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Abstract

The objective of this study is to investigate the response of an Euler-Bemoulli beam 

under a force or mass traversing with constant velocity. Simply-supported and clamped- 

clamped boundary conditions are considered. The linear strain-displacement scenario is 

applied to both boundary conditions, while the von Kârmân nonlinear scenario is applied only 

to the former boundary condition. The governing equation of motion is derived via the 

extended Hamilton’s principle. Simulations are performed with the fourth-order Runge-Kutta 

method via Matlab software. The equation of motion is first validated and then used to 

investigate the effects of the beam second moment of area, the magnitude of the traversing 

velocity, and centrifugal and gyroscopic forces.
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Nomenclature

% Position vector of differential beam element
4, Position vector of traversing load
n^, ôy, n  ̂ Unit vectors along the reference axes
A Beam cross-sectional area
b Width of the beam cross section
E Young’s modulus
f  Traversing force
g Gravitational constant
h Height of the beam cross section
I Second moment of area
j Mode number
L Beam length
m Traversing mass
q Column vector of an undetermined parameter
T Kinetic energy
Ub Strain energy of the beam
w(x, t) Dimensional displacement at position x at time t
w(^, t) Nondimensional displacement at position Ç at time t
Wg Work done by the traversing load
Wj Eigenfunction
Wm Dimensional displacement of the load at position Xm at time t
Wo Static deflection of the beam
X Dimensional position on the beam
Xm Dimensional position of the mass on the beam

Greek Letters

' Nondimensional critical velocity of the traversing load 
I  Nondimensional velocity of the traversing load
^ Nondimensional position
a Velocity ratio
ttb, ttNL, ctfm Boolean variable 
8xx von Kârmân strain
X Frequency
p Beam density
CO Circular frequency
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Chapter 1

1.1 Introduction

The behaviour of structures under any moving load has always been a problem that 

interests many scientists and engineers. The applications of such dynamic systems can be seen 

in many places, such as highways, railroad tracks or bridges. Since these structures are 

constantly under dynamic loading, many structural problems are the result of vibration. 

Therefore, vibration is an important issue that needs to be explored in detail.

There are many types of scenarios that can simulate the behaviour of structures under 

moving loads. In this project, the behaviour of a beam is investigated under different 

assumptions and factors. The system consists of an Euler-Bemoulli beam which is under a 

moving load. The load is assumed to be a concentrated force or mass. Simply-supported and 

clamped-clamped boundary conditions are applied to the system. Both linear and nonlinear 

scenarios are included. In the linear scenario, both boundary conditions are considered. For the 

nonlinear scenario, only the simply-supported boundary condition is considered.

A literature review is presented in the next chapter, followed by the description and 

schematic of the beam model. The fourth chapter contains the derivation of the governing 

equation of motion. The equation of motion is solved via a fourth-order Runge-Kutta method 

with Matlab software. The fifth chapter concerns the numerical simulations and discussions. 

The governing equation of motion is validated by reproducing the results in the literature, and 

some inconsistencies are observed. Other effects on the system dynamics are studied, 

specifically, the effect of the second moment of area, followed by the traversing velocity and



the influence of the velocity square term on the beam displacement. In the conclusion, 

summaries regarding the results and discussion presented in the numerical simulation are listed 

and suggestions for future work are outlined.



Chapter 2

2.1 Literature Review

There are many published books and articles regarding beam-with-moving-Ioad 

problems. It was initially studied by Stokes [1] in the 1800s. The book by Fryba [2] introduces 

the problem in a systematic fashion, starting from a simply-supported beam to more complex 

systems. The study by Rao [3] suggests that internal resonance depends on the ratio of the 

moving load mass to the beam mass. The gravitational effect on the moving load explains the 

external resonance. The equation of motion is solved by using the multiple scales method.

Atkin and Mofid’s [4] study include other boundary conditions besides simply- 

supported. Hamada [5] applies double Laplace transformation with respect to both time and 

spatial variables to obtain a Fourier series representation of the forced vibration portion of the 

transient response in closed form. It is noted that the method is applicable only to a low 

velocity scenario. The convergence of the Fourier series is slow for high velocity problems.

