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ABSTRACT

In this thesis, an epidemic model with nonlinear incidence rate is investigated.

The ranges of the parameters involved in the model are given under which the

equilibria are positive. By carrying out the qualitative behaviour analysis, it

is shown the disease free equilibrium can exhibit saddle-nodes, saddle point

or stable node depending on the ranges of the parameters. It is shown that

the interior equilibria are saddle point, stable or focus nodes. Furthermore,

several numerical solution and graphics are given to support the theoretical

analysis.
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Chapter 1

Introduction

Each year, more than one million people die of communicable diseases [21].

For example, during the Bubonic Plague, also known as the Black Death, an

epidemic in Europe first occurring between 1348 to 1350, about thirty to sixty

percent of the European population were wiped out. The Bubonic Plague

affected Europe again in the early 17th and 18th century, leaving some regions

devastated. Approximately one third of the European population perished

during that time period [22]. A recent epidemic caused by severe acute

respiratory syndrome (SARS), in 2003 had affected more than five thousand

people and had taken 750 lives [1]. This serious form of pneumonia is caused

by a virus and was first identified in Asia, spreading quickly throughout the

world. Another example is the H1N1 Influenza pandemic that occurred in

2009 [21]. The disease is a combination of bird and pig influenza virus, known

as swine flu. The virus is able to pass from animal to human and between

humans. By the time the pandemic had slowed down in 2010, there was a
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report of 18000 deaths [21]. These diseases can be treatable or preventable

[19]. Public health authorities are concerned with a sudden outbreak of

disease and an endemic situation, of which the disease is always present.

1.1 Problems

The questions that are to be addressed are [12]:

1. How many individuals will be affected, and if so, how many will require

treatment?

2. How many individuals are needed to be isolated before the disease will

die out?

3. What is the number of vaccines needed to reduce the spread of disease?

In order to address the above issues, the public authorities and researchers

must conduct time consuming and expensive experiments.

Many mathematicians are following the footsteps of pioneers to come up

with a more realistic model so that they can predict or answer some basic

questions regarding to the outcome of disease. After Kermack Mckendrick

studied the plaque spread in London from 1665-1666, he introduced the first

epidemic model, SIR model, which considers a fixed population with three

compartments described in Chapter 3: Susceptible, Infected, and Recovery.

This model is used to predict the outcome of the disease. However, it is

beneficial to know how to control an epidemic before it happens. In mathe-

matical disease modelling, it is only a tool which has been used to study the
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mechanism of the disease spreading. Furthermore, it is used to predict the

future course of an outbreak and to evaluate strategies to control an epidemic

[16, 12].

In epidemic modelling, there are two types of models, simple and de-

tailed. There are drawbacks to both types. Simple models do not allow for a

variety of situations, including vaccinations, quarantine, or delayed onset of

the disease. Detailed models are usually designed for specific circumstances

including short-term prediction with situations unusable in simple models,

though they are impossible to solve analytically and are only used for the-

oretical purposes[12]. For instance, the disease model is always associated

with the threshold behaviour which is used to determine whether an epidemic

occurs or dies out. In [13, 14, 27], the authors use a reproduction number,

known as R0 to describe an epidemic. If R0 > 1, there will be an epidemic;

if R0 < 1, the epidemic will die out; and if R0 = 1, there will be an endemic,

which mean the disease will re-occur.

1.2 Objectives

In this thesis, we do not intend to address the problems discussed above.

The detailed models with the modified incident rates will be used to analyze

an epidemic for theoretical purposes. The primary objectives of this thesis

are:

1. To modify the non-linear incident rate and study the dynamical be-

haviours of the reduced IR system that is the equation of (3.4).
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2. To find the number of equilibria and study the qualitative behaviour

at each equilibrium.

3. To determine the value for the parameters α, β, γ and δ to clarify the

stability of the disease.

In case one, we will modify the incident rate in the form of
kIpSq

1 + aIp
, where

p = 1 and q = 2. The incident rate is proposed by Liu et al. and is used

by several authors [18, 23, 24]. More details and problems arise with the

incident rate will be explained in Chapter 3. For case two, the number of

equilibria are associated with the change in incident rate. After finding the

number of equilibria, the qualitative behaviour will be studied. Last part, we

will restrict the value of the parameters α, β, γ and δ in our model of interest

so that we can determine the stability of the disease.

1.3 Methodology

We are interested in the study of the epidemic model with non-linear incident

rate . First, we will change the variable of the parameters, α, β, δ and γ, so

that our model of interest will become a non-dimensional system of equation

(3.5). Second, we will use the techniques such as linearization and nullcline in

Chapter 2 to solve the two dimensional system and to determine the number

of equilibria. The last part of the thesis is to analyse the stability of the

equilibrium by using Theorem 2.1.4, Lemma 2.1.5 and Lemma 2.3. We will

conclude our thesis with numerical simulation for the phase portraits of each
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equilibrium point by using the software called Maple13 [4].

1.4 Thesis Organization

This thesis is devoted to the study of the dynamical behaviour of a par-

ticular class epidemic SIRS model with non-linear incidence rate, which we

will introduce the model in Chapter 3. Our goals are to find the total num-

ber of equilibria, to investigate the phase portraits near the equilibria and

to understand whether the disease will spread or persist for our model of

interest.

In Chapter 1, there will a brief introduction to the epidemiology, problems

and the explanations of the thesis objectives.

In Chapter 2, we will study the tools and terminology to analyze the

results of our model of interest. Also, we will study the background for our

model of interest and how it evolves. An illustration of our model will be

introduced in this chapter.

Chapter 3 and 4 contain the results and Chapter 5 contains the conclusion

of our model of interest. We will use numerical simulation by using the

software calls Maple13 to illustrate our results.
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Chapter 2

Non-Linear Differential

Equation′s Theories and

Techniques

2.1 Introduction

In this chapter, we will present the mathematical theories and techniques

that are useful to study non-linear differential equations. It will be useful to

interpret the biological meaning of our epidemic model. The techniques are

used to study the behaviour of the dynamics of a system as the parameters

change such as limited cycle and stability. Since our model is a non-trivial

non-linear differential equation , it is impossible to find explicit solutions.

Numerical simulation or study of the stability of the system at the equilib-

rium is the only way to draw a conclusion to our model regardless whether
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we know the solution or not. In order to understand and to analyze our

model of interest, we have to study the equilibrium solution of non-linear

system. Before we can do that, we must understand what is the definition

of the equilibrium . In [16] Allen, stated that “the equilibrium solution is

biologically interesting because they represent resting states or stationary

states of the system”. For example, if the zero is an equilibrium point, then

it can represent the disease-free states of an epidemic model.

2.1.1 Definition of Autonomous Differential Equation

Our epidemic model of interest is an autonomous differential equation , that

means the functions f1(x, y) and g1(x, y) do not depend on the independent

variable, which we denote by t for time. To interpret the biological meaning

of autonomous model, the infected , the removed , and the susceptible class

do not depend explicitly on time; this means the infected, susceptible and

removed class should yield the same outcome regardless when the disease

started.

Our model deals with non-linear incident rate . As stated in Liu et Al [27],

“the incidence rates are the rates of new infections involved in SIRS model

by giving reasonable qualitative description of dynamic of the diseases”.

