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A SMART HOME EMBEDDED COMPUTER SYSTEM ON
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Jonathan B. Chan
Master of Applied Science
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Abstract

System on Programmable Chip (SoPC) based embedded system development has been
increasing, aiming for improved system design, testing, and cost savings in the workflow for
Application Specific ICs (ASIC). We examine the development of Smart Home embedded
systems, which have been traditionally based on a fixed processor and memory, with inflexible
configuration. We investigate how more ability can be added by updating firmware without
the burden of updating hardware, or using a full (but dedicated) general purpose computer
system. Our development and implementation of the smart home controller is based on
the SoPC development environment from Altera. The development board includes all the
necessary parts such as processor, memory, and various communication interfaces. The initial
implementation includes a simple protocol for communication between home appliances or
devices and controller. This protocol allows data transfer between home appliances or devices
and the controller, in turn allowing both to support more features. We have investigated and
developed a home resource management application. The main resources being managed in
this project are hot and cold water, electricity, and gas. We have introduced a number of
expert rules to manage these resources. Additionally, we have developed a home simulator,
with virtual appliances and devices, that communicates with the home controller. The
simulator interacts with the SoPC based smart home embedded system developed in this
project by generating messages representing a number of smart appliances in the home. It
provides a useful testing environment for the smart home embedded system to verify its

design goals.
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Chapter 1

Introduction

1.1 From ASIC to SoPC

Modern digital systems have come a long way from discrete analog and digital components
to integrated circuits, to multi-chip IC components, and finally to single-chip Application
Specific IC (ASIC) components.

Many application specific designs call for the use of a microprocessor to perform various
calculations and tasks. An example of this is the increasing popularity of portable media
players that get data from a data store across a common peripheral bus and must manip-
ulate the data before passing it onto other components. Another is to monitor a process,
periodically reading sensors and processing the data. Rather than designing and debugging
a custom microprocessor, a more cost effective method is to incorporate existing designs
such as ARM processor cores. According to ARM’s milestones [1], they released the first
embeddable RISC core using ARMS6 design in 1991. ARM continues to license processor
cores today, and are one of the most common embedded processor cores available. Another
advantage to this method is many system interconnections can be incorporated onto the
chip, removing many large bus traces from a finished system board.design. This may help

to reduce noise pickup, and latency, and recover physical spaces which may be extremely
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valuable in some installations. The other problem with fixed systems is glue logic, such as
hardware memory mapping which often can’t be changed after a system has been deployed.

Embedded engineers are pushing more and more components into a smaller chip space,
faster and lower power components, all while keeping the system development time as short
as possible. The advantage that ASICs bring to the table are space savings, often high
speed operation, and high reliability but all of this at a huge cost of time and money in the
development cycle [2, 3]. Along similar lines, modern homes have been coming with more
built-in convenience, adding systems and features to help users manage their home, all in the
push for more efficiency, cost savings, and stress reduction - often caused by the development
cycle of modern digital systems.

System on Programmable Chip (SoPC) platforms provide an accelerated design cycle by
providing some existing core design as well as enable prototypes to be quickly made and
re-designed as needed. The processor cores can later be incorporated into an ASIC. SoPC
are not only great for prototyping and general experimentation, but they’re appropriate for
designs which may be incorporating new technologies and ideas, such as communication pro-
tocols. They're also good for applying different models without changing physical hardware.
That helps reduce production and parts sourcing costs. These designs may not return to
manufacturing on ASICs, but will retain final designs on FPGAs or other programmable
logic devices, allowing for future hardware updates in addition to software. This kind of

system is our focus in this project.

1.2 Smart Home Control

Home control has been around for many years, and remains a niche market luxury item.
Most homes still do not have smart installations although more and more larger homes
will have some provision for running household networking or other auxiliary wiring. Many

systems today concentrate on running whole-house radio or smaller automation systems for



home theatre spaces.

The technology and protocols used were at one time proprietary although they are be-
coming more open and standardized. Still there is a lot to be desired in the open-ness of any
particular system. There are many standards in use today and your geographical location
will dictate the most common standard in use or available in that area of the world. There
are more than eight each standards and protocols for home control available today [4].

A smart home is a living space that has been augmented with technology in order to
assist the occupants in some manner. There are many definitions of what a smart home is,
as well as many considerations done when designing one. The home is a part of daily living
and should take an active part in providing comfort, utility, and safety for its occupants.

A Smart Home can have many different definitions depending on who you talk to. A
2004 study showed that home technology leading to greater safety and environmental benefits
were favoured. This benefits everybody in the future, where costs of living are rising, and
environmental issues are brought to the'f‘orefront [5]. Other uses include pure luxury or
unloading some of the burden of home care and safety onto a mechanized (or in this case,
computerized) system.

Homes are a personal space, and the occupants must “get along” with it, or in a more
common case, the home will be changed according to the wishes of its occupants. We often
want to support family and friends in a familiar comforting surrounding. It invokes a feeling
of safety, peace and nostalgia, having lived many years in a home. Having said so, the home
is also a place to get work done. It is a place to study, research, and do chores in. Security
is an issue that we often have on our minds as a break-in and theft often leave us feeling
extremely vulnerable, violated, and that the home is no longer a safe haven.

People are specific about what they ‘want to accomplish with the technology in their
homes, living, or work spaces. We introduce technology for minimizing the impacts of

conditions on getting work done. With the home control platform, the home will provide



information to the occupants, if they wish to see it. It will also manage the resources of the
home in order to provide a certain quality of service. As a base system, this will allow more
advanced features to be built on top as embedded software (firmware) features or add-on

modules.

1.3 Motivation

In North America, X-10 appears to be the most well established control protocol. At the very
least, it is easy to find X-10 equipment and references to such equipment [6]. One only has to
do an internet search for “X-10” or “X10” and will find many resources. There are software
and hardware automation modules available for the X-10 system, but they are restricted to
sixteen basic functions that the individual modules understand. The connection to a PC is
a serial connection, something that’s becoming increasingly rare in new computers. X-10
works by sending serial data over a carrier on household power. It has been in the market
for a very long time and will continue to do so. Being a legacy system, it has its share
- of -advantages and disadvantages. The data protocol is a simple fixed 5-byte coding. The
system cannot support arbitrary information and new multifunction devices.

One benefit of data over power lines is that the infrastructure is already in place in both
new and legacy homes. This avoids the cost and problems associated with retrofitting legacy
homes with additional control infrastructure. In new homes, it is easier if the house had
been fitted with extra cable routing capability such as piping during construction.

In this project, we propose an open system that will be upgradeable and extensible. This
system supports common functions (the features that people are accustomed to and expect
in a basic system) as well, it will be able to incorporate new functionality as required. The
system is flexible enough to allow new technologies to be interfaced to the existing system.
We achieve it by allowing any arbitrary set of commands and data descriptions from the

devices. There is a simple data protocol we call “banter” that’s sent within a standard



TCP/IP packet. The banter protocol is illustrated and explained further in section 3.3.2.
It allows for an arbitrary data length, although fitting it in a single packet is preferred.
The system acts as the gateway to the functions of the home - a home API or middleware
approach. This makes the system to be somewhat autonomous while supplying functions
and services to software at a higher level, to allow custom control applications to be easily
written for the system.

The controller’s physical infrastructure follows the same principle, allowing for adoption
of new communications equipment if necessary. The initial design uses standard ethernet
and TCP/IP. Serial, USB, and other connectivity options can be adapted later. Following on
the heels of many researchers and hobbyists alike who have adopted many kinds of control
technology, we would like this to be “hacker friendly,” enabling hardware and software to be
modified by anybody. This should'also ease adoption of new technologies and even custom
designs. It would allow for people to integrate and create a system of their own design, even
using existing devices in a novel way. To help facilitate this, the system code as well as the
protocols used must be open and royalty-free. Although the design as-is uses a new protocol,
support for existing protocols could be written, and thus the system could be brought into

standards compliance and also up to the latest “state of the art.”

1.4 Augmenting the Home

Smart homes have enhanced features or functionality over basic homes. The technology is
used to provide additional services such as improving its efficiency, allowing itself to be con-
trolled or monitored, to provide and facilitate information, multimedia, or assistive services.
These can largely be classified into two main categories, passive and active technology.

A few examples of passive technology are enhanced insulation, design, or materials selec-
tion to take into account the local environmental conditions, with the goal of saving energy

in heating or cooling costs. This kind of technology doesn’t need active participation for it



to work. Design of a workspace also has an impact on the convenience and ease of use. Take
the example of a kitchen. There are storage and work locations that are constantly used.
Designing a kitchen that reduces the amount of walking, and allows for convenient access to
all resources is an intelligent design, which is passive in use.

There is also active technology in which much research is being done today. Active
technology uses electronics such as computers to help. The computers can be small low-
cost embedded micro-controllers, larger embedded systems, a dedicated control computer
for centralized control, or something in between. Once active technology comes into play,
we start to involve what is typically known as automation.

The smart home embedded system makes decisions based on sensory inputs. .It acts and
reacts to what the occupants are doing. The occupants can allow the system to make these
decisions or they can override the system. The users still have complete control, but only if
they want to. They are no longer obligated to control every aspect of the operation or use
of the home.

