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Advanced Cluster and Predictive Analysis Tool Development  

for Commercial Office Real Estate Energy Usage 

Master of Building Science 2019, Carleen Lawson 

Building Science Program, Department of Architectural Science, Ryerson University 

 

ABSTRACT 

From 2009-2015, REALPAC collected monthly energy usage and building characteristics for 

over 500 buildings in the 20 by ‘15 Energy Benchmarking Survey (REALPAC, 2009). While 

preliminary analysis had been completed on this dataset, this research undertook an in-depth 

statistical analysis of the data to identify trends and important variables. Eight machine learning 

algorithms were employed to predict energy usage as a function of previous energy use and 

select physical features. The dataset did not possess the appropriate variables to predict such 

usage accurately. Characteristics such as building system efficiency, construction assemblies, 

condition, compactness, and window to wall ratio are thus recommended for inclusion in future 

data-gathering initiatives. 
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1 Introduction 

Climate change is an urgent global concern. Human driven green house gas emissions have 

launched the planet into the Anthropocene era where we are experiencing a drastic surge in sea 

levels, extreme weather events and a loss of biodiversity. The results have led to severe health 

and habitat complications among vulnerable populations (Allen, et al., 2018). Currently, 

renewable energy sources have yet to retire the burning of fossil fuels for electricity. In 2017, 

over 33 million tonnes of coal and 8 million cubic meters of natural gas were burned for 

electricity production in Canada (Statistics Canada, 2017). This practice, along with a high 

dependence on fossil fuel (e.g. natural gas) heating significantly increases atmospheric pollution 

levels, which trap heat and fuel the global warming crisis (Warren & Lemmen, 2014).  

In Canada, the commercial building sector accounts for 15% of the national energy consumption 

(Statistics Canada, 2012). As energy conservation is the most environmentally and financially 

sustainable energy resource (Ontario Ministry of Energy, 2017), there is presently a strong push 

to understand energy usage and trends within buildings. Voluntary energy benchmarking has 

been established, through mediums such as Energy Star Portfolio Manager and the Real Property 

Association of Canada (REALPAC) 20 by ‘15 Energy Benchmarking Survey (20 by ’15), to 

increase public awareness of energy consumption. Mandatory programs, such as Ontario’s 

Energy & Water Reporting and Benchmarking (EWRB) for Large Buildings, have also been 

introduced by governments to improve the collective understanding of energy consumption and 

inform energy improvements in the built environment. 

1.1 Research Motivation 

The motivation of this Major Research Project (MRP) is to analyze the results of the large 

Canadian office energy benchmarking survey, 20 by ’15 (REALPAC, 2018). To date, this 

dataset has only been the subject of preliminary analysis, and REALPAC felt that an in-depth 

statistical analysis would provide the office sector with increased insight into both their 

consumption and efficiency strategies.  

1.2 Research Objective 

The objective of this research is to perform an advanced statistical analysis of annual office 

energy consumption and identify a predictive model to inform sustainability initiatives. The 

outcomes of this will hopefully empower sustainability campaigns, such those operated by 
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REALPAC and the Canada Green Building Council, with the ability to target office real estate 

predicted to have poor energy performance. Because such real estate possesses a higher 

improvement potential than top performers, directing resources towards these buildings has the 

potential to significantly reduce Canada’s overall greenhouse gas emissions. 

1.3 Research Questions 

Two key research questions have framed this research: 

1) What are the most significant predictors of Energy Use Intensity (EUI)? 

2) How accurately can one predict a building’s EUI based with past energy consumption 

and limited physical building data? 
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2 Literature Review 

The following section reviews the current literature surrounding commercial office real estate 

energy mandatory reporting, the history and structure of REALPAC’s 20 by ‘15 survey, energy 

benchmarking studies, machine learning algorithms, and their use for building energy 

consumption prediction.  

2.1 Commercial office Real Estate Energy Mandatory Reporting 

Initially, benchmarking was a word exclusive to topography and indicated a geological reference 

point (Pérez-Lombard, et al., 2009). In the 1970’s, companies began using benchmarking tools as 

means to compare productivity of processes with similar parameters (Pérez-Lombard, et al., 

2009). The concept of benchmarking buildings first arose in the beginning of the 1990’s to 

compare energy consumption of buildings with similar characteristics (Pérez-Lombard, et al., 

2009).  

This development was spurred by government concerns over political instability in regions 

supplying energy (Pérez-Lombard, et al., 2009). Two such examples are the Iranian revolution 

and the first Gulf war which threatened secure access to oil. Many nations responded by focusing 

on energy efficiency, specifically in the building sector, which was targeted as its energy 

consumption surpassed both industry and transportation sectors ( Pérez-Lombard, et al., 2007). 

Pérez-Lombard et al (2009) define energy efficiency as “consuming less energy while providing 

equal or improved building services”.  

In 2013, the Ontario Ministry of Energy adopted a Conservation First policy in their Long-Term 

Energy Plan. Energy use reduction is the most environmentally and financially sustainable 

energy resource (Ontario Ministry of Energy, 2017). The province pushed energy conservation 

as an alternative to the mass expansion of energy infrastructure and as a solution to consumers 

struggling with rising energy costs (Ontario Ministry of Energy, 2017).  

To further support the implementation of the Conservation First policy, on February 6th, 2017 

the province of Ontario filed a regulation for the Reporting of Energy Consumption and Water 

Use under the Green Energy Act (O. Reg 20/17). The regulation required all commercial and 

multi-unit residential properties with a gross floor area of 50,000 sf or greater to report their 

annual energy usage through the Energy Star Property Manager by July 1st of the following 

calendar year (O. Reg. 20/17). The regulation had implemented phased deadlines which required 
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250,000 sf buildings to file in 2018, 100,000 sf buildings to file in 2019 and 50,000 sf buildings 

to file in 2020 (O. Reg 20/17).  

2.2 20 by ‘15 Initiative 

Before the mandatory energy and water benchmarking was legislated, the Real Property 

Association of Canada initiated its own benchmarking survey to guide commercial office 

buildings further down the path of sustainability. The survey challenged participants to achieve a 

Total Building Energy Use Intensity of 20 ekWh/ft²/yr by 2015 (REALPAC, 2009). The project 

was dubbed ‘20 by ‘15’ for short (REALPAC, 2009). REALPAC predicted that reaching this 

target will save $1.85 billion and 7.5 megatonnes of greenhouse gas emissions every year 

(REALPAC, 2009). To this end, REALPAC surveyed its commercial office members to collect 

monthly energy usage and building characteristics for over 500 Canadian commercial buildings 

from 2009 to 2015 (REALPAC, 2009). Participating buildings were required to be primarily 

used as a commercial office facility, possess a minimum exterior area of 20,000 sf, and have a 

maximum vacancy rate of 30%.  

Data was entered by the commercial office members into the REALPAC Energy Normalization 

Database (the Database) using an online portal according to the process described in detail in 

Appendix I. This portal was fashioned after Energy Star Property Manager, an online tool 

created by the US Environmental Protection Agency to benchmark building energy, water and 

greenhouse gas emissions (ENERGY STAR, n.d.). During each year of the survey, REALPAC 

prepared a report summarizing key trends and the cumulative findings to date, summarized in 

Table 2-1. 

Table 2-1 Summary Statistics of Annual Normalized Energy Use Intensity of Canada-wide Data Set 

Year  
No. of 

Buildings  

Data Set 

Range Min. 

 
(ekWh/ft2/yr) 

Data Set 

Range Max. 

 
(ekWh/ft2/yr) 

Mean 

Normalized 

EUI 

 
(ekWh/ft2/yr) 

Median 

Normalized 

EUI 

 
(ekWh/ft2/yr) 

No. of 

Buildings 

at the 

25th 

Percentile 

or lower 

No. of 

Buildings at 

or Below 

20.0 

ekWh/ft2/yr  

Proportion 

of Data 

Set at or 

Below 20.0 

ekWh/ft2/yr  

2010 357 5.5 77.9 29.4 28.1 89 40 0.11 

2011 367 8.2 70.6 27.7 26.7 92 53 0.14 

2012 370 10 85.7 26.6 24.8 93 83 0.22 

2013 487 9.7 119.4 28.4 25.6 122 102 0.21 

2014 470 12.1 140 29 25.9 118 81 0.17 

2015 437 11.6 137.8 29 25.7 109 94 0.22 



12 

 

Reprinted (adapted) from (REALPAC, 2017)  

In order to compare the data, REALPAC normalized the Energy Use Intensity for building 

characteristics, weather, location, and against the base year to improve comparability between 

each individual building despite variations in building operation, climate and site (REALpac, 

2015).  

2.2.1 Normalized Building Energy Use (in the current year) 

First, the Database calculated the total building energy use intensity per square foot. Then the 

value was used to normalize the EUI for other building characteristics such as High Intensity or 

Exceptional Tenant Energy Use, Annual Vacancy, Occupant Density and Operating Hours 

(REALpac, 2015).1 This metric permitted the comparison of buildings with various 

characteristics; however, they still must pertain to the same location and year. 

2.2.2 Weather Normalized Building Energy Use to Base Year 2009 

Next, the Database used the “Normalized Building Energy Use” metric and removed the 

influence of weather and climate change (REALpac, 2015). The impact of a particular location’s 

climate was calculated via Heating Degree Days (HDD) and Cooling Degree Days (CDD). The 

Database used the annual HDD and CDD data from Environment Canadas weather stations 

located in airports by the closest major city to the building. The data was accessed via the 

National Climate Data and Information Archive website (www.climate.weatheroffice.gc.ca). 

As HDD and CDD trends are shifting due to climate change, the energy use was normalized to 

the 2009 base Year, so it did not appear as if a building’s performance was gradually worsening 

over time.  

                                                 
1 This document will visually distinguish dataset variable names through Verdana font. 

http://www.climate.weatheroffice.gc.ca/
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Equation 1 Weather Normalized Building Energy Use to Base Year 2009 

𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 𝑡𝑜 𝐵𝑎𝑠𝑒 𝑌𝑒𝑎𝑟 2009

=
annual

HDD

CDD
in the current year ∗

annual
HDD

CDD
in 2009 ∗

× 100% 

× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 (𝑖𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑦𝑒𝑎𝑟) 

*for the Closest Major City 

The metric “Weather Normalized Building Energy Use to Base Year 2009” permitted 

comparability between buildings experiencing different weather patterns across different survey 

years.  

2.2.3 Location & Weather Normalized Building Energy Use to Base Year 2009 in Toronto, ON 

Lastly, the Weather and Use Normalized Building Energy consumption was normalized 

according to weather (HDD and CDD) differences between the Closest Major City to the building 

and Toronto’s Lester B. Pearson International Airport weather station (REALpac, 2015). The 

metric “Location & Weather Normalized Building Energy Use to Base Year 2009 in Toronto, 

ON” permitted comparability between buildings despite variations in location. This is the final 

metric used to compare the energy use of all of the buildings across Canada. 

2.3 Energy Benchmarking Studies 

Building energy surveying and statistical analysis has been used by many researchers to 

benchmark buildings using various methodologies.  

Mills (2016) investigated the potential for Action-Oriented Benchmarking in the non-residential 

built environment, criticizing conventional energy benchmarking for inspiring sustainable action 

without any practical guidance. Mills stated that this shortcoming of conventional energy 

benchmarking can be addressed through disaggregated approaches as opposed to conventional 

whole buildings methods. A deeper investigation and documentation of the building’s energy 

systems, metrics, details, and end uses can lead to the identification of cost effective, individually 

customized energy saving measures. Mills predicted that benchmarking will become more 

popular as it is pushed forward by public policies. He suggested enhanced utility bills and 

incentivized benchmarking to add future research initiative needed to improve the actionability 

of benchmarking results.  
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Capozzoli et al. (2016) analyzed 100 Healthcare centers to evaluate energy use reference values. 

The researchers applied a Linear Mixed Effect Model to heterogeneous data sets and found a 

best fit of 0.01% error, average fit of 15% error and worst fit of 38% error. The testing R2 error 

was found to be 0.96 and residuals were randomly distributed with a mean of zero. These results 

indicate a robust model with a high estimation ability.  

Lee and Lee (2009) employed data envelopment analysis to benchmark a sample of 47 

Taiwanese government buildings. This method, developed by (Charnes, et al., 1978) has been 

commonly used in other fields to assess production efficiencies and involves separating variables 

into management factors and scale factors. Using this technique, the data set was normalized to 

remove the effect of scale factors and focus on energy management. In this study, final 

efficiency assessments were given as a percentage and the authors found that poor management, 

not scale, was the key indicator of poor energy performance.  

2.4 Machine Learning 

Machine learning is a valuable technique for data analysis and can be categorized as either 

supervised or unsupervised. Unsupervised learning creates a model without cross referencing the 

correct data labels and instead relies on patterns and grouping between the independent variables. 

In supervised learning, the algorithm is provided with a labelled (“training”) dataset to develop a 

model. One unsupervised method – Principal Component Analysis (PCA) – and six supervised 

learning methods – Linear Discriminant Analysis (LDA), k-Nearest Neighbours (KNN), 

Multiple Linear Regression (MLR), Support Vector Machines (SVM), Decision Trees, and 

Artificial Neural Network (ANN), have been considered in this research and are described in the 

following sections. The specified algorithms were selected to test both supervised and 

unsupervised methods and based on the outcomes of previous studies which are discussed in 

Section 2.3. 

2.4.1 Principal Component Analysis 

Principal Component Analysis (PCA) is an unsupervised learning method that identifies the 

combinations of variables accounting for the most significant variation within the dataset. PCA is 

one of the oldest and most prevalent multivariate statistic techniques and is used in almost every 

scientific discipline (Abdi & Williams, 2010). The origins of PCA can be found in the works of 

many mathematicians such as Cachy, Pearson, Jorden or Cayley, Selversler and Hamilton. The 
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instantiation of PCA is accredited to Harold Hotelling after his 1933 paper, “Analysis of a 

Complex of Statistical Variables into Principal Components” (Hotelling, 1933). Hotelling’s 

research mainly pertains to the psychological discipline, which referred to the fundamental 

variables of a data set as the ‘mental factors’. Hotelling chose to instead refer to these as 

components so as to not be confused with the mathematical definition of ‘factors’.  

Hotelling’s Method of Principal Components uses the Eigenvalues and the Eigenvectors of a 

data set’s correlation matrix to determine the combinations of independent variables accounting 

for the most variation in the dependant variables (Hotelling, 1933). The Eigenvalues and     

Eigenvectors are then used to transform each data point and project them on to the principal 

component axis. In other words, the Method of Principal components finds linear combinations 

of the existing variables and uses them to attain new components. Principal components (PCs) 

are those which account for the most variability. To prevent variations, PCA first involves 

scaling the data to ensure variables with differing units can be compared to one another. 

Hotelling writes that the data must be normalized with a mean of zero so the variance between 

the standard deviations of each component may be compared. The number of PCs cannot be 

higher than the original number of variables. The first principal component (PC1) is defined as 

the component with the most variance. The second principal component (PC2) is orthogonal to 

the first principal component and accounts for the second most variance. This pattern continues 

for each consecutive PC, with all PCs mutually orthogonal to avoid confounding. There are no 

more PC once the entirety of the variance is accounted for. It is important to note that the relative 

position of each data point to another remains the same; the axes are simply rotated.  

Figure 2-1 illustrates the two PCs representing the dataset both in the initial vector space (top) 

and in a simplified (2D) vector space (bottom). 
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Figure 2-1 Illustration of PCA Concept 

Abdi and Williams stated the goal of PCA is to compress the data set so only important 

information is retained and the unnecessary variables are discarded (2010). This concept is 

referred to as dimensionality reduction. In addition, PCA is used to analyze the structure of the 

observations and the variables.  

After a PCA is performed, the Scores and loadings are returned (Bro & Smilde, 2014). The 

Scores are the new lengths for each observation. They are typically represented on a scatterplot 

graph with a principal component on each axis. If clusters are observed, it indicates that it is 

possible to classify a sample given the variables represented by the principle components on the 

graph (Bro & Smilde, 2014). Score plots are also useful for quickly detecting outliers, which are 

fall outside of data clusters.  

