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Abstract 

The global expansion of humans has stressed the natural world, removed boundaries between 

continents and habitats and exposed natural areas to invasive species. These cause billions of 

dollars of damage yet there are limited funds given for their management. Predictive tools can be 

used to develop pro-active strategies for managing invasive species and this study developed such 

a tool. Publicly available data were used to build predictive models for the presence of two invasive 

species, curly-leaf pondweed (Potamogeton crispus) and Eurasian watermilfoil (Myriophyllum 

spicatum) within the Adirondack Park (New York State). Predictors were identified through: 

bivariate analysis to test the variables; ordinary least squares regression to build predictive models 

and logistic regression to validate those models; geographically weighted logistic regression to 

evaluate local impacts. Models were ranked by Aikake information criterion minimization and 

evaluated with McFadden’s rho-squared, standard coefficients and variance inflation factors. The 

top five models for each invasive species established seven predictors for curly-leaf pondweed and 

nine predictors for Eurasian watermilfoil. Geographically weighted regression, a local analysis, 

was found to be a definite improvement over the global analysis for watermilfoil but not for 

pondweed. Two predictors (lake elevation and distance to Interstate-87) were significant in all the 

top models for both species. The identified predictors provided a group of characteristics that could 

be used to identify vulnerable lakes and prioritize management strategies. Even though these 

findings were specific to the Adirondack Park, this approach could be applied to other invasive 

species or other areas to help in the decision-making process for management.  
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Chapter 1: Introduction 

Early colonization is recognized as a primary vehicle for spreading species around the 

globe (Richardson and Pyšek, 2007). As trade and commerce increasingly crisscrossed the globe, 

there has been a corresponding increase in the number of ‘non-native’ species introduced into new 

and previously unavailable lands. The expansion of the global economy meant that boundaries 

dissolved and ecosystems that were once separated and contained became interspersed with new 

alien species (Keller and Perrings, 2011).  These non-native species may have survived in the new 

environment and if they were able to get established can become invasive species (IS). Invasive 

species are “those taxa that were introduced recently and exert a substantial negative impact on 

native biota, economic values or human health” (Hellmann et al., 2008). Introductions of these 

species can be accomplished by a variety of different activities, both intentional and 

nonintentional. Ten percent of the newly introduced species tend to survive, and of those, only ten 

percent successfully adapt and are therefore able to spread (Keller and Perrings, 2011). In the new 

environment, these species can negatively affect established organisms as well as the biological 

diversity of the community (Hejda et al., 2009). The spread of invasive species is recognized by 

ecologists and biologists as a serious global burden and a strong driver for the loss of global 

biodiversity (Bright, 1999; Keller and Perrings, 2011).  There are numerous aspects to the decline 

in global biodiversity of which five of significant importance were summarized by the acronym 

HIPPO: habitat destruction, invasive species, pollution, population growth, and overharvesting 

(Wilson, 2002). Scientists argue that IS are second only to habitat loss for causing global decreases 

in biodiversity (CBD, 2011; Hulme and Firn, 2015). It has been estimated that “approximately 400 

of the 958 species listed as threatened [in North America] under the Endangered Species Act are 

considered to be at risk primarily through competition or predation by non-native species” 

(Pimentel et al., 2005). The Earth Summit in 1992 put the spotlight on IS by including them in the 

mandate to protect endangered species because of their potential impact on these species (CBD, 

2011). The Aichi Targets were set up at the tenth meeting of the Convention of Biological 

Diversity (CBD) in 2010 in Aichi, Japan as part of the strategic plan for the conservation of 

biodiversity. Target 9 specifically involves IS and states the need to learn more and work towards 

their eradication (CBD, 2011; Brundu, 2015). 

The number of IS has continued to rise, affecting every country on earth. The IS issue 

remains problematic and countries have been allocating funds for attempted eradication or basic 
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management of these organisms (Pimental et al., 2005). The success of invasive species is thought 

in part to be determined by propagule pressure (a combination of the number of invasive 

individuals and the number of times they are introduced) which gives opportunities for such 

species to arrive in suitable areas and become established (Sheppard et al., 2006; Uden et al., 2015). 

There is also a distinct correlation between the number of non-native species that successfully 

became invasive and the amount of human disturbance in that area (Richardson and Pyšek, 2007; 

Keller and Perrings, 2011).  It has been estimated that between one third and one-half of the earth’s 

land cover has been changed by humans (Vitousek et al., 1997). Human activities degrade the 

environment by changing the physical characteristics, thereby causing stress to the native species, 

and allowing strong, aggressive IS to prosper (Keller and Perrings, 2011). Early efforts to manage 

IS focused on identifying potential characteristics that helped them succeed, but that was not 

enough.  The next steps were to determine the mechanics of the spread which required extensive 

knowledge of the connection between IS and humans. These factors became the focus of many 

studies and research is ongoing because of the complexity of the problem. Not only did it involve 

a combination of countries for every IS, but it also required specific regional work because an IS 

can behave differently in different environments. Thus, there was no simple strategy for dealing 

with and controlling IS and it was generally accepted that for effective management, IS must be 

investigated and treated at a regional level (Dullinger et al., 2009). Since the 1980s, research has 

been done to understand how some species become invasive, but very little research was done on 

managing the IS spread (Sheppard et al., 2006). Identifying the pattern of invasions allowed 

preventative strategies to be implemented but finding a single effective strategy was difficult. 

There were a variety of approaches taken, from looking at available ecological niches, to IS impact 

on the environment to looking for abiotic conditions that were suitable for IS (Kolar and Lodge, 

2001; Peterson et al., 2003; Kearney and Porter, 2009; Pyšek et al., 2012). Predictive studies were 

more promising as a management strategy, but no one approach has been found. Even though 

studies looked at IS from different perspectives, all of them have added to the knowledge base 

needed to develop control measures and policies for IS. Controlling the spread of invasive species 

is paramount to stopping IS and is referred to as the “weakest link scenario” which suggests that 

if the spread were controlled, it would make all the other issues (i.e. displacement of native species, 

the impact on the environment) manageable (Keller and Perrings, 2011). Conversely, if the spread 

of invasive species is not controlled, the battle against them and the damage they cause, would be 
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lost. A significant problem with stopping the spread is that IS are able to use a variety of dispersal 

mechanisms and seem able to adapt to difficulties. This leads to problems for resource managers 

trying to set up policies to protect natural areas against IS. 

 Humans have been trying to understand the natural world for centuries. To achieve this, 

various measuring tools were used and developed over time. Statistical analysis, however, has only 

been used for environmental investigations (as a way of representing observations quantitatively) 

since the early 1900s (Hastings et al., 2005).  Fisher (1937) was one of the first scientists to use 

statistics for biological studies and this has become a widely used method to investigate 

interactions between organisms and environmental conditions. However, research strategies used 

across the biological fields have advanced and changed in tandem with mathematics and 

technology (Fortin and Dale, 2005). Ecological research often involves a variety of spatial 

processes and the environments being studied show spatial heterogeneity which should be 

considered for effective analysis (Fortin and Dale, 2005). As a result, spatial analysis has 

developed a variety of techniques and strategies and has now become standard practice for 

considering spatial patterns quantitatively (Lennon, 2000; Liebhold and Gurevitch, 2002; Wagner 

and Fortin, 2005; Miller and Hanham, 2011; Páez et al., 2011). According to Liebhold and 

Gurevitch (2002), spatial analysis is especially important to ecologists because they like to 

quantify spatial patterns and they “recognize that there can be underlying spatial pattern that can 

have a significant impact” on the interactions being studied. 

An advantage of spatial analysis is that it can be used in various ways and applied to so 

many different research topics (Liebhold and Gurevitch, 2002; Fortin and Dale, 2005).  However, 

this flexibility may lead to poor results if it is used carelessly and if the assumptions embedded in 

the traditional statistics are ignored (Legendre, 1993; Lennon, 2000; Liebhold and Gurevitch, 

2002). Analysts have begun investigating this problem and Lennon (2000), in his important work 

on the use of spatial analysis, questioned the effectiveness of even simple statistical analysis if 

spatial autocorrelation were not adjusted for or acknowledged in the model and he wondered at the 

validity of past research in light of this. Lennon (2000) found that if spatial autocorrelation was 

ignored, the statistical outcome could show incorrect significance levels thereby resulting in a bias 

towards certain ecological patterns over the long term. This questioning of the proper use of spatial 

analysis has resulted in more rigorous statistical testing and a search for other statistical processes 

that might deal with autocorrelation (Liebhold and Gurevitch, 2002). Geographically weighted 
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regression (GWR) has gained attention as an alternative with many benefits. Geographically 

weighted regression was being used initially in geographic circles, but more recently it has been 

adopted by biogeographic studies and ecological investigations (Wagner and Fortin, 2005; Tu and 

Xia, 2008; Windle et al., 2010). Studies found that GWR decreased problems common in spatial 

analysis used with traditional statistical analysis (Tu and Xia, 2008; Miller and Hanham, 2011). 

While GWR was originally developed for data with Gaussian distributions it has advanced to the 

point where it could be used with Poisson distributions as well as logistic distributions. This was 

advantageous to ecological studies and was employed in this thesis by using geographically 

weighted logistic regression (GWLR) to explore its suitability for this type of spatial analysis. 

Previous work completed within Adirondack Park was used as a foundation for this spatial 

analysis. The overarching guiding question for this research was: can publicly available data be 

used for meaningful and effective research that could be used by natural resource managers to 

control or slow the spread of invasive species? In order to answer this question, a data set gathered 

by Dr. Richard Shaker from public sources was used to develop a transferable strategy or technique 

that used statistical analysis to build predictive models on which decisions could be based. This 

thesis used numerous lake and landscape variables to determine the best predictors for the presence 

of two aquatic invasive species (AIS), curly-leaf pondweed (Potamogeton crispus) and Eurasian 

watermilfoil (Myriophyllum spicatum) across 126 lakes in the Adirondack Park of New York State. 

This provided inferential information on how the lake and landscape characteristics related to both 

of the aquatic invaders and helped answer this study’s guiding research question. The statistical 

relationships found between the two different aquatic invaders will be compared and contrasted.  