We consider the following two dimensional planar systems:
dx

dt
= f1(x, y),

dy

dt
= g1(x, y),

(2.1)

where f1, g1 : X → R are functions having continuous first partial derivatives
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and X is an open subset in R2.

2.1.2 Equilibrium

Since we restrict all the parameters to be positive, the equilibrium point must

be positive to have biological meaning. If it is negative, then the solution

tends to extinction (the disease dies out).

Definition 2.1.1. [8] If (x̄, ȳ) is an equilibrium point or fixed point of (2.1)

if it satisfies f1(x̄, ȳ) = 0 and g1(x̄, ȳ) = 0. An equilibrium point (x̄, ȳ) of

(2.1) is said to be positive if (x̄, ȳ) ∈ P where

P = {(x̄, ȳ) ∈ R2 : x̄ ≥ 0 and ȳ ≥ 0},

and to be an interior equilibrium point if x̄ > 0 and ȳ > 0.

2.1.3 Nullcline

The phase plane portrait is the direction field that can be used as “visual”

aid in sketching diagram [5, 16] . To analyze the phase plane, all we need to

know is whether the flow is up or down on the x-nullcline , the flow is left or

right for the y-nullcline.

Definition 2.1.2. [16] The x-zero isocline or nullcline for system (2.1) is the

set of all points in the (x, y) plane satisfying f1(x, y) = 0. The y-zero isocline

or nullcline is the set of all points satisfying g1(x, y) = 0.
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2.1.4 Phase Plane Analysis

As mention in our introduction, we need to understand the theory behind

the dynamic behaviours of a system of two differential equations. We need

to study the local stability through phase plane analysis near the fixed point.

One way to do that is to linearize a non-linear system about an equilibrium.

Definition 2.1.3. [6, 16] Linearization is a method to determine the local

stability of an equilibrium of a system of non-linear differential equation . It

is a technique that has been used for studying linear system to analyze the

behaviour of a non-linear function near the fixed point.

Let the system of (2.1) be a non-linear system . We will expand the

function f and g by using Taylor formula. Now, we are going to apply a

small perturbation with u = x− x̄ and v = y − ȳ. Then

du

dt
= f(x̄, ȳ) + fx(x̄, ȳ)u+ fy(x̄, ȳ)v + fxx(x̄, ȳ)

u2

2
+ ...,

dv

dt
= g(x̄, ȳ) + gx(x̄, ȳ)u+ gy(x̄, ȳ)v + gxx(x̄, ȳ)

u2

2
+ ...,

where fx(x̄, ȳ) =
∂f(x, y)

∂x
|x=x̄,y=ȳ and gx(x̄, ȳ) =

∂g(x, y)

∂x
|x=x̄,y=ȳ and so on.

We will neglect the partial derivatives of the terms of order greater or equal

to two. Recall from definition 2.1.1, the equilibria of the system (2.1) are

solution (x̄, ȳ) that satisfy f(x̄, ȳ) = 0 and g(x̄, ȳ) = 0.

The system linearized about the equilibrium (x̄, ȳ) is [16]

dZ

dt
= JZ,

where Z = (u, v)T and J is the Jacobian matrix evaluated at the equilibrium

.
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Lets recall some results on phase portraits of planar systems near equilib-

ria in the qualitative theory [7, 8, 9]. Let us denote by A(x, y) the Jacobian

matrix of f1 and g1 at (x, y), that is,

A(x, y) =


∂f1

∂x

∂f1

∂y
∂g1

∂x

∂g1

∂y

 (2.2)

and by |A(x, y)| and tr(A(x, y)) the determinant and the trace of A(x, y),

respectively.

Then the characteristic polynomial of A(x, y) is:

λ2 − tr(A(x, y)) + det(A(x, y))

It is well known that the solutions of a planar system near its equilibria

(x, y) can be studied by the eigenvalues of A(x, y), which can be determined

by |A(x, y)| and tr(A(x, y)).

Theorem 2.1.4. [16] Assume the first - order partial derivatives of f and g

are continuous in some open set containing the equilibrium (x0, y0) of system

(2.1).

(i) Then the equilibrium is locally asymptotically stable if

tr(A(x, y)) < 0 and det(A(x, y)) > 0.

(ii) The equilibrium is unstable if tr(A(x, y)) > 0 or det(A(x, y)) < 0,

where A(x, y) is the Jacobian matrix evaluated at the equilibrium .

The classification schemes for the non-linear system case should be the

same for the linear case after we linearized the non-linear system. Sub-

sequently Linearization only gives us the approximation of the non-linear

10



system, then it mights behave differently from the linear system. For gen-

eral proof see [6, 16]. Here are the three cases in which a non-linear system

behave differently from the linear system [16]:

1. det(A(x, y)) = 0. There is at least one zero eigenvalue . If there is an

isolated equilibrium , it can be a node, spiral or saddle.

2. tr(A(x, y)) = 0 and det(A(x, y)) > 0. The eigenvalues are purely imag-

inary. The equilibrium may be a center or spiral .

3. tr(A(x, y))2 = 4(det(A(x, y)). This represents the borderline between

complex and real eigenvalues. Thus, the equilibrium can be a node or

a spiral.

The Figure 2.1 illustrates the classification schemes of a non-linear system

that has been linearized to linear system . The stability diagram in the (T,∆)

plane, where T = tr(A(x, y)) and ∆ = det(A(x, y)), and ∆ = T . The line

curves represent the three.

11



Figure 2.1: [11] The stability diagram of non-linear system.
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2.1.5 Classification Scheme of Stability

The following classification schemes can be found in [7, 8, 9] and have been

used in [7, 8, 9].

Lemma 2.1.5. [8] If (x0, y0) is an equilibrium of (2.1), then the following

assertions hold.

(i) If |A(x0, y0)| < 0, then (x0, y0) is a saddle of (2.1).

(ii) If |A(x0, y0)| > 0, (tr(A(x0, y0)))2− 4|A(x0, y0)| ≥ 0 and (A(x0, y0)) 6= 0,

then (x0, y0) is a node of (2.1); it is stable if tr(A(x0, y0)) < 0 and unstable

if tr(A(x0, y0)) > 0.

(iii) If |A(x0, y0)| > 0, (tr(A(x0, y0)))2−4|A(x0, y0)| < 0 and tr(A(x0, y0)) 6=

0, then (x0, y0) is a focus of (2.1); it is stable if tr(A(x0, y0)) < 0 and unstable

if tr(A(x0, y0)) > 0.

Lemma 2.1.6. [8] Let (x0, y0) be an equilibrium of (2.1). Assume that

|A(x0, y0)| = 0, tr(A(x0, y0)) 6= 0 and (2.1) is equivalent to the following

system 
u̇ = p(u, v),

v̇ = %v + q(u, v)

(2.3)

with an isolated equilibrium point (0, 0), where % 6= 0,

p(u, v) =
∑∞

i+j=2,i,j≥0 aiju
ivj and q(u, v) =

∑∞
i+j=2,i,j≥0 biju

ivj are convergent

power series. If a20 6= 0, then (x0, y0) is a saddle-node of (2.1).

