dynamics of the system, since it 

assumed a linearized model of the system which was valid only locally. 

Several remedies were proposed to address the shortcomings of EKF-based estimators. 

Unscented Kalman filter (UKF) was introduced to increase the level of accuracy in linearization 

[3.23] and was exploited for sensor fusion in many applications such as navigation [3.24] and 

cooperative driving [3.25]. As was discussed by [3.26] and [3.27], EKF had the advantage of 

lower computational complexity, whereas UKF was more accurate and did not require an explicit 

Jacobian calculation. Yet, UKF could not fully address the aforementioned limitations. Adaptive 

techniques were introduced to tune the filter noise parameters and were applied both to EKF 
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[3.28-3.31] and UKF [3.32, 3.33]. The adaptations were mainly performed based on previous 

measurements of the system, which led to low convergence rates. Besides, these methods were 

unable to cope with the initialization errors. Iterative schemes were proposed to compensate the 

linearization error in EKF [3.34-3.36] and UKF [3.37, 3.38] estimators. However, these methods 

placed overconfidence on the measurements. In addition, an adaptive iterated Kalman filter was 

briefly introduced in [3.39]; however, the method did not find wide applications.  Recently, a 

novel technique based on iterative and adaptive schemes was adopted for pose estimation [3.40]. 

The method was shown to have superior performance, compared to other Kalman filter-based 

estimators. Nonetheless, the method was applied only for monocular pose estimation. 

In spite of the aforementioned advances in adaptive and nonlinear Kalman filtering, only few of 

these techniques were applied to sensor fusion. A number of works proposed adaptive EKF 

[3.41, 3.42] and UKF [3.43] for specific sensor fusion applications. However, these methods 

suffered from the aforementioned shortcomings. In addition, a self-tuning approach based on the 

Auto-Regressive Moving Average (ARMA) innovation model was introduced for linear sensor 

fusion [3.44]; however the method was not extendable to nonlinear systems. Furthermore, 

similar to other adaptive techniques, the convergence rate of this method was low; thus the 

approach was more suitable for linear systems with constant error covariance. 

In this chapter, sensor fusion techniques for the proposed pose estimation methods are discussed. 

Three possible fusion structures, namely centralized, decentralized, and pre-processing schemes 

are introduced. The centralized methods fuse the measurements together and use the fused data 

as the input to the pose estimating unit, while the decentralized methods estimate the pose 

parameters separately and then fuse their estimated states. As a result, they are also known as 

measurement and state fusion algorithms, respectively. Pre-processing techniques combine data 

from all cameras before processing and send it to the pose estimation unit as a single unified 

source of data. Each of these schemes is discussed separately as follows. 
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3.3 Centralized Sensor Fusion 

3.3.1 Centralized Kalman Filter-Based Fusion 

To fuse the measurement data in Kalman filter-based methods (e.g. IAEKF), the data from each 

source is merged with others into a large measurement vector. The measurement data from 

different cameras are first concatenated into a single measurement vector, 

 1, ,. .k k l k      , (3.1) 

where k  is the overall measurement vector, ,i k is the measurement from the ith camera (either 

EIH or ETH), and l is the total number of the cameras. The measurement modeling function is 

then modified as, 

 
      1

. .
lk k kF F F   , (3.2) 

where  i kF   is the measurement modeling function, described in (2.22), for the ith camera. 

Moreover, the measurement noise covariance is altered as follows, 

  1, ,. .k k l kdiag    , (3.3) 

where diag  is the diagonal matrix with the elements of the contained matrices as diagonal 

elements, and ,i k is the measurement noise covariance matrix of the ith camera. 

In addition, a selective fusion scheme is engaged to enhance the accuracy and robustness of the 

system towards feature’s impairments such as occlusion, illumination and point of view changes. 

A quality measure is exploited to evaluate the reliability of the extracted features [3.45]. If the 

quality of an extracted feature drops below a threshold value (e.g., due to partial occlusion), the 

feature will be eliminated from the list of features employed in fusion algorithm. To serve this 

purpose, a weighting matrix is introduced, 

  1 . .k n lW diag w w  , (3.4) 
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where kW  is the weighting matrix, iw  is the weight associated to the ith feature point, ig  is the 

quality measure of the ith feature point, and   is the predefined quality threshold. The gain 

matrix in (2.28) and (2.45) are then modified to exclude the undesirable features from the pose 

estimation method, i.e., 

   1

| 1 | 1
T T

k k k k k k k k k kK C F F C F W


    ,
 

(3.6) 

 1
, , ,k x y k y k kK C C W . (3.7) 

3.3.2 Centralized VVS Fusion 

In this method, VVS is selected as the central pose estimation unit, where the virtual eye-in-hand 

cameras move with a virtual manipulator, while the virtual eye-to-hand cameras observe the 

motion of the virtual auxiliary object attached to the virtual manipulator. The velocity of the 

virtual manipulator is calculated at each time step based on equivalent velocity of all virtual 

cameras. For this purpose, all features are gathered in one vector and use the IBVS control law to 

calculate overall velocity of the virtual end-effector through centralized fusion. The vector of all 

features is related to the velocity of the virtual end-effector as follows, 

 1
1 ,1 ,. . . . l

TT cc
e e esl s ls s J J V     

     , (3.8) 

which yields, 
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Here e
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e
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 
  




is the overall velocity of the virtual end-effector in its own coordinate frame and 

 † is the pseudo-inverse function. Once the overall velocity is calculated, the pose is updated as 

before through (2.93) and (2.94). As was proven earlier, Gauss-Newton method is very similar to 
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VVS method. As a result, their fusion techniques are also similar and therefore are not discussed 

here. It should be mentioned that the size of the overall Jacobian matrix in (3.9) increases with 

the number of cameras, which in turn can prolong the inversion calculation. Decentralized VVS 

fusion is a way to alleviate this difficulty, which is explained in the sequel. 

3.4 Decentralized Sensor Fusion  

In this section, decentralized fusion schemes are introduced. In these schemes, data from EIH 

and ETH cameras is exploited to estimate the pose for each camera separately. The estimated 

poses are then fused based on their pose error covariance. From this point of view, using EKF for 

pose estimation is advantageous, since it provides the estimated pose along with its error 

covariance. To accommodate visual servoing requirements, the relative pose of the object with 

respect to the robot’s end-effector is estimated.  This choice of pose allows some of the needed 

calibrations in previous works (i.e., robot and ETH camera external calibration) to be relaxed. 

The object’s pose (and its error covariance) can directly be obtained for EIH cameras, whereas in 

case of the ETH cameras the relative pose of the object should be combined with the relative 

pose of the end-effector with respect to the camera.  

3.4.1 Decentralized Kalman Filter-Based Fusion  

A decentralized sensor fusion scheme is selected for accurate and robust pose estimation, while 

preserving the computational cost. The pose of the target object with respect to robot’s end-

effector is estimated separately using ETH and EIH camera information. These estimations are 

next checked for fault detection. If any of the EKF methods are detected as faulty, the estimation 

involving the erroneous pose will be eliminated from fusion step. A fault detection based on EKF 

innovation term is used for this purpose [3.46]. A decentralized fusion layer is exploited to fuse 

the pose estimation into a more accurate output. Figure 3.1 demonstrates the block diagram of 

this fusion scheme. The fusion is based on maximum likelihood criterion developed by [3.13]. 

The fused estimation is calculated as follows, 

 | | ,
1

ˆ ˆ
l

k k i k k i
i

W 


 , (3.10) 
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Figure 3.1  Decentralized sensor fusion block diagram. 

where l  is the number of local estimators, |
ˆ

k k is the fused estimation, | ,
ˆ

k k i is ith local estimation 

and iW is its fusion weighting matrix and is defined as, 

 

1

1 1

1

l

i i j
j

W C C



 



 
  

 
 , (3.11) 

where iC is the error covariance of ith estimation, and the superscript “-1” indicates the inverse of 

the matrix. In fusion algorithm that exploits (3.10) and (3.11), the two fusing estimations are 

assumed to be independent. The error covariance of the final fused pose is equal to, 

 

1

1

1

l

j
j

fC C







 
  
 
 , (3.12) 

which is less than any of the error covariance matrices [3.13]. 

The error covariance of the estimation error using EIH camera data is directly obtained from 

EKF; however the error covariance of the pose estimated using ETH camera information is not 
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available and should be estimated separately. The estimation of error covariance using the EKF 

pose estimators is discussed next. 

3.4.2 Error Covariance Computation 

As it can be seen from (2.3), the estimated pose through ETH requires three poses to be 

combined. The error covariance of the estimated pose is impacted by each of the comprising 

pose estimations and their error. This section illustrates how to estimate the error covariance of a 

pose, composed of two dependent pose estimations.  

The error covariance is discussed in two separated parts, the angular error covariance and the 

translational error covariance. Each of these covariance matrices are estimated for a combined 

transformation matrix, 

 3 3 2
1 2 1H H H , (3.13) 

where 2
1H and 3

2H represent two known pose estimations with known error covariance. Finally the 

error covariance of an inverse transformation is estimated, since (2.3) necessitates this 

computation. It should be noted that the coordinate frames 1-3, used in this section, are symbolic 

and can be replaced with any coordinate frames in this work. The angular error of the pose 3
1H  is 

defined as, 

 
3 3

1 13
1

ˆ
    , (3.14) 

where  represents the estimation error, 3
1 and 3

1̂ are true and estimated Euler angles related to

3
1R . This error is related to the rotation matrix error, 

 3
1

3 3
1 1J


   , (3.15) 

where 3
1 is the vector form of the rotation matrix, 3

1R , 

 
3 3
1 1( )R   . (3.16) 
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Here operator     converts matrices to vectors. The Jacobian matrix 3
1J  relates the error of the 

rotation matrix ( 3
1r

 ) and Euler angles’ error ( 3
1 ) and is calculated as follows, 

 
3 3 3

3 1 1 1
1 3 3 3

1 1 1

( ) ( ) ( )
R R R

J
  

   
       

. (3.17) 

The rotation error is calculable from the two estimations’ errors, 

 3 3 2
1 2 1

2 3
1 2R R R

R R    . (3.18) 

The error of rotations is then related using (3.15), 

 3 3 2
1 2 1

1 2K K
  
    , (3.19) 

where, 

  
3 3 3

2 2 22 2 2
1 1 1 13 3 3

2 2 2

( ) ( ) ( )
R R R

K R R R
  

   
       

, (3.20) 

 
2 2 2

3 3 31 1 1
2 2 2 22 2 2

1 1 1

( ) ( ) ( )
R R R

K R R R
  

   
       

. (3.21) 

The angular error covariance is calculated using (3.15) and (3.19), 

      3 3 3 3 2 2
1 1 2 2 1 1

3† 3† 3† 3†
1 1 1 1 1 2 2 1T

T T T T T TE J K E K J J K E K J
     
       . (3.22) 

The translational error is defined as follows, 

 3
1

3 3
1 1̂t
t t   , (3.23) 

where 3
1t and 3

1̂t are the true and estimated translation. This error is calculated as follows, 

  3 3 2 3
1 2 1 2

2 3
1 2t R t t
t R      . (3.24) 
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The equation can be rewritten as follows, 

 
3

3 23 3 2 3
1 2 1 2t t t

K R      , (3.25) 

where, 

 
3 3 3

2 2 22 2 2
3 1 1 13 3 3

2 2 2

R R R
K t t t

  
   

     
. (3.26) 

Therefore the covariance of the translational error is computed as: 
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  

 
 (3.27) 

Computation of the desire pose using ETH camera involves the inverse relative pose of the end-

effector with respect to the ETH camera. Therefore, the error covariance of this inverse pose 

should be calculated. The angular error of the inverse pose   11 2
2 1H H


 estimation is defined as 

follows, 

 1 2
2 1

1 2
2 1J J

 
   , (3.28) 

where, 

 
1 1 1

1 2 2 2
2 1 1 1

2 2 2

( ) ( ) ( )
T T TR R R

J
  

           
. (3.29) 

Hence, the angular error covariance of the inverse pose is calculated as follows, 

    1 1 2 2
2 2 1 1

1† 2 2 1†
2 1 1 2

T T T TE J J E J J
   
     . (3.30) 

The translational error of the inverse pose is defined as follows, 

 1 2 2 2 2
2 1 1 1 1

2 2 2
1 1 4 1

T T T

t R t t
t R K R


            , (3.31) 
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where, 
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K t t t

  
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. (3.32) 

So the translational error covariance is computed as follows, 

 
       

 
1 1 2 2 2 2 2 2
2 2 1 1 1 1 1 1

2 2
1 1

2 2 2
4 4 1 1 4 1

2
1 4

T T T T T

t t t t t

T T T

t

E K E K R E R K E R

R E K

  



       

 

  


. (3.33) 

3.4.3 Decentralized VVS Fusion 

Another method for decentralized fusion is through VVS. For this matter, the equivalent end-

effector velocities are calculated separately for each camera using (2.86) and (2.88), 

  †,
i

i

c
e es i iV J s    , (3.34) 

and use a decentralized fusion technique to reconstruct the overall velocity of the virtual camera. 

Here  is a gain factor.  For this purpose, a weighted averaging operator is employed, 

 
1

i

m

e ei
i

V WV


 , (3.35) 

where Wi is the associated weight for the ith camera. The weights may be adjusted to give more 

weights to more accurate sensors (e.g., eye-in-hand cameras), or to isolate possible faulty sensors 

(e.g., those that have encountered occlusion), similar to Kalman-based methods. If no prior 

knowledge about the sensors is available, the weight might be selected to be equal. The accuracy 

of decentralized fusion techniques are generally lower than centralized ones, however they are 

faster and they also ease the sensor fault detection and separation [3.14], which makes this 

technique appealing. 
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3.5 Pre-Processing Fusion  

A common way for sensor fusion is to centrally fuse the data by concatenating all data into a 

single vector and feed the new data into the processing (e.g., pose estimation) unit. Since the 

characteristics of the new data have changed, the processing unit should be modified to deal with 

the newly formed data. This modification may be demanding and different for every individual 

processing method. In addition, the size of the data increases with the number of sensors, which 

usually result in exponential rise in computational costs. Another solution is to fuse all the data 

into a single element and pass the fused data to the processing unit. This is especially beneficial 

since the size of the data is preserved and the processing unit is needless of any modifications; 

however this method is usually practical for data of the same type. A brief discussion on this 

matter can be found in [3.15]. 

In this section, a novel framework for pre-processing sensor fusion is proposed. For this matter, 

the observations from different cameras are transformed into equivalent data, seen by a virtual 

camera which is located at the desired place (i.e., robot end-effector). A weighted averaging 

operator is used as the fusion unit. The fused data is then processed by a pose estimation 

algorithm. Since an estimation of the object depth is required for data transfer, an iterative 

algorithm (i.e., Dementhon algorithm proposed in [2.16]) is considered for pose estimation. The 

main advantage of the proposed method is its applicability to a large group of pose estimation 

methods, since it is almost independent of the estimation algorithm.  

Let ,1 ,. .i iC C
i O O ld p p 

  be the image information from camera i, and , ( )
T i

e
o i if d    be the 

desired pose calculated based on camera i information. Here ( )if  is the pose estimating function. 

Then the goal is to find 

  1,..,
T

e
o nf d d   , (3.36) 

where  f  is the fusing/estimating function that maps the information from all cameras to the 

desired pose. Fusion of multiple data sources might be done at different stages of a system. In 

this section, the focus is on the fusion of the data before getting processed for pose estimation 

(i.e. pre-processing fusion). For this purpose, a virtual camera with same frame coordinates as 
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robot end-effector is assumed. The fusion of mapped data (to this virtual camera) is considered 

for pose estimation, 

    1,.., n h hf d d f d , (3.37) 

where, 

  1,.., nhd h d d . (3.38) 

One should realize that fused data, hd  has the same form as any id , therefore it neither increases 

the computation, nor changes the structure of the pose estimator. To form the fused data, each set 

of information from a camera is first mapped to equivalent data from virtual camera h, and is 

fused next by means of a weighted averaging operator, 

 
1

n

j jh
j

d W d


   , (3.39) 

where Wj is the weight matrix associated to equivalent data from camera j, denoted by jd . If the 

error covariance of the transferred data from each camera, denoted by iC , is known, the weights 

are calculated as follows, 
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It can be shown that the error covariance of such fused data is equal to, 
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  , (3.41) 

which is smaller than any other error covariance, 

 1,ihC C i n      . (3.42) 
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The proof of this fact is available in [3.13]. If iC is not available, the weights will be assumed 

equal. It also worth mentioning that the weights are normalized, 

 
1

1
n

j
j

W


 . (3.43) 

The weights might also be used to exclude the corrupted/noisy data from the fusion process.  

Now to calculate the equivalent data for each camera, the relation between the presentations of a 

single feature point in two different frames, namely the camera i and the virtual camera, is 

discussed. From (2.4) one can write, 

 , ,
i

i i

ce e e
c co j o jP R P t  . (3.44) 

Assuming , ,1 , ,. .e e
i o i o i ld p p 

    , the equivalent data for each camera is calculated as follows 

using (2.4), 

 , , ,1 1
i

ii
i

c e
cj ce e

co i j o je e
j j

tz
p R p

z z
        , (3.45) 

where 
i

e
cR and 

i

e
ct  are assumed to be known through calibration, and ,

ic
o jp  is available through 

feature detection on image from camera j; however ic
jz and e

jz are not available and needed to be 

estimated. Since (3.45) provides the system with 3 linear equations for 2 unknown parameters of 

the equivalent data, one of the unknown parameters (i.e., ic
jz or e

jz ) can be calculated from the 

other. The depth of features in each camera frame is generally unknown, but the depth of features 

in end-effector frame can be approximated by the previous calculated pose. 