This was accomplished by testing and formatting the lake and landscape variables so they could 

be examined using various statistical processes that were used to build predictive models for each 

aquatic invader and to evaluate the predictors in each model. Geographically weighted logistic 

regression was also employed for each model to investigate the impact of local variation on the 

findings. Overall, the goal was to produce predictive models that could be used as a tool to easily 

identify lakes in the Adirondack Park susceptible to future invasions by these AIS by matching the 

predictors from the models with the lake and landscape characteristics of the lakes.  This would 

supply a tool for resource managers in their efforts to slow the spread of IS. 
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Chapter 2: Background  

Charles Elton brought IS to the forefront with The Ecology of Invasions by Animals and 

Plants in 1958. He emphasized the connections between the spread of IS and human colonization 

(Elton, 1958; Richardson and Pyšek, 2007). Several theories on IS and invasion resistance were 

put forward by Elton and are still believed valid today (Elton, 1958).  However, many studies have 

been conducted to test Elton’s ideas such as the “diversity-stability hypothesis” (ecosystems with 

higher diversity will be more resistant to invasion) (Elton, 1958; McNaughton and Wolf, 1970; 

Levine and D’Antonio, 1999; Borrvall, 2000; Tilman et al., 2002) and the “simplification of 

nature” idea that refers to how humans change the environment in a way that helps the (Elton, 

1958; Richardson and Pyšek, 2007; Davis, 2011; Besek and McGee, 2014). Elton did not put great 

emphasis on propagule pressure beyond the idea that invasions were associated with global 

colonization and land use. More precisely, it was the changes to the environment, brought on by 

human land use that disrupts the native populations and increases niche availability for invaders 

(Devine, 1998; Hellmann et al., 2008; Shandas and Alberti, 2009). Land use in proximity to water 

systems affects the aquatic biota in those water systems, changing the aquatic conditions of that 

ecosystem (Roth et al., 1996; Shandas and Alberti, 2009; Shaker and Ehlinger, 2014). Kennedy et 

al. (2002) stated that human activity “breached the isolation of communities” and destroyed a level 

of resistance within that community thus aiding the import of IS.  Human-mediated dispersions 

have been found to be one of the greatest methods of IS spread, indicating that human activity, 

rather than other factors such as a species adaptability to new conditions or their generalist 

tendencies helped IS establish in a new habitat (Trebitz, 2007; Francis and Pyšek, 2012; Hulme 

and Firn, 2015). Other studies found that the influence of propagule pressure “swamped the effects 

of other postulated influences on [a species] establishment” because it was the variations in 

propagule pressure (number of releases in an area vs. number of actual introductions) that 

determined the success of an IS (Lockwood et al., 2005). 

2.1 Understanding aquatic invasions  

Fresh water ecosystems usually have high levels of biodiversity but they easily become 

degraded by human disturbance and development making conditions favourable for IS (Francis 

and Chadwick, 2012). This is partly due to the high connectivity between freshwater systems as 

well as the fact that water is such an effective medium for movement and transport (Francis and 

Chadwick, 2012). As well, aquatic invasions are “particularly prevalent and damaging in aquatic 
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systems” and freshwater communities are highly vulnerable to biotic exchange (Havel et al., 2015). 

This is because the strong trophic connections are disturbed by the introduction of new species and 

thus extensive IS management is needed to protect the integrity of these systems (Kulhanek et al., 

2011; Gallardo et al., 2015). Invasive weeds and pests (terrestrial and aquatic) impact economies 

through direct losses, biological degradation and their effect on human health and wealth (Bright, 

1999; Pyseck et al., 2012). Invasive species cross international borders which pose logistic 

problems for developing policies. Historically, international policies have been difficult to 

implement and were not very successful due in part to the fact that they often “ran up against far 

more powerful policies and interests that, in one way or another, encourage invasions…[with] the 

increasing integration of the world’s economies … making a bad situation worse” (Bright, 1999). 

As a result, it falls to regional authorities to set up their own policies in efforts to protect the natural 

communities under their domain.   

There are three stages generally accepted as the “stages of invasion” by which non-native 

species become invaders which must be understood for effectively managing biological invasions 

(Elton, 1958; Mills et al., 1993, Leung et al., 2002).  These stages (Figure 1) are referred to as the 

colonization stage; the lag stage or establishment stage; the expansion stage (Leung et al., 2002; 

Shea and Chesson, 2002; Hellmann et al., 2008). In the lag phase, the non-native species adjust to 

the new environment and become established (Elton, 1958; Mills et al., 1993; Sheppard et al., 

2006; Hellmann et al., 2008). This time lag between the introduction of the species to a new 

environment and the point at which its presence is recognized could be extensive (Mills et al., 

1993; Johnson and Padilla, 1996; Bright, 1999; Ricciardi, 2006; Pagnucco et al., 2014). Each stage 

can be managed, but the cost increases and the effectiveness decreases as the stages progress. An 

aquatic example worth noting is the zebra mussel (Dreissena polymorphy) which was believed to 

have been introduced into Lake St. Clair in the ballast water of Eurasian freighters two years before 

they were actually documented as an IS in 1988 (Mills et al., 1994; Briski et al., 2014). This lag 

phase of two years made it difficult for resource managers and invasion biologists, and by the time 

they were noticed, they were established and may have already been in the expansion stage making 

control even more difficult (Mills et al., 1993; Buchan and Padilla, 2000). Thus, knowing where 

an IS might spread or colonize, is paramount to successful management yet advancements in 

invasive species ecology are often slowed by the difficulties of providing “robust predictions” 

(Besek and McGee, 2014). One method for management is to identify the vulnerability of a lake 
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to future invasions (Vander Zanden and Olden, 2008). Ideally, this would mean actions could be 

taken to prevent the IS from entering a habitat which is suitable for them (Mills et al., 1993; Leung 

et al., 2002; Espeland, 2013). Efforts to identify the invasibility of a lake look at a mix of several 

factors such as, a) if the needs of the IS can be met in the lake being considered, b) the type of 

propagule pressure that might occur in that lake and, c) the possible interactions that might occur 

with the native species – competition or predation (Vander Zanden and Olden, 2008).  

 

 

1.                                         2. 3.   
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Figure 1: Three stages of invasion identified for nonnative species in a new environment, with 

suggestions for what management strategies might be possible at each stage. (adopted from Leung 

et al., 2002; Hellmann et al., 2008) 

 

Knowing the process of how non-native species become invasive and why they are 

successful would also be helpful in preventing their spread (Elton, 1958; Leung et al., 2002). 

Although Elton (1958) did not consider dispersal and phenotypic plasticity as primary reasons for 

invasion success, these are both now considered to play a major role in the ability of an IS to 

become a successful invader (Buchan and Padilla, 1999; MacIsaac et al., 2004; Lockwood et al., 

2005; Capers et al., 2009; Espeland, 2013). The zebra mussel, for example, is easily transported to 

new environments because it can survive in several life cycle stages (larval, juvenile and adult) 

making it difficult to control them (Johnson and Padilla, 1996). Aquatic plants such as Eurasian 

watermilfoil (Myriophyllum spicatum), have excellent dispersal capabilities and spread by 

fragments which have the ability to develop roots asexually that grow quickly into an adult plant 

(Mills et al., 1993; Martin and Valentine, 2014). These fragments are able to survive out of water 

for some time and are also easily transported via water flow through creeks, on/in boats moving 
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between lakes or even on fishing equipment (Mills et al., 1993; Buchan and Padilla, 2000; Martin 

and Valentine, 2014; Bruckerhoff et al., 2015). Species that change growth patterns to adapt to 

changing conditions, such as to shallow water from the preferred deep water, are well on their way 

to being able to grow and proliferate in foreign and “unsuitable” environments (Elton, 1958; 

Gallardo et al., 2015). It was found that aquatic invasive plants, in particular, changed the 

environment in a way that helped other invasive plants thereby encouraging more invasions 

(Vitousek et al., 1997; Leung et al., 2002; Pyšek et al., 2012; Brundu, 2015). For instance, the 

water hyacinth (Eichhornia crassipes) can grow in any water depth and forms a floating mat that 

provides a shallower environment for other aquatic invasive plants that could not grow in deep 

water (Brundu, 2015).  Many invasive plant species are also highly competitive and able to form 

dense monocultures that compromise the native species (Keane and Crawley, 2002). When 

entering a novel environment, IS often altered the new area and changed the function of the 

ecosystem (Mills et al., 1993; Devine, 1998; Besek and McGee, 2014). Thum and Lennon (2010) 

found that aquatic plant invaders had “a high probability of changing the sediment and nutrient 

levels within the aquatic environment”. This occurs when the IS disrupts the balance of the new 

ecosystems, displacing similar species, consuming or attacking native species, or simply using 

nutrients more efficiently than the native species (Mills et al., 1993; Pyšek et al., 2012; Havel et 

al., 2015).  

2.2 Humans and invasive species 

Human activity or disturbance also changes the water chemistry and water quality, making 

the abiotic conditions intolerable to the native species but quite acceptable to IS (Roth et al., 1996; 

Wilcove et al., 1998; Ricciardi, 2006). Humans also play a significant role in moving IS around 

and introducing them to new areas. According to Mills et al. (1993), of the invasive aquatic plants 

introduced to the Great Lakes specifically, most were introduced accidentally. Unfortunately, 

intentional releases are also common. Lakes used for aquaculture, where fish farmers often raise 

non-native fish species, have had some of these fish escape into the freshwater ecosystem (Mills 

et al., 1993; Devine, 1998). In order to entice more visitors, it has been common practice for a lake 

district to stock its lakes with fish for the enjoyment of anglers, thus releasing fish that could be 

non-native (Mills et al., 1993; Devine, 1998; APIPP, 2015). The stocking of fish is a deliberate 

release which in turn attracts more anglers for recreational purposes, bringing in more tourists and 

money. Unfortunately, the increased movement of anglers between lakes also carries invasive 
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plants or animals as stowaways or hitchhikers on the boats (Mills et al., 1993; Devine, 1998; 

Shaker and Erlinger, 2014). Knowledge of possible entry points for AIS can be used to develop 

prevention strategies that could be used to control their movement (Vitousek et al., 1997; Bright, 

1999; Hulme and Firn, 2015).  In addition to the impact invasive species have on the natural 

communities, they also have an impact on human health and welfare (Elton, 1958; Mills et al., 

1994; Keller and Perrings, 2011; Gallardo et al., 2015) and the overall economy in a variety of 

ways (Mills et al., 1993; Devine, 1998; Pimentel et al., 2005). Up-to-date costs were difficult to 

locate, but pooling information for North America, it seems that AIS cost billions of dollars per 

year due to the fouling of equipment, blocking of intake pipes used for industry, drying up of 

needed wetlands or lowering of revenue from tourism - and this estimate did not include costs to 

control the AIS (Mills et al., 1993; Devine, 1998; Pimentel et al., 2005; Gallardo et al., 2015). In 

order to counter the influx of new species and slow their spread, there is a need for research that 

focusses on keeping invasive species’ populations in check. Some type of tool that could identify 

vulnerable areas would be a great advantage for prioritizing management activities and 

expenditures (Devine, 1998; MacIsaac et al., 2004; Hulme and Firn, 2015).  

