LOW SYMMETRY PINCER LIGANDS DESIGNED FOR APPLICATIONS IN COORDINATION CHEMISTRY AND CATALYSIS

by

Khrystyna Herasymchuk
Bachelor in Science, Chemistry
Ryerson University, Toronto, Ontario, Canada 2012

A thesis presented to Ryerson University
In partial fulfillment of the
Requirements for the degree of
Master of Science
In the Program of
Molecular Science

Toronto, Ontario, Canada 2014
© Khrystyna Herasymchuk 2014

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

LOW SYMMETRY PINCER LIGANDS DESIGNED FOR APPLICATIONS IN COORDINATION CHEMISTRY AND CATALYSIS

Master of Science, 2014
Khrystyna Herasymchuk
Molecular Science

Ryerson University

Abstract

Pincer ligands are monoanionic, tridentate binding molecules that have been used in coordination chemistry as efficient homogeneous and heterogeneous catalysts (i.e. as transition metal complexes). The focus of this work lies in the synthesis, characterization and coordination chemistry of a series of novel asymmetric potentially monoanionic NN'N', NN'C and NN'P type pincer ligands with amide functionality derived from the skeleton of 2-(2'-anilinyl)-4,4-dimethyl-2-oxazoline. Modular approach to this synthesis has been developed through an alkyl halide intermediate, in addition to the substrate-dependent alternative pincer syntheses, which are also described. The coordination chemistries of Pd and Ni , as well as the potential application of these pincer complexes in metal mediated catalysis of aldehyde allylation reactions will be explored. Moreover, a number of $\operatorname{Pd}(I I)$ pincer complexes have been successfully synthesized and structurally characterized and these results are likewise described.

ACKNOWLEDGMENTS

It has been four years, and five summers since I have met Dr. Gossage and was fortunate to work under his supervision. I would like to begin by thanking him for his mentorship and friendship, his true support and motivation during the course of this thesis, as well as some great giggles along the way.

I would also like to thank Dr. Koivisto and Dr. Viirre for their help, motivation, support and contribution to my work. Both of you are extraordinary chemists and educators and I feel so fortunate to have been your student.

A sincere thanks goes to Dr. McWilliams and Dr. Wylie for taking their time to read my thesis and help me make it even better. My gratitude extends to Dr. Foucher, Dr. Wylie and Dr. Gossage for their pivotal role in my career growth. As they opened their doors to a student volunteer all those summers back. It is thanks to you that I am where I am today. Now onto the life-long friendships that have been synthesized during the course of this work and my studies at Ryerson. Michelle, friend, you have been there for me even when no other friend was, always caring, supporting and cheering me on all the way. You are truly the greatest friend one can ask for! I would like to also mention Jennifer, who has been working alongside with me and has helped me tremendously. You are the most humble and selfless person I know! How can I forget about the biggest distraction (yes, you beat Michelle) - Shane (a.k.a. Robin), thanks for your friendship and keeping the lab "safe". I want to thank Jeffrey, Tamara, Alina, Maryam, Mahroo, Grace, Aman, Billy, Devin, Nande and Jon for your friendship and support. Shout out to KHN202, KHE211 and KHE322C the friendliest environment and grads! Thank you all for being simply amazing people! Special thank you goes out to the most important person in my life, Dima, whose love and support means the world to me. Thank you for always being there for me!

To my parents,
Марії і Павлу

TABLE OF CONTENTS

ABSTRACT III
ACKNOWLEDGMENTS IV
DEDICATION V
TABLE OF CONTENTS VI
LIST OF FIGURES VIII
LIST OF SCHEMES IX
LIST OF TABLES X
LIST OF ABBREVIATIONS XI
CHAPTER 1.0 - INTRODUCTION 1
1.1 PINCER LIGANDS AND COMPLEXES 1
1.1.1 Oxazoline-containing pincer ligands and their complexes 3
1.1.2 Asymmetric pincer complexes in catalysis 4
1.2 Previous WORK 13
1.3 Thesis objective 14
CHAPTER 2.0 - LIGANDS 16
2.1 Amino acid route 16
2.2 Modular approach 18
2.2.1 Synthesis of Pincers $\mathbf{3 b} \mathbf{b} \mathbf{3}$ 20
2.2.2 Synthesis of $\mathbf{3 k}$. 23
2.2.3 Synthesis of 3I: a carbene-pincer precursor 25
2.2.4 Synthesis of $3 m$ and $3 m \cdot o x i d e$ 26
2.2.5 Synthesis of $3 n$ 27
2.3 Chiral derivatives 28
CHAPTER 3.0 - COMPLEXES 30
3.1 Palladium complexes 30
3.1.1 NNN type pincer complexes 30
3.1.2 NNC type pincer complex 32
3.1.3 NNP type pincer complex. 34
3.2 ATTEMPTS AT THE SYNTHESIS OF NICKEL COMPLEXES 36
3.2.1 NNN type pincer complexes 36
3.2.2 NNC type pincer complex 37
3.2.3 NNP type pincer complex 37
CHAPTER 4.0 - CATALYSIS 39
4.1 Allylation of aldehydes 39
CHAPTER 5.0 - EXPERIMENTAL 43
5.1 General 43
5.2 LIGANDS 44
5.3 PaLLADIUM COMPLEXES 63
5.4 Catalysis 76
CHAPTER 6 - CONCLUSION AND FUTURE WORK 77
CHAPTER 7 - APPENDIX 78
7.1 NMR SPECTRA 78
7.3 X-RAY CRYSTALLOGRAPHY 143
CHAPTER 8 - REFERENCES 177

LIST OF FIGURES

Figure 1.1 Classification of ligands (L = ligand, $M=$ metal atom).................................... 1
Figure 1.2. General depiction of a pincer ligand, where $M=$ metal, $L=$ ancillary ligand and $X, Y=$ linking atoms for $\mathbf{A}\left(E=E^{\prime}\right)$, for $\mathbf{B}\left(E=E^{\prime}\right)$ and $\mathbf{C}\left(E \neq E^{\prime}\right) \ldots . ~ 3 ~ 3 ~$

Figure 1.3 Structure of oxazoline (4,5-dihydro-2-oxazoline).. 4
Figure 1.4 Structures of $\left.\left[\mathrm{PdCl}_{2} \text { (2-ethyl-2-oxazoline) }\right)_{2}\right](\mathrm{D})$ and 1,3-bis-(4,4-dimethyl-2oxazolinyl)benzene (E).. 4

Figure 1.5 Asymmetric Ru and Os pincer complexes. ... 6
Figure 1.6 Ru complex with NNC pincer ligand... 7
Figure 1.7 Asymmetric NNC pincer complexes with Ru, Rh, Pd and Au 9
Figure 1.8 Pd(II) complex with NNC pincer type ligand ... 10
Figure 1.9 Ru(II) complex with NNP pincer ligand... 12
Figure 1.10 Synthesis of PNN Ru complex (0). .. 12
Figure 1.11 Structures of NNN pincer ligand (\mathbf{P}) and Cu NNN pincer complex (Q) 14
Figure $1.12 \kappa^{4}$-PNN'O pincer-like complexes with an amide moiety.............................. 14
Figure 1.13 Classification of NN'L type pincer complex ($M=$ metal, L = ligand) 15
Figure 2.1 X-ray crystal structure of 2 (on the left; solved by Alan Lough) and calculated (DFT) structure of 2 at the B3LYP: 6-311++G** theory level (on the right) 19
Figure 2.2 X-ray crystallographic structure of 3m•oxide (Solved by Laura R.
Fernández).
Figure 2.3 X-ray crystal structure of 6 (Solved by Robert A. Gossage)......................... 29
Figure 3.1 Crystal structures of 9 a (left) and 9 h (right) solved by Laura R. Fernández 31
Figure 3.2 The comparison of the ${ }^{1} \mathrm{H}$ NMR spectra for 31 and 91................................... 33
Figure 3.3 Select ${ }^{1} \mathrm{H}$ chemical shifts for $\mathbf{3 m \bullet o x i d e}$ and 9 m , depicting splitting effect ... 35

LIST OF SCHEMES

Scheme 1.1 The evolution of pincer definition 2
Scheme 1.2 Transfer hydrogenation of ketones catalyzed by F and G 6
Scheme 1.3 Catalytic transformations using Ru NNC pincer complex, H 8
Scheme 2.1 Synthesis of NNN type pincer ligand using 1 and amino acids 16
Scheme 2.2 Synthesis of NNN type pincer ligand from N, N-dimethylglycine. 16
Scheme 2.3 Synthesis of compound 2 - pincer precursor 18
Scheme 2.4 Synthesis of NNN type pincer ligands through a modular approach 21
Scheme 2.5 Synthesis of an extended pincer NNNO, 3k, from N-methylaminoethanol24
Scheme 2.6 Synthesis of NNC pincer ligand, 3I from 1-benzylimidazole 25
Scheme 2.7 Synthesis of NNP pincer ligand, 3m, from potassium diphenylphosphide 26
Scheme 2.8 Synthesis of $3 n$ from 1 28
Scheme 2.9 Synthesis of the chiral derivatives, 6 and NNN type pincer ligand, 7 28
Scheme 3.1 Synthesis of Pd-NNN pincer complexes, 9a-e and 9g-k 30
Scheme 3.2 Synthesis of Pd-NNC pincer complex, 91 32
Scheme 3.3 Synthesis of Pd-NNP pincer complex, 9m 34
Scheme 3.4 Synthesis of Ni-NNC type pincer complex from 3I ligand 37
Scheme 3.5 Synthesis of Ni-NNP pincer complex 38
Scheme 4.1 Bis(allyl)palladium in catalysis. 39
Scheme 4.2 Allylation of para-substituted benzaldehydes catalyzed by 9b 40
Scheme 4.3 A proposed mechanism for the allylation of aldehydes 42

LIST OF TABLES

Table 1.1 Heck and Stille cross-coupling reactions catalyzed by M 11
Table 1.2 Transfer hydrogenation of ketones catalyzed by NNP Ru complex (0) 13
Table 1.3 Esterification of primary alcohols catalyzed by Ru NNP complex (O) 13
Table 2.1 IR spectrum analysis for NNN type pincer ligands.. 17
Table 2.2 Experimental and calculated hydrogen bond lengths and angles for 2 19
Table 2.3 Select ${ }^{1}$ H NMR chemical shifts and yields for 2, 3a-3m•oxide, 6 and $7 \ldots22$
Table 2.4 Protection of the hydroxyl group on the N-methylaminoethanol 23
Table 2.5 Select literature and experimental ${ }^{31}$ P NMR chemical shifts for PNN pincer. 26
Table 3.1 Synthesis of Ni-NNN type pincer complex from 3e ligand 36
Table 4.1 Pd-NNN pincer complex-catalyzed allylation of select aldehydes 41
Table 4.2 Comparison of ${ }^{1} \mathrm{H}$ NMR chemical shifts for aldehyde allylation reaction 41

LIST OF ABBREVIATIONS

B3LYP	Becke 3 Lee Yang Parr
CDCl_{3}	Chloroform-d ${ }_{1}$
DCC	N, N-Dicyclohexylcarbodiimide
DCFC	Dry-column flash chromatography
DCM	Dichloromethane
DFT	Density functional theory
DMAP	4-Dimethylaminopyridine
DME	Dimethoxyethane
DMTMM	4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4methylmorpholinium chloride
Et	Ethyl
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
$\mathrm{Et}_{3} \mathrm{~N}$	Triethylamine
EtOH	Ethanol
h	Hour(s)
IR	Infrared
LDA	Lithium diisopropylamide
Me	Methyl
MeCN	Acetonitrile
Mp	Melting point
$n \mathrm{BuLi}$	Butyllithium
NHC	N-Heterocyclic carbene
NMR	Nuclear magnetic resonance
Ph	Phenyl
$\mathrm{R}_{\boldsymbol{f}}$	Retardation factor
RT	Room temperature
$\mathrm{S}_{\mathrm{N}} 2$	Bimetallic nucleophilic substitution
SPS	Solvent purification system
tBuOK	Potassium tert-butoxide

THF	Tetrahydrofuran
TLC	Thin layer chromatography
TMSCI	Trimethylsilyl chloride
TOF	Turnover frequency

CHAPTER 1 - INTRODUCTION

1.1 PINCER LIGANDS AND COMPLEXES

Even though coordination compounds have existed for a long time, it was not until the late nineteenth century that Alfred Werner proposed the octahedral structures for Co (III) complexes, and as such pioneered this area of study. He was awarded the Nobel Prize in chemistry for his work on coordination compounds in 1913 and has since been referred to as the "Father of Coordination Chemistry". ${ }^{1,2}$ In coordination chemistry, ligand can be defined as an ion or molecule bound to a metal atom through a coordinating bond, forming a coordination complex. This bond is due to an electron pair donation from the ligand to the metal. In contrast, a chelating ligand has two or more points of attachment to the metal centre. Ligands can also be described as mono-, bi-, tri-, tetra-, penta- and hexadentate, having one through six atoms of attachment, respectively (see Figure 1.1). ${ }^{3}$

 monodentate

bidentate

tridentate

Figure 1.1 Classification of ligands ($L=$ ligand, $M=$ metal atom).
Over the years chelating ligands have been of much interest and use for catalytic purposes. ${ }^{4,5}$ An important class of chelate chemistry is comprised of pincer ligands and their complexes. Ever since the original PCP type pincer ligand was reported by Molton and Shaw in 1976^{6} (Scheme 1.1) - pincer complexes have become prominent as homogeneous and heterogeneous catalysts in both organic synthesis and materials
science. ${ }^{7-12}$ But it was not until late 1980s that this class of ligands received the name of the 'pincer', a term coined by the pioneer in the field - Gerard van Koten.

Pincers can be defined as tridentate ligands with one formal anionic coordinating atom and two neutral coordinating atoms binding to a central atom in typically a mer configuration. ${ }^{13,14}$ Over the years, this definition has been broadened (Scheme 1.1), and the scope of pincer chemistry has been extended to encompass various coordinating atoms (e.g., $\mathrm{P}, \mathrm{N}, \mathrm{S}, \mathrm{O}) .{ }^{1}$ To control the property of a metal centre, the pincer ligand framework can be modified with respect to both steric and/or electronic features. This has led to the development of a large number of different types of pincer ligands. The coordination modes of pincer ligands in complexes have been found to be $L_{3}, L_{2} X, L X_{2}$, and $X_{3}(\text { where } L=\text { neutral atom and } X=\text { anionic atom })^{15}$

Scheme 1.1 The evolution of the pincer definition.
Depending on the character of the coordinating atoms on the pincer ligand, each individual M-ligand interaction can either be reinforced or competed against. For example, having σ-donating or $\pi-$ accepting phosphanyl groups on a PCP pincer can either reinforce or compete against a σ-donating central aryl moiety - this provides a
certain level of control over the dipolar nature of the pincer complex. ${ }^{16}$ The unique qualities of pincer ligands include: their typical high thermal stability, as well as imparting a greater reactivity to transition metal complexes versus those without pincertype ligands. ${ }^{16-18}$

From the onset of the pincer chemistry, the research focus lied on the ECE type pincer ligands with the central position having an anionic $C_{i p s o}$, (part of the phenyl ring), with two identical ortho substituents (A, Figure 1.2). ${ }^{19}$ Lately the research into pincer chemistry led to investigations of non-carbon monoanionic framework ${ }^{20}$ with two ortho moieties having different substituents, as well as having different E donor atoms all together, giving it C_{1} point group symmetry (B or C, Figure 1.2). The manipulation of a pincer ligand with respect to its structure is an endless endeavour.

A
symmetric

B
C
asymmetric $\left(C_{1}\right)$

Figure 1.2. General depiction of a pincer ligand, where $M=$ metal, $L=$ ancillary ligand and $X, Y=$ linking atoms for $\mathbf{A}\left(E=E^{\prime}\right)$, for $\mathbf{B}\left(E=E^{\prime}\right)$ and $\mathbf{C}\left(E \neq E^{\prime}\right) .{ }^{21}$

1.1.1 Oxazoline-containing pincer ligands and their complexes

The oxazoline, a subclass of oxazoles, is a five-membered heterocyclic organic compound with O and N atoms connected through an sp^{2} hybridized C atom (Figure 1.3). ${ }^{13}$ It plays an important role in transition metal chemistry, since oxazoline-based ligands have been investigated extensively in recent years and show great number of applications in homogeneous catalysis. ${ }^{22}$

Figure 1.3 Structure of the oxazoline (4,5-dihydro-2-oxazoline) showing the typical numbering scheme.

Metal complexes formed with oxazoline moieties, combined with phosphorus, nitrogen or oxygen as donor atoms, often showcase interesting electronic properties associated with catalysis. ${ }^{22}$ For example, it has also been shown that Pd complexes containing oxazoline moiety (D, see Figure 1.4) have demonstrated oxidatively robust systems with respect to applications in cross coupling reactions. ${ }^{23}$

D

E

Figure 1.4 Structures of $\left[\mathrm{PdCl}_{2}(2 \text {-ethyl-2-oxazoline) })_{2}\right]$ (D) and 1,3-bis-(4,4-dimethyl-2oxazolinyl)benzene (E).

Incorporation of an oxazoline moiety into pincer ligands has also been investigated. Coordination of pincer ligand E (Figure 1.4) and its derivatives has been studied with Pt and Pd metals, showcasing successful application in catalysis of carbon-carbon bond forming reactions. ${ }^{24-30}$

1.1.2 Asymmetric pincer complexes in catalysis

Since asymmetric pincer ligand complexes have gained the spotlight in the scientific community, their catalytic activity has been of great interest. Some of the reactions that they were found to catalyze include: ethylene polymerization, hydrogenation, transfer hydrogenation, dehydrogenation or oxidation (of alcohols), cyclopropanation, and such
cross-coupling reactions such as the Kumada (coupling of an organic halide and Grignard reagent), Suzuki (coupling of an organic halide and boronic acid), Heck (coupling of an organic halide and an alkene) and Stille (coupling of an organo halide and organotin) coupling reactions. ${ }^{31-36}$

Transition metal pincer complexes have also shown great potential in stoichiometric and catalytic reactivity, ${ }^{19,37}$ however, chiral complexes have been investigated less because the auxiliary ligands have been responsible for the enantioselectivity in catalysis. ${ }^{7}$ Pincer complexes also exhibit high thermal stability and interesting properties of robustness, which make them even more desirable for homogeneous catalysis. ${ }^{37}$ The environmental aspect of any chemical transformation is greatly affected by the amounts and types of reagents used. That is why the use of catalyst is preferred over the use of stoichiometric amounts of reagents. ${ }^{38}$

One of the most important reactions involved in producing chiral alcohols is the asymmetric reduction of ketones. So far, Ru, Rh, Ir and Os complexes have been synthesized and successfully applied in ketone hydrogenation and transfer hydrogenation reactions. For Ru catalyzed process, the presence of an $-\mathrm{NH}_{2}$ group is crucial for the catalysis and formation of Ru-H hydride, this relationship can be described as a metal-ligand bifunctional catalysis. ${ }^{32}$ Based on this find, Baratta et al. have developed new Ru (and Os) complexes with chiral asymmetric NNC pincer ligands that carry an $-\mathrm{NH}_{2}$ functionality. The presence of the σ metal-carbon bond in these complexes has been shown to prevent catalyst deactivation and at the same time ensures high stability and productivity. During catalysis the Ru pincer complex is formed in situ, and hence had to be isolated separately to study in detail. ${ }^{39}$

F

G

Figure 1.5 Asymmetric Ru and Os pincer complexes.
Preliminary catalytic study of Ru and Os complexes identified complex F and \mathbf{G} as the most suitable candidates for further catalytic investigation. Transfer hydrogenation of ketones catalyzed by F and G showed promising results (Scheme 1.2), where ketones have been reduced to their secondary alcohol forms with 80-99\% conversion, 92-99\% ee and TOF ranging from 1.9 to $26 \times 10^{4} \mathrm{~h}^{-1}$ for \mathbf{F} and $93-99 \%$ conversion, $90-99 \%$ enantioselectivity and TOF ranging from 5.1 to $90 \times 10^{4} \mathrm{~h}^{-1}$ for \mathbf{G}. However, attempts at the reduction of sterically demanding ketones revealed low alcohol conversions of only up to 20%. Overall, both Ru and Os NNC complexes used in transfer hydrogenation of ketones proved to be effective catalysts, with \mathbf{G} having the greatest percentage conversion(s) and TOF. ${ }^{39}$

Scheme 1.2 Transfer hydrogenation of ketones catalyzed by F and G.
In 2012, Du et al. reported a Ru catalyst with an unsymmetrical NNC pincer ligand (complex \mathbf{H}, Figure 1.6) that successfully catalyzes the transfer hydrogenation and Oppenauer-type dehydrogenative oxidation of alcohols, vide infra (Scheme 1.3).4 ${ }^{40}$

H
Figure 1.6 Ru complex with NNC pincer ligand
The complex H was characterized using NMR spectroscopy, and it was shown through a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum that the two PPh_{3} are magnetically identical and are positioned trans to each other because of a singlet observed at $\delta_{p}=26.4 \mathrm{ppm}$. The complex was also characterized using X-Ray crystallography and was shown to have a neutral molecular structure with the NNC ligand in nearly a planar tridentate orientation. ${ }^{40}$ The transfer hydrogenation of ketones was carried out in 2-propanol under a nitrogen atmosphere in the presence of $0.1 \mathrm{~mol} \%$ of the catalyst, \mathbf{H} (see Scheme 1.3). A variety of substituted ketones were transformed, including substituted acetophenones, aliphatic cyclic and acyclic ketones. Overall, the conversion of the ketones was observed to be greater than 98% within 1 min with TOF values of up to $18 \times 10^{4} \mathrm{~h}^{-1}$. The ketones with electron-withdrawing substituents on the aryl rings had a higher rate of reaction, whereas ortho substituted ketones had a reduced reaction rate due to the steric considerations. It should be noted that no transfer hydrogenation is observed in the absence of a base. ${ }^{40}$

The Oppenauer-type oxidation is a widely used method for production of carbonyl compounds without using stoichiometric amounts of oxidants. Similar to the transfer hydrogenation reactions above, the secondary alcohols undergo dehydrogenative oxidation with $\mathbf{H}(0.5 \mathrm{~mol} \%)$ with $t \mathrm{BuOK}(10 \mathrm{~mol} \%)$ in refluxing acetone (Scheme 1.3).

Scheme 1.3 Catalytic transformations using Ru NNC pincer complex, H.
The oxidation of alcohols was successfully carried out from 1 min to 3 h , averaging at conversions greater than 97% and with TOF values of up to $1.2 \times 10^{4} \mathrm{~h}^{-1}$. This catalytic activity represents one of the best reported to date. ${ }^{40}$

The coordination of the Ru, Rh, Pd and Au with NNC pincer ligands was reported to work through Lin's method of transmetallation. ${ }^{38}$ Reacting the NNC pincer ligands with $\mathrm{Ag}_{2} \mathrm{O}$ in DCM - produced a silver(I) intermediate complex. With the addition of each appropriate metal precursor to the reaction solution directly, allowed for the complexes I - L to be formed in excellent yields (>90 \%). Upon coordination of the ligands, a new chiral centre is introduced in all of the complexes (Figure 1.7), and the coordination of Ru is completely stereospecific. ${ }^{38}$

Catalytic behaviour of I was tested on a hydrogenation reaction of diethyl citraconate and diethyl 2-benzylidenesuccinate. All the catalysts show high enantioselectivity and activity for the hydrogenation of diethyl 2-benzylidenesuccinate, the enantioselectivity is low with respect to the desired enantiomer, even though activity is high for the diethyl citraconate substrate. ${ }^{38}$

I

J

K

L
[i]: $\mathrm{Ar}=$

[ii]: $\mathrm{Ar}=$

Figure 1.7 Asymmetric NNC pincer complexes with Ru, Rh, Pd and Au. Prior to the synthesis of NNC Ru complexes (I), Boronat et al. looked at the chemistry of the NNC pincer type ligand of $\mathrm{Rh}(\mathrm{J}), \mathrm{Pd}(\mathbf{K})$ and $\mathrm{Au}(\mathrm{L}) .{ }^{41}$ Catalytic activity of Rh complexes (J[i-ii]) was tested on hydrogenation of olefins, exhibiting high TOF but very low enantioselectivity for diethyl itaconate hydrogenation. Whereas, hydrogenation of diethyl 2-benzylidene succinate was successfully catalyzed by J[i] with good enantioselectivity of 82% for the S stereoisomer and J[ii] with excellent enantioselectivity (99\%) for the R isomer. However, the reaction rates are much lower. ${ }^{41}$ Catalytic activity of $\mathrm{K}[\mathrm{i}]$ and $\mathrm{K}[\mathrm{ii}]$ was also tested on the hydrogenation of olefins as well. Just like with Rh and Au, the reaction rate is higher for the hydrogenation of both diethyl itaconate and diethyl 2-benzylidene succinate catalyzed by $\mathrm{K}[\mathrm{i}$], however the enantioselectivity with respect to the S isomer is again very low. On the other hand, K[ii] shows superior enantioselectivity for the R form with moderate reaction rate(s) for the hydrogenation of diethyl 2-benzylidene succinate. ${ }^{41}$

When the catalytic activity of $L[i]$ and $L[i i]$ was tested on hydrogenation of olefins, both Au complexes (L[i-ii]) showed great enantioselectivity in hydrogenation of diethyl 2benzylidene succinate with moderate reaction rates. However, the reaction rate(s) observed for diethyl itaconate hydrogenation was much higher for both of the Au catalysts, but the enantioselectivity was very low. ${ }^{41}$

Previous attempts at the synthesis of anionic isoindoline based NNC Pd complex resulted in a neutral NNC pincer. Broring et al. reported Pd complex coordinated to an anionic NNC pincer ligand (M, Figure 1.8) and its first application in catalysis. ${ }^{42}$

M

Figure 1.8 $\mathrm{Pd}(\mathrm{II})$ complex with an NNC pincer type ligand.
Complex M was characterized by both 1D and 2D NMR spectroscopy as well as X-ray crystallography, all supporting the proposed structure. The X-ray structure suggests an almost perfect square planar geometry around Pd and an unanticipated helical twist of the 2-tolti ligand. ${ }^{42}$

The catalytic activity of complex \mathbf{M} was tested on Heck and Stille cross-coupling reactions; for comparison purposes $\mathrm{Pd}(\mathrm{OAc})_{2}$ was used as a standard (Table 1.1). When \mathbf{M} was used in Heck cross-coupling reaction - the reactivity of the reaction decreases with $\mathrm{X}=\mathrm{I}>\mathrm{X}=\mathrm{Br}>\mathrm{X}=\mathrm{Cl}$ as expected (with yields of $96 \%, 33 \%$ and 1%, respectively). With an increase in steric hindrance (i.e. changing the substrates from R_{1}
$=R_{2}=H$ to $R_{1}=R_{2}=M e$) the yield of the reaction decreased from 96% to 78%, respectively. The same pattern was observed in the catalysis of Stille cross-coupling reaction. Moreover, steric hindrance effect was well-defined, the change in substrate $\left(R_{1}=R_{2}=H\right.$ to $\left.R_{1}=R_{2}=M e\right)$ yielded products from 40% to $20 \% .{ }^{42}$

Table 1.1 Heck and Stille cross-coupling reactions catalyzed by \mathbf{M}

${ }^{a} \mathrm{Pd}(\mathrm{OAc})_{2}$ as the catalyst;
Dehydrogenation reactions are coupling reactions that can produce amides, imines, esters and ketones with elimination of H_{2}. These reactions have been studied extensively, and have been shown to be successfully catalyzed by Ru complexes with NNP or PNP pincer ligands as part of their structure; in some cases in the presence of catalytic amounts of base. ${ }^{43,44} \mathrm{Li}$ and Zeng were able to propose the mechanism for the
dehydrogenative coupling of alcohols with amines catalyzed by NNP-Ru(II) hydride complex (N, Figure 1.9) through density functional theory (i.e. DFT) calculations. ${ }^{43}$

N
Figure 1.9 Ru(II) complex with NNP pincer ligand.
Other mechanistic studies showed that addition of base is unnecessary in hydrogenation/dehydrogenation reactions if an NNP Ru hydrido complex is used. An example of such complex, \mathbf{N}, is an excellent catalyst for a vast amount of hydrogenation reactions, the coupling of alcohols and amines and the splitting of water into hydrogen and oxygen gas. ${ }^{44}$

0
Figure 1.10 Synthesis of PNN Ru complex, \mathbf{O}.
The NNP Ru pincer complex, O (Figure 1.10) was used in catalytic transfer hydrogenation reactions (Table 1.2) exhibiting product yields of up to 99%. It was later tested on the esterification of primary alcohols (Table 1.3) giving the desired product in as high as 99% yield. As with transfer hydrogenation reactions, esterification of alcohols is catalyzed in the absence of a base. ${ }^{45}$

Table 1.2 Transfer hydrogenation of ketones catalyzed by NNP Ru complex (O).

