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Abstract  

A Two-stage Normalization Method for Robust Differential Expression Analysis 

in Microarray Experiments 

©Shirin Manafi, 2014 

Master of Applied Science  

Mechanical and Industrial Engineering 

Ryerson University  

Abstract - In this research, we introduce an approach to improve the reliability of genetic data 

analysis. Consistency of the results obtained from microarray data analysis strongly relies on 

elimination of non-biological variations during data normalization process. Instability in 

Housekeeping Gene (HKG) expression after performing common normalization methods might 

be an indication of inefficiency potentially resulting in sampling bias in differential expression 

analysis. This research aims to reduce the sampling bias in microarray experiments proposing a 

two-stage normalization algorithm. Proposed approach consists of   non-linear Quantile 

normalization at the first stage and linear HKG based normalization at the second stage. We 

tested the efficiency of the two-stage normalization method using publicly available microarray 

datasets obtained from the experiments mainly in the field of reproductive biology. Results show 

that combined Robust Multiarray Average (RMA) and HKG normalization method reduces the 

sampling bias in experiments when variations in HKG expression is observed after RMA 

normalization. 
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1.1 Introduction  

Functions of genes and their products have always been considered the key to understand 

living organisms. Researchers have developed different methods to provide a complete picture of 

these genes and their variations in different tissues [1]. There are traditional methods such as 

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) that work on one gene at a time 

[2]. More recent microarray transcriptomics technology enabled scientists to inspect the gene 

expression of whole genome on a single chip so the modulation of thousands of genes could be 

pictures simultaneously [1]. Microarray technology enables genome-wide transcription profiling 

that provides a spectra of whole genome expression at once [3].  Microarrays are commonly used 

for identifying the genes of interest via differential expression analysis, which are over- or under-

expressed in the investigated biological condition compared with another one, i.e. cancer vs. 

normal tissues [4].  

In microarray technology, profiles of all genes’ expression are examined together [5]. One of 

the main objectives of microarray experiments is to evaluate which genes are differentially 

expressed in different conditions [6]. Since microarray data analysis is a complex multi stage 

experimental procedure, different systematical and technical variations could be introduced into 

the data. To handle these non-biological variations, different normalization methods are 

proposed [7].  

Progressive technology such as microarray experiments has enabled extensive mining of 

biological data in parallel. Microarray experimental design consists of specific chips that provide 

a medium for hybridization of gene sequences in order to be monitored, detect the mutations 

differentiate the genotypes. The whole genome of any organism such as human, mouse, bacteria, 

etc. could be analyzed at once with the aid of microarray technology. The microarray data 

analysis procedure could reveal the key features both in the process of any organism 

development and in terms of human health such as disease diagnosis, drug development, 

pathological sciences and terminal illnesses. In functional genomics, with all the above 

mentioned advantages, microarray technology has become a reliable and popular protocol [3] 

[8]. 

Sample size in microarray experiments is one of the critical factors affecting the results of 

differential expression analysis. Some of the available methods for sample size calculation are 

limited in a way that in order to be able to use them, the variation between samples should be 

known [9]; some other methods may be complicated, as they consider different errors in their 
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calculations [10]. Also, variations between different samples make the choice of samples for 

conducting a microarray experiment very important.      

In a general sense one of the most important concepts in biology is reproduction. Simply, it 

means making a copy, a likeliness, and thereby facilitation of continuation of species. 

Reproduction has greater significance to living organisms than only in terms of the continuation 

of generation in animals and plants. The origin of life and the evolution of organisms is the main 

aspect of reproduction biology. At the beginning of time, there must have been some primitive 

ability of chemical systems to produce copies of themselves. Recently, transcriptomics 

technologies, have been used extensively in reproductive biology [11].  Transcriptomics is the 

study of the complete set of RNAs (transcriptome) encoded by the genome of a specific cell or 

organism at a specific time or under a specific set of conditions. Sampling of follicular cells is 

confronted by various challenges such as low amount of oocyte and cumulus/granulosa cell 

samples and potential contamination from adjacent cells. Collection of those samples is a time 

consuming process requiring specialized techniques. Therefore, choice of sample size in gene 

expression analysis of follicular cells is critical to provide a trade-off between the effort in 

sample collection and power of results [11].   

The multi stage microarray experimental procedure is prone to undesired systematical and 

technical variations. This challenges the precision of differential expression analysis. Various 

normalization methods have been proposed to eliminate the non-biological variations in the 

microarray data [12]. Robust Multichip Average (RMA) normalization method is commonly 

utilized to eliminate the non-biological variations between samples. This method perform the 

preprocessing in three steps, background adjustment, quantile normalization, and summarization 

[4] [13]. The assumption behind quantile normalization is that the total expression should be the 

same for all samples in an experiment [14]. Microarray experiments in reproductive biology are 

not excepting from these challenges. Actually due to low quantity of follicular cells per condition 

in most of the microarray experiments in the field of reproductive biology, the risk of sampling 

bias is predicted to be higher. 

 

In this research, we investigate the consistency of microarray differential expression analysis 

in association with RMA, sampling bias and stability of housekeeping genes. We propose a two-

stage normalization method with an aim to reduce the sampling bias in microarray experiments. 
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1.2 Background  

1.2.1 Basic Concepts of Reproductive Biology 

Development of any living organism is due to interaction between plenty of molecules via 

indefinite chain of complex chemical reactions and constant exchange of matter and energy with 

surroundings. Proteins and nucleic acids are the main actors in biochemistry. Most endeavors in 

molecular biology studies are toward understanding the structure and functions of proteins and 

nucleic acids.  Living organisms consist of structural proteins building the tissues and of 

enzymes to facilitate the chemical reactions. The unit of protein structure is nucleic acids. There 

are two kinds of nucleic acids in living organisms, ribonucleic acid (RNA) and deoxyribonucleic 

acid (DNA). The unit of nucleic acids are nucleotide molecules consisting of phosphate, sugar 

and base. RNA is a single stranded three dimensional structure formed from sequence of 

nucleotides. Different types of RNA have different functionalities in making the proteins. DNA 

is a double stranded helix consisting nucleotides as well. Chromosome is the long DNA double 

helix that have different coding parts. The coding parts consist of genes which represent as codes 

to form proteins. The whole set of chromosomes is called the genome of a living organism [4]. 

1.2.2 Microarray Data Analysis  

Microarrays consist of transparent slides on which probes are positioned in specific order 

[15]. Each probe consists of ~25 base nucleotide corresponding to specific sequences on the 

genome. The arrangement of samples on microarray chip is pre-assigned, therefore the origin of 

the data obtained from any probe is known and can be further analyzed, accordingly. Therefore 

one can address the genes of interest precisely [16]. A typical microarray contains several 

thousands of addressable genes [17]. 

1.2.3 Experimental procedure 

Microarray experiments start with sample collection, separation of RNA and reverse 

transcription. The next step is amplification of transcripts of interest which is done by 

Polymerase Chain Reaction (PCR) procedure [18]. In order to label both test and control 

samples, they are fluorescent dyed during the process of reverse transcription. The reverse 

transcription step is the process during which a double stranded DNA is made from single 

stranded RNA molecule by using enzymes. Based on the type of experiment one or two dyes are 

used. Then each sample is hybridized to a microarray chip. The hybridized samples are 
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illuminated by a laser light and as a result, a specific emission spectra from slide probes are 

pictured. To measure the emissions from probes, the chip is scanned by a laser microscope [19]. 

The measured emissions are transferred to an analytic software. A value is given to the amount 

of gene expression of each probe and therefore a large dataset is produced [20]. The dataset is in 

form a large matrix with each row consisting of each gene expression values and each column 

related to one of the examined samples; additionally the condition of each sample is known [1] 

[21]. 

Obtaining biological samples is a costly and time-consuming process so that using a large 

sample size may not be feasible. On the other hand, a very small sample size may result in weak 

inferences from the experiment. Therefore, there is a trade-off between precision and cost of 

experiment in order to find out the appropriate sample size [20]. 

1.2.4   Data Analysis 

Once the appropriate number of samples is gathered, microarray data should be preprocessed 

using different methods.  Exploratory data analysis needs to be conducted to check for data 

quality to identify missing values, redundancies, outliers, and noise as well as to understand the 

distribution, mean and spread of data points [19].  

During the preprocessing of raw data, the intensity at the background must be corrected at 

each spot. The bias fluorescence from background could have plenty of sources, such as 

unwanted binding of samples to the chip surface, the deposits from previous washes or the 

scanner noise [22]. The background adjustment is performed by various algorithms in 

preprocessing stage [22], for example, in Robust Multi-array Analysis (RMA) algorithm, signal 

and noise distributions are convoluted [13]. After elimination of background noise, the data 

should be normalized. Normalization is performed to eliminate the technical variations among 

the samples in order to identify the desired biological variations [22]. Hybridization process does 

not happen equally for all spots. This process may differ in several aspects such as the initial 

quantity of hybridized RNA, the hybridization time or the sample volume [23]. These variations 

may lead to some scaling differences for fluorescent intensity levels of different spots. Also, the 

physical differences in arrays or between the scanners may affect the readings from probes [22]. 

Overall, normalization process ensures that at the end we will be analyzing the information 

gathered from equalized spots. According to reviewed studies, the utilized normalization method 

affect the differential expression analysis significantly, therefore choice of appropriate 

normalization method is critical [23] [24]. After the preprocessing, data shall be further analyzed 
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so that the genes of interest could be detected that is the genes that may have expressed 

differentially.  

In microarray experiments, typically, expression levels are measured for plenty of genes at 

the same time [25]. Since the number of genes being investigated are far more than the number 

of samples, multiplicity complications could be generated [25] [26]. As for any multiple testing 

problem there are various solutions to forfeit this issue [22]. Benjamini and Hochberg [27] 

proposed False Discovery Rate (FDR) as a solution and the Bonferroni Method has been 

developed to control the family-wise error rate [22] [28]. 

1.2.5 Sampling Bias in Microarray Experiments  

Before a microarray experiment is conducted scientists need to decide on the number of 

replicates that they will use in their experiment. It is necessary to gather the right number of 

replicates to ensure the power of experimental results in identifying differentially expressed 

genes [29]. The objectives of the study, available resources and the technology reliability as 

defined by chip accuracy and hybridization failure rate, are the factors that determine the sample 

size [30].  