If a species becomes established despite efforts or through the absence of management, it 

could increase its population to the point of extensive dispersal – the expansions stage (Figure 1) 

(Keane and Crawley, 2002; Peterson et al., 2003). Because of this, propagule pressure and human 

movement as well as structures like boat canals and aqueducts, have helped the IS spread. In the 

past, if an IS was discovered in a new area, large amounts of money were spent to eradicate or at 

least control them (Mills et al., 1993; Mills et al., 1994; Devine, 1998; Hansen et al., 2016).  

Established populations act as “stepping stones” for secondary spread of that species into nearby 

habitats and therefore those pathways must also be controlled (MacIsaac et al., 2004). One strategy 

used to control IS spread was to prevent already established populations from reaching the 

expansion stage through actively managing the population (Buchan and Padilla, 2000). Controlling 

established populations is time-consuming and expensive, but it is still more cost effective than 

trying to eradicate them once they reach the expansion stage (Pimentel et al., 2005; Dullinger et 

al., 2009). However, the best scenario for managing invasions (Figure 1), is to block the initial 

entry point and then set up a monitoring system to ensure its effectiveness. As noted previously, 

IS are very difficult to locate and identify in the colonization stage since their population is low 

and early detection in aquatic environments is even more difficult than on land (Brundu, 2015). 
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Therefore, another strategy must be used to locate them in a timely manner. The ability to predict 

where a particular invasive organism might spread, means that energy can be channelled to that 

body of water in anticipation of an invasion (Les and Mehroff, 1999; Peterson et al., 2003; Keller 

and Perrings, 2011; Havel et al., 2015).  Control barriers and monitoring schedules can then be set 

up early, to protect that lake (Thum and Lennon, 2010).  

The management of freshwater systems has broadly included under natural land 

management, but since aquatic biota have unique issues, they really need to be dealt with 

separately. Aquatic organisms are particularly vulnerable due to the connectivity between bodies 

of water and as a result, freshwater ecosystems are believed to be one of the most endangered 

ecosystems in the world (Abell et al., 2007; Francis and Pyšek, 2012; Brundu, 2015). Many aquatic 

invasive plants can reproduce both sexually and asexually and can develop from spores, root tips 

or fragments, all of which are easily transported (Martin and Valentine, 2014; Brundu, 2015). With 

regards to managing aquatic invasions, funds were typically limited and thus conservation 

authorities had a difficult time monitoring all the lakes involved – too many lakes, too little money 

(Thum and Lennon, 2010; APIPP, 2015). Managers are doing their best with limited resources by 

using volunteers and prioritizing the lakes according to the presence of IS (Leung et al., 2002; 

Thum and Lennon, 2010). To help the resource managers determine which lakes need attention, 

predictive strategies are being investigated. Many focus on the physical conditions needed by 

invasive species (Buchan and Padilla, 2000; Peterson and Vieglais, 2001; Thum and Lennon, 

2010). However, this did not take into account the proximity of “suitable” lakes to established 

populations (proximity and propagule pressure) and did not take into account the importance of 

human disturbance (access/impact) (Peterson et al., 2003; Lockwood et al., 2005; Dullinger et al., 

2009). The presence of human activity has been found to correlate with IS.  As a result, variables 

that represent human activity should be considered when determining whether or not a lake is 

suitable for IS. Roth et al. (1996) and Shandas and Alberti (2009) definitively showed that land 

use and land forms affected nearby aquatic biota and that a change in land use or the removal of 

inland forest from around an aquatic system was found to change the water quality, the water 

chemistry and even sedimentation within nearby bodies of water.  Riparian vegetation “supports 

aquatic systems by increasing organic input [through] increasing litter and debris” and a change to 

these areas impacted the nutrients available within the aquatic system (Roth et al., 1996). Thus 

including data that represented these activities when developing a predictive model would be 
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crucial (Roth et al., 1996; Johnson et al., 2001). Past researchers used land cover and land use 

metrics (along with other characteristics) as proxies for environmental conditions in statistical 

analysis which is now an acceptable practice if relationships have been established by previous 

research (Dullinger et al., 2009). Invasion biologists know that preventing the colonization stage 

is the best strategy for fighting IS but if blocking their transport/entry were not successful, 

preventing the next stages (establishment and further spread) becomes imperative (Les and 

Mehrhoff, 1999; Dullinger et al., 2009; Thum and Lennon, 2010). Because funding is often limited 

compared to the extent of the problem, resource managers need to determine how their efforts can 

have the greatest success.  

2.3 Previous invasive species research  

Previous studies by Buchan and Padilla (2000) and Peterson et al. (2001) to name a few, 

focused on the physical conditions needed by IS – the idea of the IS finding a suitable habitat. The 

theory is that if conditions typical of the species’ native environment were present in a new habitat, 

then that area could potentially be invaded (Peterson et al., 2003; Gallien et al., 2010; Smolik et 

al., 2010). Buchan and Padilla (2000) used a variety of easily available, and thus not overly 

expensive, landscape variables that represent the lake environment to predict the presence or 

absence of Eurasian watermilfoil using logistic regression. A number of metrics were used to 

determine if the lakes contained suitable habitat, and it was found that “percent forest cover” in 

the watershed had a greater effect on the presence of Eurasian watermilfoil (EWI) than did human 

access to lakes (boat ramps, proximity to highways, etc.) or the species of fish in the lake (Buchan 

and Padilla, 2000). Buchan and Padilla (2000) suggested the connection between forest cover and 

EWI was because forest in the watershed affects the levels of dissolved inorganic carbon in the 

water which is known to affect EWI growth (Keast, 1984; Smith et al., 2002). Other studies on IS 

were not explicitly predictive, but they looked at the “vulnerability” of a lake or the opposite of 

what Elton termed “ecological resistance” (Elton, 1958; Johnston et al., 2001; Kearney and Porter, 

2009). Johnson et al. (2001) looked at human activity and considered boat activity, combined with 

the number of boat launch sites on a lake, as an indicator of accessibility to a lake and thus the 

vulnerability of a particular lake. All these studies used traditional statistical analysis such as 

ordinary least squares (OLS), linear regression/logistic regression, generalized additive models 

(GAM) and other traditional statistical techniques that were all global measures. A review of 

spatial analysis used for studying the spread of invasions by Hastings et al. (2005), acknowledged 



   

12 
 

that “recent theoretical work has shown that IS spread is a much more complex process than the 

classical models suggested, as long-range dispersal events can have a large influence on the rate 

of range expansion through time”. The authors go on to discuss the limitations of spatial analysis 

when large heterogeneity and variations exist across the study. A limitation of previous studies 

was related to autocorrelation - very common in ecological studies (Buchan and Padilla, 2000). 

These assumptions are often violated when conducting spatial analysis. Lennon (2000) pointed out 

that many ecological studies used the traditional methods without proper consideration of their 

short comings. According to researchers that studied the effectiveness of GWR and its use in 

biogeographic studies, it corrected some of these issues (Fotheringham et al., 2002; Tu and Xia, 

2008; Fotheringham and Oshan, 2016). Such studies indicated that GWR might give better, more 

accurate results than the traditional methods, especially when used with spatial data.  

2.4 Using geographically weighted regression in ecological studies 

Geographically Weighted Regression is considered a “local model” in that the calculations 

incorporate the spatial variation around each observation point (Miller and Hanham, 2011), and 

gives results that compare variations within a local area. Geographically weighted regression was 

considered “much more flexible in estimating local parameters” and thus was suitable for a local 

analysis rather than a global analysis using traditional regression. Furthermore, GWR was able to 

quantitatively explain these variations in relation to environmental factors (Windle et al., 2010). It 

can be used to build models, similar to traditional species distribution models (SDMs), but GWR 

also allows examinations at different scales by changing the size of the bandwidth used within the 

program (Miller and Hanham, 2011).  Bandwidth can be explained as “the distance within which 

other areas will have influence”, and it defines the distance-decay parameter within a study, 

determining search radius and neighbourhood (Miller and Hanham, 2011). In GWR, bandwidth 

can be set at a fixed distance or size if desired or it can be set as an “adaptive kernel” that can 

shrink or expand within the analysis (Miller and Hanham, 2011).  

As mentioned previously, spatial analysis has certain assumptions built into it that, if 

violated, could impact the outcome and show errors that can result in false relationships being 

accepted (Fotheringham and Oshan, 2016). Liebhold and Gurevitch (2002) suggested that 

ecological studies have so much embedded spatial dependence that analysis of the ecological data 

often leads to those assumptions being violated. The assumptions referred to are: the assumption 

of independence between the subjects/process and the assumption of “stationarity” (Fortin and 
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Dale, 2005). Stationarity refers to the processes (or models of processes) as being independent of 

both the direction in space and the location (Fortin and Dale, 2005). When using spatial analysis, 

it is possible to adjust for the presence of spatial dependence and some spatial autocorrelation can 

be corrected (Liebhold and Gurevitch, 2002). But Lennon (2002) feared that these adjustments are 

often not done, resulting in inaccurate conclusions. Fotheringham and Oshan (2016) presented 

GWR as a robust application that helped to minimize these same issues when compared to simple 

spatial analysis. Nevertheless, analysts must be aware of the issues in order to ensure the 

interpretation of GWR results is done correctly. Tu and Xia (2008) examined spatially varying 

relationships between a set of variables by specifically comparing OLS with GWR and concluded 

that “GWR models showed great improvements of model performance over their corresponding 

OLS models”. They suggested that GWR would serve as a useful tool for research in 

environmental issues at many levels; from a local, regional scale to a global scale (Tu and Xia, 

2008).  Geographic studies have used GWR for decades, but it has only been used for ecological 

studies since early 2000 (Brunsdon et al., 1998; Harris et al., 2010). However, many researchers 

have been sceptical of its use and have been testing it against the traditional regression they 

normally used rather than using it for analysis of their data. They concluded that it could be used 

for investigating non-stationarity but “caution should be exercised” when drawing conclusions on 

spatial relationships with GWR only (Páez et al., 2011). Geographically weighted regression was 

originally designed for Gaussian distribution but scientific knowledge and technology has 

developed so that GWR methods now include Poisson distribution and logistic distribution 

(presence/absence) so it can now be applied in more situations. Some recent studies have 

successfully conducted GWR for predictive purposes, not just to test it against global models. For 

instance, Windle et al. (2010) used GWR for predicting the distribution of cod in the Pacific Ocean, 

and Tu et al. (2014) applied it to the relationship between land use and water quality.   
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Chapter 3: Study purpose 

  The purpose of this study was to use easily accessible data to conduct spatial analysis at a 

macroecology level that can then be used by natural resource managers to create effective 

strategies against IS.  This was accomplished by using a number of lake and landscape variables 

that are regularly collected or readily available from open sources, to build predictive models for 

the presence of two AIS; curly-leaf pondweed (Potamogeton crispus) and Eurasian watermilfoil 

(Myriophyllum spicatum).  Modelling is used in ecological studies to quantify the “species-

environmental relationships by specifying the underlying processes or by predicting the observed 

patterns of the organisms from the spatial distribution of environmental factors” and can be done 

with statistical analysis (Wagner and Fortin, 2005). The freely accessible statistical software 

Spatial Analysis in Macroecology or SAM (Rangel et al., 2010), was used to build models which 

could be used by resource managers in the decision-making process for developing invasive 

species strategies. These predictive models could be used to identify what lakes might be 

susceptible, allowing for the development of pro-active strategies. This thesis was confined to 126 

lakes in the Adirondack Park (referred to as the Park from this point) and focused on two IS, curly-

leaf pondweed (CLP) and Eurasian watermilfoil (EWI). These two species of AIS were used to 

determine if this modelling technique could be employed for individual species or if the benefits 

of individual analysis were limited, suggesting that analysis of a group of AIS could perhaps be 

more effective overall. Both of these species were recognized as problem IS in the Park and thus 

any research on their management would be beneficial (Nichols and Shaw, 1986; APIPP, 2014). 