The graphs and explanations of the Lemma (2.1.5) and (2.1.6) are pro-

vided below:

13



(a) Stable node − the

solution will flow into

the origin or the solution

will approach the equi-

librium regardless of the

starting point.

(b) Unstable node -the

solution will not con-

verge to the equilibrium,

unless it starts at the

equilibrium.

(c) Center -the solu-

tion will neither ap-

proach nor move away

from the equilibrium

(d) Saddle point -the so-

lution will not converge

to the equilibrium

(e) Stable Spiral -the so-

lution starts from any

point other than the

equilibrium, it spirals

into the equilibrium .

(f) Unstable Spiral -the

solution starts from the

fixed point and then spi-

rals away from the equi-

librium.

Figure 2.2: Phase portrait diagram
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Chapter 3

Introduction to Epidemic

Model

3.1 Introduction

The first section of this chapter is devoted to the background of the Epidemic

model . This will include the mechanism of the model and its first pioneer

that came up with the model. Furthermore, the history of the SIRS models

will be introduced and its limitations that arise with the model. A flow chart

of SIRS model will be included in this section. In the second part of this

chapter, we will present our model of interest. The model is an expansion of

the work from [18, 24]. The last part of the chapter is devoted to find the

number of equilibria . We will use the theories and techniques from Chapter

2 to find the number of equilibria and will also determine the Jacobian matrix

for our model of interest.
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3.2 Background of Epidemic Model

Between 1665-1666, when Kermack Mckendrick studied the Bubonic plaque

in London, he introduced a new epidemic model known as an SIR model,

which is also commonly referred to as the Kermack McKendrick model (KMK)

[13]. The epidemic model in the form of SIRS model is an extension of the

classical deterministic epidemic of SIR models. The SIRS model is used to

model many infectious diseases such as influenza, measles and mumps. The

model is divided into three subclasses: the susceptible class, the infective

class and the recovery or removed class. The susceptible class represents the

individuals who are capable of contracting the disease and becoming infected,

while the infective class is the class of those individuals who are capable of

transmitting the diseases. The removed class represents those who have had

the disease, recovered from it and will then re-enter into the susceptible class.

There are few drawbacks with the KMK model . It does not capture a

realistic situation because in the model, the interaction term is a linearly

increasing function of the number of infected persons. The KMK only de-

scribes the true behaviour for a small number of infective. Moreover, Capasso

and Serio [25] show that this is always true as the number of contacts of a

susceptible per unit time will not increase linearly with infective. Capasso

and Serio [25] generalize the incidence rate in the form of g(I) into the SIRS

model when they observe the cholera epidemic spread of Bari in 1973 [25].

The saturate incidence rate allows the crowding effect of infective individual

when the susceptible and infective individual may saturate at high levels.
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However, the model requires that g′(0) must be positive and finite. Fur-

thermore, Wilson and Worcester introduce the first general incidence rate

with Sp in 1945 but the incidence rate does not fit the data well. In 1969,

Severo introduces a more general form of incidence rate in the form of KIpSq

where q < 1. The problem with Severo′s model however, is that it does not

investigate the behaviour of the incidence rate in full. In 1975, Bailey intro-

duces bilinear incidence rate into the SIRS model, and it is in the form of βIS

where β is the transmission rate. The problem with the bilinear incidence

rate in Baileys model is that it contains trivial equilibrium where I = R = 0,

which means there is no disease present. Therefore, the effect of behavioural

changes has been incorporated by Liu et al [14, 23] through the use of a non-

linear incidence rate
KI lS

1 + αIh
with k, l, α, h > 0. The incidence rate of the

form
KI lS

1 + αIh
is more reasonable then βIpSq because it includes the change

in behavioural and crowding effect of the infective individual and prevents

the unboundedness of the contact rate by choosing the suitable parameters

[24]. The flow chart of Figure 3.1 below illustrates the cycle of SIRS models.
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Figure 3.1: Illustrates the flow chart of SIRS model, where S(t) represents the

susceptible rate, I(t) corresponds to the infected rate, while R(t) denotes the

recovery or the removed rate. In the SIRS model, the recovered individual

may lose the immunity and re-enter the susceptible state.

3.3 Previous results

Our result is different from the result in [18, 24]. In [18], the authors do

not specify the exact value for the number equilibria. The equilibria are

determined by the basic reproductive number, known as R0. Moreover, the

bifurcation and qualitative analyses are generalized by the change of param-

eters and R0.

On the other hand, in [24], after they modify the incident rate in the form

of
KI lS

1 + αIh
, where l = 2, they study the global qualitative and bifurcation

analyses. The authors show that the system had at least two limit cycles

and the system undergoes a Bogdanov-Takens bifurcation at the degenerate

equilibrium with the suitable conditions for the parameters. However, for our

SIRS model, the system does not undergoes a Bogdanov-Takens bifurcation
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nor it has any limit cycles. This mean, the existence of a persistence region

of the disease does not occur in our model of interest. In our system, the

disease either persistence-outbreak or the disease is well controlled with the

suitable condition for the parameters α, β, δ and γ. For more details of our

result, see discussion in Chapter 5.

3.4 Preliminary

In this section, we will extend the previous study from [18, 24] with the

epidemic model of great interest in the form of:

Ṡ = B − dS −
(
kIpSq

1 + aIp

)
+ νR,

İ =

(
kIpSq

1 + aIp

)
− (d+ r)I,

Ṙ = rI − (d+ ν)R,

(3.1)

with the non-linear incidence rate per infective individual given by [18]

H(I, S) :=
IpSq

1 + aIp
, (3.2)

where B is the recruitment rate of population including newborns and im-

migrants, d is the natural death rate, S, I and R represent the susceptible

populations who can catch the disease, infected populations who have the

disease and can transmit it to others, and the removed populations who have

either had the disease or are dead, are recovered , are permanently immune or

are isolated until recovered, respectively, k is the probability of transmission

per contact, kIp measures the infection force of the disease and 1/(1 + aIp)
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with a ≥ 0 denotes the inhibition effect either from the behavioural change

of the susceptible individuals as the number of the susceptible individuals

increases or from the crowded infective individuals, ν is the rate of removed

individuals who lose immunity and return to susceptible class and r is the

recovery rate of the infective individuals.

There have been studies on dynamical behaviour of (3.1) with some spe-

cific numbers for p and q under the standard assumption that:

S(t) + I(t) +R(t) = N∞ for t ≥ 0 (3.3)

whereN∞ represents the population in the equilibrium in the absence of the

disease. The equation (3.3) has been used in [18, 8, 27], when the population

size reaches its limit value N∞. We will consider the case for (3.1) with q = 2

and p = 1 under the same assumption as (3.3) and study the dynamical

behaviours of the reduced IR system that is the last two equations of (3.1),

by replacing S(t) replaced by N∞ − I(t) − R(t). The reduced IR system is

the projection of (3.1) with q = 2 and p = 1 to the IR planar coordinate

system .

3.5 Positive Equilibria of (x1, y1) and (x2, y2)

In this section, we derive an equivalent system of the reduced IR system of

(3.1) with q = 2 and p = 1, under the assumption of S(t) = N∞−I(t)−R(t)

and we replace the susceptible populations S(t) in the first equation of (3.1).
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Thus we obtain the reduced IR system:
İ =

kI(N∞ − I −R)2

1 + aI
− (d+ r)I,

Ṙ = rI − (d+ ν)R.