PCA will return a loadings plot which is a matrix containing the Eigenvectors in each column, 

arranged from largest to smallest (Abdi & Williams, 2010). Each column represents a principal 

component, with Principal Component 1 being the first column, Principal Component 2 being 

the second and so on. The loadings rate the contribution of each original variable to each new 
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principal component. In his “Principal Component Analysis” monograph, Jolliffe recommends 

that a loading threshold above or 0.7 or below -0.7 should be considered significant (1986). 

Loadings are typically visualized using biplot one may quickly analyze the relationship between 

the loadings of two principal components (Abdi & Williams, 2010).  

In addition, the Eigenvalue for each principal component will be returned. The Eigenvalues are 

used for calculating the variance captured by each principal component. To do so, a particular 

Eigenvalue is divided by the sum of all the Eigenvalues. The result is the variance retained by the 

principal component represented as a percentage. 

Both the Eigenvalues and the loadings are used to perform dimensionality reduction on the data 

set. First, the boundary is determined with the aid of a scree plot (Abdi & Williams, 2010). The 

Eigenvalues are plotted according to size and the resulting graph is visually analyzed for the 

presence of a noticeable change in slope or an ‘elbow’ as seen in Figure 2-2. If an elbow is 

identified, the principal components to the right of that point are disregarded.  

 

Figure 2-2 Ideal Scree Plot with Elbow 

If an elbow is not identified, then it is considered good practice to retain enough principal 

components to explain 90% of the variability (Ringnér, 2008). Refer to Figure 2-3 and Figure 

2-4. 
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Figure 2-3 Non-Ideal Scree Plot with no Elbow 

 

Figure 2-4 Sample PC Cumulative Variance Graph 

Once the important principal components are determined, the loadings plot is reviewed to 

determine which variables are significant. Joliffe outlines two different approaches for this.  

First, the largest principal component is analyzed. Any loading above 0.7 or below -0.7 marks a 

variable which contributes significantly to the corresponding principal component. Of all the 

significant variables, the one with the highest absolute loading is selected to represent that 

component. The approach proceeds by analyzing the next largest component and continues until 

the smallest retained principal component. If a variable has been selected for a principal 

component with a higher variance, it cannot be selected again; the variable with the next highest 

absolute loading value is selected.  
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The second approach is performed in reverse. It uses principal components which were not 

retained to determine which variables should be discarded. The most significant variable for the 

smallest principal component would be removed from the data set. This method continues for 

each progressively larger discarded principal components. The justification for this procedure is 

that the smaller principal components highlight redundant variables. In other words, insignificant 

principal components are represented by insignificant variables. 

PCA can also be used to predict new observations given the same variables (Abdi & Williams, 

2010). This is performed by training the PCA model on only a sample of the dataset and later 

testing by predicting the remaining observations according to a random effects model. The PCA 

model performance is typically evaluated using computer executed resampling techniques. Two 

examples are the bootstrap and cross validation methods. The predicted results are compared 

against the actual observations and the accuracy of the model is assessed.  

2.4.2 Linear Discriminant Analysis 

LDA is a supervised learning algorithm where the dataset is transformed such that it can be 

projected onto axes that show the maximum differentiation between different classes and 

minimum differentiation within each class. The resulting visualization is a graph where the 

individual classes are clustered as best as possible with the most distance between each the 

centroids of each class. Figure 2-5 illustrates this concept graphically. 

Tharwat, Gaber, Ibrahim and Hassanien (2017) describe the main goal of LDA as identifying 

redundant or dependant variables to be removed by transforming features in a higher 

dimensionality space to a lower dimensionality space. LDA is not useful when the number of 

dimensions is greater than the number of samples (Tharwat, et al., 2017). 
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Figure 2-5 Illustration of LDA Concept 

 

2.4.3 k-Nearest Neighbours 

k – Nearest Neighbours (KNN) is a supervised learning algorithm used to classify new 

observations (Stamp, 2017). The method was first introduced as the k-nearest neighbour rule by 

Fix and Hodges in their technical report “Discriminatory Analysis, Nonparametric 

Discrimination: Consistency Properties” (1951). 

Using a training set of classified data and a distance metric the KNN algorithm classifies a new 

observation, X, by evaluating the known classes of the training data points neighbouring nearest 

to X. The number of observations evaluated is represented by k. The class of X is determined by 

the most frequent class appearing within the k nearest neighbours. For example, in Figure 2-6, 

when k=3, the majority (2) of the three closest points are red, and thus the unknown point would 

be tagged red. Conversely, if k=5, the algorithm would predict the unknown point would be 

green, as majority (3/5) of the five closest points are green. A challenge of KNN models is 
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correctly predicting the class of datapoints that fall near the threshold of regions as they may be 

mislabelled due to their proximity.  

 

Figure 2-6 KNN Concept Diagram 

 The KNN algorithm does not assume relationships between the variables and the classes 

(Shumeli, 2017). The class is simply determined by k and the distance metric selected – options 

include Euclidian, Mahonobis, and Chebychev —and therefore, the chosen distance metric is 

very important to the success of the algorithm: “the most desirable distance function is the one 

for which a smaller distance among samples implies a greater likelihood for samples to belong to 

the same class” (Mucherino, et al., 2009). 

The size of k also affects the quality of the KNN outputs (Knox, 2018). Low k values are more 

sensitive to individual data points, resulting in noise and more erratic class boundaries. Large k 

values are less sensitive to local variations in class clusters, producing smoother boundaries yet 

sacrificing accuracy. Moderate k values are ideal as they achieve a balance between sensitivity 

and noise reduction. Duda et al. (2012) suggest that the ideal k is the square root of the number 

of instances in the data set. However, the cross validation of K-fold training and validation sets is 

well established statistical technique for testing various values of k and determining the values 

with the lowest misclassification rate (StatSoft Inc, 2013).  

When graphed, the KNN plotted probabilities show a boundary between ‘winning’ and ‘losing’ 

classes. This allows one to quickly determine which class a new observation would be 

categorised as.  
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2.4.4 Support Vector Machines 

Support vector machines (SVM) is a supervised learning technique that, unlike LDA and PCA, 

directly generates a classification without outputting a score (Stamp, 2017). SVM is considered 

to be a powerful function and is successfully employed by a wide range of disciplines. The 

function provides the following advantages (Steinwart & Christmann, 2014):  

1. High ability to learn with few free parameters 

2. Robust against outliers and disruptions in the model 

3. High computational efficiency 

SVM can be applied to either raw data or to a set of Scores output by a different algorithm (i.e. 

PCA) (Stamp, 2017). SVMs are typically used for binary classification and therefor the 

classification loss function is used with two response values, +1 or -1, which correspond to class 

labels (Steinwart & Christmann, 2014).  

The governing concepts of SVMs (Stamp, 2017) are listed below and illustrated graphically in 

Figure 2-7: 

1. Hyperplane separation – The labelled data is separated into multiple classes based on a 

hyperplane. A hyperplane is a subspace with one less dimension than the dataset. 

2. Margin Maximization - during the construction of the hyperplane, the margin separating 

the classes are maximized. The margin is the smallest distance between any data point 

and the hyperplane.  

3. Use a high dimensional space - This concept may be counter intuitive to previously 

discussed models, but SVMs perform best on higher dimensional datasets as they can 

better inform the discovery of a parting hyperplane. 

4. Kernel Trick - Uses a kernel function to spatially transform the non-linearly separable 

data with the hope of improving separability.  
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Figure 2-7 Support Vector Machine Conceptual Illustration 

When the data is not separable in input space (given by the actual dataset), a kernel can be used 

to map the data points into feature space which is defined by a different dimensionality 

(Campbell & Ying, 2011). This may improve the separability. 

Though SVMs were originally used for binary classification, they can be adapted to allow for 

multi-class classification (Campbell & Ying, 2011). This is typically performed using a series of 

one-against-all classifiers: C separate SVMs are constructed, with C representing the number of 

classes in the data. For each SVM, a different class is labelled as positive and the remaining class 

samples are labelled as negative. It should be noted that this one-against-all approach is weak 

when the number of classes is close to the number of samples as it results in a large imbalance 

within each separate SVM. SVMs can also be used for regression analysis. 

As with most machine learning algorithms, the success of SVMs are also deteriorated by noise 

and outliers (Campbell & Ying, 2011). To improve the generalization of noisy SVMs, the 

algorithms can adopt ‘soft margins’ which allow for some data points to fall inside the margin. A 

validation study can be performed by training the SVM on training data using various margin 

width to discover the best value for the parameter. 

The success of an SVM can be evaluated via the classification accuracy or the validation error. 

2.4.5 Decision Trees 

The decision tree technique is a supervised learning algorithm which is popular, intuitive, and 

comprehensible as it is closely modeled on human reasoning (Kotsiantis, 2013). Decision trees 

combine a sequence of logical tests where each test evaluates a numeric feature against a 

      
         
          

              
               

                        



24 

 

threshold or a nominal feature against a range of possible values. The model decides an outcome 

based on if the threshold was achieved or nominal value observed and then branches towards a 

subset of different logical questions which split the data. After an observation is filtered through 

all of the model’s decisions, it is classified according to the most frequent class within that same 

region. Depending on the type of decision tree (regression or classification) the final return is 

either a numeric value or class prediction for each now observation. The success of the model is 

either evaluated by the error rate which is the percentage of misclassified observations, or the 

accuracy rate which is the percentage of correctly classified observations.  

The key elements of a decision trees are: root, node, branch, and leaf, as illustrated in Figure 2-8.  

A node represents a test that the observation is put through. An example could be “Is the Closest 

Major City Vancouver, BC?”. The result determines the subsequent test. The root is the first node 

and is the test with the highest predictive capacity. A leaf represents the model’s final prediction 

(i.e. Good or EUI =19 eWh/sf/year). Branches represent the junctions between roots, nodes and 

leaves. 

 

 

Figure 2-8 Decision Tree Concept Diagram 

Decision tree algorithms develop models through automatic induction, which contains two main 

phases: growth and pruning (Kotsiantis, 2013). In the growth phase, a dataset with known classes 

(or numeric outputs for regression trees) is provided for training. The algorithm looks for 

patterns or generalizations in the data by evaluating all possible decisions to determine which 
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best split the data; this is evaluated based on a minimization of entropy (the degree of mixing) in 

the resultant split nodes. This process is repeated until all observations within a decision (node) 

fall within the same class or a stopping criterion is reached.  

The more complex the decision tress, the lower the generalization and predictive accuracy rate, 

therefor pruning is performed resulting in near-optimal models which employ efficient heuristics 

(Kotsiantis, 2013). The following procedures can be preformed to reduce overfitting (Kotsiantis, 

2013): 

• Pre-pruning: terminates a branch prematurely during training when a stopping condition 

is reached.  

• Post-pruning: after a model is generated, certain branches are retroactively removed 

• Data pre-processing: reduces the features of the dataset until an optimal number of 

characteristics are reached to build a simpler tree.  

Many different decision tree algorithms have been established to address common disadvantages 

such as poor generalization or time-consuming model training. According to the Law of Large 

Numbers (Bernoulli, 1773), as the quantity of random events increases, the variance between the 

probable value and the average actual value minimizes. To reduce variance without increasing 

bias through overfitting, a “Random Forest” algorithm (Breiman, 2001) was developed.  

Typically, decision trees consider all features to split a node, however it has been found 

advantageous to only evaluate a random subset of variables when performing a node split 

(Breiman, 2001). Radom forests makes use of the principle of bagging and randomly subsets the 

variables of a training dataset with replacement. The quantity of random variables in each subset 

is referred to as F and is kept consistent for each node split (Breiman, 2001). Breimen suggests 

that F be “the first integer less than log2M+1, where M is the number of inputs” (2001). 

Multiple decision trees, or a ‘forest’, are created for each data subset and are generated until a 

stopping condition, such as a predetermined number of nodes, is reached (Breiman, 1994). A 

majority vote is performed to predict an object class, the class receiving the most votes is 

selected. To predict a numerical outcome as with regression trees, the predicted values are 

averaged. This technique has been demonstrated to increase classification accuracy rates over 

individual decision trees with a reduced likelihood for overfitting. Note that the risk of 
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overfitting is slightly higher for regression analysis as the results are selected by an average 

rather than by a majority vote. 

2.4.6 Artificial Neural Networks  

An Artificial Neural Network is a complex supervised learning algorithm modelled after the 

nonlinear, parallel processing of the human brain (Haykin, 1998). The network of neurons in the 

human body are capable of experiential learning and knowledge-storing. Neurons communicate 

with each other as follows: one neuron will receive stimulus, an electrical message, from a 

receptor. If the stimulus is strong enough to reach the neuron’s activation threshold (determined 

via prior learning), the neuron will pass the message forward to an effector which produces a 

discernable response. If the stimulus is too weak, the information is passed back from the neuron 

to the receptor, exhibiting feedback.  

ANNs engage a large web of simple, interconnecting processing units or nodes, which mimic 

neurons (Haykin, 1998). Refer to Figure 2-9 for a Conceptual illustration of an ANN diagram. 

There are three types of nodes: input nodes, output nodes and hidden nodes (Wu & Feng, 2017). 

In a trained model, each input (i.e. data variable) is connected to a hidden node which is also 

connected to each output via synaptic weights (Haykin, 1998). These weights have a numeric 

value which stores the model’s knowledge (gained through training). The larger the absolute 

value of a synaptic weight between two nodes, the stronger their connection.  

 

Figure 2-9 ANN Concept Diagram 
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Model learning is improved by bias units. Each hidden node and output nodes are influenced by 

a bias unit which is consistent for all nodes in a layer. A Bias unit stands alone and does not 

proceed another unit or layers.  

To reduce the error rate and create a more robust ANN model back propagation (Werbos, 1974) 

or resilient backpropagation (Riedmiller & Braun, 1993) are often employed.  

Back Propagation calculates the partial derivative of a single weight, while keeping the 

remaining weights the same (Werbos, 1974). The goal is to find the weight that returns the 

lowest error rate. The sign (+/-) and magnitude (-1 to +1) of the weight are combined with a 

small learning rate (the same used for all weights) to calculate the weight change. The error rate 

is recalculated at each interval of weight change. Once the error rate increases it indicates that 

the minimum was identified at the previous weight which is then selected for the final model. 

The process is repeated for the remaining weights. The disadvantage of back propagation is that 

it is slow as it involves many calculations.  

Resilient Backpropagation (Rprop) was developed to increase the speed of back propagation 

(Riedmiller & Braun, 1993). Here, only the sign of the partial derivative is calculated and the 

learning rate is different for each weight (adapted during training). If the signs are the same for 

both previous and current partial derivatives, this indicates the weight value has not moved past 

the point of minimum error and to continue in the same direction. Larger learning rates may be 

used to increase the speed of the process. Once the signs are not the same, indicating an increase 

in the error rate, the previous smaller learning rate is used with the previous iteration, to reduce 

the speed of weight change. This process continues until the error minimum has been found.  

ANNs provide many advantages such as adaptability, self organization and self learning. It is not 

without its disadvantages though. ANNs are black box models and the hidden layers of the 

model are generally too complex to be comprehended and analyzed. Therefore, it is difficult to 

interpret the data structure from the model. ANN can only be used to predict an outcome. It is 

also sensitive to overfitting, especially with a small or low variance data set. A solution to this 

shortcoming is K-fold cross validation.  
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2.5 Use of Machine Learning for Energy Prediction 

The previous section touched on machine learning as a form of analysis for benchmarking 

energy consumption. A range of machine learning approaches have been applied to energy 

prediction. Several papers provide a detailed summary of the body of literature on this topic.  

Yu et al reviewed benchmarking analysis via the regression and ANN methods on a dataset with 

55 residential buildings in Japan (Wu & Feng, 2017). They investigated the accuracy and 

benefits of developing decision trees. They found the results were easier for users to extract 

information. When applied to the training accuracy in this study was 93% while test data 

accuracy was similar at 92%. 

Artificial Neural Networks have been used to predict energy consumption in a wide range of 

studies Aydinalp et al applied the neural network method to the 1993 Survey of Household 

Energy Use dataset to develop a model which accurately predicts the residential energy 

consumption of appliances, lighting and space cooling (Aydinalp, et al., 2002). The resulting 

ANN displayed a strong prediction performance, R2 = 0.90, which performed well even with 

residences with abnormally high or low energy usage. The study highlighted the robustness of 

the ANNs.  

