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Abstract

The study of networks has been propelled by improvements in computing power, en-

abling our ability to mine and store large amounts of network data. Moreover, the ubiquity

of the internet has afforded us access to records of interactions that have previously been

invisible. We are now able to study complex networks with anywhere from hundreds to

billions of nodes; however, it is difficult to visualize large networks in a meaningful way.

We explore the process of visualizing real-world networks. We first discuss the proper-

ties of complex networks and the mechanisms used in the network visualizing software

Gephi. Then we provide examples of voting, trade, and linguistic networks using data

extracted from on-line sources. We investigate the impact of hidden community structures

on the analysis of these real-world networks.
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1 Introduction

1.1 Motivation and Background

Mathematician Leonard Euler is considered to be the first to write an article using early

graph theory [5]. In 1736, Euler wrote an article discussing what is known as the problem

of the Konigsberg bridges [5]. Konigsberg was a city in Eastern Prussia separated by the

River Pregel and seven bridges [5]. The problem involved planning a route around the

city where one crosses each bridge only once [5]. Euler was the first to tackle this as a

mathematical problem and in turn, developed ideas that would form basic concepts in

graph theory [5]. Subsequently, graph theory has been used to study various types of

physical, biological and social systems.

A graph may interpreted as a visual representation of distinct elements of a population

and their connections, illustrated by dots and line respectively. Therefore, graphs lend

themselves naturally to modelling these systems as networks and make it easier to visualize

a system. Graph theory has proven to be a very effective tool for analyzing real-world

networks and has led to the growing interdisciplinary field of network science [13, 26].

The reach and capabilities of network science has been propelled by the increase in

availability of data and improvements in computing power [26]. This progress in tech-

nology now allows us to mine and analyze large graphs with anywhere from hundred to

billions of elements. These large networks are called complex networks. Common examples

of a complex network are the World Wide Web graph of page links, the Hollywood graph

of co-stars and the collaborations graph of coauthors [7]. While large, complex networks

are made up of a discrete number of objects that evolve over time [13]. Complex networks
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are difficult to visualize, so understanding the dynamics and hidden community structure

of a network are powerful aspects of visualizing real-world networks [7, 13, 26].

In this thesis, we will be discussing different types of networks and the properties

of their graphical representations. The graphs that we will be examining have orders in

the hundreds and include topics such as voting patterns, trading patterns, and linguistic

patterns. There are three main characteristics of complex networks that are widely studied:

low average distances between members in the network, high local densities, and the

distribution of links between members [13]. We will be discussing these characteristics in

more detail in the next section.

Human social systems do not organize the same way as physical systems [31]. We

imagine physical systems in 3-dimensional Euclidean space, where coordinates correspond

to a commonly known definition of Euclidean distance. One of the axioms of Euclidean

distance is the triangle inequality, which defines a transitive relationship between three

elements in Euclidean space. Interestingly, social systems violate this property [31]. This

means that person A may know person B and person C, but person B and person C do not

necessarily know each other [31]. Usually members of a particular social group are more

likely to be acquainted with those within the group than they are to those in other social

circles; however, we presumably belong to many different groups [26, 31]. For example,

person A, person B and person C all go to different high schools in the same city. Person

A attends gymnastics with person B and lives on the same street as person C; therefore,

person A is friends on Facebook with both person B and person C, but person B and person

C are not because they are not acquainted with one another.

Links between members of a network are often not related to physical distance, but are
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related by common interests. Therefore, we can think of a network as being embedded in

a “social space” [31]. A social space refers to the idea that elements of a network, typically

refering to people, that are “close” in a network share commonalities. The position of

members in a network represent quantitative measures of their shared attributes [31].

Graphs are a practical and effective way of visualizing real-world networks in a social

space, making it easier to analyze the information.

1.2 Basic Graph Theory Concepts

A network can be modelled by a graph G(V, E), where V(G) = V is a nonempty set of

nodes, also called vertices, and E(G) = E is a set of edges. The nodes represent the elements

in the network and the edges are pairs of nodes representing predefined links between

the elements [13, 31]. The order of a graph G is the number of vertices in V(G), expressed

as |V(G)| = n, and the size of a graph G is the number of edge in E(G), expressed as

|E(G)| = m [31]. Each edge is a pair of nodes ek = {vi, vj} with i 6= j and the nodes vi

and vj are said to be neighbours or adjacent [7]. If there is an edge ek = {vi, vj} with i = j,

then the edge is called a loop, meaning it starts and ends at the same node. If nodes vi

and vj form an edge in graph G, then we shall use the notation vivj to represent the edge

vivj ∈ E(G). The edge vivj ∈ E(G) is incident to both vi and to vj [7]. In Figure 1 we have

an example of a graph G with |V(G)| = 6 and |E(G)| = 7.
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G

a

b c

d e

f

Figure 1: Graph G(V, E), with V(G) = {a, b, c, d, e, f }, E(G) = {bc, ad, cd, e f , ac, c f , de}.

The number of neighbours a node has is called the degree of a node, denoted deg(v).

The maximum degree of a graph G is denoted by ∆(G) and its minimum degree is denoted

by δ(G) [13]. Loops are counted twice, so if vivi is the only edge from vi, then deg(vi) = 2

[13]. If we consider graph G in Figure 1, we have for example deg(a) = 2, ∆(G) = 4, and

δ(G) = 1. A useful statistic to consider is the average degree of a graph, defined as [13]:

degav(G) =
1
n ∑

v∈V(G)

deg(v).

The neighbourhood of a node v is defined as the subgraph consisting of the nodes adjacent

to v, but not including v, denoted N(v) [31]. For example, in Figure 1, N( f ) = {c, e}. A

graph is called a directed graph or a digraph if the edges are ordered pairs of nodes, otherwise

it is called undirected [7]. For the most part we will be discussing undirected graphs. Figure

2 shows an example of a directed graph. The order of the nodes connected by an edge in a

directed graph is illustrated by an arrow.
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a

b

c

d

e

G

Figure 2: A directed graph G.

If a graph contains loops or multiple edges then it is a multi-graph, otherwise it is

a simple graph [7]. Additionally, graphs can have edges that are assigned labels called

weights [13]. The weights are real numbers whose value have a predetermined meaning; for

example, the numbers of times that connection occurs, the importance of the connection,

or the cost of the connection [13]. These are called weighted graphs.

A subgraph is a subset of nodes and edges of graph G [13]. An induced subgraph of G,

referred to as a module, is a subgraph where the subset of nodes include the endpoints of all

the edges in the subgraph [13]. A spanning subgraph H is a subgraph where V(H) = V(G)

[13].

a

b

c

d

e

G H
a d

e

c

Figure 3: Graph H is a subgraph of graph G.
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a

b

c

d

e

G H
a d

e

c

Figure 4: Graph H is an induced subgraph of graph G.

a

b

c

d

e

G H
a d

e

c

b

Figure 5: Graph H is a spanning subgraph of graph G.

A path, denoted Pn, is an ordered sequence of n nodes with (n− 1) edges [7]. In Figure

3 graph G, an example of a path P5 of length 4 is b→ e→ c→ b→ a. A graph is connected

if every distinct pair of nodes is connected by a path; otherwise, it is disconnected [13]. If

a node v does not have any neighbours, meaning it has deg(v) = 0, then it is called an

isolated node. In Figure 3, graph H is an example of a disconnected graph and node c is an

example of an isolated node. If a graph consists of connected induced subgraphs, then

each connected induced subgraph is called a connected component [13].

Let G and H be graph and let f : V(G) → V(H) be a function. f is an embedding if it

is injective, meaning vivj is an edge in G if and only if f (vi) f (vj) is and edge in H [13]. f

is an isomorphism if and only if it is a surjective embedding [13]. If f is an isomorphism,

then G and H are called isomorphic graphs. Graph isomorphisms are important to keep in
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mind because when visualizing networks, how the network is presented can affect how it

is interpreted. Figure 6 is an example of isomorphic graphs.

a

b

c

d

g

h

i

j
G H

2

6

7

3

1

5

8

4

Figure 6: Graph G and H are isomorphic with f (a) = 1, f (b) = 6, f (c) = 8, f (d) = 3,

f (g) = 5, f (h) = 2, f (i) = 4, and f (j) = 7.

A graph is called a clique or a complete graph, denoted Kn, if all n nodes are adjacent to

each other [13]. The maximum size for a complete graph is |E(G)| = (n
2) =

n(n−1)
2 and a

graph is considered sparse if |V(G)| � n(n−1)
2 [31]. The density of a graph, denoted Dn, is

the ratio of the number of edges in the graph and the number of edges in a complete graph

of the same order; namely, Dn = 2|E(Gn)|
n(n−1) [13]. A k-regular graph is a graph where every

node has degree k [13]. A planar graph is a graph that can be drawn in a plane without any

edges crossing [7]. We will see an example in Chapter 4. Figure 7 gives an example of a

complete graph and a k-regular graph.
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a

b

c

d

e

G H

1

23

4

5

6

Figure 7: Graph G is a complete graph K5 and graph H is a 3-regular graph.

On an unweighted graph the distance between two nodes vi and vj, denoted d(vi, vj),

is the length of the shortest path connecting vi and vj [13]. Whereas, on a weighted graph,

the distance between two nodes is the sum of the weights of the shortest path connecting

the two nodes [13]. The maximum distance over all pairs of nodes on a graph G is called

the diameter of G, denoted diam(G) [13]. Also, one may want to consider the average path

length of a graph which is the sum distances between all pairs of vertices divided by the

total number of edges, L(G) =
∑u,v∈V(G) d(u,v)

(n
2)

[32]. Note that the diameter is at least the

length of the average path length [7].

1.3 Properties of Complex Networks

Complex networks are large networks with anywhere from hundreds to millions of nodes.