  ,
ˆ ˆˆ 0 0 1e e o e

o oj o jz R P t    , (3.46) 

where ˆe
oR  and ˆe

ot  are the approximations of the current pose, obtained from the previous 

estimated pose. This approximation is valid in visual servoing, since the consequent poses are 

close due to camera’s high frame rate. Having e
jz  estimated, (3.45) yields, 
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The approximation used in (3.47) can be improved if an iterative technique is considered for 

pose estimation. Then, the pose obtained at each iteration is used as a pose approximation in next 

iteration calculation of (3.47).  

3.6 Simulation and Experimental Results  

In order to verify the effectiveness of the proposed sensor fusion methods for pose estimation, 

numerous simulations and experiments are conducted. The accuracy of each method is the main 

concern of the tests. The simulations are performed in MATLAB® 2011b from Mathworks 

(Natick, MA, USA). The system configuration for the simulations and experiments are similar to 

the system which was explained in Sec. 2.2. 

3.6.1 Centralized Fusion 

First, the performance of the centralized IAEKF and IAUKF fusion is put into test and compared 

with that of the EKF-based fusion, UKF-based fusion and monocular IAEKF pose estimators. 

For this matter, an experimental setup composed of a 5-DOF CRS robot from CRSRobotics 

(Burlington, ON, Canada), an EIH Firefly Point Grey camera (Richmond, BC, Canada), a similar 

camera as an ETH camera, an accurate optical tracker from NDI (Waterloo, ON, Canada), the 

target and auxiliary objects are exploited. The image size of each camera is 640 by 480 pixels. 

The cameras work at 60 frames per second and are calibrated prior to the experiments. The 

location of the EIH camera coincides with that of the robot’s end-effector. The target object and 

robot’s end-effector object each has four circular features (black dots) with known distance 

between the features. The exploited optical tracker is very accurate and capable of locating a set 

of infrared markers with accuracy of 0.1 mm with a frequency of up to 4500 targets per second. 

Since the accuracy of this measurement device is higher than the camera, its measurements have 

been selected as the ground truth. The infrared markers are installed on the robot and the target 

object and their positions are known with respect to the target object and robot’s end-effector. 

The robot is a 5 DOF anthropomorphic arm. Each joint of the robot can move as fast as 210 
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degrees per second, with a maximum acceleration of 498 degrees per second squared. The 

experimental setup is shown in Figure 3.2. The setup and the frame coordinates are the same as 

the setup shown in Figure 2.1.  

 

Figure 3.2 Experimental setup used for sensor fusion. 

In the first experiment, the similarity of the proposed iterative methods is put into test. The 

performance of IEKF is compared with those of the EKF that have zero measurement noise and 

the Gauss-Newton algorithm. The chosen number of iterations suffices for (2.69) to hold. The 

same number of iterations is considered in the inverse-Jacobian algorithm. Figure 3.3 shows the 

error of these methods and Table 3.1 summarizes the results. The first column of Figure 3.3 

entails the translational errors, while the second column demonstrates the errors of orientation 

(represented in Euler angles). Apparently all of the methods result in very similar estimation 

error, as was predicted. In fact, the results from IEKF and Gauss-Newton are almost identical, 
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while EKF with zero measurement noise is slightly different (since it represents the Gauss-

Newton method with no iterations). The results suggest the applicability of alternative methods 

in case of highly dynamic systems. 

 

Figure 3.3 First experiment: Pose estimation error of EKF with zero measurement noise, Gauss-

Newton, and IEKF. 
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  x 
(mm) 

y 
(mm) 

z 
(mm) 

ϕ 
(deg) 

θ 
(deg) 

Ψ 
(deg) 

Max 

Error 

EKF 4.8 2.8 2 0.6 1.4 0.7 

Gauss-Newton 4.8 2.8 2 0.6 1.3 0.7 

IEKF 4.8 2.8 2 0.6 1.3 0.7 

Mean 

Error 

EKF 1.1 0.6 0.4 0.1 0.2 0.2 

Gauss-Newton 1.1 0.6 0.4 0.1 0.2 0.2 

IEKF 1.1 0.6 0.4 0.1 0.2 0.2 

Std 

EKF 1 0.5 0.4 0.1 0.2 0.2 

Gauss-Newton 1 0.5 0.4 0.1 0.2 0.1 

IEKF 1 0.5 0.4 0.1 0.2 0.1 

Table 3.1 First experiment: Iterative schemes in comparison with zero noise EKF. 

In the second experiment, the accuracy of the proposed IAEKF fusion technique is measured and 

compared to similar methods (namely EKF fusion and monocular IAEKF) and the reference 

pose. For this purpose, the noise covariance matrices are tuned initially based on offline 

measurements. Figure 3.4 demonstrates the output of pose estimation methods in comparison to 

ground truth. Figure 3.5 magnifies the error of each estimation technique. The statistics of this 

error is summarized in Table 3.2. Since the trajectories of the pose are dynamic, EKF fusion 

cannot estimate the pose accurately, even when the filter is tuned initially. On the contrary, 

IAEKF methods compensate for changes in the system noise variations. The mean of estimation 

error of the proposed fusion method is generally lower than the other two methods. This is 

because IAEKF fusion tunes the noise parameters automatically, is more robust to changes in 

system dynamics, and also benefits the data from different sources.  
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Figure 3.4 Second experiment: Pose estimation output of IAEKF fusion in comparison with 

monocular IAEKF (IAEKFEIH), EKF fusion and ground truth, in case of tuned filters. 
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Figure 3.5 Second experiment: Pose estimation error of IAEKF fusion in comparison with 

monocular IAEKF (IAEKFEIH), EKF fusion, in case of finely tuned filters. 
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x 

(mm)
y 

(mm)
z 

(mm)
ϕ 

(deg)
θ 

(deg)
Ψ 

(deg) 

Max 
Error 

IAEKF 
Fusion 

4.8 2.8 2.6 0.6 1.6 0.8 

IAEKF 
EIH 

4.9 2.8 2.5 0.6 2.4 2.5 

EKF 
Fusion 

5.1 2.4 11.6 7.7 5.8 1.7 

Mean 
Error 

IAEKF 
Fusion 

1.1 0.6 0.4 0.1 0.2 0.2 

IAEKF 
EIH 

1.2 0.6 0.4 0.1 0.4 0.6 

EKF 
Fusion 

1.2 0.5 2 0.9 1.1 0.2 

Std 

IAEKF 
Fusion 

0.9 0.5 0.4 0.1 0.2 0.1 

IAEKF 
EIH 

1 0.5 0.4 0.1 0.3 0.6 

EKF 
Fusion 

1 0.4 2.2 1.3 1.1 0.2 

Table 3.2 Second experiment: IAEKF fusion in comparison with EKF fusion and monocular 

IAEKF, in case of fine tuning. 

In the third experiment, the accuracy of the IAUKF fusion is tested and compared to that of UKF 

fusion. Similar to previous experiment, the both filters are initially tuned and initialized properly. 

The same trajectories are taken to test both methods. The results of this comparison are shown in 

Figure 3.6 and the result summary is depicted in Table 3.3. As it can be seen, the proposed 

IAUKF performs better that UKF in terms of accuracy. This fact is also reflected in the mean of 

error in Table 3.3. 
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Figure 3.6 Third experiment: Pose estimation error of IAUKF fusion in comparison with UKF 

fusion, in case of finely tuned filters. 

 

 

0 5 10 15
0

2

4

6
x 10

-3

e
x (

m
)

Time (s)

0 5 10 15
0

1

2

3
x 10

-3

e
y (

m
)

Time (s)

0 5 10 15
0

0.005

0.01

0.015

e
z (

m
)

Time (s)

0 5 10 15
0

0.05

0.1

0.15

e
 (

ra
d

)

Time (s)

0 5 10 15
0

0.05

0.1

0.15

e
 (

ra
d

)

Time (s)

0 5 10 15
0

0.02

0.04

e


 (
ra

d
)

Time (s)

 

 

UKF
IAUKF



70 
 

  
x 

(mm)
y 

(mm)
z 

(mm)
ϕ 

(rad) 
θ 

(rad) 
Ψ 

(rad) 

Max 
Error 

IAUKF 
Fusion 

4.8 2.8 1.9 0.008 0.022 0.011 

UKF 
Fusion 

5.0 2.8 14.2 0.142 0.146 0.038 

Mean 
Error 

IAUKF 
Fusion 

0.8 0.5 0.3 0.001 0.004 0.002 

UKF 
Fusion 

0.9 0.4 1.8 0.011 0.018 0.003 

Std 

IAUKF 
Fusion 

0.9 0.4 0.3 0.001 0.003 0.002 

UKF 
Fusion 

1.0 0.4 2.5 0.020 0.027 0.004 

Table 3.3 Third experiment: IAUKF fusion in comparison with UKF fusion, in case of fine 

tuning. 

In the fourth experiment, the process noise covariance of the filters is reduced 100 times to verify 

the effect of filter tuning in the proposed method and its counterparts. The error of IAEKF fusion 

pose estimation is compared with EKF fusion and IAEKF based on EIH camera in Figure 3.7. 

The statistics of these errors are summarized in Table 3.4. As it was expected, the performance 

of EKF fusion algorithm decreases significantly, while the IAEKF-based methods remain almost 

without change. This fact can be inferred from large errors of the EKF fusion method. This 

experiment magnifies the role of filter tuning in Kalman-filter based pose estimation methods. 

As mentioned before, adaptive and robust schemes limit the undesirable effects of any 

mistuning.  
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Figure 3.7 Fourth experiment: Pose estimation error of IAEKF fusion in comparison with 

monocular IAEKF (IAEKFEIH), EKF fusion, in case of noise mismatch. 
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x 

(mm)
y 

(mm)
z 

(mm)
ϕ 

(deg)
θ 

(deg)
Ψ 

(deg) 

Max 
Error 

IAEKF 
Fusion 

4.8 2.7 2.2 0.6 1.5 0.7 

IAEKF 
EIH 

4.9 2.8 2.6 0.8 4.7 5 

EKF 
Fusion 

17.8 16.3 32.2 12.6 9.6 4.4 

Mean 
Error 

IAEKF 
Fusion 

1.1 0.6 0.4 0.1 0.2 0.2 

IAEKF 
EIH 

1.1 0.6 0.4 0.1 0.6 0.6 

EKF 
Fusion 

3.7 2.5 7.8 3.2 3.6 1.1 

Std 

IAEKF 
Fusion 

1 0.5 0.4 0.1 0.2 0.1 

IAEKF 
EIH 

1 0.5 0.4 0.1 0.7 0.7 

EKF 
Fusion 

3.9 3.1 6.4 2.8 2.2 1 

Table 3.4 Fourth experiment: IAEKF fusion in comparison with EKF fusion and monocular 

IAEKF, in case of noise mismatch. 

In experiment 5, the sensitivity of the proposed method to initial state adjustment is compared to 

two previously discussed pose estimation methods. For this matter, the initial position states are 

misadjusted by 0.2 meters in each direction and the initial orientation states are misadjusted by 

almost 28 degrees (0.5 rad) for each Euler angle. The results are magnified in Figure 3.8. As it 

can be seen from the results, the IAEKF fusion algorithm converges towards the true value faster 

than the two others, though with an overshoot. This property assures the system to be minimally 

affected by erroneous initial estimations. 
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Figure 3.8 Fifth experiment: Pose estimation output of IAEKF fusion in comparison with 

monocular IAEKF (IAEKFEIH), EKF fusion, in case of initialization maladjustment. 
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IAEKF based on EIH camera and EKF fusion algorithm under the new sampling time condition. 

Figure 3.9 shows the error results for these methods. The performance of the IAEKF fusion is 

superior to that of the two other methods in this case as the errors of this method is much less 

than the others. Sampling time changes particularly affect the EKF method, which is sensitive to 

changes of system parameters. 

 

Figure 3.9 Sixth experiment: Pose estimation output of IAEKF fusion in comparison with 

monocular IAEKF (IAEKFEIH), EKF fusion, in case of sampling mismatch. 
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In experiment 7, the robustness of the proposed estimation method is investigated for feature 

occlusion. To serve this purpose, two of the features in EIH camera are occluded for 1 second. 

The IAEKF fusion outcome of feature loss is shown in Figure 3.10 in comparison to two 

previously mentioned estimation methods. As it was expected, the IAEKF, based on EIH, 

diverges, since there are not enough feature points to follow the pose changes. Also the EKF 

fusion method is lost during the occlusion, however both return to the correct values once the 

features are visible again. The best performance belongs to IAEKF fusion which remains almost 

unchanged, thanks to the weighting system which isolates the faulty features from the 

measurement vector. 
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Figure 3.10 Seventh experiment: Pose estimation output of IAEKF fusion in comparison with 

monocular IAEKF (IAEKFEIH), EKF fusion, in case of occlusion. 
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IAEKF fusion shows better performance than EKF fusion. 

  
x 

(mm)
y 

(mm)
z 

(mm)
ϕ 

(deg)
θ 

(deg)
Ψ 

(deg) 

Max 
Error 

IAEKF 
Fusion 

6.2 2.5 3.2 1.3 2 0.5 

IAEKF 
EIH 

4.9 2.8 6.7 0.6 2.3 2.7 

EKF 
Fusion 

6.5 2.7 14.1 7.8 5.3 1.8 

Mean 
Error 

IAEKF 
Fusion 

1.8 0.6 0.7 0.2 0.6 0.1 

IAEKF 
EIH 

1.2 0.6 4.5 0.1 0.4 0.7 

EKF 
Fusion 

1.8 0.5 2.8 0.9 1.6 0.2 

Std 

IAEKF 
Fusion 

1.2 0.5 0.7 0.2 0.4 0.1 

IAEKF 
EIH 

1 0.5 0.6 0.1 0.3 0.7 

EKF 
Fusion 

1.4 0.4 2.8 1.3 1.3 0.3 

Table 3.5 Eighth experiment: IAEKF fusion in comparison with EKF fusion and monocular 

IAEKF, in case of EIH calibration error (%2 focal length error). 

The speed of the proposed IAEKF and IAUKF central fusion algorithm is compared with its 

counterparts in the 9th experiment. The estimation time is calculated for each method using a 

Core i3 2.2 GHz laptop with 4GB RAM. The results are shown in Table 3.6. As it was expected, 

iterative methods (i.e., IAEKF-based estimations) are more time consuming. Moreover, the 

amount of data processed for fusion techniques makes these methods slower compared to 

monocular camera-based algorithms. It is also noteworthy that IAUKF is considerably slower 

than the other methods. However, the imposed computational cost is usually manageable in 

today’s fast systems and is not considered as a major problem. 
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Method CPU Time per estimation (ms) 

IAUKF Fusion 131.9 

IAEKF Fusion 33 

IAEKF EIH 15.9 

UKF Fusion 3.5 

EKF Fusion 1.8 

Table 3.6 Ninth experiment: Pose estimation time of the different algorithms. 

In experiment 10, the efficiency of the proposed method is verified under an altered camera 

configuration. For this purpose, experiment 2 is repeated, having the cameras relocated in the 

workspace. The location of cameras and the robot are shown in Figure 3.11. Figure 3.12 shows 

the result of the proposed pose estimation versus its competitors. The errors of these methods are 

demonstrated in Figure 3.13. As it can be inferred, the proposed method provides a more stable 

and accurate pose estimation compared to the two others, regardless of the pose of the cameras. 

 

Figure 3.11 The experiment configuration of experiment 10. 
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Figure 3.12 Tenth experiment: Pose estimation output of IAEKF fusion in comparison with 

monocular IAEKF (IAEKFEIH), EKF fusion and ground truth, in case of altered camera 

configuration. 
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Figure 3.13 Tenth experiment: Pose estimation error of IAEKF fusion in comparison with 

monocular IAEKF (IAEKFEIH), EKF fusion, in case of altered camera configuration. 
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initial pose. Since the initial poses are close to final estimations, a total number of three iterations 

are considered for each of the algorithms. Accuracy and time efficiency are the criteria of this 

comparison.  

In the 11th experiment, the accuracy of centrally fused virtual visual servoing is compared with 

that of Gauss-Newton optimization and EKF methods. A trajectory composed of three different 

movements is considered as a test bench. The estimation error of each algorithm during robot 

operation is highlighted in Figure 3.14. As it was expected, the estimations resulted from VVS 

and Gauss-Newton optimizations are very close. However, VVS shows to be more robust to 

image noise, which makes it more attractive. The same property was reported by [2.20] in the 

case of a single camera. Both of these methods outperform EKF in terms of accuracy, as it can be 

inferred from Figure 3.14. The error statistics are briefed in Table 3.6. As it can been seen from 

the table, VVS performs slightly better than Gauss-Newton optimization, and much better than 

EKF method. The difference between VVS and Gauss-Newton optimization is more significant 

in case of translational parameters (first three columns), while EKF performance is comparable 

only in case of x and y directions. 
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Figure 3.14 Eleventh experiment: Centralized VVS pose estimation errors versus Gauss-Newton 

and EKF pose estimation errors. 
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x 

(mm)

y 

(mm)

z 

(mm)

ϕ 

(deg)

θ 

(deg) 

Ψ 

(deg) 

Max 

Error 

Centralized 

VVS 
3.6 2.1 1.7 0.5 1.3 0.6 

Gauss- 

Newton 
4.6 2.3 2.3 0.7 1.4 1.2 

EKF 5.4 2.7 4.2 3.1 2.7 0.7 

Mean 

Error 

Centralized 

VVS 
1 0.5 0.3 0.1 0.2 0.2 

Gauss- 

Newton 
1.1 0.6 0.4 0.1 0.3 0.2 

EKF 1.2 0.6 0.9 0.6 0.6 0.2 

Std 

Centralized 

VVS 
0.7 0.4 0.3 0.1 0.2 0.1 

Gauss- 

Newton 
0.9 0.4 0.4 0.1 0.2 0.1 

EKF 1 0.5 0.8 0.6 0.5 0.2 

Table 3.7 Eleventh experiment: The results of the proposed VVS fusion in comparison with 

those of Gauss-Newton and EKF. 