Determination of sample size, considering the intrinsic complication of microarray 

experiments, and involvement of large amounts of data, is a significant issue [10]. However, 

researchers mostly use rules of thumb for sample size instead of proved formulas on the basis of 

experiment’s objective [10]. These rules of thumb are based on some common assumptions, as 

per the following [31] [32]; 

If the objective of the study is to locate huge differences (greater than 2-fold) between 

conditions, the assumption is that as for each condition, three samples is enough. As in other 

cases, to identify smaller differences, five samples per condition is needed to get consistent 

results about biological differences between samples. The integrity of results is sustained more if 

six control sample and six treated samples are gathered. This approach would result in increased 

accuracy in estimation of p-values and FDRs. In experiments that four or more conditions are 

being examined and the conditions are drastically different, it is assumed that with about four 

samples per condition, reasonable understanding of biological variations between samples can be 

obtained [30] [33].   

As in any statistical analysis, microarray data analysis suffers from common challenges 

which includes choosing relevant test statistics, sample size determination, outlier identification 

and accordingly significance of results [22] [34]. In order to detect differentially expressed 
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genes, fold change criteria could be an appropriate approach. For different experiments, different 

cutoffs are selected, but mostly 2-fold change is thought to be a reliable threshold [22] [35]. On 

the other hand, the cutoff selection is related to the genes that show large fold changes and thus 

the genes with smaller variation between samples may be overlooked, despite the fact that they 

are as important. Considering these cautions about cutoff values, the significance of differential 

expression analysis cannot be assessed reliably [36] [37]. 

This approach for determining sample sizes in microarray experiments, could induce 

inconsistency in results threatening the validity of clinical inferences. Though there are plenty of 

theoretical methods to calculate the quantity of samples needed in an aforementioned 

experiment, these methods are unemployed in all the studies that are being performed in this area 

[10] [38]. 

1.2.6 Sampling Bias in Reproductive Biology Microarray Experiments 

Microarray data analysis is one of the recent developed tools for expression profiling of 

thousands of genes. This tool has aided reproductive biologists to have more accurate spectra of 

gene expression during key developmental events.  Microarray experiments provide biologists 

with lists of tens of thousands of genes which have been modulated, mutated or regulated during 

different developmental stages. The development of technological tools such as microarray data 

analysis, has made an evolution in reproductive biology studies from hypothetical state to more 

descriptive discoveries [39]. 

Success of any expression profiling experiment depend on different factors such as quality of 

samples, precision of experimental design, accurate choice of statistical strategies for data 

analysis and etc. [7] . In the field of reproductive biology, additional factors contributes to the 

risk of microarray results being inconsistent. Among these additional factors are the nature of the 

objective of study, the intrinsic complexity of developmental key events, the complexity of the 

tissue of interest and difficult interpretation of the biological patterns [39]. All these challenges 

are introduced to microarray experiments in the field of reproductive biology. Therefore 

sampling bias in reproductive biology experiments may lead to inaccurate clinical inferences in a 

more deep sense [39].  

1.2.7 Two-Stage Normalization Method 

The entire multi-stage microarray experiment is prone to errors and non-biological variations.  

During hybridization stages, variations from different amounts of RNA, different hybridization 
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times or the volume of samples, could be introduced into the data. Also physical differences 

between either arrays or scanners might be source of variation. Reducing these unwanted 

variation as much as possible would lead to more accurate and reliable expression analysis 

results [40]. One of the major steps in preprocessing of microarray data analysis and specifically 

in reduction of the variations, is normalization of raw data. The main goal of any normalization 

method is to eliminate the variations which have been introduced into data from different 

sources. Different methods and algorithms are being used for normalization of microarray data. 

We should choose the method that performs the best in evaluating different normalization 

method for any kind of microarray analysis [24].   

Robust Multi-Array Analysis (RMA) algorithm, is one of the most popular preprocessing 

methods [13]. RMA algorithm relies on Quantile normalization in order to remove the technical 

variations. Quantile method makes the distribution of all probes intensities on a set of arrays, 

identical [41]. This method first performs the background adjustment for the arrays [22], then the 

perfect match probes are background corrected. Then the intensity values are transformed to log 

2 values and at the end they are normalized by quantile algorithm and finally summarized [12].  

It is a biological assumption that a treatment would result in up or down regulation of a 

number of genes and the other genes’ expression would remain stable. On the other hand, there is 

supposed to be equal amounts of ribonucleic acid (RNA) on each array; therefore the sum of all 

expressions among the samples of one condition should be the same. Since RNA amount is not 

fully under control and these assumptions might not hold, thus to measure the actual expression 

values, use of a control would be helpful [42]. 

 

1.2.8 Housekeeping gene normalization 

Another popular normalization method is normalization against internal controls or 

housekeeping genes. These genes are the ones with hypothetically stable and consistent 

expression values in all cells. Also in some experiments normalization is performed against 

external controls, which is based on using genes from other organisms [42]. Endogenous genes, 

also known as housekeeping or control genes are those that are responsible in basic cellular 

functions in all tissues and organisms [43]. It is assumed that in all cells, the housekeeping genes 

are expressed uniformly regardless offstage of differentiation, type of tissue or stage of 

development [42] [43] [44].Therefore these genes could be considered as perfect candidates to be 

used as experimental controls and to fulfill computational objectives [43] [45] [46] [47] [48] 
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[49]. For any organism, common housekeeping genes can be identified with the aid of advanced 

transcriptomic technologies [50]. Large-scale expression data profiling is used to examine the 

expression values of all genes and identify the housekeeping [50]. Different statistical algorithms 

such as geNorm and Normfinder are tools to identify housekeeping genes [51]. In geNorm 

algorithm a pair of housekeeping genes are chosen based on the M-value of multiple candidate 

genes. M-value is an estimation of pairwise variation for each gene [52]. Normfinder also ranks 

candidate housekeeping genes based on their expression stability [53].  

 Another issue in normalization against housekeeping genes is considering single gene as 

an internal reference versus using multiple housekeeping genes. Vandesompele et al. [52] 

proposed an allegedly more accurate normalization algorithm that is to select a set of genes with 

minimum variation between the samples and by calculation the geometric mean of them, perform 

the normalization against this mean. The overall algorithm of normalization against 

housekeeping genes is to first identify the most stable genes and determine a normalization factor 

per array by calculating the geometric mean of those stable genes’ expressions and then divide 

all the expression values of the array by the normalization factor. The number of genes to use for 

calculation of geometric mean is dependent on the practical considerations [54]. 

1.2.9  Sampling bias 

 The expressions of housekeeping genes are expected to be stable after RMA 

normalization. However, the fundamental assumption of RMA approach may not hold in case of 

transcriptome-wide up-regulation or down-regulation of gene expression, or when there are 

differences in the concentration or purity of the samples. Instability in the HKG expression after 

RMA may indicate that kind of variation and may result in sampling bias in the differential 

expression analysis [55]. 
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2.1 Literature Review 

2.1.1 Sample size calculation in microarray experiments 

Microarray experiments have been performed for more than a decade now. There are plenty 

of studies regarding the design of the experiment. One of the major issues in the design of these 

experiments has been the number of replicates required to achieve power and consistency in the 

results. Different methods have been suggested to calculate the number of required samples. 

Some of these methods are based on traditional significance and power estimations as in any 

statistical analysis [56] [57] [58] [59] [60] [61]. 

Dobbin and Simon presented a straight formula for calculation of number of required 

replicates [10]. Based on their formula, in order to calculate the number of replicates, the intra-

sample variation must be known [62]. They also have mentioned that the variation could be 

estimated from previously performed similar experiments. This approach raises some questions 

since the similarity of experiments is by itself an issue to be considered. On the other hand, as the 

authors mentioned in their article that formula is not suitable for small sample sizes the variation 

between samples could be estimated or the estimation would not be reliable due to small number 

of samples. Formula (1) below is the formula for sample size calculation derived by Dobbin and 

Simon [10]. As mentioned above, in this formula, the variation is needed to be known. 

𝑛
𝑚⁄ = 4 [

𝑧𝛼 2⁄ +𝑧𝛽

𝛿
]

2

(𝜏𝑔
2 +

𝛼𝑔
2

𝑚
) (1) 

 In this formula, the required technical replicates of each sample is indicated by m, and the 

whole number of microarray by n. The 100α/2th and 100βth percentiles of the normal 

distribution are depicted by zα/2 and zβ and the distance of group means is shown as δ.  The 

study’s objective is to determine this distance. The variance between measurements for one gene 

among all samples of one group is annotated by(𝜏𝑔
2 +

𝛼𝑔
2

𝑚
). Since this variation must be known 

for each gene of interest, plenty of estimations should be made from previous experiments [10]. 

Another approach for sample size calculation has been suggested by Pawitan et al. It is only 

based on FDR control [56]. They have argued that the latter approach works better since FDR is 

a better scale than P-value [56]. Other calculations for sample size such as Lee and Whitmore 

proposed in 2002 is based on absolute false positives [31] [56]. This scale though better than 
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traditional scales, it cannot directly control the FDR [56]. In 2004, Müller et al. suggested a 

theoretical approach for the optimal sample size in a way to achieve a certain FDR by the 

maximum number of differentially expressed genes [56].  

In other methods, Lin and Hsueh proposed a formula to calculate the sample size with 

regards to the number of arrays needed to reach a definite sensitivity with 95% significance level 

[63] [64]. This approach could be argued in the way 95% sensitivity is usually unachievable and 

the probability of detection is less than 50% [65] 

 In addition to theoretical methods, some software packages such as R (R package) and dchip 

are available for sample size calculation [34]. Determination of sample size in these software is 

also based on the known variation between samples [21]. 

Although there are plenty of methods for determination of sample size in microarray studies, 

practically only in few experiments these methods have been utilized. In field (clinical) 

experiments, there are not many researchers and biologists who calculate their sample size with 

the established calculation methods. This may be due to impracticality of small number of 

available biological replicates, unknown variations between samples, etc. In practice usually 

researchers use the available samples for their experiments. Normally the sample size calculated 

by the established formulas is more than 25 samples and this many might have not been gathered 

in the sample collection step [10]. On the other hand, for most sample size calculations, the 

variation should be known and it is usually estimated from previous similar experiments. This 

would not be a reliable approach since in most cases similarity between experiments is an issue 

of relativity. Considering this random use of already acquired samples, it may be a source of 

variation in the microarray experiment resulting in inconsistency in the experiment results. 

2.2 Normalization of microarray data 

This research main objective is to tackle the inconsistency in microarray data analysis results. 

This inconsistency is generally handled in preprocessing stage in microarray data analysis and 

specifically in normalization step. Different normalization methods have been introduced for 

microarray data. 
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Having seen the existing sampling bias in microarray data analysis, we targeted 

normalization, the main step in microarray experiments that is responsible for reducing the 

sampling bias. The main objective of normalization is to eliminate non-biological variation in 

microarray experiments that compromise the expression level measurements [24].  