The study of complex networks has progressed rapidly due to improvements in computing

power [13]. Technological advancements have not only improved our ability to mine and

use data, but it has presented more avenues for creating data. An important advancement

in the study of complex networks, specifically social networks, is the increased accessibility
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to the internet. Social interactions occur increasingly on-line; therefore, there are now

records of interactions that may not have been recorded before the internet. For example

interactions between friends that transpire on Facebook or financial transactions from

on-line shopping. The following section details three primary properties of social networks:

power law degree distribution, small world phenomenon, and high clustering.

The first property we will discuss is the power law distribution. One of the features of

a graph that can be analyzed is the frequency of degrees. Let nk be the number of nodes

with degree k, then the degree distribution of graph G is (n0, n1, n2, . . . , nt) where nt is the

largest degree [7]. The graph G has a power law distribution with exponent β if nk is

proportional to k−β for some fixed β > 1 [7]. This means that there are a low number of

nodes with high degrees and many nodes with low degrees. Discussions about the power

law distribution can be traced back to economist Wilfredo Pareto in 1896 [7]. He proposed

that across countries and across time, the distribution of income and wealth followed this

pattern [7]. A more current example is if you consider the network of Twitter users, where

the users are the nodes and there is an edge if one user follows another user. There are

a few users, typically celebrities, who have millions of followers compared to majority

of users that have few followers. Studying the degree distribution is important because

depending on the network in question, one can use to their advantage knowing the nodes

with high degrees. For example, one can use it to spread information quickly or to stop the

spread of a virus.

Another interesting property of social networks is what is called the Small World

phenomenon. Informally, it describes the phenomenon when you encounter someone that

you think you have no connection to, but then you find out that you have a mutual

9



acquaintance. In 1967, psychologist Stanley Milgram took this idea and conducted an

experiment to find how short these chains of mutual acquaintances tend to be [7]. He

had 60 letters sent out to various participants in different parts of the United States and

requested that they send it to a specific recipient in Cambridge, Massachusetts [7]. They

could only pass the letter by hand to acquaintances either directly or through a friend of a

friend [7]. Milgram concluded that the average length of these chains of acquaintances was

between 5 and 6 [7]. Since Milgram’s experiment, the Small World phenomenon has been

observed in many different networks, not only in social networks [7]. Considering that

most individuals are a part of many different social groups, the shortest paths between

each group is important for utilising the structure of the network.

One can consider the interactions between groups, but one can also examine the

relationships within a group. Social networks tend to have high clustering, meaning that

the groups of nodes in the network are densely connected. This is because nodes are likely

to share common neighbours [7]. The local clustering coefficient, denoted C(v), is a valuable

statistic when looking at the grouping of a network. It is the ratio of the number of edges

in the neighbour of a node over the total number of possible edges in that neighbourhood,

defined as:

C(v) =
|E(N(v))|

(kn,v
2 )

,

where kn,v is the number of nodes in N(v) [31]. In addition, there is the global clustering

coefficient which is the average of the local clustering coefficients over all the nodes in the

graph. It is defined as:

C(G) =
1
n ∑

v∈V(G)

C(v).
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We may view the local clustering coefficient as a measurement of the extent to which

a person’s acquaintances are acquainted, or the probability that two people that have

mutual acquaintances are acquainted themselves [31]. Clustering in a network shows

which members are close together in the social space sense; thus, we assume that people

that are neighbours in a network share characteristics. Measuring the clustering coeffi-

cients of a network may be useful to someone that is interested in giving their customers

recommendations [26]. If customer A and customer B have similar purchase histories, then

one may want to suggest to customer B a product that only customer A has purchased.

We can also look at the nuances of a network by considering the influence of each

node in a cluster. The significance of a node is called the centrality of a node. The most

straightforward way of measuring centrality is by the degree centrality of a node, meaning

looking to the degree of the node to determine if it is important [13]. Let us recall the

Twitter example. If millions of people follow a particular celebrity on Twitter, then a

cluster forms around that person and they are an influential member of the network. If the

network follows the power law degree distribution, there will be few of these high degree

influential nodes.

The number of neighbours is not the only way one can measure the impact of a node

on the network. One can also measure the closeness centrality by looking at the average

distance a node is to the other nodes in the whole network [13], defined as:

Cc(vi) =
1

∑
vj∈V(G)

d(vi, vj)
.

The number of shortest paths between two nodes vs and vt that pass through a node vi is
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called the stress centrality of vi, defined as:

Cs(vi) = ∑
s 6=t 6=i

σst(vi),

where σst(v) is the number of shortest paths between nodes vs and vt that pass through vi

[13]. Furthermore, there is betweenness centrality which is the ratio of the stress centrality

over the total number of shortest paths between two nodes vs and vt, defined as:

Cb(vi) = ∑
s 6=t 6=i

σst(vi)

σst
,

where σst is the total number of shortest paths between nodes vs and vt [13]. The between-

ness centrality is interesting because it emphasises the importance of the nodes based on if

they are connecting the different clusters in the network. Therefore, in this case a node

can have a low degree but still be significant to the network because it is on the shortest

path between two clusters [13]. These clustering statistics are important for community

detection in a social network and understanding the underlying structure of the network

[13].

Community detection not only plays a crucial role in understanding the structure of

the network, it is also essential to network visualization [26]. Another statistic one may

want to consider is the modularity, meaning the measure of the strength of community

partitioning [13]. Let est be the edges that connect nodes in community s to the nodes in

community t and let as be the the number of nodes that are adjacent to nodes in group s,

specifically as = ∑
t

est [13, 26]. Modularity is defined as:

Q =
k

∑
s=1

(ess − a2
s ).
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As mentioned earlier, when networks have a high order and size it begins to get difficult

to visualize the networks in a practical manner. The graphs that will be discussed in later

chapters were created using visualization software called Gephi, which uses modularity to

decide how to partition the communities. High modularity is viewed as positive because

it means that there more edges in the community than expected and the correct partition

was made [13, 26]. Community structure is detected by optimizing the partitions between

clusters and maximizing the modularity; however, optimizing the modularity of network

depends on its scale [26]. The limit resolution refers to the intrinsic scale of a network and

communities beyond this natural scale may not be detected by modularity [26]. Moreover,

the degree distribution of a network has notable effects on modularity [26]. If the degree

distribution is too even, then it is hard to optimise the modularity of the network [26]. The

effects of communities on network visualization using software will be discussed further

in the next chapter.

1.4 Thesis Outline

This first chapter has described the motivation behind graphs and visualizing networks.

It also outlined some basic definitions of graph theory and some basic concepts of social

networks. Chapter 2 will detail force-directed layout algorithms and the ones used in the

network visualizing software Gephi.

Chapter 3 will provide examples of graphs using data related to Canadian politics. It

will include the methods used to create the graphs, along with an analysis and discussion

of the results. Chapter 4 will give additional examples of graphs, but using data related to
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international politics. Finally, Chapter 5 will conclude the thesis with a summary of results

and suggestions for future research.
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2 Network Visualization Tools

2.1 Introduction

Using graphs to visualize real-world networks is key to studying the structure of a network.

The problem of the Königsberg bridges is a good example of a graph being an effective

way to representing a network. The Königsberg bridges graph had only 5 nodes and 7

edges, making it is simple to draw by hand as seen in Figure 8.

Figure 8: Image (a) is a drawing of Konigsberg and image (b) is its graphical representation

[8].

We can imagine that graphs of higher orders get increasingly more difficult to draw by

hand; hence, it would be impossible to draw useful representation of a complex network

by hand. However, as mentioned in the previous chapter, visualizing complex networks is

essential to understand their structures.

The increase in availability of data has made it necessary to develop better resources

for visualizing large graphs [18]. There are many software tools for visualizing networks

to choose from. The one used in this thesis is called Gephi. Gephi is a network visualizing

software that can handle graphs with order in the tens of thousands of nodes and it is
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aimed at implementing various graph drawing tools, while staying user friendly [19, 20].

The last section of this chapter will provide details about visualizing networks specifically

with Gephi.

2.2 Graph Drawing

The goal of drawing a graph is to assign each node a position in a low dimensional

space, usually 2-dimensions, with the purpose of revealing their important connections

[18]. Many real-world systems can be broken down into clusters, where there are dense

connections within each cluster and sparse connections between the clusters [25]. These

sub-groups should be clearly depicted in a graph visualization. Neighbouring nodes

should be drawn close together in clusters and each cluster should be distinct. To obtain

these results, one of the most common types of algorithms used for drawing network

graphs is called force-directed layout algorithms [18]. Note that the following force-

directed algorithms were developed with undirected graphs, drawn with straight edges in

mind [14, 18]. However, at least in Gephi, the available algorithms are performed on all

graphs.

In 1984, Eades was the first to introduce a force-directed layout using the spring-

electrical model [18]. Eades’ idea was to imagine the nodes as steel rings and the edges

as springs, and then once released from its initial layout the spring forces would adjust

the placement of the rings until the system reached a minimal energy state [14]. He

used his own formula for the springs, rather than the conventional Hooke’s law [14].

He calculated the repulsive forces between each pair of nodes and the attractive forces
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between neighbouring nodes [14]. In 1991, Fruchterman and Reingold built upon Eades’

model with the analogy of rings and spring, but they developed new formulas [14]. Their

concerns were that neighbouring nodes should be drawn close together, but nodes should

not be drawn too close together [14]. They came up with an efficient algorithm using the

attracting and repulsing forces, Fa = d2

k and Fr = − d2

k respectively, with k adjusting the

scaling of the network [20].

The Fruchterman and Reingold algorithm is included in Gephi. All of the following

examples are from the same random graph of order 100 generated in Gephi and each

feature is demonstrated separately. Figure 9 is an example of the Fruchterman and Reingold

algorithm in Gephi. Notice how the nodes are relatively spaced out and while it is visually

appealing, clusters are hard to detect at first glance.

Figure 9: Fruchterman and Reignold algorithm in Gephi. The first graph does not show

communities and the second image shows communities.