Table 1.3 Esterification of primary alcohols catalyzed by Ru NNP complex (O).

	R^{\wedge}	catalyst	$2 \mathrm{H}_{2}$		
Entry	Cat. (mol\%)	Alcohol	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield (\%)
1	0.3	1-butanol	118	12	99
2	0.3	1-pentanol	138	12	97
3	0.1	1-hexanol	160	24	98
4	0.5	1-phenylmethanol	160	12	94

The examples detailed above give a strong background portfolio that clearly shows that metal-pincer complexes have great potential as asymmetric catalysts and stoichiometric promoters.

1.2 PREVIOUS WORK

Gossage et al. previously reported the synthesis of the formally C_{1}-symmetric amide pincer ligand (\mathbf{P}, Figure 1.11) through the in situ chlorination of picolinic acid and its reaction with 4,4-dimethyl-2-(o-anilinyl)-2-oxazoline. ${ }^{46}$

P

$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$
Q

Figure 1.11 Structures of NNN pincer ligand (P) and Cu NNN pincer complex (Q).
The coordination chemistry of P with Cu centres (\mathbf{Q}, Figure 1.11) has been studied in the Gossage group with the purpose of applying these complexes in catalysis such as the Henry reaction. ${ }^{47}$ To our knowledge, the use of the amide moiety in the chelating ligands (\mathbf{N}, as a monoanionic coordinating atom) has only been reported by Durran et al. in 2010 (R, Figure 1.12). ${ }^{48}$ The synthesis and complexation of the tetradentate ligands and their complexes with $\mathrm{Pt}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$ were studied. ${ }^{48}$

R
$\mathrm{M}=\mathrm{Pt}, \mathrm{Pd}, \mathrm{Ni}$
Figure $1.12 \mathrm{~K}^{4}$-PNN'O pincer-like complexes with an amide moiety.

1.3 THESIS OBJECTIVE

The objective of this work lies in the design of the asymmetric pincer ligands of the NNN, NNC and NNP types (shown in Figure 1.13). The study of the coordination chemistry of these ligands with Pd and Ni metals as well as the application of the synthesized pincer complexes in catalysis will be explored. These monoanionic pincer
ligands coordinate in a square planar fashion with Pd and Ni. Catalytic investigations into their activity in C-C bond forming reactions will be explored.

Figure 1.13 Classification of NN'L type pincer complex ($M=$ metal, L = ligand).

CHAPTER 2 - LIGANDS

2.1 Amino acid route

Conversion of compound $\mathbf{1}$ into the respective pincer ligand was initially proposed to take place through an amide coupling with an appropriate amino acid. The formation of the amide bond could be attained either through the use of peptide coupling agents (i.e. DCC or DMTMM) or through the formation of an acyl chloride (Scheme 2.1)..50,51

Scheme 2.1 Synthesis of NNN type pincer ligand using 1 and amino acids.
A more accessible route to pincer ligand synthesis was needed due to the prominent Zwitterionic effect of amino acids in aqueous solvents, their reactivity in non-polar organic solvents decreases substantially (equation 1) (i.e. Zwitterion - an overall neutrally charged molecule having both positive and negative charges)..52,53

$$
\begin{equation*}
\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{COOH} \leftrightarrow \mathrm{Me}_{2} \mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-} \tag{1}
\end{equation*}
$$

The magnitude of the tautomeric equilibrium for N, N-dimethylglycine is completely solvent dependent, and in most protic and aprotic polar solvents it exists in the Zwitterion form. ${ }^{52}$

Scheme 2.2 Synthesis of NNN type pincer ligand from N, N-dimethylglycine.

We previously showed that carboxylic group on the N, N-dimethylglycine can be transformed into the acyl chloride form using excess thionyl chloride under the neat conditions (Scheme 2.2). ${ }^{54}$ After the reaction of an amino acid and the thionyl chloride at $50{ }^{\circ} \mathrm{C}$, the excess thionyl chloride was removed and the resulted yellow solid compound, in situ generated N, N-dimethylglycinoyl chloride, was consequently reacted with compound 1 (primary amine) in the presence of $E t_{3} \mathrm{~N}$ in DCM , which produced the desired pincer ligand, 3a (Scheme 2.2). The structure of this product was analyzed by IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, and elemental analysis to successfully support the formula. ${ }^{54}$ From the IR spectrum, the presence of a secondary amide ($\mathrm{N}-\mathrm{H}$) and an amide carbonyl $(\mathrm{C}=\mathrm{O})$ stretch/bend were observed and support the presence of the amide bond (Table 2.1).

Table 2.1 IR spectrum analysis for NNN type pincer ligands.

Assignment	3a	3b	$\mathbf{3 g}$	3h	Literature $\left.\mathbf{(c m}^{\mathbf{- 1}}\right)^{\mathbf{3 3}}$
C=O stretch	1677	1686	1683	1683	1680
N-H bend		1645	1641	1636	1643

${ }^{\text {a }}$ Amide carbonyl; ${ }^{\text {b }}$ Secondary amide;
Thirteen unique chemical shifts were observed in the ${ }^{13} \mathrm{C}$ NMR spectrum, agreeing with the formulation. From the ${ }^{1} \mathrm{H}$ NMR data, two singlet shifts were observed for the methylene groups ($\delta_{H}=4.05$ and 3.16 ppm) and two for the equivalent methyl groups (2.39 and 1.41 ppm) integrating for 2 and 6 protons each, respectively. Four protons were also observed in the aromatic region (in the range from 7.07 to 8.84 ppm) with a distinct proton shift at 12.80 ppm for the proton on the amide (-NH) (see Table 2.3). The synthesis of highly functionalized pincer ligands using this route might be problematic, since the amino acid derivative would have to be exposed to harsh conditions when
reacted with thionyl chloride, because thionyl chloride is extremely reactive and corrosive. Hence, a new synthetic strategy was devised.

2.2 MODULAR APPROACH

The need for the synthesis of easily accessible asymmetric pincer ligands led to the proposed use of 2-chloroacetyl chloride, as a building block to synthesize compound 2 a pincer precursor. 2-Chloroacetyl chloride is often used in organic chemistry to introduce amide bonds (by reacting through the acyl chloride) into a structure, thus providing a functionalizable end group (i.e. a chloromethyl group). ${ }^{55}$

Scheme 2.3 Synthesis of compound 2 - pincer precursor.
Upon the addition of 2-chloroacetyl chloride to 1 in the presence of $E t_{3} N$, the reaction mixture was stirred in DCM at room temperature (RT) for 2 h . The desired product, 2 (Scheme 2.3), was obtained, upon gravity filtration and solvent evaporation, in 85% as an orange coloured crystalline solid. It was analyzed by X-ray crystallography (Figure 2.1, left), elemental analysis and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR supported the proposed structure of $\mathbf{2}$. Two singlet shifts were observed for the methylene groups (4.21 and 4.07 ppm) and one for the two equivalent methyl groups (1.41 ppm) integrating for 2 each and 6 protons, respectively. Four protons were also observed in the aromatic region (in the range from 7.13 to 8.74 ppm) with a distinct
proton shift at 13.05 ppm for the amide proton (-NH). Twelve unique carbon environments were observed in the ${ }^{13} \mathrm{C}$ NMR and supported the structure of 2.

From the crystallographic study of 2 (Figure 2.1, left), hydrogen bonding was reported for the amide hydrogen between both N and Cl atoms on the oxazoline ring ($2.03 \AA$) and on the chloromethyl group (2.468 Å), respectively (Table 2.2). Since crystal structures represent the molecule in the solid state, a DFT calculation was performed on 2 (Figure 2.1, right) to determine the theoretical behaviour of the compound in the gas phase, and to serve as a training exercise to familiarize oneself with the theoretical calculations using molecular modeling software.

Figure 2.1 X-ray crystal structure of 2 (left; solved by Alan Lough) and calculated (DFT) structure of $\mathbf{2}$ at the B3LYP: 6-311++G** level of theory using Spartan'10 (right).

Table 2.2 Experimental and calculated hydrogen bond lengths and angles for 2.

D-H...A	N(1)-H...N(2)	N(1)-H...Cl(1)	D-H...A	N(1)-H...N(2)	$\mathrm{N}(1)-\mathrm{H} . . . \mathrm{Cl}(1)$
<(DHA) [$\left.{ }^{\circ}\right]^{\text {a }}$	138.4	112.5	$D(H . . . A)[\AA]^{\text {a }}$	1.86	2.521
<(DHA) [$\left.{ }^{\circ}\right]^{\text {b }}$	138.9	118.9	D (H...A) $[A]^{\text {b }}$	2.03	2.468

The calculated angles and bond lengths for the three atoms involved in the abovementioned hydrogen bonding hydrogen agreed with the crystal structure values (see Table 2.2). The calculation was done at B3LYP with $6-311++\mathrm{G}^{* *}$ basis set, with the
geometry of the structure being in agreement with the crystal structure (Table 2.2); it should be mentioned that the structure of 2 was optimized several times starting from different geometrical orientations and hence Figure 2.1 (right) represents one of the likely gas phase configurations.

2.2.1 Synthesis of Pincers 3b-3j

As previously stated, compound 2 was theorized to be a useful precursor for a modular synthetic approach, wherein this alkyl halide (2) can be reacted with selected secondary amines in the presence of the base to produce the desired pincer products. ${ }^{55}$ The reaction between a secondary amine and an alkyl halide can be classified as a nucleophilic substitution reaction (i.e. $\mathrm{S}_{\mathrm{N}} 2$ reaction). ${ }^{50}$ Therefore, the compounds $3 \mathrm{~b}-3 \mathrm{j}$ were synthesized by reacting 2 with the appropriate secondary amine in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ as the base, according to Scheme 2.4.

Pincer ligands 3b-3j were thus synthesized in moderate to good yields, ranging from 30% to 74% (see Table 2.3). After the purification (see Section 5.2), the compounds were successfully analyzed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, as well as elemental analysis to support the proposed structures. Compounds $\mathbf{3 b}, \mathbf{3 g}$ and $\mathbf{3 h}$ were also analyzed by IR spectroscopy, confirming the presence of the amide bond through the presence of the typical $\mathrm{C}=\mathrm{O}$ stretch and $\mathrm{N}-\mathrm{H}$ bend absorption frequencies (see Table 2.1). The conversion of 2 into the appropriate pincer ligand product can be easily observed by a distinct proton NMR chemical shift of the amide (13.05 ppm for 2; see Table 2.3) functionality which shifts upfield for compounds 3a-3j (Table 2.3). The shift observed can be explained in terms of the increase in the strength of the hydrogen bonding (or an electronically donating interaction) between the H (on the amide) and N
(of the tertiary amine) in $\mathbf{3 a - 3 j}$ due to the lone pair of electrons on the latter N atom; in comparison to the hydrogen bonding between the H (on the amide) and Cl (on the chloromethyl) as found in the crystal structure of 2 (Figure 2.1). Hence, shielding of the -NH proton is observed in 3a-3j. Chiral derivatives, 6 and 7, were also synthesized and are discussed in Section 2.3.

1
3b-j

3b (69\%)

3c (45\%)

3d (56\%)

3h (41\%)

$3 i(66 \%)$

Scheme 2.4 Synthesis of NNN type pincer ligands through a modular approach.

Table 2.3 Select ${ }^{1} \mathrm{H}$ NMR chemical shifts and yields for $2,3 \mathrm{a}-3 \mathrm{~m} \cdot$ oxide, 5 and 6 .

		 2, 3a-3	 5, 6		
Compound	L	\mathbf{R}_{1} group	R_{2} group	-NH shift (ppm)	Yield (\%)
2	Cl	-	-	13.05	85
3a	N	Me	Me	12.80	47
3b	N	Et	Et	12.64	69
3c	N	Me	2-Ethylpyridine	12.65	45
3d	N	Me	Adamantyl	12.24	56
3 e	N	Pyrrolidine	-	12.47	73
3 f	N	Picolyl	Picolyl	12.57	30
3 g	N	5-Crown	-	12.52	67
3h	N	Me	Allyl	12.71	41
3 i	N	Me	iPr	12.63	66
3j	N	Allyl	Allyl	12.61	74
3k	N	Me	EtOH	12.22	88
31	C	-	-	12.96	57
$3 \mathrm{~m} \cdot$ oxide	P	Ph	Ph	12.43	55
6	Cl	-	-	12.98	86
7	N	Et	Et	12.54	55

Functionalization of $\mathbf{3 b} \mathbf{- 3 j}$ pincer ligands was achieved by using secondary amines: diethylamine (3b), 2-(2-methylaminoethyl)pyridine (3c), N-methyl- N-adamantylamine (3d), pyrrolidine (3e), 2,2'-dipicolylamine (3f), 1-aza-15-crown-5 (3g), N -allyl- N methylamine (3h), N-isopropyl- N -methylamine (3i), diallylamine (3j). Compounds 3c and $3 f$ were designed with an extended pincer motif - with the potential for the picolyl functional groups to chelate to a metal centre(s); increasing the coordination number to at least four for 3c and potentially five for $\mathbf{3 f}$. An extended pincer ligand, 3f, can also be efficiently applied in homo- or heterobimetallic coordinating systems. Copper can be
one of the potential candidates for a bimetallic study on 3f; Brown et al. recently showed a successful coordination and application of Cu with an N, N-bis(2-picolyl)benzamide ligand in methanolysis reactions, for example. ${ }^{56}$

2.2.2 Synthesis of $\mathbf{3 k}$

Pincer 3k was also synthesized since it contains an extended motif and therefore, having the potential to coordinate to the metal centre through four atoms (three N atoms and an O of the hydroxyl group). The synthesis of $\mathbf{3 k}$ followed the same procedure as for the $\mathbf{3 b} \mathbf{- 3} \mathbf{j}$, however prior to that the hydroxyl group on N -methylaminoethanol had to be protected due to its reactivity. Several protection reactions were performed on N methylaminoethanol to protect the hydroxyl group (Table 2.4).

Table 2.4 Protection of the hydroxyl group on the N-methylaminoethanol.

Trial	Protecting group	Additive	Solvent	Product
1	$\mathrm{Ac}_{2} \mathrm{O}$	DMAP	DCM	NO
2	TMSCI	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{Et}_{2} \mathrm{O}$	NO
3	HMDS	D,L-Aspartic acid	MeCN	NO
4	TMSCI	-	$\mathrm{Et}_{2} \mathrm{O}$	YES

Unsuccessful trials using acetic anhydride $\left(\mathrm{Ac}_{2} \mathrm{O}\right)$ with catalytic amounts of N, N dimethylaminopyridine (DMAP), ${ }^{57}$ or hexamethyldisilazane (HMDS) with D,L-aspartic acid as a catalyst ${ }^{58}$ to protect hydroxyl group on the N -methylaminoethanol resulted in unsuccessful outcomes (Table 2.4). The use of trimethylsilyl chloride (TMSCI) in combination with $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{Et}_{2} \mathrm{O}$ also did not produce successful results in protecting the hydroxyl group. ${ }^{59}$ However, it has been recently shown that in the presence of 2 eq. of TMSCl in $\mathrm{Et}_{2} \mathrm{O}$ and in the absence of the base $\left(E t_{3} N\right)$, the N-methyl-2-((trimethylsilyl)oxy)ethan-1-eminium chloride (4) was isolated in 81% yield. This material can be successfully used to synthesize an appropriate pincer, 3k (Scheme 2.5). ${ }^{60}$

Scheme 2.5 Synthesis of an extended pincer NNNO, 3k, from N-methylaminoethanol.
Compound $\mathbf{4}$ was isolated and successfully characterized by elemental analysis and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. From the ${ }^{1} \mathrm{H}$ NMR spectrum, a resonance integrating for 9 protons appears as a singlet at 0.14 ppm , which suggested the presence of the $-\mathrm{SiMe}_{3}$ group on the O atom. The two chemical shifts at 3.08 and 3.93 ppm appeared as triplets and integrated for 2 protons each. The identity of the product, as a chloride salt, was confirmed by the presence of the broad shift at 9.43 ppm integrating for 2 protons; a chemical shift which is indicative of the $-\mathrm{NH}_{2}$ group. ${ }^{61}$

With the in situ formation of $\mathbf{4}$, compound $\mathbf{3 k}$ was synthesized in only 12% after purification by the column chromatography. However, after the isolation of 4 and an optimization study was later performed by Jennifer Huynh ${ }^{60}$ and, of the reaction shown in Scheme 2.5, yields of up to 88% are achievable (Table 2.3). Compound $3 \mathbf{k}$ was successfully characterized by elemental analysis and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. As in pincers $\mathbf{3 a} \mathbf{- 3} \mathbf{j}$ an indicative $\mathbf{- N H}$ chemical shift was observed at 12.22 ppm for $\mathbf{3 k}$ an upfield shift compared to the starting material (13.05 ppm ; see Table 2.3). The close proximity of the alcohol group on the N atom to the amide proton could create the shielding effect, explaining the observed phenomena.

2.2.3 Synthesis of 3I: a carbene-pincer precursor

1-Benzylimidazole ${ }^{62}$ was synthesized by reacting imidazole hydrochloride with benzyl bromide in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN . Pure compound was isolated in 42% yield as an off-white coloured waxy solid. ${ }^{1} \mathrm{H}$ NMR analysis of 1-benzylimidazole agreed with the literature. ${ }^{62}$ The synthesis of NNC type pincer ligand, 3I, from 1-benzylimidazole and 2 in THF:MeCN (15.0:3.0 mL ratio) resulted in successful isolation of the desired product in 57% yield as a yellow wax (Scheme 2.6). The low solubility of 1benzylimidazole in THF was resolved by the addition of a small amount of MeCN. The compound, 3I, was successfully analyzed by elemental analysis, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. The resonance observed at 12.96 ppm is representative of the -NH on the amide (Table 2.3). The proton appeared to be more deshielded in comparison to NNN pincers (3a-3k), which can be due to the absence of the hydrogen bonding or other interactions between the hydrogen on the amide and the imidazole moiety. Alternatively, 21 was synthesized from 2 as described in Scheme 2.6, as the precursor for 3I. However, the yield for the reaction to synthesize 21 (56\%) did not introduce any benefits into increasing the overall yield for $\mathbf{3 1}$; hence it was not investigated further.

Scheme 2.6 Synthesis of NNC pincer ligand 3I and a precursor $\mathbf{2 I}$.

2.2.4 Synthesis of $3 m$ and $3 m \cdot o x i d e$

The synthesis of NNP type pincer ligand, $\mathbf{3 m} \cdot$ oxide, was accomplished by reacting $\mathbf{2}$ with equimolar THF solution of potassium diphenylphosphide $\left(\mathrm{KPPh}_{2}\right)$ under nitrogen atmosphere for 24 h (Scheme 2.7).

Scheme 2.7 Synthesis of NNP pincer ligand, 3m, from potassium diphenylphosphide. The work-up of this reaction involved gravity filtration of the KCl , formed as the by-product. By exposing the sample to air and moisture, $\mathbf{3 m}$ is readily converted to $\mathbf{3 m} \cdot$ oxide and was isolated in 55% yield (Table 2.3). This transition was monitored by ${ }^{31} \mathrm{P}$ NMR, where 3 m and $3 \mathrm{~m} \cdot$ oxide displaying chemical shifts at -15.77 ppm and 28.48 ppm , respectively. During the first experimental trial of this reaction, diphenylphosphine oxide $\left(\mathrm{O}=\mathrm{PPh}_{2} \mathrm{H} ; \mathrm{Ph}=\right.$ phenyl $)$ and diphenylphosphine $\left(\mathrm{HPPh}_{2}\right)$ were both observed in the reaction mixture $\delta_{\mathrm{p}}=21.54 \mathrm{ppm}$ and -40.39 ppm , respectively (Table 2.5). The literature values were in agreement within experimental error, with these observations. ${ }^{63-64}$

Table 2.5 Select literature and experimental ${ }^{31} P$ NMR chemical shifts for PNN pincer.

Compound	Lit. chemical shift (ppm)	Exp. chemical shift (ppm)
$\mathbf{K P P h}_{2}$	-9.8^{65}	-
$\mathbf{H P P h}_{2}$	-42.1^{64}	-40.39
$\mathbf{O = \mathbf { P P h } _ { 2 } \mathbf { H }}$	21.9^{63}	21.54
$3 m$	-	-15.77
$3 m \cdot$ oxide	-	28.48

Compound $3 \mathrm{~m} \bullet$ oxide was analyzed by X-ray crystallography (Figure 2.2) supporting the proposed structure and showcasing that there was no interaction between the
hydrogen on the amide and the phosphorus in the solid state. Also, a molecule of water was coordinated to the oxygen on the phosphine oxide. $3 m \cdot$ oxide was also characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR supporting the structure of the compound (see Table 2.3).

Figure 2.2 X-ray crystallographic structure of 3m•oxide (Solved by Laura R. Fernández).

2.2.5 Synthesis of 3n

An NNN pincer derivative from 1 and Boc-L-aspartic acid 4-benzyl ester was synthesized using 1.5 eq. DCC (a peptide coupling agent) in DCM (Scheme 2.8). Upon aqueous work-up the compound was obtained in $>99 \%$ yield as pale yellow wax. Elemental analysis and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy supported the compounds' identity. The interest into the development of this particular pincer is its unique applicability. Deprotecting the Boc and the benzyl groups on $\mathbf{3 n}$, deprotects the amine and carboxylic acid functional groups, which can then be covalently bonded to peptides. Combining this pincer ligand with peptides could yield interesting sensor-type molecules.

Scheme 2.8 Synthesis of $3 n$ from 1.

2.3 CHIRAL DERIVATIVES

A chiral derivative of 2 was synthesized and isolated in 86% yield following the same procedure: from 2-chloroacetyl chloride and 5 (synthesized as per 1^{49}) in DCM (see Scheme 2.9). Peachy-coloured crystalline compound was analyzed by elemental analysis, x-ray crystallography and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Based on the orientation of the molecule (Figure 2.3), just as in the solid state of compound 2, it appeared that hydrogen bonding was observed for the amide hydrogen between both, the N on the oxazoline and the Cl on the chloromethyl group. From the crystal structure it was also determined that 6 exists as a single R, S stereoisomer.

Scheme 2.9 Synthesis of the chiral derivatives, 6 and NNN type pincer ligand, 7. The reaction of 6 with diethylamine in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN yielded crude 7 in 55% yield, which was analyzed by ${ }^{1} \mathrm{H}$ NMR. Even after recrystallization, small
amounts of starting material (6) were still observed; this suggests a slow decomposition of the product. A singlet observed at 12.54 ppm was indicative of the proton on the amide (Table 2.3) and the $-\mathrm{CH}_{2}$ and $-\mathrm{CH}_{3}$ of the ethyl group on the amine were observed in the spectrum at 1.14 ppm and 2.75 ppm as triplet and quartet respectively, having matching J values of 7.2 Hz . These observations concluded that the product present in majority was indeed the desired chiral NNN pincer ligand.