(3.4)

By rescalling (3.4), we let x = I/N∞, y = R/N∞ and ť = (d+ ν)t, and then

apply the Chain rule to the following equations:

dI

dt
= N∞

dx

dť

dť

dt
= N∞(d+ ν)

dx

dť
dR

dt
= N∞

dy

dť

dť

dt
= N∞(d+ ν)

dy

dť

Now, we substitute the values for
dI

dt
,
dR

dt
, I and R into (3.4).

N∞(d+ ν)
dx

dť
=

k(xN∞)(N∞ − xN∞ − yN∞)2

1 + axN∞
− (d+ r)xN∞

dx

dť
=

k(xN3
∞)(1− x− y)2

(1 + axN∞)(N∞(d+ ν))
− (d+ r)xN∞

N∞(d+ ν)

dx

dť
=

βx(1− x− y)2

1 + αx
− γ

N∞(d+ ν)
dy

dť
= rxN∞ + (d+ ν)yN∞

dy

dť
=

rxN∞
N∞(d+ ν)

+
(d+ ν)yN∞
N∞(d+ ν)

dy

dť
= δx− y

The system (3.4) will become the following non-dimensional system:
ẋ =

βx(1− x− y)2

1 + αx
− γx := f(x, y),

ẏ = δx− y := g(x, y),

(3.5)
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Where α = aN∞, β =
kN2
∞

d+ ν
, δ =

r

(d+ ν)
, and γ =

d+ r

d+ ν
. However, the

parameters α, β, δ, and γ are having the similar biological meanings as a, k, d

and ν. From now on, we study the dynamical behaviours of (3.5). (x, y) is

an equilibrium point of (3.5) if only if (x, y) satisfies the following system:
β(1− x− y)2

1 + αx
− γ = 0,

y = δx and x 6= 0.

(3.6)

The following result gives solutions of (3.6).

Notation :

∆ = α2γ2 + 4βγ(1 + δ)2 + 4βαγ(1 + δ) (3.7)

x1 =
2β(1 + δ) + αγ −

√
∆

2β(1 + δ)2
and y1 = δx1 (3.8)

x2 =
2β(1 + δ) + αγ +

√
∆

2β(1 + δ)2
and y1 = δx2 (3.9)

Lemma 3.5.1. Assume that α, δ > 0. Then

γ < β if and only if 2β(1 + δ) + αγ >
√

∆

Lemma 3.5.2. Assume that α, δ > 0. Then the following assertions hold.

(1) If 0 < β ≤ γ, then (3.5) has one solution (x2, y2), where 0 < x2 is given

in (3.9).

(2) If 0 < γ < β, then (3.5) has two solutions (x1, y1) and (x2, y2), where

0 < x1 < x2 is given in (3.8) and (3.9).
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Proof. Substituting y = δx into the first equation of (3.5), we obtain

x2 − 2β(1 + δ) + αγ

β(1 + δ)2
x+

(β − γ)

β(1 + δ)2
= 0 (3.10)

Therefore, [
x− 2β(1 + δ) + αγ

2β(1 + δ)2

]2

=
∆

4β2(1 + δ)4
(3.11)

where ∆ = (2β(1 + δ) + αγ)2 − 4β(1 + δ)2(β − γ). By computation, we can see that

∆ = 4β2(1 + δ)2 + 4βαγ(1 + δ) + α2γ2 − 4β2(1 + δ)2 + 4βγ(1 + δ)

= α2γ2 + 4βγ(1 + δ)2 + 4βαγ(1 + δ)

Therefore, it follows from (3.11) that ∆ > 0. To see how many positive

solutions x and y contain, we need to set

2β(1 + δ) + αγ >
√
αγ + 4βγ(1 + δ)2 + 4βγα(1 + δ) (3.12)

2β(1 + δ) + αγ >
√
αγ + 4βγ(1 + δ)2 + 4βγα(1 + δ)

4β2(1 + δ2) + 4βαγ(1 + δ) + α2γ2 > α2γ2 + 4βγ(1 + δ)2 + 4βγα(1 + δ)

4β2(1 + δ)2 > 4βγ(1 + δ)2

β > γ

Thus Lemma (3.5.1) holds.

If β < γ, then x1 < 0 < x2. Since x1 is negative and only x2 > 0, then the

result for Lemma (3.5.2) (1) holds.

When β > γ, then x1 > 0 and x1 > x2. Thus the result holds for Lemma

(3.5.2) (2).
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Figure 3.2: Illustrates the results of Theorem 3.5.3 and is obtained from (3.6)

with f(x, y) = 0 and g(x, y) = 0. By letting δ = α = 0.5 and changing the

value for β and γ respectively. The solid cyan line is obtained by letting

β > γ. The solid blue line is the result of β = γ, while, the green solid line

is obtained by using β < γ.

Theorem 3.5.3. Assume that α > 0, and δ > 0, then the following asser-

tions hold.

(i) If 0 < β ≤ γ, then the equation of (3.5) has two equilibria (0, 0), and

(x2, y2) in P.

(ii) If 0 < γ < β, then the equation of (3.5) has three equilibria (0, 0), (x1, y1)

and (x2, y2) in P.
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3.6 The Jacobian Matrix of (x∗, y∗)

Before we can study the stability of the phase portraits of (3.5), we need to

define the Jacobian matrix for (3.5). The Jacobian matrix is derived from

the partial derivative of (3.5)

Notation:

r1(δ, β, δ, γ) =
(−2βx∗)(1 + αx∗)(1− x∗ − y∗) + β(1− x∗ − y∗)2

(1 + αx∗)2
− γ

r2(β, α) =
−2βx∗(1− x∗ − y∗)

1 + αx∗

Lemma 3.6.1. Assume that α, δ, γ > 0 and β > 0, then the Jacobian Matrix

for (3.5) is:

A(x∗, y∗) =

r1(δ, β, δ) r2(β, α)

δ −1

 (3.13)

Proof. With the combination of equations (3.5) and (2.1), we obtain the

partial derivatives

df

dx
=

(1 + αx) [2βx(1− x∗ − y∗)(−1) + β(1− x∗ − y∗)2]− α [βx(1− x∗ − y∗)2]

(1 + αx)2
− γ

=
(−2βx∗)(1 + αx∗)(1− x∗ − y∗) + β(1− x∗ − y∗)2

(1 + αx∗)2
− γ

=
(−2βx∗)(1− x∗ − y∗) + γ

(1 + αx∗)
− γ = r1(δ, β, δ, γ)

df

dy
=

2βx∗(1− x∗ − y∗)(−1)

1 + αx∗
=
−2βx∗(1− x∗ − y∗)

1 + αx∗
= r2(β, α)

dg

dx
= δ and

dg

dy
= −1.
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Chapter 4

Qualitative Behaviour Analysis

4.1 Introduction

As mention earlier in Chapter 2, SIRS model is a non-linear differential equa-

tion and it is impossible to find explicit solutions. Thus, we can only study

the dynamical behaviour of the system by analysing the phase portraits near

the equilibrium .