More recently, in 2007, Noack introduced his node-repulsion LinLog and edge-repulsion
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LinLog versions of the force-directed algorithm. Noack points out that his LinLog algo-

rithms show clusters more clearly than Fruchterman and Reingold’s algorithm, especially

the edge-repulsion algorithm [20]. LinLog is included as a setting for another algorithm in

Gephi, but not as a separate option so we will look at an example later in the chapter.

2.3 Gephi

Gephi is an open source software for visualizing networks. It can handle large networks,

up to the tens of hundreds of nodes [19]. The creators’ main focus was creating a software

that the user can manipulate in real-time [19]. Large graphs are difficult to lay out and

interactive manipulation makes it easier for the user to obtain a meaningful visualization

[18]. Users can import their own data and adjust the networks as they wish, using different

filters and settings [19]. The creators intended Gephi for users with any level of background

in graph theory [20]. The software includes many options of algorithms to choose from.

Its default algorithm is called ForceAtlas2, which is an improved version of the original

ForceAtlas developed by Gephi’s creators and we will use it as an example to showcase

some of Gephi’s features [20].

2.3.1 ForceAtlas2

ForceAtlas2 is a continuous layout algorithm. It does not introduce anything new, but

it combines effective features of previous force-directed algorithms [20]. ForceAtlas2 is

strongly inspired by Noack’s LinLog forces and even has a LinLog mode setting [20]. Like

previous algorithms, ForceAtlas2 has all the nodes repulse each and the neighbouring

nodes attract, simulating a spring-electrical model [20]. Since it is a continuous algorithm,
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the nodes will keep repulsing and attracting as long as it is running, but does converge to

a balanced state [20]. ForceAtlas2 uses the classical attraction force Fa(n1, n2) = d(n1, n2),

where the attraction force depends linearly on the distance between n1 and n2 [20]. The

formula used for the repulsion force [20] is

Fr(n1, n2) = kr
(deg(n1) + 1)(deg(n2) + 1)

d(n1, n2)
.

They use deg(ni) + 1 to ensure that even the isolated nodes have a repulsive force [20].

The reason for having a degree-dependent repulsive force is because of the power law

distribution property of many real-world networks. It results in nodes with low degrees

being assigned positions closer to high degree nodes, making the graph more readable

[20].

ForceAtlas2 offers different settings for the user to play with, so they can tailor the

visualization to their needs. As previously mentioned, there is the LinLog mode that uses

the attraction formula Fa = log(1 + d(n1, n2)), which outputs better placements from a

modularity standpoint [20]. Here is an example in Figure 10.
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Figure 10: The first graph is the basic ForceAtlas2 algorithm in Gephi and the second

image is the ForceAtlas2 algorithm with the LinLog setting.

There is also the gravity setting in Gephi, which prevents disconnected components

from repulsing too far away from each other. It uses force

Fg(n) = kg(deg(n) + 1),

where kg is set by the user [20].
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Figure 11: Examples of when the gravity setting is 2.0, and 6.0.

There is also the stronger gravity setting in Gephi which uses the force

F′g(n) = kg(deg(n) + 1)d(n),

where d(n) is the distance of the far away nodes from the centre [20]. The stronger gravity

setting tends to not produce a readable graph, as seen in Figure 12.

Figure 12: The ForceAtlas2 algorithm with the stronger gravity setting.

The user can also adjust the scaling option. ForceAtlas2 allows for the scale of kr to

be altered, but not ka [20]. Increasing kr expands the layout of the graph. Here are some
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examples of different scaling of kr in Figure 13.

Figure 13: Example of when the scaling set to 3.0, and 8.0.

If the graph is weighted, then the weights affect the attraction force [20]. Then the

attraction force formula becomes

Fa = w(e)δd(n1, n2),

where w(e) is the weight of edge e [20]. If δ = 0, then the edge weights are ignored, and

if δ = 1, then the attraction force is proportional to the weight [20]. We do not have an

example because our sample graph is unweighted.

Another option is the Dissuade Hubs mode. This setting is meant to keep nodes with

high indegree closer to the centre and the nodes with high outdegree on the periphery [20].

The attraction force becomes

Fa(n1, n2) =
d(n1, n2)

deg(n1) + 1
.
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Here is an example in Figure 14.

Figure 14: The first graph is without the Dissuade Hubs mode and the second graph is

with the Dissuade Hubs mode.

Finally, there is the prevent overlapping feature. It considers the size of each node, size(n),

by computing d(n1, n2) in both the attraction force and the repulsion force to layout the

graph in a more readable manner [20].

In this case [20], Gephi uses

d′(n1, n2) = d(n1, n2)− size(n1)− size(n2).

If d′(n1, n2) > 0 , then there is no overlapping and Gephi uses d′(n1, n2) instead of d(n1, n2)

to compute Fa(n1, n2) and Fr(n1, n2) [20]. If

d′(n1, n2) < 0, then there is overlapping and Fa(n1, n2) = 0 and

Fr(n1, n2) = k′r(deg(n1) + 1)(deg(n2) + 1) [20]. However, if d′(n1, n2) = 0, then there is

no attraction or repulsion [20]. The following figure is an example in Gephi using the no

overlap setting.
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Figure 15: The ForceAtlas2 algorithm with the prevent overlap mode.

While all these examples demonstrated the features added to ForceAtlas2 separately,

but any combination of these features is possible. Depending on the properties of the

network, different settings will reveal different aspects of the network. In the next two

chapters, we will look at examples of real-world networks and how we can utilize Gephi

to extract meaningful conclusions.
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3 Canadian Political Networks

One area in particular that network science has been proven valuable is in political science.

For instance, graph theory has been used to analyze political networks representing

members in the United States (U.S.) congress based on the committees and subcommittees

they are apart of, on the bills they co-sponsor, and on the shared roll-call votes [24].

Furthermore, the idea of extracting a network of shared voting patterns has been applied

to the Italian Parliament. The network was represented by a weighted graph where the

nodes were the deputies and there is an edge between two deputies if they voted the same

way on an issue [24]. For details, see reference [24]. In this chapter, we will explore two

examples of political networks extracted from data relating to Canadian politics.

First, we will consider the voting patterns of Members of Parliament (MPs) during

recent parliamentary sessions. Like most Westminster-style parliaments, Canadian MPs

follow strict party discipline and tend to vote with their party [15]. However, there are

interesting alliances between parties when it comes to trying to pass a bill or prevent a bill

from being passed.

Secondly, we will consider the voting patterns of Toronto city councillors while Rob

Ford was mayor. From 2010-2014, Rob Ford was mayor of Canada’s largest city, Toronto.

He had a very strong public following, affectionately nicknamed Ford Nation, along with

strong support within Toronto city council. However, in 2013, Toronto city council’s

support for Mayor Rob Ford declined after highly publicised allegations of illicit drug use.
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3.1 Canada’s House of Commons

3.1.1 Data Set

The Parliament of Canada is the federal bicameral legislature of Canada [12]. The legisla-

ture is divided into the upper house, called the Senate, and lower house, called the House

of Commons [12]. Canadian MPs are the elected representatives who sit in the House of

Commons and they hold more power in passing bills than its upper house counterpart

[12]. The main parties are the Liberal Party, the Conservative Party, the New Democratic

Party (NDP), the Bloc Québécois (BQ), and the Green Party (GP) [12]. Also, there can be

MPs without any political affiliation, called Independent MPs [12].

The House of Commons’ website [16] provides voting records of the current and of past

parliaments. On the website, there is a table for each bill that states whether the MPs voted

’yea’ or ’nay’ on that bill. Occasionally, MPs abstain from voting if they disagree with their

party’s position on a particular issue, but abstaining votes are not formally documented

[15]. From these tables we will extract three networks using three votes each. We chose

votes with the intention of exhibiting parliaments with different party compositions.

First, we chose from the 40th parliament 3rd session which was a Conservative minority

government with the Liberal Party was the official opposition. We used vote 3 which was

introduced by a Conservative MP, vote 4 which was introduced by a Liberal MP, and vote

6 which was introduced by an NDP MP. All three of these bills were agreed upon. Second,

from the 41st parliament 2nd session, we chose vote 1, vote 2, and vote 5. These bills were

all introduced by a Conservative MP and were agreed upon. The 41st parliament was

a Conservative majority government; notably, with the NDP as the official opposition,
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which was the first time in the party’s history. Third, from the 42nd parliament 1st session,

we chose vote 12 which was introduced by an NDP MP, vote 14 which was introduced

by a Conservative MP, and vote 17 which was introduced by a Liberal MP. All three of

these bills were also agreed upon. The 42nd parliament is the current Liberal majority

government, with the Conservatives as the official opposition.

3.1.2 Methods

On the House of Commons’ website [16], each table is a record of only those who voted on

the bill. To simplify the data mining process, each graph includes only the MPs that were

present to vote on the given bill. The graphs have n nodes representing the MPs and there

is an edge connecting two nodes if they voted either both in favour or both against a bill.

Each graph includes three bills, so the edges are weighted based on how many times two

MPs voted together. For example, if two MPs voted the same way on two of the bills, then

the edge connecting them is weighted 2.

In order to investigate what voting patterns reveal about the community structure

of Canadian political parties, we will use the modularity score, the average degree, the

clustering coefficients, centrality scores, and diameter. Each network will have four graphs

with different partitioning results: modularity score, clustering coefficients, betweenness

centrality, and closeness centrality. Each graph has a legend that details the colour of

the nodes, the value of metric of those nodes, and the percentage of nodes with that

value. Note that partitions based on clustering coefficients, betweenness centralities, and

closeness centralities do not necessarily coincide with communities in the network. For all

the graphs in this section we used the Fruchterman Reingold layout algorithm.
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3.1.3 Results

In Figure 16 we have the first network, written N1, constructed from three votes during the

40th Parliament of Canada. Using Gephi, we obtained a modularity score of QN1 = 0.492

and the graph partitioned into two communities. The graph in Figure 16 shows N1

partitioned based on modularity score. The blue community consists of the Conservative

MPs, an Independent MP, and three BQ MPs, while the red community consists of Liberal

MPs, NDP MPs, and the rest of the BQ MPs. The three BQ MPs that are in blue are the

three nodes that connect the two communities. Note that there happened to have not been

any GP MPs present at any of these three votes, thus there are no GP MP nodes in this

network.