A difference in results between the species might suggest an advantage to conducting individual 

analyses for effective AIS management, especially if one was particularly aggressive or had a 

greater impact on the environment, such as EWI. This study was also put forth to test if significant 

statistical analysis could be done on IS if only publicly available data were used. The purpose for 

doing this was to find out if useful analysis would be possible even if, due to limited funding, there 

was no money available for specific data collection. The lake and landscape variables used in this 

thesis were from government sources as well as from environmental organizations that gathered 

regular data that were publicly accessible. 

3.1 Objectives 

This thesis was set to achieve three objectives: 1) to conduct bivariate analyses to determine 

the relationship of a variety of lake and landscape variables to the presence of two AIS, curly-leaf 
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pondweed and Eurasian watermilfoil separately, 2) to use multiple regression to build predictive 

models from those variables and evaluate the models for each AIS separately, 3) to explore 

available software (GWR4, 2016) to conduct local multiple logistic regression by employing 

GWLR using the same predictive models from the second objective, and determine if GWLR was 

an improvement for this type of environmental study.  In an exploration of the new methods being 

used within GWR, GWLR was employed and the findings contrasted to determine its usefulness 

in ecological studies. In order to achieve these objectives, a large variety of lake and landscape 

metrics (including land cover and configuration) representing different environmental 

characteristics and parameters, made available from previous research in the Adirondack Park, 

were analysed (Shaker et al., 2013).  

3.2 The study area 

Various organisations in the Adirondack Park (Park) have been monitoring the lakes and 

collecting data for at least 15 years, and thus the Park presents itself as a useful study area. The 

Park is located in New York State and comprises about one-fifth of the State.  The Park has over 

100 towns/villages within its boundary with approximately 132,000 permanent residents (APA, 

2015). Being within a day’s drive of New York City, it is a hotspot for outdoor recreation and a 

popular holiday destination.  The Park is a mix of private and public lands resulting in varied types 

of land-use, with various levels of legislation (APA, 2015). There are different types of industry 

within the Park such as logging, agriculture and urban development, all of which can affect the 

natural environment.  Despite the presence of different levels of industrial activity, there are some 

areas designated as “wilderness” that are to remain unoccupied and cannot be sold or leased 

(APIPP, 2015). However, these wilderness areas are still used for recreation and are thus exposed 

to IS through anthropogenic sources. There are over 10,000 lakes and ponds within the Park (APA, 

2015; APIPP, 2015).  Many are linked by rivers and streams giving connectivity between the lakes 

within the Park, thus permitting transfers and exchanges of AIS. All of these characteristics make 

the Park a unique area that presents many difficulties to resource managers while at the same time 

making it an important candidate for this type of study.  

The lakes in the Park are monitored by the Adirondack Park Invasive Plant Program 

(APIPP) which is associated with the Adirondack Park Authority (APA) and is responsible for 

coordinating the Aquatic Invasive Species Project and the Terrestrial Invasive Species Project 

(APA, 2015). The Park is currently monitored for 17 invasive species of which eleven are aquatic, 
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eight of these are plant IS (APIPP, 2015). This study includes 126 lakes, (all greater than 25 

hectares) located within the Park and monitored by APIPP (2014) (Figure 2). Of the 126 lakes 

 

     

Figure 2: Study area of Adirondack Park delineated by the blue line, with the location of invaded 

and uninvaded lakes marked. (Shaker et al., 2017) 
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studied here, 66 are invaded, and 60 are un-invaded according to the data.  This area is of great 

importance because of the collection of watersheds and the fact that still-pristine lakes, 

ecologically important wetland habitats, as well as remnants of old forest still exist within its 

border. A portion of the New York Great Lakes Basin, one of the most important freshwater 

resources in North America, lies within the Park and supplies drinking water and agricultural water 

to millions of Americans (Martens, 2014). Headwaters from five major drainage basins are located 

within the Park (APA, 2015). Concerns over the water quality within this region and the impact 

that IS can have on it has led to the development of the current programs for monitoring and 

controlling IS within the area (APA, 2015). Over 300 separate waterways are being surveyed by 

volunteers and Park staff, and as of 2015, 28 percent of those waterways were already invaded 

(APIPP, 2015; Shaker et al., 2017) 

3.3 Species Studied  

 Two aquatic invasive plant species were studied from the eight found within the Park 

boundaries (Table 1).  Curly-leaf pondweed (Potamogeton crispus) and Eurasian watermilfoil 

(Myriophyllum spicatum) were considered significant problems within the Park and lakes are 

constantly monitored for their presence.  Both of these are aquatic macrophytes that produce 

large submerged beds which can compromise the native species (Mills 1993). Within the Park 

CLP has been given a threat ranking of 79.79 which was “high” and EWI has been given a threat 

ranking of 100 which was “very high” and this was the highest of all the aquatic invasive plants 

in the Park (APIPP, 2015).  Four of the other invasive plants in the Park were also listed as “very 

high” but none were given a ranking of 100.  Eurasian watermilfoil has been considered an 

aggressive invader and was often one of the first plant invaders found in lakes in North America 

(Les and Mehrhoff, 1999; Martin and Valentine, 2014). Conversely, CLP was usually found in 

lakes already invaded by other macrophytes (Engelhardt and Ritchie, 2002). Curly-leaf 

pondweed will grow early in the Spring and become established before the native species start to 

grow.  In this way, they become a serious threat to native macrophytes by using nutrients before 

other species (Mills, 1993; Engelhardt and Ritchie, 2002). These two AIS have been selected for 

this in part due to these characteristics as well as their longevity in the Park.  Eurasian 

watermilfoil was first recorded in the Park in 2002 and CLP was first recorded in 2005 (APIPP, 

2015). 
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Table 1: List of aquatic invasive plants monitored in Adirondack Park (APIPP, 2015) 

Currently identified aquatic invasive plants 

Common Name  Scientific Name  

Eurasian watermilfoil 

variable-leaf watermilfoil 

water chestnut  

curly-leaf pondweed  

fanwort  

European frog-bit 

yellow floating heart 

brittle naiad 

Myriophyllum spicatum  

Myriophyllum heterophyllum  

Trapa natans 

Potamogeton crispus 

Cabomba caroliniana 

Hydrocharis morsus-ranae 

Nymphoides peltata 

Najas minor 

Potential aquatic invasive plants – not yet recorded in Park 

Common Name  Scientific Name 

starry stonewort 

parrotfeather  

hydrilla 

Brazilian elodea  

Nitellopsis obtuse 

Myriophyllum aquaticum 

Hydrilla verticillata  

Egeria densa 

  Note: Aquatic invasive plants in bold are the two species analysed in this thesis 
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Chapter 4: Materials and methods 

This study looks at two of the eleven AIS currently being monitored and managed by 

APIPP (APA, 2015). Bivariate analysis plus multiple regression were used to determine bivariate 

then multivariate relationships to the presence of the two AIS of interest, CLP and EWI, 

individually. Previous studies on IS most commonly involved either one species being studied or 

IS as a group.  

4.1 Software used  

The main software used for this thesis was Spatial Analysis for Macroecology (SAM) 

(Rangel et all, 2010) and ArcGIS 10.3 (ESRI, 2004) along with the newly updated GWR4 (GWR4 

2016). SAM is a freeware application offering a variety of spatial statistical methods that are 

common to macroecology studies (Rangel et al., 2010). SAM is easy to use and can process large 

data sets. ArcGIS 10.3 is a “geographic information system that allows management, analysis, and 

display of geographic information” and was used here for mapping and demonstrating the 

distribution of each AIS and offered a comparison of invasion patterns across the Park (ESRI, 

2004). GWR4 is a powerful software that can carry out simple but common statistical analyses as 

well as more complicated regression statistics while incorporating regional variations (Rangel et 

al., 2010; GWR4, 2016). Traditional multiple regression is a global measure, but in order to look 

at local influences, GWR4 was used. It is a freeware application, updated in 2016, that conducts 

GWR, (or more specific to this study, GWLR) which can then be compared to traditional 

regression models to see whether including the local variation in the analysis changes the outcome 

and would therefore be valuable to the research. The level of any improvement would be 

determined by comparing the Akaike Information Criterion (AIC) values of the global (traditional 

statistics) to the local (GWLR) findings. An improvement when using local analysis, would 

suggest that for ecologically damaging IS it would be worthwhile running this type of statistical 

analysis so that specific influences were considered and would give more detailed information for 

any decision making process. 

4.2 Data used 

The data set used here was compiled by Dr Richard Shaker in “Predicting aquatic invasion 

in Adirondack lakes: a spatial analysis of lake and landscape characteristics” (Shaker et al., 2017).  

The data has been collected since 2012 and is continually updated; the current thesis will build on 
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the findings of the 2016 study (Shaker et al., 2017). Dr Shaker et al. (2017) looked at aquatic 

invasive species richness (AISR) of eleven species across the Adirondacks, using the same data 

set. By using the same data set, greater in-depth analysis of the same study area using the same 

sampling units and metrics can prove advantageous to resource managers. The data set includes 

numerous lake and landscape metrics that are found within the Adirondack Park and can be used 

to better understand the characteristics of the Park as well as the lakes within it. This study differs 

from the study by Dr Shaker et al. (2017) in several ways. This study deals specifically with two 

of the eleven AIS used by Dr. Shaker and basically computed separate studies for each of the AIS 

of interest here, CLP and EWI. Dr Shaker et al. (2017) used the Getis-Ord Gi statistic to determine 

spatial hot and cold spots for AIS richness and by so doing identified 20 lakes that were at risk to 

future invasions.   