Sadiku and Leipholz [6] use Green’s function to develop the system equation. The 

differential equation is then converted into an integro-differential equation. This method can be 

applied to other boundary and loading conditions. The solution shows good accuracy and 

convergence. The main conclusion drawn by comparing the moving force and mass systems is 

that the peak displacement of the moving force solution is not necessarily higher than that of 

the moving mass case.



Stanisic et al. [7] use both analytical and numerical methods. The analytical method is a 

modified version of the asymptotic method fi-om nonlinear mechanics theory. The exact 

numerical method is a general procedure used to solve the ordinary differential equations with a 

singular coefficient. Results produced by both methods show good agreement. Another study 

conducted by Stanisic [8] later uses eigenfunction expansion in a series. The result is 

described as in “closed form”, which is in the sense of fast convergence in comparison to 

numerical techniques. The results are produced with and without a convective term in the 

acceleration. It is shown that the eigenfunction method solution with the convective term is a 

match to the numerical solution in Ref. [7] at the onset of the simulation. As the mass moves 

on, the eigenfunction method solution is closer to the numerical solution if the convective term 

is excluded.

The Timoshenko beam model is used in the studies reported in Ref. [9-13]. There are 

assumptions made in the Euler-Bemoulli model which are relaxed in the Timoshenko model. 

The effects of rotatory inertia and transverse shear deformation are included in the governing 

equation. It is mention in Ref. [12] that the significance of the difference in the deflection 

resulting from using both beam theories increases with increasing moving mass traverse 

velocity.

The issue of moving load and beam separation is addressed in Ref. [9-10,14]. The 

separation is detected through the monitoring of the contact force between the load and the 

beam. The contact force is a combination of the inertia of the mass, a centrifugal force, a 

Coriolis force, and gravity. There is also a time and velocity dependent force that is due to the



deformation of the surface. The contact force is nonlinear and is usually presented as a 

concentrated force with a Dirac-delta function. This separation issue needs to be addressed if 

the velocity of the moving mass is high.

In Ref. [15-17], the moving mass problem is solved with a finite element method. The 

advantage of using this method is its adaptability to other variations of the system. Since the 

beam is discretized, the interpolation is going to affect some aspects of the problem. One error 

in the interpolation at a certain time step is going to affect the next time step [16].

PROPSÏÏYOF 
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Chapter 3

3.1 Description of the System

A diagram of the system is shown in Fig. 1. The origin of the system O is on the left- 

hand-side (LHS) of the beam. The positive X-direction runs from the origin O toward the right- 

hand-side (RHS) of the beam. The positive Z direction is pointing downward. The positive Y- 

axis is the cross-product of the Z and X axes. The unit vectors along the X, Y, and Z axes are 

denoted by n^, Ay, n^.

A travelling force, f, or mass, m, is moving from the point of origin O toward the RHS 

of the beam. The length, height, and width of the beam are L, h and b, respectively. The 

Young's modulus of elasticity of the beam is denoted by E. The second moment of area and 

the density of the beam are represented as I and p, respectively, while A denotes the cross- 

sectional area. The boundary condition for the beam is either simply-supported (SS) or 

clamped-clamped (CC). The displacement of the beam under the travelling load is shown in the 

figure as w(x,t). The distance traveled by the moving load is denoted by Xm.

m

P Æ

m<Mrf ►
/// / / / / / /

► x

Figure 1 Euler-Bemoulli beam with a traversing load



Chapter 4

4.1 Governing Equation of Motion

The equation of motion is derived by using the extended Hamilton’s principle. The 

position vector, of a differential beam element is written as

% =(x + u)n,, +(z + w(x,t))n^ (1)

where Û, the axial deformation, is given as
ïï = - 2w '(x ,t) (2)

The prime denotes partial differentiation with respect to the spatial variable, and the superposed 

dot represents partial differentiation with respect to the temporal variable, t.

The position of the travelling load is written as

= (xm + ü) n^ + (z + w (xm, t)) h  ̂ (3)

The axial deformation in Eqns. (1) and (2) are dropped later because the beam is modeled by

the Euler-Bemoulli beam theory.

The kinetic energy of the system is contributed by the beam and the moving mass. The 

velocities required to formulate the kinetic energy equation are the derivatives of the position 

vectors, Eqns. (1) and (2). Thus, the kinetic energy, T, of the system can be written as

T = ̂ P a J  w^dx + afin-^m(w + w'w)^ (4)

ttfm is a Boolean variable. Values of 0 or 1 are assigned to ttfm when the traversing load is a 

force or mass, respectively.

