Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2003
Time—frequency analysis of spread spectrum based
communication and audio watermarking systems

Serhat Erkiictk

Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Erkiiciik, Serhat, "Time-frequency analysis of spread spectrum based communication and audio watermarking systems" (2003). Theses
and dissertations. Paper 28.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.


http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/28?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

In compliance with the
some supporting forms
may have been removed from
this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the dissertation.






Frequency Analysis of Spread
Spectrum Based Communication
and Audio Watermarking Systems

by

Serhat Erkiiciik
B.S., Middle East Technical University, Turkey, 2001

A thesis

presented to Ryerson University

in partial fulfilliment of the
requirement for the degree of
Master of Applied Science
in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2003
(©Serhat Erkiicitk 2003



g

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

[ Dot ]

Canada

Your file Votre référence
ISBN: 0-612-87154-1
Our file  Notre référence
ISBN: 0-612-87154-1

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.



- Author’s Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals
for the purpose of scholarly research.

Author’s signature:

I further authorize Ryerson University to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

Author’s signature:

i



Borrower’s Page

Ryerson University requires the signatures of all persons using or photocopying this
thesis. Please sign below, and give address and date.

Name

Signature

Address

Date

iii




Abstract

Time-Frequency Analysis of Spread Spectrum Based
Communication and Audio Watermarking Systems

©Serhat Erkiiciik 2003

Master of Applied Science
Department of Electrical and Computer Engineering
Ryerson University

In this study, we present novel applications of time-frequency analysis to spread spec-
trum based communication and audio watermarking systems. Qur objective is to
detect and estimate nonstationary signals, such as chirps, that are characterized by
directional elements in the time-frequency plane. Towards this goal, we model non-
stationary signals using the matching pursuit decomposition algorithm, generate a
positive time-frequency representation of the signal model using the Wigner-Ville dis-
tribution and estimate the energy varying directional elements using a line detection
algorithm based on the Hough-Radon transform. '

Spread spectrum communication systems frequently encounter nonstationary sig-
nals with energy varying directional elements as hostile jamming signals. In this
thesis, we develop a new interference excision algorithm for spread spectrum com-
munication systems based on the directional element estimation algorithm. At the
receiver, we first excise the interference from the spread spectrum signal before de-
spreading and data symbol detection. The new algorithm can excise single and multi-
component interferences such that the spread spectrum system can reliably detect the
transmitted message symbols even, when the interference power exceeds the jamming
margin of the system. We verify the effectiveness of the interference excision algorithm
using simulation studies.

Watermarking is the process of embedding imperceptible data into the host signal
for marking the copyright ownership. The embedded data should be extractable to
prove ownership. Watermarking systems face problems similar to those in spread
spectrum communication systems, namely, intentional attacks by the adversaries. In
watermarking, the adversaries try to obliterate the embedded watermark in order to
prevent its detection by authorized parties. In this thesis, we develop a spread spec-
trum audio watermarking scheme, where we embed perceptually shaped linear chirps
as watermark messages. The directional elements of the chirp signals represent differ-
ent watermark messages. We extract the watermark by first detecting the transmitted
message symbols in the spread spectrum signal. We then use the directional element
estimation algorithm based on the time-frequency analysis as a post-processing tool
to minimize the effects of hostile attacks on the extractability of the embedded water-
mark. We demonstrate the robustness of the algorithm by extracting the watermark
correctly after common signal processing operations representing hostile attacks by
adversaries.
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Introduction

PREAD spectrum (SS) systems are the main components of today’s communi-
S cation systems based on code division multiple access (CDMA) technology. 55
systems allow multiple users with user-specific codes to occupy the same frequency
band simultaneously. The user-codes have low cross-correlation values to minimize
interferences among users, or interferences resulting from intentional jammers. Com-
mercial implementation of SS techniques such as CDMA has become increasingly
wide-spread after the 80’s. The first SS systems were developed during the World
War-II to support military and diplomatic communications. The motivation was to
achieve resistance to intentional interferences and to ensure message privacy. Today,
most military communication systems continue to use 5SS techniques which can be
considered as a form of cryptography, which is the science of coding and decoding
secret messages. It scrambles message contents with a user-known code rendering the

transmitted message undecodable to unauthorized users.

The 90’s was the era which saw the emergence of digital coding as the norm of
representing multimedia signals, such as the digital audio format on compact disks
and more recently the digital video recording format on DVDs. The representation
of multimedia signals in digital formats allows users to make copies which are indis-
tinguishable from the original. The increasing popularity of the Internet in parallel
with the digital coding of multimedia signals paved the way to unauthorized copying
and redistribution of multimedia data. Today, widely available software tools allow

an unprecetended number of users to exchange multimedia files over the Internet.

1



As a result, the video and music industries have been experiencing a very signifi-
cant drop in the legitimate sales of CDs and DVDs. By all accounts, the worldwide
loss of revenue to the music and video industries is in the order of several billion
dollars. To address this problem, a number of industry technology groups were es-
tablished including the Copy Protection Technical Working Group (CPTW G) for the
video industry, and the Secure Digital Music Initiative (SDMI) for the music indus-
try [1]. While cryptography can provide copyright protection of multimedia data, 1t
can only protect the data at the source. Once a customer decrypts the data, it is no
longer protected. Consequently, these groups recommend watermarking as the means
of copyright protection since the watermark remains always part of the multimedia

data.

Watermarking is the process of embedding imperceptible data into multimedia
signals. Upon the detection of the watermark, the information retrieved can be used
to take action, for example, permit or deny playing the multimedia data. Water-
marking consists of encoding (embedding) and decoding (detecting) stages and can
be seen as a form of communications. The embedding and detecting terms used in wa-
termarking are analogous to modulation (transmitting) and demodulation (receiving)
terms used in communications. The transmission channel in a watermarking system
is the multimedia data, where the watermark is embedded (transmitted). The main
difference between a traditional communication channel and a watermarking chan-
nel is the requirement that the quality of multimedia data must be preserved. In
addition, a watermark has to satisfy a set of requirements including imperceptibility
and robustness. These constraints have led many watermark embedding schemes to
utilize SS techniques: SS techniques code the signals with less power, and spread
over a wide frequency spectrum— promising imperceptibility, and show resistance to

interferences—ensuring robustness.

SS based military communication and watermarking systems face similar prob-
lems, namely, intentional attacks by the adversaries. In a communication system, the

adversaries try to prevent the authorized parties from correctly detecting the message



signal by transmitting high power frequency modulated (FM) interferences within the
same spectral band as the SS signal. In watermarking, the adversaries try to obliter-
ate the embedded watermark in order to prevent its detection by authorized parties.
To achieve this goal, the adversaries perform signal manipulations on the multimedia
signal. These intentional attacks degrade the performance of both systerns, and the

message received may potentially be in error.

Intentional attacks in military communications are characterized by the injection
of nonstationary signals into the communication channel. Therefore, SS systems are
designed to identify nonstationary signals with the goal of excising them for improved
system performance. Conversely, nonstationary signals can be used as embedded wa-
termarks. The same interference excision tools then can be used for robust identifica-
tion of the embedded watermarks in the presence of hostile signal manipulations. In
this study, we will first consider the problem of analyzing and detecting nonstation-
ary signals. The best way to study a nonstationary signal is by joint time-frequency
(TF) analysis, which evaluates the time-varying power spectral density of the signal.
TF analysis extracts important information by localizing the signal both in time and
frequency. Signal processing techniques can then be used to process the extracted
information for enhanced identification of nonstationary signals. One of the signal
processing techniques is a line detection technique based on the Hough-Radon trans-
form (HRT) that can detect energy varying directional components in the TE plane.
These directional components can represent interferences in a military communication
channel or signals we want to estimate in the post-processing stage of a watermarking

scheme.