Augmenting an existing home can take place mainly in two phases. The first option is to
~ install the system during construction of the house before the walls are put up. Doing so will
only marginally add labour costs and materials cost, as other electrical and communications
infrastructure is incorporated at a time when everything is accessible and easily routed.
The second option is to retrofit an existing home. This usually means fishing the cabling
through walls and ceilings and around any other obstacles, and adds a substantial amount
to the labour cost. Having existing conduit, as in some newer homes will help a lot with this
problem, but there may not be conduit in all the places you want or need.

Fortunately, modern home builders are starting to see the benefits of installing extra
wiring during the construction phase. People are becoming comfortable with modern technol-
ogy and their use, including home net\&orking and home theatre installations. Pre-installed

wiring installed helps to sell houses, so options are becoming available in new housing [4].



1.5 Home Automation

One aspect of automation is the direct control of various devices in a home. This is typically
what a controller is used for and has beeh done successfully, for example X-10. Historically
this is, what all home control systems have been performing. Through various technologies,
the controllers allowed for electronic centralized control of lights, electrical sockets, fans, and
other devices through a simplistic on/off or dimming function. Many new controllers for the
old fechnology are able to set alarms and timers for these devices. Newer technology has
extended functions such as activation on external triggers, setting scene lighting for home
“theatre setups, or in the general case, one trigger for setting multiple devices.

Moving up to the next level, sensors can be incorporated into the system. These systems
are starting to allow a simple state of automation. Motion sensors can activé,te lights and the
system can deactivate them after a period of inactivity. Power savings and other conveniences
can now be incorporated into the home. ‘Feedback from light sensors can help in adjusting
light levels at all the times of a day but often require tuning over a period of time. They can
also be used to automate window blinds, and iq combination with temperature sensors, can
affect heating and cooling to passively regulate the environment.

Aside from the issue of control is the convenience that control brings, and the convenience
features that are starting to emerge. Appliances may talk to a home controller to regulate
its resource usage, such as water and electricity. If resources are running low, decisions can
be made as to which device will have priority over a resource. Smart devices may be placed
-around the home to provide convenience by giving reminders, displaying information, or
alerting you to dangerous conditions. These are devices that we may or may not regularly
interact with, but are capable of bringing our attention to something.

There may be a need‘of additional services such as an interpet connection, or at least a
back-end information system. A smart door reminder can alert you to the weather before

you leave, or remind you to bring certain items, and attend to appointments. This is now in



the realm of information systems [7]. With information systems available, augmenting the
environment can be achieved in more ways than simple sense-and-react. Some examples of
this are a door reminder, environmental monitoring and reminders, and smart displays [8].
The information system interfaces should be placed in strategic places in order to maximize
the usefulness of the system. A well placed LCD panel can serve as a replacement photo frame
or painting, displaying photos when idle, and showing alerts when needed. An alternative is
_ to hide the display behind a real photo or painting.

Going to the extreme, the whole house can be covered in hundreds or thousands of sen-
sors, enabling monitoring of everything conceivable and possibly even detection of “unusual
behaviour” without having to manually train the system [9].

Security services are a peace-of-mind option. A smart home should assist you while you're
inside, and as a matter of secufity, it can be monitored and controlled remotely as well. It
not only allows an agency to monitor your home, as in current alarm system installations,
but the home can choose to contact you or some other designated person before alerting
the monitoring centres. This may be good for satisfying various levels of paranoia or if a

“monitoring agency isn’t available.

The technology involved typically includes the everyday devices such as switches, sockets,
lights, and other appliances. More and more appliances now and in the future will include
some sort of connectivity features such as networking, or data transfer capabilities. In ad-
dition, sensors and small control devices are added to facilitate this extended functionality.
For example, motion sensors in a room can trigger the system to automatically turn the
lights on for the room. There is definitely an element of synergy involved in the control of

the home. Many of these can be exploited with a centralized control system [10].

Current State

Most of the experimental research systems require a high level of computing hardware, many



of which are custom made for a very specific application or service. This makes the system
less practical and more costly. Some examples are machine vision and language interfaces
[11].

Moreover, the current home systems incorporate a lot of older standards and technology,
limiting the capabilities of the system. Our design focuses on being practical and usable.
In order to fulfill this, the system must have expansion capabilities, therefore the controller
must provide a data service. It cannot hold onto the old standards with little to no feedback
and simplistic hardwired control. Data can change and can be updated to incorporate newer
system capdbilities.

The proposed specification aims to cover some of the broader issues as well as some spe-
cific needs in the design for the home controller. The data capabilities must be present in
order to provide the usability and re-usability, lowering the total cost involved in employing

the system.

Design of Smart Home Control System

The home control system is service oriented, providing lightweight data to a centralized con-
troller described in this report. This is in contrast to full service oriented architectures (SOA)
involving de-centralized services [12]. Although SOA lends itself to de-centralized operation,
the presence of a centralized controller can simplify the devices and provide co-ordination.
A fully decentralized system is difficult to manage and control due to distributed configura-
tion components (configuration for individual devices, etc.) and independent services being
provided. Management and security can be more éasily implemented and configured from
one central device which all other devices must interact with. This central server can be
a more traditional home control system server with services implemented, or it can itself
act as a decentralized device that provides exported data and control services, essentially a

data-store device for consolidation.



A decentralized system doesn’t have physical infrastructure to connect all the devices,
thus they must all be able to route and re-route to find the devices that they want to
communicate with. With the centralized system, the infrastructure is complete, connecting
all devices to a central location. In application, the centralized system is actually a hybrid,
with many “mini-controllers” located to consolidate devices within a specific area to minimize

physical connectivity problems. A fully centralized system is shown in Figure 1.1.

Figure 1.1: Fully Centralised System.

The data services allow for the devices and appliances to be controlled in a very open
fashion, not restricted to a rigid bit-value system. Freeform input can be used and stored
in the controller, to be read back to the device. Each device simply needs to understand its
own command set, and will be able to update the controller on what commands it’s able to
process.

There is an information system that allows logging of events in the system, as well as
being able to route messages and events to different devices. This allows for the information
display type of devices. Resource management is built on top of this infrastructure, using
message passing between the devices/appliances and controller to ration out finite home
resources.

To summarize these ideas, our smart home controller prototype uses the centralized

10



configuration, with direct communication between devices and appliances to the controller.
Due to the growing use and high availability of Ethernet cables and equipment, Ethernet
is the initially supported medium. We implement the “banter” protocol, which is a simple
handshaking and data transmission protocol that supports arbitrary data lengths. The
protocol is explained further in section 3.3.2. This allows the controller and connected
devices to implement any feature, and not be forced into a rigid bit-value system. The main
feature of our prototype is resource management, which can be considered a building block

that allows other features to be implemented in the future.

1.6 Contributions

In this project, we investigate smart home control embedded systems and home resource
management. Using a development environment from Altera, we implement the smart con-
troller hardware with a NIOS processor core ‘and peripheral components. The firmware is
written in C and built with supplied NIOS build tools. The aim of smart home control is to
improve the quality of living. An embedded resource management application is developed
for regulating the usage of common home resources such as hot and cold water, electricity,
and gas to improve the quality of service of those resources. Verification of the system is
assisted by creating a home simulator system in absence of physical smart appliances and
devices. The simulator allows for the continual development and testing of the smart home

embedded control system.
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Chapter 2

Smart Home Technology: Overview

Home automation was at its peak in the mid-80s but has died down twenty years later.
The technology today certainly doesn’t feel twenty years advanced, as much as computers
have continued to evolve and make themselves an ubiquitous part of home and work life
today. During this time, the focus and scale of “home automation” or “home control”
has encompassed the basic systems and functionality to large commercial or “professional”
installations. Many standards have been established but continue to be different in different
parts of the world.

The industry hasn’t been dormant but also hasn’t visible unless you go looking for it.
Much of the focus with commercial systems, as an example, is to make large office buildings
more energy efficient, providing green technologies to lower operational costs, as well as be
more environmentally friendly. Consumer level control seems to have remained more or less
unchanged since the introduction of X-10. A summary of existing hardware infrastructure

and control protocols concerning the smart home systems is presented in this chapter.
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2.1 Simple Hard-wired Control

Any standard home we see today is made with simple wiring connections. Control is at
almost every point in the system. Light switches control room lighting and wall sockets, and
individual devices such as a lamp, have their own control. They are all independent and will
not interfere with any other device’s operation, barring a device tripping the circuit breaker.

This is the basic implementation used in homes everywhere. There may be 15-25 circuits
in an average house, with many devices Hanging off each of them. There are disadvantages
to this approach and when a breaker trips, all devices connected to it will lose power. If one
needs to do maintenance on any section of the physical circvuit, power to the complete circuit
must be cut, losing other devices while work is being done. Most of the installation of the
circuits don’t follow any hierarchy, and a single circuit breaker often controlé power to many
unrelated areas of the house. Even X-10, explained in the following section, is only a slightly
updated wired system where only simple control is offered. This is relatively inexpensive

and is one of the reasons why it is so widely employed.

2.2 Power Line Control

The protocols in the following subsections carry the protocol on the power lines. This is the
way it was done for most early protocols and is still a popular option today. There are many
advantages and disadvantages of this system. The main advantage is that it can be us;,d
in existing homes or buildings without the installation of additional wiring exclusive to the
control system since presumably power is available everywhere. This allows for immediate
use (instant gratification) of devices connected to power. It avoids the hassle of installing
separate infrastructure to carry the control signals. This is the way most early protocols

have been worked out.
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2.2.1 X-10 and Insteon

X-10 is a legacy home control protocol used over power lines [6]. The control modules are
plugged into the existing household power line that receives and sends control signals over
the power line. It is then bridged to a standalone or computer-assisted controller. There is
a limit of 256 devices on the system (combining the 16 house codes with 16 device codes)
and the control signals are subject to any interference on the power system. Early switch
. mode power supplies, such as found on very early desktop computer systems were notorious
for feeding noise into the power system, interfering with many FM-based communications

equipment. Modern supplies tend to be more quiet.