A 2004 study by the same researchers used NN models on the same dataset to predict energy 

consumption due to space heating and domestic hot water (Aydinalp, et al., 2004). The ANNs 

resulted in R2 values of 0.91 and 0.87 indicating the high confidence. 
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3 Methodology 

The data was collected on a web-based platform, cleaned and normalized using Excel 

(Microsoft, 2018) and analyzed with the open source software ( The R Foundation, 2018) and R 

Studio (RStudio, 2018). The following methodology in Figure 3-1 was performed: 

Figure 3-1 Report Methodology 

3.1 Data Cleaning 

The raw data was extracted from the REALPAC 20 by ‘15 site and was investigated for 

inconsistencies and outliers. These typically include user input errors, missing energy meters and 

building area updates, which lead to inconsistency across the years. Property Managers were 

contacted to provide confirmations and revisions. Building years (building data entered for a 

particular year) were excluded from the survey if errors remained unresolved.  

The datasets used in this paper are not identical in size to the datasets in the published 

REALPAC 20 by ‘15 reports. The REALPAC reports removed more individuals from the 

database during cleaning. This research used a slightly less strict criteria in the effort to retain as 

many individuals as possible and to help train more robust models. 

7. Conclusiono & Recommendations

6. Discussion

5. Results - Data Analysis & Comparison

4. Post Processing& Evaluation

3. Supervised Machine Learning

LDA Decision Trees KNN SVM ANN

2. Data Visualization (trend analysis and PCA)

1. Data Cleaning
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Table 3-1 lists the amount of eligible buildings which were retained after cleaning by province 

and year.  

Table 3-1 Amount of Eligible participating buildings by year and province 

Province 2010 2011 2012 2013 2014 2015 

AB 65 72 77 94 98 97 

BC 50 50 58 72 69 76 

MB 7 6 7 7 7 5 

NS 1 3 6 7 6 3 

ON 236 225 217 288 287 259 

QC 11 9 13 18 16 14 

SK 2 2 1 11 16 16 

Total 372 367 379 497 499 470 

3.2 Data Visualization 

The analysis of the data first began with the exploration of overall trends through the use of data 

visualization. The aim was to identify key variable relationships to integrate into predictive 

models. 

Each variable in the 2010|2015 dataset was plotted against another using linear regression. This 

was carried out using the plot2  ( The R Foundation, 2018) function in [r]’s base package. The 

data points were coloured red, black and green according to the class of their 2010 EUI to 

highlight possible ‘Poor’, ‘Fair’ and ‘Good’ clusters.  

The class and provinces of each building across each survey year were tabulated, along with their 

proportions. Excel was used to compare the effect of Exterior Area, Asset Manager and Closest 

Major City on the EUI or Qualitative EUI.  

As part of data visualization, the unsupervised learning method, PCA, was explored first to 

identify any meaningful clusters or associations within the dataset without the use of user-

defined (and potentially arbitrary) classes.  

3.2.1 Principal Component Analysis 

A principal component analysis (PCA) was employed to analyze the potential for feature 

reduction on the multivariate and multiscale dataset. PCA leads to weak results when applied to 

                                                 
2 This document will visually distinguish function names with bold font. 
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data with low variance, however; its application on wide varying datasets leads to results that are 

sensitive to outliers (Akinduko & Gorban, 2013). Therefore, it may be difficult to reveal accurate 

and valuable underlying structures (Akinduko & Gorban, 2013). For this reason, two outliers 

were discarded prior to performing the algorithm. No other pre-processing was performed 

The FactoShiny3 package (Vaissie, et al., 2016) was used in Rstudio to open the PCAshiny 

application (Vaissie, et al., 2018), which allowed for the iterated exclusion of variables and the 

export of results and graphs. To ensure all variables were independent, a new iteration was 

performed for each combination of the following variables, illustrated in Figure 3-2 

 

Figure 3-2 Interdependent variables for Energy Usage, Area and Location 

The energy data for 2015 was considered the most robust as it possessed the most observations 

compared to previous years. First, the PCA was performed on 44 combinations of variables for 

the 2015 energy data and the eigenvalues, cumulative variance, the first ten Scores and first ten 

loadings for the 5 largest PCAs were recorded for each iteration. After analysis of the results 

indicated the alternating combinations resulted in limited variability, subsequent iterations for 

other years only interchanged the outcome variables. Only Exterior Area and Longitude + 

                                                 
3 This document will visually distinguish package names with italics font. 

Measure of 
Energy Usage

• Energy Use Intensity (EUI)

• Total Actual Energy (AE)

• Actual Thermal Energy + Actual Electricity  and Cooling Energy 
(Th+EC)

• Null

Area

• Exterior Area (EA)

• Gross Floor Area (GFA)

• Gross Floor Area + Enclosed Parking Area (GFA +EP)

• Net Rentable Area

• Net Rentable Area + Enclosed Parking Area (NRA + EP)

Location
• Longitude + Latitude

• Climate Zone
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Latitude were used for the Area and Location variables; this resulted in 44 iterations for each 

year. Due to the analysis of the results, only the 2015 Dataset was used.  

One drawback of PCA shiny is the inability to easily access and record the full set of loadings 

and Scores. It is best used to quickly perform a series of iterations, review the variance of each 

principal component and produce graphics. To address this shortcoming, the prcomp function 

was used in R Studio to perform a principal component analysis on datasets where more in-depth 

results were desired. This function is also compatible with predict which estimates the principal 

components of new data given a trained model.  

The prcomp function was applied on two versions of the 2010-2015 data set. The principal 

components PC1 and PC2 were plotted against each other and the loadings were classified 

according to ‘Fair’, ‘Poor’, ‘Good’.  

Table 3-2 2010-2015 dataset variables used in iteration 1 and 2 of PCA using the prcomp function 
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A threshold of 90% was set for the desired cumulative variability provided by the PCA 

dimensions. This means the sums of the variation explained by each PCA dimension were added 

together until a minimum of 90% was achieved. Only dimensions prior to the threshold were 

considered significant and any variable that without a loading more than 0.7 or less than 0.7 
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corresponding to any retained PCs any of those dimensions would be flagged for removal in 

subsequent algorithms. If the loadings threshold was not reached, the PCA results were 

considered unsuccessful for the dimensionality reduction.  

The Scores plots were analyzed for clusters, either discrete or overlapping, within the 2010 

Qualitative EUI, 2015 Qualitative EUI or Qualitative EUI Change graphs. The plots were also 

analyzed to interpret which independent variables lead to better results. These interpretations 

were used to reduce the amount of iterations needed in future algorithms.  

3.3 Supervised Machine Learning 

After identifying key features using PCA, supervised learning methods were used to identify 

patterns and predict an outcome.  

3.3.1 Linear Discriminant Analysis 

The Linear Discriminant Analysis was performed on the 2010|2015 Dataset. During 

preprocessing, the outliers identified during the PCA (i.e. 189, 256, 289) were removed from the 

dataset. The data was not normalized before hand as this processing is later performed by the 

applied [r] package. Due to difficulties extracting Scores with other packages, the LDA function 

from the momocs package (Bonhomme & Claude, 2018) was chosen as it allowed a more in-

depth look at the results (i.e. score extraction) and customization of graphs. 

The LDA iterations varied the sets of input variables as well as the outcome variables as seen in 

Table 3-3 and Table 3-4 to improve the likelihood of discovering a successful combination. Sets 

A and B were used in the first six iterations and used the outputs of the two PCA prcomp 

iterations. Set C was developed from the best-performing variable combination of these initial 

iterations and consists of the same input and outcome variables as in iteration 1 but removed the 

area variables, which are not entirely independent of other input variables, to determine whether 

this would significantly improve accuracy of the results. Set D is comprised of all features in set 

C which accounted for more than 3% of the variance to linear discriminants. 
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Table 3-3 LDA Iteration Description 

Iteration 

Input Variables 

(Refer to Table 3-4) Outcome Variable 

1 Set A 2010 Qualitative EUI 

2 Set A 2015 Qualitative EUI 

3 Set A Qualitative EUI Change 

4 Set B 2010 Qualitative EUI 

5 Set B 2015 Qualitative EUI 

6 Set B Qualitative EUI Change 

7 Set C 2010 Qualitative EUI 

8 Set D 2010 Qualitative EUI 

 

Table 3-4 2010-2015 dataset variables used in iterations of LDA 
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D X X     X X X X       X  X 

The following information was recorded for each iteration: 

1. Linear Discriminant loadings: 

Similar to PCA, each loading or eigenvalue was divided by the sum of all of the 

loadings for a particular linear discriminant. This calculated the strength of the 

loading and the significance of the corresponding variable to the linear 

discriminants. The strongest variables were identified as important features and 

the variables with weak loadings were considered unimportant.  

2. Score plots: 
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The score plots were analyzed for class clusters. A score plot with a visibly tight 

group of clusters implies that classification is possible given the structure of the 

data.  

3. Overall classification accuracy rates: 

The LDA model performed a leave one out cross-validation to train the model. 

The ‘left’ out data was used by the algorithm to test the classification accuracy. 

The LDA function determined the final classification accuracy as the average 

correct classification rate for all of the cross validated iterations.  

4. Within-class accuracy rates and;  

5. Misclassification rates  

3.3.2 k-Nearest Neighbours  

The k-Nearest Neighbours (KNN) algorithm was employed to analyze the potential for 

classification of new samples and to illustrate class separability between various combinations of 

independent variables. The knn and knn.cv functions (Ripley & Veneables, 2002; Ripley, 1996) 

from the class package (Ripley & Venables, 2015) were used. The knn function performs the 

KNN algorithm, using one test and training set to develop the model while the knn.cv function 

employs leave-one-out cross validation to create the model (Ripley & Venables, 2015).   

The analysis was performed on the 2010-2015 dataset. Four iterations were performed (Table 

3-5). K was determined by taking the square root of the number of observations in the training 

set.  
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Table 3-5 KNN iterations 

 Independent Variables Dependent 
Variables 

(Classifiers) 

knn 
function 
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Iteration 
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1 
(Test/Train) X X X X X X X X X X   

knn 

2 
(Test/Train) X X X X X X X X X  X  

knn 

3 
(Test/Train) X X X X X X X X X   X 

knn 

4 (Cross 
Validation) X X X X X X X X X X   

knn.cv 

All iterations used the same independent variables which were selected based on the results of 

the LDA feature reduction results (See Section 4.2).  

For iterations 1 to 3 the KNN model was trained on 70% data and tested using the remaining 

30% of individuals. The only difference between the iterations was the outcome variable. The 

results were analyzed and the outcome variable used for the highest classification accuracy was 

chosen for iteration 4. The fourth iteration was performed using cross validation, in an attempt to 

improve the accuracy of the classification results.  

For each iteration, the Confusion Matrix, Classification Accuracy, Confidence Interval, and P-

value were recorded.  

The KNN algorithm was then applied to create graphs for iterations 1 to 3 with the purpose of 

identifying variables combinations which illustrate class clusters. Within each iteration the 

following variables were mapped against each other.  
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Table 3-6 Variables in each KNN model iteration 

Sub-iteration  
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X.1 X X        

X.2    X X     

X.3   X   X    

X.4       X X  

X.5 X        X 

X.6 X  X       

X.7 X   X      

X.8  X  X      

The graphs use colour to indicate which class the KNN model would assume each point belongs 

to and point size to illustrate the KNN model’s assumed probability of each point belonging to 

that particular class. Data points with a black border indicate an actual individual from the 

original dataset, not a predicted value from the model. The graph success was assessed based on 

a visual assessment of the class separability.  

3.3.3 Multiple Linear Regression 

The Multiple Linear Regression models were created in [r] with the lm function for linear 

models on the 2010-2015 dataset. To ensure comparability across variables, each variable was 

scaled between 0 and 1, using their existing maximum and minimum values. To save time, the 

model focused only on the independent variables identified as most significant by the PCA and 

LDA feature reduction results, with the exception of energy variables. The scope of this paper 

will only include the assessment of overall EUI and EUI Change across years; therefore, the 

model did not evaluate the models against the more specific Electricity and Thermal data. Please 

refer to Table 3-7 for a list of the variables included in each MLR iteration.  
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Table 3-7 Variables in each MLR model iteration 

 

Input Variables Outcome Variables  
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1 (Test/Train) X X X X X X X X   

2 (Test/Train) X X X X X X X  X  

3 (Test/Train) X X X X X X X   X 

For all iterations The MLR model was trained on 70% data and tested using the remaining 30%. 

Each training and test set included the same proportion of classes as the original dataset in an 

attempt to ensure that smaller classes, such as ‘Good’ and ‘Poor’, were significantly represented 

in both sets. The aim was to improve upon the low classification accuracy rates observed in 

previous methods.  

The model used linear regression to evaluate the influence of each independent variable from the 

2010 data on the 2010 EUI (current year), 2015 EUI (future year) or the change in EUI between 

2010 and 2015. After the models were trained, they were applied to the test data to evaluate its 

performance when confronted with new observations. The predicted values from both the 

training and test set were denormalized. See Equation 2 and Equation 3 for details on how the 

data was denormalized using the max and min values from the pre-normalized dataset. 

Equation 2 Normalization Formula 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑎𝑐𝑡𝑢𝑎𝑙 =

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

𝑤ℎ𝑒𝑟𝑒 𝑋𝑚𝑖𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋 

𝑤ℎ𝑒𝑟𝑒 𝑋𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑋 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋 
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Equation 3 Denormalization Formula 

𝑌𝑑𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑌𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ∗  [𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛] +  𝑋𝑚𝑖𝑛 

For each iteration the overall classification accuracy rate, within-class accuracy rate, predicted 

training set values, predicted test set values and P-values for each variable were recorded.  

After the initial results were unsatisfactory, the algorithm was revised to predict the percent 

change in EUI between 2010 and 2015 in proportion to the starting EUI. This value was 

calculated (2010 EUI – 2015 EUI) / 2010 EUI as expressed as a percent change. The relevant 

classification metrics are listed in Table 3-10. 

Also, for each test and train set of each iteration, the predicted and actual values were plotted 

against each other. The graphs were visually assessed based on the perceived correlation between 

the two variables.  

3.3.4 Support Vector Machines 

The Support Vector Machines (SVM) models were created in R Studio (R version 3.3), using the 

tune and svm functions from the e1071 (Meyer, et al., 2018) package on the 2010-2015 dataset. 

To avoid bias in the inputs, each variable was scaled. To reduce time costs, the models focused 

only on the independent variables identified as most significant by the PCA and LDA feature 

reduction results. The energy variables 2010 EUI, 2015|2010 EUI and 2010 Qualitative EUI were 

used as outputs; the model did not evaluate the more specific Electricity and Thermal data. Table 

3-8 summarizes the variables included in each SVM iteration.  
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Table 3-8 SVM iterations 

 Independent Variables Output Variables 

Iteration 
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1 (Test/Train) X X X X X X X X    

2 (Test/Train) X X X X X X X  X   

3 (Test/Train) X X X X X X X   X  

4 (Test/Train) X X X X X X X    X 

For all iterations, the SVM model was trained on 70% data and tested using the remaining 30% 

of observations. As with SVM iterations, each training and test set included the same proportion 

of classes as the original dataset in an attempt to ensure that classes with a smaller population, 

such as ‘Good’ and ‘Poor’, were significantly represented in both sets. Iterations 1-3 were run 

with each of the following kernels: linear, polynomial, sigmoid and radial. Iteration 4 was trained 

using the best performing kernel in iteration 3 to save time. The range of kernel selection 

allowed the testing of different data transformations to improve the class separability and 

subsequent prediction accuracy. Two different types of models were also tested: the first two 

iterations were run using a regression SVM model and the second two iteration were trained 

using a classification model to investigate which model would return the best predictive 

accuracy. 

After the models were trained, they were tested to evaluate performance when confronted with 

new observations. The predicted and actual values for both the train and test datasets were 

compared. The Root Mean Square Error (RMSE), overall classification accuracy rate, within-

class accuracy rate, predicted training set values, predicted test set values were also recorded 

(See Appendix II).  