Normalization algorithms aim to adjust the samples for their non-biological differences. 

There are different sources for these differences such as amounts of sample and laser apparatus 

settings [8] [24]. Normalization is not the only step in microarray data analysis, responsible for 

removing systematic variations, however normalization is the most important step to eliminate 

non-biological variations in the earlier stage [66]. 

To choose the right normalization method for microarray experiment, certain decisions 

should be made [48]. 

These methods basically are categorized based on the level they are performed at: 

I. Probe level 

The microarray samples are hybridized on the probes of the microarray chip. If the 

normalization is performed on the initial values corresponding to the amount of emitted 

fluorescent dye from each of the probes, it is called normalization at probe level.  

II. Expression level 

After gathering the initial emission measures, they are summarized and the expression values 

for genes are calculated. If normalization happens at this level on the calculated expression 

values, it is called normalization at expression level.  

Also it should be determined which genes to be utilized for normalization [24]: 

I. All genes [24] 

II. Housekeeping genes [24] 

III. Different controls [24] 

IV. Rank invariant genes [49] 

It depends on the data category, the image analysis software, etc. to select the most 

appropriate method that provides the best results [67]. Below are these methods: 
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Scale normalization:  

As the simplest approach, normalization of data is scaling, e.g. force the median of sample 

differences to be 0 [67].  

Lowess: 

This normalization method is mostly performed in two-color microarray experiments [67]. 

Quantile: 

In this approach, not only the medians (50% quantile) is adjusted but also all the quantiles will be 

uniformed. 

VSN:  

This transformation is similar to using the natural log transformation 

There are reviews on microarray normalization methods provided by Quackenbush [68] and 

Bilban et al. [69]. Some extensions are suggested in order to perform global and intensity-

dependent normalizations [24]. As an instance, Kepler et al. [70] proposed to make the 

regression locally in order to estimate the normalized intensities. In another study, Wang et al. 

[71] proposed to perform normalizations with multiple iterations in order to both determine the 

normalized valued and internal controls [24].  

Workman et al. [72] suggested a non-linear model to normalize microarray data based on 

distribution analysis [24]. Chen et al. [73] proposed to perform normalization both locally and 

globally [24]. In order to make corrections for spatial heterogeneity, Edwards [74] proposed non-

linear LOWESS normalization. 
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Chapter 3  

PROBLEM STATEMENT 
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3.1 Problem Statement and Proposed Solution 

As in any statistical analysis, microarray data analysis is prone to different challenges such as 

sample size, outliers and statistical significance. Determination of sample size in microarray data 

analysis is very significant, since microarray experiments have intrinsic complexity and include 

large amount of data. On one hand, in microarray experiments, the process of sample gathering is 

expensive and involves high complications, on the other hand small sample sizes might lead to 

inaccurate results. Small sample sizes increase the risk of sampling bias, since it is more likely to 

have outliers and/or low-quality samples when there are few samples.  

When it comes to reproductive biology, the sampling bias problem becomes even more 

critical. The main reproductive follicular cells that are examined in microarray experiments are 

oocytes, granulosa, cumulus and endometrium cells [75]. The mentioned cells tend to get 

contaminated by nearby cells and also collection of reproductive follicular cells is very timely 

and requires complicated techniques [76]. Thus, sample size determination is important in 

reproductive microarray experiments both from power of results point of view and complexity of 

sample gathering [77]. 

There are some assumptions for choosing sample size in microarray data analysis [21]. Based 

on the goals of the microarray experiment, such as to find large differences between two 

conditions, 3 samples per condition is assumed to be enough; or to find small differences, 5 

samples per condition would be adequate; or if the conditions are not physiologically, drastically 

different, then 4 samples per condition is assumed to be adequate. If these ‘rules of thumb’ are 

used to determine sample size in microarray experiments, then possible inconsistency in the 

results would endanger the validity of corresponding clinical inferences. 

3.2 Sampling bias in microarray data analysis 

The initial goal of this research, has been to experimentally show that increasing number of 

replicates and using different combinations of available samples may influence microarray 

results. We provide different examples in which using both different number of replicates and 

different subsets of available samples, shows non-negligible oscillations in microarray results, 

which the number of differentially expressed genes. These examples are proofs of inconsistency 
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in microarray results and due to our approach, proofs of sampling bias in microarray data 

analysis. 

3.3 Tackling the sampling bias  

To tackle sampling bias in microarray data analysis, we targeted the preprocessing of raw 

data in microarray data analysis. Raw microarray data is challenged by undesired non-biological 

variations. Non-biological variations such as technical, systematical and human errors are the 

main sources of inconsistency in microarray results. In preprocessing step in microarray data 

analysis, the undesired variations are supposed to be removed at normalization stage. Different 

normalization methods is proposed for elimination of non-biological variations. 

3.4 Common available normalization methods  

One of the most popular and robust normalization methods in microarray data analysis is 

Robust Multichip Average (RMA) [9]. We evaluated the sampling bias in microarray differential 

expression analysis, in which we normalized the raw microarray data with RMA algorithm. Our 

results show that though the data were normalized with RMA, the differential expression 

analysis results (number of differentially expressed genes) under different conditions of sample 

choice, showed oscillation. It is expected that using different number of samples and different 

combinations of them (subsets), the number of differentially expressed genes remains the same 

or at least on the same range; though having seen the oscillation in differential expression 

analysis is a proof of inconsistency. 

Also to investigate the efficiency of RMA algorithm in elimination of non-biological 

variations in microarray raw data, we examined the variation in housekeeping genes’ expression. 

Housekeeping genes are the ones which are related to basic cell functions and are supposed to 

have stable expressions in all samples and conditions.  The results of this investigation also 

confirmed that in plenty of microarray experiments sampling bias exists. 
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3.5 Proposing a two-stage normalization method to tackle sampling 

bias 

We propose a two-stage normalization method to eliminate the non-biological variations and 

consequently reduce the sampling bias in microarray data analysis. The first stage normalization 

is using RMA algorithm at probe level and after investigation of variation of housekeeping 

genes’ expression after RMA, the second stage is to normalize the microarray data using 

housekeeping genes normalization algorithm at expression level.  
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Chapter 4  

METHODOLOGY 
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4.1 Methodology 

In order to implement our proposed solution, a precise procedure should have been followed. 

The overall flowchart of our methodology is given in Figure 1. The procedure is given in 

Algorithm 1. 

Figure 1 - Overall Flowchart of performed procedure 
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ALGORITHM 1 

BEGIN  

 INPUT raw data 

  IF raw data == "Human Genome" THEN 

   "Configure the corresponding platform to Human Genome" 

  ELSE 

   OUTPUT "Is it mouse genome?" 

 "Configure the corresponding platform to Mouse Genome" 

  ELSE IF 

   OUTPUT "Is it cattle genome?" 

 "Configure the corresponding platform to Cattle Genome" 

  END IF 

 END INPUT 

 

 BEGIN PREPROCESSING 

  FOR each sample 

 "Perform RMA normalization" %%First-Stage Normalization%%   

  END FOR 

 END PREPROCESSING 

 

 BEGIN SAMPLING BIAS ANALYSIS 

  FOR each experiment 

    IF sample == "Normal" THEN 

      "Put sample in ‘Normal’ group"   

    ELSE 

      "Put sample in ‘Treated’ group" 

    END IF 

    IF count of samples per group => "5"  
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     FOR 16 different combinations of samples in ‘Treated’ group 

      PERFORM Differential Expression Analysis 

     END FOR 

    END IF 

 END SAMPLING BIAS ANALYSIS  

  

 BEGIN ASSESSMENT OF VARIATION 

  FOR each Housekeeping Gene 

      "Extract the expression value in all samples per group"   

  END FOR 

  FOR all HKG in each genome 

      "Use ‘NormFinder’ tool and Rank HKGs based on their variation" 

  END FOR 

 END ASSESSMENT OF VARIATION 

  

 BEGIN SECOND-STAGE NORMALIZATION 

  FOR each ‘organism’ AND ‘cell type’ 

   "Choose the 3 most stable HKGs" 

  FOR each sample 

   "Calculate the ‘geometric mean’ of 3 most stable HKGs"                                                             

%                                    %%Normalization Factor%% 

   "Divide all the expression values by the ‘Normalization Factor’"  

     %%Second-stage Normalization%% 

  END FOR 

  END FOR 

 END SECOND-STAGE NORMALIZATION 

  



23 
 

 REPEAT SAMPLING BIAS ANALYSIS 

  

 BEGIN EVALUATION OF THE EFFICIENCY OF PROPOSED SOLUTION  

 FOR each experiment 

   "Compare the results of sampling bias analysis"  

 END FOR 

 END EVALUATION 

END 

Each of these steps are explained thoroughly in the remainder of this chapter. At the end of 

chapter the performance measures of our research and the proposed solution is given. 
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4.2  Data gathering 

4.2.1 Public Microarray Data Repositories 

The first step in any data analysis project is to gather related data precisely. In the field of 

microarray studies, various public data repositories are available online. These repositories are 

the archive of data from microarray samples which have been used in different experiments.  

In order to simplify, we imported our data from ArrayExpress database [78]. ArrayExpress is 

the database of European Bioinformatics Institute (EBI) which includes data from genomic 

experiments that can be searched and downloaded. In this database there are genome expression 

profiles from microarray sequencing studies. EBI is regarded as a section of European Molecular 

Biology Laboratory (EMBL) [78].  

EMBL-EBI consists of publicly available data from scientific experiments. It also facilitate 

basic computational biology research and provides training programs, both for academic and 

industry researchers [78]. 

Since the datasets in ArrayExpress includes the ones both from microarray and sequencing 

experiments, we had to separate microarray datasets. ArrayExpress consists of the data from 

41639 microarray experiments. This quantity is resulted when we sort ArrayExpress experiments 

based on the technology used, which was Array Essay. This technology is the underlying 

technology for microarray experiments. Each of these experiments had been performed in 

different organisms such as human, cattle, mouse, bacteria and etc. In each organism category 

there are experiments related to different tissue types such as reproductive tissue, muscular 

tissue, blood and etc. 