The von Kârmân strain displacement relationship can be written as

exx= -zw '+ |(w 'f (5)



The strain energy of the beam Ub is written as

L L ^
Ub = | e i £  (w 'fd x + a ^ iE A j^  (w ') dx (6)

where % is a variable of either 0 or 1 to indicate a linear or nonlinear strain-displacement 

relation. Symmetry of the cross section is assumed.

The virtual work done by the traversing load is

5Wg = (agnmg + (1 -  “ fin ) f  ) (^)

The position of the beam is normalized by the length of the beam L. Therefore, the normalized 

position will be noted as ^ in all subsequent derivations.

The deflection of the beam w(x, t) is expanded as the product of the length of the beam, a row 

vector calculated via the eigenfunction and a column vector of an undetermined parameter q(t).

w(4,t) = LWT(4)q(t) (8)

The eigenfunction for a simply supported beam is [18]

Wi(Ç) = Æsin(XÆ) (9)

where the nondimensional frequency Tii, for i = 1,2, 3, . . .

For a clamped-clamped beam, the eigenfunction is [18]

Wj (^) = cosh (Xj^)-cos (Xi^)-CTj(sinh(^i4)-sin (Xj^)) (10)

where

cosh X:L -  cos X;L .
î= . . , T r - r f  (11)sinhXjL-smÀiL 

and X.j are the zeros of the characteristic equation

cos IjL cosh 1;L = 1 (12)



Eqn. (8 ) is substituted in Eqns. (4), (6 ) and (7) and the resulting equations are used in the 

extended Hamilton’s principle

Jô(T -U b)dt+JôW gdt = 0  (13)

Variation is taken over the undetermined parameter q(t) and, after some algebraic manipulation, 

yields the system of governing equation

(m  + ) q + 2ag„mxlniC,q + (Kj +

+ «NL 1^4 ) q = (afi^m^gn + (1 -  )fr)Wm
(14)

where

M . j W d i  g „ = l

C , = K 3 = W „W :’' k , - ^  f 'w ’W'^dÇ K , = W „W ;T (15)
pAL Jo

K 4 = ^  fT H qq ’̂ H+-q'^HqHldÇ 
pL Jov  —  2 -  -  J

The unl will be 1 when the system is in a nonlinear scenario and 0 otherwise. K2 and K3 in Eqn. 

(14) contribute to the asymmetry in the stiffhess matrix which represents the circulatory 

(centrifugal) forces. The asymmetry in the third term gives rise to gyroscopic (Coriolis) forces. 

In Ref. [19], Ci is written as

|(w „ W ;T  + W ; w T ) q  (16)

which does not have the gyroscopic force since the matrix is symmetric. The consequence of 

such misrepresentation will be demonstrated later.



Equation (14) is solved using the ordinary differential equation solver function ode45 of 

Matlab software. Its default error tolerance is 10*̂ . The interval of integration is the same as 

the time required for the force or mass to traversing through the whole beam span. The applied 

initial conditions are

q(0) = q(0) = 0 (17)

10



4.2 Fryba’s Series Solution

The series solution of the deflection of the beam under a force is found in the text by 

Fryba [2]. The Euler-Bemoulli beam is used with a simply-supported boundary condition.

There are two equations to consider. When the velocity ratio a is not equal to the mode number, 

j, in the series, the deflection is calculated as

w (x,t) = w „ ^ s in jTix 1 ( . .  a . (18)

In the case when the velocity ratio a is equal to a value n and it is also equal to the mode 

number j, the displacement is then calculated as

where

/ , \  1 / . . , , \ . nTtxw ( X , t ) = w. — r( sm ncot -  not cos ncot ) sm +
^  “ 2n^  ̂ L

w. sin-J^ 1  ̂ a . ^sinjcot—rsmco^jjt

;2 _ 2 El

(19)

(20)

The displacement is depicted in the validation section and it is compared to the displacement 

calculated with Eqn. (14) in this study.