The graph in Figure 17 is partitioned based on the clustering coefficients. The light

purple nodes are Conservative MPs. The bright green nodes are Liberal MPs, NDP MPs,

and BQ MPs. The light blue nodes are Liberal MPs. The orange nodes are Conservative

MPs, Liberal MPs, NDP MPs, and the Independent MP. The dark grey nodes are Liberal

MPs and one BQ MP. The bright pink nodes are Liberal MPs and NDP MPs. Lastly, the

teal nodes are the three BQ MPs that connect the two communities.
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Figure 16: Modularity partitioning of N1.
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Figure 17: Clustering coefficient partitioning of N1.

The graph in Figure 18 shows N1 partitioned based on betweenness centralities. The

light purple nodes are Conservative MPs. The bright green nodes are Liberal MPs, NDP

MPs, and BQ MPs. The light blue nodes are Conservative MPs, Liberal MPs, NDP MPs,

and the Independent MP. The orange nodes are Liberal MPs. The dark grey nodes are

Liberal MPs and one BQ MP. The bright pink nodes are Liberal MPs and NDP MPs. Lastly,

the teal nodes are the three BQ MPs that are connecting the two communities and have the

highest betweenness centrality Cb(v) = 7491.166.

The graph in Figure 19 shows N1 partitioned based on closeness centralities. The light

purple nodes are Conservative MPs. The bright green nodes are Liberal MPs, NDP MPs,

and BQ MPs. The light blue nodes are Liberal MPs. The dark grey nodes are Liberal

MPs, NDP MPs, and one BQ MP. The orange nodes are Liberal MPs and NDP MPs. The
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bright pink nodes are Conservative MPs and the Independent MP. The teal nodes and the

grey-pink nodes are Liberal MPs. The grey nodes are Conservative MPs. Lastly, the light

grey nodes are the three BQ MPs that are connecting the two communities and have the

highest closeness centrality Cc(v) = 0.909.

Figure 18: Betweenness centrality scores of N1.
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Figure 19: Closeness centrality scores of N1.

The next network, written N2, represents the three votes from the 41st Parliament of

Canada. The graph has a modularity score of QN2 = 0.394 and is partitioned into two

communities. The graph in Figure 20 shows the Conservative MPs in blue and the Liberal

MPs, the NDP MPs, the BQ MPs, the GP MP, and the Independent MPs in red. The nodes

that are connecting the two communities are all Liberal MPs.

The graph in Figure 21 shows the partition based on clustering coefficients. The light

purple nodes are Conservative MPs. The bright green nodes are Liberal MPs, NDP MPs,

and the GP MP. The light blue nodes are Conservative MPs, Liberal MPs, NDP MPs, and

BQ MPs. The orange nodes are Conservative MPs. The bright pink nodes are NDP MPs,

BQ MPs, and Independent MPs. The grey-pink nodes are NDP MPs. The are two grey

nodes that are Conservative MPs with clustering coefficient C(v) = 0.987 and one grey
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node that is a Conservative MP with C(v) = 0.594. The nodes that represent the Liberal

MPs that connect the two communities are dark grey, teal, and light grey.

Figure 20: Modularity partitioning of N2.
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Figure 21: Clustering coefficient partitioning of N2.

The graph in Figure 22 shows N2 partitioned based on betweenness centrality. The

nodes representing Conservative MPs are light purple, bright pink, light blue; as well

as, the two grey nodes with betweenness centrality Cb(v) = 5.948 and one node with

betweenness centrality 0.459. The Liberal MPs connecting the two communities are dark

grey, teal, and light grey with the highest betweenness centrality scores Cb(v) = 752.083,

Cb(v) = 627.176, and Cb(v) = 679.915, respectively. The rest of the Liberal MPs are bright

green and light blue. The NDP MPs are bright green, light blue, orange and grey-pink.

The BQ MPs are light blue and orange. The GP MP is bright green and the Independent

MPs are orange.

The graph in Figure 23 shows N2 partitioned based on closeness centrality. The nodes

representing Conservative MPs are light purple, bright pink, light blue, teal; as well
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as, two grey nodes with closeness centrality Cc(v) = 0.538 and two grey nodes with

closeness centrality Cc(v) = 0.723. The Liberal MPs connecting the two communities are

light blue, grey-pink, and grey with the highest closeness centrality scores Cc(v) = 0.972,

Cc(v) = 0.925, and Cc(v) = 0.940, respectively. The rest of the Liberal MPs are bright green

and dark grey. The NDP MPs are dark grey, bright green, orange and grey. The GP MP is

light green and the Independent MPs are orange.

Figure 22: Betweenness centrality scores of N2.
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Figure 23: Closeness centrality scores of N2.

The last network in of this section, written N3, represents the three votes from the 42nd

Parliament of Canada. It has a modularity score of QN3 = 0.198 and is partitioned into two

communities. The the graph in Figure 24 shows the Conservative MPs and some Liberal

MPs in blue, and the rest of the Liberal MPs, the NDP MPs, the BQ MPs, and the GP MP

are in red. The cluster of red nodes in the centre of the graph are all Liberal MPs.

The graph in Figure 25 shows the partition based on the clustering coefficients. The

light purple nodes are Liberal MPs. The bright green nodes are Liberal MPs, NDP MPs,

BQ MPs, and the GP MP. The light blue nodes are Conservative MPs. The dark grey nodes

are Conservative MPs, Liberal MPs, and BQ MPs. The bright pink and orange nodes are

Conservative MPs. The teal nodes are NDP MPs, one Liberal MP, and one BQ MP. The

grey-pink nodes are Conservative MPs. Out of the nodes representing the Liberal MPs
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connecting the two communities, there are two grey nodes with clustering C(v) = 0.823

and four grey nodes with clustering coefficient C(v) = 0.998.

Figure 24: Modularity partitions of N3.

Figure 25: Clustering coefficient partitioning of N3.
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The graph in Figure 26 shows N3 partitioned based on betweenness centrality. The

Conservative MPs are light blue, orange, dark grey, and grey-pink. The Liberal MPs

in the blue community are dark grey. The Liberal MPs that are connecting the two

communities are light purple and grey, and have the highest betweenness centrality scores

of Cb(v) = 79.154 and Cb(v) = 74.128, respectively. The Liberal MPs in the red community

are dark grey and light green. The NDP MPs are light green, grey, and pink. The BQ MPs

are dark grey, pink, and grey. Lastly, the GP MP is light green.

The graph in Figure 27 shows N3 partitioned based on closeness centrality. The Conser-

vative MPs are light blue and grey. The Liberal MPs in the blue community are grey. The

Liberal MPs that are connecting the two communities are light purple and grey, and have

the highest closeness centrality scores of Cc(v) = 0.979 and Cc(v) = 0.943, respectively.

The rest of the Liberal MPs and the BQ MPs are bright green, pink, orange and grey. The

NDP MPs are bright green, pink and grey. Lastly, the GP MP is bright green.
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Figure 26: Betweenness centrality scores of N3.
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Figure 27: Closeness centrality scores of N3.

The following table summarises the average degree, diameter, average path length,

and average clustering coefficient for each network.

Network degav(G) diam(G) L(G) C(G)

N1 151.498 4 1.594 0.984

N2 165.210 3 1.441 0.952

N3 267.745 3 1.216 0.918

3.1.4 Discussion

By considering our visualizations of N1, N2, and N3, we see that the community structure

that arises across the three networks is a partitioning between two main communities.

Namely, the governing party and those that vote with it, and the official opposition and
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those that vote with it. Previous research suggests that there are two dimensions that explain

voting decisions. The first dimension is voting decisions based on right-left ideology and

the second is decisions based on more specific agendas, such as ethnic, linguistic or regional

interests [15]. The Conservative Party lies right of centre on the ideology spectrum and the

NDP lies left of centre; whereas, the Liberal Party falls somewhere in the middle. They are

known as a ’catch-all’ party and fluctuate between right and left of centre depending on

the issue at hand [12].

Figure 16 shows a clear distinction, in network N1, between the MPs voting with the

governing Conservative party and the MPs voting with the official opposition, the Liberal

party. Here, it is interesting that the three nodes connecting the two communities represent

BQ MPs. As all three networks show, typically the BQ votes with the NDP. This can maybe

be explained by regional interests. The BQ has a history of opposing the Liberal Party

when it comes to issues regarding Québéc [12]. This cluster of three nodes had both the

highest betweenness centrality score and closeness centrality score. Thus, these three

nodes are highly connected to the rest of the network; however, they are not apart of a

dense cluster. They are significant to the network because since the 40th parliament was

a Conservative minority government, if the Liberals wanted to pass a bill it would be in

their best interest to have all the BQ MPs vote with them.

Figure 20 shows that N2 is partitioned into two communities: the Conservative govern-

ment and its NDP official opposition. All of the BQ MPs; as well as, some of the Liberals,

voted with the NDP. However, here, most of the Liberal MPs are in the cluster connecting

the two communities. This network coincides with the ideologies of the parties. The NDP

is on side and the Conservative party is on the other, while the Liberal party are in the
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centre. Like in the previous analysis, the nodes clustered in the middle have the highest

betweenness centrality and the highest clustering centrality, but have a low clustering

coefficient of C(v) = 0.581. These nodes are important to the network because they are

highly connected but not apart of a dense cluster. Therefore, since the 41st parliament

was a Conservative majority government, their support would be essential for any of the

non-governing parties to pass a bill.