In this study, we develop a novel approach of TF analysis with applications in 55
communication and watermarking systems. In a military communication system, the
received signal typically includes a jamming signal in the form of a high power FM
signal. These FM signals are usually chirps, which exhibit directional characteristics
in the TF plane. We model the nonstationary interference using a signal decompo-

sition algorithm based on the matching pursuit (MP) algorithm. We then estimate



the interference using the HRT and excise it from the received signal. We show that
the combination of the MP and the HRT overcomes several drawbacks such as poor

TF resolution, presence of cross-terms, and limited interference suppression.

In the context of watermarking, we use TF analysis as a post-processing tool to
minimize the effects of hostile attacks on the extractability of the embedded water-
mark. We embed linear chirps as watermark messages after perceptual shaping, which

maintains imperceptibility while providing resistance against signal manipulations.

Chapter 2: SS SYSTEMS

i

message ' . TF . message signal
signal Modulation Analysis estimate

PN
sequence

. Channel ; TF _watermark
watermark ! Encoding (audin) Analysis estimate

Figure 1.1: Overall block diagram for the TF analysis of SS systems proposed in the thesis.

Figure 1.1 provides an overview of TF analysis of SS systems as presented in this
thesis. The organization of the thesis is as follows. The next two chapters provide
the background information for spread spectrum systems and joint time-frequency
analysis. In Chapter 2, we introduce SS systems and discuss their characteristics.
We present applications of SS techniques in communications and audio watermark-
ing. In Chapter 3, we explain the need for joint TF analysis. We introduce the

theory of TF analysis and describe the widely used TF analysis techniques including



a line detection algorithm based on the HRT. We study the HRT based line detection

algorithm for detecting directional elements extracted from TF distributions (TFDs).

Chapter 4 presents a SS communication system, where the transmitted signal
is jammed with FM-type interferences. We review earlier works in the area of in-
terference suppression, point out their characteristics and limitations. We develop a
new interference excision algorithm based on the MP and the HRT algorithms. The
new algorithm excises the interferences at the receiver to increase the probability of
detection. Simulation results demonstrating the capabilities of the new algorithm

conclude the chapter.

Chapter 5 presents a novel SS audio watermarking algorithm. We review previ-
ous watermarking algorithms, and justify the need for a new watermarking algorithm.
We explain the watermark embedding process, which includes the perceptual shaping
of the SS watermark information. We delineate the watermark detection algorithm
based on the TFDs and the HRT introduced in earlier chapters. We subject the
new algorithm to a variety of the signal manipulations representing typical hostile
attacks and verify its robustness by measuring its success in extracting the embedded

watermark.

We conclude with Chapter 6, where we discuss the main contributions of this

thesis, and point out directions for the future research.
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Spread Spectrum Systems

PREAD spectrum signals are used for the transmission of digital information.
S A distinguishing characteristic of SS signals is that their bandwidth is much
greater than the information rate [2]. In SS techniques, the message signal is spread
over a wider bandwidth with a pseudo-noise (PN) code also known by the receiver.
The resulting signal is modulated and transmitted over the channel in the form of
a low-power wideband signal [3]. These characteristics maké it difficult to sense
the presence of a SS signal. Even when the adversaries know the presence of the SS
signal, they cannot detect the transmitted message without access to the PN code. As
a result, adversaries may attempt to jam the signal in order to prevent the authorized
party from detecting the message signal. However, the increased bandwidth of the SS
signal resulting from modulation by the wideband PN signal provides a high degree
of interference suppression at the receiver, and increases the probability of delivery of

the message signal. Consequently, SS signals can be used for secure communications.

In this chapter, we present a simple model for the SS systems and explain the
system characteristics. We focus our discussion on the characteristics that make the
system secure. We then introduce two applications of SS systems that are based on
private messaging, and discuss possible jamming techniques used by adversaries to

degrade the performance of the system.



2.1 Characteristics of Spread Spectrum Signals

SS systems are composed of three main components: the message signal m(t), the
spreading signal p(t), and the SS signal w(t). Let the message signal m(t), be repre-

sented as
m(t) =Y byrecty, (t — kT,), (2.1)
k

where b, = +1, for k € Z, and rect,(t) is a rectangular pulse of duration 7. Let p(¢)
be the spreading signal expressed as

L-1
p(t) = > cprecty(t —nly), (2.2)
n=0

where ¢, = +1 is the nth chip of the L-element PN sequence with T, /T, = L > 1.
Let w(t) be the SS signal such that

w(t) = m(t)p(d),
= S beplt — KT,). (2.3)

Figure 2.1 shows m(t), p(¢) and w(t) for the case of T;,, = 57T},

message ¢
signal, m(z)

; b L
spreading
signal, p(t) t

S8 t
signal, w(1)

SRS |

Figure 2.1: Signals at the spread spectrum generator.
The PN sequence {c¢,} is periodic with period L such that:

L-1
z CnCnikl = L, (24)
n=0



for k € Z. Furthermore, the PN sequence {¢,} also satisfies the properties [5]:

{ i ] (2.5)
and
R.(i) = E[ chenss | = L6(3), (2.6)

where E[.] is the expected value operator and R, is the autocorrelation function of

the PN sequence {¢,}.

The SS signal w(t) exhibits the following characteristics:

e The S5 modulation scheme increases the bandwidth of the message signal by
a factor called the processing gain. If the message signal bandwidth is B,, Hz

and the corresponding SS signal bandwidth is B,, Hz, then
Processing Gain = B,,/ B, (2.7)

In addition, the SS signal is transmitted as a low-power signal. Therefore, the

presence of SS signals are difficult to detect.
e The adversaries cannot decode the SS signal without access to the PN sequence.

e 5SS signals are resistant to intentional jamming, unintentional interferences from

other users and self interference due to multipath propagation.

Comparison of SS and binary discrete-time systems demonstrates the advantages of SS
systems [4]. Consider a binary discrete-time communication system which transmits
the elements of a binary information sequence {b;} over a channel at T}, second

intervals. The kth element® of the received sequence is;
re = Ebg + 0y, (2.8)

where £ > 0 is the energy of the pulse representing each message symbol. ny is the kth

element of a zero-mean, additive white Gaussian noise (AWGN) sequence such that

'In the discussion that follows, we use the simplified notation without time arguments such that
zy represents the value of the signal z(¢) taken at the kth sampling instant.



ng ~ N{0,0%) with 0% = E[n2]. Furthermore, {n;} is assumed to be uncorrelated
with the PN sequence {c;}. Under the AWGN assumption, we define the test statistic
A = 1y, where A ~ N (Eby, 0?). At the receiver, we use A to estimate the transmitted

message elements as:

. { +1, i A>0, (2.9)

by = ~1, if A<O.

Tn the case of a SS system, each element b, of the message sequence {bx} is

transmitted after multiplied by the spreading signal px = [cp...cr-1]7, where py
represents the L-element PN sequence {c,}. The resulting signal is
Wi = ErbiPr, (2.10)

where &, = £/L is the pulse energy of the SS signal. At the receiver the AWGN

corrupted signal® r, = w;, + mg, is correlated with py to determine the test statistic:

A = (rg, Pr) = PiTk
= Eby + piny. (2.11)

Using the statistical properties of the noise and PN sequences, we can show that
A ~ N (Ebg,0?) [4]. Therefore, A can again be used as a test statistic to estimate
the transmitted message symbols using the decision rule given in Equation (2.9).
A comparison of this result with the binary discrete-time communication system
shows that spreading the message and despreading it at the receiver with a properly
synchronized PN sequence results in identical detection performance under the AWGN

assumption.