11



Chapter 5

5.1 Numerical Simulations and Discussions

The geometric dimensions and material properties of the beam used in the simulation 

are identical to those in Ref. [6 ], unless specified otherwise. The length L of the beam is 6  m 

and it has a square cross section with an area of 0.16 m .̂ The beam is made of a material 

whose Young’s modulus E is 280 MPa and the density p is obtained from the ratio El/ p A, 

which is kept constant at 275.4408 m'*/ŝ . The traversing force fr = 0.2 /s  ̂and the 

nondimensional traversing mass mr is 0.2. While the governing equation, Eqn. (14), is for a 

traversing load in general motion, the results are presented for those cases while the load travels 

at a constant velocity; hence the acceleration term is ignored.

For clarity of presentation, the results and discussions are presented in four subsections.

5.1.1 Validation

Here, attempts are made to validate the model by comparing it with those found in the 

literature. The first investigation is a moving force scenario in which the force travels at a 

constant velocity of 6  m/s. The deflections of the beam under the force, w (4, t), obtained with 

the present model and that obtained using Fryba’s series solution [2] are depicted in Fig. 2. A 

good agreement is observed between the two results, with the latter providing a marginally 

higher peak deflection.

12



-0.05

- 0.1

-0.15

- 0.2

-0.25

-0.3

  Fryba
present investigation

-0.35
0.1 0.2 0.3 0.4 0.5 

t (sec)
0.6 0.7 0.8 0.9

Figure 2 The displacement o f  a force traversing a simply-supported beam 

Figure 3 is a reproduction of the results by Sadiku and Leipholz (see Fig. 3 in Ref. [6 ]) which 

are displacements of the traversing load. It involves a simply-supported beam traversed by a 

mass or force travelling at a constant velocity of 6  m/s. Four cases are investigated. The first 

case is a moving force scenario; it is the same scenario reported in Fig. 2. The second case is a 

moving mass scenario in which the convective terms in Eqn. (14) are ignored. Hence, the terms

involving % and are ignored. In the third case, a moving mass scenario is considered but the

velocity square, , term is ignored. The fourth case is also a moving mass scenario, but

includes all the terms in Eqn. (14).

A visual comparison with Fig. 3 of Ref. [6 ] and Fig. 2 of Ref. [20] shows that the result 

for the traversing force is in good agreement. The traversing mass result of Ref. [20] is in good

13



agreement with the fourth case of the present study, as expected. However, that of Ref. [6 ] is in 

good agreement with only the third case of the present study. This is the case where the velocity

square term term is ignored. It is perhaps worth noting that the authors do not mention this 

assumption specifically, but it is not uncommon that the assumption is made in order to make 

the mathematics more tractable, for example in Stanisic [8 ].

-0.05

- 0.1

-0.15

- 0.2

-0.25

-4 — force
- e -  mass; no convective terms 

mass; no velocity square 
—6— mass

-0.3

-0.35
0.7 0.80.4 0.5 

t (sec)
0.6 0.90.2 0.30.1

Figure 3 The displacement o f a force/mass traversing a simply-supported beam 

The aforementioned four cases are repeated for clamped-clamped beam boundary conditions 

and the results are depicted in Fig. 4. The traversing force result is in better agreement with that 

of Gbadeyan and Oni [20] (see Fig. 2) than Sadiku and Leipholz [6 ].

14



0.01

- 0.01

-0.03
E

E
-0.04

-0.05

-0.06

- force
- mass; no convective terms
- mass; no velocity square 
" mass

-0.07

-0.08
0.30.1 0.2 0.4 0.5 

t (sec)
0.6 0.7 0.8 0.9

Figure 4 The displacement o f the traversing load on a clamped-clamped beam 

Again it is observed that the displacement of the traversing mass reported in Ref. [6 ] is not in 

agreement with both that of the present study and that of Gbadeyan and Oni Ref. [20]. However, 

there are slight differences between the result of the present study and that of Ref. [20] even 

though the peak displacements are approximately equal.

It is observed that the formulation by Lee [19] does not have the gyroscopic forces term. 