—— 60Hz line voltage
— 1st Phase
— 2nd Phase
— 3rd Phase

Figure 2.1: X-10 zero crossings.

The protocol requires live power because it depends on its zero crossing to transmit data.
At the zero crossing, it sends data bits as bursts of 120kHz, about 1ms long. For a North
American 60Hz single phase circuit, the zero crossings happen every 1/30th of a second. For
three phase systems, the data pulse is repeated for the zero crossings corresponding to the
remaining two phases. Thus, the three data pulses occur within a half cycle as shown in
Figure 2.1. Note that X-10 hardware doesn’t know or care which half of the cycle is crossing.
It only uses the crossing as a synchronization marker. With the exception of the start code,
all bits are complimented on the alternate half of a cycle as a simple error check. Codes are

transmitted in groups of two, each taking 11 cycles. Each group of codes is separated by

14



three quiet cycles. This results in a pair of commands every 25 cycles [6].

The computer interface is a proprietary control board connected to a serial port that is
becoming uncommon in modern computer systems. USB serial adapters have been known
to be less than precise on their timing such that many won’t work well with the hardware
controllers, though this is becoming less of a problem.

While X-10 is still prevalent, a new system is now on the market called Insteon [13].
Insteon can be installed as a standalone system or as a supplement to the X-10 system,
moving the control signals off the power lines into the air. This is supposed to reduce
interference problems caused by devices injecting noise back into the power system. This
isn’t a fully wireless system. The modules, such as lighting control don’t have wireless
transceivers. The Insteon system transfers control over RF back to a power line bridge
interface to control devices on the wires. This hybrid approach appeals to customers already
invested in the X-10 system but are looking for updated capabilities.

Insteon has two modes of operation, Insteon mode and X-10 mode, switching between
them as necessary. While in X-10 mode, it communicates using the X-10 protocol. When in
Insteon mode, it allows for a more complex protocol to be recognized. The Insteon protocol
works on a higher 131.65KHz carrier, and allows for data to be transmitted, in addition to
simple control. The burst period starts approximately 800us before the zero crossing, lasting

1.823ms. It has a sustained data rate of 2880 bits per second, and a much higher burst rate.

2.2.2 CEBus

The Consumer Electronics Bus (CEBus)A was introduced around 1989 as the next step in
automation [14]. It proposed a standard based on many goals, including versatility, sim-
plicity, low cost, compatibility, media independence, fast response, and fairness. Some goals
and technical issues have been excluded, such as security - there are no provisions for secure

communications [15, 16].
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The CEBus standard uses four of the layers in the OSI model. They are the Application
Layer (layer 7), Network Layer (layer 3), Data Link Layer (layer 2), and Physical Layer
(layer 1). The complete specification is quite involved, and is not a simple four-layer model,
as some of these layers have sub-layers. Control is handled via the Application Layer, a
table-based system with fixed device functionality. Using the common application language
(CAL), devices can be mapped to a set of pre-defined node types, such as “binary switch”,
“analog control”, or “keypad”, to name a few.

| CEBus can also operate on power line and uses 120kHz bursts, which enables it to
interfere with the X-10 system. There are some protocol features that enable its coexistence
with X-10, but this reduces the maximum bit rate that can carried on the line. It also has
the same drawbacks as the X10 system as far as the power line medium itself is concerned.
CEBus however, doesn’t need liVe power on the lines as it doesn’t use zero crossings. To
help combat the problem of interference, it uses a spread spectrum carrier, sweeping from
100Hz to 400Hz as it transmits bits.

There is an X-10 compatibility mode where it will generate an invalid X-10 code for any
code that would otherwise be misinterpreted by the X-10 devices. This however, reduces
the maximum bit rate from a nominal of 7000bps. A typical packet would be approximately
40 bytes of data, including addressing information. In addition to the power line medium,

CEBus specifies many interfaces such as twisted-pair, coax, and others.

2.2.3 LonWorks

LonWorks was developed initially for large scale automation in commercial and manufac-
turing settings. Since its inception, it has been scaled down to fill in the gap between large
scale and smaller home control environments. It is not a home control standard per se, but
a standard that enables automation in a wide variety of environments [17].

It is not meant as an end-user application, with development tool kits costing a signif-
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icant amount. A development kit may contain the development environment along with
development hardware for a single or multiple LonWorks nodes. It is intended for hardware
and systems vendors to create a system which will then be sold to end-users.

The LonTalk protocol has been standardized as EIA/CEA 709.1-B-2002. Echelon holds
patents on the protocol, however the protocol specification is not directly available from
them. A license for use can be purchased. Possibly due to cost and complexity, LonWorks

systems tend to be commercial systems rather than smaller home systems.

2.2.4 Instabus

Siemens instabus EIB is used throughout their product line [18, 19]. The most visible being
their DELTA line of wall-plate switches and controls. Instabus uses a two-wire system, Eu-
ropean Installation Bus (EIB), for physical connection and communications. This makes the
system relatively inexpensive and easy to install, as it would be similar to pulling telephone

wire.

2.3 System Architecture and Intelligence

There are many architectures available for use in home automation. They have different
characteristics and the choice can be decided based on cost, available infrastructure, features,

reliability characteristics, etc.

2.3.1 Distributed Service-Oriented Architecture

In a distributed service oriented architecture, the devices are not controlled via a centralized
controller and may not be connected to one. Each device is capable of talking directly to
another device, and is able to save a configuration based on services that the devices export

to each other.

17



There are some advantages to this architecture. Due to the distributed nature, there
is no server communications or processing bottleneck. Each device processes its own tasks
and communicates to a number of other devices on its own channel. Devices are largely
independent (although they interoperate) so they don’t rely on having an always-on server
to get its tasks from. The devices are also able to be spread over a large area without large
infrastructure costs simply by having enough devices close enough to communicate with.
They can peer to each other to communicate to other devices that are out of direct range.
| ‘These niceties cannot be had without a cost. The devices are harder to manage since
they contain their own configuration and are able to communicate and co-ordinate with other
devices. The configuration is thus also distributed making large scale reconfiguration more
difficult. Devices must also decide whether to pass through traffic to other devices or not.
This is required since not all the devices are directly connected, so messages must be sent
through devices to reach the others. That increases the communication load on each device.
Moreover due to self management, each device must have a more powerful processor as well
as more memory to hold its configuration. It will behave as a combination of end-user device

and controller due to the co-ordination of tasks with other devices.

2.3.2 Ubiquitous Sensor Systems

There have been experimental systems whereby sensors are placed in all locations, measuring
data such as temperature, pressure, electricity, “presence”, movement, etc. Sensors (which
can be hundreds, or even thousands) are usually one of a serial-linked daisy chain connection,
or of massive parallel connections to a single local bus before connecting to a controller. This
network of sensors can be used to gather enough data for statistical purposes and used in
algorithms or rules.

With appropriate software systems backing them, they are able to determine the actions

of individuals without a large amount of assistance by the end user [9]. They can also be
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used to model the environment and based on the activity within the environment, change its

behaviour. With a large number of sensors, 3-dimensional data can even be obtained [20].

2.3.3 Machine Vision

Artificial vision systems have also been experimented with, enabling a computer to identify
specific targets in a video frame. Connecting these targets to a backend database allows this
identification process. The computer is then able to take actions based on what the target
is doing or not doing. The target may not necessarily be a human subject but can be‘any
application specific target.

The application for these systems is typically safety or security systems where there is
either no motion expected, or to monitor a target to ensure its safety. Conditions may be
set to alert a 3rd-party to take action in case of breach of security or unsafe conditions. The
video output itself (or still frames) from the vision system can be used to help 3rd-parties

identify and access the condition prior to taking action.

2.4 Software Infrastructure

In addition to the hardware infrastructure and connectivity, software completes the sys-
tem, abstracting the hardware, implementing features, and presenting them to the user.
Home control application software is often limited to scheduling and remote access for small
home installations and perhaps even medium to large scale control for energy efficient office
environments since they are similar in concept, différing only in scale. Software that is em-
bedded with the hardware that is running it is firmware and is often running at all times
in the background. In addition, software running on a separate computer may complete
a package, supplying more end-user features, but may not always be running, or may run

merely as an easy to use interface to configure a home controller.
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The simplest controllers run very simple control firmware. The hardware may include
only the basic interfaces, with scheduling and programming based purely in software running
on a PC. These are the PC-based systems where the controller can not run without the PC
present. More capable systems can have more robust firmware downloaded to flash memory
so that it can run independently from a PC. Direct hardware programming interfaces (via
keypad and LCD display, for example) are often lacking and can be difficult to program. A
software programming interface solves this by providing the user with an easy to use interface.
Often a hybrid system is used where a combination of PC and a standalone controller is used.
The PC in this case is used to assist the programming of the controller and also as a data

store for information systems, or to assist in more complex tasks.