4.2.2 Selection of experiments from different organisms and different tissue 

types 

Experiments in ArrayExpress database are sorted based on technology of experiment, 

platform, organism, tissue types and the date of publishing. The overall procedure of our solution 

is the same for all microarray experiments, however since the second stage of our solution is 

based on housekeeping genes, we had to be very careful to implement our solution each time on 

a group of experiments that have been done on the same organism and tissue type. Considering 
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these cautions, our selection of data (experiments) in terms of organism and tissue type is as 

listed below: 

 Organism: Human (Homo sapiens) 

o Tissue types:   Oocyte 

Cumulus 

Endometrium 

Peripheral Blood 

Lymph  

 Organism: Cattle (Bos Tauras) 

o Tissue type:  Oocyte 

 Organism: Mouse (Mus Musulus) 

o Tissue type: Oocyte 

For each of these categories, we imported between 5 and 8 datasets. In our study we selected 

the experiments with only biological samples in different conditions. We didn’t consider 

technical samples. Each biological samples is gathered from only one source (human, mouse, 

cattle); on the other hand, technical samples are several samples gathered from one source. In the 

process of downloading data, based on samples description, we made sure about the tissue type. 

Also we studied the description of each original experiment to find out how the samples were 

gathered and determine the control (normal) samples versus treated or mutated ones. A sample 

profile of ArrayExpress experiments is shown in Figure 2.  
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4.3 Platform Configuration 

Any microarray experiment has been performed on a specific platform. The platform is the 

design of the microarray chip that the experimental samples were hybridized on. Anyone who 

wishes to perform a microarray analysis would buy these chip platforms to hybridize the samples 

that they have extracted from organisms on them. We need to figure out the platform in order to 

normalize the data and we need to have the platform description. We also need to know exactly 

which probe on the chip corresponds to any specific gene in order to determine expression value 

of each housekeeping gene in each sample. Any platform file is like a map that is compatible 

with downloaded files from samples’ data. The detailed description of this map is provided in 

any platform’s annotation file. For each platform that we used, we downloaded the 

Figure 2 – Sample profile of ArrayExpress experiment 
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corresponding annotation file that was not easily accessible in all cases. Since we have 

implemented our solution on different organisms, the platforms were different for each organism. 

Though even for each organism, there are different platforms, to narrow down our research, for 

each organism we chose the experiments that their platform were the same. The platforms we 

used for each organism are as follows:  

 A-AFFY-44 - Affymetrix GeneChip Human Genome U133 Plus 2.0 [HG-U133_Plus_2] 

 A-AFFY-45 - Affymetrix GeneChip Mouse Genome 430 2.0 [Mouse430_2] 

 A-AFFY-128 - Affymetrix GeneChip Bovine Genome Array Bovine 

4.4 Performing the first stage normalization, Robust Multichip 

Average (RMA) 

At first stage, the arrays of chosen datasets were normalized by Robust Multichip Average 

algorithm [9]. The intensity values are transformed to log 2 values and at the end they are 

normalized by quantile algorithm and finally summarized. Quantile algorithm which is based on 

the idea that plotting of the quantiles of probe intensities gives a straight line along a unit vector 

(1/√n… 1/√n). As a result, if in a quantile plot we project the n-dimensional data points on a 

straight diagonal line, then the all the datasets will have identical distributions [12]. The quantile 

normalization for a set of data vectors can be performed as shown in algorithm 2. 
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ALGORITHM 2 

BEGIN  

 INPUT N datasets of length p  

 FORM Matrix X  

 Dim(X, 1) == p 

 Dim(X, 2) == N 

         "Put each dataset as a column" 

 

 XSORT == SORT Matrix X 

 FOR each row of XSORT 

    "Calculate the average" 

 END FOR 

 FOR each element of the row 

   "Substitute the element by the average" 

 X’SORT == Substituted Matrix from XSORT 

 END FOR 

 

 FOR each column of X’SORT  

         "Rearrange the column to have the same order of original X" 

 END FOR 

  

 XNORM == "Rearranged X’SORT" 

END 



29 
 

It is to be noted that in order to perform RMA normalization, each sample’s data file should 

be uploaded with its corresponding platform file. Then the three steps of RMA is performed as 

mentioned above.   

 

4.5 Statistical analysis with regards to sampling bias, after first-

stage normalization  

The final step in any microarray data analysis is differential expression analysis. After 

preprocessing, data should be further analyzed so that the genes of interest could be detected. 

This step is critical statistical analysis in any microarray data analysis.  

After performing RMA normalization in previous step, the expression values resulted from 

RMA normalization were used to find out the number of differentially expressed genes in each 

experiment. The test used for evaluating the number of genes expressed was t-test with P-value 

of 0.05.  

4.5.1 Evaluation of statistical significance of differentially expressed genes 

The main purpose of microarray experiments is to detect the genes with different expression 

levels between two sample groups. It is demanded to understand which genes are up-regulated 

(increased in expression) or down-regulated (decreased in expression) between two sample 

groups [77]. There are multiple samples in each group. The average of expression levels between 

the samples in each group is calculated. Therefore, in order to assess the difference of expression 

levels, the target is to make comparison between the means of the sample groups. In the 

experiments that there are two sample groups to be examined, the case would represent some 

kind of a t-test [77]. As one of the popular hypothesis tests, the two-sample t-test is applied to 

investigate whether the distance between mean values of two groups is significant or random. In 

our analysis, Genes with corrected false discovery rate of p-value less than 0.05 and |Fold 

Change| > 2 were considered as differentially expressed [70]. The traditionally accepted P-value 

for something to be significant is P < 0.05.  So if there is less than a 5% chance that the gene 

expression values from two samples came from the same group, then it is considered a 

significant difference between the two expression values. 
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In differential expression analysis, first we took the average of the log expression levels in 

treated group and subtracted the average of log expression levels in control group from it to 

reach an expression log ratio for each gene [71]. Then we needed to determine which of these 

expression ratios is different from 1, significantly. Our approach was to implement the two-

sample t-test to evaluate the significance of differential expression analysis [72]. Two-sample t-

test is suitable for comparing between two groups from different experimental treatments or 

populations. The necessary conditions for applying two-sample t-test are as follows [62]: 

 Samples in each group are gathered from distinct populations 

 The responses from samples in each group are independent from each other 

 The distribution of samples in each group are normal 

In our research the above mentioned conditions are fulfilled. In all our experiments two 

distinct sample groups are compared; also the comparison variables are independent from each 

other since we are comparing the gene expression values in two completely different cell 

conditions. As for the third condition, all our raw data from our samples are normalized with 

RMA normalization algorithm at the first stage; the last step of RMA normalization is to make 

the distribution of samples similar and normal [63].  Another issue in utilization of two-sample       

t-test, is the variation between different datasets. In order to forfeit this issue, in all of our 

experiments, we selected five samples per conditions to conduct our analysis. Even if there were 

more than five samples per conditions, we selected five of them.   

Actually with this approach we are performing thousands of t-test together; some of them 

may affirm to be significant, even though they are actually not. We need to adjust for the 

simultaneously performed tests, so we used a correction, as Holm-Bonferroni proposed. As they 

suggested, we sorted the p-values from smallest to largest and multiplied the smallest p-value by 

K (total number of genes). Then we multiplied the next smallest p-value by (K-1), the next 

smallest by (K-2) and so forth [71]. 
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4.5.2 Sampling bias in microarray data analysis 

As mentioned in previous section, determination of sample size in presence of experimental 

variations may lead to inconsistent results. Though there are plenty of theoretical methods to 

calculate the number of required samples for an experiment, these methods are not used in all the 

studies that are being performed in this area. In reproductive biology microarray experiments, 

sample collection is more complicated and contamination of samples is much more likely; 

therefore in reproductive cells-related microarray experiments, low quantity of samples are 

witnessed more. We investigated this matter at the beginning of our analysis and the low quantity 

of samples per condition in reproductive tissue microarray experiments was witnessed (Chapter 

5, section 5.1).  

The initial goal of this research project is to provide examples of how increasing the number 

of replicates and also using different subsets of available samples can affect the microarray 

experiments. We provide examples of how using different combinations of replicates in a 

microarray analysis could result in different outcomes. This is exactly where the inconsistency 

originates and hence, we recommend that these existing variations should be considered before 

conducting the study. 

In this research in order to consider sampling bias in differential expression analysis, the 

following approach was followed. For each experiment which originally had at least 5 samples 

per condition, analysis was performed with different number of replicates (3 to 5) and in each 

condition, all possible combinations of replicates that is sixteen, were considered and the 

analysis was repeated.  

When there are differences in the concentration or purity of the samples, the expression of 

housekeeping genes (HKG) might show considerable variations, even after RMA normalization. 

Instability in the HKG expression after RMA may indicate that kind of variation and may result 

in sampling bias in the differential expression analysis [32]. 
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4.6 Assessment of the variation of housekeeping genes expression 

values 

The most popular internal controls in microarray data analysis are so-called housekeeping or 

endogenous genes. Housekeeping genes are the ones with hypothetically stable and consistent 

expression values in all cells. Also in some experiments normalization is performed against 

external controls, which is based on using genes from other organisms. Large-scale expression 

data profiling is used to examine the expression values of all genes and to identify the 

housekeeping genes [66]. 

We evaluated the possible variation – instability – of common housekeeping genes in each 

organism after RMA normalization. We chose these housekeeping genes based on available 

literature [79] [80]. The list of housekeeping genes used for each organism in order to evaluate 

the expression variation, is given in the tables below. We performed the evaluation of possible 

instability of HKG separately for the tissues of interest. We calculated the mean and standard 

deviation of each housekeeping gene in each dataset for each tissue type. 
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Table 1 - Most stable HKGs in Human Genome 

HUMAN ORGANISM 

# Symbol Description 

1 ACTB Actin, beta 

2 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

3 HPRT1 Hypoxanthine guanine phosphoribosyl transferase 1 

4 GUSB Glucuronidase, beta, b 

5 SDHA Succinate dehydrogenase 

6 TBP TATA box binding protein 

7 YWHAZ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta 

polypeptide 

8 B2M Beta-2-microglobulin 

 

 

Table 2 - Most stable HKGs in Mouse Genome 

MOUSE ORGANISM 

# Symbol Description 

1 ACTB Actin, beta 

2 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

3 GUSB Glucuronidase, beta, b 

4 SDHA Succinate dehydrogenase 

5 B2M Beta-2-microglobulin 

6 H2AFZ H2A histone family, member Z 

7 HPRT1 Hypoxanthine guanine phosphoribosyl transferase 1 

8 EEF1E1 Eukaryotic translation elongation factor 1 epsilon 1 

9 PPIA Peptidylprolyl isomerase A 
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 Table 3 - Most stable HKGs in Cattle Genome 

 

4.7 Determination of most stable housekeeping genes in each tissue 

type 

We determined the three most stable genes by using the Normfinder tool, developed by 

Andersen et al. [53]. It is an Excel add-on application to determine the most stable genes from a 

predefined list. The analysis of variance is performed with a model-oriented comparison of 

expression values. Then a stability measure is defined and the deviation of each HKG from this 

stability measure is evaluated. These deviations are then used to calculate the stability value for 

each gene. It means that the lowest this deviation, the most stable the gene is. In Normfinder, 

ranking of most stable genes is reported as the gene with the lowest deviation value, indicating 

the most stable [53]. Schematic results of Normfinder tool is shown in Figure 3. 