Any attempt at functionalizing 6 with 1-benzylimidazole (as for $\mathbf{3 I}$) or KPPh_{2} (as for $\mathbf{3 m}$) to yield chiral NNC or NNP type pincer ended with unsuccessful results.

Figure 2.3 X-ray crystal structure of 6 (Solved by Robert A. Gossage).

CHAPTER 3 - COMPLEXES

3.1 PALLADIUM COMPLEXES

3.1.1 NNN type pincer complexes

Complexation of NNN type pincer with Pd metal was accomplished using previously reported method of coordination as described by Decken et al. This uses a methanolic solution of $\mathrm{Li}_{2} \mathrm{PdCl}_{4}$, as Pd source, at RT (Scheme 3.1). ${ }^{41}$

3a-e, 3g-k
9a-e, 9g-k

9a (82\%)

9d (80\%)

9b (52\%)

9e (62\%)

9c (45\%)

9g (93\%)

9h (78\%)

9i (77\%)

9j (42\%)

9k (95\%)

Scheme 3.1 Synthesis of Pd-NNN pincer complexes, 9a-e and 9g-k.

A solution of $\mathrm{Li}_{2} \mathrm{PdCl}_{4}$ was prepared from stoichiometric amounts of LiCl and PdCl_{2} refluxed in $\mathrm{MeOH} ;{ }^{41}$ upon the dissolution of the starting materials the reaction was complete and the Pd precursor solution is ready to use. When $\mathrm{Li}_{2} \mathrm{PdCl}_{4}$ was added to a yellow coloured solution of an NNN pincer ligand (i.e. 9a-e or 9g-k) in MeOH , the reaction solution turned bright orange in colour almost instantaneously. All resulting $\mathrm{Pd}-$ NNN complexes, aside from 9c, were purified by redissolving the compound in DCM and filtering the mixture (an orange solution with fine pale coloured precipitates) through a thick layer of Celite. In contrast, 9c was purified using preparative TLC (100\% acetone as eluent). All compounds were isolated as either waxy solids or powders, bright yellow to orange in colour, and isolated in yields ranging from 42% to 98%.

Figure 3.1 Crystal structures of 9a (left) and 9h (right) solved by Laura R. Fernández. Suitable crystals for the complexes 9a and 9h were grown to be analyzed by X-ray crystallography (Figure 3.1, left and right respectively). Both of the complexes showed a distorted square planar orientation of the ligated atoms around the metal centre. The Pd atom has a coordination number of 4 in both cases and an assigned oxidation state of +2 . The NNN pincer ligands indeed proved to behave as monoanionic ligands, being
deprotonated at the amide position during the reaction, as shown previously for Pd complex with ligand \mathbf{P}. ${ }^{41}$ Aside from the X-ray crystallography analysis, all Pd-NNN complexes were characterized by elemental analysis and via ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. Proton chemical shifts for methyl and methylene functional groups moved downfield due to the electron withdrawing effect of the metal centre, upon complexation. ${ }^{66}$ The chemical shifts of the aromatic protons were not considerably affected by complexation. From ${ }^{13} \mathrm{C}$ NMR, all of the structures for Pd complexes, 9a-e and $9 \mathbf{g}-\mathbf{k}$, support a stoichiometry of $\mathrm{Pd}: \mathrm{NNN}: \mathrm{Cl}=1: 1: 1$. Note that one H has been lost from the free NNN ligand in all cases (Scheme 3.1).

3.1.2 NNC type pincer complex

Over the last decade N-heterocyclic carbenes (NHCs) have shown promising results in catalysis and specifically in cross-coupling reactions. Hence, NHC-containing ligands have been studied extensively for the design and use of carbene containing catalysts. ${ }^{67-}$ 69 The NHC ligand is considered a strong σ-donor and weak π-acceptor, which in turn improves the catalytic activity due to the increase in electron density on the metal centre. ${ }^{70}$

i) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{DCM}, \mathrm{RT}, 2 \mathrm{~h}$;
ii) $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}, \mathrm{DCM}, \mathrm{RT}, \mathrm{O} / \mathrm{N}$

Scheme 3.2 Synthesis of Pd-NNC pincer complex, 91.

A Pd-NNC complex was synthesized through Lin's method of transmetallation using silver (I) oxide $\left(\mathrm{Ag}_{2} \mathrm{O}\right)$ as the transmetallating agent. ${ }^{69}$ Ligand 3 I was stirred with $\mathrm{Ag}_{2} \mathrm{O}$ in DCM for 2 h and then the reaction mixture was filtered through Celite. Bis(acetonitrile)palladium(II) dichloride $\left(\mathrm{PdCl}_{2}\left(\mathrm{MeCN}_{2}\right)\right.$ was added to the pale yellow filtrate, and the reaction solution turned bright yellow/orange within a few minutes, suggesting complexation (Scheme 3.2). Even though not isolated in this case due to its Iow stability, the syntheses of silver (I), gold (I) and copper (I) carbene intermediates have been previously reported. ${ }^{71-72}$ The protocols used here directly parallel those studies. ${ }^{69-}$ 72

Figure 3.2 The comparison of the ${ }^{1} \mathrm{H}$ NMR spectra for 31 and 91 .
The investigation into the coordination of complex 9l using ${ }^{1} \mathrm{H}$ NMR spectroscopy suggets that coordination of Pd to the carbene precursor did take place. This evidence
includes the observed chemical shifts for the amide proton $(-\mathrm{NHC}=\mathrm{O})$ at 12.96 ppm and the imidazole proton $\left(-\mathrm{NR}_{2} \mathrm{CHNR}^{2}-\right)$ at 10.71 ppm that are present for the carbene precursor (circled, Figure 3.2). Both of these resonances are absent for the isolated complex. The second order effect was also observed for all three methylene groups, which appeared as singlets at $4.08 \mathrm{ppm}, 5.50 \mathrm{ppm}$ and 5.54 ppm on the ligand molecule, 31. This suggests that those protons reside in different environments and are magnetically inequivalent (Figure 3.2).

3.1.3 NNP type pincer complex

Asymmetric pincer ligands containing soft donor atom, such as phosphorus, have also been of much interest with respect to catalysis applications for a wide variety of chemical transformations. ${ }^{73}$

A Pd-NNP pincer complex was therefore prepared in two steps. Due to the facile oxidation of 3 m to $\mathbf{3 m} \cdot \boldsymbol{o x i d e}$, NNP pincer ligand $\mathbf{3 m}$ was synthesized and used in situ following the procedure outlined in Section 2.2.1. The THF solution with 3m was cannula transferred to a MeCN solution of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ and the resulting mixture stirred for 24 h (Scheme 3.3) at RT. After this time, the solution was gravity filtered and the solvent was then removed in vacuo. The crude sample of 9 m was retrieved in 96% yield, and appeared dark orange in colour.

Scheme 3.3 Synthesis of Pd-NNP pincer complex, 9m

However, preparative TLC was used to further purify the compound for complete characterization (elemental analysis and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy).

From the ${ }^{31} \mathrm{P}$ NMR spectrum, single resonance was observed with a chemical shift of 50.45 ppm , in contrast to the free ligand that was observed at -15.77 ppm , suggesting only one phosphorus environment present.

3m.oxide

Figure 3.3 Select ${ }^{1} \mathrm{H}$ chemical shifts for $\mathbf{3 m} \bullet$ oxide and $\mathbf{9 m}$, depicting splitting effect.
From the ${ }^{1} \mathrm{H}$ NMR spectrum, a second order effect for the methylene groups ($-\mathrm{CH}_{2}$-) can be observed for 9 m , where in comparison to $\mathbf{3 m} \cdot$ oxide they were observed as singlet and a doublet (coupled to ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, J=15.6 \mathrm{~Hz}$) (see Figure 3.3).

3.2 ATTEMPTS AT THE SYNTHESIS OF NICKEL COMPLEXES

3.2.1 NNN type pincer complexes

Both academic and industrial research has witnessed an immense progress in the use of nickel complexes as catalysts in polymerization and cross-coupling type reactions. ${ }^{74-}$ ${ }^{75}$ For this reason, the investigation into employing NNN, NNC and NNP type pincer ligands, presented in this work, was performed in coordination chemistry with Ni.

Gao and co-workers reported Ni-NNN pincer-like complexation using $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in ethanol (with or without the base) or NiCl_{2} (DME) and lithium diisopropylamide (LDA) as the base in THF. ${ }^{74}$ However, following these reaction conditions with 3 e pincer ligand did not yield any desired product. In fact, upon reaction work-up, which consisted of gravity filtration and $\mathrm{Et}_{2} \mathrm{O}$ wash, the resulted yellow waxy compound was found to be the free ligand (entries 1-4, Table 3.1). Peters and coworkers reported coordination of their monoanionic NNN type pincers with Ni through NiCl_{2} (DME) precursor in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in THF. ${ }^{75}$ Entry 5 (Table 3.1) depicts the unsuccessful trial with 3 e pincer ligand.

Table 3.1 Synthesis of Ni-NNN type pincer complex from 3e ligand.

Entry	$[\mathrm{Ni}]$	Solvent	Base	Time	Temperature/Atmosphere
1	$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	EtOH	-	12 h	RT/air
2	$\mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$	EtOH	${ }^{\text {BuOK }}$	12 h	RT/air
2	$\mathrm{NiCl}_{2} \mathrm{DME}$	THF	LDA	O / N	N
3	$\mathrm{NiCl}_{2} \mathrm{DME}$	THF	LDA	18 h	$R \mathrm{~N}_{2}$
5	$\mathrm{NiCl}_{2} \mathrm{DME}$	THF	$\mathrm{Et} \mathrm{It}_{3} \mathrm{~N}$	19 h	$60^{\circ} \mathrm{C} / \mathrm{N}_{2}$

The theorized molecular geometry of the diamagnetic Ni-NNN pincer complex was square planar, the colour of which had to be red. However, the reaction solutions for all of the trials (Table 3.1) did not change the colour in the course of the reaction and remained green.

3.2.2 NNC type pincer complex

The synthetic route for Ni-NNC pincer complex was employed from the synthesis of 91, through Lin's method of transmetallation using silver (I) oxide $\left(\mathrm{Ag}_{2} \mathrm{O}\right)$ as the transmetallating agent. ${ }^{69}$ Ligand 31 was stirred with $\mathrm{Ag}_{2} \mathrm{O}$ in DCM for 2 h and then the reaction mixture was filtered through Celite. Bis(triphenylphosphine)nickel(II) dichloride $\left(\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right)$ was added to the pale yellow filtrate, and the reaction solution turned dark green instantaneously (Scheme 3.4). Unfortunately, this trial was unsuccessful in producing a Ni-NNC complex, once again yielding light yellow wax - characterized as the free ligand.

Scheme 3.4 Synthesis of Ni-NNC type pincer complex from 3I ligand.

3.2.3 NNP type pincer complex

A trial reaction, investigating the synthesis of Ni-NNP complex from 3 m and $\mathrm{NiCl}_{2} \mathrm{DME}$ precursor in the presence of n-BuLi (to deprotonate the amide hydrogen), was followed from the reaction conditions reported by Liu and co-workers (Scheme 3.4). ${ }^{76}$ First, 3m was treated with n-BuLi and then this solution was added to the suspension of
$\mathrm{NiCl}_{2} \mathrm{DME}$ in THF. The colour of the reaction solution was pale green, and after solvent evaporation, blue waxy compound resulted in having minimal solubility in CDCl_{3} or benzene- d_{6}. Unfortunately, as previously shown with NNN and NNC type ligands, the complexation and characterization with NNP ligand was also unsuccessful. In contrast to $\mathrm{Pd}-\mathrm{Ni}$ chemistry appeared to be more air/water sensitive and if the paramagnetic complexes are formed - the characterization by x-ray crystallography is required.

Scheme 3.5 Synthesis of Ni-NNP pincer complex from 3m ligand.
Due to these presumed stability issues and time constraints, further Ni chemistry in this regard was abandoned.

CHAPTER 4 - CATALYSIS

4.1 ALLYLATION OF ALDEHYDES

Allylic substitution reactions catalyzed by palladium complexes have become an important set of transformations in modern organic chemistry. ${ }^{77-81}$ The first series of reports on allylation of aldehydes and imines catalyzed by bis(allyl)palladium species was published by Yamamoto and coworkers in 1996, where the allyltributyltin was the source of the allyl group..82 However, there are two inherent drawbacks with using bis(allyl) complexes. First, the difficulty in controlling the regioselectivity when the two allylic group have different substituents (Scheme 4.1). And secondly, allyl-allyl coupling can occur before the reaction with a desired electrophile.

Scheme 4.1 Bis(allyl)palladium in catalysis. ${ }^{78}$
Szabó and co-workers theorized using palladium pincer complexes for the allylation of electrophiles, and the monodentate anionic ligand would undergo transmetallation. The pincer ligand to metal bond (that is trans to the Pd-allyl bond) would enhance the nucleophilicity of the allyl fragment. ${ }^{83}$ So far, the application of the carbon electrophiles in these types of reactions remains unexplored. ${ }^{84}$

Palladium pincer complexes have been considered to be attractive complexes in catalytic applications. Some of the features supporting that argument include: 1) their stability, even during a catalytic transformation the pincer ligand remains tightly bound to the metal centre for the entire duration of the reaction; 2) due to the strong coordination of the pincer, there is only one coordination site, trans to the anionic atom, providing restriction with respect to catalytic sites on palladium; 3) Oxidation state of palladium in pincer complexes is +2 under ambient conditions, upon reduction of the metal atom - ligand dissociates from the metal. Hence, the oxidation state of +4 is attainable but only under elevated temperatures (over $120^{\circ} \mathrm{C}$). ${ }^{78,85}$

10a: $\mathrm{R}=\mathrm{NO}_{2}$
10b: $\mathrm{R}=\mathrm{OCH}_{3}$
11a: $\mathrm{R}=\mathrm{NO}_{2}$
10c: $\mathrm{R}=\mathrm{H}$

11b: $\mathrm{R}=\mathrm{OCH}_{3}$
11c: $R=H$
Scheme 4.2 Allylation of para-substituted benzaldehydes catalyzed by $\mathbf{9 b}$.
A preliminary study into the allylation reaction was studied with three para-substituted benzaldehydes (10a-c) and allyltributyltin (as the allyl group source) catalyzed by previously described Pd-NNN pincer complex, 9b. To each of the aldehydes, a solution of $\mathbf{9 b}$ in THF was added following the addition of 1.2 equiv. of allyltributyltin. The reaction solution was stirred in air at $60^{\circ} \mathrm{C}$. After 24 h the reaction solution still appeared yellow in colour (suggesting no catalyst decomposition) and the solvent was allowed to evaporate. The resulting yellow waxy compounds were characterized using ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the \% conversion (see Table 4.1 and Figure A62).

Both benzaldehyde and p-nitrobenzaldehyde showed high conversion to the desired product (entries 1 and 5, Table 4.1) with the aldehyde peak not present. pMethoxybenzaldehyde was converted in 76% (entry 3, Table 4.1). However, even though an unreacted aldehyde was observed in the spectrum, there was no unreacted allyltributyltin compound present. This could be due to an error in the amounts of the reagents added when the reaction was set-up.

Table 4.1 Pd-NNN pincer complex-catalyzed allylation of select aldehydes.

Entry	\mathbf{R}	Yield (\%)
1	NO_{2}	99
2^{b}	NO_{2}	0
3	OCH_{3}	76
4^{b}	OCH_{3}	0
5	H	99
6^{b}	H	0

${ }^{\text {a }}$ not isolated yields (determined from ${ }^{1} \mathrm{H}$ NMR); ${ }^{\mathrm{b}}$ no catalyst used;
As stated previously, the reaction studied in Scheme 4.2 has been of a preliminary interest. So far in literature, only Pd pincer complexes with symmetric PCP type ligands have shown progress in these types of catalytic transformations. ${ }^{86}$ Herein we demonstrated asymmetric Pd-NNN type pincer complex as a successful catalyst. Table 4.2 outlines the chemical shifts for the allylation of aldehydes reaction. It should be noted that no acidic work-up or product isolation took place.

Table 4.2 Comparison of ${ }^{1} \mathrm{H}$ NMR chemical shifts for aldehyde allylation reaction.

10a	11a	10b	11b	10c	11c
10.16	-	9.91	-	10.02	-
8.39	8.22	7.86	7.28	7.87	
8.07	7.55	7.02	6.88	7.61	$7.50-7.25$
AllylSnBu $_{3}$		3.91	3.81	7.51	
5.95	5.80	AllylSnBu $_{3}$		AllylSnBu $_{3}$	
4.79	5.19	5.95	5.80	5.95	5.82
4.65	4.88	4.79	5.13	4.79	5.14
1.79	2.53	4.65	4.69	4.65	4.74
		1.79	2.50	1.79	2.52

Scheme 4.3 A proposed mechanism for the allylation of aldehydes.

DFT calculations, ${ }^{86}$ show that the mechanism of this catalytic process involves transmetallation step to happen first on a relatively electron poor palladium centre. The electrophilic attack happens at the y-position of the allyl group in the second step. This is driven by electronic (not steric) factors. And as the final step, product dissociation and catalyst regeneration happens. Importantly, no change in oxidation state of palladium takes place during the three steps of the catalytic process (Scheme 4.3).

CHAPTER 5 - EXPERIMENTAL

5.1 GENERAL

All reactions were carried out under ambient atmosphere conditions unless otherwise stated. All chemicals were purchased commercially. All of the reagents were used without further purification. Solvents used for reactions were supplied by an mBraun Solvent Purification System (SPS) or in commercial bottles (Aldrich), none of which were further purified. Compounds 1 and 5 were synthesized according to literature ${ }^{49}$. NMR experiments were recorded on a Bruker Avance II 400 using CDCl_{3} (chloroform$\left.\mathrm{d}_{1}\right)$ at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 162 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)$ and $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ at RT . In all spectra, chemical shifts were adjusted to the solvent peak (7.26 ppm for CHCl_{3} for ${ }^{1} \mathrm{H}$ and 77.16 ppm for CDCl_{3} for ${ }^{13} \mathrm{C}$). Melting points were determined using Fisher Scientific melting point apparatus with the maximum temperature of $300{ }^{\circ} \mathrm{C}$. The values provided for melting point are uncorrected. IR spectra were obtained on Perkin Elmer Spectrum One using KBr disks for solid compounds and NaCl disks for liquid/oil compounds. SiliCycle Thin Layer Chromatography (TLC) plates (thickness: $250 \mu \mathrm{~m}$) were used for TLC characterization; visualization was obtained under UV light irridiation. Some of the products (as specified) were purified by dry-column flash chromatography (DCFC). The general procedure included the sample being adsorbed onto silica ($\sim 3 \mathrm{~g}$) followed by rotary evaporation. Then, a 100 mL sintered glass funnel was packed with clean silica ($\sim 12 \mathrm{~g}$) and then topped with the compound-adsorbed silica sample. Fractions were collected individually by applying vacuum. Each fraction consisted of total 25 mL of the solvent mixture, starting from 25 mL of hexanes and increasing the polarity by adding 1 mL of EtOAc with each consecutive fraction (e.g. fraction \#2: 24 mL of hexanes and 1
mL of EtOAc). Theoretical calculations were performed on Spartan'10 at B3LYP: 6$311++G^{* *}$ level of theory.

5.2 LIGANDS

2-Chloro-N-(2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)acetamide (2)

Molecular weight: $266.72 \mathrm{~g} \mathrm{~mol}^{-1}$
The solution of $1(1.70 \mathrm{~g}, 8.90 \mathrm{mmol})$ and triethylamine $(1.86 \mathrm{~mL}, 13.3 \mathrm{mmol})$ in DCM (25 mL) was placed into an ice bath and stirred for 15 min . 2-Chloroacetyl chloride (0.78 $\mathrm{mL}, 9.8 \mathrm{mmol}$) was then added dropwise over the period of 5 min to the stirring solution. Upon the completion of addition, the contents of the reaction vessel were stirred for 2 h at RT. Over that period of time, the colour of the solution changed from yellow to orange and finally to deep red; a pale pink precipitate was also noted. After 2 h , the dark red solution was gravity filtered and the filtrate was left to evaporate overnight (fumehood). Dark brown crystals formed and were then washed with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, resulting in an orange solution and a black-coloured precipitate. The mixture was gravity filtered. Following solvent removal the product was isolated as orange crystalline solid (2.02 g, 85% yield; pure): $\mathrm{Mp} 97-99^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.62$ (hexanes-EtOAc, 4:1).

IR (KBr): 2953, 1675, 1639, 1609, 1589, 1535, 1450, 1355, 1303, 1057, 1046, 959, 776, $690 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.05(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J=1.2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.85 (ddd, $J=0.4 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dddd}, J=0.4 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, J$ $=7.6 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=1.2 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2$ H), 4.07 (s, $2 H$), 1.41 (s, 6 H$)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=165.9,161.6,139.2,132.4,129.1,123.3,120.0,114.5$, 78.1, 68.2, 43.7, 28.6.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{O}_{2}$: C, $58.54 ; \mathrm{H}, 5.67 ; \mathrm{N}, 10.50 \%$. Found: C, $58.40 ; \mathrm{H}, 5.55$; N, 10.44\%.

N-(2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(dimethylamino)acetamide

 (3a)

Molecular weight: $275.35 \mathrm{~g} \mathrm{~mol}^{-1}$
Thionyl chloride ($8.81 \mathrm{~mL}, 121 \mathrm{mmol}$) was added to N, N-dimethylglycine ($0.50 \mathrm{~g}, 4.85$ mmol) in a 50 mL round-bottom flask. The orange-coloured mixture was heated to $50^{\circ} \mathrm{C}$ and stirred for 4 h (until the solid disappeared). Excess thionyl chloride was removed in vacuo from the clear, bright yellow solution resulting in bright yellow solid. Then, the solution of 1 ($0.46 \mathrm{~g}, 2.42 \mathrm{mmol}$) and triethylamine ($0.70 \mathrm{~mL}, 5.02 \mathrm{mmol}$) in DCM (25.0 mL) was added to the in situ prepared acyl chloride and stirred for 12 h at RT. The dark orange solution was then extracted with water $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and gravity filtered, resulting in a transparent brownish-orange solution. After evaporation of the solvent, beige solid was formed. The compound was
purified by DCFC and the product was collected as dark orange wax from fractions 5 to 14 ($0.34 \mathrm{~g}, 47 \%$ yield, pure): $\mathrm{R}_{f}=0.58$ (hexanes-EtOAc, 4:1).

IR (KBr): 2969, 2779, 1677, 1645, 1581, 1532, 1447, 1291, 1208, 1053, 1044, 963, 877, $753,689 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.80(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=$ $8.0 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H})$, 3.16 (s, 2 H$), 2.39(\mathrm{~s}, 6 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=171.0,161.1,139.5,132.2,129.0,122.3,119.8,114.1$, 77.7, 68.1, 64.5, 46.0, 28.6.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 65.43; H, 7.69; N, 15.26\%. Found: C, 64.88; H, 7.66; N, 15.00%.

2-(Diethylamino)-N-(2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)acetamide (3b)

Molecular weight: $303.41 \mathrm{~g} \mathrm{~mol}^{-1}$
Compound 2 ($1.27 \mathrm{~g}, 4.78 \mathrm{mmol}$) was added to the stirring solution of potassium carbonate ($1.32 \mathrm{~g}, 9.55 \mathrm{mmol}$) and diethylamine ($1.00 \mathrm{~mL}, 9.55 \mathrm{mmol}$) in MeCN (30.0 $\mathrm{mL})$. An orange-coloured solution was then heated to reflux temperature $\left(\sim 80^{\circ} \mathrm{C}\right)$. The reaction progress was monitored by TLC, and the reflux was stopped after 24 h . The reaction mixture appeared dark brown with light brown precipitate. After it cooled down
to RT, it was gravity filtered and the solution was left to evaporate. After evaporation the compound appeared brown in colour and waxy in composition. The compound was purified by DCFC and the product was collected as yellow oil from fractions 8 to 18 (1.1 $\mathrm{g}, 69 \%$ yield, pure): $\mathrm{R}_{f}=0.59$ (hexanes-EtOAc, 4:1).

IR (NaCl): 2971, 1686, 1641, 1581, 1520, 1446, 1283, 1056, 1046, 773, $754 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.64(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.85 (ddd, $J=8.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dddd}, J=8.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J$ $=1.6 \mathrm{~Hz}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{ddd}, J=7.6 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2$ H), $3.24(\mathrm{~s}, 2 \mathrm{H}), 2.67(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H}), 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=172.8,161.1,139.6,132.2,129.3,122.4,120.1,114.3$, 77.8, 68.4, 58.2, 49.3, 28.7, 12.1.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 67.30; H, 8.31; N, 13.85\%. Found: C, 67.52; H, 8.20; N, 13.75%.

N-(2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(methyl(2-(pyridin-2yl)ethyl) amino)acetamide (3c)

Molecular weight: $366.46 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared similarly as for $\mathbf{3 b}$ from 2-(2-methylaminoethyl)pyridine ($0.50 \mathrm{~mL}, 3.60 \mathrm{mmol}), 2(0.48 \mathrm{~g}, 1.80 \mathrm{mmol})$ and potassium carbonate ($0.50 \mathrm{~g}, 3.60$ $\mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ for 23 h . The compound was purified by DCFC and the product
was collected as yellowish powder from fractions 20 to $34\left(0.30 \mathrm{~g}, 45 \%\right.$ yield, pure): $\mathrm{R}_{f}=$ 0.12 (hexanes-EtOAc, 3:2).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.65(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.50(\mathrm{ddd}, J=4.8 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1$ H), 7.54 (td, $J=7.6 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1$ $\mathrm{H}), 7.14(\mathrm{dt}, J=8.0 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H})$, 2.95-3.10 (m, 4 H$), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.2,161.2,160.0,149.4,139.6,136.5,132.3,129.2$, $123.3,122.5,121.4,120.1,114.3,77.8,68.3,62.2,58.1,43.6,35.9,28.8$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 68.83; $\mathrm{H}, 7.15 ; \mathrm{N}, 15.29 \%$. Found: C, 68.56; $\mathrm{H}, 7.14 ; \mathrm{N}$, 15.23\%.