3.3.5 Decision Trees 

The decision tree models were created in R Studio (R version 3.3). The random forest decision 

tree algorithm was specifically used as Breimann’s research indicates that it offers improved 
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classification accuracy rates when compared to individual decision trees (1994). The models 

were created using the ranger function from the ranger package (Wright, 2017) on each dataset. 

Ranger was selected as it quickly conducts recursive partitioning, is appropriate for high 

dimensional datasets, and supports classification and regression forests. The training and test 

datasets were then created through random sampling with one third of the observations placed in 

the test set. The independent variables were the same for each iteration for the random forest 

decision tree models: Latitude, Longitude, Construction Year, No. of Structures, Building Class, 

Climate Zone, Electrically Heated, Cooling Tower, Soft Landscaping, Occupant Density, Vacancy 

Rate and Weekly Operating Hours. 

For regression trees, the minimum node size was set to 1, the number of trees was left at the 

default value of 500 and the variable importance mode was set to impurity. Classification was set 

to FALSE. The random forest algorithm used the training data to grow numerous random forests; 

the majority class vote or the average numeric vote was selected as the model output. After each 

model was created, the random forest model and the test data were applied as arguments in the 

predict function. A confusion matrix was created comparing the predicted outcome variable and 

the actual outcome variable from the test dataset. To compare the results of the four different 

outcome variables (EUI, Actual E&C Energy, Actual Thermal Energy or Actual Total Energy) each 

output was normalized by dividing the residual by the actual amount. In total, twenty-four 

iterations of the regression trees were run. The accuracy of each model was then calculated and 

graphed.  

For classification prediction, separate vectors with class labels were not required. Two vectors 

containing only the Qualitative EUI labels were created for the test and training set. The formula 

and training dataset were put into the ranger function. As with the regression iterations, the 

minimum node size was set to 1. The number of trees was left at the default value of 500. 

Classification was set to TRUE as it is required when the data set is in the form of a data matrix. 

The variable importance mode was set to impurity; this selects the Gini index for classification 

trees and measures the variance of the responses for regression trees (Wright, 2017). In total, six 

iterations of the classification trees were run. As with the regression trees, the accuracy of each 

classification model was calculated and graphed. 



42 

 

3.3.6 Artificial Neural Network  

The Artificial Neural Network algorithms were run with the neuralnet package (Fritsch, et al., 

2016), which trains neural networks through resilient backpropagation with weight backtracking. 

In order to ensure comparability, the independent variables were scaled between 0 and 1, using 

the existing maximum and minimum values for each respective variable. For predicting EUI 

Change in 5 years, the dependant variable was also scaled between 0 and 1; however, a 

maximum of 100 and a minimum of -100 were used. For predicting current EUI, a maximum of 

50 and a minimum of -50 were used. 

The neural net was tuned using 1-12 nodes in each hidden layer of the model. The number of 

hidden layers varied from one to two. For each model, convergence depends on a set threshold of 

0.01. The seeds were set to encourage reproducibility in the results and the stepmax was set to 

10,000 to prevent over-training. Five (5) repetitions of the ANN function were run for each set of 

parameters to explore the various starting weights, improving the likelihood of finding a model 

that converges and reducing the chance of an overfit model. The resulting accuracy was recorded 

as an average of all successful repetitions. If a particular dataset did not converge in all five (5) 

repetitions, the accuracy was recorded as ‘N/A’.  

The tuning model was run using 10-fold cross-validation. The folds were originally split 

automatically by [r] ( The R Foundation, 2018). This led to folds that did not contain all three (3) 

classes. To address this concern, the data set was manually split into 10 different sets, with each 

set containing a relatively evenly distributed amount of Poor, Fair and Good classes. For each set 

of parameters, individual fold test classification accuracy as well as the corresponding the 

maximum, minimum and average were summarized. The calculation of classification accuracy 

was originally attempted setting linear.output = false (classification). As the results showed very 

little divergence, the classification methodology was revised and a regression approach 

(implemented by setting linear.output = True) was used. A function was then written to de-

normalize the output, which was then classified according to a metric appropriate to the 

dependant variable being predicted. If the outcome variable and the actual variable class 

matched, the result was considered correct, no matter the numeric distance between the two 

values. A function was created to record the actual and predicted dependant variable values as 

well as their residuals.  
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The algorithm was first employed to predict 2015 EUI using 2010 data. After the results were 

unsatisfactory, the algorithm was revised to predict the percent change in EUI between 2010 and 

2015 in proportion to the starting EUI. This value was calculated as (2010 EUI – 2015 EUI) / 

2010 EUI and is expressed as a percent change. To further improve results, the algorithm was 

also trained to predict the actual change in EUI between 2010 and 2015, expressed in the same 

units as EUI (eKWh/sf/yr). Actual change was calculated as 2010 EUI minus 2015 EUI.  

This approach was employed for seven sets of input variables, to explore if the presence or 

absence of certain variables affected the classification accuracy of the test data. The input 

variables combinations for each set are seen in Table 3-9. Iterations combined different variable 

sets with one, two or three hidden layers to predict either actual EUI change or percent EUI 

change between 2010 and 2015. Seven iterations of each one- and two-layer ANN models were 

completed for both outcome variables. Due to non-converging models, only five iterations were 

completed for the three-layer ANN model. They the actual EUI change outcome variable and 

input variable sets 3 to 7. 

Table 3-9 Variables engaged with each ANN iteration 
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The results were analyzed and the best combination of hidden layer nodes were recorded for 

each iteration. The classification accuracy of each neural net iteration was plotted for simplified 
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comparison. A visualization of the neural net structure with the highest overall accuracy was 

output along with the corresponding weights.  

3.4 Evaluation 

To evaluate the accuracy of predictive models, the datasets were split into training and test sets. 

The models were trained on the training dataset, then applied to the test dataset and the predicted 

responses were compared to the actual values. The success of a model was evaluated according 

to overall classification and within-class accuracy rate and RMSE. Overall classification 

accuracy rate is the proportion of correctly identified classes (‘Good’, ‘Fair’ or ‘Poor’) 4 out of 

all the responses.  

Equation 4 Overall classification accuracy rate  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒 

=  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
× 100%  

The within-class accuracy rate is the portion of correctly identified instances of each class out of 

instances of that class. 

Equation 5 Within-class accuracy rate  

𝑊𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑟𝑎𝑡𝑒 

=  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑃𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝐶𝑙𝑎𝑠𝑠 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  𝑖𝑛 𝑃𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 𝐶𝑙𝑎𝑠𝑠 

× 100%  

The overall classification and within-class accuracy rate are primarily used for classification 

algorithms, but were also used to evaluate the results of regression algorithms in an effort to 

explore possible improvements to the usefulness of the results. The responses of a regression 

model were classified during post-processing based on the following conditions in Table 3-10 

and evaluated as if they were classification model results using Equation 4 and Equation 5. 

Table 3-10 Classification Boundaries for various Dependent Variables 

 Outcome Variable 

Class EUI  EUI Actual Change  EUI Percent Change 

                                                 
4 This document will visually class names with a combination of ‘quotation marks’ and italic font 
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(ekWh/sf/yr) (ekWh/sf/yr)  

Poor X => 40 X <= 0 X <= 0% 

Fair 20 < X < 40 0 < X < 10 0% < X < 25% 

Good X <= 20 X => 10 X => 25% 

 

The RMSE was used to solely evaluate results from regression models. RMSE was chosen 

against other regression metrics as it punishes larger residuals more severely. As the RMSE were 

calculated for different outcome variables, different RMSE thresholds exist for different outcome 

variables (Table 3-11).  

 

Table 3-11 RMSE Threshold for a successful and ideal RMSE evaluation  

 Outcome 

Variable 

Threshold for Successful 

RMSE 

Threshold for Ideal 

RMSE 

De-Normalized 

Outcome 
EUI 5 (ekWh/sf/yr) 2 (ekWh/sf/yr) 

Normalized 

Outcomes 

EUI .09 .04 

Actual Total .08 .03 

Actual E&C .05 .02 

Actual Thermal .03 .01 

 

The threshold for successful RMSE was determined to be as 5 ekWh/sf/yr for denormalized EUI 

as this value was believed to be useful for building managers, and will still successfully identify 

very well performing buildings and flag very poor performing buildings. The threshold for an 

ideal RMSE was set as 2 ekWh/sf/yr to expand the potential actionability of the results. The 

thresholds for the normalized EUI and Actual Total was determined by normalizing the previous 

thresholds using maximum and minimum values from the 2010 dataset. To determine the 

thresholds for the normalized Actual Total, Actual E&C and Actual Thermal Energy Use, the 20 by 

15 model building was reviewed. Approximately 63.5% of energy within this building is 

consumed through electricity use; the remaining 36.5% is attributed to thermal energy. 

Therefore, the Actual E&C and Actual Thermal threshold were determined by multiplying the 

Actual Total energy use by their respective proportions.   
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4 Results  

The following section displays a graphical visualization of the key datasets and explains the 

results gained from each algorithm. The expected outcomes for each algorithm are explained and 

tables and graphs are provided to display and compare the results. An analysis of the findings is 

provided to evaluate the model success and interpret observed data trends. 

 

4.1 Data Summary 

It was anticipated that data visualization was that linear relationships between input and outcome 

variables would identify important features. This was tested by plotting each variable against one 

another. No strong relationships were observed between variables that were not definitively 

related to one another (e.g. GFA and EA). The graph below, Figure 4-1, illustrates a sample of the 

resulting plots with the ‘Poor’, ‘Fair’ and ‘Good’ classes respectively represented by red, black 

and green datapoints. The plots are coloured to better highlight class clusters when two variables 

were compared with one another. Clusters are only observed in plots with EUI as that was the 

metric by which the classes were defined.  

Figure 4-2 highlights the quantity of buildings in the data set for each year by province. The 

scale is logarithmic so that less represented buildings are visible. Most buildings were located in 

Ontario and only 1 - 17 buildings were located in Manitoba, Nova Scotia and Saskatchewan. The 

amount of buildings participating in each province did fluctuate year-to-year, however the 

quantity stayed within a comparable range.  

As can be observed in Figure 4-3 to 4-5, the buildings were primarily located near major cities. 

The graphs only display locations of buildings from the 2015 dataset however, the datasets from 

other years display similar distributions. The classes of building EUI, ‘Poor’, ‘Fair’ and ‘Good’, 

are relatively well distributed throughout all of the location clusters. The darker colours represent 

a denser population of building of that class in each region.  
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Figure 4-1 2015 dataset plot with 2015 Energy Use Intensity (EUI), Asset Manager (AM), Exterior Area 

(EA), Enclosed Parking (EP), Latitude (Lat), Longitude (Long), Construction Year (CY), Climate Zone 

(CZ(, Electrical Heat (EH), Cooling Tower (CT), Soft landscaping (SL), Occupant Density (Occ. 

Density), Vacancy Rate (VR) and Weekly Operating Hours (WHO) plotted against one another. All 

datapoints are classified according to 2015 Qualitative EUI.  
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Figure 4-2 Logarithmic representation of the quantity of buildings in the 20 by ‘15 dataset by year and province 

 

Figure 4-3 Geographic distribution of ‘Poor’ buildings across Canada using the 2015 dataset 

 

Figure 4-4 Geographic distribution of ‘Fair’ buildings across Canada using the 2015 dataset 
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Figure 4-5 Geographic distribution of ‘Good’ buildings across Canada using the 2015 dataset 

To test the second expectation, that geographical trends would be observed in the data, the 

average EUI for each Closest Major City (>3 buildings each year) was graphed for the years from 

2010 to 2015. The buildings in Vancouver, BC performed the worst. This is assumed to be 

because Vancouver would rarely view its energy consumption normalized against the weather 

and climate of another city. Its actual energy usage may appear comparatively low due to its 

warmer climate leading to a perception of better performance and less focus on energy 

efficiency. From years 2010 to 2012, Ottawa was the best performing city, however between 

2013 and 2015 the Toronto buildings improved and became the best performers.  

 

Figure 4-6 Average EUI for each Closest Major City for 2010 to 2015 Datasets 

 

Table 4-1 describes the number of buildings in each province by year and class. It can be seen 

that most buildings are located in Alberta, British Columbia and Ontario.   

Table 4-1 Number of individual buildings in each province by dataset and class with the class proportions for a 

given year and province contained in brackets.  

15.00

20.00

25.00

30.00

35.00

40.00

2010 2011 2012 2013 2014 2015

A
ve

ra
ge

 E
U

I (
ek

W
h

/s
f/

yr
)

Dataset

Calgary, AB Edmonton, AB Montreal, QC Ottawa, ON

Toronto, ON Vancouver, BC Victoria, BC



50 

 

 

The Average Exterior Area for each Current Year Qualitative EUI Class was graphed for the years between 

and including 2010 and 2015. Figure 4-7 Average Exterior Area for each Current Year Qualitative EUI Class for 

2010 to 2015 datasets 

The Average EUI for each Asset Manager was graphed for the years between and including 2010 

and 2015. The largest Asset Managers were anonymized using numbers 1 through 4. The number 

9 represents all the other buildings whose property management companies did not represent a 

substantial portion of the dataset. Figure 4-8 shows that those buildings with smaller asset 

Prov. Class 
Dataset 

2010 2011 2012 2013 2014 2015 

AB 

Poor 7 (11%) 8 (11%) 7 (9%) 15 (16%) 20 (20%) 19 (20%) 

Fair 53 (82%) 62 (86%) 61 (79%) 71 (76%) 73 (74%) 68 (70%) 

Good 5 (8%) 2 (3%) 9 (12%) 8 (9%) 5 (5%) 10 (10%) 

ON 

Poor 17 (7%) 6 (3%) 6 (3%) 22 (8%) 22 (8%) 16 (6%) 

Fair 187 (79%) 178 (79%) 152 (70%) 191 (66%) 196 (68%) 164 (63%) 

Good 32 (14%) 41 (18%) 59 (27%) 75 (26%) 69 (24%) 79 (31%) 

QC 

Poor 1 (9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (7%) 

Fair 10 (91%) 9 (100%) 11 (85%) 15 (83%) 14 (88%) 9 (64%) 

Good 0 (0%) 0 (0%) 2 (15%) 3 (17%) 2 (13%) 4 (29%) 

BC 

Poor 19 (38%) 16 (32%) 13 (22%) 17 (24%) 17 (25%) 30 (39%) 

Fair 30 (60%) 34 (68%) 39 (67%) 43 (60%) 45 (65%) 36 (47%) 

Good 1 (2%) 0 (0%) 6 (10%) 12 (17%) 7 (10%) 10 (13%) 

MB 

Poor 1 (14%) 0 (0%) 2 (29%) 1 (14%) 1 (14%) 1 (20%) 

Fair 5 (71%) 3 (50%) 5 (71%) 5 (71%) 6 (86%) 4 (80%) 

Good 1 (14%) 3 (50%) 0 (0%) 1 (14%) 0 (0%) 0 (0%) 

NS 

Poor 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Fair 1 (100%) 1 (33%) 3 (50%) 4 (57%) 5 (83%) 3 (100%) 

Good 0 (0%) 2 (67%) 3 (50%) 3 (43%) 1 (17%) 0 (0%) 

NT 

Poor 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Fair 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (50%) 

Good 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (50%) 

SK 

Poor 2 (100%) 0 (0%) 0 (0%) 1 (11%) 6 (38%) 3 (19%) 

Fair 0 (0%) 2 (100%) 0 (0%) 7 (78%) 10 (62%) 12 (75%) 

Good 0 (0%) 0 (0%) 1 (100%) 1 (11%) 0 (0%) 1 (6%) 

Annual 

Average 

Poor 13% 8% 7% 11% 13% 15% 

Fair 77% 79% 72% 68% 70% 63% 

Good 10% 13% 21% 21% 17% 22% 
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managers were likely to perform better than the others. Asset Managers 3 and 4 performed the 

worst. 

 Figure 4-7 shows that ‘Poor’ buildings are more likely to be smaller in size; in particular less 

than 300,000 sf. This may indicate that the area normalization skews the results for smaller 

buildings as it is more difficult to reduce at this size.  