In this chapter, we will use Theorem 2.1.4 and Lemma (2.1.5) to analyze

the qualitative behaviour of the system (3.5). First, we will investigate the

disease-free equilibrium E0(0, 0). Second, we will analyze the fixed point for

(x1, y1) and (x2, y2) and last, we will use graphical approach to conclude our

chapter.
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4.2 Phase portraits at the disease-free equi-

librium

We use the theory mentioned above to study the phase portraits of (3.5)

near the equilibria. First, we need to start with the disease-free equilibrium

E0(0, 0).

Theorem 4.2.1. (i) If α > 0, δ > 0, 0 < γ < β, then (0, 0) is a saddle of

(3.5)

(ii) If α > 0, δ > 0, β = γ, then (0, 0) is a saddle node of (3.5)

(iii) If α > 0, δ > 0, 0 < β < γ, then (0, 0) is a stable node of (3.5)

Proof. Let (0, 0) be a solution of (3.5), then the Jacobian matrix of (3.5) is

A(0, 0) =

β − γ 0

δ −1


And determinant is: |A(0, 0)| = (β − γ)(−1)− 0 = γ − β

And the trace is: tr(A(0, 0)) = β − γ − 1

(a) If β > γ then the condition applies to the following situations:

|A(0, 0)| = (γ − β) < 0, thus (i) holds.

(b) If β = γ, the determinant of A(0, 0) will be |A(0, 0)| = (β − β) = 0,

therefore we will use Lemma 2.1.6 to prove (ii).

(c) if β < γ then the determinant of A(0, 0) is always positive and the trace

of A(0, 0) is always negative. The |A(0, 0)| = (γ − β) > 0 and tr(A(0, 0)) =

(β − γ − 1) < 0, thus (iii) holds.
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4.2.1 Saddle node at the Origin

Notation :

a0 = β − γ, a1 = −2β, a2 = β a3 = −β(α + 2)

a4 = 2β(α + 1), a5 = −βα, b0 = δ, b1 = −1

Lemma 4.2.2. Let (0, 0) be an equilibrium of (3.5). Then the following

assertions hold.

(1) Since E0(0, 0) is at the origin, the equation (3.5) can be changed into the

following system
ẋ = a0x+ a1xy + a2xy

2 + a3x
2 + a4x

2y + a5x
2y2 +O3(x, y) := f1(x, y),

ẏ = b0x+ b1y := g1(x, y)

(4.1)

where O3(x, y) = β(α+ 1)2x3 − 2βα(α+ 1)x3y + βα2x3y2 − βα(1 + 2α)x4 +

2βα2x4y + βα2x5 − β(1− x− y)2O4(x)

(2) A(0, 0) =

a0 0

b0 b1



Proof. For simplicity, let us consider the following system:
ẋ =

βx(1− x− y)2

1 + αx
− γx := f0(x, y),

ẏ = (δx− y) := g0(x, y)

(4.2)
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We need to show that f0 = f and g0 = g. First we will change f0(x, y)

into geometric series. Then (4.2) will become:

Let h(x, y) = βx(1− x− y)2

[
∞∑
n=0

(−1)nαnxn

]

h(x, y) =
βx

αx
(1− x− y)2

[
1− 1

1 + αx

]
=

β

α
(1− x− y)2

[
1− (1− αx+ α2x2 − α3x3 +

∞∑
n=0

(−1)nαnxn)

]

=
β

α
(1− x− y)2

[
αx− α2x2 + α3x3 −

∞∑
n=4

(−1)nαnxn

]
= β(1− x− y)2

[
x− αx2 + α2x3 −O4(x)

]
= β(1− 2x− 2y + 2xy + x2 + y2)

[
x− αx2 + α2x3 −O4(x)

]
= β

[
x− αx2 + α2x3 −O4(x)

]
+ β

[
−2x2 + 2αx3 − 2α2x4 + 2xO4(x)

]
+ β

[
−2xy + 2αx2y − 2α2x3y + 2yO4(x)

]
+ β

[
2x2y − 2αx3y + 2α2x4y − 2xyO4(x)

]
+ β

[
x3 − αx4 + α2x5 − x2O4(x)

]
+ β

[
xy2 − αx2y2 + α2x3y2 − y2O4(x)

]
where O4(x) =

∞∑
n=4

(−1)nαn−1xn
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f1(x, y) = h(x, y)− γx

= (β − γ)x− 2βxy + βxy2 − β(α + 2)x2

+ 2β(α + 1)x2y − βαx2y2 +O3(x, y)

where O3(x, y) = β(α + 1)2x3 − 2βα(α + 1)x3y + βα2x3y2 − βα(1 + 2α)x4

+ 2βα2x4y + βα2x5 − β(1− x− y)2O4(x). Therefore

f1(x, y) = a0x+ a1xy + a2xy
2 + a3x

2 + a4x
2y + a5x

2y2 +O3(x, y),

and g1(x, y) = −y + δx

= b0y + b1x

Then the result follows for Lemma 4.2.2(1).

For the result of Lemma 4.2.2(2), we see that (2.2), the Jacobian matrix

A(0, 0) of (3.5) is equivalent to the Jacobian matrix of A(0, 0) of (4.2). Thus,

A(0, 0) =
∂(f, g)

∂(x, y)
|x=y=0 =

a0 0

b0 b1



Now, the result follows for the dynamics of (3.5) at the equilibria

Theorem 4.2.3. Let β, γ, α and δ > 0, If β = γ then (0, 0) is a saddle-node

of (3.5)
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Proof. We use Lemma 2.1.6 to prove Theorem 4.2.3. We know that (0, 0)

is an equilibrium of (3.5) and β = γ. By computation, a0 = 0 and a3 =

−β(2 + α). By Lemma 4.2.2 (1), the equation of (3.5) becomes:
ẋ = −2βxy + βxy2 − β(2 + α)x2 + 2β(α + 1)x2y − βαx2y2 +O3(x, y)

ẏ = −y + δx

(4.3)

Let y1 = y − δx and x1 = x, this implies y1 + δx1 = y and x = x1

Then ẏ1 = ẏ − δẋ

= (−y + δx)− δ
(
−2βxy + βxy2 − β(2 + α)x2

)
− δ

(
2β(α + 1)x2y − βαx2y2 +O3(x, y)

)
= ((−y1 − δx1) + δx1)− δ

(
−2βx1(y1 + δx1) + βx1(y2

1 + 2δx1y1 + δ2x2
1)
)

− δ
(
−β(α + 2)x2

1 + 2β(α + 1)x2
1(y1 + δx1

)
− δ

(
−βαx2

1(y2
1 + 2δx1y1 + δ2x2

1) +O3(x1, y1)
)

= −y1 − δ
(
−2βx1y1 − 2δβx2

1 + βx1y
2
1 + 2δβx2

1y1 + δ2βx3
1

)
− δ

(
−β(α + 2)x2

1 + 2β(α + 1)x2
1y1 + 2δβ(α + 1)x3

1 − βαx2
1y

2
1

)
− δ

(
−2δβx3

1y1 − δ2βx4
1 +O3(x1, y1 + δx1)

)
= −y + 2δβx1y1 − δβx1y

2
1 + δβ(2δ + α + 2)x2

1 − 2δβ(δ + 2(α+))x2
1y1

+ δβαx2
1y

2
1 + P3(x1, y1) := %y1 + q(x1, y1),
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where P3(x1, y1) = −δ2β(δ+2(α+1))x3
1+2δ2βx3

1y1−δ3βαx4
1+δO3(x1, y1+

δx1) begins with third order terms.