2-((3S,5S,7S)-Adamantan-1-yl(methyl)amino)-N-(2-(4,4-dimethyl-4,5-dihydrooxazol -2-yl)phenyl) acetamide (3d)

Molecular weight: $395.55 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared similarly as for $\mathbf{3 b}$ from N-methyladamantylamine (0.17 g , $1.00 \mathrm{mmol}), 2(0.24 \mathrm{~g}, 0.90 \mathrm{mmol})$ and potassium carbonate ($0.14 \mathrm{~g}, 1.00 \mathrm{mmol}$) in MeCN (20 mL) for 28 hours. The compound was recrystallized from DCM and hexanes as yellow wax ($0.20 \mathrm{~g}, 56 \%$ yield, pure): $\mathrm{R}_{f}=0.66$ (hexanes-EtOAc, 4:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.24(\mathrm{~s}$ br, 1 H$), 8.86(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.88 (dd, $J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1$ H), 7.06 (ddd, $J=8.0 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02,(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 2.07-$ 2.13 (m br, 3 H), $1.76(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.63(\mathrm{q}, J=12.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=173.6,161.2,139.6,132.2,129.6,122.5,120.5,114.6$, $77.8,68.6,56.0,54.4,38.7,36.8,36.2,29.6,28.7$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 71.25 ; \mathrm{H}, 8.47 ; \mathrm{N}, 10.39 \%$. Found: C, 71.01; H , 8.49; N, 10.39\%.

N-(2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(pyrrolidin-1-yl)acetamide (3e)

Molecular weight: $301.39 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared similarly as for $\mathbf{3 b}$ from pyrrolidine ($0.58 \mathrm{~mL}, 6.95 \mathrm{mmol}$), $2(1.20 \mathrm{~g}, 4.50 \mathrm{mmol})$ and potassium carbonate ($1.24 \mathrm{~g}, 9.00 \mathrm{mmol}$) in $\mathrm{MeCN}(30 \mathrm{~mL})$ for 7 h . The compound was recrystallized from DCM and hexane as beige solid $(0.62 \mathrm{~g}$, 73% yield, pure): $\mathrm{Mp} 106-108^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.28$ (hexanes-EtOAc, $4: 1$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.47(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.84 (ddd, $J=8.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dddd}, J=9.2 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J$ $=1.6 \mathrm{~Hz}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{ddd}, J=8.0 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2$ H), 3.37 (s, 2 H), 2.68-2.76 (m, 4 H$)$, 1.82-1.91 (m, 4 H$), 1.39$ (s, 6 H$)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=171.3,161.3,139.6,132.3,129.2,122.5,120.3,114.3$, 77.8, 68.3, 61.6, 54.7, 28.6, 24.5.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 67.75; H, 7.69; $\mathrm{N}, 13.94 \%$. Found: $\mathrm{C}, 67.93 ; \mathrm{H}, 7.66 ; \mathrm{N}$, 13.96\%.

2-(Bis(pyridin-2-ylmethyl)amino)-N-(2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl) acetamide (3f)

Molecular weight: $429.52 \mathrm{~g} \mathrm{~mol}^{-1}$

The compound was prepared similarly as for $\mathbf{3 b}$ from 2,2'-dipicolylamine ($0.20 \mathrm{~mL}, 1.12$ $\mathrm{mmol}), 2(0.30 \mathrm{~g}, 1.12 \mathrm{mmol})$ and potassium carbonate ($0.31 \mathrm{~g}, 2.25 \mathrm{mmol}$) in MeCN $(20 \mathrm{~mL})$ for 24 h . The compound was purified by DCFC from fractions 29 to 38, then washed with $\mathrm{Et}_{2} \mathrm{O}$ and collected as white solid ($0.14 \mathrm{~g}, 30 \%$ yield, pure): $\mathrm{R}_{f}=0.05$ (hexanes-ETOAc, 1:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.57(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.55(\mathrm{dt}, J=6.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{ddd}, J$ $=8.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 7.61-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{ddd}, J=6.8 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, J$ $=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{ddd}, J=8.0 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 4 \mathrm{H}), 4.08(\mathrm{~s}$, $2 \mathrm{H}), 3.49$ (s, 2 H$), 1.40$ (s, 6 H$)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6,161.6,157.9,149.2,139.4,136.4,132.3,129.2$, 123.6, 122.5, 122.2, 120.2, 114.1, 77.7, 68.3, 60.6, 57.9, 28.7.

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 69.91; H, 6.34; N, 16.31\%. Found: C, 69.88; H, 6.26; N, 16.13\%.

N-(2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(1,4,7,10-tetraoxa-13-azacyclo pentadecan-13-yl) acetamide (3g)

Molecular weight: $449.55 \mathrm{~g} \mathrm{~mol}^{-1}$

The compound was prepared similarly as for $\mathbf{3 b}$ from 1 -aza-15-crown-5 ($0.22 \mathrm{~g}, 1.00$ $\mathrm{mmol}), 2(0.27 \mathrm{~g}, 1.00 \mathrm{mmol})$ and potassium carbonate ($0.28 \mathrm{~g}, 2.00 \mathrm{mmol}$) in MeCN $(25 \mathrm{~mL})$ for 17 h . The compound was dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and extracted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and then brine (10 mL). Organic layer was dried over MgSO_{4}. Collected as yellow wax ($0.30 \mathrm{~g}, 67 \%$ yield, pure): $\mathrm{R}_{f}=0.15$ (hexanes-EtOAc, $1: 1$).

IR (KBr): 3089, 2867, 1683, 1636, 1582, 1520, 1446, 1355, 1284, 1127, 1057, 968, 934, $755 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.52(\mathrm{~s}$ br, 1 H$), 8.82(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 7.84(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 4 \mathrm{H}), 3.60-3.68(\mathrm{~m}, 12 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8,161.2,139.5,132.2,129.2,122.4,120.0,114.1$, 77.6, 70.9, 70.5, 70.4, 69.4, 68.2, 60.0, 54.5, 28.7.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 61.45; $\mathrm{H}, 7.85 ; \mathrm{N}, 9.35 \%$. Found: C, 61.38; H, 7.82; N, 9.52\%.

2-(Allyl(methyl)amino)-N-(2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)acetamide (3h)

Molecular weight: $301.39 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared similarly as for $\mathbf{3 b}$ from allylmethylamine $(0.30 \mathrm{~mL}, 3.10$ $\mathrm{mmol})$, $\mathbf{2}(0.80 \mathrm{~g}, 3.00 \mathrm{mmol})$ and potassium carbonate ($0.71 \mathrm{~g}, 5.10 \mathrm{mmol}$) in MeCN $(30 \mathrm{~mL})$ for 48 h . The compound was purified by DCFC and the product was collected as yellowish oil from fractions 7 to $10\left(0.37 \mathrm{~g}, 41 \%\right.$ yield, pure): $\mathrm{R}_{f}=0.53$ (hexanesEtOAc, 4:1).

IR (KBr): 3083, 2971, 1683, 1643, 1582, 1520, 1447, 1354, 1293, 1209, 1056, 1046, $968,926,773,754,690 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.71(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.84 (ddd, $J=8.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (dddd, $J=9.2 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, J$ $=2.0 \mathrm{~Hz}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{ddd}, J=7.6 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95$ (ddt, $J=16.8 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dq}, J=17.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (ddt, $J=10.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.03(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 3.16(\mathrm{dt}, J=$ $6.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.38(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.4,161.2,139.6,135.2,132.2,129.2,122.4,120.0$, 118.4, 114.2, 77.7, 68.2, 61.4, 61.1, 43.7, 28.6.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 67.75; H, 7.69; N, 13.94\%. Found: C, 67.96; H, 7.67; N, 13.73\%.

N-(2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(isopropyl(methyl)amino)ace tamide (3i)

Molecular weight: $303.41 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared similarly as for $\mathbf{3 b}$ from N-isopropylmethylamine $(1.04 \mathrm{~g}$, $10.0 \mathrm{mmol})$, $2(2.67 \mathrm{~g}, 10.0 \mathrm{mmol})$ and potassium carbonate ($2.76 \mathrm{~g}, 20.0 \mathrm{mmol}$) in MeCN (50 mL) for 24 h . The compound was dissolved in DCM (30 mL) and extracted with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, and then brine $(30 \mathrm{~mL})$. Organic layer was dried over MgSO_{4}. The product was collected as orange oil ($2.00 \mathrm{~g}, 66 \%$ yield, pure): $\mathrm{R}_{f}=0.14$ (hexanesETOAc, 4:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.63(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 8.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 2$ H), 2.93 (sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (s, 3 H), 1.38 (s, 6 H), 1.07 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5,161.0,139.5,132.1,129.2,122.3,120.0,114.3$, 77.6, 68.2, 57.1, 54.3, 40.2, 28.5, 18.2.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 67.30; H, 8.31; $\mathrm{N}, 13.85 \%$. Found: $\mathrm{C}, 67.18 ; \mathrm{H}, 8.28 ; \mathrm{N}$, 13.96\%.

2-(Diallylamino)-N-(2-(4,4-dimethyl-4,5-dihydroox azol-2-yl)phenyl)acetamide (3j)

Molecular weight: $327.43 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared similarly as for $\mathbf{3 b}$ from diallylamine ($0.43 \mathrm{~mL}, 3.50 \mathrm{mmol}$), $2(0.80 \mathrm{~g}, 3.00 \mathrm{mmol})$ and potassium carbonate $(0.83 \mathrm{~g}, 6.00 \mathrm{mmol})$ in $\mathrm{MeCN}(25 \mathrm{~mL})$. The compound was recrystallized from petroleum ether as orange wax ($0.72 \mathrm{~g}, 74 \%$ yield, pure): $\mathrm{R}_{f}=0.67$ (hexanes-EtOAc, 4:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.61(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, \mathrm{J}=$ $1.6 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dt}, J=1.6 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.97 (tdd, $J=6.8 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=171.8,161.2,139.5,134.8,132.2,129.2,122.3,119.9$, 118.6, 114.1, 77.6, 68.3, 58.5, 57.6, 28.6.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.75 ; \mathrm{H}, 7.74 ; \mathrm{N}, 12.66 \%$. Found: C, 68.46; H , 7.64; N, 12.43\%.

N-(2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl)-2-((2-hydroxyethyl)(methyl) amino)acetamide (3 k)

Molecular weight: $305.38 \mathrm{~g} \mathrm{~mol}^{-1}$
In a 50 mL three neck round bottom flask, $4(0.22,1.20 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.21 \mathrm{~g}, 1.50$ mmol) were dissolved in MeCN (15 mL) under an atmosphere of nitrogen gas. The solution was stirred for 15 min . Then the solution of $2(0.20 \mathrm{~g}, 0.75 \mathrm{mmol})$ in $\mathrm{MeCN}(10$ mL) was transferred to the reaction flask. The mixture was stirred at reflux temperature $\left(80^{\circ} \mathrm{C}\right)$ for 18 h . After the reflux was complete, the solution was filtered and allowed to evaporate. The product was a light yellow wax ($0.20 \mathrm{~g}, 88 \%$ calculated yield, crude).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.22(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=$ $8.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H})$, $3.62(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 6$ H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7,162.2,139.1,132.6,129.6,122.8,120.0,114.3$, 77.9, 68.6, 62.8, 60.8, 59.2, 44.2, 28.5.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}$: C, 62.93; H, 7.59; N, 13.76\%. Found: C, 62.56; H, 7.23; N, 12.06\%.

Synthesis of 1-benzylimidazole ${ }^{62}$

Molecular weight: $158.20 \mathrm{~g} \mathrm{~mol}^{-1}$
Potassium carbonate ($3.99 \mathrm{~g}, 28.8 \mathrm{mmol}$) and imidazole hydrochloride ($1.00 \mathrm{~g}, 9.60$ $\mathrm{mmol})$ were dissolved in $\mathrm{MeCN}(30 \mathrm{~mL})$. Benzyl bromide ($1.25 \mathrm{~mL}, 10.6 \mathrm{mmol}$) was added dropwise to the stirring solution at RT. After 70 hours, the solution was concentrated and redissolved in DCM and extracted with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. Organic layer was dried over MgSO_{4}. The product was collected as off-white wax ($0.63 \mathrm{~g}, 42 \%$ yield, pure).
${ }^{1} \mathrm{H}$ NMR matches reported literature values. ${ }^{62}$

N -(2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(1H-imidazol-1-yl)acetamide

 (2I)

Molecular weight: $298.35 \mathrm{~g} \mathrm{~mol}^{-1}$
Imidazole ($0.05 \mathrm{~g}, 0.750 \mathrm{mmol}$), $2(0.22 \mathrm{~g}, 0.82 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.31 \mathrm{~g}, 2.25 \mathrm{mmol})$ were dissolved in $\mathrm{MeCN}(15.0 \mathrm{~mL})$. The bright yellow reaction mixture was refluxed for 24 h . It was then cooled to RT, the reaction mixture was gravity filtered, and the filtrate was concentrated and then washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5.0 \mathrm{~mL})$. The compound was recrystallized from DCM and hexanes as white solid ($0.12 \mathrm{~g}, 56 \%$ yield; pure): $\mathrm{R}_{f}=0.18$ (hexanes-EtOAc, 4:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.40(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.04 (s, 1 H), 4.80 (s, 2 H), 3.98 (s, $2 H$), $1.30(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.7,161.7,138.8,138.3,132.5,130.4,129.2,123.3$, 120.1, 120.0, 113.9, 77.9, 68.2, 51.4, 28.2.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 64.41; H, 6.08; $\mathrm{N}, 18.78 \%$. Found: $\mathrm{C}, 64,53 ; \mathrm{H}, 6.17$; N , 16.32%.

1-Benzyl-3-(2-((2-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)phenyl)amino)-2-oxoethyl)-1H-imidazol-3-ium chloride (3I)

Molecular weight: $424.93 \mathrm{~g} \mathrm{~mol}^{-1}$

A solution of $2(0.40 \mathrm{~g}, 1.50 \mathrm{mmol})$ and 1-benzylimidazole ($0.19 \mathrm{~g}, 1.20 \mathrm{mmol}$) in THF/MeCN ($15 / 3 \mathrm{~mL}$) was refluxed for 24 h . The solution was concentrated and then washed with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL total). The compound was collected as yellow wax (0.29 g , 57% yield, pure): $\mathrm{R}_{f}=0.61$ (hexanes-EtOAc, 4:1).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\left.)_{3}\right): \delta=12.96(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 10.71(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 8.44(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1$ $\mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 7.12(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=162.6,162.0,139.1,138.5,132.6,132.5,129.6,129.5$, 129.2, 129.0, 123.6, 123.5, 120.8, 119.9, 114.0, 78.1, 68.2, 53.7, 52.3, 28.6.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O}_{2} \cdot 1 / 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C, $59.93 ; \mathrm{H}, 6.34 ; \mathrm{N}, 12.15 \%$. Found: C, $59.86 ; \mathrm{H}$, 6.27; N, 11.03\%.

N-(2-(4,4-Dimethyl-4,5-dihydrooxazol-2-yl)phenyl-2-(diphenylphosphoryl)acetami de ($3 \mathrm{~m} \cdot$ - oxide)

Molecular weight: $432.46 \mathrm{~g} \mathrm{~mol}^{-1}$
Compound $2(0.80 \mathrm{~g}, 3.00 \mathrm{mmol})$ was dissolved in dry THF (15.0 mL) and was placed into an ice bath at $-84^{\circ} \mathrm{C}$ (the mixture of EtOAc/liquid N_{2}). A 0.5 M solution of KPPh_{2} in THF ($6.00 \mathrm{~mL}, 3.00 \mathrm{mmol}$) was added dropwise to the stirring solution. After the solution was stirred for 24 h under N_{2} at RT it was cannula transferred and the precipitate was discarded. The compound was recrystallized in air from DCM/Et 2 O as yellow waxy solid ($0.69 \mathrm{~g}, 55 \%$ yield, pure): $\mathrm{R}_{f}=0.63$ (hexanes-EtOAc, $4: 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.43(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.90(\mathrm{~m}, 4$ H), 7.76 (dd, $J=7.6 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40-7.53 (m, 6 H), 7.34 (ddd, $J=8.8 \mathrm{~Hz}, J=$ $8.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{td}, J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.7\left(\mathrm{~d}, \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.0 \mathrm{~Hz}\right.$), 161.8, 139.3, 132.4, 132.3, $132.2\left(\mathrm{~d}, \mathrm{~J}\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=3.0 \mathrm{~Hz}\right), 131.5,131.4,131.3,128.9,128.7,128.6,122.8$, $119.8,113.7,77.9,68.0,43.06\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=61.0 \mathrm{~Hz}\right), 28.7$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=28.49$.

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P} \cdot 1 / 2\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{C}, 63.29 ; \mathrm{H}, 5.62 ; \mathrm{N}, 5.79 \%$. Found: C , 64.70; H, 5.92; N, 5.75\%.

Synthesis of Boc-Bn-pincer (3n)

Molecular weight: $495.58 \mathrm{~g} \mathrm{~mol}^{-1}$
Boc-L-aspartic acid 4-benzyl ester ($2.00 \mathrm{~g}, 6.30 \mathrm{mmol}$) and 1 (ox- $\mathrm{NH}_{2}, 1.00 \mathrm{~g}, 5.25$ $\mathrm{mmol})$ were dissolved in DCM (25.0 mL) and the solution was stirred in an ice bath for 5 min . Then DCC ($1.62 \mathrm{~g}, 7.88 \mathrm{mmol}$) was added to the stirring solution. After the reaction was stirred for 24 h at RT, the white precipitate was filtered off (gravity filtration) and solvent was removed in vacuo. Recrystallization with DCM/hexanes (1:1) afforded compound as yellow wax ($2.60 \mathrm{~g},>99 \%$ yield; pure).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.69(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45$ (ddd, $J=8.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.28-$ 7.25 (m, 4 H), 7.10 (td, $J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.71(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.03$ (m, 2 H), 4.90-4.70 (m, 1 H), 4.06-4.00 (m, 2 H), 3.30-2.80 (m, 2 H), 1.49-1.36 (m, 18 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3,169.8,161.8,155.6,139.4,132.4,129.1,128.6$, 128.3, 122.9, 120.3, 114.2, 80.6, 78.0, 68.1, 66.8, 52.5, 37.0, 34.8, 31.7, 28.7, 28.5, 25.4, 22.8, 14.3.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6}$: C, 65.44; H, 6.71; N, 8.48\%. Found: C, 65.53; H, 6.91; N, 8.23\%.

Synthesis of N-methyl-2-((trimethylsilyl)oxy)ethan-1-aminium chloride (4)

Cl_{\odot}
Molecular weight: $183.75 \mathrm{~g} \mathrm{~mol}^{-1}$
Dry $\mathrm{Et}_{2} \mathrm{O}$ (30.0 mL) was obtained in a round bottom flask attached to a reflux condenser. 2-Methylaminoethanol ($1.07 \mathrm{~mL}, 13.3 \mathrm{mmol}$) was added to the flask and the mixture was let to stir for 5 min under an atmosphere of N_{2}. TMSCI ($3.34 \mathrm{~mL}, 26.7$ $\mathrm{mmol})$ was then added dropwise to the reaction flask. The reaction was then refluxed for 3 h . After reflux, the solvent was evaporated in vacuo giving a white fluffy solid (1.98 g, 81% yield, pure).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.43(\mathrm{bs}, 2 \mathrm{H}), 3.93(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, \mathrm{J}=5.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=57.7,50.6,33.3,-0.5$.
Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{CINOSi} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 35.72 ; \mathrm{H}, 9.99 ; \mathrm{N}, 6.94 \%$. Found: C, 35.56; H, 9.67; N, 9.02\%.

2-chloro-N-(2-((3aR,8aS)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)phenyl)acet amide (6)

Molecular weight: $326.78 \mathrm{~g} \mathrm{~mol}^{-1}$

The solution of $5(0.50 \mathrm{~g}, 2.00 \mathrm{mmol})$ and triethylamine $(0.42 \mathrm{~mL}, 3.00 \mathrm{mmol})$ in DCM (25 mL) was placed into an ice bath and stirred for 30 min . 2-Chloroacetyl chloride (0.17 $\mathrm{mL}, 2.20 \mathrm{mmol}$) was then added dropwise for 5 min to the stirring solution. Upon the completion of addition, the contents of the reaction vessel were stirred for 24 h at RT. The colour of the solution changed from yellow to dark brown with white precipitate over the course of the reaction. The solution was gravity filtered. Hexanes (10 mL) and then $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ were used to crash the product out of DCM solution. The product was isolated as peachy crystalline solid after filtration ($0.56 \mathrm{~g}, 86 \%$ yield; pure): $\mathrm{R}_{f}=0.63$ (hexanes-EtOAc, 4:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.98(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=7.6$ $\mathrm{Hz}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{td}, J=7.6 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, \mathrm{~J}$ $=8.0,1 \mathrm{H}), 5.47(\mathrm{ddd}, J=8.4 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=14.8 \mathrm{~Hz}, 2$ $\mathrm{H})$, $3.50-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.45(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=165.8,163.8,141.4,139.7,139.0,132.8,129.5,129.0$, 127.8, 125.8, 125.6, 123.4, 120.3, 114.2, 82.4, 76.5, 43.7, 39.8.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{O}_{2}$: C, 66.16; $\mathrm{H}, 4.63 ; \mathrm{N}, 8.57 \%$. Found: $\mathrm{C}, 65.88 ; \mathrm{H}, 4.60 ; \mathrm{N}$, 8.50\%.

Synthesis of N -methyl-2-((trimethylsilyl)oxy)ethan-1-aminium chloride (7)

Molecular weight: $363.46 \mathrm{~g} \mathrm{~mol}^{-1}$
Compound $6(0.20 \mathrm{~g}, 0.61 \mathrm{mmol})$ was added to the stirring solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.17 \mathrm{~g}$, 1.22 mmol) and diethylamine ($0.063 \mathrm{~mL}, 0.610 \mathrm{mmol}$) in MeCN (15.0 mL). An orangecoloured solution was then heated to reflux temperature $\left(\sim 80^{\circ} \mathrm{C}\right)$. The reaction progress was monitored by TLC, and the reflux was stopped after 48 h . The reaction mixture appeared dark brown with light brown precipitate. After it cooled down to RT, it was gravity filtered and the solution was left to evaporate. After evaporation the compound appeared brown in colour and waxy in composition. The compound was purified by recrystallization with EtOAc ($0.12 \mathrm{~g}, 55 \%$ yield, crude): $\mathrm{R}_{f}=0.42$ (hexanes-EtOAc, 4:1).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.54(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 3 \mathrm{H}),(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{td}, J=6.8 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.34$ (m, 1 H$), 3.27(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.

5.3 PALLADIUM COMPLEXES

Synthesis of 9a

Molecular weight: $416.21 \mathrm{~g} \mathrm{~mol}^{-1}$
The solution of $3 \mathbf{a}(0.10 \mathrm{~g}, 0.36 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ was cooled in the ice bath for 5 min . Then the 0.1135 M solution of $\mathrm{Li}_{2} \mathrm{PdCl}_{4}(3.20 \mathrm{~mL}, 0.36 \mathrm{mmol})$ was added dropwise. The orange solution was stirred at RT for 24 h . The solvent was removed in vacuo and the orange compound was redissolved in DCM (5.0 mL) and filtered through Celite. The compound was isolated as orange solid ($0.12 \mathrm{~g}, 82 \%$ yield; pure).

IR (KBr): 2956, 2911, 1646, 1611, 1488, 1362, 1273, 1167, 1086, 966, 865, $756 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.34(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.0$ $\mathrm{Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{ddd}, J=$ $8.0 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 6 \mathrm{H}), 1.72(\mathrm{~s}, 6$ H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=175.1,162.6,144.8,133.2,129.8,123.4,122.0,116.5$, 81.5, 71.2, 70.7, 52.2, 27.9.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{Pd}: \mathrm{C}, 43.29 ; \mathrm{H}, 4.84 ; \mathrm{N}, 10.10 \%$. Found: C, 43.24; H , 4.92; N, 9.99\%.

Synthesis of 9b

Molecular weight: $444.27 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared and purified similarly as for $\mathbf{9 a}$ from $\mathbf{3 b}(0.24 \mathrm{~g}, 0.79$ mmol) and $7.9 \times 10^{-2} \mathrm{M} \mathrm{Li}_{2} \mathrm{PdCl}_{4}(10.0 \mathrm{~mL}, 0.79 \mathrm{mmol})$. The compound was isolated as orange solid ($0.18 \mathrm{~g}, 52 \%$ yield; pure).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (t, J = 7.6 Hz, 1 H), $6.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 3.23(\mathrm{dq}, J=$ $13.6 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{dq}, J=13.6 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.3,162.4,144.7,132.9,129.4,123.2,121.6,116.4$, 81.6, 70.6, 63.6, 56.6, 27.9, 12.4.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{Pd} \cdot 1 / 2\left(\mathrm{H}_{2} \mathrm{O}\right)$: C, $43.33 ; \mathrm{H}, 5.77 ; \mathrm{N}, 8.92 \%$. Found: $\mathrm{C}, 43.57$; H, 5.47; N, 8.52\%.