We used Normfinder on each dataset to extract the stability values. We ranked eight HKGs 

with respect to the stability values of each of the eight HKG that were extracted from 

Normfinder results. For each dataset, the eight HKGs were ranked according to their Normfinder 

CATTLE ORGANISM 

# Symbol Description 

1 ACTB Actin, beta 

2 GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

3 HPRT1 Hypoxanthine guanine phosphoribosyl transferase 1 

4 GUSB Glucuronidase, beta, b 

5 YWHAZ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta 

polypeptide 

6 B2M Beta-2-microglobulin 

7 HMBS Hydroxymethylbilane synthase 

8 UBC Ubiquitin C 

9 PKG1 Phosphoglycerate kinase 1 
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stability values; then in each category the ranks for each HKG was averaged to find the ranks for 

each cell type. 

 

 

 

 

 

 

Gene name Stability value Best gene SDHA

ACTB 0.015 Stability value 0.006

GAPDH 0.016

HPRT1 0.018 Best combination of two genes SDHA and TBP

GUSB 0.038 Stability value for best combination of two genes 0.007

SDHA 0.006

TBP 0.013

YWHAZ 0.016

B2M 0.081

Intragroup variation

Group identifier 1 2

ACTB 0.001 0.002

GAPDH 0.001 0.002

HPRT1 0.001 0.004

GUSB 0.010 0.005

SDHA 0.000 0.000

TBP 0.000 0.002

YWHAZ 0.002 0.001

B2M 0.028 0.038

Intergroup variation

Group identifier 1 2

ACTB -0.005 0.005

GAPDH -0.008 0.008

HPRT1 0.017 -0.017

GUSB -0.007 0.007

SDHA -0.014 0.014

TBP -0.009 0.009

YWHAZ -0.012 0.012

B2M 0.039 -0.039

Figure 3 - Schematic results of Normfinder tool 
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4.8 Performing the second stage normalization using most stable 

housekeeping genes 

The overall algorithm of normalization against housekeeping genes is to first identify the 

most stable genes and determine a normalization factor per array by calculating the geometric 

mean of those stable genes’ expressions and then divide all the expression values of the array by 

the normalization factor. The number of genes to use for calculation of geometric mean is 

dependent on the practical considerations. 

In second stage, second normalization method was applied at gene expression level. First a 

normalization factor was calculated for each sample by calculating the geometric mean of the 

expression of three most stable housekeeping genes – determined by Normfinder previously – 

and dividing all expression values of that sample by the normalization factor.  In formula (2), 

NFj corresponds to the normalization factor for sample j and Eij is the expression of ith 

housekeeping gene in jth sample. 

𝑁𝐹𝑗 = (∏ 𝐸𝑖𝑗

𝑛

𝑖=1

)

1
𝑛⁄

         𝑓𝑜𝑟 𝑖 = 1, … ,3                   (2) 

 

4.9 Repeating Statistical analysis with regards to sampling bias, 

after second-stage normalization 

In this research, the differential expression analysis was performed once after first stage 

(RMA), and once after second stage (RMA + HKG). Similar procedure as section 4.4 was 

performed after second-stage normalization done in previous step. The expression values 

resulted from RMA+HKG normalization were used to find out the number of differentially 

expressed genes in each experiment. Similarly, the test used for evaluating the number of genes 

expressed was t-test with P-value of 0.05. 
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4.10  Comparing the sampling bias results after one-stage and 

second-stage normalization 

In an attempt to reduce the sampling bias in microarray experiments, we proposed a two-

stage normalization of microarray expression data, taking into account the stability of 

housekeeping gene expression across the biological replicates. Proposed method includes non-

linear RMA normalization at probe level expression values followed by linear HKG based 

normalization at gene expression level. At probe level in which the values are the reported 

amounts of emitted light, relative non-linear normalization should be performed. The systematic 

variations introduced into the microarray data are from different sources, therefore performing 

linear normalization at probe level is not capable of elimination of systematic variations. 

However after performing RMA, the expression values of all samples included in the microarray 

experiment, are normally distributed, therefore linear normalization is justified to be utilized at 

expression level.      

In order to assess the efficiency of our proposed solution, we compared the results from 

sampling bias after first-stage normalization (section 4.4) and second-stage normalization 

(section 4.8).   

4.11  Performance measures 

Microarray data analysis is a multistage procedure and each stage of it has different 

performance measures. In the first place, data is gathered from biologic samples. This step was 

not under our control because it is performed in highly professional laboratories and by expert 

scientists. We used the raw data that they have gathered through years in different microarray 

experiments. 
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After importing the raw data, the essential preprocessing stage is applied. We proposed a 

two-stage normalization method in this stage. The suitable performance measure in 

normalization stage is the evaluation of variation after normalization [81]. To test the efficiency 

of normalization process, the evaluation of variation shall be performed on control genes. In our 

research, we used Normfinder tool to analyze the variation of housekeeping genes, as controls 

[53]. Normfinder is a reliable tool in analysis of variation in housekeeping genes’ expression 

values. Normfinder both calculate the inter-sample and intra-sample variation of housekeeping 

genes and based on these measurements list the most stable genes [53].  

After the preprocessing stage is completed, the differential expression analysis is performed. 

This is the statistical stage of microarray data analysis. As mentioned in chapter 4, methodology, 

in order to detect the differential expressed genes, we used two-sample t-test. Based on literature, 

t-test is one of the appropriate tools to detect the differences between two sample groups [82]. 

Additionally, as benchmarked in the protocol of microarray experiments through years, most of 

microarray data analysis are based on two-sample t-test in differential expression analysis stage 

[83]. Since in all of our experiments our differential expression analysis was between two 

distinct sample groups, t-test would have been the most efficient tool.    

In our analysis, to declare that a gene is differentially expressed, we considered the absolute 

fold change of that gene between two sample groups to be bigger than twice. To assure the 

significance of this consideration, we applied a false discovery rate-corrected p value of less than 

0.05. It is traditionally accepted that threshold of p-value to be significant is less than 5% [24].  

Though the values used in differential expression analysis could be varied, we kept them 

constant in all our experiments in order to assess the efficiency and influence of normalization of 

raw data, solely. 
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Chapter 5  

RESULTS & DISCUSSION 
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5.1 Results and Discussion 

5.2 Sampling bias results 

The first step of our methodology was to gather data from ArrayExpress database [78]. The 

chosen datasets for further analysis in this study are from experiments performed on human, 

cattle and mouse organism. Their raw data have been acquired, then preprocessed and analyzed. 

In this research, the public data repository from European Molecular Biology Laboratory – 

European Bioinformatics Institute (EMBL-EBI) website was chosen [78]. At first, we wanted to 

figure out the distribution of number of replicates per condition in microarray experiments. The 

keyword “oocyte” was searched to narrow this analysis. The search query resulted in 220 

experiments. Taking into account the experiments in which the conditions were well described, 

the distribution of number of replicates per condition for more than 180 experiments were 

determined. This figure represents a kind of exponential distribution and is highly skewed to the 

right. We can conclude that in real life microarray experiments, experts use few number of 

samples per conditions (3-5) to conduct their analysis. 

Figure 4 - The Distribution of number of replicates per condition in 180 experiments of 

EMBL-EBI database. Altogether, number of available conditions for approximately 1047 

different conditions were counted and the figure shows the distribution fitted to histogram of 

distribution (with mean of 4.41 and standard deviation of 0.71) (Conditions with more than 

30 replicates were excluded from the graph to provide a better illustration.) 
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 Results from Figure 4 shoes that, the distribution of number of samples per condition is 

highly skewed to low number of replicates, and this shows that the experiments are being 

performed with low number of samples.  

In this research in order to consider sampling bias in differential expression analysis, we 

performed the sampling bias analysis, mentioned in section 4.4.2, to provide some examples of 

how using different combinations of replicates in a microarray analysis could result in different 

outcomes. 

 In Figure 5, the results from expression analysis of five of the experiments are reported. The 

experiments have been repeated for different number of replicates and also for all possible 

different combinations of replicates. This consists of sixteen different conditions. In Figure 5, the 

number of differentially expressed genes in each of these sixteen combinations is illustrated. It is 

seen that by changing both the number of replicates and the combination of available replicates 

different outcomes are obtained. The number of differentially expressed genes was consistent 

with the original studies, the minor differences might be due to the choice of software, methods 

or parameters. 

Figure 5 - The Number of Differentially Expressed Genes versus 16 Different Combinations of Replicates for 

5 Different Microarray Experiments 
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The results showed that using different number of replicates, the number of expressed genes 

will either increase or decrease and no regular pattern is seen. Using different combinations also 

lead to different number of expressed genes. This finding is especially critical since biased 

results obtained from microarray experiments would lead to inaccurate inferences in subsequent 

pathway analysis. 

5.3 Results from Assessment of the variation of housekeeping genes 

expression  

To assess the possible variation of housekeeping genes after RMA normalization, we 

followed the procedure mentioned in section 4.5.  It should be noted that we did this evaluation 

separately for each organism with regards to common housekeeping genes in that organism also 

separately for each tissue of interest. The result of this assessment for human organism in three 

tissue types is given below in Figure 6. 

The points in Figure 6 show the mean expression value of each housekeeping gene after 

normalizing with RMA, for all datasets in each category (tissue type). The error bars demonstrate 

the standard deviation of the expression values.  

In figure 6-a, the HKG expression values for the six datasets of “Oocyte” category are 

shown. It can be seen that YWHAZ expression shows significant variation, in most of the 

datasets, on the other hand, TBP and B2M show lower variation. Figure 6-b demonstrates the 

HKG expression values in category of five “cumulus” datasets. In this category, GAPDH 

expression shows lower variation in comparison to oocyte category, however the variation in 

B2M is much higher than oocyte datasets. In figure 6-c the expression values of eight HKG are 

shown in five datasets of “endometrium” category. In this category, overall the variation in HKG 

expression values is lower than the two other. 