Interference Suppression

Let I be a constant amplitude interference added to the transmitted signal. If we use
a binary discrete-time communication system, the test statistic A will have a mean

value of £by, + I and variance o?. The estimated value by will be incorrect if |1 is

2Fach noise sample in ng has a variance of ¢?/L. This observation ensures that the power of the
noise term ny in Equation (2.8) and of n; in Equation (2.11) remain the same. Since both rj, and
ry, are observed over the same time duration T, = LT}, the total noise power levels in both cases
are equal. ’
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sufficiently large. If the same constant amplitude interference component interferes

with the SS system, the received signal will be
rp = ELbppr + ip + 1y, (2.12)

where i, = I. We construct the decision variable, i.e., the test statistic, by correlating

the received signal with the PN sequence as before:

A = (Epbypy + ik + 0y, Pr ), (2.13)
which results in:
-1
A=Eb+ 1 pi(n) + piuog, (2.14)
n=>0
or
Ar Eb +O+p£nk. (2.15)

Since A ~ N (Ebg,0?), the SS system can successfully suppress the interference as a

result of the despreading operation at the receiver.

Multiple access

Let the number of users in a SS channel be M, where the mth user has the despreading

signal pém) with the PN sequence {c(nm) }, which satisfies the cross-correlation property

1, m=11=0;

1 L-1
3 M~ 0, m=10<]i| <L (2.16)
n=0 0, m # 1.

As a result of the cross-correlation property, the PN sequences have zero cross-

correlation value. Assuming synchronization among the signals, the received is

M

m=1
where 5,2’”) = &M /L m=1,...,M. To receive the signal of the mqth user, we use

the corresponding despreading signal pg"“) at the receiver and construct the decision
variable: '
(ma) _ gmo)pmo) [ (ma)] T (mo) =~ p(mo) [ (m)]T (o) (mo)] ™
AN = £ by [Pk ] P+ D b [Pk } Pyt ;[Pk } ng.  (2.18)

m=1,
m#me
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Using the cross-correlation property, we simplify the decision variable to the form:
T
A(mo)- r~ 5(mo)b§£m0) +0+ {pgng)] ng. (219)

Hence, the presence of other users does not degrade the performance of the system.
The cross-correlation property of the PN sequences allows simultaneous transmission
over the same channel. Such systems are usually called CDMA systems. Using the
cross-correlation property of the PN sequences, we can also show that a well designed
SS system can effectively suppress time delayed versions of other transmitted signals,
delayed versions of the signal itself resulting from multipath propagation, and channel

dispersive effects [4].

In modeling the SS system, we assumed the perfect synchronization of the received
signal and the PN sequence. If the signals are not synchronized at the receiver, the
correlation of the signals will yield low or zero correlation value, and the transmitted
information will be lost. Therefore, synchronization is one of the most important
requirements in SS systems. Since the main focus of this thesis is signal processing in
SS systemé, we assume perfect synchronization, and also do not consider multipath

and multiuser effects.

Message privacy

A properly synchronized and structured PN sequence is essential for the proper de-
coding of a SS signal generated by the same PN sequence. Therefore, unauthorized
users who do not know the PN sequence used in the generation of a 5SS signal, can-
not decode the transmitted message. Besides being code-dependent, SS signals are
transmitted as low-power wideband noise, which is a property that renders S5 signal
indistinguishable from background noise. Consequently, the presence of a SS signal
is difficult to detect. Figure 2.2 shows the power spectral densities of a narrowband
signal m(t), and the SS signal w(t), where w(t) = m(t)p(t). m(t) and p(t) are defined
by Equations (2.1) and (2.2), respectively. The chip length of p(t) is L = 128. The

resulting signal w(¢) has flat frequency spectrum at a low power level.
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Figure 2.2: Spreading a narrowband signal with a PN sequence of I, = 128.
2.2 Applications of Spread Spectrum Techniques

Applications of SS systems are very diverse: they are widely used in space systems,
avionics systems, test systems, position localization systems, mobile communication
systems as well as in military communications and watermarking [3]. Combination
of privacy, and the transmission of multiple messages with high resistance to inter-
ferences, makes SS systems an important tool for secure message transmission in
military communications and watermarking [3, 6]. In military communications and
watermarking, a completely different class of interference, namely, intentional inter-
ferences and/or jamming, becomes the primary concern. These interferences can
substantially degrade the system performance and potentially render the entire com-
munication link unusable. Signal processing techniques can be used to increase the
robustness of the SS systems against intentional interferences. In the reminder of this
chapter, we will provide two examples, where signal processing techniques are applied

to spread-spectrum communications and spread-spectrum audio watermarking.

2.2.1 Spread Spectrum Communications

Figure 2.3 provides an overview of a SS communication system. There are two main

approaches to SS communications [2]. In the first approach, the message signal m(t)
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Figure 2.3: Spread spectrum communication system.

is multiplied by a wideband PN waveform p(¢) prior to modulation, resulting in the
SS signal w(t) = m(t)p(t). The SS signal is then modulated to produce a double-
sideband (DSB) signal. If m(¢) is a polar signal taking the values 1 representing
a digital message, the output from the DSB modulator would be a binary phase-
shift keying (BPSK) signal. This system is called the direct-sequence spread spectrum
(DSSS) system.

Alternatively, the PN generator can drive a frequency synthesizer that produces
a wideband sequence of frequencies that can cause the data-modulated carrier to
hop from one frequency to another; This system is called the frequency hopping
spread spectrum (FHSS) system. A FHSS system is analogous to a frequency shift
keying (FSK) system, with a greater range for frequency choices. While there are
other modulation methods, the DSSS and FHSS systems represent by far the most

frequently used SS techniques in signal transmission [3].

During the transmission of the SS signals, noise and jamming signals may in-
terfere. As we demonstrated in Section 2.1, SS systems are intrinsically capable of
suppressing interferences. These interference suppression properties, however, have
been derived under a strict set of assumptions such as additive and uncorrelated
channel noise and perfect synchronization between the transmitter and the receiver.
Deviation from these assumptions is likely to place practical limits on the interference
excision capability, thus limiting the expected performance of real-world SS systems.
Consequently, we may consider approaches such as increasing the processing gain, in-
creasing the power of the transmitted signal or decreasing the number of users within

the same channel to overcome the practical limitations of SS systems. Such methods,
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however, are costly and the resources may not be available [7]. Alternatively, signal

processing techniques can assist in interference suppression.

Most interference suppression techniques are designed to deal with narrowband in-
terferences. One possible approach to interference suppression includes time-domain
methods including adaptive notch and prediction/estimation type filtering. A second
approach uses transform-domain filtering, which exploits the time-frequency distribu-
tions of the SS signals to excise the interference. Due to the dynamic nature of typical

interference signals, all interference suppression techniques are inherently adaptive.

As a result of spreading with the PN sequence, the SS signal is a wideband signal
with a time-frequency distribution that covers the entire TF plane. Conversely, jam-
ming signals from hostile sources exhibit narrowband characteristics such as a straight
line representation (chirp) in the TF plane. Figure 2.4 shows the spectrograms of a
message signal (600 ms segment from a music file sampled at 44.1 kHz) before and
after spreading with a PN signal. The figure also shows the spectrogram of the SS
signal with an interfering chirp signal. In Chapter 4, we will present an interference
excision algorithm designed to improve the detection performance of spread spectrum

systems, which experience hostile attacks in the form of chirp signals.
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Figure 2.4: Spectrograms of signals at various points of a SS system. Top: audio signal
z(t), Middle: SS signal w(t), Bottom: SS signal in the presence of an interfering chirp.
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2.2.2 Spread Spectrum Audio Watermarking

Watermarking is the process of embedding additional data into the host signal—
multimedia data such as audio, image or video— for marking copyright ownership.
Watermarking is a widely pursued topic in the field of multimedia signal processing.
Spread spectrum watermarking is a type of watermarking which uses the fundamentals
of SS techniques. In the context of watermarking, the host, i.e., the multimedia signal,
functions as the “channel”, which we attempt to securely transmit the embedded
watermark message through. To ensure the secure and reliable transmission of the
watermark signal, we use spread spectrum techniques. Figure 2.5 presents the block

diagram for an audio watermarking system.

m(t) ——w] Encoding - Cl%anr?el » Decoding |—u I,’I\l(t)
{audio signal)
p(t) noise  attacks plt)

Figure 2.5: Block diagram for SS audio watermarking.