 

Figure 4-7 Average Exterior Area for each Current Year Qualitative EUI Class for 2010 to 2015 datasets 

The Average EUI for each Asset Manager was graphed for the years between and including 2010 

and 2015. The largest Asset Managers were anonymized using numbers 1 through 4. The number 

9 represents all the other buildings whose property management companies did not represent a 

substantial portion of the dataset. Figure 4-8 shows that those buildings with smaller asset 

managers were likely to perform better than the others. Asset Managers 3 and 4 performed the 

worst. 
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Figure 4-8 Average EUI for each Asset Manager for 2010 to 2015 Datasets 

The data visualization was less successful than expected. No linear relationships were 

highlighted by plotting all of the variables against one another. It was determined that Nova 

Scotia, the Northwest Territories and Manitoba are under represented in the dataset and cannot 

provide useful insights on the commercial office energy usage in these provinces.  

It was observed that smaller buildings are more likely to be classified as ‘Poor’, as are buildings 

located in British Columbia. Toronto buildings on average have the least amount of energy 

consumption and show the most amount of improvement over time than the other Closest Major 

Cities.  

4.2 Principal Component Analysis 

Principal Component Analysis was performed for dimensionality reduction and, following the 

methodology presented by Joliffe (1986), feature extraction. For dimensionality reduction, 

principal components (PCs) were determined with the intent to reduce the number of dimensions 

in the dataset, compressing it by minimizes the number of PCs required to account for at least 

90% of the variation. Several subsets of features (44 iterations) were considered in each dataset, 

and the results are presented in Figure 4-9 and Figure 4-10, which summarize the iterations 

performed with PCAshiny on the 2015 Dataset. This was not particularly successful; a minimum 

of 10 principal components were required for all combinations of features considered. For all 

iterations involving EUI or Total Actual Energy, eleven principal components were consistently 
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required to reach the 90% threshold. For iterations that disregarded energy usage variables, ten 

dimensions were required. This is understandable as removing one entire feature reduced the 

number of principal components. The iterations which used a combination of Actual Thermal 

Energy and Actual E&C Energy always required 12 principal components, as they had one more 

dimension than the iterations using Actual Energy or EUI. 

 

Figure 4-9 Number of PC required for 90% Cumulative Variance for the 2015 Dataset iterations using Total Actual 

Energy and a combination of Actual Thermal Energy + Actual Electricity and Cooling Energy  
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Figure 4-10 Number of Principal Components required for 90% Cumulative Variance for the 2015 Dataset 

iterations using either EUI only or no energy variables. 

It was anticipated that alternating the energy use, area and location variables would affect the 

PCA results. However, it was observed that the cumulative variability and feature contribution 

changed little with each iteration. In fact, no change was observed between iterations with the 

same measure of energy. Only iterations without energy use features exhibited a slight 

fluctuation; between 10 and 11 principal components are required to reach the threshold. It can 

be assumed the change was due to the lower number of dimensions in those iterations.  

In addition, it was anticipated that clusters could be found within the data; it was hoped the 

clusters would correspond to different Qualitative EUIs such as ‘Good’, ‘Fair’ or ‘Poor’.  
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Figure 4-11 Scores Plot, 2015 dataset, EA, CZ 

 

Figure 4-12 Scores Plot, 2015 dataset, EA, L&L 

None of the score plots using the Climate Zone feature, as seen with Figure 4-11, illustrated 

clusters. However, iterations involving Longitude and Latitude, as seen in Figure 4-12, 

consistently showed two clusters. Unfortunately, these clusters were not separated according to 

Qualitative EUI. This indicates the clusters cannot reveal anything useful regarding a building’s 

energy performance. It does however inform us that using iterations with Latitude and Longitude 

is more useful than iterations with Climate Zone. This is understandable as Latitude and 

Longitude provide more specificity than Climate Zone.  

As the cumulative variability graphs indicated the PCA results could provide little opportunity 

for dimensionality reduction, PCA was not performed on the 2010-2014 Datasets, which are 

considered less robust (refer to methodology). PCA shiny was used to explore the relationships 

between feature and principle components by producing exploratory loading maps. The 

magnitude of a feature’s contribution is represented by the length of the line and its proximity to 

the PC axis. If a variable is closer to PC 1 than PC 2, it indicates that it contributes to both PCs, 

just more to PC 2. Refer to Figure 4-13 and Figure 4-14. 
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Figure 4-13 Loadings Map, 2015 dataset, AE, EA, CZ, PC 1 (Dim 1) vs PC 2 (Dim 2) 
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Figure 4-14 Loadings Map, 2015 dataset, AE, EA, L&L, PC 1 (Dim 1) vs PC 2 (Dim 2) 

Neither of the loading maps illustrated feature loadings that contributed a significant amount of 

variance to one single axis. However, Figure 4-13 illustrated the Exterior area was the variable of 

most significance, contributing towards both the PC1 and PC2 relatively evenly. Figure 4-14 

showed Longitude and Latitude being the primary variables, but neither contributed strongly to 

one axis. Both maps show Vacancy Rate, Occupant Density, Cooling Tower, Weekly Operating 

Hours and Electrically Heated as being among the least significance to PC 1 and 2.  

As shiny does not output the (numerical) loadings for all of the features and principal 

components, it was solely employed to quickly visualize many iterations and determine which 

ones to analyze further. Since no particular iteration showed unique promise for dimensionality 

reduction, a deeper investigation into the loadings was conducted by using the prcomp function 

on two randomly selected iterations from the 2010-2015 dataset. It was anticipated that using this 

dataset would highlight clusters in the 2010 data according to the future 2015 Qualitative EUI 

results or the Qualitative EUI Change.  
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The plot in Figure 4-15 shows the scree plot and the cumulative variance for Iteration 1. The 

iteration, which originally had 16 features, required 13 out of 16 principal components to reach 

the 90% threshold. The scree plot was also analyzed for elbows, or changes in slope. It was 

assumed a sloped change would occur within a close range of the 90% cumulative variance 

threshold. One elbow was identified at PC 4, which only captured 65% of the variance. As the 

elbow is still 25% away from the threshold, it was not chosen as a boundary for dimensionality 

reduction.  

 

Figure 4-15 Iteration 1 Scree Plot and Cumulative Variance for 2010-2015 dataset 

The plot in Figure 4-16 shows the scree plot and the cumulative variance for iteration two. The 

iteration, which originally had 13 features, required 11 out of 13 principal components to reach 

the 90% threshold. The scree plot was also analyzed for elbows, or changes in slope. Three 

elbows were identified at PC 5, PC 8 and PC 12 which captured 48%, 71% and 96% of the 

variance respectively. The combination chart indicates that PC 11 is an appropriate boundary for 

dimensionality reduction. For feature extraction, the intention was to identify the most significant 

features and remove the insignificant ones. A threshold criterion of Eigenvalue ≥ 0.7 or ≤ -0.7 

within a principal component was used to determine if a feature was considered significant.  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ei
ge

n
va

lu
es

Number of Principal Components

Cumulative Variance (%) Eigenvalues Threshold



59 

 

 

The PC loadings, were further analyzed for Iteration 2. It was expected that each feature would 

significantly contribute to at least one principal component. The factors plot for each iteration 

were reviewed.  Plots  

To the contrary, only one feature, Electrically Heated, reached the significance threshold for any 

principal component. It was assumed that perhaps the threshold was set too high. The results 

were again analyzed by lowering the significance threshold to >0.5 or <-0.5. Table 4-2 

summarizes the findings, with loadings above original threshold highlighted dark grey and those 

above the revised threshold light grey. Only seven features reached the threshold, and none of 

PC 2, PC 3, PC 10, PC 11, or PC 12 had any significant loadings, thus PCA was not successful 

for feature extraction for this data set.  
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Figure 4-16 Iteration 2 Scree Plot and Cumulative Variance for the 2010-2015 dataset 



60 

 

Table 4-2 Iteration 2 loadings for the 2010-2015 dataset 

 PC 
1 

PC 
2 

PC 
3 

PC 
4 

PC 
5 

PC 
6 

PC 
7 

PC 
8 

PC  
9 

PC 
10 

PC 
11 

PC 
12 

PC 
13 

2010  
Actual Energy 

0.13 0.20 0.44 -0.08 -0.07 0.16 -0.25 -0.60 0.37 0.02 0.24 -0.26 -0.16 

Occupant  
Density 

-0.22 -0.31 0.42 -0.08 -0.02 -0.23 -0.19 0.23 0.39 0.44 -0.40 0.01 0.16 

No. of 
 Structures 

-0.26 0.40 0.07 0.35 -0.04 0.15 -0.07 0.41 0.05 0.43 0.47 0.05 -0.19 

Exterior  
Area 

-0.43 0.46 0.04 -0.04 -0.09 -0.03 -0.04 0.08 -0.05 -0.29 -0.17 -0.47 0.49 

Operating 
Hours 

0.24 0.21 -0.02 -0.30 -0.56 -0.15 -0.46 0.17 -0.35 0.09 -0.18 -0.04 -0.27 

Asset 
 Manager 

-0.39 0.29 -0.03 0.04 0.29 -0.21 0.04 -0.46 -0.32 0.27 -0.35 0.21 -0.28 

Building  
Class 

-0.54 -0.26 -0.07 -0.02 -0.28 0.06 0.08 0.06 0.21 -0.39 -0.04 -0.09 -0.58 

Climate  
Zone 

0.11 0.48 -0.10 -0.27 -0.12 -0.27 0.26 0.07 0.52 -0.14 -0.05 0.47 0.00 

Electrically  
Heated 

0.13 -0.02 -0.20 0.36 0.20 -0.73 -0.28 0.01 0.16 -0.15 0.15 -0.26 -0.12 

Vacancy Rate 0.13 0.11 -0.27 0.57 -0.10 0.38 -0.31 -0.06 0.25 -0.07 -0.48 0.15 0.03 

Soft  
Landscaping 

-0.35 -0.16 -0.29 -0.25 0.05 0.04 -0.58 -0.15 0.04 -0.05 0.32 0.38 0.29 

Cooling  
Tower 

0.08 0.09 -0.42 -0.43 0.46 0.24 -0.11 0.18 0.24 0.20 -0.13 -0.38 -0.23 

Construction  
Year 

-0.07 -0.12 -0.49 0.04 -0.48 -0.10 0.29 -0.32 0.13 0.46 0.08 -0.23 0.17 

 

Score plots, which project the transformed data onto a pair of principal component vectors, were 

analyzed to help identify any patterns or clusters. The score plots are shown for iterations 1 and 2 

in Table 4-3 and results were classified according to 2010 Qualitative EUI, 2015 Qualitative EUI, 

and Qualitative EUI Change. The six graphs that display clusters by class are indicated with an 

asterisk (“*”).  
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Table 4-3 Score Plots for iterations 1 and 2 using the 2010 - 2015 Dataset and classified according to 2010 EUI, 

2015 EUI or five-year EUI Change, respectively. 
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As seen above, ‘Poor’ and ‘Good’ building clusters are visible in all graphs classified according 

to 2010 EUI and three of the four graphs classified by 2015 EUI. This shows that the data points 

do cluster according to current and future energy performance. No clusters were observed in 

graphs classified according to EUI Change. Looking at the data as a whole, it was noted that the 

PC 1 vs PC 2 comparisons for iteration segmented the data into two discrete clusters; this 

appears to have been caused by the influence of Latitude and Longitude, which have a non-linear 

relationship with heating degree days, as included features rather than Climate Zone, which has a 

linear relationship.  

* * * * 

* * 
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Figure 4-17 Iteration 1 PC1 vs PC 2 PCA Score Plot 

classified by 2010 Qualitative EUI 

 

Figure 4-18  Iteration 1 PC1 vs PC 2 PCA Score Plot 

classified by 2015 Qualitative EUI 

 

Figure 4-17 and Figure 4-18 highlight the class clusters in Iteration 1, PC 1 vs. PC 2. In Figure 

4-17, the ‘Good’ scores were best clustered with no data points falling outside the group. The 

majority of these points were also segregated from the ‘Poor’ scores into separate clusters. The 

‘Poor’ scores were less tightly clustered than ‘Good’; five data points fell outside the main 

group, compared with zero for the latter. The ‘Fair’ Scores were distributed between both 

clusters, likely caused by its location between the other classes, divided by an arbitrary 

boundary.  

In Figure 4-18, the ‘Good’ Scores were well clustered with four data points falling outside the 

group. The Poor Scores were better clusters with only 2 data point outside the main group. The 

‘Fair’ Scores were again distributed between the 2 large clusters.  

Overall the PCA was unsuccessful for dimensionality reduction; however, it was useful for 

describing the structure of the dataset. The results demonstrate a measure of natural separation 

according to energy performance. It also illustrates that any energy usage or area variable can be 

used without negatively impacting the results. There is therefore no need to explore every 

variable combination in future algorithms. Lastly the results favour iterations with Latitude and 

Longitude vs Climate Zone, as illustrated by the ability of the PCA to demark the ‘Poor’ and 

‘Good’ classes through clustering when iterations with Latitude and Longitude were used. This 

result indicates that only iterations with Latitude and Longitude needed to be explored for future 
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algorithms; separate iterations for Climate Zone are not expected to lead to better results. These 

observations were useful for reducing the number of iterations performed on future algorithms.  

4.3 Linear Discriminant Analysis 

It was expected that the application of LDA would identify clusters allowing classification of 

new samples, and allow important features to be distinguished from unimportant features.  

The overall and within-class correct classification rates for each iteration were compared to 

assess whether LDA was able to find class clusters within the data (Table 4-4). For the initial six 

runs, iteration 1 and iteration 4 resulted in the highest overall classification accuracy. This shows 

the model is good at separating data according to the current year (2010) Qualitative EUI; 

however, it is 20-40% less successful at achieving separation with future (2015) Qualitative EUI 

and Qualitative EUI Change classes. When the within-class accuracy rates were compared, it was 

observed that all of the models, including iterations 1 and 4, were very poor at classifying the 

‘Good’ individuals.  

Table 4-4 LDA Classification Accuracy rates by iteration 

Iteration 

Input 

Variables 

 

Outcome 

Variable 

Overall 

Classification 

Accuracy 

Class 

‘Poor’ 

Accuracy 

Class 

‘Fair’ 

Accuracy 

Class 

‘Good’ 

Accuracy 

1 Set A 2010 Q.EUI 84.3% 61.3% 94.1% 28.6% 

2 Set A 2015 Q.EUI 66.2% 59.3% 80.8% 30.4% 

3 Set A Q.EUI Change 44.9% 32.0% 67.0% 23.3% 

4 Set B 2010 Q.EUI 84.3% 64.5% 94.1% 21.4% 

5 Set B 2015 Q.EUI 67.7% 48.1% 88.8% 21.7% 

6 Set B Q.EUI Change 42.4% 34.0% 63.6% 18.3% 

7 Set C 2010 Q.EUI 84.3% 58.1% 94.8% 28.6% 

8 Set D 2010 Q.EUI 85.4% 51.6% 96.1% 42.9% 

Results in the first six iterations indicated pointedly larger loadings for any area related variables. 

For iteration 1, GFA had a loading that was on average four orders of magnitude greater than the 

other loadings. For iteration 4, Exterior Area had a loading that was on average seven orders of 

magnitude greater than the other loadings. Instead of being an indicator of significance, the large 

loading likely indicates over-representation within the dataset and a dependent variable. The 

energy variables, occupant density, and vacancy rate were all calculated as a function of area and 



64 

 

are likely confounding the model. This was explored by performing another iteration with all 

area variables removed. Gross Floor Area and Enclosed Parking Area were removed from iteration 

1 to create iteration 7. Iteration 1 was chosen as it was 7.2% better at classifying ‘Good’ 

buildings than iteration 4.  

The loadings of iteration 7, as seen in Table 4-5, displayed a tight range with no abnormally high 

values. This permitted the observation of which features contribute more to the separability of 

the data. The overall classification accuracy remained the same, implying that the model did not 

lose integrity when the area variable was removed. 