2.4.1 Control, Information, and Data Systems

Many applications today are web-based control for remote access and monitoring, and simple
on/ off scheduling and scene selection and programming. This is accomplished by attaching a
web server to the internet and interfacing the PC to the control system. User authentication
takes place and it can then access and run data collection or control scripts in a secure
manner. Results are displayed as a generated web page and status updates are done by

simply refreshing the page or clicking a refresh button.

2.4.2 Safety Systems

Most home control applications to this date have not had safety as a major factor in its
deployment. By safety systems, we mean that the one major purpose to the system is to
ensure safety of some subjects in the smart home. Typically only simple home safety features
are added in addition to the more common “luxury” functions, such as monitoring for flood
conditions (in case where a sump pump may be used). They are mainly an alert to help

prevent small problems from turning into costly repairs.
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Chapter 3

Smart Home Embedded System

Specifications

This chapter describes the details of the Smart Home Control Specification investigated
during the course of this research project. It is a functional specification, describing both

technical details as well as more nebulous details such as ideas and scenarios.

3.1 Overview

Looking at many projects, such as sensor networks and sérvice oriented architecture, it looks
as if the future of smart home control lies in data services. The controller will accept and
provide data in many forms, which will be used to describe devices and services they may
provide. It also allows data collection for high level services such as data mining, in order to
find operational efficiencies or deficiencies, or to provide safety measures. These high level
services should be separated from the basic operations of a home controller by means of an
API (application programming interface) or “middleware” interface. We define middleware
simply as either the intermediate services provided directly by the home controller, or as

software functionality above them. These services or functions however, are at a lower level
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and with lower complexity than the full software services.

3.2 User Experience

The smart home occupant’s user experience should be pleasant. This is a subjective area
but the idea is that the system should be clear in its instruction when human intervention is
needed, and stay “out of the way” when it is operating normally. Ongoing adjustments will
inevitably be made, as there is no one magic configuration that will please all the people.
The aim is to behave consistently and start with a configuration that will work well for
everybody “out of the box.”

In our society, most people carry some form of technology around all the time, But neither
all the people appreciate it nor want it. Examples include cell phones, pagers, PDAs, and
laptops. Some people simply want to get away from these things when away from work,
while others will embrace it. The target audience would be someone willing to use the
technology around them, and ideally would be curious enough to want to “hack” at the
system, for customizing it and expand it as they see fit. Thus the platform must be open to
accommodate such activities.

Technology isn’t the only element related to a Smart Home. After all, a home isn’t a home
without its occupants. To that end, it should be user friendly. The occupants shouldn’t feel
like they have to actively use the home as they do with another device. In essence, if someone
didn’t want a smart home, they should still be able to live in a smart home just as they would
in any other home. At best, the home should be fluidly and intuitively controlled. This is
part of the adaptation that the controller must do, but there are some general guidelines
that must be defined and followed in the design of the controller. Much of this can be done
in higher level software.

Based on some “common sense,” and various studies [21, 22, 23], the possible expectations

of smart home control from the usage point of view are identified below:
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1. Remind the user of pending tasks Of time sensitive issues.

Don’t hinder such a task, or daily living.

Allowing transparent overriding of the system. The action should speak for itself.
User friendly; The user should not have to fight the system.

Customization of user interfaces and interaction.

Minimize active interaction or use more passive interaction.

A o

Non intrusive technology; Acknowledgement of the technology that’s present while
being non intrusive.

8. Context awareness; Attempt to observe what the user is doing. Don’t simply “execute
the next command [7].”

9. Find a balance in the technical and user elements.

Since different people will have different notions of what smart home control can be used
for, the system must be able to adapt and accommodate all those notions. The system
should be generic enough that it is not tied to a specific technology, and must be extensible
to allow for new technology to be integrated into the system. The smart home need not be
fully autonomous. Many people find it unnerviﬁg that their home maybe exhibit signs of
“having a soul.” After a period of usage, it becomes comforting to know that the home will
adapt and adjust to the occupants.

Our modern-day quest for gadgets that make our lives easier. Historically, and perhaps
going forward, automating the home has been the area for the “technologically-inclined”
and not the layman. This is partially due to the complexity of the systems, which is only
growing increasingly complex. The user interface has been utilitarian and quite terse rather
than user-experience based. Hopefully future interfaces may breath some new life into user |
interface design, such as the multi-touch research [24] and HCI (human computer interaction)

studies in general. This is unfortunate, as such a system could benefit everyone.
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3.3 Design Goals

3.3.1 Resource repository and management

We attempt to adopt and implement some of the ideas from various projects into a smart
home controller that is feasible and reasonable. We start with the centralized control topol-
ogy, and implement resource sharing by smart appliances. Since a house has limited resources
coming into it, the occupants and devices cannot use an infinite amount. The main resources
that can be managed include water, electricity, gas, etc. since their use has a noticeable effect

on others. Additionally, safety will be managed via a new risk and attention resource.

A water usage example

Flow of water into the house can be measured, and it enters at only one place in the house,
which is the sole source of water. A water heater can flow an amount of water in and out,
but the temperature of said water will depend on its heating capabilities. After a certain
run time, the water flowing into the tank will be quite cold, gradually cooling the water in
the tank. Eventually its heating capacity will not be able to keep up with the demand and
there will be no hot water.

The smart home controller we are prototyping tries to regulate the usage so that this
situation is less likely to happen. The slower the flow of hot water, the more time the heater
will have to heat its incoming flow.

Several parameters are entered into the SHCS (Smart Home Control System) regarding
water flow and capacity. This forms the basis of the resource lists. When an appliance
wants to use any notable amount of water, it should notify the controller by requesting the
water resources - a part of the resource sign-out and check-in process, as shown in Figure
3.1. If there is enough (hot water, for example), the controller will grant permission to use

it. Otherwise, the appliance is blocked or kept at standby, which can retry at intervals until
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the resource can be allocated to the appliance. When the appliance has finished with its
resources, it checks them back in, releasing it to be used by other appliances. This needs
support by a few key appliances, especially the water heater or source. It is not practical to
have every single water usage source attempt to request resources. Instead, the controller
can monitor real-time usage from a single source, such as a water heater and use that data
in combination with its specified limits and current appliance usage to grant or deny new
requests.

With any data communications, interruptions may occur. In the case of used and unused
resources, a smart appliance should be careful not to go ahead and use resources that it
has not successfully signed out, if possible. The controller will also have to periodically
poll appliances that it sees in its usage list, to be sure that they are still operational and
using the said resources. If the appliance replies negative, or does not reply after a set
number of retries, the resource can be forcefully released so that new requests may succeed.
The real-time data may also be taken to correlate with its resource list, to check for large

discrepancies.

3.3.2 Communications protocols

A simple communication protocol is used on top of the basic TCP/IP, which is illustrated
in Figure 3.2. Table 3.1 lists the possible data types supported at this time. The home
controller uses the datatype to help establish what to do with the information contained in
the packet. _

The Status Change Message is issued by the device to the controller when updating the /
controller of its new status. Information Messages are sent to devices or to the controller
as additional information that is not listed under another datatype The Banter initiation
message signifies the beginning of handshakmg The Acknowledgement (ACK) type is a

generic acknowledgement message used either for simple receive confirmation or as a posi-
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Figure 3.1: Sign-out and Check-in process.

s "Hello"

: ¢ "Hello"
Datatype / Command
ACK /NACK
Data
Reply
Done
ACK

Figure 3.2: “Banter” handshake and data transmission protocol.
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tive action. Negative acknowledge (NACK) is used similarly. The Data type signifies that
arbitrary data is being sent. Resource Management includes request messages from the de-
vice to the controller, and grant or deny messages from the controller back to the device.
Device Initialization Processes are used during the initialization and discovery phase. When
the device enters its discovery phase, it will attempt to find the controller and send data

under this type. The controller will then proceed with its device initialization processes.

3.3.3 Smart display

The Smart Display is named so for its use.as well as functionality. It is an information driven
device. The display provides a clean and usable interface for the users to see the information
provided by the smart home and its controller. It also alerts the users to alarm conditions
as set in the controller.

Additionally, the display may be used to change parameters of the controller. Being able
to accept user input at the smart display makes the system more intuitive by providing an

immediate way for the user to react with the information provided by the system. Ideally,

Type | Description

01 | Status Change or Request
02 | Set Informational Message
03 | Banter initiation Message
04 | Acknowledgement

05 | Negative AcknoWledgement
06 | Data

07 | Resource Change or Request

08 | Device initialization

Table 3.1: Banter datatypes.
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this would be a touch screen interface, to enable feedback in a compact self-contained unit.

The simplified control loop for the display is shown in Figure 3.3.

Figure 3.3: Smart Display (a) Pull from server, (b) Push from server.

3.4 Architectural Components

The Smart Home Control System consists of hardware and software components. The con-
troller itself is an embedded SoPC that is attached to the various devices in the home through
a standard Ethernet network. The controller’s behaviour is programmable through software
running on a workstation, also attached to this Ethernet network. A self-programming hard-
ware interface would not be feasible when a system expands beyond a certain size. Providing
a web interface from the controller would be better because of the dynamic nature of the

variables and devices to be configured, and the visual feedback that can accompany the web
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interface. The smart display, mentioned in Section 3.3.3, is a possible configuration interface
as well.

During the development and simulation phase, software will be used to emulate the data
coming from various devices in the home.. This is the Home Simulator component. Both the

prototype and a final system will communicate through Ethernet.