SS audio watermarking techniques are analogous to those used in S5 communica-
tions. In SS communications, the SS signal remains imperceptible during transmis-
sion over a communication channel due to its wideband characteristics resulting from
modulation by the PN waveform. In the case of audio watermarking, we first convert
the message, i.e., the watermark signal m(¢), into a wideband signal by multiplying
with the spreading signal p(t) to generate the SS signal w(t) = m(t)p(t). Next, we
perceptually shape the SS signal to ensure that it will not degrade the quality of
the host audio signal. Finally, we embed the perceptually shaped SS signal into the
host audio signal, a process which in the context of SS watermarking is analogous to

transmission of a SS signal over a communications channel.

Audio signals are highly nonstationary. The top spectrogram in Figure 2.4 clearly
demonstrates the nonstationary characteristics of the audio signal which has most

of its energy concentrated in the lower frequency band. Its energy in the higher
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frequency bands changes with the dynamics of the music. These characteristics of
the audio signals should be considered for perceptually shaping the SS watermark

signal.

In the context of audic watermarking, the “adversaries” are the parties that will
attempt to obliterate the watermark embedded in the audio signal in order to pre-
vent the tracing of the copyright back to its rightful owner(s). Let us consider an
audio signal with an embedded SS watermark. We assume that the adversaries know
the SS watermarking algorithm used to hide the watermark information—a common
scenario as the watermark embedding algorithms are typically made public to ensure
their widespread use. Since the adversaries do not have access to the watermark
embedding key, i.e., the PN code, they cannot monitor, detect and excise the water-
mark from the audio signal. It is unwise for the adversaries to embed high power
interferences which will degrade the quality of the audio signal. Instead, they are
likely to perform signal processing operations to make the embedded SS watermark
information irrecoverable while retaining the quality of the signal. In other words, the
adversaries will function as the jammer in the SS communications example. Common
signal processing operations to jam the watermark message are lowpass filtering, band-
pass filtering, compression, resampling, amplitude scaling and adding noise. These
operations may alter the signal characteristics without degrading the audio quality.
Yet, they may also introduce sufficient distortion to the host signal, such that when
we attempt to recover the watermark, some bits representing the watermark would
be incorrectly detected. In this case, it may be necessary toApostprocess the extracted
bits to increase the probability of detection of the embedded watermark. In Chapter
5, we will introduce a robust watermarking scheme that embeds perceptually shaped

chirps, and extracts them by utilizing TF analysis in the post-processing stage.



Time-Frequency Analysis

ASIGNAL is the physical representation of information, such as a waveform rep-
resenting voltage, temperature, intensity, pressure, etc. Signal processing is
concerned with the representation, transformation and manipulation of signals, and
the information they contain. Frequency and energy of a signal are two important
parameters used in signal analysis. The Fourier transform (FT) is a widely used -
technique to analyze the frequency and energy content of the signal. FT assumes
the signal to be stationary, and evaluates the frequency content of the entire signal.
However, most of the real-world signals are nonstationary, where the signal’s fre-
quency content varies with time. Therefore, analyzing only the frequency content of
the signal without considering the time would be inadequate to extract the necessary

information from the signal.

Joint time-frequency (TF) analysis focuses on the localization of the energy of
a signal in both time and frequency domains. To demonstrate the need for joint
TF analysis, let us consider chirps, which are nonstationary signals with frequency
information varying as a function of time. Figure 3.1 depicts two different chirps.
The left column plots represent a chirp with linearly increasing frequency, whereas
the right column plots represent a second chirp with linearly decreasing frequency. As
the magnitude plots of their respective FTs in the middle row show, both chirp signals
appear to have the same frequency composition. Since the changes in the frequency
content of each chirp signal as a function of time are different, the FT magnitude

spectrum is not sufficient to differentiate between the two signals. While the inclusion

18
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Figure 3.1: Representation of two different chirps. Top: time-domain, Middle: FT
magnitude spectrum, Bottom: joint TTF representation.

of the phase spectrum of the chirps would allow us to differentiate between the two
chirps, the information provided by the FT alone will not be useful for determining
their joint TF characteristics. On the other hand, the joint TF representations of
the two chirp signals as depicted in the lower row of plots in Figure 3.1, clearly show
how the signals’ instantaneous frequencies change with respect to time, and allow

monitoring of the signal dynamics.

In the above example, the joint TF representation of two chirp signals exhibit
a very fine time and frequency resolution. However, there are limitations on the
resolution that can be achieved by different TF representations. In the next section,
we discuss the theoretical and practical limits on TF resolution, and introduce some

of the common TF analysis techniques.



3.1 Signal Localization

Time-frequency distributions (TFDs) are two-dimensional (2D) energy distributions
of a signal as a function of time and frequency. The TFD of a signal can be seen
as an image, where the intensity of each pixel corresponds to its energy. There are
different TFD methods. We can classify these methods into two main categories: (i)
representations, and (ii) decompositions. Representations obtained by using linear
or quadratic transforms refer to computing the frequency content of a signal using
different windows. Decompositions refer to decomposing and representing the signal
as a linear combination of TF functions. Let us consider the decomposition of the

signal z(¢) in terms of a orthonormal basis as:
z(t) = Zaj,k'wj,k(t), (3.1)
.k
where the basis functions are of the form:
wj,k = w(t - tj)euwkt, (32)

and w(t) is the window function. If Q; and €2, are the time and frequency resolutions
of w(t), then the uncertainty principle demands [8]:

Q:Qy > %— (3.3)

Fach basis function in the expansion of z(f) can be considered schematically as a
tile in the TF plane. Each tile graphically illustrates the energy concentration of
the basis functions where the time and frequency resolution parameters, {}; and {2y,
represent the dimensions of this tile. The uncertainty principle allows us to draw two
conclusions: (1) we cannot achieve an infinitesimal tile (perfect resolution); (2) we
can increase the frequency resolution at the expense of losing time resolution, or vice
versa. The equality condition holds only for the Gaussian functions, which optimize
the concentration of signal’s energy in the joint TF domain [8]. Figure 3.2 shows
two TF tiles centered at points (¢, w;) and (iz,ws), with dimensions €2;, x {1, and

i, X Q,, respectively.
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Figure 3.2: Illustration of a TF tiling.

3.1.1 Spectrogram

The most basic and the widely used TF analysis technique is the short-time Fourier
transform (STFT). In STFT, a sliding window divides the signal into overlapping
time segments, and evaluates the Fourier spectrum for each segment. The discrete
STFT of signal® z(n) is given by
Oo .
X(n,w)= > z(n+m)w(m)e "™, (3.4)
m=—occ

where {w(n)} is the window sequence. X'(n,w) is a two-dimensional function of the

discrete time variable n and the continuous frequency variable w. Spectrogram is the

squared modulus of the STFT defined as
Saln,w) = | X(n,w) 2 (3.5)

In the spectrogram, the selection of the window function w(n) is important. A window
function with a long time spread can achieve a high frequency resolution. However,
one must note that for a long-window, the F'T' will consider each segment as stationary.