Synthesis of 9c

Molecular weight: $507.33 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared and purified similarly as for 9a from 3c (0.34 g, 0.92 mmol) and $9.3 \times 10^{-2} \mathrm{M} \mathrm{Li}_{2} \mathrm{PdCl}_{4}(10.0 \mathrm{~mL}, 0.92 \mathrm{mmol}$). The compound was purified using preparative TLC (\% Acetone as eluent, $\mathrm{R}_{f}=0.62$) and isolated as orange solid ($0.21 \mathrm{~g}, 45 \%$ yield; pure).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.12(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79-7.66 (m, 3 H), 7.48-7.32 (m, 2 H), 7.05-6.96 (m, 1 H), 5.22-5.09 (m, 1 H), 4.91-4.80 $(\mathrm{m}, 1 \mathrm{H}), 4.79-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.42(\mathrm{~m}, 1 \mathrm{H})$, 3.16-3.06 (m, 1 H), 2.98 (s, 3 H), 1.83 (s, 3 H), 1.76 (s, 3 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=175.4,162.6,159.8,153.1,144.7,138.9,133.2,129.5$, 127.3, 123.7, 121.9, 116.4, 81.6, 70.7, 68.4, 62.3, 52.6, 51.3, 39.0, 28.1, 27.9.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{CIN}_{4} \mathrm{O}_{2} \mathrm{Pd} \cdot 2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\mathrm{C}, 40.79 ; \mathrm{H}, 4.32 ; \mathrm{N}, 8.27 \%$. Found: C 41.34, H 4.53, N 8.69\%.

Synthesis of 9d

Molecular weight: $536.41 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared and purified similarly as for 9 a from $3 \mathbf{d}$ ($0.03 \mathrm{~g}, 0.08$ mmol) and $7.9 \times 10^{-2} \mathrm{M} \mathrm{Li}_{2} \mathrm{PdCl}_{4}(0.96 \mathrm{~mL}, 0.08 \mathrm{mmol})$. The compound was isolated as orange solid ($0.04 \mathrm{~g}, 80 \%$ yield; pure).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.07$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ ($\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 2 \mathrm{H}), 2.85$ (s, 3 H), 2.23-2.08 (m, 7 H), 1.88 (s, 3 H), 1.70-1.56 (m, 15 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.0,162.7,144.7,133.2,129.4,123.0,121.7,117.4$, 82.0, 70.9, 67.1, 64.2, 47.7, 39.0, 36.1, 30.2, 28.7, 27.7.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{Pd} \cdot 1 / 2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\mathrm{C}, 46.14 ; \mathrm{H}, 5.31 ; \mathrm{N}, 6.33 \%$. Found: C , 46.30; H, 5.48; N, 6.15\%.

Synthesis of 9e

Molecular weight: $442.25 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared and purified similarly as for 9 a from 3 e $(0.20 \mathrm{~g}, 0.66$ mmol) and $0.1135 \mathrm{M} \mathrm{Li}_{2} \mathrm{PdCl}_{4}$ ($5.85 \mathrm{~mL}, 0.66 \mathrm{mmol}$). The compound was isolated as orange solid ($0.18 \mathrm{~g}, 62 \%$ yield; pure).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(J=8.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1$ $\mathrm{H}), 7.40(\mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.71(\mathrm{~m}, 4 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.81$ (m, 2 H$), 1.72(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=175.2,162.4,144.6,132.9,129.6,123.3,121.7,116.6$, 81.4, 70.6, 68.0, 60.1, 27.8, 22.2.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{Pd}: \mathrm{C}, 45.25$; $\mathrm{H}, 5.14$; $\mathrm{N}, 9.31 \%$. Found: $\mathrm{C}, 45.45 ; \mathrm{H}, 4.97$; N, 8.95\%.

Synthesis of 9g

Molecular weight: $590.41 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared and purified similarly as for 9 a from $\mathbf{3 g}$ ($0.10 \mathrm{~g}, 0.20$ mmol) and $0.1135 \mathrm{M} \mathrm{Li}_{2} \mathrm{PdCl}_{4}(1.75 \mathrm{~mL}, 0.20 \mathrm{mmol})$. The compound was isolated as orange solid ($0.11 \mathrm{~g}, 93 \%$ yield; pure).

IR (KBr): 2871, 1636, 1617, 1364, 1272, 1125, 1085, 755, $732 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCI}_{3}$): $\delta=8.28$ (dd, $J=8.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (dd, $J=8.0$ $\mathrm{Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (ddd, $J=8.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (ddd, $J=$ $8.4 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.35-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H})$, 4.12-4.02 (m, 2 H), 3.75-3.55 (m, 12 H), 3.42-3.35 (m, 4 H), 1.72 (s, 6 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.2,162.6,145.0,133.0,129.4,123.7,121.6,116.5$, 81.7, 71.0, 70.8, 70.6, 70.5, 68.8, 60.1, 28.0.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{Pd} \cdot 1 / 2\left(\mathrm{CH}_{3} \mathrm{OH}\right)$: C, 46.54; $\mathrm{H}, 5.98 ; \mathrm{N}, 6.93 \%$. Found: C , 47.63; H, 6.38; N, 6.91\%.

Synthesis of 9h

Molecular weight: $442.25 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared and purified similarly as for 9 a from $3 \mathrm{~h}(0.16 \mathrm{~g}, 0.51$ mmol) and $0.1135 \mathrm{M} \mathrm{Li}_{2} \mathrm{PdCl}_{4}$ ($4.53 \mathrm{~mL}, 0.51 \mathrm{mmol}$). The compound was isolated as orange solid ($0.18 \mathrm{~g}, 78 \%$ yield; pure).

IR (KBr): 2954, 2918, 1636, 1618, 1486, 1356, 1324, 1271, 1085, $753 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.31(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.0$ $\mathrm{Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{ddd}, J=$ $8.4 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dddd}, J=17.2 \mathrm{~Hz}, J=10.0 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=17.2 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-$ $4.15(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $1.68(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=175.9,162.6,144.8,133.1,131.5,129.6,123.4,123.3$, 121.9, 116.4, 81.6, 70.7, 66.9, 65.5, 50.8, 28.1, 27.8.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{Pd}$: C, 46.17; $\mathrm{H}, 5.01$; $\mathrm{N}, 9.50 \%$. Found: $\mathrm{C}, 46.30 ; \mathrm{H}, 5.31$; N, 9.32\%.

Synthesis of 9i

Molecular weight: $444.27 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared and purified similarly as for 9a from $3 \mathbf{i}(0.06 \mathrm{~g}, 0.20 \mathrm{mmol})$ and $7.9 \times 10^{-2} \mathrm{M} \mathrm{Li}_{2} \mathrm{PdCl}_{4}(2.53 \mathrm{~mL}, 0.20 \mathrm{mmol})$. The compound was isolated as orange solid (0.07g, 77\% yield; pure).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\left.)_{3}\right): \delta=8.34(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(J=8.0 \mathrm{~Hz}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{ddd}, J=8.0$ $\mathrm{Hz}, J=7.2 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{sept}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.71$ (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=176.8,162.4,144.6,132.9,129.4,123.3,121.7,116.5$, 81.5, 70.5, 62.3, 59.5, 47.6, 27.9, 27.7, 20.5, 15.7.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{Pd}$: $\mathrm{C}, 45.96 ; \mathrm{H}, 5.45 ; \mathrm{N}, 9.46 \%$. Found: $\mathrm{C}, 46.56 ; \mathrm{H}, 5.52$;
N, 9.26\%.

Synthesis of 9j

Molecular weight: $468.29 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared and purified similarly as for $9 \mathbf{a}$ from $3 \mathbf{j}(0.21 \mathrm{~g}, 0.63 \mathrm{mmol})$ and $6.3 \times 10^{-2} \mathrm{M} \mathrm{Li}_{2} \mathrm{PdCl}_{4}(10.0 \mathrm{~mL}, 0.63 \mathrm{mmol})$. The compound was isolated as orange solid ($0.12 \mathrm{~g}, 42 \%$ yield; pure).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\left.)_{3}\right): \delta=8.24(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=8.0$ $\mathrm{Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{ddd}, J=$ $8.0 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(d d d d, J=17.2 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, J$ $=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 3.95$ (dd, $J=12.8 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{dd}, J=12.8 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.75(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=176.8,162.7,144.7,133.1,131.6,129.4,123.3,123.1$, 121.7, 116.4, 81.7, 70.7, 64.9, 63.4, 28.0.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{CIN}_{3} \mathrm{O}_{2} \mathrm{Pd}$: C, 48.73; H, 5.17 ; N, 8.97\%. Found: C, 48.33; H, 5.19; N, 8.80\%.

Synthesis of 9k

Molecular weight: $446.24 \mathrm{~g} \mathrm{~mol}^{-1}$
The compound was prepared and purified similarly as for 9 a from $3 \mathbf{k}(0.063 \mathrm{~g}, 0.206$ mmol) and $7.9 \times 10^{-2} \mathrm{M} \mathrm{Li}_{2} \mathrm{PdCl}_{4}(2.60 \mathrm{~mL}, 0.205 \mathrm{mmol})$. The compound was isolated as orange solid ($0.09 \mathrm{~g}, 95 \%$ yield; pure).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3): $\delta=8.29(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=8.0$ $\mathrm{Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{ddd}, J=$ 8.0 Hz, $J=7.2 \mathrm{~Hz}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.12(\mathrm{~m}, 3 \mathrm{H}), 3.90-3.70$ (m, 2 H), 3.52 (t, J = 6.8 Hz, 1 H$), 2.92-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 1 \mathrm{H})$, 1.73 (s, 3 H), 1.67 (s, 3 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=174.8,162.6,144.4,133.1,129.6,123.4,122.0,116.4$, 81.5, 70.5, 70.2, 65.1, 60.2, 50.9, 27.9, 27.6.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{Pd} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\mathrm{C}, 40.55 ; \mathrm{H}, 4.74 ; \mathrm{N}, 8.60 \%$. Found: C , 41.04; H, 4.40; N, 8.14\%.

Synthesis of $\mathrm{PdCl}_{2}\left(\mathrm{MeCN}^{2}\right)_{2}$

$\mathrm{PdCl}_{2}(0.51 \mathrm{~g}, 2.88 \mathrm{mmol})$ was dissolved in $\mathrm{MeCN}(60.0 \mathrm{~mL})$ and refluxed for 1.5 h until the solution got saturated. The reaction mixture was hot gravity filtered and the bright orange filtrate was put on ice. Orange crystals crashed out of the solution and were vacuum filtered ($0.65 \mathrm{~g}, 89 \%$ yield; pure). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum matches the literature. ${ }^{69}$

Synthesis of 91

Molecular weight: $530.34 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{Ag}_{2} \mathrm{O}(0.028 \mathrm{~g}, 0.12 \mathrm{mmol})$ and $3 \mathrm{l}(0.100 \mathrm{~g}, 0.24 \mathrm{mmol})$ were dissolved in DCM (10.0 mL) and stirred at RT under N_{2} atmosphere for 2 h . The reaction mixture was filtered through Celite. Then $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(0.062 \mathrm{~g}, 0.24 \mathrm{mmol})$ was added and the solution turned bright yellow milky colour after 2 min . The reaction was stirred at RT for 24 h under N_{2}. The opaque solution was gravity filtered and the solvent was removed in vacuo. Recrystallized from DCM/hexanes (1:1) mixture as yellow wax (0.12 g, 94\% yield; pure).
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.10-7.04$ $(\mathrm{m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.64-$ $5.57(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.44(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}$, $1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.2,163.3,136.1,132.1,129.2,128.8,128.2,127.8$, $126.8,122.8,121.6,121.2,120.6,81.8,70.0,60.4,57.5,53.9,29.7,28.6,27.1,24.4$, 21.0, 14.2.

Synthesis of 9m

Molecular weight: $557.32 \mathrm{~g} \mathrm{~mol}^{-1}$
Compound 2 ($0.20 \mathrm{~g}, 0.75 \mathrm{mmol}$) was dissolved in dry THF (10.0 mL) and was placed into an ice bath at $-84{ }^{\circ} \mathrm{C}$ (the mixture of EtOAc/liquid N_{2}). A 0.5 M solution of KPPh_{2} in THF ($1.50 \mathrm{~mL}, 0.75 \mathrm{mmol}$) was added dropwise to the stirring solution. The solution was stirred under N_{2} at RT for 24 h , and then it was cannula transferred into the flask containing the solution of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(0.195 \mathrm{~g}, 0.75 \mathrm{mmol})$ in $\mathrm{MeCN}:$ THF mixture (10:5 mL). Dark orange solution was stirred under N_{2} at RT for 24 h . After 24 h the reaction mixture turned black, and was gravity filtered, giving bright orange filtrate with black precipitate. After the solvent was removed in vacuo the compound was retrieved as orange solid $(0.12 \mathrm{~g}, 96 \%$ yield, crude). The pure compound was isolated by preparative $\operatorname{TLC}\left(\mathrm{R}_{f}=0.18\right.$; EtOAc-hexanes, $\left.4: 1\right)$ as orange waxy solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.94-7.80(\mathrm{~m}, 4 \mathrm{H})$, 7.71-7.62 (m, 2 H), 7.61-7.46 (m, 5 $\mathrm{H}), 7.28-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=$ 20.0 Hz, J = 15.2 Hz, 1 H), 4.39-4.34 (m, 1 H), 4.14-4.12 (m, 1 H), 3.52 (d, J = 16.4 Hz , $1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=165.1,163.3,145.6,133.5,132.6,131.4,129.4,129.2$, 128.2, 126.2, 122.9, 120.5, 82.2, 69.9, 53.4, 44.8, 44.2, 29.7, 28.0, 27.0.
${ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=50.45$.

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{PPd} \cdot 1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot 1\left(\mathrm{H}_{2} \mathrm{O}\right)$: C, $47.30 ; \mathrm{H}, 4.27 ; \mathrm{N}, 4.24 \%$. Found: C, 47.60; H, 4.21; N, 4.23\%.

5.4 CATALYSIS

Allylatoin of aldehydes

Each respective aldehyde $(0.15 \mathrm{mmol})$ and $9.0 \times 10^{-3} \mathrm{M}$ THF solution of $\mathbf{4 b}(0.007 \mathrm{mmol}$; $5 \mathrm{~mol} \%$) were dissolved in 1.0 mL of THF. Allyltributyltin ($56 \mu \mathrm{~L}, 0.18 \mathrm{mmol}$) was added to the stirring solution at RT. The reaction was stirred at $60^{\circ} \mathrm{C}$ for 24 h . The solvent was removed in vacuo and the residual material was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

CHAPTER 6 - CONCLUSION AND FUTURE WORK

A modular approach towards synthesis of novel asymmetric achiral and chiral pincer ligands of NNN, NNC and NNP types was developed. Fifteen novel pincer ligands have been synthesized following the method developed; showcasing the ease and the accessibility towards the presence of different functional groups. The investigation towards the complexation of these pincer ligands was performed with Pd and Ni metal centres. However, only Pd complexes were successfully synthesized from 42-98\% yield and characterized by elemental analysis, and NMR spectroscopy. A catalytic study was performed using 9b (5 mol\%) in allylation of benzaldehyde, p-nitrobenzaldehyde, and p methoxybenzaldehyde. The preliminary results showed successful conversion of up to 99\%.

As part of the future work, both chiral and achiral pincer complexes can be screened for catalytic activity with the above described (allylation of aldehydes) and other types of reactions. Chiral derivatives of these ligands are of immense interest due to their ability to catalyze reactions with stereospecific products.

CHAPTER 7 - APPENDIX

7.1 NMR SPECTRA

Figure A1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{2}$ in CDCl_{3}
Figure A2. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{2}$ in CDCl_{3}
Figure A3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 a}$ in CDCl_{3}
Figure A4. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 a}$ in CDCl_{3}
Figure A5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 b}$ in CDCl_{3}
Figure A6. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 b}$ in CDCl_{3}
Figure A7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 c}$ in CDCl_{3}
Figure A8. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{3 c}$ in CDCl_{3}
Figure A9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $3 \mathbf{d}$ in CDCl_{3}
Figure A10. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of 3 d in CDCl_{3}
Figure A11. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 e}$ in CDCl_{3}
Figure A12. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of 3 e in CDCl_{3}
Figure A13. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{3 f}$ in CDCl_{3}
Figure A14. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{3 f}$ in CDCl_{3}
Figure A15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 g}$ in CDCl_{3}
Figure A16. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{3 g}$ in CDCl_{3}
Figure A17. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 h}$ in CDCl_{3}
Figure A18. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{3 h}$ in CDCl_{3}
Figure A19. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 i}$ in CDCl_{3}
Figure A20. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 i}$ in CDCl_{3}
Figure A21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 j}$ in CDCl_{3}

Figure A22. ${ }^{13} \mathrm{C}$-NMR Spectrum of 3 j in CDCl_{3}
Figure A23. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 k}$ in CDCl_{3}
Figure A24. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 k}$ in CDCl_{3}
Figure A25. ${ }^{1} \mathrm{H}$-NMR Spectrum of 31 in CDCl_{3}
Figure A26. ${ }^{13} \mathrm{C}$-NMR Spectrum of 31 in CDCl_{3}
Figure A27. ${ }^{1} \mathrm{H}$-NMR Spectrum of $3 \mathrm{~m} \bullet$ oxide in CDCl_{3}
Figure A28. ${ }^{13} \mathrm{C}$-NMR Spectrum of $3 \mathrm{~m} \cdot \boldsymbol{0}$ xide in CDCl_{3}
Figure A29. ${ }^{31} \mathrm{P}$-NMR Spectrum of $3 \mathrm{~m} \bullet$ oxide in CDCl_{3}
Figure A30. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 n}$ in CDCl_{3}
Figure A31. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 n}$ in CDCl_{3}
Figure A32. ${ }^{1} \mathrm{H}$-NMR Spectrum of 4 in CDCl_{3}
Figure A33. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{4}$ in CDCl_{3}
Figure A34. ${ }^{1} \mathrm{H}$-NMR Spectrum of 6 in CDCl_{3}
Figure A35. ${ }^{13}$ C-NMR Spectrum of 6 in CDCl_{3}
Figure A36. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{7}$ in CDCl_{3}
Figure A37. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 9 a in CDCl_{3}
Figure A38. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{9 a}$ in CDCl_{3}
Figure A39. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{9 b}$ in CDCl_{3}
Figure A40. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{9 b}$ in CDCl_{3}
Figure A41. ${ }^{1} \mathrm{H}$-NMR Spectrum of 9 c in CDCl_{3}
Figure A42. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{9 c}$ in CDCl_{3}
Figure A43. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 9 d in CDCl_{3}
Figure A44. ${ }^{13} \mathrm{C}$-NMR Spectrum of 9 d in CDCl_{3}

Figure $\mathrm{A} 45 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 9 e in CDCl_{3}
Figure A46. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of 9 e in CDCl_{3}
Figure A47. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{9 g}$ in CDCl_{3}
Figure A48. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{9 g}$ in CDCl_{3}
Figure A49. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{9 h}$ in CDCl_{3}
Figure A50. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{9 h}$ in CDCl_{3}
Figure A51. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{9 i}$ in CDCl_{3}
Figure A52. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $9 \mathbf{i}$ in CDCl_{3}
Figure A53. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 9 j in CDCl_{3}
Figure A54. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of 9 j in CDCl_{3}
Figure A55. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{9 k}$ in CDCl_{3}
Figure A56. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{9 k}$ in CDCl_{3}
Figure A57. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 91 in CDCl_{3}
Figure A58. ${ }^{13} \mathrm{C}$-NMR Spectrum of 91 in CDCl_{3}
Figure A59. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 9 m in CDCl_{3}
Figure A60. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of 9 m in CDCl_{3}
Figure A61. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ Spectrum of 9 m in CDCl_{3}
Figure A62. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectra of the 11a-c conversion after 24 h in CDCl_{3}
Figure A1．${ }^{1} \mathrm{H}$－NMR Spectrum of $\mathbf{2}$ in CDCl_{3}
SOEL－

レー゙レー \qquad

S9．8Z－
$0 L^{\circ} \varepsilon \triangleright-$
レで89—
01：8L－
9ガャレ」
L6．6レー
LZ・とてレ
01•6てレ～
St゙てEレー
SL＇6とし
Figure A2．${ }^{13} \mathrm{C}$－NMR Spectrum of $\mathbf{2}$ in CDCl_{3}

Figure A3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 a}$ in CDCl_{3}

Figure A4. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{3 a}$ in CDCl_{3}

Figure A5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 b}$ in CDCl_{3}

Figure A6. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{3 b}$ in CDCl_{3}

Figure A7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 c}$ in CDCl_{3}
(
(
Figure A9．${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 d}$ in CDCl_{3}

ャでてしー
$\left.\begin{array}{l}90^{\circ} \angle \\ 90^{\circ} \angle \\ 90^{\circ} \angle\end{array}\right]$

Figure A10. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 d}$ in CDCl_{3}
(10)
Figure A11. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{3 e}$ in CDCl_{3}

Figure $\mathrm{A} 12 .{ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 e}$ in CDCl_{3}
(10)
Figure A13. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{3 f}$ in CDCl_{3}
(
Figure $\mathrm{A} 14 .{ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 f}$ in CDCl_{3}

[^0]
Figure A16．${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{3 g}$ in CDCl_{3}
Figure A17. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 h}$ in CDCl_{3}
(
Figure A18. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 h}$ in CDCl_{3}
(
Figure A19. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{3 i}$ in CDCl_{3}
(

Figure A20. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 i}$ in CDCl_{3}

Figure A22. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $3 \mathrm{Bin}^{\text {in }} \mathrm{CDCl}_{3}$
Figure A23．${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{3 k}$ in CDCl_{3}

てでてレー

 99＇Z＞
 L9＇て

\section*{| $80^{\circ} \angle$ |
| :---: |
| 90° |
 $50^{\circ} \mathrm{L}$

$20^{\circ} \mathrm{L}$
 20

 $\left.\begin{array}{l}67^{\circ} \angle \\ 6 L^{\circ} \angle \\ 08^{\circ} L\end{array}\right]$
 $18.2-1$
 Z8．
 $6 L^{\circ} 8$
18.8}

Figure A24. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{3 k}$ in CDCl_{3}

Figure A25. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{3 1}$ in CDCl_{3}

Figure $\mathrm{A} 26 .{ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{3 1}$ in CDCl_{3}

Figure A27. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{3 m} \cdot$ oxide in CDCl_{3}
(
Figure A28. ${ }^{13} \mathrm{C}$-NMR Spectrum of $3 \mathrm{~m} \cdot$ oxide in CDCl_{3}

Figure A29. ${ }^{31} \mathrm{P}$-NMR Spectrum of $3 \mathrm{~m} \cdot$ oxide in CDCl_{3}

Figure A30. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{3 n}$ in CDCl_{3}

9でャレー | $8 L^{\prime} z Z^{\prime}$ |
| :--- |
| $6 \varepsilon^{\prime} G Z$ |

09＇8Z
89．82

20 $\angle \varepsilon$
LS＇ZS－
ャ8．99～
2． $89 \sim$
L6：LL
19：08－
Figure $\mathrm{A} 31 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{3 n}$ in CDCl_{3}
（
Figure A32. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{4}$ in CDCl_{3}

\square
\square

Figure A33. ${ }^{13} \mathrm{C}$-NMR Spectrum of 4 in CDCl_{3}
Figure A34. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{6}$ in CDCl_{3}

6L＇6を－ 89＇ 8 b－
$7 G^{\circ} 92$ —
0ヵでて8—
Figure $\mathrm{A} 35 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{6}$ in CDCl_{3}

Figure A36. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 7 in CDCl_{3}

Figure $\mathrm{A} 37 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{9 a}$ in CDCl_{3}
(1)
$06 \angle Z-$
カレ＇ZG—
$99^{\circ} 02$
でレレ
$6 カ$ • 18
くガ9ルー
か6・レてレ～
0ヵ・とてレ
SL＇6Zし
91・をとレ～
Figure $\mathrm{A} 38 .{ }^{13} \mathrm{C}$－NMR Spectrum of $\mathbf{9 a}$ in CDCl_{3}
SL゙カーレー
6s＇z91－
عo＇s 1 －

Figure A39. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{9 b}$ in CDCl_{3}

St゙てレー
L8：$\angle Z-$
$\mathrm{cs}^{\circ} \mathrm{ga}$ 」
$69^{\circ} \mathrm{E} 9-$
29．04
s＇18－
カカ・9ルー
19・してし
Gでとてよ

06 てとに
Figure A40．${ }^{13} \mathrm{C}$－NMR Spectrum of $\mathbf{9 b}$ in CDCl_{3}
（10）
Figure A41. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{9 c}$ in CDCl_{3}

Figure A42. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of 9C in CDCl_{3}
Figure A43．${ }^{1} \mathrm{H}$－NMR Spectrum of $\mathbf{9 d}$ in CDCl_{3}

\＆て＇て」
S8＇Z—
Z8．ε
$98^{\circ} \varepsilon$
$68^{\circ} \varepsilon$
$\varepsilon 6^{\circ} \varepsilon$

Figure A45. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{9 e}$ in CDCl_{3}

Figure A46. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{9 e}$ in CDCl_{3}
(

Figure A47. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{9 g}$ in CDCl_{3}

Figure A48. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{9} \mathbf{g}$ in CDCl_{3}
(
Figure A49. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{9 h}$ in CDCl_{3}

$08^{\circ} \angle Z$
$60^{\circ} 8 Z^{\prime}$
6209-

8902
69.18-

Figure A50. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{9 h}$ in CDCl_{3}
(10)
Figure A51. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{9 i}$ in CDCl_{3}

89Gㄴ LがOZ $0 L \angle Z]$ $06 \cdot \angle Z-$
$19^{\circ} \angle t^{\top}$ St＇\＆s－ $8 t^{\circ} 69$
て
＇ 29
$\varepsilon G^{\circ} 02-$
Z9．18－
6ガ9レー
69ㄴてレ～
ても「とてレ
6ど6てレ～
06．てとし～
Figure A52．${ }^{13} \mathrm{C}$－NMR Spectrum of 9 in in CDCl_{3}

Figure A53. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{9 j}$ in CDCl_{3}

Figure A54. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{9 j}$ in CDCl_{3}

8L.9くし-

Figure A55. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{9 k}$ in CDCl_{3}
(
$\left.\begin{array}{l}79^{\circ} \angle Z \\ 88^{\circ} \angle 乙\end{array}\right\rangle$

$97 \cdot 18-$
レーツはー
96・レてレ～
99＊6てし
L0＇Eとレ～
Figure A56．${ }^{13} \mathrm{C}$－NMR Spectrum of $\mathbf{9 k}$ in CDCl_{3}
（10）
Figure A57. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of 91 in CDCl_{3}
(
6ドカレン

$90^{\circ} \mathrm{LZ}$
LG＇8Z
696ㄱ
L8．ε－
8t＇LG—
6と＇09－
عO은
98．18－
Figure A58．${ }^{13} \mathrm{C}$－NMR Spectrum of 91 in CDCl_{3}

Figure A59．${ }^{1} \mathrm{H}$－NMR Spectrum of $\mathbf{9 m}$ in CDCl_{3}

宁地安宁宁

${ }_{4} \quad{ }_{4}$

0.0
$\square \quad 1$
99° に

Figure A60. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectrum of $\mathbf{9 m}$ in CDCl_{3}
(
Figure A61. ${ }^{31} \mathrm{P}$-NMR Spectrum of $\mathbf{9 m}$ in CDCl_{3}

Figure A62. ${ }^{1} \mathrm{H}$ NMR Spectra of the 11a-c conversion after 24 hours in CDCl_{3} [*starting material (aldehyde)]

7.2 X-RAY CRYSTALLOGRAPHY DATA

Table A1. Crystal data and structure refinement for 2.
Table A2. Bond lengths $[\AA \AA]$ and angles $\left[{ }^{\circ}\right]$ for 2.
Table A3. Torsion angles [${ }^{\circ}$] for 2
Table A4. Hydrogen bonds for 2 [\AA and ${ }^{\circ}$].
Table A5. Bond lengths $[\AA \AA]$ for 3m•oxide
Table A6. Angles [${ }^{\circ}$] for $3 m \bullet$ oxide
Table A7. Torsion angles [${ }^{\circ}$] for $3 \mathrm{~m} \bullet$ • oxide
Table A8. Bond lengths $[\AA \AA]$ for 6
Table A9. Angles [${ }^{\circ}$] for 6
Table A10. Torsion angles [${ }^{\circ}$] for 6
Table A11. Bond lengths $[\AA \AA$] for 9 a
Table A12. Angles [] for 9a
Table A13. Torsion angles [${ }^{\circ}$] for 9 a

Crystallographic data for 9 h is pending.