Many different sources were used to collect the original data, and specific data from the 

Adirondack Park Invasive Plant Program (APIPP) and the Adirondack Park Authority (APA) were 

included along with readily available data from government organisations such as the Department 

of Transportation (Table 2).  ArcGIS was used to gather metrics on distances and other measurable 

variables (Shaker et al., 2013) and landscapes were assessed using a 300-m riparian zone for each  

 

Table 2: Sources used for research data (Shaker et al., 2017) 
Park Associated Sources:  

   APIPP  Adirondack Park Invasive Plant Program  

   APA  Adirondack Park Agency  

   PRISM  Partners with Regional Invasive Species Management  

General Public Sources:  

   DOT  Department of Transportation  

   NYDEC New York State Department of Environmental Conservation  

   USGS United States Geology Survey 

   SCFG Sportsman’s Connection Fishing Guide  

   ESRI Environmental Systems Research Institute  

 

lake (Shaker et al., 2017).  In situ measurements including elevation, mean lake depth plus area 

and perimeter measurements were collected and consolidated as well (Shaker et al., 2013).  

Information on the collection methods as well as any calculations carried out can be found in 

Shaker et al. (2013) and Shaker et al. (2017). In the 2013 study, Shaker et al. examined landscape 

and lake variables in order to investigate the significance of public and private boat launch sites 

on aquatic invasions in twenty-six lakes within the Park. Since the 2013 study, Dr Shaker has 
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continued to collect data in the Park and these data have been made available for this study (Shaker 

et al., 2013). The data set included 126 lakes, and this thesis selected a total of 53 possible variables 

and metrics from that data set (Appendix A). 

4.2.1 Preparing the data 

This study started with a list of lake and landscape metrics that was reduced to 53 possible 

variables after searching the literature and considering current IS research. Appendix A lists all 

variables found by previous research to have some correlation with the spread of IS which were 

also available within the Park. These might aid in transporting IS, lead to degradation of the 

habitats, change water quality, affect species diversity, or the number of invasive organisms being 

introduced, to name a few. Those variables found to have some connection to IS, whether they 

affected water quality or other environmental conditions that were believed to support IS, were 

retained for further analysis (Keast, 1984; Lodge, 1993; Buchan and Padilla, 2000; Peterson and 

Vieglais, 2001; Olson et al., 2012; Kimbel, 2016). The variables were then examined, and any 

duplicates or redundant variables were removed (i.e. perimeter in kilometres and perimeter in 

miles), and only one representative variable was retained. Also, diversity measurements were 

given in both Simpson’s indices and Shannon’s indices. These are very similar, and to avoid 

redundancy being carried into the calculations, Shannon’s indices were used (SHEI – Shannon’s 

evenness index; SHDI – Shannon’s diversity index), and the Simpson’s indices were discarded.  

The remaining variables were put through several steps to prepare them for analysis. It is important 

to note that parametric statistics have two inherent assumptions: data are normally distributed 

(normality) and, the data are independent of each other (random). Variables often do not show a 

normal distribution and can be skewed (Tu and Xia, 2008).  

In order to meet these assumptions, the data were first checked for normality. The 

distribution of the variable should show a “normal” curve or the typical bell curve in order for the 

statistical tests to be accurate. Using SAM, the variables were formatted, examined, and their 

distributions graphed (Rangel et al., 2010). Those variables that were not normally distributed were 

transformed in order to achieve a normal distribution (Osbourne, 2002). In SAM, the variables not 

normally distributed were transformed using appropriate methods; either log10(x+1) for 

continuous data or Arcsine – square root for proportional data, such as percentages (Osbourne, 

2002; Shaker et al., 2013). Secondly, once the data were accepted as being normally distributed, 

the variables were checked for autocorrelation (non-randomness) and independence. As previously 



   

22 
 

mentioned, when spatial analysis is used for ecology, autocorrelation often occurs, and this can 

bias the results towards the autocorrelated variables, with an increasing strength in the correlation 

coefficient. This results in high significance levels being given to the correlations more frequently 

than is acceptable (Lennon 2000). Randomness can be difficult to ensure since it can be affected 

by the method of sampling. The very nature of environmental parameters is such that they are 

interconnected with each other and show levels of autocorrelation and thus are not random. With 

respect to environmental studies, it is generally expected that autocorrelation (non-randomness) is 

present to some degree (Rangel et al., 2010; Olson et al., 2012; Shaker et al., 2013). However, the 

validity of the conclusions drawn from these traditional analyses links to the assumption of 

randomness, and thus it must be at least acknowledged and considered when preparing the data as 

well as the interpretation of the results (Lennon, 2000). There is a reciprocal relationship between 

environmental structure and the underlying processes that must also be acknowledged (and 

incorporated into the interpretation of the statistical analysis) if the ecosystem is to be fully 

understood (Siesa et al., 2011). This relationship results in a correlation between the variables 

studied and as such, points to a lack of randomness.  Autocorrelation is one measure used to 

determine randomness, but it is important to note that non-correlation does not necessarily or 

automatically indicate randomness (Wagner and Fortin, 2005). Spatial autocorrelation is the “lack 

of independence between pairs of observations at a given distance in time and space” (Dormann 

et al., 2007). Data points close together can be influenced by the same processes resulting in 

autocorrelation because these biologically important processes occur within geographically close 

locations. In environmental studies, it occurs because of the presence of biologically important 

processes between geographic locations. It should be noted that some ecologists ignore 

autocorrelation as unimportant while others consider the very presence of autocorrelation as vital 

to the understanding of a particular environmental issue or problem and thus must be considered 

when interpreting the findings (Lennon, 2000; Rangel et al., 2010). This thesis did not ignore 

autocorrelation and the use of GWLR for analysis identified some of these correlations. 

4.3 Analysis for the study 

SAM was used initially to determine the relationship between the individual variables 

and the presence of each AIS through bivariate analysis (Figure 3). This bivariate analysis 

produced a number of values: standardised coefficient of determination, McFadden’s rho-

squared (ρ2), Chi-square and p-values of significance. These values were examined to determine 
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the strength of the relationship of each variable to the presence of each AIS.  McFadden’s ρ2  and 

p-values were used as primary indicators of a relationship. A significance threshold of 90% was 

applied, and only those variables that fell within this range (at or above 90%) were retained for 

further analysis. Each AIS showed different variables of significance.  This left a relevant subset 

of variables that already showed a relationship to each AIS as indicated by the p-values. The set 

of variables for each AIS was then ready for multiple regression.   

 

Figure 3: Steps taken for the analysis, in order to meet objectives of this thesis 

 

Because environmental variables are not found in isolation in nature, all the variables 

identified as significant in the bivariate analysis were simultaneously analysed using multiple 

regression. Ecosystems work synergetically with their components, changing the relationships 

because of the interactions between them, and thus it was important to run multiple regression in 

order to test the significance of the variables when not considered in isolation. Usually, when 

Bivariate

•all formatted and transformed variables tested with each aquatic invasive species (AIS) separately 
(CLP and EWI)

•p-values, Standard coefficients, McFadden’s ρ2, Chi-squared were produced

•only variables with p-values ≤ 10% were analysed further 

OLS multiple 
regression 

•simultaneously anlaysed all variables from bivariate analysis to build predictive models 

•ranked by corrected Aikake Information Criterion (AIC) minimization 

•five best ranked models analysed further 

Multiple 
logistic 

regression

•five best ranked models validated using multiple logistic regression 

•p-values, Standard coefficients, McFadden’s ρ2, Chi-squared were produced

•variables evaluated using standard coefficients and p-values 

Mulitple 
linear 

regression 

•each of the five “best fit” models for each species (CLP and EWI) were checked with variance 
inflation factor (VIF) to determine if multicollinearity was present

GWLR 

•five best models for each AIS (CLP and EWI) were anlaysed with geographically weighted regression 
to determine if local variations impact the analysis and thus should be considered when using the 
models for resource management
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variables are found to be insignificant they are discarded. In this thesis, those variables selected by 

the “best fit” models using OLS multiple regression were retained because once a variable was 

established as being part of a “best fit” model in the initial OLS test, they were kept for further 

analysis. However, this is not usual. Since there is no exact modelling technique that exists for 

creating multiple regression for spatial analysis, a multi-model framework was used as a heuristic 

approach to accomplish the objectives of this study. This multi-model framework used one type 

of multiple regression (OLS) to build the models by determining which combined variables had 

the highest level of correlation to each AIS. Secondly, logistic multiple regression was done to 

analyse and validate the variables in each model. Then as a way to check for collinearity (one of 

the issues with spatial analysis), the variance inflation factors (VIFs) were produced for each 

model. This was not a perfect technique and may be the reason why the second analysis (multiple 

logistic regression) resulted in a lack of significance for some of the retested variables. 

Multiple regression was applied to all the variables found to be significantly correlated in 

the bivariate analysis to build predictive models. To establish the best predictive models, the 

“Model selection and multi-modal inference” tool was selected in SAM. SAM selected OLS for 

this initial multiple regression analysis which produced thousands of models by combining all the 

variables in every possible combination for each AIS (65,535 possible models for CLP and 

524,287 for EWI) (Appendix B).  The OLS regression calculated corrected Akaike Information 

Criterion (AICc) scores for each model. Aikake information criterion scores generally represent a 

“goodness of fit” statistic for each model and are accepted as a suitable measure for comparing 

models (Windle et al., 2010).  The AIC scores also indicate the predictive ability of each model. 

In this initial OLS regression, all of the models were ranked according to their AICc scores with 

the lowest AICc being ranked at the top. The lower the AIC value, the closer the model is to reality 

(Fotheringham et al., 2002; Windle et al., 2010; Shaker et al., 2013).  