In Figure 24, we still see two communities in N3. However, in the graph that is

partitioned by clustering coefficient, we can see a distinction between the primarily light

purple cluster of Liberal MPs and the primarily bright green cluster, made up of Liberal,

NDP and BQ MPs. This network appears to illustrate a less polarized government and

opposition than N1 and N2. This is not unusual since N3 represents our current Liberal

majority government and it demonstrates the ’catch-all’ characteristic of the Liberal party.

Most of the Liberals are in the centre of the ideological spectrum, while some Liberals side

with the Conservatives and some side with the NDP and BQ.

Notice that the diameters of N2 and N3 are both diam(N2) = diam(N3) = 3; whereas,

the diameter of N1 is diam(N1) = 4. This suggests that N1 represents the most polarized

of the three parliaments. Since N1 was a Conservative minority the more moderate and

left-leaning MPs needed to ally in order to pass a bill or stop a bill they disagreed with.

The analysis of these three networks implies that the Liberal party votes more with the

opposition the more power the Conservatives have.

These three examples of networks obtained from the voting patterns of Canadian MPs

show distinct communities that form along informal alliances. For the most part, the

community structure corresponds to where the parties land on the ideological spectrum.
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This was shown with as little as three votes per parliamentary session; however, future

work could include all votes of a parliamentary session, which would hopefully provide

more details about the structure of the network and the networks important members.

3.2 Ford Nation

3.2.1 Data Set

The Toronto city councillors are not part of a political party like Canadian politicians on

the provincial or federal level are; however, they are elected to represent the interests

of distinct ward boundaries. Rob Ford served as a city councillor representing Ward 2

of Etobicoke North, then as mayor of Toronto from 2010-2014 [6]. He received a lot of

attention due to allegations of illegal drug use after a video surfaced in March of 2012

[10]. The support of Ford Nation stayed relatively strong throughout his time as mayor,

but Ford’s support within city council started to decline in 2013 to the point where they

removed his key responsibilities as mayor. Nevertheless, Mayor Ford did initially have

consistent support amongst his fellow councillors.

In this section, we consider the voting patterns of the Toronto city councillors from

the beginning of Rob Ford’s term as mayor. We used data from a table found on-line [9]

that is comprised of twenty votes on key issues from 2011. The rows are each of the city

councillors and the columns are each of the twenty votes. If a councillor voted the same

way was Rob Ford on a vote, then their record for that vote would be a green ‘yes’ and if

they did not vote the same way, then their record for that vote would be a red ‘no’.
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3.2.2 Methods

We created two graphs using the city councillor voting data. The first graph has 45 nodes,

one for each city council member including Mayor Ford. There is an edge between two

councillors if they voted the same way as Rob Ford. This means that there is an edge

between Rob Ford and another councillor if they voted the same way and there is an edge

between two councillors if they both voted the same way as Rob Ford. Note that here we

do not consider if each councillor voted in favour or against the issue, just if they voted the

same way as Mayor Ford. The edges are weighted for how many times two councillors

vote the same way as Ford. Since the data considers twenty votes, the edge weights can be

up to weight 20.

Then using that same twenty votes, we also generated a dynamic graph. The same

nodes and edges are defined the same way. However, instead of it being weighted for how

many times two councillors voted with Ford, each vote has a timestamp. For example,

the vote on ’reduce councillor expense budget’ will be time 1 and the vote on ’eliminate

vehicle registration tax’ will be time 2. This creates a dynamic graph where we can observe

the city councillors voting patterns across twenty votes. To measure the support of Mayor

Ford, we used the clustering coefficients and the modularity score. For all the graphs in

this section we used the Fruchterman Reingold layout algorithm.

3.2.3 Results

We used Gephi to visualize the graph and obtained a modularity score of Q = 0.048.

The network was partitioned into two communities, as seen in Figure 28. Note that the
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giant node represents Rob Ford. The community that is shown in pink consists of the

councillors that voted most often with Rob Ford and has clustering coefficient C(v) = 1.0.

The community in black are those that voted less often with him and have clustering

coefficient C(v) = 0.96. The average clustering coefficient of the graph is C(G) = 0.98.

Figure 28: Partitioning based on modularity score.

In Figure 29, the graph is partitioned based on clustering coefficients. The large mauve

cluster has clustering coefficient of C(v) = 0.9820 and it contains the nodes from the pink

community surrounding Rob Ford in Figure 7.
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Figure 29: Partitioning based on clustering coefficients.

The graphs in Figure 30 show the dynamic version of the Rob Ford graph where

each graph is a timestamp representing a separate vote. The nodes in pink are the same

community as obtained from the partitioning using the modularity score in Figure 28. The

graphs should be interpreted left to right and top to bottom.
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Figure 30: Dynamic graph of city councillors voting with Rob Ford over twenty votes.

3.2.4 Discussion

When looking at the data in table format, it is unclear how to interpret the data. However,

in Gephi, the visualization of the network illustrates definitive communities. In Figure 28,
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we see community which surrounds the Rob Ford node in pink and the other community

in black. The high clustering coefficient for the community surrounding Rob Ford shows

that he had strong support from city council back in 2011, long before the infamous video

surfaced. The clustering coefficient for the community coloured in black is also high,

indicating that those councillors voted consistently less with Rob Ford across the twenty

votes.

The dynamic graph, in Figure 30, emphasizes the presence of the community of coun-

cillors that consistently supported Mayor Ford early in his term. Although there are some

votes where the vast majority of the councillors voted with Rob Ford, the dynamic graph

as a whole shows that there is consistency when it comes to those that voted with Ford

and against him. Rob Ford seemed to have unwavering support from Ford Nation and the

dynamic graph shows the reflection of that support within city council in 2011.

While Rob Ford always had a reputation of being brash, after the allegations of illicit

drug use his support among the city councillors dramatically declined. City councillors

are not allowed to formally vote the mayor out of office, but at the end of October 2013 the

councillors had an informal and unsuccessful vote to encourage Mayor Ford to step aside

[10]. Consequently, in November of 2013, councillors voted to take away many of Ford’s

responsibilities, leaving his powers as mayor mostly symbolic [11]. Despite his colleagues

having lost confidence in his governing abilities, Ford Nation remained resilient. This was

made evident during Toronto’s 2014 mayoral election and 2014 municipal election. Rob

Ford ran for re-election, but dropped out of the running for mayor after being diagnosed

with cancer [6]. He endorsed his brother, Doug Ford, who took over the campaign and

came in second with 33.7 percent of the vote, after John Tory with 40.3 percent and ahead
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of Olivia Chow with 23.2 percent [6]. Subsequently, Rob Ford ran for his old city council

seat representing Ward 2 and won [6].

Future work would be to explore the discrepancy between public support and city

council support for Rob Ford after the drug allegations scandal. In additon, Figure 23,

shows more nuanced structure of the Toronto city council during Rob Fords term as mayor.

Alliances between councillors that have similar values should also be explored because

they could reveal hidden political affiliations.
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4 International Political Networks

In the previous chapter we discussed networks related to Canadian politics, specifically

to networks arising from voting patterns. Here we shall study networks linked to topics

concerning international politics. Interactions between nations differ from country to

country and a nation’s ability to play a substantial role on the international stage can be

affected by a number of factors. For instance, it can be affected by geography, by wealth, or

by historical ties. Therefore, it is challenging to generalize relationships between countries.

One of the indicators of a good relationship between countries is trade; namely, arms trade

[2]. High quantities of bilateral arms trade is seen a symbol of trust between two nations

[2].

There are many important world actors including the United States (U.S.), Russia,

China, and Germany. The U.S. government is an especially important world actor and its

leader receives a lot of international attention. Thus, it was controversial when real-estate

mogul and reality star, Donald Trump was elected president in 2016. His unfiltered use

of Twitter has created a sensitive relationship between the current U.S. government and

its citizens; as well as, changed the dynamics of U.S. foreign relations. In this chapter, we

will explore two different examples of using network science to analyze topics related to

international politics.

First, we will consider trade networks using records of all international arms trade

and of oil exports from Africa. Inspired by the article [2], which used records of all arms

trade from 2006 to 2015, we recreated their graph with the intention of expanding on their

analysis. We compare this graph to that of oil exports from Africa and discuss what the
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community structures indicate about alliances between countries. Moreover, we will be

using a planar graph of the map of Africa to investigate the impact of geography on the

alliances.

Second, we will consider linguistic networks extracted from President Trump’s personal

Twitter account: @realDonaldTrump. Here we will explore the evolution of Donald

Trump’s use of Twitter from presidential candidate to president elect to president of the

U.S, focusing on the topics he communicates to his constituents and to the rest of the

world.

4.1 Arms for Oil

4.1.1 Data Set

In this section we will be studying arms trade and oil trade, specifically surrounding

foreign relations of African countries. We used records of international arms trade from

the Stockholm International Peace Research Institute (SIPRI) website [27]. The website

allows for the data to be filtered based on supplier, recipient, year, and type of weapons.

They use the conventional measurement of trend-indicator value (TIV) [27]. The TIV is used

to quantify the value of the trade in terms of resources rather than directly in terms of cost

[27]. We used records of all weapons trade from 2006 to 2016, including weapons such as

aircrafts, missiles, and naval weapons [27]. The graph we created using this SIPRI data

was inspired by the article [2], where they used records from 2006 to 2015; however, here

we were also able to add records from the year 2016.

Then we used records of international oil trade from [29] provided by the International
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Trade Centre. The website provides a table that can be filtered based on imports, exports,

country, year, currency, and product. We searched the records labelled as Petroleum oils and

oils obtained from bituminous minerals, crude exported from African countries in 2016 in U.S.

dollars [29]. Finally, we used an image of the continent of Africa to create a planar graph

[1].