3.6.2 Decentralized Fusion 

In order to verify the effectiveness of the proposed decentralized EKF-based method, three 

different simulations and one experiment have been performed. The first simulation puts the idea 

of error covariance calculation into test. For that matter, the estimations of relative pose of the 

end-effector and the relative pose of the target object with respect to ETH camera are combined 

to acquire the relative pose of the object with respect to the end-effector. The error covariance of 

the combined estimation is calculated during a visual servoing robot maneuver by Monte Carlo 

simulation, using 100 of different samples and is compared with the estimated error covariance 

computed previously. The random Gaussian noise with zero mean and 0.001 pixel standard 

deviation is used for this purpose. Figure 3.15 shows the response of this two error covariance 



84 
 

estimations. As it can be seen, the estimated error covariance is matching very closely the true 

error covariance. Slight mismatches are present as a result of approximations made by this work. 

 

Figure 3.15 First simulation: Error covariance estimation. 

The second simulation verifies the effectiveness of the decentralized fusion and analyses the 

accuracy of this method. For this purpose, the results of a decentralized fusion that exploits the 

pose estimations from ETH and EIH cameras are verified. The results of this method are brought 

in Figure 3.16, comparing them with the poses estimated by each camera. The estimation made 

by data from ETH is generally noisier, since two estimations are used to form this pose. Though, 

in some of the estimations (e.g., ) EIH provides less accurate estimation and the fusion inclines 

to the data provided by ETH. 
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Figure 3.16 Second simulation: Decentralized EKF-based fusion compared with monocular pose 

estimators. 

The third simulation demonstrates the power of decentralized fusion method in the case of fault 

occurrence. In this simulation, two feature points of the object is occluded from second 40 to 

second 50. Figure 3.17 shows how the fused pose survives this problem by cutting the faulty data 

off the fusion layer. The estimation based on EIH camera become unreliable after the occlusion, 

while the fusion estimation is the same as estimation based on ETH camera, since only two 

cameras has been used.   
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Figure 3.17 Third simulation: Decentralized EKF-based fusion compared with monocular pose 

estimators in case of faulty local estimation. 

Finally, an experiment has been conducted to demonstrate the effectiveness of the proposed 

method in practice. The experimental setup used for this matter is the same as before. The pose 

of the object is estimated from each camera separately and is compared to the results from the 

proposed fusion method. Each Kalman filter is tuned through several experiments. Figure 3.18 

shows the results of this comparison. It can be inferred that the result from the fusion technique 

follows the reality closely, while the other estimations have been deviated slightly in some cases. 

However, the fusion algorithm is twice slower than the single-camera estimators. 
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Figure 3.18 Twelfth experiment: Decentralized EKF-based fusion in practice compared with 

monocular pose estimators. 

Next, the accuracy of the proposed decentralized VVS fusion algorithms is put into test through 

an experiment. Similar trajectories as the experiment for the centralized fusion are used for this 

purpose. Pre-computed Jacobian, calculated based on measured features, is used for the 

decentralized fusion. The estimation error of each method is shown in Figure 3.19. The error of 

the decentralized fusion method seems to be larger, as it was expected. A summary of the 

important statistical points of the estimation errors can be found in Table 3.8. Judging by the 

mean value of the estimation errors, the decentralized fusion algorithm is almost as accurate as 

the centralized method. In some cases it shows equal or even better estimation compared to 

Gauss-Newton method. 
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Figure 3.19 Thirteenth experiment: Decentralized VVS pose estimation errors versus centralized 

VVS pose estimation error. 
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x 

(mm)
y 

(mm)
z 

(mm)
ϕ 

(deg)
θ 

(deg) 
Ψ 

(deg) 

Max  
Error 

Centralized 
VVS 

3.6 2.1 1.7 0.5 1.3 0.6 

Gauss- 
Newton 

4.6 2.3 2.3 0.7 1.4 1.2 

EKF 5.4 2.7 4.2 3.1 2.7 0.7 
Decentralized 

VVS 
6.6 2.2 2 0.7 1.4 1.2 

Mean  
Error 

Centralized 
VVS 

1 0.5 0.3 0.1 0.2 0.2 

Gauss- 
Newton 

1.1 0.6 0.4 0.1 0.3 0.2 

EKF 1.2 0.6 0.9 0.6 0.6 0.2 
Decentralized 

VVS 
1.6 0.5 0.4 0.1 0.3 0.3 

Std 

Centralized 
VVS 

0.7 0.4 0.3 0.1 0.2 0.1 

Gauss- 
Newton 

0.9 0.4 0.4 0.1 0.2 0.1 

EKF 1 0.5 0.8 0.6 0.5 0.2 
Decentralized 

VVS 
1.2 0.4 0.4 0.1 0.2 0.3 

Table 3.8 Thirteenth experiment: Decentralized fusion accuracy compared to that of the 

centralized, EKF-based, and Gauss-Newton-based fusion. 

In an experiment, the time efficiency of VVS fusion methods is measured. A laptop with Core i3 

2.2 GHz CPU and 4GB of RAM is used for these time measurements. The time of estimation for 

a single posture is found as an average of pose estimation time over the whole trajectory. The 

experiment was conducted for a setup with 2 and 4 cameras. The results of these measurements 

are shown in Table 3.9. The VVS estimation methods are shown to be faster than their 

counterpart (i.e., the Gauss-Newton). The reason lies within the efficient formulation of the 

Jacobian matrix in VVS algorithms. Moreover, the decentralized method has shown to be 

slightly faster than the centralized method. However, the speed improvement of this method, 

compared to the centralized VVS, is not significant. In fact, the calculation of Jacobian matrix 

accounts for most of the computational time and the reversion of the Jacobian matrix plays a less 

significant role. Yet, the time increase in the VVS methods is reported to be small compared to 

other methods. As it was expected, EKF performs fastest of all, since it is not an iterative 

algorithm. 
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Method 
Estimation Time (ms) 

2 Cameras 4 Cameras
Centralized 

VVS 
1.36 1.67 

Gauss- 
Newton 

1.76 2.58 

EKF 0.96 1.24 
Decentralized 

VVS 
1.29 1.6 

Table 3.9 Estimation times of VVS fusion methods per estimation compared with that of EKF-

based and Gauss-Newton-based fusion for 2 and 4 cameras. 

3.6.3 Pre-Processing Fusion 

A set of simulations are conducted to justify the proposed pre-processing fusion method. An eye-

in-hand camera and an eye-to-hand camera are considered in the simulations. The focal lengths 

of the cameras are assumed to be 1000 pixels. The end-effector coordinate frame coincides with 

those of eye-in-hand camera. The eye-in-hand robot moves with a known trajectory, while the 

eye-to-hand camera and the object are assumed to be stationary in the simulation environment. 

Initially, the object of interest is located in front of the eye-in-hand camera within distance of 1 

meter, parallel to the camera plane. The object consists of four non-coplanar points. The eye-to-

hand camera is located a meter away from the eye-in-hand camera, having the object in its FOV. 

After 3 seconds, the eye-in-hand camera is moved to a new pose and becomes stable after three 

seconds. An inverse Jacobian scheme is exploited to move the camera to its new location. The 

iterative pose estimation method is implemented. The number of iterations is set to 10. The 

fusion is not performed in the first iteration of the first estimate, since the depth information is 

not available.  

In the fourth simulation, the pose is estimated counting only on the eye-in-hand camera. Additive 

Gaussian noise with standard deviation of 1 pixel is considered for features of this camera. The 

noise covariance is counted as the noise level of the camera data. Figure 3.20 shows the 

estimated pose compared to ground truth. As it was expected, this method shows high sensitivity 

to the measurement noise. This is especially noticeable in case of orientation angles and depth 

estimation. Another reason behind high errors is the long distance of the camera from the object. 

The estimation algorithm will perform better once the camera is closer to the object.  
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Figure 3.20 Fourth simulation: Monocular pose estimation with an eye-in-hand camera. 

In order to alleviate the noise sensitivity, the proposed fusion scheme is employed in fifth 

simlation. The data from ETH camera is fused with data from EIH camera. Three different noise 

values are considered for the eye-to-hand camera data. This noise is assumed to be additive 

Gaussian and has the standard deviation of 0.5, 1, and 2 pixels for different simulations. The 

weights of fusion are equal, based on the assumption of no prior knowledge about the noise 
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values of the camera. Figures 3.21-3.23 show the results of these fusions. As it can be seen from 

the figures, the higher the noise level gets, the worse the estimation result will become. This is 

mainly due to the maladjustment of the weights in the fusion process. By having the same 

weights for all sensors, the noisy sensors might dominate the less noisy sensors. As it was 

mentioned before, one solution to that problem is to detect the highly noisy data and exclude 

them from the fusion data (robust to outliers). The other way is to adjust the fusion weights 

properly. Table 3.10 briefs the important statistics of the fusion estimation error for different 

levels of noise, in addition to monocular estimation error. As it was expected, data fusion of 

cameras with lower and even equal noise level results in improved accuracy of pose estimation. 

One should realize that once the noise levels are equal, the weight tuning results in equal 

weights, which is the default value for the weights. If the weights are not tuned, the noisy sensor 

may corrupt the overall fusion data, which is the case for fusion of eye-to-hand data with noise 

level twice as the eye-in-hand camera data. 
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Figure 3.21 Fifth simulation: Decentralized EKF-based fusion for pose estimation with half level 

noise for ETH camera. 
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Figure 3.22 Fifth simulation: Decentralized EKF-based fusion for pose estimation with equal 

camera noise levels. 
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Figure 3.23 Fifth simulation: Decentralized EKF-based fusion for pose estimation with double 

level noise for ETH camera. 
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x 

(mm)

y 

(mm)

z 

(mm)

ϕ 

(deg)

θ 

(deg) 

Ψ 

(deg) 

Max 

Error 

Eye-in-hand 26.7 27.2 125.4 8.7 19.7 19.9 

Fusion(0.5x) 7.3 7.6 32.7 1.8 4.6 4.6 

Fusion(1x) 24.9 30.8 126.2 11.2 31.9 12.3 

Fusion(2x) 60.1 70.3 293.9 27 57.5 25.2 

Mean 

Error 

Eye-in-hand 6.1 6.3 35.5 2.1 6.4 6.4 

Fusion(0.5) 1.7 1.7 8.3 0.8 3.6 1.9 

Fusion(1) 3.5 3.2 16.8 1.6 7.1 3.7 

Fusion(2) 8.4 7.4 42.5 3.5 13.4 7.3 

Std 

Eye-in-hand 7.3 7.6 32.7 1.8 4.6 4.6 

Fusion(0.5) 1.8 2.2 9.1 0.7 2.9 1.4 

Fusion(1) 4 4.8 20.2 1.6 5.8 2.8 

Fusion(2) 10.5 11.6 49 3.6 10.7 5.6 

Table 3.10 Decentralized EKF-based fusion results compared to those of monocular EIH camera. 

In the next simulation, the importance of weight tuning for fusion is highlighted. For this 

purpose, the case of fusion of two cameras with different noise levels is considered again; 

however the weights are adjusted based on the noise covariance as was described in (3.40). The 

results of this fusion compared to equally weighted fusion are shown in Figure 3.24. As it was 

expected, tuning the weights increased the performance of the system significantly and prevented 

the noisy data from dominating the overall output of the fusion scheme. 
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Figure 3.24 Fusion with tuned weights pose estimation versus fusion with equal weights pose 

estimation results. 
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limited and its measurements are prone to outliers and occlusions. Sensor fusion of a multi-

camera system was proposed to enhance both the accuracy and robustness of the pose estimation. 

Three fusion structures were introduced for this matter. Centralized fusion algorithms enabled 

the system to enhance the accuracy of the system. Two centralized methods, namely IAEKF and 

VVS were introduced, which had the capacity to increase the robustness of the system to 

parameter uncertainties and occlusion in addition to the accuracy. The major drawback of these 

systems was their increasing computation time with the number of cameras. Decentralized fusion 

algorithms were proposed to alleviate this problem. These methods were relatively less accurate 

compared to their centralized fusion counterparts; however, they performed comparatively faster. 

This speed difference was more tangible once the number of sensors is significant. In addition, 

these schemes were capable of fault isolation, which was difficult in centralized fusion 

algorithms. Finally, a pre-processing fusion scheme was introduced which was independent of 

the pose estimation algorithm, unlike the centralized fusion techniques. This fusion method was 

shown to be effective once the noise level of each camera is known in advance. 

Despite the advantages of multi-camera systems and fusion techniques, these methods impose 

higher costs to the system. Moreover, the overall processing time of these systems increases 

(almost linearly) with the number of sensors. However, the price to be paid for the achievements 

in increased accuracy and robustness seems to be minimal, since the efficiency of the visual 

servoing systems directly depends on the performance of pose estimation system. In addition, 

multi-camera systems add to the flexibility of the system by adding new degrees of freedom. The 

system designer may decide on the number of sensors and fusion algorithms based on the 

application, requirements, and available system hardware. 
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Chapter 4 

Uncertainty Modeling in Visual Servoing Systems 
 

4.1 Introduction 

Integration of visual servoing systems into real-life applications mainly depends on their 

robustness to system uncertainties. While the robustness in the sense of system’s stability has 

been well studied, the accuracy of system during the servoing (i.e., system trajectories) has not 

been thoroughly investigated. In order to enhance the accuracy of the system, its behavior under 

uncertain conditions must be investigated. Therefore, uncertainty modeling remains a key step 

towards the development of accurate systems. This chapter briefly reviews previous uncertainty 

modeling methods for visual servoing and their shortcomings, which led to the introduction of a 

novel closed-loop error modeling approach developed by following a probabilistic methodology. 

The modeling strategy is established based on a single-input single-output (SISO) system which 

accounts for discrete-time nature of the systems. Subsequently, the derived method is applied to 

visual servoing systems. Unlike the previous works, the proposed method is expandable to 

various types of controllers used for servoing purposes. In addition, it basically presents a 

straight-forward way to calculate the error covariance function over time, which is used in 

control loops. Thus, simplicity and generality of the proposed method are its main advantages 

over the previously proposed methods. Moreover, this method models the system uncertainties 

more accurately by considering the discrete-time characteristic of the system. The proposed 

uncertainty modeling methods are verified through Monte Carlo simulations, since the 

assumptions of this work (e.g., noise distribution) are hard to be realized in experimental setups. 

The proposed modeling method is exploited for control purposes, in the following chapter.  

This chapter is organized as follows. In Sec. 4.2 a brief review of previous works on uncertainty 

modeling in visual servoing systems is presented. The open-loop and closed-loop uncertainty 

modeling methods based on probabilistic error propagation are explained in Sec. 4.3. The 

application of uncertainty models in visual servoing systems are brought in Sec. 4.4. The 
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simulation results and discussion are provided in Sec. 4.5. A summary of this chapter in Sec. 4.6 

concludes the chapter. 

4.2 Literature Survey 

In visual servoing scenarios, image data is usually assumed to be accurate, which might not hold 

in practice. As a matter of fact, the uncertainties in intensity function, digitalization, and image 

processing levels [4.1] all contribute to image uncertainties.  Moreover, the system uncertainties 

and modeling errors affect the robot’s end-effector pose, which would lead to the inaccurate 

positioning and even task failure. The focus of this chapter is on uncertainties introduced by 

image features. Two different methodologies have been developed in previous works to model 

the uncertainties in visual servoing systems, namely the boundary and the probabilistic methods. 

On one hand, the boundary method [4.2, 4.3] offered the upper and lower boundaries of camera 

displacement error using an eye-in-hand camera, assuming the level of image noise boundaries to 

be known. This method was later employed for feature selection [4.4] and global path planning 

[4.5]. While these works have proven their usefulness, they do not usually consider the servoing 

method used for visual servoing, i.e., only the final pose error is discussed. They assume that the 

exact pose of the object is known, which could only be estimated using visual data. Besides, this 

approach only provides conservative bounds of the pose error given a known image error bound 

[4.6]. Moreover, this method is time consuming and computationally expensive. 

On the other hand, the approach of probabilistic error analysis was proposed based on error 

covariance propagation through different components of a visual servoing system. This method 

was first employed in [4.7, 4.8] to analyze the error in PBVS and hybrid visual servoing (HVS) 

[4.9], in an open-loop fashion. The method divided these visual servoing systems into three 

components, i.e., pose estimation, servoing, and control. Subsequently, the image noise 

covariance was propagated through the linearized model of each part, similar to [4.10]. This 

work was recently extended to entail IBVS method and the closed-loop nature of visual servoing 

systems [4.11], since the previous works failed to address this important characteristic. The 

continuous-time Ornstein-Uhlenbeck process was exploited to model a proportional feedback 

controller of a simple linear system. The characteristics of this process were explored in IBVS 
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and PBVS systems, and simulations were run for verification. It was shown that only steady-state 

error covariance is obtainable for PBVS systems through this method. Moreover, the simulation 

results had some discrepancies between the theory and simulations, which was left for future 

research [4.11]. In this work, the closed-loop visual servoing method was considered as a time 

continuous system, which does not hold for visual servoing systems as the vision sensor data is 

acquired in discrete-time intervals. Moreover, the chosen stochastic process, (i.e., Ornstein-

Uhlenbeck process) is limited to the proportional control law only and does not apply to other 

controllers. This chapter presents a novel uncertainty modeling method for visual servoing 

systems that overcomes the shortcomings of the previous methods. In the sequel, the modeling 

methods are discussed in open-loop and closed-loop systems.   

4.3 Uncertainty Modeling in SISO Systems 

Probabilistic modeling of uncertainties propagated through a system is the topic of this section. 

The previous works on open-loop error modeling for a SISO system are briefly reviewed and a 

superior closed-loop model is proposed to address the shortcomings of these works as follows. 

4.3.1 Open-Loop Uncertainty Propagation 

This approach is based on first-order linear approximation of the system. A SISO system 

expressed by a function which relates its input and output is assumed, 

 ( )y h x , (4.1)  

where x, y, and  h represent the system’s input, output, and the mapping function, respectively. 