3.4.1 Physical Architecture

The main controller is an Ethernet-connected system, using standard Ethernet star topology.
The firmware is our custom control software running on an embedded NIOS processor. The
prototype board includes an Ethernet interface as well as serial, JTAG, and parallel interface
for general purpose I/O (GPIO) including LCD and LED indicators.

The Stratix FPGA accommodates the controller hardware in the form of SoPC modules
such as the NIOS processor, avalon bus, and various support hardware for timers, memory,
LAN, serial, and parallel interfaces. The firmware can be loaded from flash and then run
from SRAM.

The smart home controller is connected to vé.rious devices in the home through an Eth-
ernet network. Standard TCP/IP will be used for communication, with software protocols
layered on top. These devices talk directly to the controller. The network cabling is ex-
pected to be run as part of the construction phase during running of other cables. It can
also be retrofitted to old installations using standard methods. Wireless communication can
provide the Ethernet medium as well. The home control’s Ethernet network is intended to
be a completely separate system than the standard home data network. This is for security
reasons as well as quality of service.

A sensor network is def)loyed, but not in a uniform or saturated distribution in the home.
The sensors are used to collect specific information, thus minimizing the number of sensors.

This sensor network collects data in specific areas and transmits its data to the area’s node.
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This node is the device that the controller sees and will communicate with.

Targeted sensor network

We are using a targeted set of sensors to monitor specific items of interest, rather than
thousands of sensors throughout the structure (ubiquitous sensor networks). The sensor
network can be controlled by low level software at the point of interest and relayed back to
the smart home controller. This is one of the purposes of having a smart area hub. The hub
will act as a device but will be able to convert data such as those from an analog sensor, or

even digital sensor and relay them to the smart home controller.

3.4.2 Topology

The two main topologies that we’re dealing with are Peer-to-Peer and Centralized configu-
ration. The physical infrastructure can effect our choice, but ethernet networking is flexible

enough to support both topologies without too much difficulty.

Peer to Peer
In a peer to peer configuration, all devices are capable of talking to other devices, including
but not limited to the smart home controller. This allows maximum flexibility in the home
network by allowing more than one pathway for communicating. Devices and appliances are
capable of talking to each other, regardless of the presence (or absence) of a main controller.
With a large number of communication hops, this will add some latency, but in the best
case it is able to talk directly to its target device. This adds complexity and expense in
terms of device-side hardware and software because a device must be able to understand all
other devices. They must remember which devices that it needs to deal directly with, and
pass on communication to other devices when it’s not the intended target, if the target it

not “within range” of the originator.
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Peer-to-peer becomes a little easier with a wireless system, as the messages don’t have
to be routed through a physical system. They can hop to any device that can talk with any
other device. This allows stringing devices a longer distance from any point in the environ-
ment. This may happen if there are obstructions which make a direct connection impossible

or impractical.

Centralized
In a centralized configuration, devices can only talk to the main controller, unable to talk
amongst themselves. This makes the controller become a communications bottleneck. As
long as we aren’t being swarmed by a lot of messages, this may work. This simplifies com-
munication because the devices only need to know how to communicate with the controller,
which can be called a server. The server will take care of interpreting the information and
sending messages to other devices as needed. This centralizes the configuration and interac-
tion of the devices. |
This configuration reduces the minimum required processing power of each device, and
thus reducing the cost. This is preferred because potentially hundreds of devices in the home
will need to be integrated with the system. The devices are mass produced, so every cost
reduction here will be substantial when scaled up.
Hybrid
A hybrid topology blends the two approaches. Appliances, devices, and sensors don’t all
physically connect to a controller, but instead they will connect to a much closer “area
node.” Any connection in the vicinity can be connected to the area node. Communications
for appliances and devices is transparent, allowing them to communicate with the controller
as if they had a dedicated connection. The sensors have their own interface on the area node,
as they will most likely be analog sensors. Analog sensors require circuitry to convert their

data to digital data, which the area node can then send to the controller. ,This simplifies
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wiring greatly as an area with many devices only requires one connection to the home

controller.

3.4.3 Software Architecture

Home control programming software running on a PC, Macintosh, or any other workstation,
speaking to controller using standard TCP/IP protocol. It should be written in a manner
similar to that of a realtime operating system, although one is not yet in use. This will help
the transition to one, as needed.

There are several software layers present. The low level drivers talk directly to and from
the embedded hardware. Sockets and higher level functions are provided above that, and

any custom protocols and user functions are written on top of those.

“Synergistic” or “Heuristic” control

Another term for synergistic control is heuristic control, whereby things work together in
harmony. This means that nothing may disrupt the operation of another, much like the FCC
notices you see on many electronic devices. To paraphrase, the device should accept any
interference (or interruption in its operation) but must not cause any disruptions to other
devices.

In order for devices or appliances to work together, many scenarios must be defined.
These are behaviours designed into the system to provide a somewhat heuristic way of self-
management without direct user action. There are two. heuristic behaviours that have been
studied for implementation in our system.

In the first case, the system can monitor user actions and use mathematical methods to
see that 99% of the time, the user does :z:-a;ctiori, followed by y-action. After it thinks it has
learned the user’s behaviour, it can then automatically do y-action when it sees the user do

z-action, and it will be fine 99% of the time. In the second case, the controller will follow a
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rule that is made by the user. It will always follow this rule. It may simply be do y-action
when user does x-action. |

The second case is most likely to be implemented because it is easier for the user to tell
the controller how to behave, rather thaﬂ have the controller guess. This provides absolute
feedback because the rules are known, which don’t change unless modified by the user. It is
also a lot less likely to fail in such a way as to confuse the user. This follows the reasoning

that the user should feel in control, even when not directly managing the details.

Resource Management
Resource monitoring and control is a quality of service feature. It helps to provide arbitration
and feedback to devices, and allows collection of data for measuring usage efficiency. It’s
handled by the smart home controller and is partially fed by the sensor network. Resource
tables are initialized to specific numbers, and are modified as devices use these resources.
These initial values and limits will be setA by the user. |
The “standard” resources are electricity, hot and cold water, and gas. These are some
of the common resources that are consumed and charged for by the utility companies. As
appliances are used, and perform various tasks, they will réquire different resources. They
will request a resource change to the smart home controller, and the controller will grant
or deny these requests based on the existing resource usage. In addition, risk and attention

resources can be used.

Risk resource management

If a particular user operates many devices, the attention of the associated user will decreaée
according to the needs of the device. This is one concept built on the simple resource
management system. It includes two more resources, “risk” and “attention,” that helps to

determine if a device can safely be used. It can also be assigned to work areas to maintain

33



the integrity of the area.

The risk resource identifies a risk level associated with the device, or operation of the
device. The attention level represents the attention of a particular user. The idea behind
this is to ensure that a user’s attention doesn’t get divided into too many places, increasing
the risk of injury. This applies to running and appliance or leaving appliances and work
spaces unattended. If a threshold is reached, or the attention level is not sufficient, than the
system will warn the user and may also not allow the use of the device. Optionally the user

will be reminded of other “high risk” devices that they are currently using.

Passive sensor network

Smart home controller software reads passive sensors at time intervals and updates internal
status tables as necessary. Active sensors, such as motion detectors trigger events, which
are recorded with timestamps, and is a related, but different system. The sensor network

provides the passive feedback that the controller can use to make decisions.

Logging
The user may choose to log information about their home, in order to get useful history of
resource usage. This may be used to help monitor energy consumption, for example, to help
decide a conservation method if one is needed.

In addition to this, any add-on components may require that events be exported or

logged, so they can see them and react as appropriate according to their designed purpose.

3.5 Additional Features

In future work and finalization for a usable base system, re-introduction of standard and
advanced home control functionality will need to be done. Expansion module for current

sensing circuits and continuous monitoring and alarms. For example, Veris Industries pro-
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vides hardware components needed to monitor large and small scale electrical systems [34].

3.6 Scenarios and abilities

To further illustrate capabilities expected of the smart home control system and possible

uses, a couple of scenarios involving the risk and attention resources follows below.

Monitoring and Notification for Safety

We'll use the scenario of having a small child in the house (let’s call him Eric) that is old
enough to easily get around and understand what’s around them, but still-may not have
a full understanding of the consequences of their actions or some of the things in their
surroundings. The parents may be up and around the house taking care of errands while
Eric is, at the moment, playing in the living room.

While the idea of a tracking device is disiiked, in some cases it makes sense to have an
identifiable tag so that the system can act as an extra “set of eyes” watching Eric. In this
case, it’s simply to help keep Eric out of danger and to get the attention of his parents when
he starts to do something potentially hazardous. Some dangerous places can be physically
locked out such as a basement workshop, but in many cases there are many small hazards
around the household. Eric may simply be roaming around and his parents should be notified
if he slips away from attention for too long.

In another scenario where a senior may be left relatively unattended at home, so-called
“dangerous appliances” should also be monitored for unattended use. Many fires have been

started over an oven or stove turned on and then forgotten.

Monitoring and Control for Safety
Another example of risk that’s often “set and forget” is the temperature of the water heater.