Let ẋ1 = ẋ = −2βxy + βxy2 − β(2 + α)x2 + 2β(α + 1)x2y − βαx2y2 +O3(x, y)

= −2βx1(y1 + δx1) + βx1(y2
1 + 2δx1y1 + δ2x2

1)− β(α + 2)x2
1

+ 2β(α + 1)x2
1(y1 + δx1)− βαx2

1(y2
1 + 2δx1y1 + δ2x2

1) +O3(x1, y1 + δx1)

= −2βx1y1 − 2δβx2
1 + βx1y

2
1 + 2δβx2

1y1 + δ2βx3
1 − β(α + 2)x2

1 − δ2βαx4
1

+ 2β(α + 1)x2
1y1 + 2δβx3

1 − βαx2
1y

2
1 − 2δβαx3

1y1 +O3(x1, y1 + δx1)

= −2βx1y1 + βx1y
2
1 − β(2δ + α + 2)x2

1 + 2β(α + δ + 1)x2
1y1

− βαx2
1y

2
1 +H3(x1, y1) := p(x1, y1),

where H3(x1, y1) = δβ(δ + 2(α + 1))x3
1 − 2δβαx3

1y1 − δ2βαx4
1 + O3(x1, y1)

begins with third order terms.

Since % = −1 < 0 and a20 = −β(2(δ + 1) + α) which a20 < 0 and b20 =

δβ(2(δ + 1) + α) > 0. It follows from Lemma 2.1.6 and (2.3) that (0, 0) is a

saddle-node of (3.5)

The Figures 4.1, 4.2 and 4.3 below illustrate the phase portrait for The-

orem 4.2.1 with the description of the evolution of the trajectories .
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Figure 4.1: Illustrates the results of Theorem 4.2.1(1)-Saddle point by letting

δ = α = 0.5 and by letting γ = 0.1 < β = 0.8. The trajectories start out at

(0, 0), then move away to infinitely distant as t− > ∞. Thus it is a saddle

point at (0, 0). In biological meaning, the disease can persist and cause an

outbreak.
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Figure 4.2: Illustrates the results of Theorem 4.2.1(2)-Saddle node by letting

δ = α = 0.5 and by letting β = γ = 0.5. Since (0, 0) is an isolated equilibrium

point and it starts at the equilibrium, the trajectories will move toward the

equilibrium but it will not converge to (0, 0) as t− > ∞. The disease can

persist at the isolated point.

34



Figure 4.3: Illustrates the results of Theorem 4.2.1(3)- Stable node by letting

δ = α = 0.5 and by letting β = 0.1 < γ = 0.5. The trajectories move toward

the critical point (0, 0) from infinite distant and then converge to the critical

point as t− >∞. In biological interpretation, there is no risk of outbreak of

the disease since the recovery and susceptible will go to zero.
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4.3 Phase portraits near (x∗, y∗)

In this section, we study the phase portraits for (x1, y1) and (x2, y2) by using

Lemma 2.1.4 and 2.1.5. Before we wish to analyse the system, we need to

find the determinant and the trace of (3.5).

4.3.1 Determinant and Trace for (x∗, y∗)

First, we need to derive the formulas for the determinants and traces of the

Jacobian matrix A(x∗, y∗) of f and g given in (3.5) at the equilibria (x∗, y∗)

satisfying (3.6). By (2.2), we have

A(x∗, y∗) =


[

2βx∗(x∗ + y∗ − 1)

(1 + αx∗)
+
β(1− x∗ − y∗)2

(1 + αx∗)2

]
− γ βx∗(x∗ + y∗ − 1)

(1 + αx∗)

δ 1


(4.4)

By (3.6), we have
β(1− x∗ − y∗)2

(1 + αx∗)
= γ. This together with (4.4) give the

following results formulas for |A(x∗, y∗)| and tr(A(x∗, y∗))

Lemma 4.3.1. Let γ(β, δ) =
1 + δ + 2β

2
and β(α, δ, γ) =

α(1 + δ)(1 + γ)− 2αγ

2(1 + δ)
Assume that (x∗, y∗) satisfies (3.6). Then the following formulas hold.

(1) |A(x∗, y∗)| = −1

1 + αx∗
[(2β(1 + δ) + αγ)x∗ − 2(β − γ)]

(2) tr(A(x∗, y∗)) =
1

(1 + αx∗)(1 + δ)
[2(1 + δ)(β − β(α, δ, γ))x∗ + 2(γ − γ(β, δ))]
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Proof. By (4.4),
β(1− x∗ − y∗)2

(1 + αx∗)
= γ and x∗2 =

2β(1 + δ) + αγ

β(1 + δ)2
x∗− (β − γ)

β(1 + δ)2
,

then the determinant of A(x∗, y∗):

|A(x∗, y∗)| =

(
−2βx∗(1− x∗ − y∗)− γαx∗

1 + αx∗

)
(−1)− δ

(
−2βx(1− x− y)

1 + αx

)
=

1

1 + αx∗
(2βx∗(1− x∗ − y∗) + γαx∗ + 2βδx∗(1− x∗ − y∗))

=
1

1 + αx∗
([2βx∗(1− x∗(1 + δ))](1 + δ) + γαx∗)

=
1

1 + αx∗
(
(2βx∗ − 2βx∗2)(1 + δ))(1 + δ) + αγx∗

)
=

1

1 + αx∗
(
−2βx∗2(1 + δ)2 + 2βx∗(1 + δ) + αγx∗

)
=

1

1 + αx∗

(
−2β(1 + δ)2

[
2β(1 + δ) + αγ

β(1 + δ)2
x∗ − (β − γ)

β(1 + δ)2

])
+

1

1 + αx∗
(2βx∗(1 + δ) + αγx∗)

=
1

1 + αx∗
(−4β(1 + δ)x∗ − 2αγx∗ + 2β(1 + δ)x∗ + 2(β − γ) + αγx∗)

=
−1

1 + αx∗
[(2β(1 + δ) + αγ)x∗ − 2(β − γ)] =:

−D(x∗)

1 + αx∗
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By computation, we obtain the trace of (x∗, y∗)

ρ =
−2βx∗(1− x∗ − y∗)− αγx∗

(1 + αx∗)
− 1

=
1

(1 + αx∗)
[−2βx∗(1− x∗(1 + δ))− αγx∗ − αx∗ − 1]

=
1

(1 + αx∗)
[−2βx∗ + 2β(1 + δ)x∗2 − αγx∗ − αx∗ − 1]

=
1

(1 + αx∗)

[
−2βx∗ + 2β(1 + δ)

[
2β(1 + δ) + αγ

β(1 + δ)2
x∗ − (β − γ)

β(1 + δ)2

]]
− 1

(1 + αx∗)(1 + δ)
αγx∗ − αx∗ − 1

=
1

(1 + αx∗)
[−2β(1 + δ)x∗ + 4β(1 + δ)x∗ + 2αγx∗ − 2(β − γ)]

− 1

(1 + αx∗)(1 + δ)
(1 + δ)(αx∗ + αγx∗ + 1)

=
1

(1 + αx∗)(1 + δ)
[2β(1 + δ)x∗ + 2αγx∗ − α(1 + δ)(1 + γ)x∗]

− 1

(1 + αx∗)(1 + δ)
(1 + δ)− 2(β − γ)

=
1

(1 + αx∗)(1 + δ)
[(2β(1 + δ) + 2αγ − α(1 + δ)(1 + γ))x∗]

+
1

(1 + αx∗)(1 + δ)
2γ − 1− δ − 2β

=
1

(1 + αx∗)(1 + δ)
[(2(1 + δ)(β − β(α, δ, γ))x∗ + 2(γ − γ(β, δ))]
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4.3.2 Dynamical properties of (x1, y1) and (x2, y2)

The following results gives the dynamical properties of (3.5) near (x1, y1) and

(x2, y2).