4.1.2 Methods

The first network, written Na1, is an undirected graph where the nodes represent countries

and there is an edge between two nodes if they exchanged arms valuing one hundred

million TIV or more from 2006 to 2016. Each normalized edge weight based on the TIV

amount traded in millions. Not all countries participated in arms trade during these

years, thus there are 95 nodes in Na1. To study this network we used the modularity score,

clustering coefficient, and degree. We used an undirected graph since the data includes

all weapons trade. Many countries import and export different to each other; therefore,

the edge weights represent the cumulative total of trade in either direction between two

countries. The size of the nodes represent the degree and should be interpreted as the

nodes with higher degree represent the countries that export more arms than import. We

visualized Na1 in Gephi using the Yifan Hu [18] layout algorithm with Label Adjust.

We also discuss a subgraph of Na1, written Na2. In the article [2], they use a metric

called PageRank [23] to determine the top fifteen countries in the graph with the most

international influence. The top fifteen are the U.S., Russia, Germany, France, China,

Ukraine, the Netherlands, Italy, the United Kingdom (U.K.), Spain, Sweden, Israel, Turkey,

India, and Pakistan [2]. Thus, network Na2 includes the nodes representing African
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countries found in Na1 and the top fifteen influential countries in terms of arms trade

determined by [2].

The next graph, written Np, represents the network of oil exports from African countries

to countries outside of Africa. Again, not all countries import oil from Africa, thus there

are 89 number of nodes. Each node represents a country and there is an edge between two

nodes if there is oil traded between the two countries. The edges have normalized weights

based on the U.S. dollar amount of the trade in thousands. The network Np is a directed

graph, with the African country as the tail of the arrow and the head of the arrow going

toward the country it exports oil to. Again, the size of the nodes represent the degree.

To visualize Np we used the Yifan Hu layout algorithm with Label Adjust, then used the

modularity score, clustering coefficient, and average degree.

Finally, we have a planar graph of Africa, where each node is a country in Africa

and there is an edge between two nodes if they are neighbouring countries. The graph

is unweighted and undirected. We include this graph twice. Once with the colouring

from the partitioning of Na1, written Nmap1, and second time with the colouring from the

partitioning of Np, written Nmap2. The planar graph was laid out out manually to show

best show the communities in terms of geography.

4.1.3 Results

In Figure 31, we have Na1 partitioned into three groups with modularity score QNa1 = 0.384,

average clustering coefficient C(G) = 0.537, and average degree degav(G) = 6.723. The

three groupings are shown by different colours. The green community which includes

the countries that trade arms mostly with Russia and China. The blue community which
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includes the countries that trade mostly with the U.S. and France. As well as, the orange

community which includes the countries that trade mostly with the Netherlands and

Germany.

Figure 31: Network Na1 of arms trade with a value of one hundred million TIV or more.

In the following, Figure 32, we have Na2 which is a subgraph of Na1. It has modularity

score QNa2 = 0.365, average clustering coefficient C(G) = 0.508, and average degree
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degav = 6.000.

Figure 32: Network Na2 which is a subgraph of Na1 with only the African countries and

top fifteen influential countries.

In Figure 33, we have Np partitioned into five groups with modularity score QNp =

0.377, average clustering coefficient C(G) = 0.052, and average degree degav(G) = 2.663.

The purple nodes are the countries that imports oil mostly from Nigeria and South Africa.

The blue nodes are the countries that import mostly from Angola. The orange nodes

import mostly from Libya. The green nodes import from mostly Algeria and Equatorial

Guinea. The three teal nodes are Namibia, Botswana and Russia.
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Figure 33: Network Np of oil exported from African countries.

Next, Figure 34 shows Nmap1, the planar graph of the map of Africa coloured using

the partitioning from the modularity sore in Na1 from Figure 25. Recall that the green

community contains Russia and China, the blue community contain the U.S. and France,

and the orange community contains the Netherlands and France.
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Figure 34: Planar graph, Nmap1, with the node colouring of Na1

Lastly, Figure 35 shows Nmap2, the planar graph of the map of Africa coloured using the

partitioning from the modularity sore in Np from Figure 33. Note that in Np Russia was in

the teal community, China was in the blue community, Germany and France were in the

orange community, and the U.S. and the Netherlands were in the purple community.
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Figure 35: Planar graph, Nmap2, with the node colouring of Np

4.1.4 Discussion

Arms trade can fluctuate a lot from year to year [2]. Even though we added records from

2016, in Na1, we obtained consistent results with the network from article [2]. In Figure

31, we see that Na1 partitions into three distinct communities. Each community clusters
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around high degree nodes which coincide with countries that are widely thought of as

powerful countries.

The green community is clustered around Russia and China who are both integral

actors in international politics. Most of the other nodes in the green community represent

Eastern European, Asian, and Central African countries. The blue community is clustered

around the U.S. and France. It includes North American, European, Middle Eastern, and

North African countries. The orange community is clustered around Germany and it

includes mostly European countries.

Network Na1 shows that bilateral arms trade is a good indicator of not only bilateral

relationships, but also of multilateral ones [2]. The Eastern European and Asian countries

in the green community are geographically close to Russia and China, and have historical

ties. Moreover, it makes sense that Russia and China are in the same community because

they have a shared interest in counter balancing U.S. power. Consequently, it is logical that

the U.S. is a high degree node with connection in multiple regions worldwide. In addition,

the Netherlands and former Dutch colony, South Africa, have historical ties and are both

in the orange group despite not having an edge between them.

In Figure 32, we have network Na2 which shows a subgraph of Na1. It has only the top

fifteen influential countries discussed in [2] and the African countries that participated in

arms trade from 2006 to 2016. This graph shows a more definitive divide between Eastern

and Western alliances. One thing that stand out about theses two communities is that the

orange community is noticeably more dense than the green one. The orange community

has graph density 0.500; whereas, the green community has density 0.170. This may reflect

that the power in the green community is more centralized and more decentralized in the
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orange community.

There are many oil rich countries in Africa and often those country will use the income

from oil trade to purchase arms [3]. Figure 33 shows network Np which represents oil

exports from African countries in 2016. It was presumed that there should have been a

mirroring of communities between networks Na1 and Np; however, the only evidenced

of both arms and oil trade between two countries based on these two graphs is between

China and Sudan. In network Na1, we see that China is engaged in arms trade with Sudan;

as well as, with the Ukraine which trades with the Democratic Republic of Congo (DR

Congo) and Chad. In network Np, we see that China imports oil from the DR Congo,

Chad, Sudan and South Sudan. These African countries are in a particularly violent region,

mainly due to civil wars [3]; thus, it would be interesting to explore China’s relationship

with these countries beyond these two networks. In addition, we notice in Figure 33 that

China imports a considerable amount of oil from Angola which is striking because they

are neither close in geography, nor is there a commonly known relationship between the

two nations outside of trade.

Another noticeable member of the network Np is the node representing Gabon in purple.

In the following, Figure 36, we see Gabon and its connections based on the countries it

exports oil to. Notice that it is linked to countries in four out of the five communities in the

network.
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Figure 36: Subgraph of Np showing Gabon and the countries it exports oil to

Finally, we have Figure 34 and Figure 35, showing a planar graph of the map of Africa

coloured based on the communities in networks Na1 and Np, respectively. The two versions

of this planar graph are intended to explore the geographical aspect of arms and oil trade.

One unexpected result is that Algeria, Tunisia and Libya are all neighbouring Arabic

speaking countries; however, Algeria is not in the same community as Tunisia and Libya

in either partitioning. In Figure 35, the purple community is spread out on opposite sides

of the continent and has little overlap with the communities in Figure 34. Future work

could investigate what connects these two regions and their trading partners.

Although we did not get the mirrored community structure between networks Na1 and

Np that was expected, the results of these graphs did reveal some relationships that were

predictable and some that were surprising. Future work could include exploring some of

the less expected relationships; in particular, it would be valuable to look into alliances

with Gabon because it has potential of being an important link in other networks.
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4.2 The Real Donald Trump

4.2.1 Data Set

It has been estimated that 62 percent of Twitter users live in the U.S., making it an especially

impactful social media platform for Americans [28]. Before becoming president of the U.S.,

Donald Trump had a history of exchanging harsh words over Twitter. Remarkably, he

did not change his Twitter habits during his campaign or even once elected president. He

continued to use his personal Twitter account, @realDonaldTrump, to share anything that

came to his mind. The fixation on his Twitter usage intensified when he tweeted classified

information, as well as fired his Secretary of State via his personal account [21, 22].

In this section, we will discuss the linguistic networks drawn from President Trump’s

use of language on his personal Twitter account. The tweets were obtained from an on-line

archive of Trump’s tweets [30]. The tweets are stored by year as separate JSON files. Each

JSON object includes information, such as date and time, and number of times a tweet

was favourited. Here, we are just concerned with the content of each tweet itself. We

used tweets from the years 2015, 2016, 2017, and 2018. Using the statistical software R,

we eliminated the tweets that Trump retweeted from other accounts because they are not

directly from him. Then we eliminated symbols and extra whitespace, as well as made

everything lower case for consistency.

4.2.2 Methods

We made four graphs from President Trump’s Twitter data, each one using data from the

years 2015, 2016, 2017, and 2018, respectively. To allow for reasonable computing time, for
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each graph we used approximately a quarter of his total number of tweets each year.

The first network, written NA, is Trump’s top one hundred most frequently used words

from the last 1884 tweets of 2015. The second network, written NB, is Trump’s top one

hundred most frequently used words from the last 1056 tweets of 2016. The third network,

written NC, is Trump’s top one hundred most frequently used words from the last 1302

tweets of 2017. Finally, the fourth network, written ND, is Trump’s top one hundred most

frequently used word from the first 649 tweets of 2018, which are his available tweets of

this year until around April [30]. The decision to use the tweets from the last quarter of

the year, as opposed to first, second, or third quarter, was arbitrary.