The first-order approximation based on Taylor series suggests, 

 
0

0 0

( )
.( )

x x

dh x
y y x x

dx 

   . (4.2) 

Assuming the system error as a deviation from true value, one can write, 

 ˆ ˆ, ,y xy y x x      (4.3) 
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where the noisy signals are denoted by “hat”, the noise values are denoted by  in x and y 

directions and are assumed to be zero-mean random variables. Then (4.3) could be rewritten as, 

 
ˆ

( )
ˆ ˆ.( )

x x

dh x
y y x x

dx 

   , (4.4) 

which is equal to, 

 
ˆ

( )
y x

x x

dh x

dx
 



 . (4.5) 

If the covariance of the input error ( x ) is known, the covariance of the output error could be 

approximated as follows, 

    
2 2 2

2 2 2

ˆ ˆ ˆ

( ) ( ) ( )
y y x x x

x x x x x x

dh x dh x dh x
E E E

dx dx dx
  

  

      
                  

, (4.6) 

where x is the input error covariance, y  is the output error covariance and  E  is the 

expectation function. Equation (4.6) relates the covariance of the input and output of a system 

and is the basis of error propagation in the probabilistic approach. 

While the open-loop modeling discussed above provides a useful tool for estimating the 

uncertainties of the system, it may not be useful for closed-loop systems since the feedback loop 

of the system has not been accounted for. A novel closed-loop uncertainty modeling is proposed 

to address this shortcoming as follows. 

4.3.2 Closed-Loop Uncertainty Propagation 

In this subsection, the uncertainty propagation in a closed-loop SISO control system is 

considered. The developed method is extendable to multi-input multi-output (MIMO) systems 

such as visual servoing. Figure 4.1 shows such a control system, where ( )g  is the sensor transfer 

function and ( )h  represents the system’s controller and plant transfer functions. As it can be 

seen, the following relations are considered for input and output of each subsystem, 
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 * ˆxe x x  , (4.7) 

 ( )xy h e , (4.8) 

 ( )x g y , (4.9) 

 ˆ xx x   . (4.10) 

where xe  is the closed-loop error, *x is the system reference input, y is the system output, and x̂  

is the feedback signal with uncertainty, x is the feedback’s real value and x is the feedback 

noise, which is assumed to have zero mean and known covariance. The noise sequence is 

assumed to be independent and identically distributed (i.i.d.). The goal of the system is to 

minimize the closed-loop control error, xe .  Different controllers are usually employed for this 

purpose. This work investigates the uncertainty propagation in case of two most well-known 

controllers, namely proportional (P) and proportional-derivative (PD), which also have become 

very popular in visual servoing systems. 

*x yxe


  h 

 g 
x





x

x̂

 

Figure 4.1 A general SISO control system. 

Proportional Controller 

The closed-loop uncertainty propagation in a system with a proportional controller was 

previously followed by exploiting the solution of a stochastic process [4.8]. This process, known 

as Ornstein-Uhlenbeck process, is closely related to closed-loop control using simple 

proportional control law. The process is defined as follows, 

 ( )t t tdx x dt dw       , (4.11) 
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where tw  is a Wiener-Levy process with unity variance,  , , and  are known constants. If 

initial point is known ( 0x c ), the mean and covariance of this process is solved as follows, 

 0 ( ) t
tE x x c c e           , (4.12) 

  
2

( )
0( , )

2
s t s t

s tCov x x x c e e 


      , (4.13) 

and the variance is obtained by coinciding the times, 

  
2

2
0( , ) 1

2
t

t tCov x x x c e 


   . (4.14) 

Despite the usefulness of this approach for uncertainty modeling in systems with proportional 

controllers, it cannot be extended to other types of controllers. Moreover, the discrete-time nature 

of the system is not considered. Therefore, a new uncertainty modeling approach is proposed to 

overcome these shortcomings in the sequel. 

In a system with proportional controller, the error is decreased to zero exponentially using a 

proportional control law, 

 , , 0x k x ke e  , (4.15) 

where   is the controller gain. Using (4.7) and (4.10), it can be shown that, 

 * *( )k xx x x x       . (4.16) 

In this work, the system reference input was assumed to be constant ( * 0x  ). The process x 

could be approximated by integration over time, 

 1k kx x tx     , (4.17) 

where kx  is the values of process x at time step k and t is the time increment. Injecting (4.16) 

into (4.17) yields, 
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    1
* *( ) 1k k k kx xx x t x x t x tx t                  . (4.18) 

The covariance of the process is defined as, 

   2

1 1 1 1cov( , ) ( )k k k kx x E x E x     . (4.19) 

By assuming the reference input to be error free, the covariance of the process is calculated, 

      
       
      
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   
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2

2
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2

2 2 2
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x x
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t E x E x t E

t x x t

       

     

  

  

  

               

           

     

     

    

(4.20) 

Here 2 is the covariance of the estimation error. It is worth mentioning that the current noise is 

independent of kx . Now if the covariance of process x is modeled with a time varying function, it 

can be shown that, 

 cov( , ) ( )k k cx x f t . (4.21) 

The time derivation of (4.21) results in, 
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t t

E x E x x E x x x

 
 

  

           
       

 (4.22) 

The covariance of next time step is calculated as follows using (4.17), 
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, (4.23) 

which is in agreement with Tylor expansion of function f. Here 2O( )t  denotes terms of order 

2t  or higher and are assumed to be negligible. Then (4.15) may be rewritten as, 

  2 2 2 21 ( )c
c

f
f t t f t t

t
  

      


 (4.24) 

which results in, 

  2 2 22 ( )c
c

f
t f t t

t
   

     


. (4.25) 

The solution to this differential equation is as follows, 

  
22 2

( ) 1
(2 )c

t tt
f t e

t

  


  
 

  
  

   
. (4.26) 

It is interesting to note that this result is close to the covariance expected by using Ornstein-

Uhlenbeck process (as was discussed in [4.11]) when time increment is small, 

  
2

2( ) 1
2c

tf t t e     . (4.27) 

However, the model shown in (4.26) is more accurate than the previous model of [4.11] in 

discrete-time systems as it accounts for the sampling time of the system. The steady-state error 

covariance could also be calculated by assuming, 

 cov( , ) cov( , ) ssX X X X f     . (4.28) 

Using this assumption with (4.25) will result in, 
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2

(2 )ss

t
f

t

 





 
, (4.29) 

which can also be obtained from (4.26). 

Second-order controller 

In a system with second-order controller, also known as PD controller, the error is reduced to 

zero through the following control law, 

 , , , 0x k D x k P x ke k e k e    , (4.30) 

where Pk and Dk are controller gains. Then using (4.7) and (4.10), the following equation is 

found, 

 * * *( )( )D k P k p xx k x x k x x k x          . (4.31) 

Similar to before, the processes X and X are calculated as follows, 

 1k kx x tx      , (4.32) 

 1 1k k kx x tx     . (4.33) 

 Applying the same methodology as before and taking (4.31-4.33) into consideration yields, 

   1
2 2 * 2 * 2 * 21 1k P k P D D k p xx k t x k t x k t x t x t k t x k t                ,  (4.34) 

  1
* * *1k D k P k P D p xx k t x k tx k tx k tx tx k t                , (4.35) 

which yield (assuming the reference input to be constant and error-free), 
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 (4.36) 
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 (4.37) 
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 



 (4.38) 

Now assuming, 

 1( ) cov( , )c k kf t x x , (4.39) 

 2 ( ) cov( , )c k kf t x x   , (4.40) 

 3 ( ) cov( , ),c k kf t x x   (4.41) 
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 and using (4.22), (4.36)-(4.38) are rewritten as follows, 

 
 

 

1
1 1 2

3

22 2 2

2 2 4 2
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                   2 (1 ) 1 ,
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f t k t f t k t f
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
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

       
 (4.42) 

  2
2 2 1 3

22 2 2 2(1 ) 2 (1 ) .c
c D c P c P D c P

f
f t k t f k t f k t k t f k t

t
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            


 (4.43) 
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1 1

1

c
c P P c D

D P c P
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

     

 


 (4.44) 

The covariance of process X is obtained through solving (4.42)-(4.44) as follows, 

 
 

1

22
2 12

( ) 1
4

D P
c

D

P D

D

k k
t

kk t k t
f t e

k

 


      
 
 

. (4.45) 

It is worth mentioning that such function cannot be calculated through the Ornstein-Uhlenbeck 

process, discussed in [4.11]. The steady-state error covariance is calculated through (4.42)-(4.44) 

by assuming, 

 1 2 3 0c c cf f f

t t t

  
  

  
, (4.46) 

which yields, 

 
  22

cov( , )
4

D P
ss

D

k t k t
X X

k

  
 . (4.47) 

The error covariance of closed-loop systems with other controllers is calculated similarly. In the 

next section the application of the proposed error modeling in visual servoing systems is 

presented. 
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4.4 Error Modeling in Visual Servoing 

The focus of this section is the uncertainty propagation analysis in visual servoing applications. 

Similar to previous section, the open-loop error modeling is discussed first, followed by the 

novel closed-loop error modeling developed for classic visual servoing systems, namely IBVS 

and PBVS. 

4.4.1 Open-Loop Approach 

This subsection follows the open-loop error propagation in visual servoing systems. First, the 

image error propagation to camera velocities in an IBVS system is discussed. Next, the 

propagation of image noise through three different parts of the PBVS system, namely pose 

estimation, servoing, and proportional control, is investigated. The HVS analysis is similar and 

could be found in [4.7]. 

Image-Based Visual Servoing 

In image-based visual servoing (IBVS) systems, the image error is directly propagated to the 

camera velocity. The camera velocity is directly calculated as follows, 

 † *ˆ ( )c sV J s s   . (4.48) 

Here, †Ĵ is the approximate pseudo-inverse of the image Jacobian matrix, J, s and *s  are the 

current and desired image features vectors, respectively. Assuming the final feature points to be 

free of noise, one can define camera velocity noise as follows, 

 ,
c

c
V s

V

s
 




 (4.49) 

where V  and s are the camera velocity noise and image noise respectively and, 

 
†

* †
ˆ

ˆ( ) ,c s
s

V J
s s J

s s
  

   
 

 (4.50) 
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In calculation of (4.50), the derivation of inverse Jacobian with respect to image features is 

calculated as follows, 

 
†

† †.s s
s s

J J
J J

s s

 
 

 
 (4.51) 

It is interesting to note that when the camera is reaching its desired location, the first term in 

(4.50) will be negligible, simplifying the error as follows, 

 †ˆ .V s sJ     (4.52) 

It is noteworthy that the image noise is assumed to be a zero-mean Gaussian random variable. 

Position-Based Visual Servoing 

Pose estimation is the first part of PBVS to be investigated, which takes image feature points as 

input and gives the object pose as its output. The optimization-based pose estimation methods 

are based on minimizing the image plane error, 

 

2 2

1 2

1
3 3

c o c c o cn
o i o o i o

i ic o c c o c
i o i o o i o

R P t R P t
L u v

R P t R P t




                  
                

 , (4.53) 

where ui and vi are the image plane coordinates of ith feature point, o
iP is the ith point in object 

frame, c
oR is the rotation matrix between the object and camera frames, c

ot is the translation from 

the object frame to the camera frame, n is the number of feature points, and  i  is the ith element 

of the bracketed vector. The error is shown as a function of minimal pose representation 

(translation plus minimal orientation representation such as Euler angles), 

 ( , )c
oL L s   , (4.54) 

where s is the vector of image features, and c
o  is the minimal pose representation. Then s is the 

input of the pose estimation and c
o  is its output. The error function is minimized by putting the 

gradient equal to zero. The input and output are assumed to have additional error as before, i.e., 
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 ˆ ,ss s   . (4.55) 

 ˆ .c
o

c c
o o 

     (4.56) 

Then, the gradient of error is written as, 
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. (4.57) 

Since the gradient should be equal to zero both for real and estimated gradients, (4.57) is 

simplified to, 
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, (4.58) 

which yields, 
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
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. (4.59) 

Then using (4.53), the covariance of the estimated pose is obtainable. 

The goal in PBVS algorithms is to minimize the pose error between current and desired camera 

poses. This error is defined by forming homogenous transformation between the current and 

desired camera poses as follows, 

 
* *

* ,
0 1

c c
c c c
c

R t
H

 
  
 

 (4.60) 

where *

c

c
H  is the homogenous transformation between the desired camera frame ( *c ) and the 

current camera frame ( c ), *

c

c
R and *

c

c
t  are relevant rotation matrix and translation vector. In 

(4.60), *

c

c
H  is calculated as follows, 
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       
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 (4.61) 

The object frame is denoted by “o”. A proportional control law is assumed to be used, 

 
* .

c

c
c

t
V 


 

   
 

 (4.62) 

Here,   is the angle and axis representation of *

c

c
R  and cV  is the camera velocity. It is assumed 

that the desired pose is error free. Next, the error propagations for rotation and translation are 

followed separately. 

 *
*

.c c c c c
o o o oc

o
tt R c t t

t G


         (4.63) 

The error of c
ot

 is directly obtained from the pose estimation error propagation, while the error 

signal c
oR

  can be calculated from the error of minimum representation of orientation (Euler 

angles) as follows, 

 ,c c c c c
o o o o o

c c c
o o o

c c c
o o o

r r r
G    

    
  
  

   
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 (4.64) 

where c
o

 is the error of vector representation of rotation matrix, denoted by c
o  . The Euler 

angles (roll, pitch, and yaw) are denoted by , , and  , respectively. The error of orientation is 

calculated as follows, 

 
*

c c
oc

G 
  , (4.65) 

and then propagated to the angle and axis form [4.7], 

 
*

c

c

G  
  . (4.66) 

Ultimately, the error propagated to camera velocity is obtained as follows, 
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. (4.67) 

4.4.2 Closed Loop Approach 

Image-based Visual Servoing 

In IBVS systems, the error is formed based on current and desired image feature locations. The 

error is then reduced to zero using a suitable control law, such as a proportional control law. For 

this matter, at each time step the camera velocity is chosen as, 

 †
, ,

*ˆ( )c k s k kV J s s   , (4.68) 

where *s  is the vector of desired image features and, 

 ,ˆk k s ks s   , (4.69) 

is the vector of image features at time step k. The image features at the next time step are updated 

based on the given camera velocity, 

 1 , ,k k s k c ks s tJ V    . (4.70)  

Then the covariance of image features in the next time step is calculated as, 
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(4.71) 

where, 

  
1

2 2
, diag . . ,

ns k s s    (4.72) 

is the matrix of feature error covariance. Now assuming, 

 † †
, , , , ,cov( , )k k s k s k cs k s k s ks s J J F J J , (4.73) 

 ,† †
1 1 , , , , ,cov( , ) cs k

k k s k s k cs k s k s k

F
s s J J F t J J

t 

 
    

. (4.74) 

One can rewrite (4.71) as follows, 

 

 

,† † 2 2 † †
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2 2 † †
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 
      

    

 (4.75) 

which yields, 

  , 2 2
, ,2 .cs k

s k cs k

F
t t F

t
  


     


 (4.76) 
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Similar to (4.25), (4.76) is solved as follows, 

 , ,

2 2
1

(2 )cs k s k

t tt
F e

t

 


  
 

  
   

   
. (4.77) 

Replacing (4.77) in (4.73) results in, 

 † †
, , , , ,

2 2
cov( , ) 1

(2 )k k s k s k s k s k s k

t tt
s s e J J J J

t

 

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 

  
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   
. (4.78) 

The pose of the camera is updates as follows, 

 , 1 , , ,
w w
c k c k P k c ktJ V     , (4.79) 

where, 

 , 1

0

0

w
c

p k w
c

R
J

T R

 
  
 

, (4.80) 

and ( )T  is the transformation between the Euler angles and angular velocity (i.e., ( )T    ). 

Replacing (4.68) in (4.79) yields, 

 †
, 1 , , ,

*ˆ( )w w
c k c k P k s k ktJ J s s       . (4.81) 

The error covariance of pose in next time step is calculated as follows, 
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The last two terms in (4.82) are obtained as follows,
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     (4.83)                          

Now assuming, 

 † †
, , , , , ,cov( , )w T T

k c k s k s k c k s k P ks J J G J J  , (4.84) 

the covariance of pose and image features is calculated as follows, 
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which yields, 
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Then the sought covariance is found by solving (4.86), 
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It is easy to show that, 
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Now replacing (4.78), (4.87), and (4.88) in (4.82) results in, 
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Similar to previous cases, (4.89) is solved by assuming, 



119 
 

 † †
, , , , , , ,cov( , )w w T T
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as follows, 

 , 2
,

2 2
,c k

s k

t tM
te

t

 


  
 

 
  


 (4.91) 

which is solved through integration, knowing that ,0 0cM  , 
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Therefore, the pose error covariance is formulated as follows, 
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The velocity error covariance is found through (4.68), i.e.,  
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and replacing (4.78) in (4.94), 
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 (4.95) 

Position-based Visual Servoing 

In PBVS, the camera velocity is obtained based on pose difference between current and desire 

pose, as was stated in (4.62). The pose is then updated based on the obtained camera velocity, 

similar to (4.79). If the pose is defined as follows, 
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*c

ct     , (4.96)  

then the desired pose is equal to zero (i.e., * 0  ). This pose is updated with the camera 

velocity, 
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similar to (4.67). The covariance of the pose is calculated as follows, 
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which is solved similar to (4.71), i.e,  
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Finally, it is worth mentioning that error covariance of other pose definitions (e.g., w
c ) is easily 

obtainable from the error of the pose defined in (4.96), 

 c w
o c

G G G G     
    , (4.100) 

 * *w cc c

w

t c t
R  . (4.101) 
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4.5 Simulation Results 

The efficiency of the proposed methods for error covariance calculation is verified through 

multiple simulations. These simulations have been carried under MATLAB® 2011b environment 

from Mathworks (Natick, MA, USA). The simulations are based on Monte Carlo simulations 

with large number of samples (10,000 samples). In these simulations, the image noise covariance 

is assumed to be known. The closed-loop error covariance is calculated based on this image 

noise covariance. 