If set too low, there is a risk of bacteria growth, and if set too high, there is risk of scalding,
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especially in young children. Although the thermostat for the water heater is set, it can
malfunction. While the risk can be set low, as failures are not common and most homeowners
probably don’t actively check the temperature of their water heaters, the risk is higher for
higher temperatures. Constant monitoring can be done to ensure the temperature is within
the preset range.
Showers, tubs, and other areas where large amounts of hot water can be accessed would
be part of this monitoring network and reminders can be made to the caregivers to be careful
with the water around children. An automatic shutoff can occur if the child is left alone,
for example. Users can start with a sparse system and add more monitoring and control as

they see the need.
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Chapter 4

Smart Home Controller

The “desktop implementation” of the system includes the smart home controller as an SoPC,
and home simulation software hosted on Mac OS X. Since we do not have a “live” home
environment or model home lab deliverihg messages to the controller, we simply do this
by using a home simulator as shown in Figure 4.1. This is possible due to the netwofk
connection available at the controller. All devices including the controller itself are connected
via a standard ethernet network in order to communicate. This is one of many options that
can be taken and it is the default.

Development and testing are done by using the combination of hardware and software.
As the controller evolves, so does the testing software. As both become more complex, the
software can be forked to create a custom interface to the final smart home controller. This
would be an optional software program which is able to take advantage of (or even create)

the more complex features of the controller.

4.1 Controller hardware

Our smart home control system prototype consists of readily available parts including an

Altera Stratix development kit. This enables us to communicate using the ethernet port,
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Figure 4.1: Photograph of the SoPC development workstation, board, and Mac running the

simulation software.

serial port, and a 2-line LCD display. Smart home devices and appliances communicate
across an ethernet network, using TCP/IP as the standard protocol. The serial port is used
in this system as an output terminal for JTAG and debug output only. The LCD module at
the controller is used for short status messages when appropriate.

The Smart Home Control System was designed as a dedicated embedded computer sys-
tem. A typical embedded SoPC is shown in Figure 4.2. While general purpose computers
can be more powerful, they are too expensive in this configuration in all the areas of cost,
power consumption, heat, and reliability. The basic decisions for key considerations are

outlined below.

e Hardware cost
The initial cost of hardware is lower for the embedded system because it includes the
basic necessities and nothing more. An SoPC (FPGA) and few support chips are all

that is required. Creation of a custom PCB for final design may incur some costs, but
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Figure 4.2: SoPC internal IP blocks and on-board components.

mass manufacturing brings costs down to reasonable levels. These boards do not need
special care in terms of handling fast (megahertz or gigahertz) clocks and high speed

RAM signalling requirements.

Power Consumption

We are using an SoPC with a softcore processor running at 50MHz. This is enough
speed for the various program loops and requires minimal power. The support chips
also have low power requirements. There are no fans or harddrives, which require a

notable amount of power to start and stay spinning.

Heat output
Due to the low running frequency, the cooling system does not require any heatsink.
High heat generation will have an effect on operational costs, and in some cases affect

the reliability as well.
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e Operational cost
This is mainly affected by power consumption as we're not dealing with consumable
items. Again with the slow clock and no moving parts we require minimal power,

making this cheaper to run.

e Computational power
We have much less computing power available as compared to a general purpose com-
puter, however, specialities such as floating point processing, streaming instructions,
or multimedia features aren’t needed in a simple home control situation. With the ad-
vent of multimedia computing, which is arguably a “next-step” in smart home control
systems, the features can be added via self contained plug-in modules. The modules
can include high performance computing, or interface with a fully capable workstation.

This translates into having a simpler system as a base for a comprehensive system.

o Custom Hardware
One benefit of an FPGA based SoPC is the programmable area. If a small amount
of custom hardware is required, or a system bug needs a hardware fix, it can be
accommodated by re-flashing the SoPC. The hardware cost remains constant since the
FPGA is already present. If any additional hardware module is required, it can also
be added off-board and a provision is made to the system (i.e. memory map changes)

by re-flashing the SoPC.

e Reliability
The embedded system is inherently more reliable than a low-end PC because of low
heat output and no moving parts. While flash memory has a finite number of writes,
only a selected number of configurations will be saved to flash. Most or all of the

running system variables will be stored in SRAM, which is faster, and won’t wear out.
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4.2 Altera Development Environment

Quartus II and SoPC Builder work together to facilitate the construction of an embedded
system having a NIOS processor core and glue logic for support interfaces to memory, net-
working, etc. Using SoPC Builder, IP cores and memory mapping can be adjusted. Custom
logic developed in VHDL or Verilog using Quartus II can be added into the system at any
time, and the system can be re-created. Table 4.1 lists the IP cores used in the smart home

controller design. Additionally, the NIOS processor core is configured as shown in Table 4.2.

Table 4.1: IP Cores used in Controller Prototype.

Device Address Size

ext_ram (SRAM) 0x00800000 | 0x00100000
onchip_ram_64_kbytes | 0x00900000 | 0x00010000
lan91c111 0x00910000 | 0x00010000
boot_monitor_rom 0x00920000 | 0x00000800
cpu 0x00920800 | 0x000000FF
uart1 0x00920900 | 0x0000001F
timerl 0x00920940 | 0x0000001F
led_pio 0x00920970 | 0x0000000F
seven._seg_pio 0x00920990 | 0x0000000F
low_priority_timer2 0x009209E0 | 0x0000001F

The Avalon bus connects the on-board components together within the FPGA, such
as the CPU, memory controllers, and any custom logic, into a system [25]. The bus was
designed with SoPC design in mind, and has many features over a “standard bus” or “just
a bunch of wires.” The trade off is allowing simplification of the master and slave interfaces

at the expense of a more complex bus. As an example, the bus allows for multiple master
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Table 4.2: NIOS CPU configuration.
Name Device Offset Address

Reset Location boot_monitor_rom | 0x00000000 | 0x00920000

Vector Table ext_ram 0x000FFF00 | 0x008FEFF00

Program memory | ext_ram

Data memory ext_ram

Primary serial uartl 0x00920900

devices, but each master can act as a lone master. In our implementation, we have two
masters due to the NIOS processor core. The NIOS processor uses a master eabh for data
and instruction bus connections.

NIOS is a 32-bit RISC processor based on the Harvard architecture [26]. It has a 5-stage
pipeline, 16-bit instruction set, and a customizable ALU (arithmetic logic unit). We are
using an unmodified NIOS processor core running at 50MHz as a general purpose processor
to execute our smart home controller code. 64kB of on-board memory and 1MB of SRAM
is available to the processor as boot loaders, program monitor, instruction and data storage
areas.

The smart home controller code is written in C, using standard libraries and Altera-
supplied libraries for functions relating to the specific IP cores. LCD display routines and
network initialization are two examples of such functions. The build and debugging tools
are based on gcc and gdb, generating a standard ELF binary that runs on NIOS.

Serial UART and parallel general purpose I0 (GPIO) are used for simple displays. The
serial connection is used as standard output from the controller code, but it can also be used
as input as well. GPIO are used for the LCD and T-segment display, which display short
messages and indicators, respectively.

An Ethernet connection is available and is the main communications medium for the
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smart home controller. It is a standard 10/100Mbps capable PHY (physical interface layer)
but is currently limited to 10Mbps due to the clock speed. This is more than enough

bandwidth for home control.

(Development Workstation 1. [ Home Simulator (Software) ]

Parallelpot 5] [ Serial P’
JTAG Inferface] | . (Consoley
A

et Network!

Home Controller (SoPC Hardware)

T

Figure 4.3: SoPC development workstation, board, and simulator connections.

During the development process, the SoPC board is connected to both the workstation
hosting the development software as well as to the workstation hosting the home simulator
program as shown in Figure 4.3. Programming of the SoPC is enabled via a JTAG cable to
the workstation. A serial connection provides a console to display various output messages.

The embedded home control system communicates to home simulator via Ethernet.
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4.3 Topology

We are introducing a modified and hybrid centralized topology. Most devices and appliances
are physically connected using star topology. The overall communications employs a central-
ized (master-slave) system. The system expects direct device to controller communication
except where basic sensors are used. In this case, the sensor is connected to an area hub
~which covers all the sensors for that area. The hub acts as a device to the controller and

" doesn’t need a special case for them as it behaves as if it were the sensor itself.

Figure 4.4: Area Hub and Sensor Topology.

4.3.1 Device Communication

The Altera SoPC development environment has working low-level software support, but
higher level software functions must be built on top of it to increase its usability. We are
layering a handshaking protocol in software for device-to-host communication. It is a simple

“banter” protocol illustrated in Figure 4.5.

44



" "Hello"
"Hello"
Datatype / Command » '
ACK /NACK

Data

Reply

Done

ACK

Figure 4.5: “Banter” handshake and data transmission protocol.
4.4 Smart Home Control Software

The smart home controller is essentially a software system running on the NIOS processor.
The current structure of the software is a parfially interrupt driven monitoring loop. It is
written with some modularity in mind, in case of porting to a standard RTOS (Real-Time
Operating System) such as uCOS-IIL |

Upon startup, the controller executes its initialization stage. This initialization includes
interrupts for display, buffers, networking and communications, resource tables, and device
and appliance status tables. After this, the controller enters its monitor loop.

The monitor loop contains various functions that are represented in Figure 4.6. Essen-
tially they are “scheduled” in a round-robin style. This loop is slowed by a sleep call so that
various function calls (checks and mainténance) are done approximately once every second,
and will each run to completion. To show the operatibn of the controller, an LED blinks
as a heartbeat. The sleep loop. allows for easily stopi)ing the process when debugging by
monitoring for keypresses, specifically when the Escape key is detected. Similarly, a push-
button routine is available for debugging networking, which resets the handshake protocol

and communication states. In an RTOS scenario, the calls would be scheduled according to
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Figure 4.6: Smart home controller monitor loop.

the scheduler and must be made safe for pre-emption by careful use of any global variables
and protection thereof.