Table A1. Crystal data and structure refinement for 2.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.24^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2$ sigma(I]
R indices (all data)
Largest diff. peak and hole

C13 H15 CI N2 O2
266.72

150(1) K
0.71073 Å

Triclinic
P-1
$a=8.3982(12) \AA \quad a=80.500(3)^{\circ}$.
$b=8.9541(12) \AA \quad b=72.754(3)^{\circ}$.
$c=9.4632(13) \AA \quad g=71.727(3)^{\circ}$.
643.31(15) \AA^{3}

2
$1.377 \mathrm{Mg} / \mathrm{m}^{3}$
$0.293 \mathrm{~mm}^{-1}$
280
$0.28 \times 0.21 \times 0.15 \mathrm{~mm}^{3}$
2.26 to 26.03°.
$-10<=h<=10,-11<=k<=10,-11<=\mid<=5$
4099
$2464[R($ int $)=0.0190]$
97.6 \%

Semi-empirical from equivalents
0.9574 and 0.9226

Full-matrix least-squares on F^{2}
2464 / 0 / 169
1.035
$R 1=0.0368, w R 2=0.0895$
$R 1=0.0456, w R 2=0.0955$
0.261 and -0.288 e. \AA^{-3}

Table A2. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 2.

$\mathrm{Cl}(1)-\mathrm{C}(13)$	$1.7828(17)$
$\mathrm{O}(1)-\mathrm{C}(7)$	$1.3667(19)$
$\mathrm{O}(1)-\mathrm{C}(8)$	$1.4539(19)$
$\mathrm{O}(2)-\mathrm{C}(12)$	$1.218(2)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.357(2)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.407(2)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	$0.853(19)$
$\mathrm{N}(2)-\mathrm{C}(7)$	$1.268(2)$
$\mathrm{N}(2)-\mathrm{C}(9)$	$1.489(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.397(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.415(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.385(3)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.383(3)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.380(2)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.393(2)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.472(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.541(2)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9900
$\mathrm{C}(9)-\mathrm{C}(11)$	0.9900
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.516(3)$
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	$1.518(3)$
$\mathrm{C}(10)-\mathrm{H}(10 B)$	0.9800
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9800
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9800
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9800
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9800
$\mathrm{C}(12)-\mathrm{C}(13)$	C
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$

$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(8)$	$104.67(12)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(1)$	$127.77(14)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	$116.4(13)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N})$	$115.7(13)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)$	$107.79(13)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$122.62(15)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$118.52(16)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$118.86(14)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$120.66(16)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.7
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.7
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.81(16)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.6
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$119.30(17)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.4
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.4
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.21(16)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.4
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.4
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$119.49(15)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$118.88(14)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$121.55(15)$
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{O}(1)$	$117.67(14)$
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$126.94(14)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$115.31(14)$
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$104.49(13)$
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	110.9
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	110.9
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	110.9
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	110.9
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	108.9
$\mathrm{~N}(2)-\mathrm{C}(9)-\mathrm{C}(11)$	$111.07(14)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$108.01(14)$
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(10)$	$111.29(16)$
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	$101.67(13)$

$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(8)$	$112.84(16)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	$111.49(15)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{N}(1)$	$125.94(17)$
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)$	$116.52(15)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$117.54(14)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{Cl}(1)$	$117.10(12)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	108.0
$\mathrm{Cl}(1)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	108.0
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	108.0
$\mathrm{Cl}(1)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	108.0
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	107.3

Table A3. Torsion angles [${ }^{\circ}$] for 2

$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$-3.5(3)$
$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$176.50(16)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$179.30(17)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-0.7(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-0.6(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$0.9(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$0.0(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$-1.3(2)$

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$175.61(15)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$1.6(2)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-178.42(15)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$-175.18(15)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$4.8(2)$
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{O}(1)$	$-3.8(2)$
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	$172.90(15)$
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{N}(2)$	$-9.1(2)$
$\mathrm{C}(8)-\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$173.84(14)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)$	$-161.25(17)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)$	$15.6(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$	$15.5(2)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(1)$	$-167.67(15)$
$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$17.04(17)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(11)$	$134.32(17)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$-103.38(17)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	$14.04(18)$
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(2)$	$-18.69(17)$
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	$-137.72(15)$
$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$96.18(16)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{O}(2)$	$-2.8(3)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$177.11(15)$
$\mathrm{O}(2)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{Cl}(1)$	$-178.63(13)$
$\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{Cl}(1)$	$1.5(2)$

Table A4. Hydrogen bonds for $2\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \ldots \mathrm{N}(2)$	$0.853(19)$	$2.03(2)$	$2.732(2)$	$138.9(17)$
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~N}) \ldots \mathrm{Cl}(1)$	$0.853(19)$	$2.468(19)$	$2.9746(15)$	$118.9(16)$

Table A5. Bond lengths $[\AA]$ for $3 m \cdot$ oxide

C1	H1A	0.970(2)
C1	H1B	0.971(1)
C1	C2	1.517(2)
C1	P1	1.816(2)
C2	N1	1.351(2)
C2	O 2	1.227(2)
C3	C4	1.398(3)
C3	C8	1.409(2)
C3	N1	1.405(2)
C4	H4	0.930(2)
C4	C5	1.384(3)
C5	H5	0.930(2)
C5	C6	1.384(3)
C6	H6	0.930(2)
C6	C7	1.382(3)
C7	H7	0.931(2)
C7	C8	1.393(3)
C8	C9	1.472(3)
C9	N2	1.256(3)
C9	O3	1.324(4)
C10	H10A	0.970(3)
C10	H10B	0.970(4)
C10	C11	1.532(5)
C10	O3	1.450(5)
C11	C12	1.498(4)
C11	C13	1.504(3)
C11	N2	1.471(3)
C12	H12A	0.959(3)
C12	H12B	0.960(4)
C12	H12C	0.960(3)
C13	H13A	0.960(3)
C13	H13B	0.960(3)
C13	H13C	0.961(3)
C20	C21	1.396(2)
C20	C25	1.397(2)
C20	P1	1.804(2)
C21	H21	0.930(1)
C21	C22	1.387(3)
C22	H22	0.930(2)
C22	C23	1.384(2)
C23	H23	0.930(2)

C23	C24	1.386(3)
C24	H24	0.930(1)
C24	C25	1.387(3)
C25	H25	0.930(2)
C30	C31	1.393(2)
C30	C35	1.396(2)
C30	P1	1.803(2)
C31	H31	0.930(2)
C31	C32	1.387(3)
C32	H32	0.930(2)
C32	C33	1.383(2)
C33	H33	0.930(2)
C33	C34	1.388(2)
C34	H34	0.930(2)
C34	C35	1.383(3)
C35	H35	0.930(2)
N1	H1	0.87(2)
O1	P1	1.489(1)
O40	H40A	0.91(2)
O40	H40B	0.92(2)

Table A6. Angles [${ }^{\circ}$] for $3 \mathrm{~m} \cdot$ oxide

H1A	C1	H1B	$107.9(2)$
H1A	C1	C2	$109.1(1)$
H1A	C1	P1	$109.1(1)$
H1B	C1	C2	$109.1(1)$
H1B	C1	P1	$109.1(1)$
C2	C1	P1	$112.5(1)$
C1	C2	N1	$113.7(1)$
C1	C2	O2	$121.2(1)$
N1	C2	O2	$125.1(1)$
C4	C3	C8	$119.2(1)$
C4	C3	N1	$123.5(1)$
C8	C3	N1	$117.3(1)$
C3	C4	H4	$119.9(2)$
C3	C4	C5	$120.3(2)$
H4	C4	C5	$119.8(2)$
C4	C5	H5	$119.7(2)$
C4	C5	C6	$120.5(2)$
H5	C5	C6	$119.8(2)$
C5	C6	H6	$120.1(2)$

C5	C6	C7	119.8(2)
H6	C6	C7	120.1(2)
C6	C7	H7	119.5(2)
C6	C7	C8	120.9(2)
H7	C7	C8	119.6(2)
C3	C8	C7	119.3(2)
C3	C8	C9	121.9(2)
C7	C8	C9	118.7(2)
C8	C9	N2	127.8(2)
C8	C9	O3	115.3(2)
N2	C9	O3	116.9(2)
H10A	C10	H10B	108.9(4)
H10A	C10	C11	110.9(3)
H10A	C10	O3	110.9(3)
H10B	C10	C11	110.9(3)
H10B	C10	O3	110.9(3)
C11	C10	O3	104.2(3)
C10	C11	C12	113.4(2)
C10	C11	C13	111.6(2)
C10	C11	N2	102.2(2)
C12	C11	C13	110.2(2)
C12	C11	N2	109.9(2)
C13	C11	N2	109.2(2)
C11	C12	H12A	109.5(3)
C11	C12	H12B	109.4(3)
C11	C12	H12C	109.5(3)
H12A	C12	H12B	109.5(3)
H12A	C12	H12C	109.5(3)
H12B	C12	H12C	109.5(3)
C11	C13	H13A	109.5(2)
C11	C13	H13B	109.5(2)
C11	C13	H13C	109.4(2)
H13A	C13	H13B	109.5(3)
H13A	C13	H13C	109.5(3)
H13B	C13	H13C	109.4(3)
C21	C20	C25	119.3(1)
C21	C20	P1	117.7(1)
C25	C20	P1	122.9(1)
C20	C21	H21	119.9(2)
C20	C21	C22	120.1(2)
H21	C21	C22	120.0(2)
C21	C22	H22	119.9(2)
C21	C22	C23	120.2(2)

H22	C22	C23	119.9(2)
C22	C23	H23	120.0(2)
C22	C23	C24	120.1(2)
H23	C23	C24	119.9(2)
C23	C24	H24	120.0(2)
C23	C24	C25	120.2(2)
H24	C24	C25	119.9(2)
C20	C25	C24	120.1(2)
C20	C25	H25	119.9(2)
C24	C25	H25	120.0(2)
C31	C30	C35	119.4(2)
C31	C30	P1	118.4(1)
C35	C30	P1	122.2(1)
C30	C31	H31	120.0(2)
C30	C31	C32	120.0(2)
H31	C31	C32	120.0(2)
C31	C32	H32	119.8(2)
C31	C32	C33	120.3(2)
H32	C32	C33	119.9(2)
C32	C33	H33	120.0(2)
C32	C33	C34	120.0(2)
H33	C33	C34	120.0(2)
C33	C34	H34	120.0(2)
C33	C34	C35	120.0(2)
H34	C34	C35	120.0(2)
C30	C35	C34	120.3(2)
C30	C35	H35	119.8(2)
C34	C35	H35	119.9(2)
C2	N1	C3	129.2(1)
C2	N1	H1	118(1)
C3	N1	H1	112(1)
C9	N2	C11	109.5(2)
C9	O3	C10	107.2(3)
C1	P1	C20	104.28(7)
C1	P1	C30	108.06(8)
C1	P1	O1	112.64(7)
C20	P1	C30	106.33(7)
C20	P1	01	113.09(7)
C30	P1	O1	111.92(7)
H40A	O40	H40B	103(2)

Table A7. Torsion angles [${ }^{\circ}$] for $3 m \bullet$ oxide

H1A	C1	C2	N1	-15.8(2)
H1A	C1	C2	O 2	163.0(1)
H1B	C1	C2	N1	-133.4(2)
H1B	C1	C2	O 2	45.4(2)
P1	C1	C2	N1	105.4(1)
P1	C1	C2	O 2	-75.8(2)
H1A	C1	P1	C20	-57.7(1)
H1A	C1	P1	C30	-170.5(1)
H1A	C1	P1	O1	65.3(1)
H1B	C1	P1	C20	59.9(1)
H1B	C1	P1	C30	-52.9(1)
H1B	C1	P1	O1	-177.1(1)
C2	C1	P1	C20	-178.9(1)
C2	C1	P1	C30	68.3(1)
C2	C1	P1	O1	-55.9(1)
C1	C2	N1	C3	174.1(2)
C1	C2	N1	H1	-3(1)
O2	C2	N1	C3	-4.6(3)
O2	C2	N1	H1	179(1)
C8	C3	C4	H4	178.8(2)
C8	C3	C4	C5	-1.2(2)
N1	C3	C4	H4	-1.6(3)
N1	C3	C4	C5	178.4(2)
C4	C3	C8	C7	1.2(2)
C4	C3	C8	C9	179.4(2)
N1	C3	C8	C7	-178.5(2)
N1	C3	C8	C9	-0.3(2)
C4	C3	N1	C2	9.8(3)
C4	C3	N1	H1	-173(1)
C8	C3	N1	C2	-170.5(2)
C8	C3	N1	H1	6(1)
C3	C4	C5	H5	-179.6(2)
C3	C4	C5	C6	0.3(3)
H4	C4	C5	H5	0.4(3)
H4	C4	C5	C6	-179.7(2)
C4	C5	C6	H6	-179.5(2)
C4	C5	C6	C7	0.6(3)
H5	C5	C6	H6	0.5(3)
H5	C5	C6	C7	-179.4(2)
C5	C6	C7	H7	179.3(2)
C5	C6	C7	C8	-0.7(3)

H6	C6	C7	H7	-0.6(3)
H6	C6	C7	C8	179.4(2)
C6	C7	C8	C3	-0.2(3)
C6	C7	C8	C9	-178.5(2)
H7	C7	C8	C3	179.8(2)
H7	C7	C8	C9	1.4(3)
C3	C8	C9	N2	-6.3(3)
C3	C8	C9	O3	175.7(2)
C7	C8	C9	N2	171.9(2)
C7	C8	C9	O3	-6.0(3)
C8	C9	N2	C11	-178.6(2)
O3	C9	N2	C11	-0.7(3)
C8	C9	O3	C10	178.8(2)
N2	C9	O3	C10	0.6(3)
H10A	C10	C11	C12	1.1(4)
H10A	C10	C11	C13	-124.1(3)
H10A	C10	C11	N2	119.3(3)
H10B	C10	C11	C12	122.3(3)
H10B	C10	C11	C13	-2.9(4)
H10B	C10	C11	N2	-119.5(3)
O3	C10	C11	C12	-118.3(3)
O3	C10	C11	C13	116.5(3)
O3	C10	C11	N2	-0.1(3)
H10A	C10	O3	C9	-119.7(3)
H10B	C10	O3	C9	119.1(3)
C11	C10	O3	C9	-0.3(3)
C10	C11	C12	H12A	-68.7(4)
C10	C11	C12	H12B	171.3(3)
C10	C11	C12	H12C	51.4(4)
C13	C11	C12	H12A	57.3(3)
C13	C11	C12	H12B	-62.7(3)
C13	C11	C12	H12C	177.4(3)
N2	C11	C12	H12A	177.7(2)
N2	C11	C12	H12B	57.7(3)
N2	C11	C12	H12C	-62.3(3)
C10	C11	C13	H13A	66.8(3)
C10	C11	C13	H13B	-53.2(3)
C10	C11	C13	H13C	-173.2(2)
C12	C11	C13	H13A	-60.2(3)
C12	C11	C13	H13B	179.8(2)
C12	C11	C13	H13C	59.9(3)
N2	C11	C13	H13A	179.0(2)
N2	C11	C13	H13B	59.0(3)

N2	C11	C13	H13C	-60.9(3)
C10	C11	N2	C9	0.4(2)
C12	C11	N2	C9	121.1(2)
C13	C11	N2	C9	-117.9(2)
C25	C20	C21	H21	-179.7(2)
C25	C20	C21	C22	0.4(2)
P1	C20	C21	H21	-2.0(2)
P1	C20	C21	C22	178.0(1)
C21	C20	C25	C24	-0.1(2)
C21	C20	C25	H25	179.9(2)
P1	C20	C25	C24	-177.5(1)
P1	C20	C25	H25	2.5(3)
C21	C20	P1	C1	144.4(1)
C21	C20	P1	C30	-101.5(1)
C21	C20	P1	O1	21.7(2)
C25	C20	P1	C1	-38.1(2)
C25	C20	P1	C30	76.0(2)
C25	C20	P1	O1	-160.8(1)
C20	C21	C22	H22	179.7(2)
C20	C21	C22	C23	-0.3(3)
H21	C21	C22	H22	-0.3(3)
H21	C21	C22	C23	179.7(2)
C21	C22	C23	H23	180.0(2)
C21	C22	C23	C24	-0.0(3)
H22	C22	C23	H23	-0.0(3)
H22	C22	C23	C24	180.0(2)
C22	C23	C24	H24	-179.6(2)
C22	C23	C24	C25	0.3(3)
H23	C23	C24	H24	0.4(3)
H23	C23	C24	C25	-179.7(2)
C23	C24	C25	C20	-0.3(3)
C23	C24	C25	H25	179.7(2)
H24	C24	C25	C20	179.7(2)
H24	C24	C25	H25	-0.3(3)
C35	C30	C31	H31	179.8(2)
C35	C30	C31	C32	-0.2(3)
P1	C30	C31	H31	3.3(3)
P1	C30	C31	C32	-176.6(1)
C31	C30	C35	C34	0.3(3)
C31	C30	C35	H35	-179.7(2)
P1	C30	C35	C34	176.7(1)
P1	C30	C35	H35	-3.3(2)
C31	C30	P1	C1	-132.0(1)

C31	C30	P1	C20	$116.5(1)$
C31	C30	P1	O1	$-7.4(2)$
C35	C30	P1	C1	$51.6(2)$
C35	C30	P1	C20	$-59.8(2)$
C35	C30	P1	O1	$176.2(1)$
C30	C31	C32	H32	$-180.0(2)$
C30	C31	C32	C33	$0.0(3)$
H31	C31	C32	H32	$0.1(3)$
H31	C31	C32	C33	$-180.0(2)$
C31	C32	C33	H33	$180.0(2)$
C31	C32	C33	C34	$-0.0(3)$
H32	C32	C33	H33	$-0.0(3)$
H32	C32	C33	C34	$180.0(2)$
C32	C33	C34	H34	$-179.7(2)$
C32	C33	C34	C35	$0.2(3)$
H33	C33	C34	H34	$0.3(3)$
H33	C33	C34	C35	$-179.8(2)$
C33	C34	C35	C30	$-0.4(3)$
C33	C34	C35	H35	$179.6(2)$
H34	C34	C35	C30	$179.5(2)$
H34	C34	C35	H35	$-0.5(3)$

Table A8. Bond lengths [\AA] for 6

$\mathrm{Cl1}$	C 17	$1.782(3)$
N 1	HN 1	$0.879(2)$
N 1	C 11	$1.408(3)$
N 1	C 16	$1.354(3)$
C 10	C 18	$1.470(3)$
C 10	C 11	$1.415(3)$
C 10	C 15	$1.397(3)$
O 1	C 16	$1.218(3)$
O 2	C 18	$1.360(3)$
O 2	C 8	$1.456(3)$
C 18	N 2	$1.279(3)$
C 11	C 12	$1.398(3)$
C 16	C 17	$1.518(3)$
C 15	H 15	$0.950(3)$
C 15	C 14	$1.379(4)$
N 2	C 9	$1.477(3)$

C5	C9	$1.493(3)$
C5	C6	$1.387(3)$
C5	C4	$1.387(4)$
C9	H9	$1.000(3)$
C9	C8	$1.548(4)$
C6	C1	$1.386(4)$
C6	C7	$1.510(4)$
C13	H13	$0.949(3)$
C13	C12	$1.386(3)$
C13	C14	$1.378(4)$
C12	H12	$0.950(2)$
C1	H1	$0.950(3)$
C1	C2	$1.385(4)$
C3	H3	$0.950(3)$
C3	C2	$1.388(4)$
C3	C4	$1.391(4)$
C14	H14	$0.950(3)$
C17	H17A	$0.990(2)$
C17	H17B	$0.990(3)$
C8	H8	$1.000(2)$
C8	C7	$1.537(4)$
C7	H7A	$0.990(3)$
C7	H7B	$0.990(3)$
C2	H2	$0.949(3)$
C4	H4	$0.950(3)$

Table A9. Select angles [${ }^{\circ}$] for 6

HN1	N1	C11	$116.6(2)$
HN1	N1	C16	$116.7(2)$
C11	N1	C16	$126.7(2)$
C18	C10	C11	$122.4(2)$
C18	C10	C15	$118.2(2)$
C11	C10	C15	$119.4(2)$
C18	O2	C8	$106.5(2)$
C10	C18	O2	$115.4(2)$
C10	C18	N2	$126.7(2)$
O2	C18	N2	$117.9(2)$
N1	C11	C10	$118.8(2)$
N1	C11	C12	$122.6(2)$

C10	C11	C12	118.6(2)
N1	C16	O1	125.8(2)
N1	C16	C17	118.1(2)
O1	C16	C17	116.1(2)
C10	C15	H15	119.4(2)
C10	C15	C14	121.0(2)
H15	C15	C14	119.6(2)
C18	N2	C9	107.4(2)
C9	C5	C6	111.5(2)
C9	C5	C4	128.3(2)
C6	C5	C4	120.2(2)
N2	C9	C5	113.0(2)
N2	C9	H9	111.5(2)
N2	C9	C8	104.2(2)
C5	C9	H9	111.4(2)
C5	C9	C8	104.8(2)
H9	C9	C8	111.4(2)
C5	C6	C1	120.4(2)
C5	C6	C7	111.6(2)
C1	C6	C7	128.0(2)
H13	C13	C12	119.5(2)
H13	C13	C14	119.5(3)
C12	C13	C14	121.0(2)
C11	C12	C13	120.4(2)
C11	C12	H12	119.8(2)
C13	C12	H12	119.8(2)
C6	C1	H1	120.6(3)
C6	C1	C2	118.9(2)
H1	C1	C2	120.5(3)
H3	C3	C2	120.5(3)
H3	C3	C4	120.5(3)
C2	C3	C4	119.0(3)
C15	C14	C13	119.5(2)
C15	C14	H14	120.2(3)
C13	C14	H14	120.3(3)
Cl1	C17	C16	116.5(2)
CI1	C17	H17A	108.2(2)
Cl1	C17	H17B	108.2(2)
C16	C17	H17A	108.2(2)
C16	C17	H17B	108.1(2)
H17A	C17	H17B	107.3(2)
O 2	C8	C9	103.9(2)
O2	C8	H8	111.2(2)

O2	C8	C7	$111.5(2)$
C9	C8	H8	$111.2(2)$
C9	C8	C7	$107.6(2)$
H8	C8	C7	$111.2(2)$
C6	C7	C8	$104.4(2)$
C6	C7	H7A	$110.9(2)$
C6	C7	H7B	$110.9(2)$
C8	C7	H7A	$110.9(2)$
C8	C7	H7B	$110.9(2)$
H7A	C7	H7B	$108.9(2)$
C1	C2	C3	$121.5(3)$
C1	C2	H2	$119.3(3)$
C3	C2	H2	$119.2(3)$
C5	C4	C3	$120.0(2)$
C5	C4	H4	$120.0(3)$
C3	C4	H4	$120.0(3)$

Table A10. Select torsion angles [${ }^{\circ}$] for 6

HN1	N1	C11	C10	$-7.3(3)$
HN1	N1	C11	C12	$172.0(2)$
C16	N1	C11	C10	$172.7(2)$
C16	N1	C11	C12	$-7.9(4)$
HN1	N1	C16	O1	$-179.0(2)$
HN1	N1	C16	C17	$2.1(3)$
C11	N1	C16	O1	$1.0(4)$
C11	N1	C16	C17	$-177.9(2)$
C11	C10	C18	O2	$-169.4(2)$
C11	C10	C18	N2	$11.8(4)$
C15	C10	C18	O2	$12.0(3)$
C15	C10	C18	N2	$-166.8(2)$
C18	C10	C11	N1	$1.0(3)$
C18	C10	C11	C12	$-178.4(2)$
C15	C10	C11	N1	$179.6(2)$
C15	C10	C11	C12	$0.2(3)$
C18	C10	C15	H15	$-1.6(4)$
C18	C10	C15	C14	$178.5(2)$
C11	C10	C15	H15	$179.8(2)$
C11	C10	C15	C14	$-0.1(4)$
C8	O2	C18	C10	$179.1(2)$