In the first simulation, the validity of the proposed method for a closed-loop SISO system is 

evaluated. Two systems with proportional and second-order controllers are simulated by adding 

Gaussian noise to the input process (x) with the covariance of 0.01. A time step of 1 ms is 

considered for these systems. The resultant error covariance of the process is compared with the 

predictions, formulated in this chapter. Figures 4.2 and 4.3 show the results of these 

comparisons. As it can be seen, the predictions closely match the simulation results in the case of 

proportional controller, while the predictions from [4.11] are only approximating the results. The 

results also match closely for the second-order system, where the previous method was not able 

to make any predictions. It should be noted that the stability of the controllers are not of concern 

in this work and they are assumed to be stable (by selecting proper gains). 

 



122 
 

 

Figure 4.2 First simulation: Process error covariance using a proportional controller. 
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Figure 4.3 First simulation: Process error covariance using proportional derivative (second-

order) controller. 

In the second simulation, a closed-loop IBVS is tested to verify the efficiency of the proposed 

method for an IBVS system. An IBVS system with proportional controller is simulated in 

MATLAB® 2011b environment. The camera is servoed from a distance to half a meter above the 

object of interest. Four coplanar feature points have been exploited for this purpose. Figures 4.4-

4.6 show the simulation results in image space, in Cartesian space, and for camera velocities. In 

image space, u and v are the image coordinates in pixel. The initial image is shown by dashed 

lines and the initial points are shown by circles. The final feature points are shown by crosses. 

The trajectories of the feature points are shown by solid lines. In Cartesian space, the orientations 

of the camera are shown by their frame coordinates for its initial and final poses and the camera 

trajectory is shown by a solid curve. The closed-loop image features error covariance is then 
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of the error covariance matrices are selected for sake of brevity. The result of this comparison is 

shown in Figure 4.7. As it is apparent, there is a close match between the simulations and the 

predictions throughout the simulation period. Similarly, the error covariance of the camera poses 

with respect to the object and the error covariance of the camera velocities are calculated and 

compared with their predictions through (4.93) and (4.95). Once again, the diagonal elements of 

the error covariance matrices are chosen. The outcomes of these comparisons are presented in 

Figures 4.8 and 4.9. Once again, the close estimation of the error covariance for camera pose and 

velocity is observed. 

 

 

Figure 4.4 Second simulation: Simulated IBVS method in image space. 
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Figure 4.5 Second simulation: Simulated IBVS method in Cartesian space. 
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Figure 4.6 Second simulation: Camera velocities in simulated IBVS method.  
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Figure 4.7 Second simulation: Image features error covariance in comparison with its estimation. 
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Figure 4.8 Second simulation: Camera velocity error covariance in comparison with its 

estimation. 
 

 
Figure 4.9 Second simulation: Camera pose error covariance in comparison with its estimation. 
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simulations. The method was applied to IBVS and PBVS systems and the error covariance of 

image features, camera velocities, and camera pose were found. The simulation results were 

presented to certify the accuracy of error covariance estimations. As was shown, there was a 

good match between the actual error covariance and its estimation. 

The development of uncertainty models can help the designer of visual servoing systems to have 

a good understanding of the effect of uncertainties on different parts of the system and improve 

the systems accuracy and robustness with respect to this knowledge. In next chapter, robust 

controllers based on the developed error modeling are presented to enhance the accuracy of the 

system and add to its robustness. 
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Chapter 5 

Robust and Constrained Visual Servo Control 

 

5.1 Introduction 

The practicality of any RVS approach for real world applications highly depends on its robust 

and accurate performance in presence of system uncertainties and constraints. The limitations 

imposed by the robot or the camera are usually known a priori and therefore can be avoided in 

RVS systems. However, system uncertainties are usually unknown and cannot be measured. 

Thus, robust schemes are required to alleviate the effect of uncertainties on system performance. 

Previously, path planning methods and image-based predictive control (IBPC) schemes were 

proposed to address the constraints in RVS systems. However, IBPC had only local stability and 

its numerical feasibility was not certified. Moreover, those methods were prone to system 

uncertainties. Robust methods were previously proposed as a remedy to this problem. Yet, most 

of those robust methods focused on robust convergence of the system and accuracy of the system 

was not considered. In addition, those approaches were either deterministic and/or conservative 

(e.g., path planning), or negligent of system constraints (e.g., robust controllers).  

In this chapter, a set of controllers are introduced to address the aforementioned shortcomings. In 

particular, position-based predictive control (PBPC) and hybrid predictive control (HPC) 

methods are proposed as alternative solutions to IBPC. These controllers can manage the system 

constraints properly, while providing the system with global stability and flexibility in the 

design. The feasibility of the proposed controllers is improved by minimizing their 

computational cost and the subsequent stability issues are compensated through proper 

modifications of the cost function and the constraints. In addition, a two-step control scheme is 

proposed for robust control. By using this scheme, the rate of convergence is decoupled from 

uncertainty measures (namely mean and covariance of the error). Thus unlike previous 

controllers, the effect of uncertainties may be minimized without affecting the convergence rate.  

This methodology is then exploited in conjunction with the developed uncertainty propagation 
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model and predictive controllers to robustly guide the robot towards its destination, without any 

constraint violation. 

The chapter is organized as follows. First, a survey of previous works is presented in Sec. 5.2 

and most related works are reviewed. The design of PBPC and HPC are explained in Sec. 5.3. 

The two-stage robust control design is developed in Sec. 5.4 and is exploited towards robust and 

constraint-aware controllers with model predictive structures. The simulation and experimental 

results are brought after in Sec. 5.5 and the chapter is concluded with a discussion over the 

theoretical and experimental results in Sec. 5.6. 

5.2 Literature Survey 

Successful RVS necessitates effective constraint handling in the system. Various methods were 

previously proposed to deal with the constraints. One effective way to manage the system’s 

constraints was to employ path planning techniques [5.1-5.3]. These methods formed image 

space constraint-aware trajectories prior to servoing, which were then tracked closely to reach 

the desired pose. Global stability was obtained through this method. Several techniques were 

exploited to achieve the constraint-aware trajectories. Potential field method, once popular in 

collision-free path planning, was employed for path planning [5.1]. Optimization-based 

techniques were alternatively proposed to generate robust trajectories [5.3]. Nevertheless, such 

techniques could not cope with the uncertainties of the system. On a separate line, constrained 

controllers were employed to deal with the system limitations during the servoing. Specifically, 

model predictive controllers (MPC) were employed for this matter. These controllers were 

capable of system output optimization, while considering the limitations of the system.  

Model predictive control was previously employed for visual servoing. One of the early 

applications of MPC for visual servoing was proposed in [5.4], where a generalized predictive 

control (GPC) form of MPC was employed in image space. The method was numerically stable 

and implementable for real-time applications, while providing optimal results. Yet, this work 

was not concerned with constraint handling. Later, the camera and robot constraints were 

considered in the optimisation of the MPC to address the shortcomings of the classical IBVS 

[5.5]. A more general constrained image-based MPC was introduced in [5.6] with a different cost 
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function. It was shown that the proposed MPC was capable of handling the constraints, yet its 

stability and numerical feasibility were questionable. Similar image-based MPCs were employed 

by other works such as [5.7]. The reference trajectory used in MPC was modified in [5.8] to 

ensure the stability of the controller. In addition, a collision-free visual servoing was practiced 

via MPC in [5.9], which used collision-free planning techniques (such as probabilistic road map) 

for this matter. This technique was later used as a part of robot programming scheme in cluttered 

workspaces [5.10]. Moreover, a MPC which exploited image moments was proposed to improve 

the speed and stability of image-based MPC controllers in visual servoing systems. Similarly, a 

quasi min-max MPC controller was developed for visual servoing which modeled the system as 

a polytopic linear time-varying (LTV) system [5.11]. This controller could handle the system 

constraints by constrained optimizations carried through LMI. Yet, many of these controllers 

suffered from local stability and numerical feasibility problems. Moreover, the effect of system 

uncertainties was not considered in any of these works.  

Robust RVS was followed in many of the previous works as a remedy to problems caused by 

system uncertainties. Many of these works focused on uncertain parameters of camera’s 

calibration and robot’s dynamics. An adaptive technique was employed to estimate robot’s 

parameters online [5.12]. A robust control scheme was proposed by [5.13] and its stability in 

presence of camera/robot’s uncertainties was proven via Lyapunov method. In addition, 

robustness with respect to calibration errors in terms of stability and error boundness was 

achieved in [5.14]. Separate compensators were designed in [5.15] for robot and camera 

uncertain parameters. A quaternion-based visual servoing was proposed by [5.16] to provide 

robustness against camera calibration parameters. Moreover, a controller robust to robot’s 

dynamics parameter uncertainties was proposed for a 2 DOF robot in [5.17]. Robot’s parametric 

uncertainties were considered in [5.18]. The robustness to visual servoing parametric 

uncertainties was also provided in [5.19] through LMI optimisation.  Time-varying uncertainties 

of the robot was considered in [5.20] via an adaptive controller, which used a function 

approximation technique. A PBVS scheme robust to camera parameter uncertainties was 

proposed in [5.21] which had the benefit of global stability. In addition to that, various control 

schemes were proposed to counter the effects of uncertainties in the system. Sliding-mode 

control techniques were practiced in a couple of works including [5.22-5.25]. Robust filter-based 

techniques were employed to reduce the uncertainties of the system [5.26, 5.27]. Optimization 
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techniques based on LMI were also introduced in [5.28, 5.29]. The inherent robustness of LQG 

and optimal controllers were exploited in [5.30], [5.31]. Yet, most of these methods were not 

concerned with the constraints of the system. In addition, the accuracy of the system was usually 

not the main concern. 

This work proposed several control schemes that can handle the constraints of the system 

properly, offer global stability and improved numerical feasibility, and are robust against the 

uncertainties of the system. The details of these controllers are presented in the sequel. 

5.3 Predictive Controllers for Constrained Visual Servoing 

The design methodology of robust and constrained visual servo controllers is the topic of this 

section. The required knowledge of the system is presented first, followed by constrained and 

robust control schemes for visual servoing. 

5.3.1 Preliminaries  

In this subsection, the structure of the system, the definitions and assumptions required by the 

proposed control designs are discussed as follows. 

System Configuration 

Similar to previous chapters, this chapter assumes a system composed of a six degree-of-freedom 

manipulator and a camera which is mounted on the end-effector of the manipulator (i.e., eye-in-

hand camera configuration). The camera initially has the object of interest in its FOV. The 

camera images of the object are processed during the servoing and the image features are 

extracted. In this thesis, point image features are of interest. The image plane coordinates of 

image points are used as image features, 

 1, 1, , ,. .
T

k k k n k n ks u v u v    , (5.1) 

where n is the number of point features, ks  is the vector of image features at time k and, 
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o i k o i k
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u v f

Z Z

 
        

, (5.2) 

are the image coordinates of ith point of the object in the camera frame (i.e., 

, , , , , , , ,
c c c c

o i k o i k o i k o i kP X Y Z    ), projected on the image plane. In (5.2), the camera’s focal length is 

denoted by f. Image features are indirectly connected to the relative pose of the object with 

respect to the camera, 

 , , , ,
c c o c

o i k o k i o kP R P t  , (5.3) 

where ,
c
o kR , and ,

c
o kt are the rotation and translation between the object and camera frame, 

respectively. Here, o o o o
i i i iP X Y Z     is the ith point of the object in object frame and is 

supposed to be known through the object’s geometry. Both image features and pose parameters 

may be used for servoing, as is explained in the sequel. 

System Servoing Errors 

The image features may be directly used for control purposes (e.g., in IBVS methods). In such 

scenarios, the image features are compared with the features at the desired pose, 

 * * * * *
1 1 . .

T

n ns u v u v    , (5.4) 

and the image space error at time step k  is formed as, 

 *
,s k ke s s  . (5.5) 

It is assumed that the robot will reach its desired pose once this error is reduced to zero. Yet, this 

assumption may not always hold due to local minima of the system. 

Alternatively, image features may be used to estimate the pose of the object with respect to the 

camera, which is represented by the transformation matrix between the object and camera frame, 
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c o k o k
o k
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H

 
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 

. (5.6)  

The pose of the object with respect to the camera may be estimated accurately through iterative 

methods (as was discussed in chapter 2). The pose error is then defined based on the 

transformation between the current and the desired camera frames, 

  * * 1

, ,
c c c
c k o o kH H H


 . (5.7) 

Three different pose errors are defined based on this transformation. The translation error is 

defined as follows, 

 
*

, ,
c

t k c ke t , (5.8) 

where 
*

,
c
c kt is the translation between the current and the desired camera frame. As for the 

orientation error, two different choices are taken. In the first orientation error, the angle and axis 

representation of the rotation matrix between the current and desired camera frames (
*

,
c
c kR ) is 

exploited, 

 
* *

1 , , ,
c c

R k c k c ke   , (5.9) 

where 
*

,
c
c k  and 

*

,
c
c k are the angle and axis related to the 

*

,
c
c kR , respectively. The second 

orientation error is composed of the Euler angles, representing the rotation matrix, 
*

,
c
c kR , 

 
* * * *

2 , , , , ,

T
c c c c

R k c k c k c k c ke         , (5.10) 

where
*

,
c
c k ,

*

,
c
c k , and 

*

,
c
c k are the roll, pitch, and yaw angles related to the rotation matrix, 

*

,
c
c kR . 

The third error is defined as the logarithm of depth difference for each feature point between the 

current and desired camera frames, 
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 * *
, ,1, ,1 , , ,log log . . log logc c c c

z k o k o o i n o ne Z Z Z Z     ,  (5.11) 

where *
,

c
o iZ is the depth of ith point of the object in the desired camera frame ( *

,
c

o iP ). As it is 

apparent, the camera will reach its desired pose once the first and second introduced pose errors 

are reduced to zero. The third pose error may be used as a complement to enhance the stability of 

the system [5.32]. In the sequel, it will be shown how a combination of image space and pose 

errors may be used in visual servoing to make the robot reach its desired pose.  

System Dynamics 

Each time the controller generates the camera velocity, the robot is moved in compliance. As a 

result, the pose of the object with respect to the camera and subsequently the pose errors are 

updated as, 

 
*

, 1 , , ,
c

t k t k c k c ke e tR     , (5.12) 

 , 1 , , ,R k R k k c ke e tJ     , (5.13) 

 , 1 , , ,z k z k z k c ke e tJ V    . (5.14) 

Here, , , ,

TT T
c k c k c kV      is the camera velocity in camera frame, t is the sampling time, ,kJ

and ,z kJ are the angle and depth Jacobian, defined in [5.32]. 

Similarly, the features error is updated as follows, 

 , 1 , , ,s k s k s k c ke e tJ V    , (5.15) 

where ,s kJ is the image Jacobian, defined in [5.33]. The error update formulation, shown in 

(5.12) to (5.15), is used in constraint optimization of predictive controllers, which are the focus 

of the coming subsections. 
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The control goal in visual servoing is to reduce the error of the system, whether in image space 

or Cartesian space, to zero. Traditionally, a simple proportional controller was employed to 

guarantee exponential decree of the error, 

 G Ge e  , (5.16) 

where Ge is the general error term and  is the controller gain. However such controller could 

not handle the robot/camera constraints due to its simplicity. The design of MPC to handle the 

constraints is the topic of this subsection. It will be shown that the errors introduced in the 

previous subsection are reduced to zero without violation of the constraints. Image-based, 

position-based, and hybrid controllers are discussed separately and the constraints of the system 

are explained afterwards. 

5.3.2 Image-Based Predictive Control 

This controller was introduced in [5.6] and is composed of an optimization problem solver which 

finds the appropriate control to minimize the cost function defined as follows, 

 , , ,
1

cN
T

s k s k i s s k i
i

L e e 


  , (5.17) 

where sB is the image error weighting matrix and cN is the control horizon. As was discussed in 

[5.6], the choice of cN  is not trivial. Large values for cN  result in increase of computation time, 

which makes this controller not suitable for real-time and fast applications, such as visual 

servoing. On the other hand, small values of cN  cause discontinuities in the control and 

instability. In this work, cN  is chosen as unity to minimize the computational time. Then the 

problem of control discontinuities caused by this selection is solved by modifying the cost 

function as, 

 , , 1 , 1 , ,
T T

s k s k s s k c k c kL e e V V     , (5.18) 

where ,c kV  and  are the camera velocity and its related weighting matrix, respectively. This 

choice of cost function reduces the discontinuities of the control as it penalizes large control 
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actions. The stability of the system is ensured through an additional constraint, which is 

explained in the sequel. 

The control actions are found by minimizing the cost, subject to system constraints, 

 
, ,

, 1 , , , ,

,

arg min

. . ,

c k s k

s k s k s k c k k c k

c kV
V L

s t e e tJ V s S V



    
 (5.19) 

where S is the set of admissible image features,  is the set of acceptable camera velocities, and

,s kJ  is the image Jacobian at time step k, respectively. As can be seen, the first constraint of the 

system is the linearized model of the system, while the other conditions set boundaries on future 

features and system controls. The velocity of the camera is then found by solving this 

optimization problem and is applied to the robot’s end-effector. 

5.3.3 Position-Based Predictive Control 

This controller, proposed by this work, is similar to its image-based counterpart in optimization 

and the constraints. In this controller, the reduction of the position error in the presence of 

constraints is considered. As a result, the cost function is defined as, 

 , , 1 , 1 , ,
T T

p k p k p p k c k c kV VL e e     , (5.20) 

where p is the error weighting matrix. The position error is defined as, 

 
2, , ,

TT T
p k t k R ke e e    . (5.21) 

 The control action is found similar to image-based MPC, 

 
, ,

, 1 , , , ,

,

arg min

. . ,

c k p k

p k p k p k c k k c k

c kV
V L

s t e e tJ V s S V



    
 (5.22) 

where ,p iJ  is the position Jacobian [5.34] at time step i and is defined as, 
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  
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. (5.23) 

Here I3 is the 3 by 3 identity matrix and 
*

( )c
cT  is the transformation matrix between angular 

velocities and time derivatives of Euler angles, 

 
* * *

( )c c c
c c cT    . (5.24) 

As can be inferred from (5.20) and (5.22), this is a MPC with unity control horizon, which has 

set penalties on the control to prevent discontinuities in the output. Setting the control horizon to 

unity has the advantage of minimal computational cost, as was discussed before. The velocity of 

the camera is obtained by solving (5.22) online and is then applied to the robot for servoing. The 

constraints of the system are explained in the sequel. 