If the signal is highly nonstationary, then the spectrogram will not provide a good

'We will be processing discrete-time signals in the following chapters. Therefore, we introduce
the signals used in the TF analysis with their discrete-time representations.
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representation of the TFD of the signal. On the other hand; choosing a short-window
will result in coarse frequency resolution. Figure 3.3 shows TF tilings corresponding to
a short-window and a long-window based spectrogram. As the length of the window
size approaches infinity, the width, €, of the tile will approach zero, and the TF

representation will become the FT representation without time localization.

0 t 0 t

Figure 3.3: TT tilings of STFT. Left: short-window, Right: long-window.

The fixed length window function used by the spectrogram can be a significant
disadvantage in dealing with signals that exhibit stationary and nonstationary charac-
teristics in different time segments, as the TF resolution will not be optimal. Despite
its shortcomings and limitations, the spectrogram is still a popular TF analysis tool
mainly due to efficient and easy methods of computation. Figure 3.4 shows the TFD?
of a chirp using spectrogram. The spectrogram exhibits poor frequency resolution
due to the fixed length window function. However, the spectrogram conveys the in-

formation that the signal is a chirp with a linearly increasing frequency modulation.

3.1.2 Wigner-Ville Distribution

The Wigner-Ville distribution (WVD) was originally developed by the quantum physi-
cist E.P. Wigner, and later adapted to signal processing by J. Ville. It is a quadratic

2The frequency axis is normalized with reference to the sampling frequency of the signal. We
will use this normalization throughout this thesis.
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Figure 3.4: Spectrogram of a linear chirp with increasing frequency.

distribution and it forms the prototype for Cohen’s class of bilinear TFDs [8]. Let
W(n,w) be the discrete WVD of z(n) given by
o0
Win,w) = S z(n+k)z*(n— ke, (3.6)
k=—co

where z*(n) is the complex conjugate of the signal. W(n,w) can be seen as the FT
of the autocorrelation of z(n). This provides a very high TF resolution. Figure 3.5
shows the WVD of a linear chirp. The main drawback of W(n,w) is that it suffers
from cross-terms in the presence of multi-component signals. Cross-terms are highly
oscillating components that appear in TFDs. They occur due to the superposition
of different spectral components. For a multi-component signal, if the signal has a
frequency of w; at time n;, and a frequency of wy at time ny, then a cross-term
appears with a frequency of wyy = (w; + ws)/2, at time nyp = (ng + n2)/2 [8]. For
a multi-component signal, the TF representation constructed using the WVD may
lead to incorrect TF information, although the cross-terms in the TF plane may
not have much energy as the main spectral component. In the category of Cohen’s

class of bilinear TFDs, there have been several works done to minimize the effects of

cross-terms [8, 9, 10].
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Figure 3.5: WVD of a linear chirp with increasing frequency.
3.1.3 Adaptive Signal Decomposition Techniques

Wavelet Decomposition

The shortcomings of fixed windowing techniques and Cohen’s class of bilinear TFDs
are respectively, limited TF resolution and existence of cross-terms. The wavelet
analysis [11] provides a solution to the fixed TF resolution. A wavelet is a zero-mean
waveform with a finite time-domain support. A discrete-time wavelet is represented
with the function ¥(n) and referred as the mother wavelet. In wavelet transform, the
mother wavelet is scaled (stretched and compressed to match the high and low fre-
quency components of the signal) and slided across the signal. The wavelet transform
results in the decomposition of the signal z(n) as

z(n) = zk d;ib(2'n — k). (3.7)

2

where the expansion coefficients d;, are found as

dip = {z(n),p(@n—1k))
= > z(n)(2n — k). (3.8)

n

The inner product in Equation (3.8) calculates the similarity measure between the

p(n) and z(n) at different scales j, and time instants k. Figure 3.6 shows the TF
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plane tiling resulting from a two-band wavelet transform at the third decomposition

level. The partitioning resulting from a two-band wavelet transform can be compared

® |

= |

0

Figure 3.6: TF plane tiling for a two-band wavelet transform.

with the subband decomposition of a signal using a dyadic filterbank structure [11].
Another important characteristic of the wavelet transform observed from the TF tiling
diagram is that at high frequencies, wavelets provide good time but poor frequency
resolution, which is essential for accurate localization for the onset of high frequency

signal components.

We can have a non-uniform TF tiling by searching for different frequency compo-
nents within each TF tile. In this approach, the signal is decomposed into functions
from the over-complete dictionary of orthogonal functions. The corresponding TF
tiles can take various sizes by adapting to the energy of the signal for joint TF infor-
mation. Figure 3.7 shows the tiling of the TF plane resulting from such an adaptive
signal decomposition. TFDs based on adaptive signal decomposition have two advan-
tages. First, the signal can be represented with TF functions that have different time
and frequency supports, hence achieving a good TF resolution. Second, in case of
a multi-component signal, decomposing the signal into its constituent TF functions

allows the prevention and removal of cross-terms in the TFD.
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Figure 3.7: TF plane tiling from an adaptive signal decomposition.

Matching Pursuit Algorithm

The matching pursuit (MP) algorithm [12] is an adaptive signal decomposition tech-
nique that can decompose the signal into its TF functions. In MP, the signal z(n) of
length NV is decomposed into a linear combination of TF functions in {g,,,(n)}, and

can be represented as

:E(TL) = Z Om Gy (n)7 (3-9)
m=0
where
K, N — Pm (2mhm g
g1m () = \/5,29( S ) e, (3.10)

The set {a,,} are the expansion coefficients, and {g(n)} is the window function. K,
normalizes g(n). The scale factor s,,, and the temporal placement parameter pp,
control the width and the displacemént of the window function, respeétively. The
parameters k,, and ¢, represent the frequency and the phase of the exponential
function, respectively. k,, allows the search for different frequencies at each scale.
The discrete dictionary is limited with the set {vm} = {(Sm, Pm, 20k /N), 1 < 55, <
N, 0 < p, < N, and 0 < k,, < N}. One possible set of functions to be used in the

dictionary is the set of Gaussian functions, where
gy =N, (3.11)

The equality in the uncertainty principle expressed in Equation (3.3) holds for Gaus-

sian signals resulting in an optimal TF resolution [8].
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In MP, the signal z(n) is projected onto the dictionary {g,,(n)} of TF func-
tions with all possible window sizes, frequencies and terﬁporal placements. At each
iteration, the best-correlated function g, is selected from the dictionary and the
remainder of the signal, which is called the residue, is further decomposed using the

same iteration procedure. After M iterations, the signal z(n) can be represented as
M1
33(7’1,) - z <R7n$7 g’)’m >g"/m (n) + RMmJ (312)
m=0
where R™z represents the residue of the signal z(n) after m iterations with R’z = z,
such that

am = (R"z, g, )- (3.13)

The first term in Equation (3.12) represents the first A/ Gaussian functions best
matching the signal (we will refer to the first term as 2'(n)) and the second term
(referred as 2 (n)) represents the residue of the signal 2(n). In order for the signal to
be fully decomposed, the iteration process continues until all the energy in the residue
signal is consumed. However, for some applications such as denoising, the signal does

not need to be fully decomposed.

After the signal decomposition is achieved, the TFD W(n, w), may be constructed
by taking the WVD [12] of the Gaussian functions represented in z'(n):

M~1 M-1M-1

Wn,w) =Y lanW,, (n,w)+ > D amaW,, 4, (0,w), (3.14)
m=0 m=0 [=0
l#m

where W, (n, w) is the WVD of the Gaussian function g,,,(n), and
0 .
Wg’rm,gvl (n7 '(U) = Z g’)’m (n + k)g;l (n - k)eﬁ]w}g’ (315}
k=—00
W, (n,w) takes discrete time and frequency values since {7y} is a set of integers.