For each of the AIS in this study, the first five models selected with AIC minimization in 

the OLS regression were tested further. The top models underwent multiple logistic regression 

analysis in SAM to evaluate the relationship between the variables established in each model and 

validate their findings. This second multiple logistic regression (MLR) produced a number of 

statistical values of which St. Coeff and p-values were primarily used to investigate the nature of 

the relationships between the variables and each AIS. The St. Coeff values were important because 

they indicate the strength and direction of the relationships. This second analysis (MLR) was also 



   

25 
 

done as a way to validate the findings and test for collinearity.  Variance inflation factors were 

produced as a basic method to determine the presence of multicollinearity and give the errors 

associated with multicollinearity between the covariates (Shaker et al., 2017).  Variance inflation 

factors will indicate if there is a correlation between the variable estimates, but they do not include 

the intercept term in the calculations and do not show where the collinearity occurs only that it is 

present (Fotheringham and Oshan, 2016).  Because of these limitations, it is argued that it is not 

as useful as some researchers have proposed. Nevertheless, it does give an indication of 

multicollinearity, which if present, would require further investigation. Generally, a VIF > 10 

indicates a problem with multicollinearity (Shandas, 2009; Fotheringham and Oshan, 2016) and a 

VIF between 2.5 and 10 would indicate possible issues but VIF values < 2.5 indicated that there 

are no issues with multicollinearity within the models (Shaker and Ehlinger, 2014). 

Standard (traditional) global regression methods assume randomness and independence 

(previously discussed) which means all the data could be treated the same across space. However, 

environmental issues that deal with regional-scale data tend not to have independence because they 

are impacted by local conditions (Wagner and Fortin, 2005; Shaker et al., 2017). Spatial analysis 

is used to assess those processes in an effort to understand what might be responsible for generating 

the typically non-random patterns seen (Wagner and Fortin, 2005). As a result, applying global 

regression to these variables that might not meet the assumptions, can produce type I errors – a 

“false positive” (when a true hypothesis is incorrectly rejected) (Lennon, 2000; Fortin and Dale, 

2005).  Geographically weighted regression, which is basically a modern global regression that 

includes geographic coordinates to give a local estimate, incorporates spatial data through applying 

a weighted distance-decay to the observations and in this way is able to address spatial non-

stationarity (Windle et al., 2010). Any observations around the sample point are given more 

weight, the assumption being that those points at a smaller distance have a greater impact on the 

local parameter estimates for that location (Tu and Xia, 2008; Shaker and Ehlinger, 2014).  

The final objective of this thesis, to determine the effectiveness of using GWLR for this 

type of study, was accomplished by using the GWR4 software to test the first five models for each 

AIS. This was done to determine if GWLR improved the results, thus indicating that there was a 

local impact affecting the presence of the AIS. In order to include geographic influences, location 

points had to be incorporated into the regression, which in this study was done by including the 

longitudinal and latitudinal coordinates (Rangel et al., 2010).  



   

26 
 

The equation used for GWLR was:  

 

(1) 

For this, the dependent variable must be 0 or 1 and pi is the modelled probability that the dependent 

variable becomes one (Nakaya et al., 2016).  

Within the GWR4 software, there were a number of choices available that allowed the 

researcher to control the analysis. The main difference with using GWR for analysis was the 

geographic aspects of the data and distance between points. This was referred to as distance-decay 

and was introduced by using a specific radius for analysing the local model and was set by applying 

a particular bandwidth (Nakaya et al., 2014).  Analysis within the GWR4 software allowed a 

“moving window regression for each observation point” (Windle et al., 2010).  In this study, the 

bandwidth selection was set for the “Golden section search” which allowed the program to search 

for the best bandwidth size for that particular data set (Nakaya et al., 2014). The kernel type which 

controls the distance-decay function was set to “adaptive” which used the number of samples rather 

than a specific distance (Appendix D) (Windle et al., 2010). The criteria used to determine 

bandwidth could be set to use different values, and for this study, AICc was used.  The model type 

could also be selected within GWR4, to determine which tests were run. In this study, the logistic 

options used were the “standardisation of independent variables” and “geographical variability 

test”. The results of the GWLR summarised these settings and then established the values 

associated with these parameters (Appendix D).  

When using GWR4, local multiple logistic regression was conducted with the selected 

kernel size and thus incorporated local variation (Nakaya et al., 2016). At the same time within the 

GWR4 program, traditional multiple logistic regression was also computed, using the same data 

set. This resulted in AIC scores for both model types which was easily compared between the two 

types of models. In this way, using the same criteria for computation, the AIC scores were 

produced and compared to easily determine whether using local statistics (GWLR) did indeed 

improve on the global results. Since AIC values showed the “goodness of fit”, this evaluation was 

achieved by comparing the AIC scores calculated by both multiple regression analyses (global and 

local). In this study, the GWLR (local) AIC scores were compared to the MLR (global) AIC scores 

that had been validated. When comparing AIC scores between two models, a difference of more 

than 3.0 between the AIC scores being compared indicated a significant improvement for the lower 
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value over the higher value (Lu et al., 2014). ∆AIC scores were calculated between the global and 

local analysis for each model using:  

∆AIC = Classic AICG (Global/MLR) – Classic AICL (Local/GWLR)   (2) 

∆AIC indicated the level of differences between the two statistical methods numerically. The ∆AIC 

was calculated for each of the five models to allow direct comparisons and determine if there was 

an improvement of one type over the other. Because low AIC scores indicate a better model, 

positive values for ∆AIC indicated the local model would be better than the global.   
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Chapter 5: Results  

Using regression analysis and a large dataset of 126 lakes and more than 50 lake and 

landscape explanatory characteristics, the results revealed variables that showed statistically 

significant correlations to the two chosen AIS, curly-leaf pondweed and Eurasian watermilfoil in 

the Adirondack Park.  The initial test for significance among the variables used bivariate regression 

and those variables found to be significant were then analysed using multiple regression in several 

ways to predict the presence of specific AIS. Bivariate analysis of each variable against each 

dependent variable resulted in a number of significant variables which were different for each AIS 

which were then used for further analysis with multiple regression. 

5.1 Bivariate analysis  

5.1.1 Curly-leaf pondweed  

A total of sixteen variables that showed significant bivariate correlations for curly-leaf 

pondweed (Table 3).  Of the lake and landscape variables, there were eight found to be significant 

for CLP, (game fish, state launch sites, lake elevation, maximum depth, minimum depth, distance 

to Interstate 87 (I-87), lake area and distance to census collection point).  There were four land-

cover composition metrics found to be significant for CLP (developed at high intensity, developed 

open space, percent deciduous forest, percent shrub/scrub). There were four landscape 

diversity/land cover class configuration variables that were significant for CLP, ( SHEI, RPR, 

AI_DO and PRD). Of all the predictor variables found significantly related to CLP with bivariate 

analaysis, the strongest positive relationship was with the presence of game fish (ρ2 = 0.1805, p-

values < 0.0001, and St. Coeff = 4.198).  

5.1.2 Eurasian watermilfoil  

There were nineteen variables showing significant bivariate correlations to Eurasian 

watermilfoil (Table 3). Nine of these were lake and landscape variables (game fish, boat access 

type, boat launch sites, state launch sites, lake elevation, min depth, distance to I-87, nearest 

invaded lake and distance to census collection point). There were six land-cover composition 

variables significantly correlated to EWI (developed at low intensity, developed open space, 

percent deciduous forest, percent mixed forest, percent shrub/scrub, percent open water). There 

were four landscape diversity/land cover class configuration variables that were significant for 

EWI (SHEI, RPR, AI_DO and ENNAM_DO). Of these nineteen predictor variables, the strongest 
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positive correlation to EWI was percent developed open space (ρ2 = 0.11, p-value = 0.0002, and 

St. Coef = 1.77). 

Table 3: Significant variables established with the bivariate analysis in SAM for each invasive species, 

curly-leaf pondweed, (Potamogeton crispus) and Eurasian watermilfoil (Myriophyllum spicatum). 

Variables Curly-leaf pondweed Eurasian watermilfoil 

Variable  Transformed McFadden’s 
Rho2 

Chi-
square 

St. 
Coeff. 

p-value McFadden’s 
Rho2 

Chi-
square 

St. 
Coeff. 

p-value 

Game Fish presence --- 0.1805 15.866 4.198 <0.0001 0.0577 9.329 1.261 0.0023 

Access Type --- ---- ---- ---- ---- 0.0311 5.025 0.924 0.0250 

Boat Launch --- ---- ---- ---- ---- 0.0199 3.218 0.764 0.0728 

State Launch --- 0.0756 6.645 2.52 0.0099 0.0303 4.896 0.884 0.0269 

Dev High Intensity ArcSin-SqRt 0.0648 5.692 1.619 0.0170 ---- ---- ---- ---- 

Dev Low Intensity ArcSin-SqRt  ---- ---- ---- ---- 0.0888 14.371 1.558 0.0002 

Dev Open Space ArcSin-SqRt 0.1314 11.547 2.948 0.0007 0.1064 17.213 1.767 <0.0002 

Deciduous Forest ArcSin-SqRt 0.1422 12.501 - 3.416 0.0004 0.1586 25.656 - 2.329 <0.0003 

Mixed Forest ArcSin-SqRt ---- ---- ---- ---- 0.0370 5.988 0.983 <0.0144 

Shrub-Scrub ArcSin-SqRt 0.0632 5.554 2.8 0.0184 0.0565 9.134 - 1.422 0.0025 

Open Water --- ---- ---- ---- ---- 0.0381 6.158 0.996 0.0131 

Elevation Ft --- 0.3266 28.709 - 4.326 <0.0003 0.1285 20.788 - 2.046 <0.001 

Max Depth Ft Log(x+1) 0.0318 2.796 1.465 0.0945 ---- ---- ---- ---- 

Min Depth Ft Log(x+1) 0.0908 7.986 3.185 0.0047 0.0268 4.340 0.858 0.0372 

Distance to i-87 exit --- 0.404 35.515 - 7.656 <0.0001 0.1945 31.461 - 2.794 <0.0001 

Area of lake (Ha) Log(x+1) 0.0763 6.708 2.077 0.0096 0.0282 4.558 0.85 0.0328 

Nearest invaded lake Log ---- ---- ---- ---- 0.0541 8.729 - 1.19 0.0031 

Distance to Census  Log(x+1) 0.1019 8.954 - 2.44 0.0028 ---- ---- ---- ---- 

SHEI --- 0.0445 3.912 - 1.792 0.0479 0.0197 3.187 - 0.719 0.0073 

PRD Log(x+1) 0.0343 3.016 - 1.614 0.0824 ---- ---- ---- ---- 

RPR Log(x+1) 0.1391 12.229 3.843 0.0005 0.0483 7.816 1.184 0.0052 

AI_DO --- 0.0351 3.084 1.97 0.0791 0.0783 12.661 1.724 0.0004 

ENNAM_DO Log(x+1) ---- ---- ---- ---- 0.0288 4.657 0.922 0.0309 

Values with <0.001 p-values are in bold.  Data with McFadden’s rho-square values ≥0.2 are in bold and italics.  