Table 4-5 LDA Iteration 7 Loadings and Variance 

Variable Loading Variance 

LD1 LD2 LD1 LD2 

2010 Actual E&C -3.33 0.68 21% 5% 

 2010 Actual Thermal -1.89 -1.31 12% 10% 

 Building Manager 0.12 -1.11 1% 9% 

Latitude -0.85 -0.87 5% 7% 

Longitude 6.75 2.18 43% 17% 

Construction Year 2.35 4.45 15% 35% 

Number of Structures 0.02 -0.11 0% 1% 

Building Class 0.06 0.15 0% 1% 

Electrically Heated 0.02 0.15 0% 1% 

Cooling Tower 0.13 -0.15 1% 1% 

Soft Landscaping 0.03 0.04 0% 0% 

Occupant Density -0.02 0.50 0% 4% 

Vacancy Rate -0.14 0.20 1% 2% 

Weekly Operating Hours 0.05 -0.72 0% 6% 

After reviewing the loadings plot, any feature with a loading below 3% was considered 

insignificant and removed to create iteration 8. This last iteration showed a slightly improved 

overall classification accuracy which was 1.2% better than iterations 1 and 7. This indicates that 

the integrity of the model is not compromised if Number of Structures, Building Class, Electrical 

Heat, Cooling Tower, and Soft Landscaping are not included. In fact, the ability to classify ‘Good’ 

building improved by 14.3%. Refer to Table 4-6 for the iteration 8 loadings and variances. It can 

be seen that the separability of LD1 corresponds greatest to Longitude and is inversely related to 

Actual E&C Energy. In addition, the separability of LD2 is mostly explained by Construction Year 

and Longitude.  
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Table 4-6 LDA Iteration 8 Loadings and Variance 

Variable 
Loading Variance 

LD1 LD2 LD1 LD2 

2010 Actual E&C Energy -3.43 1.17 22% 8% 

2010 Actual Thermal Energy -1.95 -1.50 12% 11% 

 Building Manager 0.12 -1.43 1% 10% 

Latitude -0.88 -1.03 6% 7% 

Longitude 6.97 2.17 44% 15% 

Construction Year 2.46 5.46 15% 38% 

Occupant Density -0.02 0.64 0% 4% 

Weekly Operating Hours 0.05 -0.92 0% 6% 

The score plots were all compared. Linearly separated class clusters were observed in LDA score 

plots that were classified according to current year EUI. The best separation was observed in 

iteration 8 as seen in Figure 4-19. The plots classified according to 2015 Qualitative EUI and EUI 

Change were not observed to have linearly separated classes as seen in Figure 4-20.  

 

Figure 4-19 Iteration 8 LDA Score plot classified by 

2010 Qualitative EUI. Optimal separability is 

observed. 

 

Figure 4-20 Iteration 3 LDA Score plot classified by 

EUI Change. Poor separability is observed. 

The results indicate that data structure contains natural separation according to the current year 

Qualitative EUI. Also, the results suggest that the most important variables for class separability 

are Actual Electricity and Cooling Energy, Actual Thermal Energy, Property Manager, Latitude, 

Longitude, Construction Year, Occupant Density and Weekly Operating Hours. Moreover, the 

LDA algorithm can be used for predicting new samples with 85.4% accuracy, however the 

likelihoods of misclassification for ‘Poor’ and ‘Good’ buildings are 49% and 58%, respectively.  
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Overall LDA successfully analyzed the data structure and significant features and identified 

clusters according to current year Qualitative EUI. However, LDA does not offer confident 

prediction rates.  

4.4 k-Nearest Neighbours 

For k-nearest neighbours, two outcomes were anticipated. First, that the KNN algorithm would 

be able to correctly classify the new samples. Second, that KNN graphs would illustrate 

separability between classes when different variable combinations were explored. As illustrated 

in Table 4-7, the first expectation proved to be reasonable for the overall classification and true 

for ‘Fair’ class accuracy, but untrue for ‘Poor’ and ‘Good’ classes.  

Table 4-7 KNN Classification Accuracy rates by iteration 

Iteration 

Outcome 

Variable 

Overall 

Classification 

Accuracy 

‘Poor’ 

Classification 

Accuracy 

 ‘Fair’ 

Classification 

Accuracy 

‘Good’ 

Classification 

Accuracy 

1 
2010 Qualitative 

EUI 
83.3% 12.5% 83.1% 0.0% 

2 
2015 Qualitative 

EUI 
71.7% 20.0% 92.9% 23.1% 

3 
2010-20215 

Qualitative EUI 

Change 
48.3% 38.5% 76.9% 19.0% 

4* 
2010 Qualitative 

EUI  
78.4% 6.5% 100.0% 0.0% 

       *Cross validated KNN Model 

The overall classification accuracy rate was the highest with iteration 1. The corresponding KNN 

model cannot be considered a success as it performed poorly at classifying buildings with ‘Poor’ 

and ‘Good’ 2010 Qualitative EUI values. The remaining iterations were also heavily biased to 

classify a building as ‘Fair’ despite either a different outcome variable or a different KNN 

function being used. This same bias was seen with the PCA and LDA prediction results and is 

likely because as with each outcome variable, the quantity of ‘Fair’ buildings is greater than 

‘Poor’ or ‘Good’.  

Iteration 2 had the highest accuracy for classifying ‘Good’ 2015 Qualitative EUI in buildings, 

indicating that it is easier for a KNN model to correctly categorize a ‘Good’ 2015 Qualitative EUI 

given 2010 data. It is thereby considered the most successful model.  
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The poorest performing overall accuracy was from iteration 3, though it performed the best in 

classifying ‘Fair’ buildings and was the second-best iteration for classifying ‘Good’ buildings. 

The amount of buildings falling into each class for Qualitative EUI Change were much more 

evenly distributed than with other outcome variables. The result indicates that KNN was better 

able to define divisible boundaries between 2015 Qualitative EUI classes. This likely explains 

why the within class accuracy rates were slightly better. Overall the results indicate that 2010 

data cannot be used to successfully predict the Qualitative EUI Change. 

The second expectation was disproved as the KNN graphs were generally poor at clustering by 

class. For each iteration the classification probabilities output by the KNN model were plotted 

behind a scatter plot displaying the actual data points. The probabilities are communicated via 

size and transparency; the larger and darker the point, the higher the probability a point belongs 

to a particular class. The solid large points represent the actual individuals.  

A successful graph would display individual data points grouped by class, residing in a space 

with matching class probabilities predicted by the KNN model. Refer to Figure 4-21 for a 

concept diagram of a successful KNN graph. 
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Figure 4-21 Example of the overlaid scatter plot 

showing a successful KNN model 

Generally, the graphs did not cluster well. Iteration 1 – 2010 E&C Energy vs 2010 Thermal 

Energy (see Figure 4-22), resulted in a graph with moderately successful separability of the 2010 

Qualitative EUI classes. The ‘Good’, ‘Fair’ and ‘Poor’ buildings can be seen to group amongst 

themselves naturally, with some overlap. However, the KNN modelled probabilities do not line 

up neatly with the clusters of actual individuals. 

 The graph likely demonstrates class separability because 2010 Qualitative EUI is dependent on 

2010 Thermal Energy and 2010 Actual E & C. This graph was produced as an exploratory 

measure and is not useful in producing insight about energy data trends.  
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Figure 4-22 Estimated probabilities from KNN Model vs Actual individuals for 2010 Thermal 

Energy and 2010 E&C classified by 2010 Qualitative EUI. Moderate separability is observed. 

errorThe same two variables were explored in iteration 2 - 2010 E&C Energy vs 2010 Thermal 

Energy (Figure 4-22), displayed very weak separability of the 2015 Qualitative EUI classes. This 

implies that the 2015 Qualitative EUI is not explained well by the 2010 E&C Energy vs 2010 

Thermal Energy. 
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Figure 4-23 Estimated probabilities from KNN Model vs Actual individuals for 2010 Thermal Energy and 2010 E&C 

classified by 2015 Qualitative EUI. Weak separability is observed. 

Across all iterations, the resulting graphs are inadequate in their class separability. An example 

of a typical poorly clustered graph can be seen in Figure 4-24. Datapoints of different classes can 

be seen overlapping each other and the KNN probabilities do not correlate to the actual 

individuals. 
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Figure 4-24 Estimated probabilities from KNN Model vs Actual individuals for Vacancy Rate and Occupant Density 

classified by 2015 Qualitative EUI. Poor separability is observed. 

Figure 4-24 estimated probabilities from KNN Model vs Actual individuals for Vacancy Rate and 

Occupant Density classified by 2015 Qualitative EUI. Poor separability is observed. 

In conclusion, the KNN algorithm was not successful at classifying new samples, even when 

cross validation was used. Furthermore, it is difficult to use KNN models to highlight clusters 

within the 20 by ‘15 dataset when plotting the datapoints in a two-dimensional space and using 

independent input variables.  

4.5 Multiple Linear Regression 

For Multiple Linear Regression, three outcomes were anticipated. First, that the MLR algorithm 

would be able to correctly classify the new samples. Second, the model would illustrate which 

features contributed significantly to each dependent variable. Third, that MLR graphs would 

illustrate a strong, positive correlation between the predicted and actual values. As illustrated in 

Table 4-8, the first expectation proved to be reasonable for the overall classification and true for 
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‘Fair’ class accuracy, but untrue for ‘Poor’ and ‘Good’ classes.  

Table 4-8 MLR classification accuracy rates by iteration 

*note that the null accuracy (accuracy if the model predicted that all elements belonged to the 

dominant class) is 71%, which skews the ‘Fair’ (dominant class) accuracy upwards. 

The highest overall classification accuracy rates were observed when predicting 2010 EUI in both 

the test (78%) and training (68.4%) dataset in iteration 1. Unfortunately, the results are deceptive 

as the iteration 1 MLR model performed poorly at classifying buildings with ‘Poor’ and ‘Good’ 

2010 EUI values. Iteration 2 was also heavily biased to classify a building as ‘Fair’ despite 

predicting 2015 EUI instead. This same bias was observed with the PCA, LDA and KNN 

Iteration Dataset 

Classification 

Accuracy 

‘Poor’ 

Classification 

Accuracy 

‘Fair’ 

Classification 

Accuracy* 

‘Good’ 

Classification 

Accuracy 

1 (2010 EUI) Train 68.4% 7.7% 93.9% 0.0% 

1 (2010 EUI) Test 78.0% 0.0% 95.8% 0.0% 

2 (2015 EUI) Train 47.8% 20.0% 75.0% 5.1% 

2 (2015 EUI) Test 67.8% 14.3% 90.2% 18.2% 

3 (EUI Change) Train 68.3% 86.2% 5.0% 0.0% 

3 (EUI Change) Test 6.7% 0.0% 0.0% 100.0% 

‘Poor’ Region 

‘Fair’ Region 

‘Good’ Region 

Figure 4-25 Distributions within the Actual and Predicted values for the training and test data using 2010-2015 

dataset 
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prediction results and is likely because the distribution of building classes is more heavily 

weighted to ‘Fair’ buildings. In Figure 4-25, the distributions can be observed to lie dominantly 

in the ‘Fair’ Region. It would could be assumed that the fault lies with the chosen boundaries 

which result in 12% of 2010 buildings being classified as ‘Poor’ and 10% being classified as 

‘Good’ however the classification boundaries were defined to identify the best and worst 

performing buildings.  

Iteration 2 had low accuracy rates for classifying ‘Good’ and ‘Poor’ Buildings, but the model 

still performed slightly better than both iterations 1 and 2, indicating that it is easier for an MLR 

model to correctly classify a low frequency 2015 EUI classes given 2010 data.  

The poorest performing overall accuracy was from iteration 3, though it performed the best in 

classifying ‘Poor’ buildings in the training set and ‘Good’ buildings in the test set. The amount 

of buildings falling into each class for the Qualitative EUI Change variable had the least accurate 

distribution. Overall the results indicate that 2010 data cannot be used to successfully predict the 

EUI Change. 

Next, the statistical summaries output by each model were analyzed for features which 

contributed significantly to the dependent variable. Significance was defined as a p<0.05, 

indicating less than 5% chance variability. Despite each model targeting different dependent 

variables, they mostly shared the same significant features (see Table 4-9). Longitude, Latitude, 

Construction Year and Occupant Density were identified as significant in two out of three MLR 

models. 

Table 4-9 Statistically significant features identified by the three MLR models 

p<0.05 

Iteration 1  

(2010 EUI) 

Iteration 2  

(2015 EUI) 

Iteration 3  

(EUI Change) 

Longitude X X X 

Latitude  X X 

Construction Year X X  

Occupant Density  X X 

 

Lastly, the actual values were plotted against the predicted values output by the MLR models. A 

successful graph would display a strong, linear correlation between the two variables. Generally, 

the graphs showed low to moderate correlation, though iteration 2 training data (Figure 4-26) 
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resulted in a graph with moderately successful class separability. The same model applied to new 

test data yielded a graph demonstrating poor linear correlation (see Figure 4-27). This outcome 

indicates the MLR model is not robust when confronted with new observations.  

 

Figure 4-26 Actual vs Predicted 2015 EUI using 2010-2015 training dataset. Moderate linear correlation is 

observed. (Predicted = actual curve shown for reference) 

 

Figure 4-27 Actual vs Predicted 2015 EUI using 2010-2015 test dataset. Poor linear correlation is observed. 

(Predicted =. actual curve shown for reference) 
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In conclusion, the MLR models are not successful at predicting new observations, as evidenced 

by the classification accuracy rates at the poor correlation observed in the graphs. The MLR 

models are useful at highlighting Longitude, Latitude, Construction Year and Occupant Density as 

overall significant variables. 

4.6 Support Vector Machines 

For Support Vector Machines, two outcomes were anticipated. First, that the SVM algorithm 

would be able to correctly classify the new samples. Second, that MLR graphs would illustrate a 

strong, positive correlation between the predicted and actual values.  

Iterations 1 and 2 were run using regression analysis. As summarized in Table 4-10, the RMSE 

for each regression iteration and kernel were calculated. It is interesting to note that within each 

iteration, the changing kernels altered each RMSE by less than 0.02 (Note the normalized 

numbers are unitless absolute values). It appears that the choice of kernel had little effect on 

predictive accuracy. No iteration achieved the threshold of 5 ekWh/sf/yr to be considered 

successful. The RMSE Scores were on average six times higher than the threshold for 

denormalized EUI predictions.  

Table 4-10 RMSE for iterations 1 and 2 

Kernel 

Iteration 1 (2010 EUI) Iteration 2 (2015 EUI) 

Train Test Train Test 

Linear 32.27 29.85 29.86 29.11 

Polynomial 32.28 29.83 29.85 29.08 

Sigmoid 32.27 29.83 29.86 29.07 

Radial 32.28 29.85 29.85 29.09 

Success Threshold: 5       Ideal Threshold: 2 

As illustrated in Table 4-11, the first expectation proved to be reasonable for the overall 

classification and true for ‘Fair’ class accuracy, but untrue for ‘Poor’ and ‘Good’ classes. The 

models performed poorly at classifying the ‘Poor’ and ‘Good’ classes; there was a heavy bias for 

the model to predict only one class when confronted with new observations. The Linear and 

Polynomial kernels predicted all new observations to be ‘Poor’ while the Sigmoid and Radial 

kernels predicted all new observations as ‘Fair’.  

The Radial kernel performed best on the iteration 3 (2010 Qualitative EUI) training dataset with 

only one misclassified observation, therefore the same kernel was used for iteration 4. The 
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iteration 4 radial kernel model perfectly classified the training data, but proved to not be able to 

predict more than one class when applied to new data.  

Table 4-11 Classification Accuracy rates for iterations 3 and 4 

Iteration Kernel Dataset Overall 

Class. 

Accuracy 

‘Poor’ 

Class. 

Rate 

‘Fair’ 

Class. 

Rate 

‘Good’ 

Class. 

Rate 

3 (2010 Qualitative 

EUI) 

Linear Train 77% 0% 77% 0% 

Test 10% 10% 0% 0% 

Polynomial Train 92% 9% 77% 6% 

Test 10% 10% 0% 0% 

Sigmoid Train 77% 0% 77% 0% 

Test 85% 0% 85% 0% 

Radial Train 99% 15% 77% 7% 

Test 85% 0% 85% 0% 

4 (2015 Qualitative 

EUI) 

Radial Train 100% 14% 63% 23% 

Test 71% 0% 71% 0% 

Overall, the SVM models are not successful at predicting new observations, either using 

regression or classification models, as evidenced by the RMSEs and the classification accuracy 

rates. The SVMs models are useful at highlighting that the data may be dispersed in a radial 

fashion and would require a radial kernel to become linearly separable.  