The implication of this is investigated for both the simply-supported and clamped-clamped 

beam boundary conditions. The results are depicted in Figs. 5 and 6 , respectively. It is observed 

that while the profiles of the displacement of the traversing mass are in good agreement, the 

exclusion of the gyroscopic forces always overestimates the peak displacement and generally 

predicts higher displacements about the 0.4 sec mark.
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Figure 5 Effect o f the representation o f the gyroscopic for a simply-supported beam
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-0.07
present Investigation 
H. P. Lee

-0.08
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Figure 6 Effect o f the representation o f  the gyroscopic forces for a clamped-clamped beam
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5.1.2 Effect of Beam Second Moment of Area

The effect of the second moment of area is examined in this subsection. Three sets of 

cross-sectional dimensions are considered: {0.4 x 0.4}, {0.2 x 0.8} and {0.8 x 0.2}. The first 

entry is the width and the second is the height of the cross section. The displacements of the 

traversing mass for both the simply-supported and clamped-clamped beam boundary conditions 

with the linear strain-displacement assumption are illustrated in Figs. 7 and 8 , respectively. The 

results indicate the independence of displacements on the second moment of area of the beam 

for a given set of boundary conditions. It is, however, not unexpected and the figures have 

been included solely for completeness. This is because, although the Ki term in Eqn. (14) is 

influenced by the beam second moment of area, the value of the ratio El / pA remains constant.

- e -  0.8x0.2(0.0064/12) 
- e -  0.4x0.4(0.0256/12) 

0.2 X 0.8 (0.1024/12)

-0.05

- 0.1

-0.15

- 0.2

-0.25 0.7 0.8 0.90.5 
t (sec)

0.60.40.2 0.30.1

Figure 7 The linear displacement o f the traversing mass on a simply-supported beam
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0.2 X 0.8 (0.1024/12)
-0.08

0.30.1 0.5
t(sec)

0.7 0.80.2 0.4 0.6 0.9

Figure 8 The displacement o f  a traversing mass on a clamped-clamped beam 

The corresponding results for the assumption of nonlinear strain-displacement relation for 

a simply-supported beam are depicted in Figs. 9 and 10. The former is a traversing force 

scenario and the latter refers to a traversing mass. Unlike the observations in the preceding 

linear scenario, the peak displacement and its time of occurrence are observed to increase with 

increasing beam second moment of area. The increase in the peak displacement can be 

understood by observing that the value of the ration E/p which appears in the K4  term of Eqn. 

(15) decreases with increasing beam second moment of area. Therefore, the net effect on the 

effective stiffiiess is stiffening with decreasing beam second moment of area.

18



0.05
- e -  0 .8x0.2(0.0064/12) 

0.4 X 0.4 (0.0256/12) 
0.2 X 0.8 (0.1024/12)

-0.05

- 0.1

-0.15

- 0.2

-0.25

-0.3^
0.2 0.5 

t (sec)
0.8 0.90.1 0.3 0.4 0.6 0.7

Figure 9 The nonlinear displacement o f  a traversing force on a simply-supported beam
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Figure 10 The nonlinear displacement o f a traversing mass on a simply-supported beam
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5.1.3 Effect of Traversing Velocity

The effect of the traversing velocity is investigated in this subsection. The results for the 

case of linear strain-displacement assumptions are depicted in Figs. 11 and 12, and those for the 

nonlinear strain-displacement case are illustrated in Fig. 13. Both simply-supported and 

clamped-clamped beam boundary conditions are investigated in the linear analysis, but only the 

simply-supported beam is examined in the nonlinear analysis. The traversing velocity is 

represented as a fraction of the critical velocity, which is calculated as

i = <4c, amd 4 c , = J - ^ » L  (21)
Y pAL

The value of the critical velocity is computed as is 8.6898 m/s.

A general trend from the results is that there exists a boundary condition dependent 

critical velocity fraction below which the peak displacement increases with increasing fraction, 

and above which it decreases with increasing fraction. Further, there is also a boundary 

condition dependent critical velocity fraction below which the analysis effectively collapses to 

a quasi-static condition.