SHEI = Shannon’s Evenness index; RPR = Relative Patch Richness; AI = Aggregation Index; ENNAM_DO = 

Euclidean Nearest Neighbour distance. 
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5.2 Multiple regression 

Bivariate analysis showed the basic and direct correlation between two variables, but when other 

independent variables are added and tested simultaneously, the combination of variables showed different 

relationships. Of the thousands of models built with the initial model building analysis (ordinary least 

squares multiple regression) only the top five for each AIS, (ranked by AICc minimization), were 

investigated further. Once the models were built with OLS regression, the top five models were examined 

again with MLR for a closer examination and classic AIC values were recorded from that analysis. The top 

five models for  

 

 

Figure 4: Frequency of each predictor variable in top five models for two AIS: a. is 

for curly-leaf pondweed (CLP) and b. is for Eurasian watermilfoil (EWI) 

each species produced a group of variables that showed strongly correlations. There were 

significant differences between the two AIS predictive models if one looks at the frequency of the 

predictor variables in the models as well as the degree of significance for those variables (Figure 
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4). The best predictive models for CLP contained fewer variables compared to EWI, seven and 

nine respectively, and also had only three variables common across the models (Figure 4a). The 

best models for CLP included seven variables (game fish, lake elevation, distance to I-87, min 

depth, lake area, percent developed open space and AI_DO) and the best EWI models together 

included nine variables (state launch, lake elevation, distance to I-87, distance to nearest invaded 

lake, percent open space, percent deciduous forest, percent mixed forest, percent open water and 

SHEI). When comparing the two species with the first five models, CLP had fewer predictor 

variables than did EWI. There were two important overlaps among the variables found in all of 

the top models for both species: lake elevation and distance to I-87 (Table 4). All the models for 

both AIS included these two variables with good Standard Coefficients which were all significant 

for distance to I-87 at 5% or less and all but two (models 2 & 4 for CLP) were significant for lake 

elevation at 5%.  

5.2.1 Curly-leaf pondweed  

After analysing the top models separately again with MLR, the classic AIC values changed 

for each model and ranged from 46.793 to 50.743 (Table 4). According to this global regression, 

model three (AIC = 46.793, ρ2 = 0.5815) had the lowest AIC, followed by model one (AIC = 

47.093, ρ2 = 0.5553).  Some predictor variables (predictors) were constant across all five “best fit” 

models for CLP: lake elevation, distance to I-87 and game fish. Two of these (game fish and 

distance to I-87) were significant at 5% or less (Table 4). These had the highest correlation to the 

presence of CLP with three models (2, 4 & 5) that included AI-DO, two models (2 & 5) included 

% developed open space and one model (3) included lake area (Table 4). According to AIC scores 

from the MLR, the model with the lowest AIC (AIC = 47.093) was model three and it included 

the initial repeating predictors plus lake area. The second “best fit” model (AIC = 46.793) was 

model one and had the fewest predictors (lake elevation, distance to I-87 and game fish). The 

model ranked third by the AIC scores was model four (AIC =49.072) and had the three initial 

predictors with the aggregation index, AI_DO. The next ranked model, model number two (AIC 

= 49.130), included the initial predictors plus % developed open space and AI_DO added. The 

fifth ranked model (AIC = 50.743) was model five and had the most predictors with the initial 

three plus minimum depth, % developed open space and AI_DO. 
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Table 4: Values produced with multiple logistic regression between lake and landscape metrics and the two aquatic invasive species (curly-leaf 

pondweed (CLP) and Eurasian watermilfoil (EWI)) for five models each - with Standard Coefficients, AICs, VIF and McFadden’s ρ2 values  

 

Statistical measures and 

Predictor Variables 

Curly-leaf pondweed (CLP) Eurasian watermilfoil (EWI) 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5 

AIC 47.093 49.130 46.793 49.072 50.743 99.173 99.805 101.152 98.743 98.303 

McFadden's ρ2  0.5553 0.5776 0.5815 0.5550 0.5820 0.4982 0.4943 0.4736 0.4885 0.4912 

VIF max values 1.158 2.041 1.612 1.261 2.107 1.644 1.652 1.637 1.446 1.439 

Standardized Constant  0.000 0.000 0.000* 0.000 0.000 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

Lake and Landscape                      

Lake Elevation -2.790** -1.930 -3.777** -2.828** -1.842 -1.446** -1.434 ** -1.475 ** -1.504 ** -1.488 ** 

Distance to I-87 -5.458*** -6.030** -5.520** -5.430*** -6.043** -2.715** -2.691** -2.414** -3.080** -3.166*** 

Game Fish 3.485*** 3.678** 5.261*** 3.55** 3.479** − − − − − 

State Launch − − − − − 1.070 * 1.096*** 1.279** 1.147*** 1.082* 

Nearest invaded lake − − − − − -2.717*** -2.566*** -2.638*** -2.711*** -2.881*** 

Min Depth − − − − 1.101 − − − − − 

Lake Area(Ha) − − -2.764 − − − − − − − 

Land-cover composition           

% Dev. Open Space − 5.675 − − 3.237 1.820*** 1.818*** 1.657*** 1.909*** 1.921*** 

% Mixed Forest − − − − − 1.197 0.995 0.685 1.093 1.269 

% Deciduous Forest − − − − − -0.865 -0.836 -1.148 − − 

% Open Water − − − − − − 1.247* − 1.440** − 

Landscape diversity           

SHEI − − − − − -1.479* − − − -1.646** 

Land-cover class 

configuration           

ai_do − -2.207 − -0.321 -2.972 − − − − − 
Note: The values recorded are Standard coefficients from logistic regression for each tested variable. Variable categories: Lake and Landscape measurements, 

Land-cover composition in percentages, Landscape diversity measures (SHEI = Shannon’s evenness index) and Land-cover class configuration (aggregation 

index). Symbols used: * significant at 10 %, ** significant at 5%, *** significant at 1%.   
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Multiple linear regression used to gather more information about the predictors produced 

the VIF. All the VIF scores were below 2.107 (range of 1.261 to 2.107) for CLP which indicated 

that multicollinearity was not an issue for these models. Standardised coefficients gave directional 

relationships that indicated game fish, minimum depth and % developed open space were 

positively correlated with the presence of CLP, meaning that as their levels increased so did the 

likelihood of CLP being present. On the other hand, lake elevation, distance to I-87, lake area, and 

AI_DO were negatively correlated with the presence of CLP, showing an inverse relationship – 

meaning that as the variable levels (for instance elevation or distance) increased the likelihood of 

CLP being present decreased. These relationships, whether positively or negatively correlated, 

were consistent across all five models. The distance to I-87 and game fish predictors were found 

significant in all five models. Distance to I-87 was at 5% significance for three models (2, 3 & 5) 

and was significant at 1% in two models (1 & 4).  Game fish was significant at 5% for three models 

(2, 3 & 5) and at 1% for two models (1 & 3). Lake elevation was significant at 5% in three models 

(1, 3 & 4) but was not significant in two models (2 & 5). The other predictors that occurred in the 

five models were not significant for CLP. The strongest positive correlation to the presence of CLP 

that was also significant was with game fish (St. Coef = 5.261, p-value = 0.01) in model three. The 

strongest negative correlation that was also significant was with distance to I-87 (St. Coef = -6.043, 

p-value = 0.05) in model five. 

5.2.2 Eurasian watermilfoil  

Further examination of the best five models produced new classic AIC scores which ranged 

from 98.303 to 101.152. According to the global MLR, model five was the best fitting model with 

an AIC score of 98.303 (ρ2 = 0.4912) and model four as the second best fit with an AIC score of 

98.743 (ρ2 = 0.4885). Evaluation of the top five models demonstrated the relationship between the 

predictor variables (predictors) in the models. The predictors with the strongest correlation to EWI 

were lake elevation, distance to I-87, state launch, distance to nearest invaded lake, % developed 

open space, % mixed forest, % deciduous forest, % open water and SHEI (Figure 4). Predictors 

that were constant or repeating for EWI across all five models were lake elevation, distance to I-

87, state launch, distance to nearest invaded lake, % developed open space and % mixed forest, of 

which all but % mixed forest were significant with p-values at 10% or less. Along with these initial 

predictors, three models added % deciduous forest (1, 2 & 3), two models included % open water 

(2 & 4) and two models included SHEI (1 & 5) (Table 4). The best model with the lowest AIC 
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(AIC = 98.303) was model five and contained the initial six predictors (lake elevation, distance to 

I-87, state launch, distance to nearest invaded lake, % developed open space and % mixed forest) 

and SHEI. The second ranked model (AIC = 98.743) was model four and included the initial six 

predictors plus % open water. The third ranked model (AIC = 99.173) included the initial six 

variables, plus % deciduous forest and SHEI. The fourth ranked model (AIC = 99.805) was model 

two and included the initial six predictors plus % deciduous forest and % open water.  The last 

model here (AIC = 101.152), was model three and included the six initial variables plus % 

deciduous forest. 

SAM was used to calculate the VIFs in order to validate the models further. All VIF 

scores for the EWI models were below 1.652 with a range between 1.439 and 1.652.  This 

indicated that multicollinearity was not an issue for these variables. Standardised coefficients, 

showing directional relationships, indicated that state launch, % developed open space (as well 

as % mixed forest, but this was not significant) were positively correlated to the presence of 

EWI, thus as those predictors increased (in number or % land used) the likelihood of EWI being 

present also increased. The other predictors, (lake elevation, distance to I-87, distance to nearest 

invaded lake, and SHEI) were all negatively correlated with the presence of EWI, indicating that 

as those values increased the likelihood of EWI being present decreased (an inverse 

relationship). Percent deciduous forest was also negatively correlated, yet it was not a significant 

relationship according to MLR. These relationships, whether they were positively or negatively 

correlated, were again consistent across all five models.   

The repeating predictors in the top models, (except % mixed forest), were all significant 

for EWI. Lake elevation was significant at 10% across all models. Distance to I-87 in models one 

to four was significant at 5%, but in the fifth model was significant at 1%.  The state launch 

predictor had different significance levels, with models one and five being significant at 10%, 

model three at 5% and models two and four at 1%.  Nearest invaded lake was significant at 1% 

for all predictors as was % developed open space, making these the most significant of all the 

predictors.  Percent deciduous forest (only found in models one, two and three), was not 

significant in any of them.  The % open water in model two was significant at 10% and in model 

four at 5%.  SHEI in model one was significant at 10% and in model five at 5%.  Overall, there 

were more predictors in the top models for EWI, and they showed greater significance than the 

CLP predictors. The strongest positive correlation to the presence of EWI that was also 
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significant was with % developed open space (St. Coef = 1.921, p-value = 0.01) in model five. 

The strongest negative correlation that was also significant, was for distance to I-87 (St. Coef = -

3.166, p-value = 0.01) in model five as well. Both of these were in the model with the lowest 

AIC score, model five. 