Theorem 4.3.2. Assume that one of the following conditions holds:

(a) If α, δ, β > 0 and γ > 0, then (x2, y2) is a saddle of (3.5).

(b) If α, δ, β, γ > 0 and 0 < γ < β and β ≤ β(α, δ, γ), then (x1, y1) is a stable

node or focus of (3.5).

Proof. By Lemma 4.3.1 (1), we have for (x2, y2),

|A(x2, y2) =
−D(x2)

1 + αx2

−D(x2) = −(2β(1 + δ) + αγ)

[
2β(1 + δ) + αγ +

√
∆

2β(1 + δ)2

]
+ 2(β − γ)

=
1

2β(1 + δ)2

(
−4β2(1 + δ)2 − 4βαγ(1 + δ)− 2β(1 + δ)

√
∆
)

+
1

2β(1 + δ)2

(
−α2γ2 − αγ

√
∆ + 4β2(1 + δ)2 − 4βγ(1 + δ)2

)
=

−1

2β(1 + δ)2

(
α2γ2 + 4βαγ(1 + δ) + 4βγ(1 + δ)2

)
+

−1

2β(1 + δ)2

(
2β(1 + δ) + αγ)

√
∆
)
< 0

Since x2 > 0, we have |A(x2, y2)| < 0. The result follows from Lemma 2.1.5

(i) and Theorem 2.1.4(ii).
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By Lemma 4.3.1 (1), we have for (x1, y1),

|A(x1, y1) =
−D(x1)

1 + αx1

−D(x1) = − (2β(1 + δ) + αγ)

[
2β(1 + δ) + αγ −

√
∆

2β(1 + δ)2

]
+ 2(β − γ)

=
1

2β(1 + δ)2

(
−4β2(1 + δ)2 − 4βαγ(1 + δ) + 2β(1 + δ)

√
∆
)

+
1

2β(1 + δ)2
(−α2γ2 + αγ

√
∆ + 4β2(1 + δ)2 − 4βγ(1 + δ)2)

=
−1

2β(1 + δ)2

(
α2γ2 + 4βαγ(1 + δ) + 4βγ(1 + δ)2

)
+

1

2β(1 + δ)2

(
(2β(1 + δ) + αγ)

√
∆
)

=
−1

2β(1 + δ)2

(
∆− (2β(1 + δ) + αγ)

√
∆
)

=
−
√

∆

2β(1 + δ)2

(√
∆− (2β(1 + δ) + αγ

)

From Lemma 3.5.1,we know that 2β(1 + δ) + αγ >
√

∆ if and only if γ < β,

then |A(x2, y2)| > 0. From Lemma 4.3.1 (2), we have for (x1, y1)

tr(A(x1, y1)) =
1

(1 + αx1)(1 + δ)
[2(1 + δ)(β − β(α, δ, γ))x1 + 2(γ − γ(β, δ))]

Furthermore, we restrict γ < β, now we are going to show that β < γ(β, δ)

β − γ(β, δ) = β −
[

2β + δ + 1

2

]
=

2β − 2β − δ − 1

2
< 0.

Since γ < β and β < γ(β, δ), this implies that γ < γ(β, δ). We already know

that x1, α, δ > 0 with β ≤ β(α, δ, γ) and γ < γ(β, δ). We can conclude that

tr(A(x1, y1)) < 0. Thus from Lemma 2.1.5(ii)(iii) and Theorem 2.1.4 (i) is

result that (x1, y1) is a stable node or a stable focus of (3.5).

40



(a) Stable node near the equilibrium

point, (x1, y1)

(b) Saddle point near the equilibrium

point, (x2, y2)

Figure 4.4: Phase portrait diagrams for Theorem 4.3.2

Remark 4.3.3. Theorem 4.3.2 provides conditions on α, β, δ and γ to ensure

that (x1, y1) is stable, but it can not be used to validate whether (x1, y1) is a

node or focus.

The Figure 4.4 illustrates the comparison of the saddle point and the

stable node for the Theorem 4.3.2. On the left hand side, it is the phase

portrait and the direction fields for the equilibrium point (x1, y1). While,

the right hand side is corresponding to the phase portrait and the direc-

tion fields for the equilibrium point (x2, y2). With the help of Maple 13,

when choosing γ = 0.3, δ = 0.5 and α = 1.5, then β(α, δ, γ) = 0.675.

After solved (3.6), the fixed points corresponding to the parameters are:

(x1 = 0.169052, y1 = 0.845260) and (x2 = 1.460577, y2 = 0.730289). The
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Figure 4.4a indicated (x1, y1) indeed a stable node.

4.3.3 Determine the stability of (x1, y1) with the ranges

of parameter

In the following result, we provide some conditions on α, β, δ and γ so that

(x1, y1) can determine the stability of (3.5). We assume that 0 < γ < β and

δ is very small.

Lemma 4.3.4. Let α > 0, γ > 0, then there exist γ0 > 0, β0 > 0 such that

tr(A(x1, y1)) < 0 for 0 < β < β0 and 0 < γ < γ0.

Proof.

Let β(α, γ, δ) =
α(1 + δ)(1 + γ)− 2αγ

2(1 + δ)
> 0

β(α, γ, 0) =
α(1 + γ)− 2αγ

2
=
α(1− γ)

2
> 0

then β ∈ (0, β0) , where β0 =
α(1− γ)

2
and γ ∈ (0, γ0), where γ0 ∈ (0, 1).

Since x1 > 0 and β ≤ β0, base on Lemma (2) the tr(A(x1, y1)) < 0.

Theorem 4.3.5. If δ = 0, , 0 < β ≤ β0 and 0 < γ < γ0 for γ0 > 0, β0 > 0

then (x1, y1) is a stable node or focus of (3.5).

Proof. When δ → 0, then ∆ = α2γ2 + 4βγ + 4βαγ and x1 =
2β + αγ −

√
∆

2β

This implies that the |A(x1, y1)| = −
√

∆

2β

(√
∆− (2β + αγ)

)
.
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Based on Lemma 3.5.1, we know that 2β + αγ >
√

∆ if and only if γ < β,

thus |A(x1, y1)| > 0. We know that from Lemma 4.3.4, the tr(A(x1, y1)) < 0.