Similarly, for cattle and mouse organisms, the expression values of common housekeeping 

genes showed non-negligible variation after RMA normalization. These genes are supposed to 

have stable and uniform expression in all samples specifically that the RMA normalization step 

has already been performed.    
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Figure 6 - House Keeping Genes expression after RMA normalization, 6-a, HKG Expression values of Oocyte datasets category. 

6-b, HKG Expression values of Cumulus datasets category. 6-c, and HKG Expression values of Endometrium datasets category 
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5.4 Determination of most stable housekeeping genes in each tissue 

type 

As mentioned in section 4.7, to determine the most stable housekeeping genes in any tissue 

type, we used Normfinder tool [53] for at least five experiments of that tissue type. Using the 

results of Normfinder, we ranked all common housekeeping genes in each organism, with 

regards to their stability, in the corresponding tissue type.    

For human organism, the result of housekeeping genes’ stability and their ranking is given 

below in Figure 7 and Table 1. 

  

  

 

Figure 7 - Stability Values of Housekeeping Genes after RMA 
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In figure 7, the stability values of all eight HKGs - extracted from Normfinder - for all 

sixteen datasets from human organism, are plotted. On the horizontal axis, numbers 1-16 are 

annotating sixteen experiments. Numbers 1-6 correspond to the six “oocyte” datasets; numbers 

7-11 are the five “cumulus” datasets and numbers 12-16 correspond to the five “endometrium” 

datasets. For each experiment, the most stable housekeeping gene is ranked as 1st and the least 

stable one is ranked as 8th. Then for all the experiments on one cell type these ranks are averaged 

for each HKG in order to find out the three most stable genes in the corresponding cell type. The 

determined three most stable housekeeping genes are to be used for next-stage normalization in 

the experiments of that cell type.       

Table 1 shows the ranking results, using Normfinder stability values, with the average rank 

for each housekeeping gene in each category and overall. According to the averaged ranks, for 

oocyte category, the three most stable HKG in ranking were ACTB, GAPDH and B2M; for 

“cumulus” category, SDHA, TBP and ACTB and for “Endometrium” category, SDHA, TBP and 

GAPDH. Additionally, the overall rank for each HKG was calculated as the average of each 

HKG’s ranks in all sixteen datasets. With regards to overall average rank, the three most stable 

genes across all sixteen datasets were ACTB, TBP and GAPDH. 
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ACTB 3 1 6 3 2 1 2.67 1 4 4 4 3 3.20 5 3 3 4 1 3.20 3.000

GAPDH 4 4 1 8 1 4 3.67 4 3 5 5 2 3.80 3 2 4 2 2 2.60 3.375

HPRT1 1 2 8 5 8 6 5.00 6 6 8 2 6 5.60 4 7 6 8 3 5.60 5.375

GUSB 5 8 3 6 3 8 5.50 5 8 6 8 8 7.00 8 8 7 6 7 7.20 6.500

SDHA 2 6 5 4 7 7 5.17 2 5 3 1 4 3.00 2 4 1 1 5 2.60 3.688

TBP 7 3 4 1 5 3 3.83 3 1 2 3 5 2.80 1 1 2 3 6 2.60 3.125

YWHAZ 8 7 7 7 6 5 6.67 7 2 1 6 1 3.40 6 5 5 5 4 5.00 5.125

B2M 6 5 2 2 4 2 3.50 8 7 7 7 7 7.20 7 6 8 7 8 7.20 5.813

Overall

Average 

Rank

Oocyte Cumulus Endometrium

Table 4 - HKG Ranking Based on Normfinder Results 
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5.5 Performing the second stage normalization using most stable 

housekeeping genes 

5.5.1 Calculation of Normalization Factors 

In order to perform the second-stage normalization based on housekeeping genes, for each 

organism, we found the three most stable housekeeping genes with regards to ranking of results 

from Normfinder stability values (section 5.4). To determine the normalization factors, for each 

sample, we calculated the geometric mean of 3 most stable genes’ expression values.  

5.5.2 Performance of second stage normalization 

For implementation of second-stage normalization, we divided all expression values of any 

sample by the corresponding normalization factor calculated as mentioned in previous section. 

The results of this step are shown together with the differential expression analysis of selected 

datasets and also sampling bias results. 

5.6 Repeating the Statistical analysis with regards to sampling bias, 

after second-stage normalization 

Similar to section 5.2, we repeated the differential expression analysis of each experiment 

dataset with regards to sampling bias. The number of differentially expressed genes in each of 

sixteen combinations of available replicates was determined. In the next section, the results of 

this step are shown before and after second-stage normalization to compare the results and to 

determine the efficiency of second-stage normalization. 

5.7 Comparing the sampling bias results after one-stage and 

second-stage normalization 

To evaluate the performance of two-stage normalization method, the differential expression 

analysis was performed i) after RMA and ii) after RMA and HKG normalization. 

In the following figures the results from expression analysis of selected datasets – from 

different organisms and tissue types– are shown. The number of differentially expressed genes 
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(scaled by Log 2) are reported before and after applying second stage normalization. The second 

stage normalization was performed by applying a normalization factor calculated from 

expressions of three most stable HKG expressions in each category to each sample. The number 

of housekeeping genes used for second-stage normalization depends on practical conditions. 

Two or three HKGs can be used for calculation of normalization factor. To perform the second-

stage normalization more reliably, we used three most stable housekeeping genes to calculate 

normalization factor. 
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 Organism: human, Tissue type: oocyte 

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 11.85782 11.88655 11.9256 11.91462 12.15946 10.9799 12.03773 11.91351 12.24564 12.05573

GAPDH 3.732396 2.741243 1.750927 5.797959 6.563384 7.56764 3.41541 3.877315 6.801594 6.591599

HPRT1 1.635095 2.272416 1.433101 1.743296 1.483875 1.405752 1.910323 1.941364 1.571263 2.252108

GUSB 4.650752 2.929576 2.770791 2.629006 3.34069 2.021668 3.529802 4.839217 4.246946 4.925333

SDHA 3.534166 3.013954 2.868877 2.840847 3.07227 4.175638 3.298335 3.315453 5.236586 5.686747

TBP 8.240454 6.922446 8.133628 8.762368 8.485239 5.315039 8.150898 7.827516 9.619674 9.482792

YWHAZ 2.230368 2.611605 2.868877 1.851651 2.224857 1.468459 6.413231 4.494839 5.236586 3.227511

B2M 1.833157 2.402523 1.992767 1.743296 1.911827 1.436813 2.049621 2.630831 1.959226 2.473204

GAPDH 3.732396 2.741243 1.750927 5.797959 6.563384 7.56764 3.41541 3.877315 6.801594 6.591599

TBP 8.240454 6.922446 8.133628 8.762368 8.485239 5.315039 8.150898 7.827516 9.619674 9.482792

B2M 1.833157 2.402523 1.992767 1.743296 1.911827 1.436813 2.049621 2.630831 1.959226 2.473204

NF 3.834536 3.572385 3.050256 4.457479 4.739656 3.866242 3.849822 4.306085 5.042182 5.366968

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 3.092373 3.327342 3.909705 2.67295 2.565474 2.839941 3.126828 2.766669 2.42864 2.246283

GAPDH 0.973363 0.767343 0.574026 1.300726 1.384781 1.957363 0.887161 0.900427 1.348939 1.228179

HPRT1 1.915138 2.180579 2.408766 1.904401 1.804373 1.965337 2.063431 1.954042 1.755355 1.638917

GUSB 1.212859 0.820062 0.90838 0.589797 0.704838 0.522903 0.916874 1.123809 0.842283 0.917712

SDHA 0.921667 0.843681 0.940536 0.637322 0.648205 1.080025 0.85675 0.769946 1.038556 1.059583

TBP 2.149009 1.937766 2.66654 1.965768 1.790265 1.37473 2.117214 1.81778 1.90784 1.766881

YWHAZ 0.581653 0.731054 0.940536 0.415403 0.469413 0.379816 1.665852 1.043834 1.038556 0.601366

B2M 0.478065 0.672526 0.653311 0.391095 0.403368 0.37163 0.532394 0.610956 0.388567 0.46082
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Figure 8 – Expression analysis results from human oocyte experiments 
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 Organism: human, Tissue type: cumulus 

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 13.8281 13.05693 13.1689 13.4153 12.83646 13.83447 13.32773 13.78564 13.79564 12.68108

GAPDH 14.15944 12.73716 13.17545 13.60819 13.15195 13.56081 13.29733 13.5058 13.99176 12.5382

HPRT1 2.14585 2.421824 1.963571 2.726763 2.527545 2.613074 2.59926 2.826749 2.607878 2.11009

GUSB 3.095278 5.312293 2.218856 6.108262 2.669767 3.720979 2.824313 5.043417 3.088045 6.076126

SDHA 8.261859 7.858795 7.777291 8.339737 6.962398 7.50594 7.714645 8.063764 8.593196 7.710584

TBP 5.467731 6.411614 4.16382 6.832568 4.536928 5.949186 5.587892 6.239966 6.67522 5.987951

YWHAZ 10.32525 8.318005 8.030007 9.276065 8.009587 9.712125 7.77517 9.947737 9.920648 7.724294

B2M 3.995263 4.007746 2.372962 4.258788 2.916284 3.13531 3.729776 4.944763 4.217208 3.229733

SDHA 8.261859 7.858795 7.777291 8.339737 6.962398 7.50594 7.714645 8.063764 8.593196 7.710584

TBP 5.467731 6.411614 4.16382 6.832568 4.536928 5.949186 5.587892 6.239966 6.67522 5.987951

YWHAZ 10.32525 8.318005 8.030007 9.276065 8.009587 9.712125 7.77517 9.947737 9.920648 7.724294

NF 7.755238 7.483662 6.382813 8.085373 6.324754 7.569356 6.946371 7.939895 8.286798 7.091554

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 1.783067 1.744725 2.063181 1.659206 2.029559 1.827695 1.918662 1.73625 1.664773 1.788195

GAPDH 1.825791 1.701995 2.064208 1.683063 2.079441 1.791541 1.914285 1.701005 1.68844 1.768047

HPRT1 1.122303 1.043366 1.27231 1.077768 1.344347 1.299617 1.307872 1.163413 1.167251 1.222158

GUSB 0.399121 0.709852 0.34763 0.755471 0.422114 0.491585 0.406588 0.635199 0.372646 0.856811

SDHA 1.065326 1.050127 1.218474 1.03146 1.100817 0.991622 1.110601 1.015601 1.036974 1.087291

TBP 0.705037 0.856748 0.652349 0.845053 0.717329 0.785957 0.804433 0.7859 0.805525 0.844378

YWHAZ 1.33139 1.111489 1.258067 1.147265 1.266388 1.283085 1.119314 1.25288 1.197163 1.089224

B2M 0.51517 0.535533 0.371774 0.526728 0.461091 0.414211 0.536939 0.622774 0.508907 0.455434
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Figure 9 - Expression analysis results from human cumulus experiments 
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 Organism: human, Tissue type: Endometrium 