C8	O2	C18	N2	$-2.0(3)$
C18	O2	C8	C9	$3.4(2)$
C18	O2	C8	H8	$123.1(2)$
C18	O2	C8	C7	$-112.2(2)$
C10	C18	N2	C9	$178.3(2)$
O2	C18	N2	C9	$-0.6(3)$
N1	C11	C12	C13	$-179.6(2)$
N1	C11	C12	H12	$0.4(4)$
C10	C11	C12	C13	$-0.3(3)$
C10	C11	C12	H12	$179.7(2)$
N1	C16	C17	C11	$-5.1(3)$
N1	C16	C17	H17A	$-127.1(2)$
N1	C16	C17	H17B	$116.9(2)$
O1	C16	C17	Cl1	$175.9(2)$
O1	C16	C17	H17A	$53.9(3)$
O1	C16	C17	H17B	$-62.1(3)$
C10	C15	C14	C13	$0.1(4)$
C10	C15	C14	H14	$-179.9(2)$
H15	C15	C14	C13	$-179.8(2)$
H15	C15	C14	H14	$0.1(4)$
C18	N2	C9	C5	$115.9(2)$
C18	N2	C9	H9	$-117.6(2)$
C18	N2	C9	C8	$2.7(2)$
C6	C5	C9	N2	$-109.4(2)$
C6	C5	C9	H9	$124.1(2)$
C6	C5	C9	C8	$3.5(3)$
C4	C5	C9	C9	C5

H9	C9	C8	O 2	116.7(2)
H9	C9	C8	H8	-3.0(3)
H9	C9	C8	C7	-125.0(2)
C5	C6	C1	H1	180.0(2)
C5	C6	C1	C2	-0.0(4)
C7	C6	C1	H1	0.4(4)
C7	C6	C1	C2	-179.6(2)
C5	C6	C7	C8	-1.6(3)
C5	C6	C7	H7A	-121.1(2)
C5	C6	C7	H7B	117.8(2)
C1	C6	C7	C8	178.0(3)
C1	C6	C7	H7A	58.5(4)
C1	C6	C7	H7B	-62.5(4)
H13	C13	C12	C11	-179.7(2)
H13	C13	C12	H12	0.3(4)
C14	C13	C12	C11	0.3(4)
C14	C13	C12	H12	-179.7(2)
H13	C13	C14	C15	179.8(2)
H13	C13	C14	H14	-0.2(4)
C12	C13	C14	C15	-0.2(4)
C12	C13	C14	H14	179.8(2)
C6	C1	C2	C3	0.6(4)
C6	C1	C2	H2	-179.4(3)
H1	C1	C2	C3	-179.4(3)
H1	C1	C2	H2	0.7(4)
H3	C3	C2	C1	179.6(3)
H3	C3	C2	H2	-0.4(5)
C4	C3	C2	C1	-0.4(4)
C4	C3	C2	H2	179.6(3)
H3	C3	C4	C5	179.6(3)
H3	C3	C4	H4	-0.5(5)
C2	C3	C4	C5	-0.4(4)
C2	C3	C4	H4	179.6(3)
O2	C8	C7	C6	116.9(2)
O2	C8	C7	H7A	-123.6(2)
O2	C8	C7	H7B	-2.5(3)
C9	C8	C7	C6	3.7(3)
C9	C8	C7	H7A	123.2(2)
C9	C8	C7	H7B	-115.8(2)
H8	C8	C7	C6	-118.4(2)
H8	C8	C7	H7A	1.1(3)
H8	C8	C7	H7B	122.2(2)

Table A11. Bond lengths $[\AA \AA]$ for 9a

H1A	C1	H1B	109.4(7)
H1A	C1	H1C	109.6(7)
H1A	C1	N1	109.5(6)
H1B	C1	H1C	109.5(7)
H1B	C1	N1	109.4(6)
H1C	C1	N1	109.5(6)
H2A	C2	H2B	109.5(7)
H2A	C2	H2C	109.4(7)
H2A	C2	N1	109.4(7)
H2B	C2	H2C	109.5(7)
H2B	C2	N1	109.5(7)
H2C	C2	N1	109.4(7)
H3A	C3	H3B	107.8(6)
H3A	C3	C4	109.1(6)
H3A	C3	N1	109.2(6)
H3B	C3	C4	109.1(6)
H3B	C3	N1	109.1(6)
C4	C3	N1	112.3(5)
C3	C4	N2	112.7(6)
C3	C4	O1	119.5(6)
N2	C4	01	127.8(6)
C6	C5	C10	117.2(6)
C6	C5	N2	122.0(6)
C10	C5	N2	120.7(5)
C5	C6	H6	119.1(6)
C5	C6	C7	121.7(6)
H6	C6	C7	119.2(6)
C6	C7	H7	119.6(7)
C6	C7	C8	120.8(6)
H7	C7	C8	119.6(7)
C7	C8	H8	120.4(7)
C7	C8	C9	119.0(6)
H8	C8	C9	120.6(7)
C8	C9	H9	119.7(6)
C8	C9	C10	120.7(6)
H9	C9	C10	119.7(6)
C5	C10	C9	120.6(6)
C5	C10	C11	122.3(6)
C9	C10	C11	117.1(6)
C10	C11	N3	129.9(6)
C10	C11	O2	114.5(5)

N3	C11	O2	115.6(6)
H12A	C12	H12B	108.7(6)
H12A	C12	C13	110.5(6)
H12A	C12	O2	110.4(6)
H12B	C12	C13	110.5(6)
H12B	C12	O2	110.4(6)
C13	C12	O2	106.3(5)
C12	C13	C14	110.9(5)
C12	C13	C15	110.8(5)
C12	C13	N3	100.9(5)
C14	C13	C15	112.5(5)
C14	C13	N3	112.2(5)
C15	C13	N3	109.1(5)
C13	C14	H14A	109.5(6)
C13	C14	H14B	109.4(6)
C13	C14	H14C	109.5(6)
H14A	C14	H14B	109.5(6)
H14A	C14	H14C	109.5(6)
H14B	C14	H14C	109.4(6)
C13	C15	H15A	109.5(6)
C13	C15	H15B	109.5(6)
C13	C15	H15C	109.5(6)
H15A	C15	H15B	109.3(6)
H15A	C15	H15C	109.4(6)
H15B	C15	H15C	109.6(6)
C1	N1	C2	109.0(5)
C1	N1	C3	110.8(5)
C1	N1	Pd1	107.5(4)
C2	N1	C3	108.3(5)
C2	N1	Pd1	117.4(4)
C3	N1	Pd1	103.7(4)
C4	N2	C5	120.0(6)
C4	N2	Pd1	115.2(4)
C5	N2	Pd1	124.7(4)
C11	N3	C13	108.7(5)
C11	N3	Pd1	121.3(4)
C13	N3	Pd1	129.9(4)
C11	O2	C12	106.1(5)
N1	Pd1	N2	80.7(2)
N1	Pd1	N3	171.2(2)
N1	Pd1	Cl 1	92.5(1)
N2	Pd1	N3	90.7(2)
N2	Pd1	Cl 1	172.5(2)

N3	Pd1	Cl1	96.1(1)
H16A	C16	H16B	109.4(7)
H16A	C16	H16C	109.6(7)
H16A	C16	N4	109.5(6)
H16B	C16	H16C	109.4(7)
H16B	C16	N4	109.5(6)
H16C	C16	N4	109.5(6)
H17A	C17	H17B	109.4(6)
H17A	C17	H17C	109.5(6)
H17A	C17	N4	109.4(6)
H17B	C17	H17C	109.5(6)
H17B	C17	N4	109.4(6)
H17C	C17	N4	109.5(6)
H18A	C18	H18B	107.9(6)
H18A	C18	C19	109.0(6)
H18A	C18	N4	109.1(6)
H18B	C18	C19	109.1(6)
H18B	C18	N4	109.0(6)
C19	C18	N4	112.6(5)
C18	C19	N5	112.6(5)
C18	C19	O3	119.5(6)
N5	C19	O3	127.8(6)
C21	C20	C25	117.4(6)
C21	C20	N5	121.6(6)
C25	C20	N5	121.0(5)
C20	C21	H21	119.2(7)
C20	C21	C22	121.7(6)
H21	C21	C22	119.1(7)
C21	C22	H22	119.5(7)
C21	C22	C23	121.1(7)
H22	C22	C23	119.4(7)
C22	C23	H23	120.6(7)
C22	C23	C24	118.7(6)
H23	C23	C24	120.6(7)
C23	C24	H24	119.5(6)
C23	C24	C25	120.9(6)
H24	C24	C25	119.5(6)
C20	C25	C24	120.0(6)
C20	C25	C26	122.9(5)
C24	C25	C26	117.0(5)
C25	C26	N6	129.8(5)
C25	C26	O4	114.1(5)
N6	C26	O4	116.2(5)

H27A	C27	H27B	108.7(6)
H27A	C27	C28	110.7(6)
H27A	C27	O4	110.7(6)
H27B	C27	C28	110.7(6)
H27B	C27	O4	110.6(6)
C28	C27	O4	105.4(5)
C27	C28	C29	110.4(5)
C27	C28	C30	110.0(5)
C27	C28	N6	100.7(5)
C29	C28	C30	114.0(5)
C29	C28	N6	111.7(5)
C30	C28	N6	109.4(5)
C28	C29	H29A	109.5(6)
C28	C29	H29B	109.5(6)
C28	C29	H29C	109.5(6)
H29A	C29	H29B	109.4(6)
H29A	C29	H29C	109.5(6)
H29B	C29	H29C	109.5(6)
C28	C30	H30A	109.5(6)
C28	C30	H30B	109.5(6)
C28	C30	H30C	109.5(6)
H30A	C30	H30B	109.4(7)
H30A	C30	H30C	109.5(7)
H30B	C30	H30C	109.4(7)
C16	N4	C17	108.8(5)
C16	N4	C18	107.7(5)
C16	N4	Pd2	118.5(4)
C17	N4	C18	110.0(5)
C17	N4	Pd2	108.1(4)
C18	N4	Pd2	103.4(4)
C19	N5	C20	120.5(5)
C19	N5	Pd2	113.4(4)
C20	N5	Pd2	126.0(4)
C26	N6	C28	108.1(5)
C26	N6	Pd2	123.2(4)
C28	N6	Pd2	128.6(4)
C26	O4	C27	106.6(5)
N4	Pd2	N5	81.6(2)
N4	Pd2	N6	172.0(2)
N4	Pd2	Cl 2	91.2(1)
N5	Pd2	N6	90.4(2)
N5	Pd2	Cl 2	172.5(1)
N6	Pd2	Cl 2	96.8(1)

Table A12. Angles [${ }^{\circ}$] for 9a

H1A	C1	H1B	109.4(7)
H1A	C1	H1C	109.6(7)
H1A	C1	N1	109.5(6)
H1B	C1	H1C	109.5(7)
H1B	C1	N1	109.4(6)
H1C	C1	N1	109.5(6)
H2A	C2	H2B	109.5(7)
H2A	C2	H2C	109.4(7)
H2A	C2	N1	109.4(7)
H2B	C2	H2C	109.5(7)
H2B	C2	N1	109.5(7)
H2C	C2	N1	109.4(7)
H3A	C3	H3B	107.8(6)
H3A	C3	C4	109.1(6)
H3A	C3	N1	109.2(6)
H3B	C3	C4	109.1(6)
H3B	C3	N1	109.1(6)
C4	C3	N1	112.3(5)
C3	C4	N2	112.7(6)
C3	C4	01	119.5(6)
N2	C4	01	127.8(6)
C6	C5	C10	117.2(6)
C6	C5	N2	122.0(6)
C10	C5	N2	120.7(5)
C5	C6	H6	119.1(6)
C5	C6	C7	121.7(6)
H6	C6	C7	119.2(6)
C6	C7	H7	119.6(7)
C6	C7	C8	120.8(6)
H7	C7	C8	119.6(7)
C7	C8	H8	120.4(7)
C7	C8	C9	119.0(6)
H8	C8	C9	120.6(7)
C8	C9	H9	119.7(6)
C8	C9	C10	120.7(6)
H9	C9	C10	119.7(6)
C5	C10	C9	120.6(6)
C5	C10	C11	122.3(6)
C9	C10	C11	117.1(6)
C10	C11	N3	129.9(6)
C10	C11	O2	114.5(5)

N3	C11	O2	115.6(6)
H12A	C12	H12B	108.7(6)
H12A	C12	C13	110.5(6)
H12A	C12	O2	110.4(6)
H12B	C12	C13	110.5(6)
H12B	C12	O2	110.4(6)
C13	C12	O2	106.3(5)
C12	C13	C14	110.9(5)
C12	C13	C15	110.8(5)
C12	C13	N3	100.9(5)
C14	C13	C15	112.5(5)
C14	C13	N3	112.2(5)
C15	C13	N3	109.1(5)
C13	C14	H14A	109.5(6)
C13	C14	H14B	109.4(6)
C13	C14	H14C	109.5(6)
H14A	C14	H14B	109.5(6)
H14A	C14	H14C	109.5(6)
H14B	C14	H14C	109.4(6)
C13	C15	H15A	109.5(6)
C13	C15	H15B	109.5(6)
C13	C15	H15C	109.5(6)
H15A	C15	H15B	109.3(6)
H15A	C15	H15C	109.4(6)
H15B	C15	H15C	109.6(6)
C1	N1	C2	109.0(5)
C1	N1	C3	110.8(5)
C1	N1	Pd1	107.5(4)
C2	N1	C3	108.3(5)
C2	N1	Pd1	117.4(4)
C3	N1	Pd1	103.7(4)
C4	N2	C5	120.0(6)
C4	N2	Pd1	115.2(4)
C5	N2	Pd1	124.7(4)
C11	N3	C13	108.7(5)
C11	N3	Pd1	121.3(4)
C13	N3	Pd1	129.9(4)
C11	O 2	C12	106.1(5)
N1	Pd1	N2	80.7(2)
N1	Pd1	N3	171.2(2)
N1	Pd1	Cl 1	92.5(1)
N2	Pd1	N3	90.7(2)
N2	Pd1	Cl 1	172.5(2)

N3	Pd1	Cl1	96.1(1)
H16A	C16	H16B	109.4(7)
H16A	C16	H16C	109.6(7)
H16A	C16	N4	109.5(6)
H16B	C16	H16C	109.4(7)
H16B	C16	N4	109.5(6)
H16C	C16	N4	109.5(6)
H17A	C17	H17B	109.4(6)
H17A	C17	H17C	109.5(6)
H17A	C17	N4	109.4(6)
H17B	C17	H17C	109.5(6)
H17B	C17	N4	109.4(6)
H17C	C17	N4	109.5(6)
H18A	C18	H18B	107.9(6)
H18A	C18	C19	109.0(6)
H18A	C18	N4	109.1(6)
H18B	C18	C19	109.1(6)
H18B	C18	N4	109.0(6)
C19	C18	N4	112.6(5)
C18	C19	N5	112.6(5)
C18	C19	O3	119.5(6)
N5	C19	O3	127.8(6)
C21	C20	C25	117.4(6)
C21	C20	N5	121.6(6)
C25	C20	N5	121.0(5)
C20	C21	H21	119.2(7)
C20	C21	C22	121.7(6)
H21	C21	C22	119.1(7)
C21	C22	H22	119.5(7)
C21	C22	C23	121.1(7)
H22	C22	C23	119.4(7)
C22	C23	H23	120.6(7)
C22	C23	C24	118.7(6)
H23	C23	C24	120.6(7)
C23	C24	H24	119.5(6)
C23	C24	C25	120.9(6)
H24	C24	C25	119.5(6)
C20	C25	C24	120.0(6)
C20	C25	C26	122.9(5)
C24	C25	C26	117.0(5)
C25	C26	N6	129.8(5)
C25	C26	O4	114.1(5)
N6	C26	O4	116.2(5)

H27A	C27	H27B	108.7(6)
H27A	C27	C28	110.7(6)
H27A	C27	O4	110.7(6)
H27B	C27	C28	110.7(6)
H27B	C27	O4	110.6(6)
C28	C27	O4	105.4(5)
C27	C28	C29	110.4(5)
C27	C28	C30	110.0(5)
C27	C28	N6	100.7(5)
C29	C28	C30	114.0(5)
C29	C28	N6	111.7(5)
C30	C28	N6	109.4(5)
C28	C29	H29A	109.5(6)
C28	C29	H29B	109.5(6)
C28	C29	H29C	109.5(6)
H29A	C29	H29B	109.4(6)
H29A	C29	H29C	109.5(6)
H29B	C29	H29C	109.5(6)
C28	C30	H30A	109.5(6)
C28	C30	H30B	109.5(6)
C28	C30	H30C	109.5(6)
H30A	C30	H30B	109.4(7)
H30A	C30	H30C	109.5(7)
H30B	C30	H30C	109.4(7)
C16	N4	C17	108.8(5)
C16	N4	C18	107.7(5)
C16	N4	Pd2	118.5(4)
C17	N4	C18	110.0(5)
C17	N4	Pd2	108.1(4)
C18	N4	Pd2	103.4(4)
C19	N5	C20	120.5(5)
C19	N5	Pd2	113.4(4)
C20	N5	Pd2	126.0(4)
C26	N6	C28	108.1(5)
C26	N6	Pd2	123.2(4)
C28	N6	Pd2	128.6(4)
C26	O4	C27	106.6(5)
N4	Pd2	N5	81.6(2)
N4	Pd2	N6	172.0(2)
N4	Pd2	Cl 2	91.2(1)
N5	Pd2	N6	90.4(2)
N5	Pd2	Cl 2	172.5(1)
N6	Pd2	Cl 2	96.8(1)

Table A13. Torsion angles [${ }^{\circ}$] for 9 a

H1A	C1	N1	C2	-63.4(7)
H1A	C1	N1	C3	177.4(6)
H1A	C1	N1	Pd1	64.8(6)
H1B	C1	N1	C2	176.7(6)
H1B	C1	N1	C3	57.5(8)
H1B	C1	N1	Pd1	-55.1(7)
H1C	C1	N1	C2	56.7(8)
H1C	C1	N1	C3	-62.4(7)
H1C	C1	N1	Pd1	-175.1(5)
H2A	C2	N1	C1	61.6(8)
H2A	C2	N1	C3	-177.7(6)
H2A	C2	N1	Pd1	-60.8(7)
H2B	C2	N1	C1	-58.4(8)
H2B	C2	N1	C3	62.2(8)
H2B	C2	N1	Pd1	179.1(5)
H2C	C2	N1	C1	-178.5(6)
H2C	C2	N1	C3	-57.8(8)
H2C	C2	N1	Pd1	59.0(7)
H3A	C3	C4	N2	101.3(7)
H3A	C3	C4	O1	-76.9(8)
H3B	C3	C4	N2	-141.1(6)
H3B	C3	C4	O1	40.7(9)
N1	C3	C4	N2	-19.9(8)
N1	C3	C4	O1	161.9(6)
H3A	C3	N1	C1	161.4(6)
H3A	C3	N1	C2	41.9(7)
H3A	C3	N1	Pd1	-83.5(6)
H3B	C3	N1	C1	43.7(7)
H3B	C3	N1	C2	-75.7(7)
H3B	C3	N1	Pd1	158.8(5)
C4	C3	N1	C1	-77.4(7)
C4	C3	N1	C2	163.1(5)
C4	C3	N1	Pd1	37.7(6)
C3	C4	N2	C5	164.9(6)
C3	C4	N2	Pd1	-10.9(7)
01	C4	N2	C5	-17(1)
01	C4	N2	Pd1	167.2(6)
C10	C5	C6	H6	-178.4(6)
C10	C5	C6	C7	1.7(9)
N2	C5	C6	H6	4(1)
N2	C5	C6	C7	-175.9(6)

C6	C5	C10	C9	$-0.7(9)$
C6	C5	C10	C11	$179.9(6)$
N2	C5	C10	C9	$176.8(6)$
N2	C5	C10	C11	$-2.5(9)$
C6	C5	N2	C4	$-26.7(9)$
C6	C5	N2	Pd1	$148.6(5)$
C10	C5	N2	C4	$155.8(6)$
C10	C5	N2	Pd1	$-28.9(8)$
C5	C6	C7	H7	$177.8(7)$
C5	C6	C7	C8	$-2(1)$
H6	C6	C7	H7	$-2(1)$
H6	C6	C7	C8	$177.9(7)$
C6	C7	C8	H8	$-178.4(7)$
C6	C7	C8	C9	$2(1)$
H7	C7	C8	H8	$2(1)$
H7	C7	C8	C9	$-178.3(7)$
C7	C8	C9	H9	$179.2(7)$
C7	C8	C9	C10	$-1(1)$
H8	C8	C9	H9	$-1(1)$
H8	C8	C9	C10	$179.3(6)$
C8	C9	C10	C5	$0(1)$
C8	C9	C10	C11	$179.6(6)$
H9	C9	C10	C5	$-179.7(6)$
H9	C9	C10	C11	$-0(1)$
C5	C10	C11	N3	$23(1)$
C5	C10	C11	O2	$-158.4(6)$
C9	C10	C11	N3	$-155.9(7)$
C9	C10	C11	O2	$22.3(8)$
C10	C11	N3	C13	C11

H12A	C12	O2	C11	$-106.3(6)$
H12B	C12	O2	C11	$133.4(6)$
C13	C12	O2	C11	$13.5(6)$
C12	C13	C14	H14A	$63.9(7)$
C12	C13	C14	H14B	$-56.0(7)$
C12	C13	C14	H14C	$-176.0(5)$
C15	C13	C14	H14A	$-171.4(5)$
C15	C13	C14	H14B	$68.7(7)$
C15	C13	C14	H14C	$-51.3(7)$
N3	C13	C14	H14A	$-48.0(7)$
N3	C13	C14	H14B	$-168.0(5)$
N3	C13	C14	H14C	$72.1(7)$
C12	C13	C15	H15A	$-173.2(5)$
C12	C13	C15	H15B	$66.9(7)$
C12	C13	C15	H15C	$-53.3(7)$
C14	C13	C15	H15A	$62.0(7)$
C14	C13	C15	H15B	$-57.8(7)$
C14	C13	C15	H15C	$-178.0(6)$
N3	C13	C15	H15A	$-63.0(7)$
N3	C13	C15	H15B	$177.1(5)$
N3	C13	C15	H15C	$56.9(7)$
C12	C13	N3	C11	$12.0(6)$
C12	C13	N3	Pd1	$-164.8(4)$
C14	C13	N3	C11	$130.0(6)$
C14	C13	N3	Pd1	$-46.7(7)$
C15	C13	N3	C11	$-104.7(6)$
C15	C13	N3	Pd1	$78.5(6)$
C1	N1	N3	Nd1	N2

C11	N3	Pd1	N2	-14.7(5)
C11	N3	Pd1	Cl1	162.3(5)
C13	N3	Pd1	N1	147(1)
C13	N3	Pd1	N2	161.8(5)
C13	N3	Pd1	Cl1	-21.2(5)
H16A	C16	N4	C17	53.0(7)
H16A	C16	N4	C18	172.2(5)
H16A	C16	N4	Pd2	-71.0(7)
H16B	C16	N4	C17	-66.9(7)
H16B	C16	N4	C18	52.3(7)
H16B	C16	N4	Pd2	169.1(4)
H16C	C16	N4	C17	173.2(5)
H16C	C16	N4	C18	-67.6(7)
H16C	C16	N4	Pd2	49.2(7)
H17A	C17	N4	C16	174.8(5)
H17A	C17	N4	C18	57.0(7)
H17A	C17	N4	Pd2	-55.3(6)
H17B	C17	N4	C16	54.9(7)
H17B	C17	N4	C18	-62.9(7)
H17B	C17	N4	Pd2	-175.2(4)
H17C	C17	N4	C16	-65.1(7)
H17C	C17	N4	C18	177.1(5)
H17C	C17	N4	Pd2	64.8(6)
H18A	C18	C19	N5	103.4(6)
H18A	C18	C19	O3	-73.9(8)
H18B	C18	C19	N5	-139.0(6)
H18B	C18	C19	O3	43.7(8)
N4	C18	C19	N5	-17.8(7)
N4	C18	C19	O3	164.9(6)
H18A	C18	N4	C16	42.9(7)
H18A	C18	N4	C17	161.3(5)
H18A	C18	N4	Pd2	-83.4(5)
H18B	C18	N4	C16	-74.7(6)
H18B	C18	N4	C17	43.8(7)
H18B	C18	N4	Pd2	159.0(5)
C19	C18	N4	C16	164.1(5)
C19	C18	N4	C17	-77.5(6)
C19	C18	N4	Pd2	37.8(6)
C18	C19	N5	C20	168.4(5)
C18	C19	N5	Pd2	-13.4(6)
O3	C19	N5	C20	-15(1)
O3	C19	N5	Pd2	163.6(6)
C25	C20	C21	H21	178.4(6)