5.3.4 Hybrid Predictive Control 

Image-based predictive controllers were proposed previously to reduce the image space error, 

subject to system constraints. However, image-based algorithms were prone to local stability as 

was discussed in [5.6]. Hybrid predictive controllers are proposed to solve this problem. In such 

controllers, a suitable combination of image space and pose errors are selected as the error of the 

system and is reduced to zero using the optimization techniques. For this reason, the cost 

function of the system is defined as follows, 

 , , 1 , 1 , ,
T T

H k H k H H k c k c kL e e V V     , (5.25) 

where , 1H ke  is the hybrid error at time step k+1, ,c kV is the camera error at time step k, and H  is 

the error weighting matrix. Such cost function set penalties on current camera velocity and the 

error of next time step, which is related to the camera velocity through (5.12) to (5.15). A 

suitable selection of control weighting matrix ( ) is important as it affect the smoothness and 

convergence of the system. It is also worth mentioning that the weighting matrices in (5.25) are 

in close relationship as they determine the contribution of error and control in the cost function. 

The camera velocity is found by minimizing the cost function, subject to system constraints, 
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c k H k
V

k c k

V L

s t s S V



 
 (5.26) 

where S and  are the sets of permissible image features and camera velocities, respectively. The 

choice of cost function in this minimization makes this controller equivalent to a model 

predictive controller with unity control horizon. Short control horizon in this controller helps its 

online solution to be feasible. As a result, the stability of this controller is not guaranteed. 

Moreover, the controller may result in severe control discontinuities as a result of fast control 

actions. This work proposes an additional constraint to guarantee the stability of the system, 

while introducing the penalties on control action (i.e., the camera velocities) to prevent erratic 

control decisions, caused by short control horizon. The control penalties are explained in (5.25), 

whereas the stability constraint is discussed later, along with the other constraints.  

The hybrid error selection for the cost function has an important impact on both image space and 

Cartesian trajectories. This work proposes two hybrid controllers with different error definitions 

for cost minimization. The image error is common between these hybrid errors, while the pose 

errors are selective. The first hybrid error is defined similar to hybrid visual servoing controller 

proposed in [5.32], 

 
1 , , , ,

TT T T
H k s k R k z ke e e e    . (5.27)  

This selection of hybrid error renders the orientation control to orientation error, while the 

translational motion is directed by the image and depth error minimization. As a result, both 

image space and Cartesian space trajectories are smooth. The error weighting matrix is chosen as 

follows, 

 
1

0 0

0 0

0 0

s

H R

z

 
    
  

, (5.28) 

which changes the cost function in (5.25) to, 

 
1 , , 1 , 1 , 1 , 1 , 1 , 1 , , .T T T T

H k s k s s k R k R R k z k z z k c k c kL e e e e e e V V              (5.29)  
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It is worth mentioning that an equal weighting between different error in (5.29) results in a 

balanced motion, while priorities might be given to a specific error, depending on the servoing 

scenario. 

Alternatively, the second hybrid error is defined as, 

 
2 , , , ,

TT T T
H k s k R k t ke e e e    , (5.30) 

which is a combination of image and pose errors, each being used in IBVS and PBVS, 

respectively. The weighting matrix is selected as, 

 
2

0 0

0 0

0 0

s

H R

t

 
    
  

, (5.31) 

which results in a cost function as follows, 

 
2 , , 1 , 1 , 1 , 1 , 1 , 1 , , .T T T T

H k s k s s k R k R R k t k t t k c k c kL e e e e e e V V              (5.32) 

As it can be inferred from (5.32), this choice of hybrid error provides an interesting tool to 

compromise between the error reduction in image space and Cartesian space. The controller will 

became purely image-based by choosing 0R t    , while a totally position-based control is 

experienced by selecting 0s  . Therefore, these controllers are subsets of the second hybrid 

controller. It is worth mentioning that the weighting matrices may be selected to minimize the 

chance of constraint violation, which is handled by the predictive controller. The system 

constraints are explained as follows. 

5.3.5 System Constraints 

The constraints of the system are categorized into three groups and are discussed as follows. In 

order to have a continuous feedback from the camera, the image features of the object should be 

visible at all times. This means that the image features should not leave a bounded area in the 

image space. Such constraint is considered in the admissible image feature’s set, 
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  min max|S s s s s   , (5.33) 

where mins and maxs are the minimum and maximum allowable values for image features. 

The workspace of the robot is limited and the velocity at which it can move is also restricted. 

Therefore the velocity of the camera should be limited so that the optimization solution results in 

feasible robot motion. These constraints are incorporated in the acceptable camera velocity set as 

follows, 

    † †
,min ,max ,min ,max| | ,b b

r R c c r r r R c c rV q J R V q V q q tJ R V q           (5.34) 

where rq and rq are the robot’s joint angles and velocities, respectively. The robot Jacobian is 

denoted by RJ and the rotation between camera and robot’s base is shown by b
cR .The first set in 

(5.34) is based on the limitation of joint velocities and the second set implies the joint limits. 

Alternately, the set of admissible camera velocities may be defined as, 

    , ,min , ,max min , , , , max| | .o o
c k c c k c c c k c k p k c kV V V V V tR J V           (5.35) 

The new set definition is based on camera position and velocity limits. 

In order to enforce the stability of the system, the energy of the error signal is bound by the 

previous energy of the system to ensure the convergence, 

 , 1 , 1 , ,
T T

G k G k G k G ke e e e    , (5.36) 

where   is a positive definite matrix. Such constraint may be set by amending the velocity 

constraint, 
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  (5.37) 

where the stability constraint is included as the third set or alternatively, 
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The error term in (5.37) and (5.38) may be selected as the pose error ( ,p ke ) or either of the hybrid 

errors ( ,H ke ). Enforcing the complementary stability constraint causes the optimal solver to 

reduce the error constantly and therefore the convergence of the system is guaranteed. The 

design of the constrained MPC controllers is now complete. The effectiveness of these methods 

is verified through multiple simulations in Sec. 5.5. 

5.4 Two-Stage Robust Control Design 

Robust control schemes are the focus of this section. A two-stage control scheme is introduced 

for this purpose. First, it will be shown that this controller has the ability of decoupling the mean 

and covariance of the propagated error from the convergence rate. Hence, the mean and 

covariance of the errors may be reduced without sacrificing the convergence rate. Second, the 

discussed MPC is employed at either of control stages to enable the system of constraint 

management. As a result, two robust schemes are proposed and the unique properties of each are 

highlighted.  

5.4.1 Decoupled Controller 

It was shown in chapter 4 that the traditional single degree of freedom (DOF) P type controller is 

not sufficient to reduce the propagated error without sacrificing the speed. As a remedy, a two 

degree of freedom (DOF) controller is proposed in this section that minimizes the rate of error 

growth, while maintaining the servoing convergence rate. This controller decouples the 

adjustment of the mean and the covariance of image features through a two stage control scheme. 

An offline controller is employed to maintain the convergence of the system, while an online 

ancillary controller is introduced to minimize the effects of propagated uncertainties. As a result, 

the online controller is needless of depth estimation and inverse Jacobian calculation, leading to 

a faster controller. A novel control structure is proposed to decouple the dependency of mean and 

covariance of the features. For this purpose, a two DOF controller is proposed. In this scheme, an 
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offline controller is employed as the base for visual servoing. Initially the feature trajectories are 

formed offline through a proportional controller, starting from the initial features ( 0 0s s ), 

 *
1( )k ks s s   , (5.39) 

 1k k ks s ts     , (5.40) 

where 1 is the offline controller gain, ks and ks are the offline features and their time derivatives. 

The important feature of this offline controller is its deterministic nature. This character comes as 

a consequence of offline computation, based on initial and desired features. This may be 

considered as an open-loop controller. The features are then updated based on (5.39) and (5.40), 

 *
1 1 1(1 )k ks t s ts       . (5.41) 

Next, an online (closed-loop) controller is proposed to keep the features close to the determined 

trajectory. For this purpose, the time derivative of online features is calculated as, 

 2 ( )k k ks s s s   , (5.42) 

where 2 is the online controller gain. As can be seen from (5.42), the feature update has two 

parts to it. The first part is the pre-computed feature update from the aforementioned open-loop 

controller. The second part is similar to typical IBVS controller having the pre-computed 

features ( ks ) as its desired features. By employing the integration on the feature vector, 

 1
ˆ

k k ks s ts     , (5.43) 

 the trajectory of the features are updated online as follows, 

 *
1 2 2 1 1 2 ,(1 ) ( ) ,k k k s ks t s ts ts tm t                   (5.44) 

where m is the deterministic error caused by calibration and is assumed to be constant for 

simplicity. It is worth mentioning that a choice of 1 2  reduces the controller to the 

conventional proportional controller, discussed in previous section. Having (5.44) ready, the 
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mean and covariance of features are calculated in the sequel. It should be reminded that the pre-

computed features ( ks ) are deterministic and therefore have zero covariance. 

The mean of features are calculated by applying the expectation function to (5.44), 

       *
1 2 2 1 1(1 ) ( ) .k k ks t s t s ts tm                 (5.45) 

The mean of the pre-computed features is computed as follows, 

    * *
0 1 )exp(ks s s k t s     . (5.46) 

Now the mean of features is found with the same approach. It is assumed that, 

  ( )m kg k t s   , (5.47) 

  1 ( ) m
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g
s g k t t

t


    


, (5.48) 

which lead to, 
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

  (5.49) 

The solution to this partial differential equation is given by, 

    * *
0 1 2

2

)( ) exp( 1 exp( ) .m

m
g k t s s k t s k t 


          (5.50) 

The achieved mean is very similar to mean of the simple proportional controller, calculated in 

chapter 3. The only difference is the separate control of the convergence rate and the steady-state 

error by the offline and online gains, respectively. 

By definition, the covariance of the features are expressed as, 

  ( ) covc kg k t s  , (5.51) 
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  1cov ( ) c
k c

g
s g k t t

t


   


. (5.52) 

By exploiting (5.44), (5.51), and (5.52), one can show, 

  2 2 2
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2( ) 1 ( )c
c c
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g k t t t g k t t

t
  

        


, (5.53) 

which has a solution as follows, 
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 

. (5.54) 

As can be seen, the convergence rate and final value of the covariance of the features in the new 

controller depends only on the gain of the online controller. Therefore, the proposed controller 

has the advantage of reducing the covariance and the rate of its growth, while keeping the 

original convergence rate of the mean trajectories. 

Based on the proposed scheme, an IBVS controller has been developed. In such a system, the 

velocity of the camera is related to the time derivation of features via image Jacobian, 

 , ,k s k c ks J V , (5.55) 

where ,s kJ is the image Jacobian discussed in [5.33]. Then the offline camera velocity may be 

calculated as,  

 † *
, 1 , ( )c k s k kV J s s   . (5.56) 

Here †
,s kJ is the inverse Jacobian of the offline controller, ,s kJ .The feature trajectories ( ks ) and 

their respective Jacobian ( ,s kJ ) are recorded offline. In the next step, the online controller is 

employed and the camera velocity is found as, 

 †
, , 2 , ( )c k c k k ks kV V J s s   . (5.57) 
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The first part of this controller guides the robot towards the desired position based on offline 

calculations and the second part works as an ancillary IBVS controller with ks  as its desired 

features, assuring the current features to follow the pre-computed feature trajectories closely. As 

was shown in [5.33], for such controller the Jacobian of desired features may be used 

alternatively and hence (5.57) can be reformulated as, 

 †
, , 2 , ( )c k c k k ks kV V J s s   . (5.58) 

The proposed controller in (5.56) has several advantages over the conventional controller. First, 

this controller has two degrees of freedom. As was shown previously, such structure allows the 

decoupling of the rate of convergence from the uncertainty control. Second, the Jacobian used in 

(5.58) is pre-computed and is needless of online depth estimation. Third, a big portion of the 

velocity is computed online and therefore current and computed features are very close. As a 

result the online gain ( 2 ) may be selected sufficiently small. Finally, since most components of 

such controller are pre-computed and readily available at servoing, the control will perform 

faster compared to conventional controller. 

It is worth computing the mean and covariance of the camera velocity through the new 

controller.  The mean of the velocity is obtained through (5.50), (5.57), and (5.58) as follows, 

       † * †
, , 1 0 1 , 2exp( ) 1 exp( ) .c k s k s kV J s s k t J m k t           (5.59) 

Similarly, the covariance is computed as follows, 
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  
 

 (5.60) 

As can be seen from (5.60), increasing the online gain will increase the covariance of the camera 

velocity and consequently the uncertainty on robot position will rise. Therefore, it is important to 

select the online gain as small as possible, but not too small so that the steady-state error of 

features remains reasonable. The effectiveness of this proposed method is verified through 

simulations in Sec 5.5. 
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As it was shown in the previous chapter, the uncertainty affects the visual feature trajectories, 

which in turn propagates to the robot’s trajectory. To alleviate this issue, a two-stage control 

scheme is proposed. The controller is composed of an offline controller, through which the 

trajectories of camera velocity, visual features, and their associated image Jacobian are 

estimated, and an online controller which minimizes the uncertainties by relying on the estimated 

trajectories. The constraint handling is possible in either of these steps. Based on this fact, two 

robust predictive controllers are proposed. In the first robust controller, MPC is employed as the 

online controller. Such scheme has the advantage of online constraint handling and uncertainty 

minimization at the price of increased computational cost. The global stability of this controller 

is guaranteed similar to path planning schemes (e.g., [5.1]). The second robust controller exploits 

the MPC as its offline controller, rendering the online control to a simple proportional controller. 

This scheme has the advantage of guaranteed constraint management, even in the presence of 

uncertainties. Moreover, the choice of offline MPC reduces the computational cost dramatically. 

The stability of the system is guaranteed, similar to the proposed predictive controllers in Sec. 

5.3. The control scheme as explained as follows. 

5.4.2 Robust Control with Online Predictive Controller (RCONPC) 

 As was discussed, this controller has two stages. At the offline stage, the control problem is 

solved assuming no uncertainties. Therefore the model of the system is reduced to, 

 , 1 , , ,G k G k G k c ke e tJ V    , (5.61) 

where the estimated values are denoted by an “over-bar”. The problem is initiated by setting, 

 *
0 0e s s  , (5.62) 

and is solved by selecting an appropriate controller (e.g., , , ,
†

c k G k G kV J e ). Since this problem 

is solved offline, the parameters such as object’s pose and features’ depths are readily available 

at each time step. Two different error sets may be selected to calculate the offline camera 

velocity. In the first set, the error of each image feature is selected as the servoing error, 

 , ,G k s ke e , (5.63) 
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In the second set, a combination of pose and image feature errors is selected, similar to hybrid 

controller discussed in Sec. 5.3, i.e.,   

 , , , ,

TT T T
G k s k R k z ke e e e    . (5.64) 

The choice of the first set of features has the advantage of simplicity, while the second set 

ensures smooth Cartesian trajectory and global stability [5.32]. Choosing only the point features 

simplifies the overall servoing scheme. This is because these features are easy to extract and do 

not require any post-calculations (as is the case for depth and rotation angle). Therefore, 

regardless of the feature choice, only the trajectories of the point features and their associated 

Jacobian are recorded. In addition to that, the velocity profile of the offline controller is recorded 

and exploited in the online controller. 

Once the estimated trajectories of the system are available, an online controller is employed to 

track the estimated trajectories. An optimal controller is designed by setting a cost function and 

minimizing the cost, 

 , , , , ,
1

arg min ( ) ( )
cN

T
c k G k i G k i G G k i G k i

i

V e e e e   


    , (5.65) 

where G  is the weighting matrix and cN  is the control horizon. The controller is a typical 

model predictive control (MPC) adopted for VS, e.g., the one proposed in [5.6], with the desired 

features being replaced by the offline controller trajectories. As it can be inferred from (5.65), the 

covariance of the features is minimized if the mean of the features is estimated by their offline 

trajectories. 

The control horizon is directly related with the computation time of controllers and therefore 

cannot be large for real-time applications. For this purpose, the control horizon is chosen to be 

minimal (i.e., equal to one). As a result, the acquired velocities and feature trajectories might 

face discontinuities that would cause erratic robot motions, as was pointed out in [5.6]. In order 

to alleviate this problem, the cost function is modified as follows 

   , , 1 , 1 , 1 , 1 , , , ,arg min ( ) ( ) ( ) ( ) .
T T

c k G k G k G G k G k c k c k c k c kV e e e e V V V V            (5.66) 
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The new cost function penalizes the control deviations from the offline control and therefore 

minimizes the discontinuity in velocities. The choice of   in the new cost function must be done 

cautiously, as small values in  cause the system to be subjected to unwanted vibrations, while 

large values may prevent the system to converge. A reasonable design will start with higher 

values for  and reduce it gradually to let the system converge.  

In the absence of constraints, the control may be calculated analytically similar to a linear 

quadratic regulator (LQR) as follows, 

 2 1 2
, , , , , , . , ,( ) ( ) ( ) .T T T

c k s k s s k s k s s k s k s k s s k c kV t J J tJ e e t J J V              (5.67) 

The image Jacobian is not accessible directly and may only be estimated. Here, we approximate 

this Jacobian with its offline counterpart, ,s kJ . Then, (5.67) may be rewritten as follows,  

 2 1
, , , , , , ,( ) ( )T T

c k c k s k s s k s k s s k s kV V t t J J J e e       . (5.68) 

As can be inferred from (5.68), the unconstrained online control is composed of the offline 

control and a damped-least-square controller that regulates the features along their pre-computed 

trajectories. The use of offline Jacobian has several advantages. First, this Jacobian is not 

affected by the noise and therefore does not amplify the propagated noise level. Second, as this 

Jacobian replaces the real-time Jacobian, there is no need for online Jacobian computation which 

requires partial pose estimation. Finally, by having most part of (5.68) pre-computed, this choice 

of Jacobian speeds up the control calculation.   