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 12.32358 12.32848 13.08287 12.22051 12.51565 13.94165 13.9027 14.00967 13.85187 13.75201

GAPDH 11.80284 11.97106 12.51188 11.77091 12.05109 13.48953 13.841 13.781 13.44233 13.14658

HPRT1 1.644336 1.609586 2.054068 1.538246 1.767719 2.384428 2.621083 2.99717 2.233195 2.113789

GUSB 4.259819 4.341887 4.004103 2.819841 5.036299 4.30564 5.409072 5.302037 5.593195 4.758799

SDHA 8.948237 8.680037 9.308511 8.38829 8.829136 10.38124 10.73157 11.05718 10.01161 10.0579

TBP 6.169033 6.908792 7.210191 6.37614 7.137658 8.887878 8.662814 9.010668 8.641234 7.538625

YWHAZ 9.999937 9.993162 9.881229 9.453401 9.894537 10.62545 11.12431 11.08534 10.23993 10.43664

B2M 2.011729 3.189112 2.525651 2.112913 2.769494 3.168217 3.690591 4.634283 3.240114 3.171882

GAPDH 11.80284 11.97106 12.51188 11.77091 12.05109 13.48953 13.841 13.781 13.44233 13.14658

SDHA 8.948237 8.680037 9.308511 8.38829 8.829136 10.38124 10.73157 11.05718 10.01161 10.0579

TBP 6.169033 6.908792 7.210191 6.37614 7.137658 8.887878 8.662814 9.010668 8.641234 7.538625

NF 8.669226 8.954034 9.434448 8.570649 9.123612 10.75675 10.87668 11.11461 10.51602 9.989353

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 1.421532 1.376863 1.386712 1.425856 1.371787 1.296083 1.278212 1.260474 1.317216 1.376667

GAPDH 1.361464 1.336946 1.326191 1.373397 1.320869 1.254051 1.272538 1.2399 1.278271 1.316059

HPRT1 1.17194 1.188839 1.207414 1.212931 1.220595 1.189821 1.086609 1.119625 1.212329 1.203168

GUSB 0.491372 0.484908 0.424413 0.329011 0.552007 0.400273 0.497309 0.477033 0.531874 0.476387

SDHA 1.032184 0.9694 0.986651 0.978723 0.967724 0.96509 0.986658 0.994833 0.952034 1.006862

TBP 0.711601 0.771584 0.764241 0.743951 0.782328 0.82626 0.796457 0.810705 0.821721 0.754666

YWHAZ 1.153498 1.116051 1.047357 1.102997 1.084498 0.987793 1.022767 0.997367 0.973745 1.044777

B2M 0.232054 0.356165 0.267705 0.246529 0.303552 0.294533 0.339312 0.416954 0.308112 0.317526
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Figure 10 - Expression analysis results from human endometrium experiments 
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 Organism: human, Tissue type: lymphatic tissue 

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 13.85505 13.74814 14.08605 14.08635 14.08511 13.39168 13.36608 13.79157 13.75598 13.82039

GAPDH 13.76705 13.67401 13.95432 13.94491 13.96152 13.1452 12.60064 13.26879 13.05511 13.28511

HPRT1 2.883177 3.213302 3.468444 3.019722 3.066779 2.97773 3.058862 3.48052 3.081499 3.094056

GUSB 5.244005 5.510057 5.727275 5.658711 6.180042 5.739623 5.328235 6.161439 5.649478 5.354249

SDHA 9.613894 9.795394 10.22832 10.0943 10.0573 7.632765 8.034452 8.635521 8.843195 8.421394

TBP 7.690392 7.472504 7.922342 7.359043 7.804066 4.373405 6.809763 7.969793 7.973088 6.904973

YWHAZ 11.72091 11.71193 12.01178 11.75162 11.73957 7.968484 9.426657 10.39628 8.978049 10.05235

B2M 4.756083 4.379642 5.502987 5.239885 4.996738 4.34594 5.57524 5.191091 6.991736 6.147718

ACTB 13.85505 13.74814 14.08605 14.08635 14.08511 13.39168 13.36608 13.79157 13.75598 13.82039

GAPDH 13.76705 13.67401 13.95432 13.94491 13.96152 13.1452 12.60064 13.26879 13.05511 13.28511

SDHA 9.613894 9.795394 10.22832 10.0943 10.0573 7.632765 8.034452 8.635521 8.843195 8.421394

NF 12.24004 12.25708 12.6212 12.5631 12.55235 11.03472 11.06074 11.64782 11.66703 11.56351

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 1.131945 1.121648 1.116063 1.121248 1.12211 1.213594 1.208425 1.184048 1.179047 1.195172

GAPDH 1.124755 1.1156 1.105625 1.10999 1.112264 1.191258 1.139222 1.139165 1.118974 1.148882

HPRT1 0.235553 0.262159 0.274811 0.240364 0.244319 0.269851 0.276551 0.298813 0.26412 0.267571
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Figure 11 - Expression analysis results from human lymphatic tissue experiments 
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 Organism: human, Tissue type: Peripheral blood 

Figure 12 - Expression analysis results from human peripheral experiments 

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 13.85763 13.79734 13.45677 13.18031 13.60317 13.44107 13.12547 13.88252 13.76569 13.40575

GAPDH 12.51021 12.01822 12.11781 11.74576 11.1199 9.599173 10.28684 12.56026 12.49757 11.20027

HPRT1 3.074319 2.930862 2.831211 2.686687 2.595961 2.183625 1.96858 2.534069 2.650169 2.250939

GUSB 7.757971 7.958579 7.710963 6.987252 7.06384 7.59034 7.331546 7.182556 6.538058 6.306407

SDHA 10.84036 10.68453 10.43726 10.19214 9.986967 9.900439 8.775019 10.9471 10.36734 10.085

TBP 9.997831 9.56749 9.295821 8.950917 8.643103 9.436122 8.082522 10.02827 9.577295 9.48813

YWHAZ 10.91473 10.97352 10.36908 10.00264 10.20554 10.47646 9.815496 10.78649 10.39439 10.05683

B2M 10.17301 10.92017 10.37452 9.997002 9.450781 9.270803 8.823591 9.351527 9.209281 9.939791

ACTB 13.85763 13.79734 13.45677 13.18031 13.60317 13.44107 13.12547 13.88252 13.76569 13.40575

HPRT1 3.074319 2.930862 2.831211 2.686687 2.595961 2.183625 1.96858 2.534069 2.650169 2.250939

SDHA 10.84036 10.68453 10.43726 10.19214 9.986967 9.900439 8.775019 10.9471 10.36734 10.085

NF 7.729661 7.559889 7.353596 7.119825 7.065192 6.623519 6.097783 7.275485 7.231797 6.726311

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 1.792786 1.825072 1.829957 1.851212 1.925378 2.029294 2.152498 1.908123 1.903494 1.993032

GAPDH 1.618468 1.589734 1.647875 1.649726 1.5739 1.449256 1.686981 1.726381 1.728141 1.665143
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TBP 1.293437 1.265559 1.264119 1.257182 1.223336 1.424639 1.325485 1.378365 1.324331 1.410599

YWHAZ 1.412058 1.451545 1.410069 1.404899 1.444481 1.581706 1.609683 1.48258 1.437317 1.495148

B2M 1.3161 1.444488 1.410809 1.404108 1.337654 1.399679 1.447016 1.285348 1.273443 1.477748
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 Organism: Cattle, Tissue type: oocyte 

Figure 13 - Expression analysis results from cattle skin experiments 

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 13.22861 13.13412 13.0998 13.14546 13.41376 12.98983 13.16213 13.05384 12.60921 12.68814

GAPDH 12.3547 11.95822 12.01707 12.49011 12.47447 11.67836 12.02491 12.29992 11.45745 12.01942

HPRT1 10.20535 10.15745 10.726 10.48587 10.99931 10.57597 10.62328 10.75612 9.677967 9.868044

GUSB 7.6556 7.644421 7.254935 7.814039 7.788011 7.038474 7.99628 7.610865 7.314156 7.252623

YWHAZ 6.85343 7.443593 8.06469 8.050067 7.894918 8.411339 8.136174 8.292222 6.377478 6.483743

B2M 12.76064 12.51671 12.21303 12.72984 12.82913 12.25251 13.14104 12.96461 12.0822 12.48646

HMBS 7.739002 7.088294 7.590513 7.276498 7.451348 7.361588 7.42912 6.747902 6.64588 7.038869

UBC 12.02536 11.95858 12.04976 11.71082 13.03738 11.86668 12.15113 12.20349 11.51133 12.12944

PKG1 10.45598 10.12293 10.54568 11.03551 10.87806 10.37445 10.76433 10.27668 9.933898 10.10917

ACTB 13.22861 13.13412 13.0998 13.14546 13.41376 12.98983 13.16213 13.05384 12.60921 12.68814

GAPDH 12.3547 11.95822 12.01707 12.49011 12.47447 11.67836 12.02491 12.29992 11.45745 12.01942

PKG1 10.45598 10.12293 10.54568 11.03551 10.87806 10.37445 10.76433 10.27668 9.933898 10.10917

NF 11.95557 11.67144 11.84075 12.19116 12.20979 11.63189 11.9435 11.81674 11.27973 11.55222

c1 c2 c3 c4 c5 m1 m2 m3 m4 m5

ACTB 1.106481 1.125321 1.106332 1.078279 1.098607 1.116743 1.102033 1.10469 1.117865 1.098329

GAPDH 1.033384 1.024571 1.014891 1.024522 1.021678 1.003995 1.006816 1.040889 1.015756 1.040442

HPRT1 0.853606 0.870282 0.905855 0.860121 0.90086 0.909223 0.889461 0.910244 0.857997 0.854212

GUSB 0.640337 0.654968 0.612709 0.64096 0.63785 0.605102 0.669509 0.644075 0.648434 0.627812

YWHAZ 0.573241 0.637761 0.681096 0.66032 0.646606 0.723128 0.681222 0.701735 0.565393 0.561255

B2M 1.067339 1.072421 1.03144 1.044187 1.050725 1.053355 1.100267 1.097139 1.071143 1.08087

HMBS 0.647313 0.607319 0.64105 0.596867 0.610277 0.63288 0.622022 0.571046 0.589188 0.609309

UBC 1.005837 1.024602 1.017652 0.9606 1.067781 1.020186 1.017384 1.032729 1.020533 1.049966
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The results showed that after normalization with RMA method, there exists some non-

negligible variation in the expression values of housekeeping genes. This shows that the data is 

not efficiently normalized. By implementing a second-stage normalization based on 

housekeeping genes’ expression values, the non-biological variations will be decreased. 
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6.1 Threats to Validity 

There are certain threats to the validity of this research. These threats are categorized as 

external, internal, construct and statistical threats. Following the threats in all the categories are 

explained. 