C25	C20	C21	C22	-2(1)
N5	C20	C21	H21	-1(1)
N5	C20	C21	C22	178.8(6)
C21	C20	C25	C24	1.4(9)
C21	C20	C25	C26	178.3(6)
N5	C20	C25	C24	-178.9(6)
N5	C20	C25	C26	-2.0(9)
C21	C20	N5	C19	-25.7(9)
C21	C20	N5	Pd2	156.4(5)
C25	C20	N5	C19	154.6(6)
C25	C20	N5	Pd2	-23.3(8)
C20	C21	C22	H22	179.9(7)
C20	C21	C22	C23	-0(1)
H21	C21	C22	H22	-0(1)
H21	C21	C22	C23	180.0(7)
C21	C22	C23	H23	-178.2(7)
C21	C22	C23	C24	2(1)
H22	C22	C23	H23	2(1)
H22	C22	C23	C24	-178.2(7)
C22	C23	C24	H24	178.1(7)
C22	C23	C24	C25	-2(1)
H23	C23	C24	H24	-2(1)
H23	C23	C24	C25	178.1(6)
C23	C24	C25	C20	0(1)
C23	C24	C25	C26	-176.9(6)
H24	C24	C25	C20	-179.7(6)
H24	C24	C25	C26	3.2(9)
C20	C25	C26	N6	17(1)
C20	C25	C26	O4	-163.4(6)
C24	C25	C26	N6	-166.2(6)
C24	C25	C26	O4	13.6(8)
C25	C26	N6	C28	-179.6(6)
C25	C26	N6	Pd2	-3.6(9)
O4	C26	N6	C28	0.7(7)
O4	C26	N6	Pd2	176.7(4)
C25	C26	O4	C27	168.4(5)
N6	C26	O4	C27	-11.8(7)
H27A	C27	C28	C29	-14.4(8)
H27A	C27	C28	C30	-141.0(6)
H27A	C27	C28	N6	103.7(6)
H27B	C27	C28	C29	106.3(6)
H27B	C27	C28	C30	-20.3(8)
H27B	C27	C28	N6	-135.6(5)

O4	C27	C28	C29	-134.1(5)
O4	C27	C28	C30	99.3(6)
O4	C27	C28	N6	-16.0(6)
H27A	C27	O4	C26	-102.5(6)
H27B	C27	O4	C26	136.9(6)
C28	C27	O4	C26	17.2(6)
C27	C28	C29	H29A	54.3(7)
C27	C28	C29	H29B	-65.6(7)
C27	C28	C29	H29C	174.3(5)
C30	C28	C29	H29A	178.6(6)
C30	C28	C29	H29B	58.7(7)
C30	C28	C29	H29C	-61.3(7)
N6	C28	C29	H29A	-56.8(7)
N6	C28	C29	H29B	-176.7(5)
N6	C28	C29	H29C	63.2(7)
C27	C28	C30	H30A	-177.0(6)
C27	C28	C30	H30B	63.1(7)
C27	C28	C30	H30C	-56.9(7)
C29	C28	C30	H30A	58.5(8)
C29	C28	C30	H30B	-61.5(8)
C29	C28	C30	H30C	178.5(6)
N6	C28	C30	H30A	-67.3(7)
N6	C28	C30	H30B	172.7(5)
N6	C28	C30	H30C	52.8(7)
C27	C28	N6	C26	9.8(6)
C27	C28	N6	Pd2	-165.9(4)
C29	C28	N6	C26	126.9(5)
C29	C28	N6	Pd2	-48.8(7)
C30	C28	N6	C26	-106.0(6)
C30	C28	N6	Pd2	78.3(6)
C16	N4	Pd2	N5	-154.1(5)
C16	N4	Pd2	N6	-147(1)
C16	N4	Pd2	Cl 2	28.1(4)
C17	N4	Pd2	N5	81.6(4)
C17	N4	Pd2	N6	89(1)
C17	N4	Pd2	Cl 2	-96.2(4)
C18	N4	Pd2	N5	-35.0(4)
C18	N4	Pd2	N6	-28(2)
C18	N4	Pd2	Cl 2	147.1(3)
C19	N5	Pd2	N4	28.6(4)
C19	N5	Pd2	N6	-150.4(4)
C19	N5	Pd2	Cl 2	45(1)
C20	N5	Pd2	N4	-153.3(5)

C 20	N 5	Pd 2	N 6	$27.6(5)$
C 20	N 5	Pd 2	Cl 2	$-137(1)$
C 26	N 6	Pd 2	N 4	$-21(2)$
C 26	N 6	Pd 2	N 5	$-14.2(5)$
C 26	N 6	Pd 2	Cl 2	$163.8(4)$
C 28	N 6	Pd 2	N 4	$154(1)$
C 28	N 6	Pd 2	N 5	$160.9(5)$
C 28	N 6	Pd 2	Cl 2	$-21.1(5)$

CHAPTER 8 - REFERENCES

(1) Bhattacharya, P.; Guan, H. Synthesis and catalytic applications of iron pincer complexes. Comments Inorg. Chem. 2011, 32, 88-112.
(2) Constable, E. C.; Housecroft, C. E. Coordination chemistry: the scientific legacy of Alfred Werner. Chem. Soc. Rev. 2013, 42, 1429-1439.
(3) Miessler, G. L.; Tarr, D. A. Inorganic Chemistry, $3^{\text {rd }}$ ed.; Prentice Hall: New Jersey, 2003.
(4) Gwynne, E. A.; Stephan, D. W. Nickel(II) and Palladium(II) bis-aminophosphine pincer complexes. Organometallics 2011, 30, 4128-4135.
(5) Zargarian, D.; Castronguay, A.; Spasyuk, D. M. ECE-type pincer complexes of nickel. Top. Organomet. Chem. 2013, 40, 131-173.
(6) Morales-Morales, D. Pincer complexes. Applications in catalysis. Rev. Soc. Quim. Mex. 2004, 48, 338-346.
(7) Motoyama, Y.; Shimozono, K.; Nishiyama, H. Novel (oxazolinyl)phenyl phosphine pincer ligand: development of the first non-symmetrical, PCN type chiral palladium and platinum complexes. Inorg. Chim. Acta, 2006, 359, 1725-1730.
(8) Vicente, J.; Arcas, A.; Julia-Hernandez, F. Organometallic complexes of palladium(II) derived from 2,6-diacetylpyridine dimethylketal. Organometallics 2010, 29, 3066-3076.
(9) Ito, J.; Ujiie, S.; Nishiyama, H. Chiral bis(oxazolinyl)phenyl Ru" catalysts for highly enantioselective cyclopropanation. Chem. Eur. J. 2010, 16, 4986-4990.
(10) Konrad, F.; Fillol, J. L.; Rettenmeier, C.; Wadepohl, H.; Gade, L. H. Bis(oxazolinylmethyl) derivatives of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{E}$ heterocycles $(\mathrm{E}=\mathrm{NH}, \mathrm{O}, \mathrm{S})$ as $\mathrm{C}_{2^{-}}$
chiral meridionally coordinating ligands for nickel and chromium. Eur. J. Inorg. Chem. 2009, 4950-4961.
(11) El-Zaria, M. E.; Arii, H.; Nakamura, H. m-Carborane based chiral NBN pincermetal complexes: synthesis, structure, and application in asymmetric catalysis. Inorg. Chem. 2011, 50, 4149-4161.
(12) Polukeev, A. V.; Kuklin, S. A.; Petrovskii, P. V.; Peregudova, S. M.; Smol'yakov, A. F.; Dolgushin, F. M.; Koridze, A. A. Synthesis and characterization of fluorophenylpalladium pincer complexes: electronic properties of some pincer ligands evaluated by multinuclear NMR spectroscopy and electrochemical studies. Dalton Trans. 2011, 40, 7201-7209.
(13) Gossage, R. A. Pincer oxazolines: emerging tools in coordination chemistry and catalysis - where to next? Dalton Trans. 2011, 40, 8755-8759.
(14) Hollas, A. M; Gu, W.; Bhuvanesh, N.; Ozerov, O. V. Synthesis and characterization of Pd complexes of a carbazolyl/bis(imine) NNN pincer ligand. Inorg. Chem. 2011, 50, 3673-3679.
(15) Kumar, S.; Mani, G.; Mondal, S.; Chattaraj, P. K. Pyrrole-based new diphosphines: Pd and Ni complexes bearing the PNP pincer ligand. Inorg. Chem. 2012, 51, 12527-12539.
(16) Vabre, B.; Canac. Y.; Duhayon, C.; Chauvin, R.; Zargarian, D. Nickel(II) complexes of the new pincer-type unsymmetrical ligands PIMCOP, PIMIOCOP, and NHCCOP: versatile binding motifs. Chem. Commun. 2012, 48, 1044610448.
(17) Herbert, D. E.; Miller, A. D.; Ozerov, O. V. Phosphorus(III) cations supported by a PNP pincer ligand and sub-stoichiometric generation of P_{4} from thermolysis of a nickel insertion product. Chem. Eur. J. 2012, 18, 7696-7704.
(18) Castonguay, A.; Sui-Seng, C.; Zargarian, D.; Beauchamp, A. L. Synthesis and reactivities of new $\mathrm{PC}_{\mathrm{sp} 3} P$ pincer complexes of nickel. Organometallics 2006, 25, 602-608.
(19) Ruddy, A. J.; Mitton, S. J.; McDonald, R.; Turculet, L. 'Hemilabile' silyl pincer ligation: platinum group PSiN complexes and triple $\mathrm{C}-\mathrm{H}$ activation to form a (PSiC) Ru carbene complex. Chem. Commun. 2012, 48, 1159-1161.
(20) Lindner, R.; van den Bosch, B.; Lutz, M.; Reek, J. N. H.; van der Vlugt, J. I. Tunable hemilabile ligands for adoptive transition metal complexes. Organometallics 2011, 30, 499-510.
(21) van Koten, G. The monoanionic ECE-pincer ligand: a versatile privileged ligand platform - general considerations. Top. Organomet. Chem. 2013, 40, 1-20.
(22) Zhang, J.; Pattacini, R.; Braunstein, P. Tridentate assembling ligands based on oxazoline and phosphorus donors in dinuclear $\operatorname{Pd}(\mathrm{I})-\mathrm{Pd}(\mathrm{I})$ complexes. Inorg. Chem. 2009, 48, 11954-11962.
(23) Gossage, R. A.; Jenkins, H. A.; Yadav, P. N. Application of an air stable Pd oxazoline complex for Heck, Suzuki, Sonogashira and related C-C bond-forming reactions. Tetrahedron Lett. 2004, 45, 7689-7691 (Corrigendum: 2005, 46, 5243).
(24) Button, K. M.; Gossage, R. A.; Phillips, R. K. R. A simple large scale synthesis of 1,3-bis(4,4-dimethyl-2-oxazolinyl)benzene. Synth. Commun. 2002, 32, 363-368.
(25) Fossey, J. S.; Richards, C. J. Synthesis of 2,6-bis(2-oxazolinyl)phenylplatinum(II) NCN pincer complexes by direct cyclometalation. Catalysts for carbon-carbon bond formation. Organometallics 2004, 23, 367-373.
(26) Younus, H. A.; Ahmad, N.; Su, W.; Verpoort, F. Ruthenium pincer complexes: Ligand design and complex synthesis. Coord. Chem. Rev. 2014, 276, 112-152.
(27) Ito, J.; Nishiyama, H. Synthetic utility of chiral bis(oxazolinyl)phenyl transitionmetal complexes. Synlett, 2012, 509-523.
(28) Nishiyama, H. Synthesis and use of bisoxazolinyl-phenyl pincers. Chem. Soc. Rev. 2007, 36, 1133-1141.
(29) Ito, J.; Nishiyama, H. Recent topics of transfer hydrogenation. Tetrahedron Lett. 2014, 55, 3153-3166.
(30) Toda, T.; Kuwata, S.; Ikariya, T. Unsymmetrical pincer-type ruthenium complex containing β-protic pyrazole and N-heterocyclic carbene arms: comparison of brønsred acidity of NH groups in second coordination sphere. Chem. Eur. J. 2014, 20, 9539-9542.
(31) Ebeling, G.; Meneghetti, M. R.; Rominger, F.; Dupont, J. The transchlorometalation of hetero-substituted alkynes: A facile entry to unsymmetrical palladium $\mathrm{YCY}{ }^{\prime}\left(\mathrm{Y}, \mathrm{Y}^{\prime}=\mathrm{NR}_{2}, \mathrm{PPh}_{2}, \mathrm{OPPh}_{2}\right.$, and SR) "pincer" complexes Organometallics 2002, 21, 3221-3227.
(32) Dietrich, B. L.; Egbert, J.; Morris, A. M.; Wicholas, M. Cd(II), $\mathrm{Zn}(\mathrm{II})$, and $\mathrm{Pd}(\mathrm{II})$ complexes of an isoindoline pincer ligand: consequences of steric crowding. Inorg. Chem. 2005, 44, 6476-6481.
(33) Schaub, T.; Radius, U.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D. Pyridine-based sulfoxide pincer complexes of Rhodium and Iridium. Organometallics 2008, 27, 1892-1901.
(34) Liu, A.; Zhang, X.; Chen, W. New pincer CC'C complexes of Nickel(II) via chloronickelation of alkyne-bearing N-heterocyclic carbenes. Organometallics 2009, 28, 4868-4871.
(35) Lien, Y.-L.; Chang, Y.-C.; Chuang, N.-T.; Datta, A.; Chen, S.-J.; Hu, C.-H.; Huang, W.-Y.; Lin, C.-H.; Huang, J.-H. A new type of asymmetric tridentate pyrrolyl-linked pincer ligand and its aluminum dihydride complexes. Inorg. Chem. 2010, 49, 136143.
(36) Shibue, M.; Hirotsu, M.; Nishioka, T.; Kinoshita, I. Ruthenium and Rhodium complexes with thiolate-containing pincer ligands produced by $\mathrm{C}-\mathrm{S}$ bond cleavage of pyridyl-substituted dibenzothiophenes. Organometallics 2008, 27, 4475-4483.
(37) Juliá-Hernández, F.; Arcas, A.; Vicente, J. Chem. Eur. J. 2012, 18, 7780.
(38) Pozo del, C.; Corma, A.; Iglesias, M.; Sánchez, F. Recyclable mesoporous silicasupported chiral ruthenium-(NHC)NN-pincer catalysts for asymmetric reactions. Green Chem. 2011, 13, 2471-2481.
(39) Baratta, W.; Benedetti, F.; Zotto, A. D.; Fanfoni, L.; Felluga, F.; Magnolia, S.; Putignano, E.; Rigo, P. Chiral pincer ruthenium and osmium complexes for the fast and efficient hydrogen transfer reduction of ketones. Organometallics 2010, 29, 3563-3570.
(40) Du, W.; Wang, L.; Wu, P.; Yu, Z. A versatile ruthenium(II)-NNC complex catalyst for transfer hydrogenation of ketones and oppenauer-type oxidation of alcohols. Chem. Eur. J. 2012, 18, 11550-11554.
(41) Boronat, M.; Corma, A.; Gornález-Arellano, C.; Iglesias, M.; Sánchez, F. Synthesis of electron-rich CNN-pincer complexes, with N-heterocyclic carbene and (S)-proline moieties and application to asymmetric hydrogenation. Organometallics 2010, 29, 134-141.
(42) Bröring, M.; Kleeberg, C.; Köhler, S. Palladium(II) complexes of unsymmetrical CNN pincer ligands. Inorg. Chem. 2008, 47, 6404-6412.
(43) Zeng, G.; \& Li, S. Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)-Ru(II) hydride complex: unusual metal-ligand cooperation. Inorg. Chem. 2011, 50, 10572-10580.
(44) Zhang, J.; Balaraman, E.; Leitus, G.; Milstein, D. Electron-rich PNP- and PNNtype ruthenium(II) hydrido borohydride pincer complexes. Synthesis, structure, and catalytic dehydrogenation of alcohols and hydrogenation of esters. Organometallics 2011, 30, 5716-5724.
(45) He, L.-P.; Chen, T.; Gong, D.; Lai, Z.; Huang, K.-W. Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: direct coupling of two amines to form an imine without oxidant. Organometallics 2012, 31, 5208-5211.
(46) Decken, A.; Gossage, R. A.; Yadav, P. N. Oxazoline Chemistry-Part VIII: Synthesis and characterisation of a new class of pincer ligands derived from the 2-(o-anilinyl)-2-oxazoline skeleton: applications to the synthesis of group X transition metal catalysts. Can. J. Chem. 2005, 83, 1185-1189.
(47) Taghvaee, M. Group XI Pincer Oxazoline Complexes. MSc Thesis, 2012, Ryerson University.
(48) Durran, S. E.; Elsegood, M. R. J.; Hammond, S. R.; Smith, M. B. Flexible $\kappa^{4}-$ PNN'O-tetradentate ligands: synthesis, complexation and structural studies. Dalton Trans. 2010, 39, 7136-7146.
(49) Button, K. M.; Gossage, R. A. Oxazoline chemistry part III. Synthesis and characterization of [2-(2'-anilinyl)-2-oxazolines] and some related compounds. J. Heterocyclic Chem. 2003, 40, 513-517.
(50) Hornback, J. M. Organic Chemistry, $2^{\text {nd }}$ Ed. Brooks/Cole: Belmont, 2006.
(51) Kunishima, M.; Kawachi, C.; Morita, J.; Terao, K.; Iwasaki, F.; Tani, S. 4-(4,6-Dimethyl-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride: an efficient condensing agent leading to the formation of amides and esters. Tetrahedron 1999, 55, 13159-13170.
(52) Jarrold, M. F. Peptides and proteins in the vapor phase. Annu. Rev. Phys. Chem. 2000, 51, 179-207.
(53) Lesarri, A.; Cocinero, E. J.; Lopez, J. C.; Alonso, J. L. Gas-phase structure of N,N-dimethylglycine. Chem. Phys. Chem. 2005, 6, 1559-1566.
(54) Herasymchuk, K. Novel pincer ligands derived from 2-(2'-anilinyl)-4,4-dimethyl-2oxazoline skeleton. BSc Thesis. 2012, Ryerson University.
(55) Yella, R. Chloroacetylchloride: A Versatile Reagent in Heterocyclic Synthesis. Synlett. 2010, 835-836.
(56) Raycroft, M. A. R.; Maxwell, C. I.; Oldham, R. A. A.; Andrea, A. S.; Neverov, A. A.; Brown, R. S. Trifunctional metal ion-catalyzed solvolysis: Cu(II)-promoted
methanolysis of N, N-bis(2-picolyl) benzamides involves unusual lewis acid activation of substrate, delivery of coordinated nucleophile, powerful assistance of the leaving group departure. Inorg. Chem. 2012, 51, 10325-10333.
(57) Xu, S.; Held, I.; Kempf, B.; Mayr, H.; Steglich, W.; Zipse, H. The DMAPCatalyzed Acetylation of Alcohols-A Mechanistic Study (DMAP=4(Dimethylamino)pyridine). Chem. Eur. J. 2005, 11, 4751-4757.
(58) Ghorbani-Choghamarani, A.; Norouzi, M. Protection of hydroxyl groups as a trimethylsilyl ether by 1,1,1,3,3,3-hexamethyldisilazane promoted by aspartic acid as an efficient organocatalyst. Chin. J. Chem. 2011, 32, 595-598.
(59) Wuts, P. G. M.; Greene, T. W. Greene's Protective Groups in Organic Synthesis, $4^{\text {th }}$ Ed. John Wiley \& Sons, United States: New Jersey, 2007.
(60) Huynh, J. Optimization of the novel pincer ligand derived from 2-(2'-anilinyl)-2oxazolines. BSc Thesis. 2014, Ryerson University.
(61) Reich, H. J. Chemical Shift. www.chem.wisc.edu/areas/reich/nmr/notes-5-hmr-2shift.pdf, (accessed August 2, 2014).
(62) Bara, J. E. Versatile and Scalable Method for Producing N-Functionalized Imidazoles. Ind. Eng. Chem. Res. 2011, 50, 13614-13619.
(63) Stankevič, M.; Włodarczyk, A.; Jaklińska, M.; Parcheta, R.; Pietrusiewicz, K. M. Sodium in liquid ammonia - a versatile tool in modifications of arylphosphine oxides. Tetrahedron 2011, 67, 8671-8678.
(64) Rohlik, Z.; Holzhauser, P.; Kotek, J.; Rudovsky, J.; Nemec, I.; Hermann, P.; Lukes, I. Synthesis and coordination properties of palladium(II) and platinum(II)
complexes with phosphonated triphenylphosphine derivatives. J. Organomet. Chem. 2006, 691, 2409-2423.
(65) Dornhaus, F.; Bolte, M.; Lerner, H.-W.; Wagner, M. Phosphanylborohydrides: first assessment of the relative lewis basicities of $\left[\mathrm{BH}_{3} \mathrm{PPh}_{2}\right]^{-}, \mathrm{CH}_{3} \mathrm{PPh}_{2}$, and HPPh_{2}. Eur. J. Inorg. Chem. 2006, 1777-1785.
(66) Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. Introduction to spectroscopy, $4^{\text {th }}$ Ed. Saunders Brooks/Cole Thompson Learning, United States: Belmont, 2009.
(67) Schmid, T. E.; Jones, D. C.; Songis, O.; Diebolt, O.; Furst, M. R. L.; Slawin, A. M. Z.; Cazin, C. S. J. Mixed phosphine/N-heterocyclic carbene palladium complexes: synthesis, characterization and catalytic use in aqueous SuzukiMiyaura reactions. Dalton Trans., 2013, 42, 7345-7353.
(68) Tessin, U. I.; Bantreil, X.; Songis, O.; Cazin, C. S. J. Highly active $[\operatorname{Pd}(\mu-$ $\mathrm{Cl}) \mathrm{Cl}(\mathrm{NHC})]_{2}$ complexes in the Mizoroki-Heck reaction. Eur. J. Inorg. Chem. 2013, 2007-2010.
(69) Boronat, M.; Corma, A.; Gornález-Arellano, C.; Iglesias, M.; Sánchez, F. Synthesis of electron-rich CNN-pincer complexes, with N -heterocyclic carbene and (S)-proline moieties and application to asymmetric hydrogenation. Organometallics 2010, 29, 134-141.
(70) Tu, T.; Malineni, J.; Dötz, K. H. A novel pyridine-bridged bis-benzimidazolylidene pincer palladium complex: synthesis and catalytic properties. Adv. Synth. Catal. 2008, 350, 1791-1795.
(71) Santoro, O.; Collado, A.; Slawin, A. M. Z.; Nolan, S. P.; Cazin, C. S. J. A general synthetic route to $[\mathrm{Cu}(\mathrm{X})(\mathrm{NHC})](\mathrm{NHC}=\mathrm{N}$-heterocyclic carbene, $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ complexes. Chem. Commun. 2013, 49, 10483-10485.
(72) Egbert, J. D.; Cazin, C. S. J.; Nolan, S. P. Copper N-heterocyclic carbene complexes in catalysis. Catal. Sci., Technol., 2013, 3, 912-926.
(73) Gruger, N.; Rodriguez, L.-I.; Wadepohl, H.; Gade, L. H. Achiral and chiral PNPpincer ligands with a carbazole backbone: coordination chemistry with d^{8} transition metals. Inorg. Chem. 2013, 52, 2050-2059.
(74) Gao, R.; Zhang, T.; Wang, F.; Sun, W.-H. Nickel(II) complexes chelated by 2-arylimino-6-benzoxazolylpyridine: synthesis, characterization and ethylene oligomerization. Organometallics 2008, 27, 5641-5648.
(75) Peters, J. C.; Harkins, S. B.; Brown, S. D.; Day, M. W. Pincer-like amido complexes of platinum, palladium and nickel. Inorg. Chem. 2001, 40, 5083-5091.
(76) Liu, N.; Wang' L.; Wang, Z.-X. Room-temperature nickel-catalyzed crosscouplings of aryl chlorides with arylzincs. Chem. Commun. 2011, 47, 1598-1600.
(77) Solin, N.; Kjellgren, J.; Szabó, K. J. Pincer complex-catalyzed allylation of aldehyde and imine substrates via nucleophilic n^{1}-allyl palladium intermediates. J. Am. Chem. Soc. 2004, 126, 7026-7033.
(78) Solin, N.; Kjellgren, J.; Szabó, K. J. Palladium-catalyzed electrophilic substitution via monoallylpalladium intermediates. Angew. Chem. Int. Ed. 2003, 42, 36563658.
(79) Yao, Q.; Sheets, M. A SeCSe-Pd(II) pincer complex as a highly efficient catalyst for allylation of aldehydes with allyltributyltin. J. Org. Chem. 2006, 71, 5384-5387.
(80) Selander, N.; Sebelius, S.; Estay, C.; Szabó, K. J. Highly selective and robust palladium-catalyzed carbon-carbon coupling between allyl alcohols and aldehydes via transient allylboronic acids. Eur. J. Org. Chem. 2006, 4085-4087.
(81) Selander, N.; Willy, B.; Szabó, K. J. Selective C-H borylation of alkenes by palladium pincer complex catalyzed oxidative functionalization. Angew. Chem. Int. Ed. 2010, 49, 4051-4053.
(82) Nakamura, H.; Iwama, H.; Yamamoto, Y. Palladium- and platinum-catalyzed addition of aldehydes and imines with allylstannanes. Chemoselective allylation of imines in the presence of aldehydes. J. Am. Chem. Soc. 1996, 118, 66416647.
(83) Pilarski, L.; Szabó, K. J. Palladium pincer complex catalyzed functionalization of electrophiles. Curr. Org. Chem 2011, 15, 3389-3414.
(84) Aydin, J.; Szabó, K. J. Palladium-pincer complex catalyzed C-C coupling of allyl nitriles with tosyl imines via regioselective allylic C-H bond functionalization. Org. Lett. 2008, 10, 2881-2884.
(85) Aydin, J.; Selander, N.; Szabó, K. J. Strategies for fine-tuning the catalytic activity of pincer-complexes. Tetrahedron Lett. 2006, 47, 8999-9001.
(86) Selander, N.; Szabó, K. J. Catalysis by palladium pincer complexes. Chem. Rev. 2011, 111, 2048-2076.

[^0]: Figure $\mathrm{A} 15 .{ }^{1} \mathrm{H}$－NMR Spectrum of $\mathbf{3 g}$ in CDCl_{3}
 ZG゙てレー
 $\left.\begin{array}{l}70^{\circ} \angle \\ 90^{\circ} \angle \\ \angle 0^{\circ} \angle \\ 9 Z^{\circ} \angle \\ 2 t^{\circ} \angle \\ \varepsilon t^{\circ} \angle \\ 28^{\circ} \angle- \\ 78^{\circ} \angle \\ 08^{\circ}\end{array}\right]$
 08.8
 28.8