Alternatively, the minimization problem may be solved as a constrained optimization problem to 

entail the restrictions of the system such as camera’s visibility and robot’s reachability 

constraints, similar to [5.6], i.e., 
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 (5.69) 

where S and  are the sets of admissible image features and velocity trajectories, respectively. 

This empowers the proposed controller to be capable of minimizing the uncertainties, while 
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handling the constraints. The unconstrained analytical solution is used as an initial guess to speed 

up the optimization procedure. 

The stability of the offline controller was proven in the previous works [5.33]. While the stability 

of the point features is only local, adding the depth and rotation to the features results in global 

stability. Therefore, the feature trajectories in offline phase will end in desired features. 

As for the online controller, the stability may be followed separately for constrained and 

unconstrained problems. In case of unconstrained system, the analytical solution is available for 

the controller and the stability is proven using the energy of the error as the positive definite 

Lyapunov function, 

    , , , ,

1

2

T

s k s k s k s ke e e e   , (5.70) 

The derivate of this function is computed as follows, 

    , , , ,, ,

T

s k s k c k c ks k s ke e J V J V   . (5.71) 

By using (5.68) in (5.71) and assuming ,, s ks kJ J  , it can be shown that, 

   2 1
, , , , , , , ,( ) ( ),

T T T
s k s k s k s k s s k s k s s k s kt e e J t J J J e e        

  (5.72) 

which is always negative as s and  are positive definite symmetric matrices. One way to 

assure that the Jacobian matrices are the same is to run the offline controller at each time step 

and find the velocity and the trajectory for the coming step. 

5.4.3 Robust Control with Offline Predictive Controller (RCOFPC) 

Prior to servoing, an error-free model of the system is developed as a reference, i.e., 

 1 ,k k k c ks s tJ V    , (5.73) 
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where the error-free values are denoted by the “over-bar”. The error-free feature trajectories are 

decided by selecting a proper camera velocity profile, which guides the features towards the 

desires ones. In order to reduce the uncertainties of the system, the actual features are guided as 

close as possible to the error-free features. For this matter, the error between the actual and error-

free features is to be minimized. This difference of features is shown by, 

 , ˆs k k ke s s  . (5.74) 

Then it can be shown that, 

 , 1 , ,s k s k s ke e te     , (5.75) 

where, 

 , , , , ,s k s k c k s k c ke J V J V  . (5.76) 

The difference of features may reduce to zero exponentially by choosing, 

 , ,s k s ke e  . (5.77) 

The velocity of the camera is then found by employing (5.77) in (5.76), 

 †
, , , , ,( )c k s k s k c k s kV J J V e  . (5.78) 

The image Jacobian may be estimated by the reference image Jacobian (i.e., , ,s k s kJ J ), which 

reduces the control to, 

 †
, , , ,c k c k s k s kV V J e  . (5.79) 

It can be inferred from (5.77) that the proposed camera velocity is composed of two parts. The 

first part is a pre-computed camera velocity which is the velocity reference. The second part is a 

regulatory controller that minimizes the deviation of features from the reference ones. It is worth 

mentioning that since the error-free components of (5.79) are computed prior to servoing, the 

computation of camera velocity through (5.79) is very fast in action. The computation of the 
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reference velocities ( ,c kV ), image Jacobians ( ,s kJ ), and image features ( ks ) are explained in the 

sequel. 

In order to handle the constraints of the system, a MPC controller is developed. Since this 

controller is based on the error-free model of the system, it has been introduced to the reference 

system shown in (5.70). The cost of the system is defined as, 

    * *
, ,

1

c
TN

T
s k i s k i c k i c k i

i

L s s s s V V   


      . (5.80) 

Here s and   are the features and velocity weighting matrices and cN is the control horizon, 

which is selected as one to minimize the computational costs. As a result, the system may face 

velocity discontinuities, which is alleviated by selecting proper weighting matrices. 

Alternatively, the control horizon may be selected larger at the cost of extra computational time. 

The control actions of the system is predicted over the control horizon by minimizing the cost 

function, subject to system constraints, i.e., 

 ,..,
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

 
 (5.81) 

where S and  are the admissible features and camera velocities sets, respectively. The first 

element of U is selected as the camera velocity and is applied to the reference model (5.73) to 

form the features of the next step. The process is repeated until the reference image features are 

close enough to the desired features. Next, the trajectories of camera velocity, image features and 

their relevant image Jacobian are recorded to be used for servoing through (5.79).  

The conditions defined in (5.33) through (5.38) prevent the system from constraint violation. 

However, the constraints may not be met if the system is uncertain. One way to alleviate this 

problem is to tighten the constraints by setting new limits including, 

  min max|k s k sS s s s s      , (5.82) 
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
 (5.83) 

where s , V , and P are the constraint thresholds of image features, camera velocity, and camera 

position, respectively. A proper selection of the uncertainty thresholds is important, since they 

may cause the system to be conservative or inadequate to handle the constraints. In this work, the 

uncertainty thresholds are selected as three times of the uncertainties standard deviation, 

  3 , 3 , 3s s V V P P        , (5.84) 

where s , V , and P are the standard deviations of the uncertainties related to image features, 

camera velocity and camera position, respectively. Assuming the noise to be Gaussian, this 

choice of thresholds ensures satisfactory constraint handling for %99.7 of times. However, the 

standard deviations of the uncertainties are required for this matter, which is available from 

Chapter 3. 

5.5 Simulation and Experimental Results 

In this section, numerous simulations and experiments are conducted to demonstrate the 

effectiveness of the proposed methods for constraint and uncrtainty handling. Testing the system 

through simulations is performed under controlled situations (e.g., known noise parameters, 

system dynamics, etc.), while experimental results confirm the practicality of the proposed 

methods under actual system conditions. In the simulations, an object with four planar feature 

points, located on the vertices of a square that has a side of 10 cm, is considered. The camera is 

servoed from a distant pose to half a meter above the object. The sampling time is 30 

milliseconds ( 0.03t  seconds) and the error weighting matrices are selected as the identity 

matrix. The simulations are carried under Matlab® 2011b software from Mathworks (Natick, 

MA, USA).  

5.5.1 Constrained Predictive Controllers 

In this subsection, the proposed predictive controllers (i.e., PBPC and HPC) are verified and 

compared with previously proposed image-based predictive controller. In the first simulation, the 
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constraint handling property of the hybrid and position-based predictive controllers with the 

proposed cost functions, in which the control actions are penalized, are verified and compared 

with that of image-based predictive controller. For this purpose, the image features are bounded 

between 125 and 175 pixels in u direction and between 75 and 125 pixels in v direction. The 

position of the camera is restricted by 0.3 meters from the object in x and y direction and 

between 0.5 and 0.6 meters away from the object in z direction in the object frame. The camera 

velocities are limited to 0.3 (m/s or rad/s). The control weighting matrix is selected hundred 

times smaller than the identity matrix ( 2
610 I  ). The result of servoing with these controllers 

in image space and Cartesian space, along with camera velocities and system error energy are 

shown in Figures 5.1-5.4. The initial and final images of the object are demonstrated in image 

space by red dashed and blue dot-dashed lines, respectively. The image and Cartesian boundaries 

are depicted by black and blue dotted lines, respectively. The image space and Cartesian space 

results confirm the ability of all proposed controller to successfully handle the constraints of the 

system. The trajectories in both spaces are relatively smooth and all controllers are capable of 

guiding the robot to its desired pose in spite of the constraints in image and Cartesian space. The 

camera velocities, resulted from each of these controllers, are smooth despite the minimal 

selection of the control horizon. This smoothness is due to the penalties set on them in the cost 

function. In addition, the gradual decrease of error energy was depicted in all controllers and 

therefore the stability of the systems is maintained. The terminal constraint set on the camera 

velocities has a major role in this steady reduction of the error. It is worth mentioning that the 

image-based predictive controller has the longest convergence rate as a result of velocity 

penalizing, while the second hybrid method has the smoothest trajectories of all. 
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 (a) (b) 

  

 (c) (d) 
Figure 5.1 First simulation: Visual servoing via image-based MPC with velocity penalties, (a) 

Image space, (b) Cartesian space, (c) Camera velocities, and (d) Error energy. 
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 (a) (b) 

  

 (c) (d) 
Figure 5.2 First simulation: Visual servoing via position-based MPC with velocity penalties, (a) 

Image space, (b) Cartesian space, (c) Camera velocities, and (d) Error energy. 
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 (a) (b) 

  

 (c) (d) 

Figure 5.3 First simulation: Visual servoing via first hybrid controller with velocity penalties, (a) 

Image space, (b) Cartesian space, (c) Camera velocities, and (d) Error energy. 
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 (a) (b) 

 
 (c) (d) 

Figure 5.4 First simulation: Visual servoing via second hybrid controller, (a) Image space, (b) 

Cartesian space, (c) Camera velocities, and (d) Error energy. 
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velocities are compared with those of image-based MPC. The results of this comparison are 

demonstrated in Figure 5.5. As it can be seen, all controllers are affected by the short control 

horizon. Control discontinuities are caused as a matter of numerical optimization and seem to be 
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seems to be the least affected. It is also worth mentioning that all controllers have converged at a 

higher rate, compared to their velocity penalized counterparts.   

 

 (a) (b) 

 

 (c) (d) 

Figure 5.5 Second simulation: Camera velocities of different MPC controllers without velocity 

penalties, (a) image-based controller, (b) position-based controller, (c) first hybrid controller, and 

(d) second hybrid controller. 
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position is kept the same as the desired one. This particular pose selection causes IBVS systems 

to retract the camera to infinity, which will lead to system failure. All controllers are engaged 

separately to bring the camera back to its desired pose and their results are compared through 

Figures 5.6 to 5.9. As it was expected, the image-based MPC is unable of converging to the 

desire pose, while the position-based and hybrid MPCs converge with minimal translational 

move. It should be noted that the robot motion in Z direction comes as a result of constraint 

handling. This simulation confirms the improvement of system’s stability in the proposed 

controllers, compared to image-based MPC. 

 

  

 (a) (b) 

  

 (c) (d) 
Figure 5.6 Third simulation: Visual servoing via image-based MPC with a half turn around the 

camera axis, (a) Image space, (b) Cartesian space, (c) Camera velocities, and (d) Error energy. 
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 (a) (b) 

   

 (c) (d) 
Figure 5.7 Third simulation: Visual servoing via position-based MPC with a half turn around the 

camera axis, (a) Image space, (b) Cartesian space, (c) Camera velocities, and (d) Error energy. 
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 (a) (b) 

   

 (c) (d) 
Figure 5.8 Third simulation: Visual servoing via first hybrid MPC with a half turn around the 

camera axis, (a) Image space, (b) Cartesian space, (c) Camera velocities, and (d) Error energy. 
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 (a) (b) 

   

 (c) (d) 
Figure 5.9 Third simulation: Visual servoing via second hybrid MPC with a half turn around the 

camera axis, (a) Image space, (b) Cartesian space, (c) Camera velocities, and (d) Error energy. 
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different gain values. As it can be inferred, the convergence rate, steady-state error, and error 

covariance are all changing with the gain.  
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Figure 5.10 Fourth simulation: The mean and covariance of single feature, using a traditional 

proportional controller with (a) 0.5  , (b) 1  , and (c) 2  . 

 

Next in simulation 5, the proposed decoupled controller is employed for the same purpose as 

simulation 4. To demonstrate the role of the offline controller, the gain of this controller is 

altered while keeping the online gain constant ( 2 0.5  ) in the fifth simulation. The changes of 

mean and covariance of the feature are shown in Figure 5.11. It is clear that the rate of 

convergence changes with the offline control gain, while the steady-state error and error 

covariance are remaining unchanged due to the online gain being constant.  
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Figure 5.11 Fifth simulation: The mean and covariance of single feature, using the proposed 

decouple controller with constant online gain ( 2 0.5  ) and variable offline gain, (a) 1 0.5  , 

(b) 1 1  , and (c) 1 2  . 

In the sixth simulation, the mean and covariance of the feature is calculated for multiple online 

gains, having the offline gain constant ( 1 0.5  ). The results of this experiment are shown in 

Figure 5.12. It is obvious that the rate of convergence remains the same, while the steady-state 

error and error covariance change due to modification of the online controller gain. Though these 

parameters are decoupled and can be designed separately. Moreover, it can be inferred from 

Figures 5.10-5.12 that the mean and covariance of the feature are estimated correctly.   
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Figure 5.12 Sixth simulation: The mean and covariance of single feature, using the proposed 

decouple controller with constant offline gain ( 1 0.5  ) and variable offline gain: (a) 2 0.5  , 

(b) 2 1  , and (c) 2 2  . 

In the seventh simulation, the proposed controller is used in a visual servoing scenario. The 

desired pose of the camera-mounted robot is selected half a meter away from the object. Four 

point features are selected on the object and are exploited for servoing. The goal of simulations 7 

and 8 is to show the decoupling effect of the proposed controller. Initially, the gain of the offline 

controller is changed, while the gain of the online controller is kept constant. The mean and 

covariance of features is shown in Figure 5.13. As it can be inferred, the convergence rate of the 

features changes with the offline gain. As it was predicted, the steady-state error remains 

unchanged, while the covariance of the features changes slightly, due to the change of Jacobian 

matrix. Nevertheless, the steady-state of the covariance is fixed as well. 
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(b) 

Figure 5.13 Seventh simulation: The statistical measurements of visually servoed system, using 

the proposed controller with different offline controller gains, (a) mean of the pose parameters, 

and (b) covariance of the pose parameters. 
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demonstrated in Figure 5.14. As it was expected, the rate of convergence remains the same, 

while the steady-state error decreases and the error covariance increases as the online gain rises. 
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(b) 

Figure 5.14 Eigth simulation: The statistical measurements of visually servoed system, using the 

proposed controller with multiple online controller gains, (a) mean of the pose parameters, and 

(b) covariance of the pose parameters. 
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(DOF) robot from Denso robotics (Long beach, CA, USA), equipped with a Firefly camera from 

Point Grey (Richmond, BC, Canada). The robot operates in open-architecture mode, which is 

made possible through MATLAB® SIMULINK® from Mathworks (Natick, MA, USA) and the 

Quarc® control software from Quanser (Markham, ON, Canada). The camera is working with the 

speed of 60 fps, and the maximum velocity of the robot is 3900 mm/s, which is reachable at its 

end-effector. An object with four circles (as features) is used for servoing. The experimental 

setup is shown in Figure 5.15. 

 

 

 

Figure 5.15 The experimental setup. 
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In the first experiment, the effect of offline gain in the proposed controller is tested. For that 

matter, the online gain of the controller is kept constant, while the offline gain is increased four 

times. The camera is servoed to almost 40 cm above the object and the experiment is repeated 10 

times. The mean and covariance of the camera pose are depicted in Figure 5.16. It can be seen 

that the change of offline gain results in faster convergence, while the covariance of the system 

remains almost the same. 
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(b) 

Figure 5.16 First experiment: The statistical measurements of visually servoed system, using the 

proposed controller with different offline controller gains, (a) mean of the pose parameters, and 

(b) covariance of the pose parameters. 
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In the second experiment, the effect of online gain on the mean and covariance of the camera 

pose is investigated. For that matter, the offline gain is selected as constant, while the online gain 

is increased four times. Similar to previous experiment, the camera is servoed to 40 cm above the 

object repeatedly for 10 times. The results of this experiment are shown in Figure 5.17. It can be 

seen from thos figure that the mean values of both controller are almost similar, while the 

covariance of the controller with increased online gain is higher. It is noticeable that the 

covariance of some degrees of freedom becomes similar for both cases once the camera reaches 

its destination. The reason behind this matter is the small changes in velocity, which are not 

followed by robot’s motors. 
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(b) 

Figure 5.17 Second experiment: The statistical measurements of visually servoed system, using 

the proposed controller with two online controller gains, (a) mean of the pose parameters, and (b) 

covariance of the pose parameters. 
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5.5.3 Robust Controller with Online Predictive Controller 

The simulation and experimental results of the robust controller with online MPC are presented 

in this subsection. In the ninth simulation, the features error is used for the offline controller to 

test the constraint handling capability. For this matter, the trajectory of the camera in Cartesian 

space is bounded. The camera was banned to move more than 10 cm in x direction, 25 cm in y 

direction, and 60 cm in z direction, away from the object. Moreover, the camera velocity is set to 

be less than 0.5 m/s for translational and 0.5 rad/s for rotational velocities. The control 

measurement matrix is initialized at 310 I  , where I is the identity matrix, and is reduced 3 

percent at each time step after 3 seconds. The results of this simulation are demonstrated in 

Figure 5.18. The initial and final images are shown by dashed red and dot-dashed blue lines in 

the image space. As it can be depicted, the propose controller is fully capable of handling the 

given constraints, while delivering the camera to its desired pose. The camera velocities are not 

facing any unusual discontinuities. In addition, the time derivative of error energy is negative 

throughout the servoing, which is indicative of system’s stability. 
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 (a) (b) 

   

 (c) (d) 
Figure 5.18 Ninth simulation: Visual servoing via two-stage controller with IBVS offline 

controller and online MPC, (a) Image space, (b) Cartesian space, (c) Camera velocities, and (d) 

Error energy time derivative. 
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without violating the limit. Moreover, the stability of the system is shown through consistent 

negativity of the error energy time derivative. 