In regard to external validity, this study has been testing random datasets from standard 

microarray databases available [78]. Therefore it can be argued that our sampling procedure in 

this research was completely randomized and from this point of view, there is no concern 

regarding the external validity. Also, as our unit of analysis in this research was three different 

genomes, human, cattle and mouse genomes, it can be argued that we covered different 

genomes; however mentioned genomes are all from mammalian species, therefore utilizing other 

genomes such as drosophila or yeast could have yielded other results. This could impose a threat 

to the external validity of this research. On the other hand, the datasets were taken from different 

tissues types and in this regard, the threat to external validity of this study is forfeited. However 

more experiments on more organisms and tissue types could result in different outcomes. The 

last threat to external validity of this study is regarding the type of microarray experiments which 

was RNA assay. Other microarray types might not hold the same conclusions. Regarding 

Internal validity, the main concern would be certain conditions in these kinds of experiments 

which are not under our control and may affect the cause and effect relationship. In this study, 

although the effect of number of replicates and different combinations of them were tested, other 

factors such as number of control samples that we did not take into account, could have also 

imposed some bias into our procedure, as well. Therefore, this could compromise our internal 

validity. Additionally, we are not sure the other extraneous variables in this research are under 

our control, since we gather the data from available archival datasets online.  

There were no threats to construct validity identified in this research. We used two well-

defined constructs in this study and there were no vague definition of them. 

When it comes to statistical threats to validity of this study, there are some areas of concern 

that we should take into account. In preprocessing step, at first stage, Quantile normalization 

method and at second stage, housekeeping genes normalization method have been used in the 

experiments of this paper. Though the threat of only using RMA normalization in preprocessing 
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stage was omitted by adding additional normalization application, but again changing 

preprocessing methods and approaches could have produced different results and thus this can be 

considered as a threat to the statistical validity of this research. On the other hand, for gene 

expression analysis stage, one of the statistical test tools (two sample t test) were utilized and the 

samples used for the test were adequate. Therefore in this regard, no certain threat is identified. 

We kept statistical parameters constant in all experiments in order to solely determine the effect 

of normalization on microarray data analysis. As we considered certain P-Value threshold and 

fold change in this research, choosing other thresholds might alter the results. This could be 

considered as a statistical threat to our research. Another threat to statistical validity of this paper 

is related to choice of housekeeping genes, we addressed only eight or nine of the most popular 

housekeeping genes for each organism in its analysis; choice of other internal controls could 

affect our results.   

6.2 Contributions 

6.2.1 Theoretical contributions 

Microarray data analysis is one of the main procedures in genetic studies in order to 

anticipate the functions of different genes. Also microarray data analysis, is a strong tool to 

investigate the responsible genes in different diseases. Large quantity of research and studies are 

found in literature related to microarray data analysis, is a solid proof of importance of this 

analysis. As in any statistical method, microarray procedure is challenged by different biases and 

noises. Genetic researchers appreciate any tool or algorithm that can benefit microarray data 

analysis in order to make the results more consistent and reliable.   

Our research hugely contributes to consistency of microarray data analysis by making big 

improvements in one of the major stages of the analysis, normalization. Removing the non-

biological variations between samples could hugely benefit the whole analysis and lead to more 

accurate results.  

Our proposed two-stage normalization method improve the quality of microarray data 

considerably. With accurate evaluation of expression values of certain control genes, the 

efficiency of first stage normalization is tested and second stage normalization is applied 

consequently. This precise normalization has benefits in preprocessing of microarray data. 
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6.2.2 Practical contributions 

In practice, implementing our proposed method in all compatible microarray experiments, 

would lead to a more reliable protocol for any microarray experiment and its analysis. With 

better and more consistent data preprocessing, scientists may rely on microarray results with 

more confidence and make more accurate clinical inferences. The clinical inferences from 

microarray data analysis could greatly influence the medical interpretations, finding the 

responsible genetic factors of fatal diseases and many more medical advances.  
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7.1 Conclusions  

Analysis of distribution of number of replicates per condition in more than 200 microarray 

experiments showed that in practice not too many samples per condition are available for 

microarray experiments. Therefore, although there are methods to calculate the sample size for 

microarray studies, practically researches tend to use 3-5 samples for their research. This 

approach in sample size determination may lead to the conclusion that not many studies follow 

the sample size calculation methods. 

Looking at the results obtained from further testing of five datasets that we chose, we can see 

that the number of differentially expressed genes oscillates as the number of replicates was 

changed. In some experiments the number of expressed genes decreased as the number of 

replicates were increased. In some others it goes up and then decreases. Results like this show 

that sampling bias may cause inconsistent results and inferences. We have also seen that using 

different combinations of replicates produce different outcomes. The results show that 

considerable variations exist in samples of microarray data. Either inter-sample variations, 

possible outliers, distance of clusters could affect the results. This sampling bias could yield 

unreliable results. Therefore the corresponding inference from these results might be 

compromised. 

It is noteworthy that, microarray experiments usually do not provide absolute conclusions 

alone. Rather, microarray results are useful for reducing the search space for determination of 

significant up- or down-regulations of gene expression. Despite the demonstrated variations 

occurring as a result of sampling bias, it is likely that the genes representing highest differential 

expressions would be preserved among analysis of different subsets within the same dataset. On 

the other hand, subsequent functional analysis take into account the entire list of differentially 

expressed genes, and therefore meticulous care should be taken to provide reliable and consistent 

results. An illustration of samples needs to be done in order to detect possible outliers and low-

quality samples. Moreover, the rule of thumb that says three replicates is sufficient, must be 

questioned as different number of replicates could provide inconsistent results. Additional 

sampling could assist the analysis in making more consistent and reliable conclusions. We 

suggest that assessment of inter-sample variance prior to differential expression analysis is a 
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crucial step in microarray experiments and proper handling of that variance may require 

alternative normalization and/or statistical test methods. 

If sampling bias exists in the data gathering, as we showed, then the results and furthermore 

the clinical inferences may be compromised. Sampling bias is mainly due to non-biological 

variation between samples. The aim of normalization is to eliminate the technical variations 

among samples.  

RMA normalization might be able to remove all the variations when the purity of samples is 

not determined. The expression values of popular and common housekeeping genes were 

analyzed. The results showed that after normalization with RMA method, there exists some non-

negligible variation in the expression values of housekeeping genes. This shows that the data is 

not efficiently normalized. 

By applying a second normalization after RMA, which included the use of housekeeping 

genes normalization, the mentioned variations were decreased and therefore the oscillations in 

expression analysis results were also less afterwards. This statement is true about the datasets 

which the variation of housekeeping genes’ expressions were high after RMA. For the dataset 

with low variation (standard deviation < 0.01) in expression of those genes, application of second 

normalization method did not have much effect on expression analysis results. 

Microarray studies are performed to evaluate other related experiments and narrow the gene 

search space in determination of significant up- or down-regulations of gene expression. 

Therefore to have consistent results, one should reduce the non-biological variations as much as 

possible. Normalization is the most significant tool to decrease the variations in data. By using 

alternate normalization methods or even additive methods consequently, the variation could be 

reduced and sampling bias could partially be handled. 
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7.2 Future Work 

7.2.1 Data analysis 

This research has been done to improve the quality of microarray data and therefore making 

the outcome of these experiments more consistent. Our approach to fulfill this goal was to 

implement our proposed method in plenty of randomly selected datasets from one of the main 

microarray public databases (ArrayExpress) and validate our proposed solution.  

In the future, it would be great to implement our proposed solution for all datasets in 

ArrayExpress and also other microarray public repositories. To fulfill this goal, first of all an 

automatic complete model may be developed from our proposed method. Then to implement the 

model, large scale processing tools is needed to analyze all data-sets on clusters of commodity 

hardware. Since there are different platforms in different microarray public databases, the model 

shall be modified according to different platforms.  

It is suggested to implement our method on other organisms as well, to further prove the 

efficiency of the solution. Also as we mentioned in our methodology, we considered only 

biological replicates. In future studies, use of technical replicates as well as biological replicates 

is suggested. Another aspect in the future work is regarding the quality of samples. We suggest 

to repeat the differential expression analysis after assessing the samples’ quality via vector 

analysis, Principle Component Analysis (PCA), etc. and excluding the outliers. In our solution, 

we have suggested to perform non-linear normalization at probe level and linear normalization at 

expression level; it will be good to implement linear normalization at both stages and repeat the 

analysis. 

Our approach in differential expression analysis was to compare the number of differentially 

expressed genes when different number of samples and different combinations of available 

samples are considered in the analysis. However in some examples, the number of differentially 

expressed genes has increased after performing second-stage normalization, which is not in favor 

of biologists. This can be considered as a limitation of our study. In the future, both increasing 

the consistency of microarray data analysis, and the quantity of differentially expressed genes 
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should be considered together. By finding the appropriate fold change in expression analysis, the 

results of microarray data analysis might be more favorable to biologists.  

 Another work in future is regarded to the use of other statistical methods rather than t-test. 

Yuan’s method could result in more robust conclusions. The performance of different statistical 

methods should be evaluated and compared with each other. 

Finally the performance of our solution (two-stage normalization) could be compared with 

other normalization methods and previous studies. Our solution is a novel proposition with 

regard to using additive normalizations; therefore it will be appropriate to evaluate the 

performance of our method further and make comparisons with previous works. Also, using the 

available consistency measures would be helpful to evaluate the performance of our method.  

 

7.2.2 Microarray experimental procedure 

In this study we provided plenty of examples showing the sampling bias in microarray data 

analysis. We proposed a two-stage normalization method to tackle this problem. Though our 

solution properly works, it has its own restrictions like any preprocessing method. As in future 

we look forward to provide better insights for actual microarray laboratories and with their 

cooperation, improve the data gathering process to reduce the sampling bias before reaching the 

data preprocessing stage. In the light of our analysis, the consequences of unwanted variation 

may be foreseen and therefore improve the whole microarray experimental procedure and avoid 

inconsistent clinical inferences. 
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