The result follows.
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(a) Stable node near the equilibrium

point, (x1, y1)

(b) Saddle point near the equilibrium

point, (x2, y2)

Figure 4.5: Phase portrait diagram for Theorem 4.3.5

The Figure 4.5 illustrate the stable node for the Theorem 4.3.5. On

the left hand side, it is the phase portrait and the direction fields for the

equilibrium point (x1, y1). While, the right hand side is corresponding to

the phase portrait and the direction fields for the equilibrium point (x2, y2).

With the help of Maple 13, we chose γ = 0.3, δ = 0, α = 1.5, and β = 0.675.

After solve (3.6), the equilibria are corresponding to the parameters are:

(x1 = 0.22779, y1 = 0) and (x2 = 2.43887, y2 = 0).

Remark 4.3.6. Since γ0 ∈ (0, 1) and 0 < γ < γ0, this implies that 0 <

γ < 1. It is equivalent to 0 <
d+ r

d+ ν
< 1. Theorem (4.3.5) implies that the

equilibrium is stable if the rate of removed individual who lose immunity v

is stronger than the recovery rate of the infective individuals ν. The lose
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immunity rate has a positive effect on the stability of (x1, y1), while the

recovery rate has the negative effect. The result is similar with [24].
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Chapter 5

Conclusion

In this thesis, we have used the theorems and techniques in Chapter 2 to find

the number of equilibria for our SIRS model. As long as β, δ, α, and γ > 0

then our equilibria will be positive. The number of equilibria depending

on the parameters β and γ. If β ≤ γ, we have two equilibria, (0, 0), and

(x2, y2). Vice versa, if γ < β, then we have three equilibria (0, 0), (x1, y1) and

(x2, y2). Further analysis of the stability of each equilibrium depends on the

restriction of the parameters β and γ.

We have shown that at the disease-free equilibrium , the three possible

cases can happen: saddle , saddle node and stable node . The biological

interpretation for the disease-free equilibrium for each stage as follow:

1. saddle - the disease can still persist and cause an outbreak.

2. saddle node - the disease can still persist at the isolated point.

3. stable node - there is no risk of outbreak of the disease since the infective
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and recovery will go to zero.

The first case is similar to [24], the equilibrium (0, 0) is unstable and disease-

free, that is, there are some solutions (I(t), R(t)), where I(t) may not con-

verge to 0. For second and third cases are new. We can clarify the parameters

α, β, γ and δ that the solution will converge to 0.

After studying the dynamical behaviours of (3.5) near its interior equi-

libria, (x1, y1) and (x2, y2), we can conclude the stability of our equilibria.

Regardless β < γ and vice versa, (x2, y2) is always the saddle of (3.5). We

can see that any solution (x(t), y(t)) of (3.5) can not converge to (x2, y2) as

t− >∞. Then there will be an outbreak of the disease. Thus, the infective

and the recovery individual cannot be controlled.

After the restriction of the parameters, especially γ < β. We can see

that (x1, y1) is a stable node or focus of (3.5). Regardless where we start the

solution, it will converge to (x1, y1) as t− >∞. Therefore, both the infective

and the recovery near (x1, y1) can co-exist under the condition Theorem

4.3.2. The biological meaning that the disease can not be eradicated, it can

not spread out and can be controlled at a number near x1.

5.1 Limitations

As mentioned in our introduction, our SIRS model is a nonlinear differential

equation and we can only study the local stability near the equilibrium after

we linearize the model. To analyze the global stability near the equilibrium,

we need further research, which is out of the scope of this study.
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Another limitation to our model is that we can not validate whether

(x1, y1) is a node or focus even though we restrict the parameters for α, β, γ

and let δ approach to 0. But with the help of Maple, we can use a graphical

approach to verify the stability of (x1, y1)

5.2 Future study

For future study, it is worthwhile to explore the global stability near the

equilibrium by using Dulac criterion and Poincaré -Bendixon theorem and

by constructing a Lyapunov function (see [26] for more detail for constructing

Lyapunov function for SIR and SIRS model). With our SIRS model, we can

replace the removed individual R(t) in the first equation of (3.1) and study

the reduced SI system and compare with our reduced IR

Our epidemic model is a deterministic model, and the biological systems

are subject to random fluctuation. Moreover, Pathak and Maiti has stated

most natural phenomena do not follow deterministic laws, but rather oscil-

late randomly about some average that the deterministic equilibrium is not

an absolutely fixed state; instead it is a “fuzzy”. For more detail, see [2, 3].

Therefore, in deterministic environment, it is hard to predict the future out-

come. A stochastic environment should be considered for our model in future

work.
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Appendix A

Maple Coding

A.1 Code for ploting Nullclines

With the help of Maple13, the code for the Nullclines of the SIRS model as

follow:

with(plots) :

l1 := plot(0.8∗(1−x∗(1+0.5))2−0.5∗(1+0.5∗x), x = 0..3, color = cryan) :

l2 := plot(0.5 ∗ x, x = 0..3, linestyle = [longdash]) :

l3 := plot(0.3∗(1−x∗(1+0.5))2−0.8∗(1+0.5∗x), x = 0..3, color = green) :

l4 := plot(0.8∗ (1−x∗ (1 + 0.5))2−0.8∗ (1 + 0.5∗x), x = 0..3, color = blue) :

display(l1, l2, l3, l4, view = [0..3,−2..2], labels = [x−Infective, y−Recovery], thickness =

2, ] title=’The Nullclines of Infective and Recovery’);

53



A.2 Code for solving (3.6)

with(linalg):

f := beta.x.(1−x−y)2

1+alpha.x − gamma1.x = 0;

g := delta.x− y = 0;

beta := 0.675;

gamma1 := 0.3;

delta := 0.5;

alpha := 1.5;

solve({f, g}, {x, y});

A.3 Code for phase portrait

The code for the phase portrait for (x1, y1) and (x1, y1)

restart :

with(DEtools), with(linalg) :

beta := 0.675

gamma1 := 0.3

alpha := 1.5

delta := 0.5

sys := {diff(x(t), t) =
beta.x(t).(1− x(t)− y(t))2

1 + alpha.x(t)
−gamma1.x(t), diff(y(t), t) =

delta.x(t)− y(t)};

DEplot(sys, [x(t), y(t)], t = 0..50, x = 0..2, y = 0..2, [[x(0) = 0, y(0) =
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0]], stepsize = 0.1, linecolor = blue, thickness = 1, arrows = slim);
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node, 13

non linear, 3

non-linear differential equation, 6, 9,

26

non-linear incidence rate, 19

non-linear incident rate, 4

non-linear system, 9, 11

non-linear sytem, 10

nonlinear differential equation, 47

nonlinear incidence rate, ii

nonlinear incident rate, 7

nullcline, 4, 8

partial derivative, 25

partial derivatives, 9, 25
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phase portraits, 25–27

planar coordinate system, 20
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qualitative behaviour, 26

recovered, 19

removed class, 7, 16

saddle, 13, 27, 46

saddle node, 27, 46

saddle point, 14, 41, 44

saddle-node, 13

SIRS Model, 19

SIRS models, 15

spiral, 11

stability, 4, 6, 42

stable, 13

stable focus, 40

stable node, 14, 27, 40, 41, 44, 46

stable spiral, 14

susceptible, 20

susceptible class, 7, 16

trace, 10, 27, 36, 38
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