The second term in Equation (3.14) corresponds to the cross-terms of the WVD and

Ym

should be rejected in order to obtain a cross-term free energy distribution of 7' (n)
in the TF plane [12]. Therefore, the MP TFD which we denote with the symbol

W (n,w) is given as:
M—1
W (n,w)= Y |an" W, (n,w). (3.16)

m=0



28

The MP TFD is a cross-term free distribution with high resolution. Figure 3.8 shows

the MP TFD of a linear chirp with increasing frequency.
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Figure 3.8: MP TFD of a linear chirp with increasing frequency.

3.2 Detection of Directional Elements

As we demonstrated in the previous section, TFDs are techniques that are appropri-
ate for monitoring and localization of nonstationary signals in the TF plane. We use
the term information extraction to refer to the process of localization of nonstation-
ary signals in the TF plane. The information extracted is the energy variation of the
signal. Once the information is localized, we can treat the TFD as a gray level image
and process it by using image processing techniques. One useful way of processing the
TFD is to detect directional elements localized in the TF plane. In the context of this
study, we will consider the detection of FM signals as directional elements of interest.
These FM signals can be lines (linear chirps) or curves (quadratic chirps) in the 2D
TF plane. FM signals are commonly fozund in synthetic aperture radars, multipath
communication channels, whale sounds, helicopter sounds and sonars. Moreover, FM
signals can be the result of hostile jamming designed to interfere with the signal of
interest. This is a typical case in SS communications. Under this hostile interference

scenario, we would like to detect and suppress the FM interference to enhance the
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probability of detection of the transmitted signal. On the other hand, FM signals can
be transmitted messages, such as a secret or public messages transmitted in a noisy
environment. Under this alternate scenario, we attempt to recover the transmitted
message by estimating the partially missing directional components of the signal.
Therefore, we need a directional element detector that can detect time-varying en-
ergy values. The line detector that can satisfy our needs is a detector that uses the
combination of Hough and Radon transforms proposed in [13]. This detector has been
mathematically proven to be an optimal detector as it provides the maximum likeli-
hood identification of a chirp signal [14]. The combined Hough and Radon transform
(HRT) is an efficient tool to detect directional and time-varying energy components
in the TF plane. In the following sections, we will first discuss the Hough transform
and the Radon transform, and then continue to discuss the advantages of using the

combined HRT for TFDs.

3.2.1 The Hough Transform

The Hough Transform (HT) is a pattern recognition method for calculating the num-
ber of points that satisfy a parametric constraint. The HT was developed by Paul
Hough in 1962, and patented by IBM [15]. It is used in image processing applications
such as object detection, texture analysis, character recognition, directional image
analysis, and image compression. Although HT is mainly applied to straight line
detection, it can also be applied to other curves that can be described by equations

[16]. Let the parametric constraint be represented as

f(U,0) =0, (3.17)
where U = (uy,ug,...,ux) is a point in the space of possible features and © =
(61,65, ...,6L)is a point in the space of parameters. The parameter space is commonly

referred to as Hough space. The constraint may represent a curve, a line or a surface
depending on the interpretation of the feature point. Each point ©q in the parameter

space represents a constraint that is a particular instance of a curve, line or a surface.
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The constraint may be mapped into the Hough space by evaluating
{U: f(U,8y) =0} (3.18)

The parameter values consistent with the existence of a given feature point Uy are

curves that the particular point may lie on, and are given by

(0 f(Up,0)=0}. (3.19)

Given a number of feature points that satisfy a constraint specified by the parameter
Oy, the sets generated by Equation (3.19) for each feature will contain the point ©y.
Furthermore, Equation (3.19) may be viewed as a hypersurface in a continuous space
of parameters. The curves of features satisfying a particular constraint will intersect

at the common point ©y in the parameter space.

The implementation of the HT algorithm is based on the observation that a par-
ticular curve defined by a parametric constraint can be identified if all the elements
in a group of points, i.e., the points that lie on the curve, satisfy the same parametric
constraint. The grouping process is carried out by using a search grid that covers
the parameter space. Each cell in the search grid is associated with a counter. For
a given feature point Uy, we solve Equation (3.19) to find the number of points that
are on the parameter-space curve, and record it in the counter associated with that
parameter point. A cell in the search grid that contains the intersection of many
curves will represent a large number of points. At the completion of this process for
every element in the search grid, the parameter point corresponding to the counter

with the highest value will provide the estimate of the parametric constraint.

The size of the search grid has a significant effect on the computational time
required for the implementation of the HT. The limitation of HT is that it can be

applied to binary images only.

3.2.2 The Radon Transform

The Radon transform (RT) is a commonly used line detection technique in computer

tomography [17]. The RT computes the projections of different angles of an image
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TFD) or 2D data distribution i ¢(u, v) measured as line integrals along ray paths [17}]:
f

Rip,0) = j[:: j{o; ir(u,v) 6( p— (ucosf + vsin ) ) dudv, (3.20)

where § is the angle of the ray path of integration, p is the distance of the ray path
from the center of the image, and ¢ is the Dirac delta function. Equation (3.20)
represents integration of i;(u,v) along the line p = ucosé + vsinf as illustrated in
Figure 3.9. p denotes the distance of the perpendicular bisect from the origin, and ¢

denotes the angle spanned by the line. The RT adds up the pixel values in the given

VA

Figure 3.9: Line detection using RT.

image along a straight line in a particular direction and at a specific displacement.

The RT can be applied to both binary and gray-level images.

3.2.3 Combined Hough and Radon Transform

The Hough and the Radon transforms are individually not adequate to detect direc-
tional elements with varying energy levels. The underlying principle of the HT is that
it is a process for counting the number of pixels that satisfy parametric constraints
in a binary image. This property may result in misdetection of some energy varying
components. The RT may be seen as a special case of the HT for straight line de-
tection. While the RT can be applied to gray level images, it does not encompass
all possible variations of the HT. Considering the advantages and disadvantages of

each transform, we use the combined HRT as proposed in [13]. Using the combined
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HRT, we can detect the pixels that form a parametric constraint in a gray-level im-
age. These constraints can be straight lines or curves in the image of the TF plane.
We will consider the TF plane as an image matrix which will replace the 2D data
distribution if(u,) in the formulation of the RT given in Equation (3.20). Let T be
an K x N image matrix representation of the TF plane, where its elements Z(k,n)
represent the gray-level intensities. K is the number of rows corresponding to the
number of frequency slots, and N is the number of columns that correspond to the
number of time slots in the TFD. K and N vary according to the resolution of the
TFD, the time duration and the signal bandwidth.

The formulation of the HRT for discrete data sets is given as follows.

RO)= > > I(k,n), (3.21)
(k,n)€.A(©)
where
| A®) = {(k,n): (k,n)€e[L,K]x[1,N]: f(k,n,©)=0}, (3.22)
and
fk,n,0)=0 (3.23)

is the parametric constraint equation in the image plane.

In general, the implementation of the HRT would require that we first determine
a sufficiently fine search grid @,, for the parameter space, which will allow us to
differentiate all parametric curves of the form given in Equation (3.23) within the
resolution limitations of the image matrix. This search grid functions as a quantized

parameter space.

In the implementation of the HRT, the transform value R(Gy) at some 6y € O,
contains the total energy in the pixels that satisfy the parametric constraint equa-
tion. Therefore, we can devise an HRT based system to detect directional elements
defined by parametric equations: the peak values of the HRT will yield the most

likely parameter values.
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An Example

In this example we will consider the parametric constraint equation corresponding to

a straight line equation expressed in terms of the parameter vector © = {(p,8):
p— (ncosf + ksinf) = 0. (3.24)
With the above constraint equation, Equation (3.21) becomes equivalent to:
N K
R(O)=>">" I(k,n)6(p — (ncost + ksinb)). (3.25)
Equation (3.25) represents the summation of Z(k, n) along the line p = ncos f+ksin 6.