The smart home controller is event driven. Aside from timer interrupts, the event is data
arriving on the network. This means that a device is trying to communicate. This is taken
care of by interrupt service routines which process the data and place partially processed
data into buffers. These buffers are accessed by the monitor loop as maintenance items.
It sends out any data that needs to be sent (in accordance with the banter protocol), and
processes any maintenance that needs to be done on the controller’s status and resource

tables.

4.4.1 Simulation and Verification

During the design implementation of the smart home controller, a home simulator has been
developed to provide the messages that are needed to adequately test the system. This
simulator mimics all the devices and appliances in the home and provides feedback to the
user and the controller.

It is programmed and executed on a Macintosh running OS X 10.3.9, using Objective-C
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and the Cocoa framework. This allows for an adequately fast production of both the status
interface and the programming interface for the controller and simulator. The simulator
block diagram is illustrated in Figure 4.7. In the simulation, since there are no physical
sensors in place, all sensor reads and data acquisition are numerical calculations based on

data stored in tables. There currently is no physical sensor read in the program loop.

Simulator

~

wl

" | Processing

Figure 4.7: Simulator block diagram.

The display of the current status and the control of the devices would ideally be a
dynamically created interface. This would automatically match the system that we are
testing - this is especially true for the status page. Since we are dealing with a data system,
not hardwired signals, this would be an asset. Unfortunatély being a prototype, the interface
design is not created a style that fits all the goals of being appealing, functional, and easy
to use.

The simulator software has two primary windows. These windows are the status and
control windows. The status window is akin to the Smart Diépla.y idea, as it shows the

current state of the controller, and can be used to bring any situation to the attention of the

user.
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Figure 4.8: Simulator control window.
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The control window is equivalent to the house that the smart home controller is installed
in. It is the simulator. The control window generates the data that the smart home con-
troller will interact with. As stated above, the status and control window are currently not
dynamically generated and contain a fixed number of devices to be simulated.

6 00 ... e g et - Home Status ...

Console Text

80-character ruler: :
1234567890123456789012345678901234567890123456789012345678901234567890 1234567890 :

e .
Appliance Status Refresh ~ © e | ++ ]

AEREE | eemebme
Moo i—-—-—-—-]

[EZ]EE]EJEE
(i)

AN

Figure 4.9: Simulator status window.

On the development workstation, several utilities are available to build a system (the
Altera development tools). One such utility, the NIOS Console, is shown in Figure 4.11,
which is used to download code to SRAM and execute it on the SoPC hardware. It is
possible to issue debugging commands from this console, such as memory dumps, as well as
simply running the code.

The simulation run shown in Figure 4.12 is the output of the controller console after
power-up. The software configures input and output ports (GPIO), interrupt service rou-
tines, global variables and networking. The current conﬁgﬁration has the controller listening

on port 8738, with an IP address of 192.168.0.51. After initialization, the short message “We
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[Session started at 2006-09-01 13:45:58 -0400.)
2006-09-01 13:45:59.912 SHCS[6438] SocketControll init
2006-09-01 13: Show mWindow: 0x3caldbo
2006-09-01 13: simControl mWindow: 0x3caOb0
2006-09-01 13: SHCS: Connecting to 192.168.0.51 on port 8738
2006-09-01 13: SocketController: disconnect
2006-09-01 13:47:47.137 SHCS[6438) SHCS: Connected
2006-09-01 13:47:56.121 SHCS[6438) [SHCSApp:Delegate:sendtocontrol):Data:
2006-09-01 13:47:56.121 SHCS[6438] POWER
2006-09-01 SHCS(6438] Banter[S1)
2006-09-01 SHCS[6438] SHCS NetSocket: Data sent
2006-09-01 SHCS[6438] SHCS NetSocket: Data available (268)
2006-09-01 SHCS[6438] SHCS NetSocket: Data: 1 16HELLO
2006-09-01 13:47:56.595 SHCS[6438] SHCS NetSocket: decode: 1, 16
2006-09-01 13:47:56.695 SHCS[6438) Banter[R1)
- 2006-09-01 13:47:66.595 SHCS(6438) talk: [HELLO
2006-09-01 13:47:56.595 SHCS([6438] Banter[S2]
2006-09-01 13:47:56.595 SHCS[6438] SHCS NetSocket: Data sent

2006-09-01 SHCS[6438] SHCS NetSocket: Data available (268)
2006-09-01 SHCS[6438] SHCS NetSocket: Data: 1 16ACK
2006-09-01 SHCS[6438) SHCS NetSocket: decode: 1, 16

2006-09-01 SHCS([6438) Banter([R2)

2006-09-01 SHCS[6438] talk: [ACK

2006-09-01 13:47:58.651 SHCS[6438] Banter[S3)

2006-09-01 13:47:58.652 SHCS[6438) SHCS NetSocket: Data sent A
2006-09-01 13:48:00.857 SHCS[6438) SHCS NetSocket: Data available (268)
2006-09-01 13:48:00.857 SHCS[6438) SHCS NetSocket: Data: 1 16Custom Reply
2006-09-01 13:48:00.857 SHCS[6438] SHCS NetSocket: decode: 1, 16
2006-09-01 13:48:00.857 SHCS[6438) Banter[R3]

2006-09-01 13:48:00.857 SHCS[6438] Banter[S4) .

2006-09-01 13:48:00.858 SHCS[6438] SHCS NetSocket: Data sent
2006-09-01 13:48:02.766 SHCS[6438] SHCS NetSocket: Data available (268)
2006-09-01 13:48:02.767 SHCS[6438) SHCS NetSocket: Data: 1 16ACK
2006-09-01 13:48:02.767 SHCS[6438] SHCS NetSocket: decode: 1, 16
2006-09-01 13:48:02.767 SHCS[6438] Banter[R4])

2006-09-01 13:48:02.767 SHCS[6438] Banter: Finisked

2006-09-01 13:49:22.251 SHCS[6438] SocketController: di

Figure 4.10: Simulation run log - Device communication.

System Analyzer for Nios® Processor
Serial number Altera

Version 1.7.5 build 2

Copyright (C) 1998-2003 First Silicon Solutions, Imc.
Limited Version

User reset.

00920004 9802 pfx %hi(0x40)

00920006 6D20 movhi %g0,0x9

Loaded jchan.srec

Pc 0x008036F8

o7 0x00490000 (reset address 0x00920000)
1

Figure 4.11: NIOS Console.

50



Press any of SWO-SW2 to show time and button.
Press SW3 to escape banter lock.
[main(init)): SW_ PIO .. LCD .. rsrc .. Global Init
Device table init
Resource table init
Comm table init
Packet Queue table init
plugs .. [lan91c111] nr_lan91ciii_reset: chip id = SMC91C11xFD
[1an91c111] r_lan91ci11_detect_phy: found 1an83C183 (1an91C111 internal)
(1an91c111) r_lan91c111_init_phy: 100bt
[1an91c111] r_lan91c111_init_phy: full duplex
(plugs] +-==-===-mmmcmocmeceeee
[plugs] | initialized adapter lan91ci1l at 0x00910000, 192.168.0.51
IP address = 192.168.0.51
Gatevay IP = 192.168.0.1
MAC address = 00:07:ed:0c:04:b0

Listening on port 8738 at t = 1759

Ve are alive.

Figure 4.12: Simulation run log - Controller initialization.

are alive.” is displayed and the controller enters its control monitor loop.

The simulation run shown in Figure 4.13 is output from the home controller console
during the handshaking and data transmission routines. It contains debugging information
such as the banter protocol states for each device, when it enters each phase of the protocol,

and the data contained in the packets.

4.5 Smart Home Resource Control

Resource control is an interesting data service. The sensor network provides information
that is available for the software layers to interpret. Resource control is one of these software
layers. While most day to day activities are self- or user-regulated, it may still be useful for
the uncommon situations that arise and can cause a heavy shift in resource usage, such as
doing extra loads of laundry during the evening after an extended trip away. An automatic
lawn sprinkler may use a lot of water as well as the laundry. In this case the system may

want to put a hold on the automated sprinkler to give priority to user activities.

Resource Management

The initial implementation of the resource software layer results in providing limits to the
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[tcp_listen_proc): Accepted connection from 192.168.0.101 port 60502 at t =
70461

[tcp_proc2]: data comes in, length 268
PqAdd()

PpqAdd - Add link

pqPeek: Packet found

[cFD(): checkForData found PQ_ONE data.
cFD(): Packet decoded, going to banter.
<Banter>

Banter state for tag 16 not found, adding
Banter([c1]

(decode): sendr:raw: [ 16]

[decode): recvr:raw: [ 1]

[decode]: data: [HELLO

paAdd()

‘pqAdd - Add link
. Device 16 found, removing...

</Banter>

[tcp_proc2]: data comes in, length 268
PaAdd()

paAdd - Add link

pqPeek: Packet found

{cFD(): checkForData found PQ_ONE data.
cFD(): Packet decoded, going to banter.
<Banter>

Banter state for tag 16 is 2

Banter [c2]

{decode) : sendr:raw: [ 16]

{decode]: recvr:raw: [ 1]

[decode] : data: [TheDataType

PqAdd()

pgAdd - Add link

Device 16 found, removing...