After removing all of the retweets, we extracted the four networks where each node is

one of the top one hundred most used words and there is an edge between two nodes if

they are used in the same tweet. The edges are weighted based on how many times two

words occur in the same tweet. The top one hundred used words were from a list that was

filtered to only contain important words, meaning all smalls words like the and it were

removed. Some nodes were combined if the term was made up of two words; for example,

‘white’ and ‘house’ became ‘whitehouse’. Moreover, there is often a node representing

the singular of a word and another node representing the plural in the same network;

for example, ‘email’ and ‘emails’ in NB. We made the choice to keep both nodes and to

keep both nodes separate because either the nodes came up in different communities or

each node linked their community to two other different communities. To visualize these

networks we used the ForceAtlas2 layout algorithm with LinLog mode, Dissuade Hubs,

Label Adjust, and settings gravity and scaling equal to 10.0. To analyze the networks we

will use the modularity score, average clustering coefficient, average degree, and diameter.
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Note that the size of the nodes are proportionate to their degree.

4.2.3 Results

In Figure 37, we have NA using tweets from 2015. Its modularity score is QNA = 0.222 and

it is partitioned into five communities. The purple community includes the words ‘fox’,

‘carson’, ‘realdonaldtrump’, the green includes ‘kasich’, ‘hillary’, ‘bad’, the orange includes

‘abc’, ‘interviewed’, ‘total’, the teal includes ‘book’, ‘crippled’, ‘live’, and the blue includes

‘support’, ‘post’, ‘south carolina’.
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Figure 37: Network NA of top one hundred used words from the last quarter of 2015.

Next, in Figure 38, we have NB with modularity score QNB = 0.336 and is partitioned

into five communities. The blue community includes the words ‘ohio’, ‘maga’, ‘colorado’,

the orange includes ‘pence’, ‘kaine’, ‘iowa’, the green includes ‘watch’, ‘rally’, ‘crowd’, the

purple includes ‘campaign’, ‘women’, ‘media’, and the teal includes only ‘polls’ and ‘john’.
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Figure 38: Network NB of top one hundred used words from the last quarter of 2016.

The third network, NC in Figure 39, has modularity score QNC = 0.363 and is parti-

tioned into five communities. The purple community includes the words ‘nfl’, ‘florida’,

‘north korea’, the blue includes ‘happy’, ‘market’, ‘cnn’, the orange includes ‘wonderful’,

‘dems’, ‘crooked’, the green includes ‘cut’, ‘reform’, ‘senate’, and the teal includes ‘crime’,
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‘vote’, ‘alabama’.

Figure 39: Network NC of top one hundred used words from the last quarter of 2017.

Finally, in Figure 40, ND has modularity score QND = 0.323 and is also partitioned into

five communities. The blue community includes the words ‘trump’, ‘special’ ‘russia’, the

orange includes ‘fair’, ‘china’ ‘dollars’, the purple includes ‘massive’, ‘stop’, ‘school’, the

teal includes ‘deal’, ‘bill’, ‘dems’, and the green includes ‘jobs’, ‘history’, ‘fbi’.
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Figure 40: Network ND of top one hundred used words from all tweets in 2018.

The following table is a summary of the average degree, the diameter, the average path

length and the diameter of all four networks.
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Network degav(G) diam(G) L(G) C(G)

NA 24 3 1.725 0.510

NB 19.091 3 1.846 0.434

NC 24.306 3 1.772 0.467

ND 27.621 3 1.714 0.469

4.2.4 Discussion

Donald Trump is a regular Twitter user. Based off the archived tweets, we know he has

been tweeting since around 2009 and tweeting multiple times a day since 2011 [30]. Even

though he tweets often, he tends to focus on a handful of topics. The four networks

we created follows the time-line starting with the U.S. primary election in 2015, the U.S.

general election in 2016, Trump’s first year as president in 2017, and Trump’s presidency

so far for 2018.

In Figure 37, we have network NA representing Trump’s tweet from the end of 2015.

The two highest degree nodes are the ones representing ‘trump’ and ‘realdonaldtrump’.

In the purple community there are nodes for ‘realdonaldtrump’, ‘donald’, ‘trump’, and

‘donaldtrump’ which is probably referring to a hastag. The reason that his name and

his own Twitter handle would be repeated often is that in 2015 he was campaigning, so

he would quote compliments that people would say about him or tweet at him. Notice

that there is a heavily weighted edge between his last name ‘trump’ and his hashtag

‘makeamericagreatagain’.

The purple group which includes ‘cruz’, ‘rubio’, and ‘carson’, and the green group
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which includes ‘kasich’ and ‘bush’ are the communities formed from Trump tweeting about

his opponents in the primary elections. Four out of the five groups include exaggerated

words that he uses often. The green community contains ‘bad’, the orange contains ‘total’,

the purple contains ‘wow’, and the blue contains ‘fantastic’, ‘amazing’, ‘wonderful’.

Next, in Figure 38, we have the tweets from during the general election forming

network NB. Now you see nodes in the orange community for ‘kaine’ and ‘pence’ who

were the two vice presidential candidates. Also, the node representing ‘hillary clinton’ has

a higher degree than it did in network NA because she then was his only opponent. In

the purple community there are the words ‘crookedhillary’, ‘fbi’, ‘emails’, and his hashtag

‘draintheswamp’. This community represents his tweets against Hillary Clinton and the

Democratic Party. In the green community there are the words ‘rally’, ‘newhampshire’ and

‘florida’, with his hashtag ‘makeamericagreatagain’. Also, in the blue community there

are the words ‘ohio’, ‘colorodo’, ‘support’, with his shortened hashtag ‘maga’. These two

communities arose from him tweeting to announce his rallies.

In Figure 39, we have network NC which includes tweets from Trump’s first year as

president in 2017. In blue there are nodes representing ‘fake’, ‘news’, ‘cnn’, ‘bad’, ‘media’

and the hashtag for the television show ‘foxandfriends’. Previously, there were media

related nodes, such as ‘cnn’ and ‘fox’, throughout the networks NA and NB. However,

in NC there is a distinct community related to Trump’s dislike of the media and there is

the emergence of the word ‘fake’. We also still have a community with ‘hillary clinton’,

‘fbi and ‘crooked’ in orange. Moreover, he continues to use his slogan Make America Great

Again, but now on his Twitter he is mainly use the shortened hashtag ‘maga’.

What is notable about this network are that there are more communities surrounding
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policy. The green community includes the words ‘healthcare’, ‘economy’, ‘jobs’, ‘tax’,

‘reform’, and ‘cut’. This community pertains to domestic issues; whereas, the purple

community has a cluster related to foreign issues because it has the words ‘security’,

‘china’, and ‘north korea’. There is also a cluster in the purple community that seem to

have a patriotic theme because it includes words such as ‘god’, ‘anthem’, and ‘nfl’.

Lastly, we have the network ND in Figure 40. These are his tweets from 2018. Once

again, we still have a community dedicated to ‘fake’, ‘news’, and ‘media’; as well as, a

community dedicated to ‘crooked’ and ‘hillary’, but this time they are all together in the

blue community. He also still frequently tweets about ‘tax’, ‘cuts’, and ‘jobs’ in the green

community. However, now his themes of foreign issues and patriotism seem to be less

definitive. In purple there are the words ‘security’, ‘border’, and ‘wall’. In purple there are

the words ‘north korea’, ‘china’, and ‘trade’. The node for ‘russia’, ‘collusion’, and ‘media’

is in blue. The themes of communities from network NC now find themselves rearranged

differently in the communities from network ND. This suggests that the way he views

these themes is changing.

Considering Donald Trump tweets multiple times a day, it is remarkable that out

of the most frequently used words from each batch of tweets exactly five communities

are detected using the modularity score. Some of the topics reflected the change from

before becoming president to after becoming president and there seems to be a change in

sentiment based on the difference in communities from 2017 to 2018. However, in all four

networks he consistently mentioned the media and Hillary Clinton.

There is a lot of opportunity for future research, both in regards to Donald Trump’s

tweets or any other prominent figure’s tweets. Here we focused on themes derived from
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linguistic networks, but another angle would be to further investigate the structure of his

sentences on Twitter. The table with the results for the average degree, diameter, average

path length, and average clustering coefficient shows that these metrics are fairly consistent

across the four networks. Thus, it would be valuable to analyze his sentence structure

using linguistic networks.
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5 Conclusion

5.1 Summary of Thesis

Advancements in computing power and increased accessibility to open data have ex-

panded the scope of interdisciplinary research. In particular, they have promoted the

intersection of network and social sciences. In this thesis, we discussed various politically

themed networks through a graph theory lens. We focused on the aspect of community

structure when visualizing real-world networks, using graph theory statistics such as

modularity, clustering coefficient, and centrality.

First, we defined what is a graph and introduced basic concepts in graph theory. Then,

we extended the conversation to complex networks and detailed their main properties,

such as power law distribution, high clustering coefficient, and small world property. In

Chapter 2, we explained a common approach to visualizing networks. Here we described

the motivations behind force-directed layout algorithms and gave examples of the default

algorithm used in the network visualization software Gephi.

Subsequently, we used on-line sources to mine data and extract real-world networks.

Chapter 3 contained networks related to Canadian politics. We created three networks

based on the voting patterns of Canadian MPs, where each network represented different

parliamentary sessions. We observed that the community structure forms along party lines

and along possible alliances. We also created a dynamic network from the voting patterns

of Toronto city councillors during Rob Ford’s term as mayor, where we able to visualize

the his core support.

Chapter 4 comprised of networks related to international politics. We recreated a net-
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work from [2] using records of international arms trade. Then, we compared it to a network

created from records of oil exports from Africa and investigated the role of geography,

using a planar graph representing the map of Africa. Here we recognized some known

political alliances; as well as, noticed some unexpected connections. Lastly, we sampled

tweets from U.S. President Donald Trump’s personal Twitter account, @realDonaldTrump,

from the years 2015 to 2018, respectively. We established his top one hundred most used

words and how often they occurred in the same tweet. We then created four networks

each exhibiting a structure based on the reoccurring themes of his tweets.