4.7 Decision Trees 

It was anticipated the Decision Tree algorithm would have a low RMSE when using regression 

algorithms and a high accuracy rate when classifying new observations using the classification 

algorithm.  

As summarized in Table 4-12, the RMSEs for each iteration using regression analysis were 

calculated. The RMSEs were calculated using the normalized actual and predicted values, so that 

each variable may be compared against the other. There is little variation in RMSE as the dataset 

and outcome variable changed within each iteration; all results have an RMSE between 0.09 and 

0.16, a range of only 0.07. The lowest RMSE was attained using the 2013 dataset to predict 2013 



77 

 

Actual Electricity and Cooling Energy. The highest RMSE resulted from using the 2015 dataset to 

predict 2015 EUI.  

Overall the RMSE is not low enough to confidently predict the energy performance of buildings, 

however it does provide a rough estimate. It appears that the choice of outcome variable or year 

of data has little effect on predictive accuracy.  

Table 4-12 Normalized RMSE for predicting each Energy Performance Measure with each Dataset 

Outcome Variable 
Dataset Success 

Threshold 

Ideal 

Threshold 2011 2012 2013 2014 2015 2015|2010 

EUI 0.15 0.15 0.14 0.15 0.16 0.15 .09 .04 

Actual Total 0.14 0.14 0.12 0.14 0.13 0.14 .08 .03 

Actual E&C 0.14 0.13 0.09 0.11 0.11 0.14 .05 .02 

Actual Thermal 0.14 0.15 0.14 0.14 0.15 0.14 .03 .01 

As seen in Figure 4-28, the classification accuracy rate of Random Forest Decision Trees was 

evaluated for each year and energy performance measure with error margins varying between 

0% and 25%.  

As seen with the RMSE calculations, the year and energy performance measure appeared to have 

little effect on the classification accuracy. Naturally, increasing the error margin led to an 

increase in the classification accuracy. Most iterations, 22 out of 24, required an error margin of 

25% to attain a classification accuracy of 90%, though 10 iterations achieved 90% with an error 

margin of 20%.  

It is interesting to note that the graphed results in Figure 4-28 (f) vary little from Figure 4-28 (a-

e), considering they are measuring the ability of the model at classifying 2015 energy measures 

using 2010 data, while the other iterations are predicting current year energy data. This indicates 

that the accuracy of decision tree models will not improve significantly when calculating current 

year energy use as opposed to future energy use. 
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Figure 4-28 (a) Prediction Accuracy of Random Forest 

Decision Trees vs Error margin for 2011 Energy Use 

Measures 

Figure 4-28 (b) Prediction Accuracy of Random Forest 

Decision Trees vs Error margin 2012 Energy Use 

Measures 

Figure 4-28 (c) Prediction Accuracy of Random Forest 

Decision Trees vs Error margin 2013 Energy Use 

Measures 

Figure 4-28 (d)   Prediction Accuracy of Random 

Forest Decision Trees vs Error margin 2014 Energy 

Use Measures 

Figure 4-28 (e) Prediction Accuracy of Random Forest 

Decision Trees vs Error margin 2015 Energy Use 

Measures 

Figure 4-28 (f) Prediction Accuracy of Random Forest 

Decision Trees vs Error margin 2015|2010 Energy Use 

Measures 

 

Figure 4-28 Prediction Accuracy of Random Forest Decision Trees vs Error margin for Energy Use Measures 

The results of the random forest decision tree classification algorithm are shown below in  Figure 

4-29. The algorithm was trained to predict current year qualitative energy use as well as 2015 

qualitative energy use using 2010 data. The 2014 iteration had the worst predictive accuracy 
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while 2011 iteration displayed the best. When classifying using three classes, the accuracy rate 

varied between 54% and 77% and when using two classes, ‘Good’ or ‘Not Good’ (i.e. ‘Poor’ and 

‘Fair’ together) the rate was between 81% and 95%.  

 

Figure 4-29 Accuracy of Random Forest Decision Trees for Predicting Qualitative Energy Use for Current and 

Future Years 

These accuracy rates appear to be high except when the within-class classification accuracy rates 

are analysed, the same previously witnessed bias to ‘Fair’ results were observed. Refer to Table 

4-13 to see the summary of the overall and within-class classification accuracy rates for 

predicting Qualitative EUI with each dataset. Conversely, the correct classification of ‘Good’ 

classes only occurs between 7% and 29% of the time. The highest classification accuracy rate 

was achieved using the 2013 dataset and the lowest was attained using the 2011 Dataset. Finally, 

the correct classification of ‘Poor’ classes only occurs between 0% and 29% of the time. The 

highest classification accuracy rate was achieved using the 2011 dataset and the lowest was 

attained using the 2013 Dataset; this observation is the inverse of the ‘Good’ Classification 

Accuracy Rate.  
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Table 4-13 Classification Accuracy rate for Decision Tree Classification Algorithm 

Dataset Overall 

Classification 

Accuracy Rate 

‘Poor’ 

 Classification 

Accuracy Rate 

‘Fair’  

Classification 

Accuracy Rate 

‘Good’  

Classification 

Accuracy Rate 

2011 77.00% 28.57% 94.87% 6.67% 

2012 71.57% 11.11% 90.54% 26.32% 

2013 66.90% 0.00% 84.47% 29.63% 

2014 54.48% 14.18% 73.88% 11.94% 

2015 58.62% 18.18% 90.00% 29.03% 

2015|2010 71.57% 11.11% 90.54% 26.32% 

 

Overall the random forest decision tree models were not able to accurately predict the class 

without a bias towards ‘Fair’ results or the energy performance measure within a meaningful 

range. The results did indicate that the dataset and energy performance measure chosen have 

little impact on the quality of the prediction.  

4.8 Artificial Neural Networks  

It was anticipated the Artificial Neural Networks algorithm would have a low RMSE and high 

accuracy rate when classifying new observations 

Seven iterations were run, exploring the retention of a varying quantity of variables with a 

different quantity of layers in the ANN chart when predicting Actual EUI Change. Ten-fold cross 

validation was used. As the 3-layer ANN algorithms often failed to converge, only 1-layer and 2-

layer ANN models were used to predict the % EUI Change. 

The results of the best tuned models within each iteration are summarized in Figure 4-30. The 

models trained to predict the percent change in EUI from 2010 to 2015 performed significantly 

worse than the models predicting Actual EUI Change. There was little variation in the predictive 

accuracy of the latter models, which averaged at 62.5%. Generally, the more layers, the better the 

model performed however the improvement was not more than 5%.  
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Figure 4-30 Predicting 2010 - 2015 EUI Change ANN - Prediction Accuracy vs Iteration 

The best model was from the iteration with two hidden layers which used the set six input 

variables. The model only achieved an accuracy of 66.03% with eight nodes in each of its two 

hidden layers. A visualization of this ANN model is presented in Figure 4-31. 

Overall the ANN model did not produce strong predictive accuracy rates. The overall 

classification accuracy rates were so low that the within class accuracy rates were not analysed. 

It is worth noting that the ANN algorithm models were the most time intensive as the models 

took many days to complete, if they did converge at all. For the aforementioned reasons ANN is 

considered the worst performing algorithms explored in this paper and they were not able to 

predict the class of a new buildings 2015 EUI using its 2010 data.  
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Figure 4-31 Best Fit ANN Model (Iteration 6, 2 hidden layers, 8 nodes in each hidden layer) 
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5 Discussion 

The objectives of the research were to determine the most significant predictors of EUI and to 

accurately predict a building’s energy usage. The following sections discusses the implications 

of the findings and potential sources of error.  

5.1 What are the most significant EUI predictors? 

Data visualization, PCA, LDA and MLR were explored to identify trends and important 

variables which explain energy use intensity. The data visualization was the least helpful, 

although some useful observations were made. The linear regression plots between the variables 

of the 2015 data do not highlight any important relationships. When mapping the longitudes and 

latitudes of each building, it was found that most buildings are located in major cities. The 

geographical distributions of each class are relatively proportional and a building’s location is 

not indicative of its class.  

It was observed that smaller buildings are more likely to be classified as ‘Poor’, this indicated 

that when being normalized for size, small buildings are punished more aggressively than larger 

building which have their energy usage distributed over a greater area.  

It was noted that Vancouver had the highest average EUI out of all the major cities for each 

survey year. This indicates that though Vancouver may have lower actual energy usage due to 

the climate and when the energy use is normalized based on a Toronto climate, the buildings are 

revealed to actually be performing poorly. The cities’ buildings have also been performing worse 

on average since 2012.  

When PCA, LDA, and MLR were used to highlight the most important variables for predicting 

future energy use, LDA identified the most variables (Table 5-1). Although MLR identified less 

variables, the results supporting with the LDA findings. PCA was not relatively effective at 

identifying significant variables, though it did determine that Latitude and Longitude were more 

useful than Climate Zone.  
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Table 5-1Most important variables as determined by PCA, LDA and MLR algorithms. 

 PCA LDA MLR 

2010 Actual E&C  X  

2010 Actual Thermal  X  

2010 Actual Total Energy  X  

Occupant Density  X X 

Weekly Operating Hours  X  

Asset Manager  X  

Longitude X X X 

Latitude X X X 

Construction Year  X X 

 

Feature reduction is favourable as it informs building energy surveyors which building 

characteristics are not worth collecting, thereby saving time. This paper would recommend 

collecting Occupant Density, Weekly Operating Hours, Asset Manager, Longitude, Latitude, and 

Construction Year when predicting current EUI. When predicting EUI change or future EUI, it 

would likely be helpful to collect the Actual E & C and Actual Thermal of the start year.  

5.2 How accurately can one predict a building’s EUI given the available data? 

Two types of evaluations were used to access the accuracy of the models. RMSE evaluated the 

numerical outputs from regression functions. Overall classification and within-class accuracy 

rates were used to assess classification function. As the results for both were unsuccessful, the 

regression results were sometimes classified during post processing to explore if the regression 

outputs perhaps still fell into appropriate class categories. This aim was that the increased 

flexibility and error margins might result in a successful classification result.  

5.2.1 RMSE Evaluation 

The RMSE was calculated for the SVM, Decision Tree, and ANN models. Overall, none 

achieved the set thresholds for a successful model. The best performance was observed with the 

Decision Tree model when predicting the Actual Total energy on the 2013 dataset. The threshold 

was set at 0.08 for the particular outcome variable and the model had an RMSE of 0.12 which 

was only 1.5 times greater. For decision trees the worst RMSE were returned when the outcome 

variable was Actual E&C and Actual Thermal.  
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Table 5-2 lowest RMSE values for each regression algorithm 

Algorithm 
Outcome 

Variable 
RMSE 

Success 

Threshold 

Ideal 

Threshold 

SVM 2015 EUI 29.07 5 2 

DT Actual Total 0.12 0.08 0.03 

ANN 
Percent EUI 

Change 
25 5 2 

 

Although the ANN model returned a dismal RMSE, the SVM model performed the worst. The 

threshold was set at 5 for the particular outcome variable and the model had an RMSE of 29.07 

which was almost six times greater.  

Overall, none of the models were determined to be successful when their RMSEs were 

evaluated.  

5.2.2 Classification Accuracy Evaluation 

It was expected that the more complex algorithms such as decision trees and ANNs would be 

able develop more comprehensive models and thereby have better classification accuracy rates. 

It was interesting to note that the ANN model returned the lowest classification accuracy and it 

was the simpler LDA algorithm that performed better than any of the others.  

The overall LDA accuracy was 85.4%. The SVM model may initially appear as a close second as 

it was only 0.4% lower than the LDA model. However, the SVM model was only able to output 

one class prediction, which renders it unhelpful.  

LDA is the better model as each within-class accuracy rate were also the highest. Although LDA 

performed the best, it cannot be used to develop a predictive tool as classification accuracy rates 

of 51.6% for ‘Poor’ and 42.9% for ‘Good’ are not reliable enough. It is far below the 90% 

threshold required.  
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Table 5-3 Best classification accuracy rates for each classification algorithm 

 
Overall 

Classification 
Accuracy 

Class 
‘Poor’ 

Accuracy 

Class 
‘Fair’ 

Accuracy 

Class ‘Good’ 
Accuracy 

LDA 85.4 51.6% 96.1% 42.9% 

KNN 71.7% 20.0% 92.9% 23.1% 

MLR (Test) 67.8% 14.3% 90.2% 18.2% 

SVM 85% 0% 85% 0% 

DT 77.00% 28.57% 94.87% 6.67% 

ANN 66.03% * * * 

*Not recorded due to poor overall classification accuracy 

 

Overall the worst performing models are SVM and ANN, as discussed earlier, as well as MLR. 

The MLR model had the second lowest overall, ‘Poor’ and “Good’ Classification accuracy rates.  

It is assumed that the LDA model performed best as the data clusters in an adequate and useful 

manner when the axes are rotated to maximize class separability. The remaining models likely 

could not manipulate the variables in a way to determine comprehensive rules about class.  

The greatest problem was the larger proportion of ‘Fair’ buildings, which on average made up 

71% of the data set. The chosen boundaries result in an average of 11% of buildings classified as 

‘Poor’ and 17% classified as ‘Good’. The models appeared to over predict the ‘Fair’ class as it 

returned the best overall classification accuracy rate. This perhaps resulted in too few ‘Poor’ and 

“Good’ buildings for the model to successfully train on and develop a basis for selecting the less 

populated classes. However, moving the boundaries would diminish the usefulness of the results 

as the goal is to identify the best and worst performing buildings.  

In addition, it is likely the models were not successful because the collected variables did little to 

explain energy usage within a building. For example, thermal energy consumption is highly 

dependent on the efficiency of the building envelope and the mechanical systems within the 

buildings, both of which are data not collected in the survey.  

Overall, none of the models were determined to be successful when their classification 

accuracies were evaluated, though LDA shows the most promise for future research.  
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5.3 Sources of Prediction Error 

The following are the potential sources of prediction error which possibly lead to the 

unsuccessful machine learning models: 

▪ The data appeared to be too complex and diverse. There did not appear to be linear or 

other simple geometric relationships present within the data, inhibiting the success of the 

data visualization and MLR models. 

▪ Many of the input variables are interdependent with one another and confounded the 

models. For example, the normalized EUI is the actual energy with the Gross Floor Area, 

Enclosed Parking, Occupant Density, Vacancy Rate, Weekly Operating Hours and Closest 

Major City variables factored out. The Occupant Density is a function of the building’s 

Gross Floor Area. 

▪ The REALPAC normalization Database may have removed a necessary information from 

the final normalized EUI such as the influence of building characteristics.   

▪ The dataset consisted a high dimensionality with a relatively low number of individuals. 

The large amount of feature implied strain the model’s ability to draw connection and to 

accurately produce energy use. The dataset likely required more individuals so the model 

could have a better chance at identifying patterns in the structure of the dataset.  

▪ There was an inability to test more specific predictions on subsets due to limited sample 

size within some subsets. For example, the ten-fold cross validation subsets only 

contained about 30 buildings in each, making training and testing more difficult.  

▪ Energy consumption is heavily influenced by the type and quality of a building’s 

constructions. The dataset contained limited information on building construction.  
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6 Conclusions and Recommendations 

The key findings of this research are summarized below: 

1. Poor buildings are on average smaller than 300,000 sf. 

2. Vancouver buildings on average perform the worst and have not improved overall since 

2012. It is suggested for Vancouver to revaluate its energy efficiency in comparison to 

the performance of buildings with less ideal climates.  

3. The LDA model was the best at identifying significant variables and predicting future 

and current energy usage. 

4. The outcome variable (i.e. magnitude of energy use or energy reduction) has little effect 

on the accuracy of the model. 

5. The chosen area input variable has little effect on the accuracy of the model, as it is an 

interdependent variable are may reduce the accuracy of a model. 

6. Evaluating by regression or classification accuracy did not improve the number of 

successful models. 

Further, as noted in the discussion, the initial survey design did not collect the necessary data to 

predict energy performance and there are numerous interdependent variables that render the 

analysis difficult. The inclusion of the following information would have significantly improved 

the usefulness of the dataset and is thus recommended for future studies: 

▪ The types of building materials in wall, roof and foundation assemblies: these affect the 

R value and therefore the thermal energy consumption.  

▪ The window to wall ratio: this corresponds strongly to heat transfer. 