Equivalently, Equation (3.25) becomes the special case of the HRT resulting the
discretized version of the RT in Equation (3.20).

Quantized parameter space ©,: In this example, we will consider the HRT based
line detection process based on a 176 x 176 image matrix, i.e., K = N = 176. Let

L = max(K, N)/+/2. The parameter space is given as:
©={(0,p):0c[-7/2,7/2], pe[-L, L] }. (3.26)

To calculate the quantized parameter space ©;, we first quantize f and p to appro-
priate values in order to be able to evaluate all possible lines within the K x N image

plane. The quantization process for these parameters is as follows:

Let ). be the angle occuring from the image of a line with its initial and end
points corresponding to the first and the kth frequency slots, respectively. To find

the minimum step size for §, we evaluate Afy = 6 —6;_1 as a function of & such that

k k—1
o=l -l
Afy = tan (N> tan < N > ; (3.27)

where 1 < k < K. The minimum value of Ay is achieved at Afg as shown in Figure
3.10. Let p; be the distance of the line with initial and end points corresponding to
the first and kth frequency slots, measured relative to the center of the image. We

calculate Ap, = pp — pp—1 foreach 1 <k < K as

K K !
Ap, = { (E-cos Gy — -j—;]fsine;g> - (—2~C089k_1 - %Singk—l)} . (3.28)
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Figure 3.10: Quantization values for 6 and p for K = N = 176.

The minimum value of Apy is achieved at Ap; as shown in Figure 3.10. Af g and
Ap, are the maximum possible values to be able to evaluate all possible lines in the

K x N image plane. We can use smaller quantization steps at the expense of more

computation time.

The quantization step values Afx and Ap; allow us to determine the quantized
parameter space ®,. We then proceed to compute R(O) for all elements © € ©;.
In particular, let us consider the two lines shown in Figure 3.11. The shorter line is
represented in the HRT space by a peak with small amplitude (p > 0 and 6 < 0),
and the longer line is represented by another peak with larger amplitude (p =0 and
6 > 0). In the calculation of the HRT of the straight lines, it is assumed that the TF

resolutions of the chirps are perfect.

The procedure for detecting linear chirp signals, i.e., straight lines in the TF

plane, can be extended to include nonlinear FM signals [13]. The parameters p and
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Figure 3.11: HRT space for two straight lines.

0 used in the detection of linear chirps can be replaced by any set of parameters
that can satisfy a parametric equation. Some of the parametric equations that can
be represented are a sinusoidal FM, a hyperbolic FM, or an FM with a second order
equation. These equations can be represented respectively as f = msin(2w fot +8)+b,
f = m/t+b, and f = mt*+b, where the (Z, f) pairs can be solved for m, the amplitude,
fo, the number of cycles of the sinusoidal FM, 6, the phase, and b, the frequency
shift in the TF plane. The sinusoidal equations will have four parameters, whereas
the hyperbolic and the second order equation will have two parameters each. Each
parameter has to be quantized to appropriate values to evaluate the corresponding
parametric equation. Solution of these parameters will yield the information about
the presence or absence of these components in the TF plane. This information can

be used for the recognition, detection, or removal of these components.



Spread Spectrum Communications

PREAD spectrum techniques represent an important class of coding methods
S frequently used in secure communication systems such as those used by the
military. During the transmission of the SS signals, adversaries may deliberately
attempt to jam the transmission. Jamming signals, or interferences are narrowband
signals or wideband signals with narrowband instantaneous frequency elements, such
as chirps. Signal processing techniques allow interference suppression and excision
capabilities resulting in improved performance of the SS systems. Among signal
processing based techniques, TFD-based methods can localize the interference both

in time and frequency domains.

In this chapter, we propose a new method based on TFDs and the HRT to excise
chirp-type interferences from SS signals. First, we present a brief review of interference
suppression techniques based on signal processing. We provide the motivation for
the proposed algorithm, then proceed to develop and state the full algorithm. We
evaluate the performance of the new interference excision algorithm in terms of bit
error rate and chip error rate measured as functions of jammer-to-signal-power ratio

and signal-to-noise-power ratio values.

4.1 Review

Most interference suppression techniques are designed to deal with narrowband in-

terferences {18, 19, 20]. Among time-domain approaches to narrowband interference

36
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excision, the most notable methods include adaptive notch filtering and decision-

directed adaptive filtering techniques [7].

While SS systems can successfully reject narrowband interferences, their perfor-
mance in rejecting wideband interferences is limited. In practical systems, adversaries
are not likely to transmit high power wideband jamming signals due to the power lim-
itations of the interference source. Additive Gaussian noise can be considered as the
only realizable wideband interference, which is very challenging to predict and ex-
cise. Therefore, substantial amount of research has been conducted on wideband
interferences with narrowband instantaneous frequency elements such as FM signals.
Most of these methods focus on suppressing the interference using TFDs to localize
the interference signals [8]. However, commonly used TFDs suffer from a trade-off
between the TF resolution and cross-term suppression. In [21], Amin proposed a
method based on the WVD of the signal, which represents the signal with precise TF
localization; yet, the method is shown to suffer from cross-terms in the presence of
multi-component interferences. In the extension of this work [22], the authors use the
Wigner-Hough transform (WHT) to reduce the crossterms [22]; however, the system

is shown to be sensitive to the signal model.

In [23] and [24], different window length STFTs are used to localize the inter-
ference. In [25], the authors use a signal decomposition algorithm consisting of a
chirp-based dictionary to represent linear chirp interferences on the TTF plane. The
chirp interferences can be modeled with few coefficients and the proposed method
performs well with linear chirp interferences. However, the generalization of the sys-
tem to include quadratic, hyperbolic or sinusoidal FM interferences is not possible.
In [26], the instantaneous frequency of the interference is recursively estimated using
the discrete evolutionary and Hough transforms, and the interference is subtracted
from the signal by using the singular value decomposition of the de-chirped signal.
In [27], the authors propose an adaptive TF exciser that decides the domain of the
excision by evaluating both the time and frequency properties. This system performs

well in the case of narrowband interferences. There are also the TF projection fil-
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tering techniques as proposed in [28, 29]. A common characteristic of most of the
interference excision algorithms is the continuing presence of bit errors even after the

interference is suppressed.

4.2 A New Interference Excision Algorithm

Let us consider a DSSS system as shown in Figure 4.1. In this system, the transmitter
generates a SS signal which is in turn transmitted over a communications channel as
a BPSK modulated signal. Additive channel noise as well as jamming signal act on
the transmitted signal. At the receiver, the noise and interference corrupted signal

is first demodulated. The “standard” SS receiver correlates the baseband SS signal

INTERFERENCE EXCISION
CHANNEL
BPSK . < ons
55 & " et -P Detctor | 5286 sign
signal /\/\ emodulator
Interference
’. . Modeling
noise  interference

Figure 4.1: Block diagram of a DSSS system.

with the synchronized PN sequence, and the resulting signal is processed and input

into a threshold detector to estimate the transmitted binary data sequence.

Let by, = £1 be the kth message symbol transmitted in a DSSS system such that

Wg — bkpk; (41)

where pr = [co,...,cr—1]" for {k=1,2,...} is a PN sequence with a chip length
L, and wy, is the SS signal'. The received signal ry at the output of the channel
will consist of the SS signal wy, the additive white Gaussian noise term ny, and the
interference i; such that

T = Wi+ ng + ik (42)

lFor notational convenience, we assume that the pulse energy of the SS signal, £ given in
Equation (2.10) equals unity.
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We will use the notation r to refer to the received signal sequence:
r={r(0),...,7(L—1),7(0),... } (4.3)

Similarly, we will use the notation w, n and i to refer to respectively, the complete
SS signal, noise and interference sequences before they are separated into L-element

vectors in the form wy, ng and iy, for k=1,2,....