  

 (a) (b) 

   

 (c) (d) 

Figure 5.19 Tenth simulation: Visual servoing via two-stage controller with HVS offline 

controller and online MPC, (a) Image space, (b) Cartesian space, (c) Camera velocities, and (d) 

Error energy time derivative. 
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0.8. The point features were used for the offline controller. The weighting matrices are selected 

as I  and 410 I   . Figure 5.20 entails the results of this comparison. As it can be seen, the 

uncertainty levels of the camera position’s trajectory with the proposed controllers are much less 

than that of a typical controller. It is also worth mentioning that the uncertainty level is dropped 

during the constraint handling, since the controller keeps the trajectories at the limits and 

therefore position variations are diminished. 

 

Figure 5.20 Eleventh simulation: The norm of the position error covariance for the proposed 

constrained and unconstrained two-stage controller with online MPC versus a simple 

proportional IBVS controller. 
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prevents the system to fully converge, as discussed before.  
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Figure 5.21 Twelfth simulation: The norm of the position error covariance for the proposed 

constrained and unconstrained two-stage controller with different control weightings. 

In order to demonstrate the applicability of the proposed control methods in real world, the 

controller has been tested with experimental setup shown in Figure 5.15. In experiment 3, the 

accuracy of the proposed controller is compared with that of classic IBVS. For this matter, the 

norm of the camera position in 10 repeated servoing scenarios is measured separately for the 

proposed controller and IBVS. Then, the covariance of these norms is computed. Figure 5.22 

demonstrates the results of this experiment. As it can be seen, the covariance of the proposed 

controller is much less than that of IBVS. 

  
 (a) (b) 

Figure 5.22 Third experiment: The norm of the position error covariance for, (a) two-stage 

controller with online MPC, and (b) a simple proportional IBVS controller. 

0 2 4 6 8 10 12
0

1

2

x 10
-4

Time (s)

E
rr

o
r 

C
o

va
ria

n
ce

 N
o

rm

 

 

R=10-3I

R=10-4I

R=10-5I

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-9

Time (s)

E
rr

o
r 

C
o

va
ri

a
n

ce
 N

o
rm

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-6

Time (s)

E
rr

o
r 

C
o

va
ri

a
n

ce
 N

o
rm



183 
 

In experiment 4, the effect of velocity penalizing on the accuracy of the system is demonstrated. 

For that matter, the camera is servoed from a distant pose to 40 cm above the object. Two 

controllers with 310 I  and 510 I   are each used 10 times to bring the camera to its desired 

location. The covariance of camera position norm is then calculated. Figure 5.23 shows the 

results of this experiment. It is obvious that higher penalities in the controller lead to decreased 

covariance of the robot trajectory. 

 

 (a) (b) 

Figure 5.23 Fourth experiment: The norm of the position error covariance for the two-stage 

controller with online MPC, (a) 310 I  , and (b) 510 I  . 
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the object. The control weighting matrix is selected as 310 I  to reduce the image noise 

effects. Image features servoing error is used for the offline controller.  The results of this 

maneuver are presented in Figure 5.24. As it can be seen, camera is successfully guided towards 

the desired pose with a smooth motion. This is mainly due to proper selection of  matrix.  

 

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-9

Time (s)

E
rr

o
r 

C
o

va
ri

a
n

ce
 N

o
rm

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-6

Time (s)

E
rr

o
r 

C
o

va
ri

a
n

ce
 N

o
rm



184 
 

  

 (a) (b) 

   

 (c)  

Figure 5.24 Fifth experiment: Visual servoing via two-stage controller with offline MPC,         

(a) Image space, (b) Cartesian space, and (c) Camera velocities. 
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5.25. The image trajectories are smooth and the Cartesian trajectory is bounded as expected. The 

camera velocities are mostly smooth and converge to zero as the camera approaches its desired 

pose. 

  

 (a) (b) 

   

 (c) (d) 

Figure 5.25 Thirteenth simulation: Visual servoing via two-stage controller with offline MPC,    

(a) Image space, (b) Cartesian space, (c) Camera velocities, and (d) Error energy. 
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two dimensions for better demonstration of constraint handling. The tubes encompassing the 

uncertain camera position trajectories are shown by the red ellipsoids and the mean of these 

trajectories are shown by the solid black line. The constraints are shown by dashed blue lines. As 

it can be seen, only the mean of trajectories of the system with ordinary MPC satisfies the 

constraints. In fact, many of the trajectories of such system that are included in the red tubes 

have violated the constraints. On the other hand, none of the trajectories of the system with the 

proposed controller has violated the boundaries of the system, due to correct uncertainty 

estimation and constraint handling. 
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(a) 

 

(b) 

Figure. 5.26 Fourteenth simulation: Two dimensional view of Constraint visual servoing in the 

presence of uncertainties with, (a) uncompensated controller, and (b) the proposed controller. 
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for RCONPC is exploited for that matter. The camera is bound not to be higher than 0.2 meters 

above the object. The weighting matrices are similar to the first simulation and the proportional 

gain is selected as 0.1. The results of this maneuver are demonstrated in Figure 5.26. As it can be 

inferred, the controller is fully capable of guiding the robot to its desired pose, while handling the 

given constraints. The camera velocities are mostly smooth and converge to zero, similar to the 

simulations. 

  

 (a) (b) 

   

 (c)  

Figure 5.27 Sixth experiment: Visual servoing via two-stage controller with offline MPC, (a) 

Image space, (b) Cartesian space, and (c) Camera velocities. 
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5.6 Summary 

Successful RVS requires proper constraint handling and treatment of uncertainty effects. In this 

chapter, several control schemes were proposed to address these concerns. Initially, a PBPC and 

two HPC were proposed to handle the constraints of the visual servoing while improving the 

stability and numerical feasibility of the system. It was shown that the proposed controllers were 

fully capable of handling the constraints, while their convergence was guaranteed through a 

supplementary constraint. The HPC with full pose error offered the smoothest trajectories of all. 

In addition, a novel two-DOF control structure was introduced for robust RVS. Unlike the 

conventional proportional controllers, this control scheme enabled the system to control the rate 

of convergence, without impacting the steady-state error and the error covariance of the system. 

The controller was needless of online depth estimation and inverse Jacobian calculation, since it 

relied on offline calculation for that matter. Moreover, the controller allowed the system to run 

faster, since most of controller components were pre-computed during the offline phase. Based 

on this structure two controllers were presented for robust RVS. The first controller was capable 

of minimizing the system uncertainties, while handling the camera/robot constraints. The second 

controller was proposed for constraint handling in the presence of system uncertainties. 

Moreover, a model of system uncertainties was developed and exploited in constraint handling to 

minimize the effects of uncertainties. It was shown through simulations and experiments that the 

proposed methods were capable of constraint handling and were robust to image noise. 

It is worth mentioning that unlike their image-based counterpart, the proposed MPC controllers 

require accurate estimations of pose from the camera images. The computation of pose may 

impose an extra computational burden to the system, which is supposed to be minimal. As a 

solution to this problem, the pose of previous time step may be used in optimization-based 

estimators to achieve fast pose estimations, similar to VVS explained in Chapter 2. In addition, 

the object of interest was supposed to be static which could limit the applicability of the 

proposed robust controllers. However, the same methodology may be practiced for moving 

objects by shifting the offline controller to the online stage to predict the next time step 

trajectories. Yet, this change comes at a price of increased computational cost.  
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Chapter 6 

Conclusions 

6.1 Summary of the Thesis 

Successful RVS in unstructured environments entails apt techniques to handle the system 

limitations and errors caused by uncertainties. This thesis was mainly focused on robust visual 

servoing schemes to address such requirements. In addition to that, enhancing the accuracy of the 

system was of interest. Three major steps were taken towards robust and accurate RVS design. In 

the first phase, pose estimation was targeted as one of the most sensitive parts of most RVS 

systems. It was known that image uncertainties could degrade the accuracy of pose estimations, 

which could lead to inferior performance or even task failure. Sensor fusion techniques were 

proposed to alleviate this sensitivity by employing multiple cameras. A comprehensive study on 

sensor fusion for pose estimation was conducted under various system conditions. It was shown 

that the proposed centralized fusion techniques could response to system uncertainties and faults 

(e.g., image occlusion) better than the previous methods. Since this superior performance (in 

terms of accuracy and robustness) came at the price of increased computational cost of the 

system, decentralized fusion techniques were proposed as alternatives. These schemes were 

capable of lowering the computational complexity at the price of accuracy reduction. Yet, they 

could facilitate the fault detection and isolation. Since the centralized and decentralized fusion 

techniques required particular vessels for pose estimation (e.g., Kalman-based structure), they 

could not be used for other pose estimation methods. In order to address this shortcoming, a pre-

processing fusion scheme was introduced. This scheme could offer enhanced accuracy and be 

engaged with any available pose estimation technique. 

In the second step towards robust control of RVS systems, a novel uncertainty model for RVS 

systems was proposed. In this model, the error covariance of different signals in the system was 

estimated. For that purpose, the closed-loop and discrete-time nature of the RVS systems were 

considered. In addition, a general methodology was offered which could be applied to a vast 

group of controllers. The modeling was particularly developed for first and second order 
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controllers, which were very popular in RVS systems. It was shown later that the model could 

approximate the uncertainties of the system closely. 

Finally, several robust and constrained control schemes were introduced to cope with system 

limitations. Initially, novel predictive controllers were proposed to enhance the stability of the 

system, while handling the constraints. Then, a two-stage control scheme was introduced for 

robust and accurate RVS. The proposed control structure had the capability of decoupling the 

uncertainty measures from the system’s convergence rate, which could help in uncertainty 

minimization without sacrificing the speed. In addition, the proposed uncertainty model was 

exploited along with the developed predictive controllers to robustly guide the system to its 

destination, while avoiding the system constraints, even in the presence of system uncertainties. 

Moreover, the accuracy of the system was improved by minimizing the effects of uncertainties. 

In conclusion, the proposed robust techniques were capable of achieving reasonable results, in 

the presence of uncertainties mainly originated from image noise. The proposed fusion 

techniques can pave the way for more accurate and robust pose estimation to be used not only in 

visual servoing systems, but also in many other applications such as object recognition and 

tracking. The developed IAUKF scheme may be used for accurate estimations in many nonlinear 

applications. In addition, the developed uncertainty model adds extra insight to the response of 

RVS systems in presence of uncertainties, which in turn may lead to optimal control schemes. 

Last but not least, the proposed robust controllers open a new horizon in robust visual servoing 

by exploiting the developed uncertainty model to handle the constraints efficiently. In summary, 

the proposed techniques make RVS was step closer to wide applicability in industrial tasks, 

while offering new paths to expand the robustness of the system even further. 

6.2 Contributions 

The contributions of the work were many-fold. Some of the most important contributions are 

listed as follows. 

 Novel sensor fusion techniques: Three fusion structures were proposed to enhance the 

accuracy and robustness of pose estimation in presence of system uncertainties. Novel 

centralized fusion, namely IAEKF, IAUKF, and VVS were proposed for the first time 
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and their superior accuracy was demonstrated in the presence of system uncertainties. 

The close relation between the VVS and Gauss-Newton pose estimation methods was 

shown and the superiority of the former was proven. Decentralized fusion methods were 

proposed to reduce the computational cost of the system. A novel pre-processing fusion 

was introduced for the first time which could be used with any available pose estimation 

to enhance the accuracy of the pose estimation.  

 Novel uncertainty modeling for RVS systems: A novel methodology was developed to 

model the effect of image noise in RVS systems. Unlike the previous models, this model 

accounted for the closed-loop nature of the system and could be used with a wide range 

of controllers and systems. In this model, the RVS system was treated as a discrete-time 

system.  

 Robust and constraint-aware controller design: Multiple constrained controllers such as 

PBPC and HPC were developed. It was shown that these controllers provide enhanced 

stability and numerical feasibility, compared to previous predictive controllers. In 

addition, a novel two-stage control scheme was proposed to decouple the effect of image 

noise from the system’s rate of convergence. It was shown that the effect of errors could 

be minimized, while maintaining the same convergence rate. Next, the constrained 

control design was used in conjunction with the two-stage control scheme to handle the 

system’s constraints, while minimizing the effect of image noise on the system’s 

accuracy. Finally the developed error model was used to robustly handle the constraints 

in the presence of image noise. The chance of conservatism was reduced by engaging the 

knowledge from the developed uncertainty model. 

6.3 Future Works 

The work proposed in this thesis may be expanded in many directions, some of which are listed 

as follow. 

 Parameter Tuning: Many of the proposed techniques are dependent on parameters that 

need to be adjusted accordingly. While these settings may be done on a case by case 

basis, an autonomous system is desirable which could maximize the performance of the 



193 
 

system. This system may take the required specifications of the system and tune the 

parameters through an optimization technique. 

 Sensor Fusion Expansion: Several sensor fusion techniques were proposed in this 

work. However the propose fusion techniques were limited to pose estimation. One way 

to enhance the performance of the system is to expand the fusion algorithms to other 

parts of the system. Fusion at imaging and control stage may be beneficial as the 

redundant information provide by multiple cameras may add to system robustness.  

 Uncertainty Modeling Expansion: The proposed uncertainty modeling was shown to 

be very useful. However, this model only accounts for the uncertainties imposed by the 

image noise. In addition, the image noise was assumed to be Gaussian. It would be 

desirable to expand this model to entail more uncertainties from the system (e.g., camera 

calibration or robot dynamics). This change will enhance the applicability of RVS in 

actual tasks. 

 Predictive Control: The usefulness of predictive controllers for constraint handling was 

shown in this work. However, this was just the beginning. There are different structures 

for predictive controllers which could benefit the RVS systems in different ways. 

Simpler predictive controllers may be sought to reduce the computational complexity of 

the optimization algorithms. In addition, different models of the system and reference 

trajectories may be taken to improve the accuracy or the robustness of the system. 

 Comprehensive Study: Several robust algorithms were proposed for various purposes. 

However their careful investigation and applicability was beyond the scope of this work. 

The applications of the robust estimator (i.e., IAEKF and IAUKF) in other systems are 

yet to be investigated. Moreover, the proposed robust controller may find useful 

applications in other systems, where accuracy and robustness are key features. 
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Appendices 

A. Velocity Transformation Matrix 

The velocity transformation matrix, ic
e , is calculated separately for eye-in-hand and eye-to-hand 

cameras. 

Eye-in-hand 

The rotation between the camera and the end-effector is expressed as, 

 e e o
c o cR R R . (A.1) 

The time derivation of both sides yields, 

 ( ) ( )e e e o e
o c o c cS R S R R   . (A.2) 

A change of coordinates results in, 

 o o
c e  , (A.3) 

which is equivalent to, 

 c
c e eR  . (A.4) 

As for the translational velocity, one can show, 

 e e o e
c o c ot R t t  . (A.5) 

A time derivative of both sides of the equation results in, 

 ( ) ( )e e o o e o e o
o o e c o e o cS R t t R t R t     , (A.6) 

which can be reordered as, 

 ( )o o o c e c
c e c e o et t R S R t   . (A.7) 
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A simple change of coordinates yields, 

 ( )c c c
c e e e e et R t S t R    . (A.8) 

One can show that (A.4) and (A.8) are equivalent to (2.89). 

Eye-to-hand 

The time derivation of (A.1) yields, 

 ( ) ( )e e e e
c c o cS R S R  . (A.9) 

A change of coordinates results in, 

 e e o
c o eR   , (A.10) 

which is equivalent to, 

 c
c e cR   . (A.11) 

In case of translational velocity, time derivation of (A.5) yields, 

 ( ) ( )e e e o o e o
c o o c e o et S R t t R t    . (A.12) 

Once again, a change of coordinates yields, 

 ( )c c c
c e e e e et R t S t R     . (A.13) 

It is easy to show that (A.11) and (A.13) are equivalent to (2.91). 
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B. Iterative Pose Estimation 

In this section the iterative pose method proposed by Dementhon in [2.16] is explained. This 

method is selected especially, since it is usually difficult to modify this method to entail 

measurements from multiple cameras. Pre-processing fusion is beneficial to algorithms of this 

type. Also, since the algorithm has an iterative fashion, it provides the fusion level with more 

accurate estimate of object depth. The algorithm is described as follows. Based on (2.4) and 

(2.5), 

 
 
 

1 0 0

0 0 1

c o cc
o oic i

i c c o c
i o oi

R P tx
u

z R P t

  
  


 


, (B.1) 

 
 
 

0 1 0

0 0 1

c o cc
o oic i

i c c o c
i o oi

R P ty
v

z R P t

  
  


 


. (B.2) 

If point 0
oP of the object is selected as the origin of the object frame (i.e., 0

c c
ot P ) and the rotation 

matrix is rewritten as follows, 

 
i

j

k

c
o

a
R a

a

 
 
 
  

 , (B.3)  

then (B.1) and (B.2) can be presented as follows, 

 
   

 0
00 0

0

0

1
1

i

ii
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T
To c To cio c c

iic
i o c o

ii i
c
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P u P X ua P x z

u
a P z a P

z


 
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 
, (B.4) 
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, (B.5) 



197 
 

where: 

 
0

k
o

i
i c

a P
z

  . (B.6) 

Therefore if i are available, linear equations (B.4) and (B.5) yield, 
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      

 



 

, (B.7) 
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. (B.8) 

The first two rows of the rotation matrix are extracted through normalization, 

 i

i

i
Xa
X

 , (B.9) 

 j

j

j

X
a

X
 . (B.10) 

The third row of the rotation matrix is calculated through its orthogonality property, 

 i jka a a  , (B.11) 

and the translation element of the pose is calculated as follows, 

 0 0 0
c c c c
ot P z p  , (B.12) 

where, 
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 0

2

i j

cz
a a




. (B.13) 

If an initial value is used for i  values (e.g., 0i  ) an approximate method for pose estimation 

is achieved, which is known as pose from orthography and scaling (POS). A more accurate 

estimation of pose is obtained by using the approximate pose gained by POS algorithm to 

recalculate the values of i   through (B.6), and re-estimating the pose using the new i  values. 

Iterating through this process leads to an accurate pose estimation method known as POS with 

iterations (POSIT), which is considered in this work for pose estimation. 
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