</Banter>

[tep_proc2): data comes in, length 268
PqAdd ()

PqAdd - Add link

pqPeek: Packet found

{cFD(): checkForData found PQ_ONE data.
cFD(): Packet decoded, going to banter.
<Banter>

Banter state for tag 16 is 3
Banter[c3]

[decode): sendr:raw: [ 16]

[decode] : recvr:raw: [ 1]

[decode] : data: [POWER

pqAdd()

PqAdd - Add link

Device 16 found, removing...

</Banter>

[tcp_proc2]: data comes in, length 268
paAdd()

paAdd - Add link

pqPeek: Packet found

[cFD(): checkForData found PQ_ONE data.
cFD(): Packet decoded, going to banter.
<Banter>

Banter state for tag 16 is 4

Banter [c4]

[decode) : sendr:raw: [ 16}

[decode): recvr:raw: [ 1]

[decode): data: [DONE

PgAdd()

PqAdd - Add link

Device 16 found, removing...
</Banter>

Figure 4.13: Simulation run log - Communications debugging.
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use of resources. Devices and appliances that know that they will use a significant amount of
resources will request to sign out resources from the system before using them, and check-in
the resources when they are done with them. Figure 4.14 illustrates what a typical appliance
control loop looks like. The appliance knows what tasks it is working on and will request

and return resources as necessary until it is done, when all resources are returned for other

devices and appliances to use.

Figure 4.14: Appliance control loop.

Risk Resource Management
The risk and attention resources are managed in identical fashion to the three basic resources,
with regards to the devices. Any change in the operation of a device can cause it to request

changes in risk and attention resources.

Management Issues

All the resources are initialized and tracked by the controller. The limits are either set by
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Update Rsrc™|:
Tables:

Figure 4.15: Resource (a) sign-out, (b) change, and (c) check-in procedures.

the user in the simulator control window, or set by appliances. Most resources start at a
finite level and decrease as device and appliances use them, however, it is possible that one
starts at zero, and increases as a device or appliance supplies or creates that resource. One
such resource is hot water created by the water heater.

When the water heater is activated, it tells the controller to create a hot water resource.
This resource can then be used by other devices or appliances, such as washing machines,
dishwashers, showers, etc. The initial value of hot water flow and capacity are sent by the
water heater. As hot water is used, the hot water flow and elapsed time are monitored.
Using this data, its remaining capacity can be calculated. The water heater itself can track
this information and send updates to the home controller when conditions change.

The resource control rules can be illustrated with a scenario. A modern water-saving
shower head can flow between 450-1140 litres per hour. Let a dishwasher and washing
machine each use 500 litres per hour when operating. The home controller is set to allow up

to 1500 litres of water per hour. If a person is taking a shower, using about 800 litres per
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Inflow
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Figure 4.16: Hot water supply.

hour of water, and the washing machine is filling, we have a total of 1300 litres per hour.
A partial run log of this situation is shown in Figure 4.17. This is now only 200 below the
limit. At this point, if the dishwasher was activated, the controller sees that the request
would place it above the limit and denies the request. At this point, the dishwasher can wait
and try again later. Since it only takes a few minutes for the washing machine to fill before
its wash cycle, the dishwasher will have its request granted after the washing machine has

stopped filling.

Hot water: 250 / 1000

Cold water: 250 / 1000

Total: 1300 / 1500

PqAdd()

PgAdd - Add link

Device 16 found, removing...

</Banter>

[tcp_proc2]: data comes in, length 268
PqAdd()

PqAdd - Add link

pqPeek: Packet found

[cFD(): checkForData found PQ_ONE data.
cFD(): Packet decoded, going to banter.
<Banter>

Banter state for tag 16 is 4

Banter[c4)

(decode): sendr:rav: [ 16]

[decode]: recvr:raw: [ 1]

[decode]: data: [DONE

PqAdd()

PqAdd - Add link

Device 16 found, removing...
</Banter>

Figure 4.17: Simulation run log - Water resource is approaching the usage limit.
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Chapter 5

Conclusions and Future Work

The smart home controller is a standalone system that enables devices and appliances to com-
municate over a standard Ethernét network. This communication allows for many features to
be implemented such as resource management in terms of usage tracking and control. These
features allow for greater quality of service and increased safety of the home occupants. The
smart home controller is implemented using an Altera SoPC development environment. This
provides the required hardware, such as the NIOS processor core, communications hardware,
and glue logic. The firmware is written using Altera’s NIOS build tools. It’s an adequate
platform for prototyping and demonstrates what SoPC can do for a final implementation.
Simulation of the home is provided by a software system running on Mac OS X, which
communicates with the controller over an Ethernet network. Several appliances have been
implemented, communicating with the controller for resource management. We are working
without a model home environment and the simulator provides required inputs needed from
the devices and appliances in the home. This is actually quite flexible and can be used before
finalizing the hardware devices and modules. Protocol implementation can be changed easily
at this point in development together with the hardware as they both evolve. Ethernet is a
very good choice because it allows easier design and testing. Common two-wire or proprietary

bus communications would require custom hardware interfaces to be built before software

56



testing could be done. Being able to use common readily available equipment reduces anxiety
associated with being locked-in to a specific vendor’s proprietary hardware.

The network connection allows resource management to be implemented, which enables
the controller to track resource usage, providing quality of service in the smart home. Water
usage and its problems can be easily observed in terms of water pressure and flow rate.
Resource management implemented in this project, via usage tracking and defined rules,
allows some degree of control to prevent problems from occurring by limiting concurrent use
of devices and appliances that heavily use one particular resource. Usability is good but only
with some defined rules. Smart home occﬁpants have a system that behaves in a consistent
manner, allowing an easier transition from traditional home to a smart home. While these
aspects of the smart home controller meet our goals, there are many improvements still to
be made.

Aside from more real-world applications to be developed, the base system will also need
updating over time. While the current design is flexible and allows for different standards
to be applied, there may be situations where it needs to be updated to accommodate newer
technologies and facilities. One issue is that the controller is inflexibly written in C. This
is due partially to the facilities of the existing development environment as well as our key
considerations for the development of the prototype. This has the consequence that any
change to the controller, either because df new features or other changes, requires that the
code be re-compiled. This raises the barrier of entry for customizing and working with the
controller in general. The change that is ;equired is to wrife the main controller logic using a
interpreted or scripting language, which would then. run by an interpreter or virtual machine
on the controller. This has its own drawbacks, as the controller’s processor may need to be
upgraded for adequate performance and the memory requirements may grow substantially,
both of which we wanted to avoid in our initial considerations. ' The benefits with the new

approach may outweigh the drawbacks. It allows easier customization and adjustments to
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the home controller’s main logic and allows more flexibility from the devices and appliances.

New program logic can be transferred to the controller as a supplement to assist interaction

with the controller. Resource management can be made more comprehensive in the future.

There are many other research areas still available to improve the controller, such as the

multi-touch interfaces and human-computer interaction studies in general. The interface is

very important but difficult to develop because of the differences in the people that interact
_with the interface.

Products will remain a niche market for many years. Although appliances themselves are
getting more complex, with more electronic control. Since these appliances may already con-
tain adequate computing power, smart home appliances may become a reality sooner rather
than later. Unfortunately, building smart home appliances largely depends on the device
and appliance manufacturers’ whims and marketing forces. Fortunately, home builders are
recognizing the added value and need for providing basic infrastructure to be installed during
the home building process. More new housing is being built with whole-house networking

installed, and often at least provisions for home theatre and network cabling.
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Appendix A

Smart Home Embedded Computer
SoPC Block Diagram
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Appendix B

Abbreviations

ACK - Acknowledge
ALU - Arithmetic Logic Unit
API - Application Programming Interface
ARM - Advanced RISC Machines, creator of the ARM processor
ASIC - Application Specific IC
CEA - Consumer Electronics Association
CEBus - Consumer Electronics Bus
CMC - Canadian Microelectronics Corporation
CPU - Central Processing Unit
EIA - Electronic Industries Association
EIB - European Installation Bus
FM - Frequency Modulation
FPGA - Field Programmable Gate Array
GPIO - General Purpose Input Output
HCI - Human Computer Interaction
I/O - Input / Output
IP - Internet Protocol, also Intellectual Property (“IP Core”)
JTAG - Joint Test Action Group
LAN - Local Area Network
LCD - Liquid Crystal Display
LED - Light Emitting Diode
NACK - Negative Acknowledge
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PC - Personal Computer
PCB - Printed Circuit Board
PDA - Personal Digital Assistant
PHY - Physical Interface layer of OSI (Open System Interconnection) reference network
model
RAM - Random Access Memory
RF - Radio Frequency
RISC - Reduced Instruction Set Computer
RTOS - Realtime Operating System
SHCS - Smart Home Control System
SOA - Service Oriented Architecture
SoPC - System on Programmable Chip
SoC - System on Chip
SRAM - Static RAM (Random Access Memory)
TCP - Transmission Control Protocol
TCP/IP - Transmission Control Protocol over Internet Protocol
UART - Universal Asynchronous Receiver Transmitter
UI - User Interface
USB - Universal Serial Bus
VHDL - VHSIC (Very High Speed Integrated Circuit) Hardware Description Language
X-10 - Legacy home control standard using power-line signalling
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