T

Let & = wlw, £, = n"n and & = i7i. We define signal-to-noise-power ratio

(SNR) and jammer-to-signal-power ratio (JSR) as:

SNR = &,/&,, (4.4)
JSR = &/&,, (4.5)

Motivation

The results presented in Section 2.1 show that SS systems can inherently suppress
interferences as a result of the spreading gain. In particular, when the power of
the jamming signals that we assume are part of the received signal coming from the
channel increase relative to the power of the SS signal, the performance of the detector
and therefore of the SS system as a whole starts to degrade. Figure 4.2 shows three
different waveforms as they appear in the receiver after the baseband SS signal has
been despread by the PN sequence. These plots were generated with I = 128, &, = 0
and a linear chirp as the jamming signal at different JSR values. The assumption
of zero noise power was made to better illustrate the effects of the jammer on the
performance of the SS system. The middle plot in Figure 4.2 shows a waveform that
will result in the correct estimation of the transmitted symbols. However, the bottom
plot depicts a case when the jamming signal overwhelms the SS signal such that its

interference suppression capacity is exceeded.

To further illustrate the effects of increasing jammer power, we simulated the
channel output with £, = 0, and a linear chirp as the jamming signal which sweeps the
entire frequency spectrum of w. We changed the JSR values from 0 to 60 dB in 5 dB

steps. 'To measure the performance of the SS signal, we despread the received signal
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Figure 4.2: Despread waveforms at the receiver with a synchronized PN sequence. Top:
reference with no jammer, Middle: JSR = 10 dB, Bottom: JSR = 30 dB.

r = w1, with the PN sequence p, integrate the resulting sequence and compare the
result with a threshold to estimate the transmitted message symbols. The bit-error-
rate (BER) results obtained from this simulation provides a measure of the built-in
interference suppression, i.e., self-excision, capability of the SS system. Figure 4.3

shows the BER values at different JSR levels. The results presented in Figure 4.3 show

0 10 20 30 40 50 80
JSRA {dB)

Figure 4.3: BER vs. JSR results for a self-excised SS system.

that the SS system was able to completely self-excise the interference for JSR < 10 dB,
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as manifested with BER = 0. The resistance of the system to interference decreased
with increasing JSR. For JSR > 40 dB, we observed BER ~ 50% indicating that the

SS system cannot suppress any part of the interference.

From these observations we conclude that pre-processing of the SS signals is an
essential step in expanding the operating range of SS systems to high JSR environ-
ments. In particular, the pre-processing operations take the form of modeling the
interference and excising from the SS signal before the despreading and detection

steps.

Overview of the Underlying Techniques

In this study, we consider the interference excision problem with single-component lin-
ear or quadratic FM signals, and multi-component FM signals—Ilinear and quadratic
FM signals interfering simultaneously. Considering the directional nature of FM sig-
nals in the TF plane, the first step of the proposed algorithm is the modeling of the

interference by localizing the FM type interference signals in the TT plane.

Earlier interference excision methods based on TFDs suffer from a trade-off be-
tween the TF resolution and the TFD cross-terms [14, 30, 31]. Therefore, we propose
a new excision method based on constructing a positive TFD of the received SS sig-
nal using an adaptive signal decomposition technique, the MP algorithm [12]. By
decomposing a signal into its components, the interaction between components can
be kept under control and possibly eliminated. The decomposition will allow the
construction of a cross-term free TFD by combining the TFDs of the individual com-
ponents generated by the decomposition. Also, by using Gaussian functions as bases
for decomposition, we can achieve a high TF resolution, since the Gaussian func-
tions satisfy the equality in the uncertainty principle explained in Section 3.1. We
construct the TFD of the TF functions resulting from the MP, treat the TFD as an
image, and detect the interfering signals using the HRT. We then reconstruct a model
the interfering chirps using the TF functions and excise the reconstructed interference

from the received signal. Figure 4.4 provides an overview of the proposed algorithm.
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After the interference excision, the “interference free” SS signal is processed as be-

MP r’ - Intef'fere-nce [ —
Estimation A
i
&
MP HRT
TFD ‘W’V R(©) Y

Figure 4.4: Interference excision.

fore by first correlating with the synchronized PN sequence, integrating the resulting

sequence and estimating the transmitted data symbols using a threshold detector.

The Algorithm

We assume that the information on the number and type of interference signals is
available. In particular, we assume that the interference signals are linear or quadratic
FM signals which can be present simultaneously. Let 7 € {linear, quadratic} be the

type of interference, and M, be the number of interference signals of type 7.

Step 1: The received signal r is modeled as & linear combination of Gaussian func-
tions using the MP algorithm given in Section 3.1.3. Let r' be the model gen-

erated by MP algorithm as in

)= Y Qg (n). (4.6)

m=0

where g, (n) are the Gaussian TF functions given in Equation (3.10). The
model order M is determined as the smallest positive integer which will make

v’ = {r'(0),7'(1),...} satisfy the condition:
N-1
> lr(n) =" < N, (4.7)
n=0

where NN is the length of r.

Step 2: Formulate the parameter set § using the parameters of the Gaussian TF

functions g.,,, such that

G = {(km,pm), m=0,..., M —1}, (4.8)
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where k,, and p,, are the frequency and temporal placement parameters of the

TF function g.,,, respectively.

Step 3: Compute the cross-term free TFD of ¢’ using the WVD:

M1
W (n,w) = z ]am|2 Wy (n, w), (4.9)

m=0

where W, (n,w) is the WVD of the Gaussian function g,,,(n).

Step 4: Let Z(k,n) be the K x N image matrix representation of W(n,w). For
each interference type T known to be present in the received signal, determine
the corresponding quantized parameter space ©, and evaluate the HRT given

in Section 3.2.3 and R(©,) using Equations (3.21-3.23).

Step 5: For each interference type 7 known to be present in the received signal,
determine the M, parameters {01 ... ©M")} from the quantized parameter

space ©, corresponding to the first M, maxima of R(©;). Let

e ={el, .. oW | (4.10)

T

Step 6: For each interference type 7 known to be present in the received signal and

for each O™ ¢ ©%, determine the index set £{™ C {0,..., M — 1} defined as:
L0 = {1 e {0, M—=1}, (kyp) € G, frlki,p, O™ £ AO) =0}, (4.11)

where f,(k,p, ©) = 0 is the parametric coustraint describing the interference of

type 7 and AO is the empirically determined confidence measure.

Step 7: For each interference type 7 known to be present in the received signal and

for each m € {1,..., M, }, construct the corresponding interference model as:
9m) = Y ag, (n). (4.12)
lect™

Step 8: Determine the interference excised SS signal by subtracting the interference

models generated in Step 7 from the received signal:

D) =r(n) -3 3 il (n). (4.13)

T m=1
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Detector

At the receiver, the interference excised signal W is first synchronized and correlated
with the same spreading signal p. Let Wy be the kth block of %. To estimate by, we
use the PN sequence p; to despread Wy, and integrate the result to generate the test

statistic A:

A = (Wi, DPr)s
= pz: wk)
-1
= z p(n)we(n). (4.14)
n=0

Using the test statistic A, we estimate the message symbols as:

. {+1, if A>0,

b = ~1, if A< (4.15)

4.3 Simulation Results and Discussion

The simulation results presented in this section are based on a DSSS system with
I = 128 chips per message symbol by. The transmitted message contained 100
message symbols. We assumed that the channel was non-dispersive, and the received

signal and the PN sequence were synchronized.

Performance Measures

Bit error rate (BER) For the DSSS model used in this study, we process the re-
ceived signal using the interference excision algorithm, and estimate the trans-
mitted message symbols using the detector structure presented in Section 4.2.
A comparison of the estimated message symbols {b;} with {b;}, and express-
ing the number of erroneous estimate