5.2 Future Work

Each of the networks we studied provide insight into the validity of using network science

to analyze themes in political science. Visualizing complex networks serves as a tool to

highlight the emergence of hidden community structures, which leads to more meaningful

understanding of each network. Here we primarily relied on the modularity scores and

clustering coefficients to obtain our results; however, there remain many open problems.

1. The network of Canadian MPs revealed that the community structure based on

voting patterns form along the political parties, even when considering as little as

three votes. Would the same phenomena be observed if an increasing number of

votes were considered? Moreover, we only considered the votes that took place in the

House of Commons. What would occur if we considered the MPs’ voting patterns of

subcommittee votes?

2. As stated in Chapter 3, Toronto city councillors do not have formal political affil-
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iations. However, from our results, we see that their voting patterns tend to be

consistent. We only considered twenty votes from a particular time period. What

community structure would arise if we considered more Toronto city council votes?

Do their voting patterns reveal anything about their personal ideologies?

3. In Chapter 4, one of our results from the arms and oil trade analysis was that there

was a distinct divide between the countries that traded with Russia and China, and

those that traded with the U.S. and Germany. The community surrounding Russia

and China seems to exhibit more centralized power than the community containing

the U.S. and Germany. Is this phenomena consistent in other trade networks? Also,

aside from arms and oil, does geography play a role in other trade alliances?

4. We noticed that Gabon was connected to countries in four out of the five groups in

the network. What does this say about Gabon’s role in the international community?

Do these connections translate into alliances in other networks?

5. When analyzing the networks derived from Donald Trump’s personal Twitter ac-

count, we focused on the reoccurring themes that arose as clusters in the network.

What would a linguistic network focussing on his sentence structure say about his

use of Twitter? Moreover, would a similar analysis of other prominent political

figures Twitter accounts give the same results?
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Appendix

The following is the code used in R to create an edge list from the voting records of

Canadian MPs. The same code was used for each of the networks representing different

parliamentary sessions; however, the file names were changed accordingly.

#40th parl 3rd session: votes 3, 4, 6

v3<-read.csv('C:/Users/Lyndsay Roach/Documents/40_vote3.csv')

v3$Name<-as.character(v3$Name)

v3$Label<-as.character(v3$Label)

v4<-read.csv('C:/Users/Lyndsay Roach/Documents/40_vote4.csv')

v4$Name<-as.character(v4$Name)

v4$Label<-as.character(v4$Label)

v6<-read.csv('C:/Users/Lyndsay Roach/Documents/40_vote6.csv')

v6$Name<-as.character(v6$Name)

v6$Label<-as.character(v6$Label)

#make unique list of labels

L<-rbind(v3[,1:2],v4[,1:2],v6[,1:2])

labes<-unique(L)

write.csv(labes,"G5_40_labels.csv")

#make node list with political affiliation as labels

n<-read.csv('C:/Users/Lyndsay Roach/Documents/G5_40_labels.csv')
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n$Name<-as.character(n$Name)

n$Label<-as.character(n$Label)

#changes names into ID numbers

for(i in(1:length(v3$Name))){

for(j in (1:length(n$ID))){

if (v3$Name[i]==n$Name[j])

v3$Name[i]<-n$ID[j]

}

}

for(i in(1:length(v4$Name))){

for(j in (1:length(n$ID))){

if (v4$Name[i]==n$Name[j])

v4$Name[i]<-n$ID[j]

}

}

for(i in(1:length(v6$Name))){

for(j in (1:length(n$ID))){

if (v6$Name[i]==n$Name[j])

v6$Name[i]<-n$ID[j]

}
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}

#make edge list

#use package gtools

#vote 3, 4, 6 "Yea"

v3TempY<-v3[ which(v3$Vote.3==1), ]

c3Y<-combinations(length(v3TempY$Name),2, v3TempY$Name, set=FALSE,

repeats.allowed=FALSE)

v4TempY<-v4[ which(v4$Vote.4==1), ]

c4Y<-combinations(length(v4TempY$Name),2, v4TempY$Name, set=FALSE,

repeats.allowed=FALSE)

v6TempY<-v6[ which(v6$Vote.6==1), ]

c6Y<-combinations(length(v6TempY$Name),2, v6TempY$Name, set=FALSE,

repeats.allowed=FALSE)

#vote 3, 4, 6 "Nay"

v3TempN<-v3[ which(v3$Vote.3==0), ]

c3N<-combinations(length(v3TempN$Name),2, v3TempN$Name, set=FALSE,

repeats.allowed=FALSE)
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v4TempN<-v4[ which(v4$Vote.4==0), ]

c4N<-combinations(length(v4TempN$Name),2, v4TempN$Name, set=FALSE,

repeats.allowed=FALSE)

v6TempN<-v6[ which(v6$Vote.6==0), ]

c6N<-combinations(length(v6TempN$Name),2, v6TempN$Name, set=FALSE,

repeats.allowed=FALSE)

e40YN<-rbind(c3Y,c4Y,c6Y,c3N,c4N,c6N)

#add weights

#data.table

count.dups <- function(DF){

DT <- data.table(DF)

DT[,.N, by = names(DT)]

}

e40YN<-count.dups(e40YN)

#export edge list

write.csv(e40YN,'G5_e40YN.csv')
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The following is the code used in R to clean and mine Twitter data from @realDon-

aldTrump; as well as, create an edge list. The same code was used for each of the networks

representing tweets from different years; however, the file names were changed accord-

ingly.

#using packages jsonlite, dplyr, tidytext

tweets<-fromJSON('C:/Users/Source/Documents/condensed_2018.json

',flatten=TRUE)

text<-tweets$text

text2<-text#[1:10]

#drop retweets, run until all rts are droppped

for(i in (1:length(text2))){

if(grepl("^RT", text2[i], perl=TRUE)=='TRUE'){

text2<-text2[-c(i)]

}

}

#remove symbols

temp<-stringr::str_replace_all(text2,"[^a-zA-Z\\s]", " ")

#reduce whitespace

temp2<-stringr::str_replace_all(temp,"[\\s]+", " ")

#make everything lower case

temp3<-tolower(temp2)
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#split string into a list of tweets and split words in each

tweet

tst<-strsplit(temp3, '\\W+', perl=TRUE)

#store it as a list of each word then store list as vector

tst2<-unlist(tst, recursive = TRUE, use.names = TRUE)

df<-data_frame(text2)

mystopwords<-data_frame(word=c("https","t.co","amp","rt"))

#remove stopwords

tmp<- df %>%

unnest_tokens(word, text2) %>%

anti_join(stop_words)

df_tidy<-tmp%>%

anti_join(mystopwords,by="word")

#determin frequency of words, outputs in descending order

freq<-df_tidy %>%

count(word, sort = TRUE)

#choose list of top most used words

freq2<-freq$word

bank<-freq2[1:100] #list of top most used words

#make table of top words and the tweet number and the index
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of that

word in the tweet

v1<-vector()

v2<-vector()

v3<-vector()

for(i in (1:length(tst))){

for (j in (1:length(tst[[i]]))){

if (tst[[i]][j] %in% bank){

v1<-append(v1,tst[[i]][j])

v2<-append(v2,i)

v3<-append(v3,j)

}

}

}

w2<-as.numeric(v2)

w3<-as.numeric(v3)

#positions of each top 100 words in tweets

Lt<-cbind(v1,w2,w3)

#empty vectors to store edge list

source<-vector()
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target<-vector()

vec<-vector()

#make a list of the words that appear within the same tweet

for(i in (1:length((w2)-1))){

for(j in ((i+1):length(w2))){

if ((w2[i])==(w2[j])){

vec<-append(vec,w2[i])

source<-append(source,w3[i])

target<-append(target,w3[j])

}

}

}

#remove loops

L<-vector(mode='numeric',length=length(vec))

L2<-data.frame(cbind(vec,source,vec,target,L))

for (i in (1:length(vec))){

if(tst[[vec[i]]][source[i]]==tst[[vec[i]]][target[i]]){

L2$L[i]<-L2$L[i]+1

}

}
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L3<-L2[which(L2$L==0),]

L3<-L3[,1:4]

#add weights

w<-rep(1,length(L3$vec))

L4<-cbind(L3,w)

for (i in (1:(length(L3$vec)-1))){

for (j in (i+1):length(L3$vec)){

if((tst[[vec[i]]][source[i]]==tst[[vec[j]]][source[j]]) &&

(tst[[vec[i]]][target[i]]==tst[[vec[j]]][target[j]])){

L4$w[i]<-L4$w[i]+1

}

}

}

for (i in (1:(length(L3$vec)-1))){

for (j in (i+1):length(L3$vec)){

if((tst[[vec[i]]][source[i]]==tst[[vec[j]]][source[j]]) &&

(tst[[vec[i]]][target[i]]==tst[[vec[j]]][target[j]])){

L4$w[j]<-0

}

}
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}

L5<-L4[which(L4$w!=0),]

#making csv files with edge list

s<-vector()

t<-vector()

nodes<-freq$word

for (i in (1:length(L5$vec))){

if (tst[[L5$vec[i]]][L5$source[i]] %in% nodes)

s<-append(s,which(nodes==tst[[L5$vec[i]]][L5$source[i]]))

}

for (i in (1:length(L5$vec))){

if (tst[[L5$vec[i]]][L5$target[i]] %in% nodes)

t<-append(t,which(nodes==tst[[L5$vec[i]]][L5$target[i]]))

}

w<-L5$w

edges<-cbind(s,t,w)

#write into csv file
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write.csv(nodes,"Trump_2018_nodes.csv")

write.csv(edges,"Trump_2018_edges.csv")
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