Perhaps it is worth mentioning that the above observations also hold for the case of 

nonlinear strain-displacement relations, as can be inferred from Fig. 13.
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Figure 11 The linear displacement o f  a traversing mass on a simply-supported beam
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Figure 12 The linear displacement o f a traversing mass on a clamped-clamped beam
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Figure 13 The nonlinear displacement o f a traversing mass on a simply-supported beam

5.1.4 Effect of Velocity Square

As noted in Section 5.1.1, during the process of validating the formulation and the 

computer codes developed for this project, some investigators ignore the square of the 

traversing velocity in order to make the mathematics more tractable. The problem with this is 

that no convincing reasons are often provided, especially when the velocities are so selected 

such that the length of the beam is traversed in a second. The object of this subsection is to 

examine, via numerical simulation, the existence of a threshold traversing velocity below which 

the assumption is valid. Figs. 14 and 15 are the displacements for both linear and nonlinear

simply-supported beams with and without the velocity square term 4^. The critical velocity is 

determined from Eqn. (21).

2 2



As expected, the effect of ignoring is negligible for a very small critical velocity

ratio, about 0.1 in the results reported. The differences are most amplified around the peak 

displacements. In fact, ignoring the square velocity term underestimates the peak displacement. 

This would imply that the term modulates the stiffness so as to create a softening. Further, it is 

noted that the velocity used in the studies reported in Ref. [6] corresponds to a critical velocity 

ratio of 0.69, which is much greater than 0.25, and hence explains the discrepancy in the results 

reported in Fig. 3.

0.05
- e -  without velocity square 

with velocity square

-0.05 -

a=0.05- 0.1 -

-0.15 -

- 0.2

-0.25

tt—0.25
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0.3 0.5

4
0,6 0.7 0.8 0.90.1 0.2 0.4

Figure 14 The linear displacement o f a traversing mass on a simply-supported beam
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Figure 15 The nonlinear displacement o f a traversing mass on a simply-supported beam
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Chapter 6

6.1 Conclusion

The objective of this study is to investigate the response of an Euler-Bemouili beam 

under a constant velocity traversing load. The load is either a point force or point mass, and the 

boundaries of the beam are constrained as simply-supported or clamped-clamped. The system 

governing equations are derived using the extended Hamilton’s principle. Both linear and 

nonlinear strain-displacement relations are assumed. However, the clamped-clamped boundary 

condition is only simulated with the former assumption.

The fidelity of the developed equations is confirmed by reproducing the results in the 

literature. Some inaccuracies in some of the studies in the literature are observed during this 

exercise and their consequences are noted. Following the confirmation of the fidelity and 

validity of the model and corresponding governing equations, the effect of some parameters on 

the system response are investigated. Specifically, these parameters are the traversing velocity, 

second moment of area of the beam, the centrifugal forces, and the velocity square.

The following observations are inferred from the study:

1. The displacement of the moving force model, for both simply-supported and clamped- 

clamped boundary conditions, is not necessarily an upper bound when compared against that 

from the corresponding moving mass model.

2. The displacement of the traversing load for a clamped-clamped boundary condition is 

significantly lower than for a simply-supported boundary condition. This is attributable to 

the higher stiffiiess induced by the former.
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3. The maximum displacement of the traversing load does not always occur when the load is at 

the mid-span location of beam. This behaviour is a consequence of both the reflected waves 

from the boundary of the beam and the velocity of the traversing load.

4. The second moment of area has no effect on the linear strain-displacement scenario, but has 

a significant influence on the displacement of the traversing load for a nonlinear strain- 

displacement scenario. Specifically, the peak displacement and its time of occurrence 

increase with increasing beam second moment of area. Hence, the stiffness increases with 

decreasing second moment of area.

5. The exclusion of gyroscopic forces in the governing equation of motion overestimates the 

peak displacement of the traversing mass for both simply-supported and clamped-clamped 

boundary conditions.

6. The exclusion of the convective terms makes the governing equation of motion 

mathematically more tractable. Although a good displacement profile is generally observed, 

there are differences in the displacements at any given time. Further, for the parameters 

investigated, the magnitudes of the peak displacement are relatively equal, but they are 

observed at different times.

6.2 Future Work

This study can be advanced by examining the following:

1. Accelerating traversing load scenarios.

2. The effect of a nonlinear strain-displacement relation assumption for the clamped-clamped 

boundary conditions case.

3. Other types of loads such as distributed loads.

4. Other boundary conditions such as cantilevered or clamped-free.
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5. Other beam models such as the Rayleigh beam model and the Timoshenko beam. The 

former includes rotary inertia while the latter includes both rotary inertia and shear effects.
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