▪ The building volume to surface area ratio: this influences heat demand on a site and the 

potential for heat loss.  

▪ The level of thermal bridging at material junctions: contact between highly conductive 

materials will lower the effective R value of an assembly and increase the thermal energy 

used by a building.  

▪ The presence of leaks: water penetration is damaging to the building envelope and 

reduces the effectiveness of the insulation within increasing unwanted heat transfer. 

▪ Completed energy efficiency projects. Presently, it is unknown if drastic changes in EUI 

are the result of user input error or design changes. Knowledge of these projects, and 
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their scope, would likely allow the model to better identify buildings that improved and 

perhaps have less potential for future improvement. 

▪ The efficiency, age, and condition of the mechanical systems: these will have a large 

impact on electricity use. 

▪ The efficiency and density of the lighting systems: these will have a large impact on 

electricity use. 

To address the above-mentioned limitations, it is recommended that more information is 

collected regarding the energy systems, sustainability practices, building construction, condition 

of assemblies, thermal bridge reduction strategies, building surface area to volume ratio and 

window to wall ratio. Future data collecting initiative are advised mandate a third-party energy 

audit to be performed on each building entered into the benchmarking survey. It will encourage 

the gathering of actionable data, reduce user-input errors and produce customized strategies that 

will better facilitate a building’s energy efficiency improvement. It is anticipated that these 

additional factors will lead to a dataset with detectable relationships and give building managers 

the proper tools to increase occupant comfort, decrease operating costs and drive the reduction of 

green house gas emissions.  
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Appendix I: REALPAC 20 by ’15 Data Collection 

Data for a single building was added by selecting the New Building Data Input tab, followed by 

Energy Data Input as seen in Figure 7-1 and Figure 7-2. 

 

Figure 7-1 REALPAC 20' by '15-Start Page 

 

Figure 7-2 REALPAC 20by15 - Energy Data Input Tab 

Step 1 involved the entry of contact and building information. The user was permitted to leave 

most of the fields blank, however the Building Name entry was mandatory to proceed to the next 

step. If the City, Year of Construction, Number of Structures and Building Owner fields were not 

also completed, the website returned a message warning “Your results will be more accurate if 

you complete the required fields” but users were still allowed to proceed to the next step without 

entering more information. Refer to Figure 7-3, Figure 7-4 and Figure 7-5 
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Figure 7-3  REALPAC 20by15 - Step 1 - Building Information 

 

Figure 7-4 REALPAC 20by15 - Step 1 -Contact Information 
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Figure 7-5 REALPAC 20by15 - Step 1 - Engineer Information 

Step 2 involved the entry of building characteristics and environmental certifications. Again, 

some fields were allowed to be left blank, however Annual Year of Utility Data and Annual Year 

of Utility Data were required to be entered to proceed to the next step. If the user does not 

complete the Exterior Gross Area, Gross Floor Area, Number of Occupants, Energy Occupant 

Density, Average Annual Vacancy, Weekly Operating Hours, Energy Specific, Water Specific, 

LEED Rating System, LEED Certification Achieved and BOMA BESt Certification Level 

Achieved fields, the website returned a message warning “Your results will be more accurate if 

you complete/correct the required fields. Click to continue.” but users were still allowed to 

proceed to the next step without entering more information. Refer to Figure 7-6. 

 

Figure 7-6 REALPAC 20by15 - Step 2 - Building Details 

In Step 3, Electricity & Cooling usage data was input. There were no mandatory fields were 

required to be completed before continuing. The web page prompted for energy type and energy 
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units, as well as the billing period dates and energy consumption, for each month. A warning 

message reading “Your results will be more accurate if you complete/correct the required fields. 

Click to continue without correcting.” would appear if the field were left incomplete but users 

were still permitted to proceed to the next step.  

This step was set up to reflect the layout of a standard utility bill. The dates covered by the 

billing period were required to be input so the amount of billing days were recorded alongside 

energy consumption. The total amount of billing days resulted in a number above or below 365, 

the amount of days in a typical year. To adjust for the difference, the daily consumption rate for 

December was calculated. The difference was multiplied by the daily consumption rate and 

added or subtracted from the consumption total as appropriate. See Equation 6 for clarification.  

365 𝑑𝑎𝑦 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 365 ± [(𝐵𝑖𝑙𝑙𝑖𝑛𝑔 𝐷𝑎𝑦𝑠 − 365) ×
𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟 𝐵𝑖𝑙𝑙𝑖𝑛𝑔 𝐷𝑎𝑦𝑠
] 

Equation 6 - 365 Day Energy Consumption Normalization 

If the specified units were not kWh, the webpage converted the total consumption to equivalent 

kWh. Refer to Figure 7-7 REALPAC 20by15 - Step 3 Energy Consumption DataFigure 7-7 and 

Figure 7-8. 

 

Figure 7-7 REALPAC 20by15 - Step 3 Energy Consumption Data 
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Figure 7-8 REALPAC 20by15 - Step 3 Energy Consumption Data Utility Bills 

If there were multiple electricity sources or meters on site, there was the option to add an 

addition meter, as seen in Figure 7-9. Before proceeding to step 4, the Actual Energy Use 

(Electricity and Cooling) was normalized for Gross Floor Area.  

 

Figure 7-9 REALPAC 20by15 - Step 3 - Area normalized Actual Energy Use (Electricity and Cooling) 

Step 4 was not necessary for buildings exclusively heated by electricity. It displayed the same 

layout as step 4 but was intended for thermal fuel utility data. The following fuel types could be 

input: district heating, natural gas, fuel oil, propane and steam (onsite). The ensuing units were 

accepted by the algorithm: cubic meters, cubic feet, contained cubic feet, liters of propane, litres 

of oil, kilopounds, megapounds, gigajoules, megajoules, British thermal units and therms. The 

energy types were converted to equivalent kilowatts hours (ekWh) using the conversion factors 

listed in Table 7-1 Energy Conversion Factors to allow comparison between different types and 

measures of thermal energy. 
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Table 7-1 Energy Conversion Factors  

 

Note. Reprinted from REALPAC Energy Benchmarking Database Input Guidelines v1.0 2015 by REALPAC 

If a building had certain areas which used energy differently from a typical office, it was referred 

to as Exceptional Energy Use. If these areas were sub metered, Step 5 allowed the user to input 

the Exceptional Energy Use type (i.e. Retail, Data Centers, Call Centers, Enclosed Parking and 

Other), associated area (sf) and Annual Electricity and Annual Natural Gas consumption (kWh). 

The Database then normalized the buildings energy use so that it is portrayed as if it were only 

comprised of office space. To do this, the Database subtracted the Exceptional Energy Use from 

the building’s total energy use, multiplied the buildings office area EUI by the Exception use 

area and added this to the office area energy consumption. The exceptional use normalized EUI 

was the adjusted energy consumption divided by the total Gross Floor Area. See Figure 7-10 for 

the webpage illustrating the data collection form for step 5.  
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Figure 7-10 REALPAC 20by15 - Step 5 - High Intensity or Exceptional Energy Use Data 

 

In regards to Enclosed Parking, the Database was still able to provide an EUI adjustment without 

sub metred data by assuming the parking lighting energy consumption was 0.17 W/sf, operating 

at 24 hours a day for 7 days a week. The parking ventilation was assumed to use 0.15 W/sf, 

operating at 6 hours a day for 6 days a week.  

Step 6 displays the final summary of all the building characteristics, the actual (pre-normalized) 

building energy use, the building characteristic energy use, weather normalized energy use to 

base year 2009 and the location normalized energy use which was the considered the final EUI 

of which all buildings would eventually be compared to each other (See Figure 7-11). If the 

Database flagged any errors in the data entry, the user was be notified and asked to address them 

before continuing and submitting the data for a final review by REALPAC. REALPAC 

contacted building managers to adjust to their data entries if obvious errors, atypical values or 

missing data were present. If the errors are not resolved the building was discarded from the 

survey.  
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If a building manager needed to input several buildings at once, they could download the excel 

workbook titled ‘Multiple Buildings Template (MBT) for Office Buildings’ from the Multiple 

Building Input Tab on the 20by15 online portal as seen in Figure 7-12.  

The workbook included sheets pertaining to the following: General Information & Instructions, 

Buildings Information, Contacts for Buildings, Building Details, Electrical Energy Data Input, 

Fuel Data Input, High Intensity or Exceptional Energy Use Data Input and User Emails 

Associated with Buildings. Refer to Figure 7-12 and Figure 7-13 for the typical layout of the 

MBT excel work sheets.  

The MBT could only be used for up to 40 buildings and another template was needed if a user 

wished to input more buildings. After the user completed the templates, they could be uploaded 

into the Database through the 20by15 online portal. The Database flagged the same errors that 

would be marked if the user had employed the single building input method.  

Figure 7-11 REALpac 20by15 Step 6 – Building Data Summary 
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Figure 7-12 REALpac 20by15 – Multiple Building Template – Buildings Information Sheet 

Figure 7-13 REALpac 20by15 – Multiple Building Template – Electricity Energy Data Input Sheet 
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Appendix II – Acronyms, Abbreviations, Dataset Titles and Definitions 

General Acronyms and Abbreviations 

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning 

Engineers 

CaGBC Canadian Green Building Council 

ekWh Equivalent kilowatt hours 

EUI Energy Use Intensity 

kW kilowatt 

kWh kilowatt-hour 

NRCan Natural Resources Canada 

REALPAC Real Property Association of Canada 

 

Algorithm Acronyms and Abbreviations 

ANN Artificial Neural Networks 

DT Decision Trees 

KNN k-Nearest Neighbours 

LDA Linear Discriminant Analysis 

MLR Multiple Linear Regression 

PCA Principal Component Analysis 

SVM Support Vector Machines 

 

Variable Acronyms and Abbreviations 

CZ Climate Zone 

E&C Electricity and Cooling 

EA Exterior Area 

EH Electrically Heated 

EP Enclosed Parking 

EUI Energy Use Intensity 

GFA Gross Floor Area 

L&L Latitude and Longitude 

NRA Net Rentable Area 

OD Occupant Density 

VR Vacancy Rate 

WOH Weekly Operating Hours 
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Dataset Titles 

2010 Dataset Cleaned dataset containing only data extracted from the 2010 survey year. 

This dataset is used to predict a building’s 2010 energy use by training the 

algorithms using non energy variables. 

2011 Dataset Cleaned dataset containing only data extracted from the 2011 survey year. 

This dataset is used to predict a building’s 2011 energy use by training the 

algorithms using non energy variables. 

2012 Dataset Cleaned dataset containing only data extracted from the 2012 survey year. 

This dataset is used to predict a building’s 2012 energy use by training the 

algorithms using non energy variables. 

2013 Dataset Cleaned dataset containing only data extracted from the 2013 survey year. 

This dataset is used to predict a building’s 2013 energy use by training the 

algorithms using non energy variables. 

2014 Dataset Cleaned dataset containing only data extracted from the 2014 survey year. 

This dataset is used to predict a building’s 2014 energy use by training the 

algorithms using non energy variables. 

2015 Dataset Cleaned dataset containing only data extracted from the 2015 survey year. 

This dataset is used to predict a building’s 2015 energy use by training the 

algorithms using non energy variables. 

2010-2015 

Dataset 

Cleaned Dataset containing only data with buildings that appear in both 

2010 and 2015. Energy use variables from both 2010 and 2015 are 

included however the remaining variables are solely from the 2010 survey 

year. This dataset is used to predict a building’s 2015 EUI by training the 

algorithms on the 2010 data.  
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Definitions 

Building - “A contiguous and undivided shelter comprising a partially or totally 

enclosed space, erected by a means of a planned process of forming and 

combining materials (BOMA International, 2009).” 

Climate 

Zone 

- Defined according to ASHRAE-169 “Canada climate zones map” 

(ASHRAE, 2013). 

ekWh - “Equivalent amount of kilowatt hours of energy from different fuel sources 

(REALpac, 2015).” 

Enclose(d) 

 

- “To separate the inside of a building from the outside, affording protection 

from the elements appropriate to the occupancy and the local climate. All 

enclosed space must have a roof (BOMA International, 2009).” 

Exterior 

enclosure 

- “The wall, roof or soffit that constitutes the envelope necessary to enclose a 

building. The exterior enclosure generally determines the location of the 

measure line (BOMA International, 2009).” 

Exterior 

gross area 

(EGA) 

- “The total of all the horizontal floor areas (as viewed on a floor plan) of all 

floors of a building contained within their measure lines, excluding voids 

(with the exception of occupant voids), interstitial space, unexcavated 

space, and crawl space. This includes the exterior gross area of every floor 

in the building including basements, mechanical floors, mezzanines, 

penthouses, and structured parking without the removal of column area or 

other structural elements within the measure line (BOMA International, 

2009).” 

External 

circulation 

- “unenclosed pedestrian circulation providing the minimum path for access 

to tenant suites, egress stairs, elevators, refuge areas, toilets, and building 

entrances, and required by local building code to meet egress requirements, 

only when there are no fully enclosed pedestrian corridors serving a floor or 

portion (such as a wing) thereof (BOMA International, 2009).” 

Floor - “a normally horizontal, load bearing structure and constituting the bottom 

level of each story in a building including its associated permanent 

mezzanine, if any exists (BOMA International, 2009).” 
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Gross floor 

area (GFA)  

- “The exterior gross area of a building minus the enclosed parking area 

(REALpac, 2015).” 

Measure 

line 

- “A horizontal line on the outermost structural or architectural surface of the 

exterior face of the exterior enclosure, or at the exterior edge of any 

external circulation of a given floor of a building. In determining the 

measure line, do not consider overhangs, pilasters, columns, awnings, 

eaves, cornices, sills, ledges, casing, wainscoting, gutters, downspouts, 

chimneys, signs, shutters, attached electrical or mechanical systems, 

decorative projections and the like that protrude beyond such surface or 

edge (BOMA International, 2009).” 

Occupant 

Density 

- “The number of occupants is defined as the number of workers who are 

present during the main shift [per 1000sf of GFA] (REALpac, 2015).” 

Occupant 

void 

- “a floor opening between two or more adjacent floors created by removal of 

floor area by or for the occupant that would otherwise be included in the 

exterior gross area or construction gross area of the floor (BOMA 

International, 2009).” 

Parking - “enclosed structured floor area used for transient storage of motor vehicles, 

including associated circulation and building services (such as exhaust fans 

and ducts that serve the parking area) but not including the loading docks, 

sally ports and building service areas such as enclosed auxiliary lobbies 

used to enter a building from parking areas (BOMA International, 2009).” 

Penthouse 

 

- “Fully enclosed floor area located on the roof level of a building that 

occupies less than all of the roof (BOMA International, 2009).” 

Restricted 

headroom 

- “For occupiable space: Space that does not meet the requirement of the 

International Building Code section 1208.2 Minimum Ceiling Heights, 

including subsections thereof. For all other space: Space that has a clear 

ceiling height of less than 7’-0” (approximately 213 cm) (BOMA 

International, 2009).” 

Soft 

Landscaping 

- “An open, unobstructed area that supports the growth of vegetation such as 

grass, trees, shrubs flowers or other plants and permits infiltration into the 
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ground. Soft landscaping must allow for the planting of, and sustaining of 

plant material ( City of Toronto, 1986).” 

Vacancy 

Rate 

- The percentage of total Gross Floor Area that is under-utilized (REALpac, 

2015). 

Vault space - “Sub-grade space that is enclosed and contiguous to a basement that 

extends below the adjacent ground plane past the property line, often under 

a public right-of-way, such as a sidewalk or alley (BOMA International, 

2009).” 

Void - “absence of a floor within the exterior enclosure of a building in excess of 

ten square feet (1 square meter) where a floor might otherwise be expected 

or measured, that is typically in the plane of the upper floors adjacent to 

multi-story atria or lobbies, light wells, auditoria or the area adjacent to a 

partial floor, permanent mezzanine or unclassified mezzanine at a given 

floor level. Only the lowest floor of a multi-story space, such as an atrium, 

or a well, or lobby, is included in construction gross area and exterior gross 

area (BOMA International, 2009).” 

Weekly 

Operating 

Hours 

- “Number of hours per week that a building (or space within a building) is 

occupied by at least 75% of the tenant employees averaged over the year 

under review (REALpac, 2015)”.  

 