5.3 Using geographically weighted logistic regression   

 Using geographically weighted logistic regression in predictive models gives a number of 

values, (ρ2, % deviance, AIC) which are selected by the user.  These values can be used in a variety 

of ways, but for this study, classic AIC scores were primarily used as a comparison measure.  

5.3.1 Curly-leaf pondweed  

The presence of CLP estimated and observed across the 126 lakes using GWLR, with AIC 

as the selection criteria, gave classic AIC scores that ranged from 46.416 to 48.957 (Table 5). The 

lowest AIC score using GWLR, was produced for model one at 46.416, establishing it as the best 

fitting model using GWLR with model three as the second best fit at 46.825. This was different 

from the MLR analysis, where model three was the “best fit”. When a comparison of the traditional  

Table 5:  Comparing the local analysis of Geographic Weighted Logistic Regression with the global 

analysis of multiple logistic regression, as shown by comparing AIC scores for both aquatic invasive 

species. 

   

curly-leaf pondweed   Eurasian watermilfoil 

Model 1 Model 2 Model 3 Model 4 Model 5  Model 1 Model 2 Model 3 Model 4 Model 5 

 Multiple Logistic Regression Models (global) 

Classic AICG 47.093 49.130 46.793 49.072 50.743  99.173 99.805 101.152 98.743 98.303 

McFadden’s ρ2  0.5550 0.5776 0.5815 0.5555 0.5820  0.4982 0.4943 0.4736 0.4885 0.4912 

 Geographically Weighted Logistic Regression Models (local) 

Classic AICL 46.416 48.957 46.825 48.941 48.957  94.103 92.962 94.576 91.015 92.208 

% deviance 0.6112 0.5965 0.5942 0.5713 0.5965  0.5727 0.5794 0.5554 0.578 0.569 

Bandwidth % 47 100 100 100 100  54 54 53 52 53 

 

∆ AIC 0.677 0.173 -0.032 0.131 1.786  5.070 6.843 6.576 7.728 6.095 

Notes: all models are significant at p<0.001.  ∆ AIC = Classic AICG (Global) – Classic AICL (Local). The ∆ AIC for model 3 for 

CLP is the only model that did not show an improvement with GWLR.  
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logistic regression models (a global measure) to the GWLR models (a local measure) was made, 

all of the models showed a slight improvement with the local (GWLR) over global (multiple 

regression) except model three which showed a negative value of -0.032. This negative ∆AIC 

indicates that GWLR was not a closer approximation of reality for the grouped variables within 

that model. Model three also had the lowest AIC score with the global MLR and thus was deemed 

the ‘best fit’. However, these values were in fact very close: an AIC score of 46.793 for the global 

model and 46.825 for the local model.   

The ∆AIC for the other four models ranged from 0.131 to 1.786.  According to the AIC 

scores, the local models had lower AIC scores (making them better models), but none of them 

showed a clear improvement since none of the ∆AIC scores were ≥ 3 (Figure 5). However, a 

comparison of McFadden’s rho squared (for logistic multiple regression) and % deviance (for 

GWLR) indicated better values using GWLR. It could be argued that these two values were not 

comparable yet in this study the global regression completed with the GWR4 program produced  

     

Figure 5: Bar graph showing ∆AIC, where a positive value demonstrated an improvement for 

geographically weighted logistic regression (local analysis) compared to the traditional logistic 

regression (global analysis) for curly-leaf pondweed (CLP) and Eurasian watermilfoil (EWI). 

Note: The horizontal line is at ∆ AIC = 3 (the acceptable level that indicates a significant 

improvement from one model to another). 
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% deviance values that were almost identical to the ρ2 values given in the MLR from SAM (given 

in Appendix D). For example, the ρ2 value for model one with MLR was 0.5550, and the % 

deviance with global models in GWR4, was 0.5552. Nevertheless, AIC scores were more broadly 

accepted in ecological studies and are therefore the primary comparison tools used here. Another 

indication of the suitability of using GWLR was evident in the bandwidth selected within the 

program.  For CLP, the bandwidth selected by the program was at 100% for four models with only 

one model less than 100% at 47%.  When bandwidth is very large, it approaches a global analysis. 

Thus a bandwidth of 100% is equivalent to a global analysis and showed that GWLR was not 

really appropriate or effective. 

5.3.2 Eurasian watermilfoil  

The presence of EWI was investigated across the 126 monitored lakes to determine the 

most important predictor variables, and this was then estimated with GWLR and evaluated using 

AIC (Table 5). Classic AIC (local) scores for the top models ranged from 91.015 to 94.576 with 

the lowest score produced by model four at AIC = 91.015. This model was thus ranked as the “best 

fit” with GWLR, and model five was the next “best fit” at AIC = 92.208. A comparison of the 

traditional MLR models (a global measure) to the GWLR models (a local measure), was done by 

their AIC scores. All five models showed significant improvement in the fit of the models as 

indicated by the ∆AIC scores (ranging from 5.070 to 7.728).  These scores were well above the 

accepted ∆AIC ≥ 3 (Figure 5). This indicated the local EWI models were a definite improvement 

over the global analysis. The fourth model had the lowest AICL score and the greatest improvement 

(∆ AIC = 7.728), and the next best improvement was the second model (∆ AIC = 6.843) 

When comparing the EWI models using McFadden’s ρ2 (for global regression) and % 

deviance (for local GWLR), all models showed improvements as well. The traditional global 

McFadden’s ρ2 ranged from 0.4735 to 0.4982 and % deviance from GWLR ranged from 0.5554 

to 0.5794, which were all higher (Table 5). The GWLR analysis was also more precise for EWI 

because the bandwidth used was smaller overall. The bandwidth for EWI ranged from 52% to 54% 

across all of the models, with none of them utilizing 100% bandwidth as occurred with CLP.  
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Chapter 6: Discussion 

 The guiding question for this thesis was to determine if it would be possible to use publicly 

available data to produce meaningful and useful research that could be used to help control or slow 

the spread of IS. Even though this study used only publicly available data, the findings were strong 

and highlighted differences between the two species of interest. Publicly available data, especially 

in North America, were numerous and covered a variety of types, which allowed extensive 

research to be conducted. This study was able to look at factors that related to propagule pressure, 

human activity, land cover, lake characteristics, and topography all using publicly available data.  

After robust analyses, strong statistical findings were produced for both of the AIS of interest. This 

involved applying layers of statistical analyses, both bivariate and multiple regression, and 

building predictive models that indicated which lake and landscape variables correlated to the 

presence of either of the aquatic invaders. Those predictor variables that showed strong 

correlations, as evidenced by their presence in the first five models, to either CLP or EWI could 

then be used to identify yet uninvaded lakes that might be vulnerable to invasions. Identifying 

variables that were closely related to IS allowed a greater understanding of what environmental 

characteristics or human activities aid IS and thus would need to be managed.  

6.1 The importance of predictor variables   

Patterns of invasive species spread can be understood by finding variables that relate to 

each IS and use them as predictors for that species. Many researchers (Buchan and Padilla, 2000; 

Capers et al., 2009; Dullinger et al., 2009; Thum and Lennon, 2010) have worked to identify these 

variables but because organisms can adapt and change according to various conditions, they do 

not react predictably. Therefore, any broad assumptions about a relationship between 

environmental characteristics and IS may not apply across many ecosystems.  Instead, researchers 

have looked at the role that the environmental characteristics played in the success of IS (e.g. 

available nutrients, abiotic conditions) and analysed those in order to develop strategies to manage 

IS spread. Invasive species researchers have identified certain factors as strongly correlated to IS 

success and spread, many of which were selected for this thesis. Examples of these would be 

propagule pressure, large nutrient loading, monotypic habitat with little resilience, high human 

activity or degraded habitat. 
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One aspect of the findings for CLP that raised some questions in this study, was the 

predictors that lacked significance in the multiple regression models, even though they were 

significant in the bivariate models. Whether or not to retain them for further analysis was debated, 

but as previously discussed, using a heuristic approach for this study meant that the predictor 

variables might not show the expected statistical significance even if they were relevant. Only 

variables found significant in the bivariate analysis were used for the model building, and all those 

predictor variables found in the first five predictive models were retained. The first five models 

selected in the initial OLS regression were established as the “best fit” and this is why all the 

variables selected by those models were retained through all further analyses, regardless of their 

statistical significance. Besides the heuristic approach, there was another possible explanation for 

why the covariates were not found to be significant for CLP and that was sample size. The total 

sample size for the study was 126 lakes with 66 of them being invaded, which would be an 

acceptable sample size for analysis. However, by focusing on only two IS and the lakes that they 

had invaded as reference points for determining predictor variables, the working sample size 

became smaller. More specifically, the lakes invaded with CLP totalled only 14 and those invaded 

with EWI totalled 43 (Figure 6). Therefore, the analysis for CLP had 14/126 lakes (only 11%) 

providing data and the analysis for EWI had 43/126 lakes (34%) contributing data. When smaller 

sample sizes are used with regression, the accuracy of the results is lower which might explain the 

lack of significance in the multivariate models (Bingham and Fry, 2010). It was also important to 

note that all the lakes invaded by CLP also contained EWI (Figure 6c). This was to be expected 

according to research because CLP has been found to be less aggressive than many other AIS and 

is rarely found as a solitary IS (Engelhardt, 2002). As a result CLP was commonly found in already 

invaded lakes (Engelhardt, 2002). 

6.1.1 Predictors for propagule pressure 

Any research on IS spread will involve propagule pressure, and Lockwood et al. (2005) 

felt that it was the key to truly understanding IS success. Invasive species in particular use human-

mediated dispersal as a significant part of their propagation. Thus any management strategies must 

consider (and even target) human activity that leads to greater propagule pressure (Keller and 

Perrings, 2011; Hulme and Firn, 2015).  Recreational boating has been tagged as the greatest 

propagator of AIS and as a result, predictor variables (such as launch sites, favourite fish species, 
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lake size, access to lakes and human activity in and around lakes) that relate to or encourage this 

activity were heavily represented in this study (Johnson et al., 2001; Rothlisberger et al., 2010; 

Shaker et al., 2017).  The top predictors found in this study (game fish, distance to I-87 and 

elevation) were related to propagule pressure and often correlated to IS in general because of what  

 

 

Figure 6: Maps of Adirondack Park showing invaded lakes for each aquatic invasive species in the 

study. (a) all the lakes with curly-leaf pondweed (14); (b) all the lakes with Eurasian watermilfoil (43); 

(c) the lakes that have both CLP and EWI together (14). (produced using ArcGIS 10.3.1 from ESRI, 

2004) 

a. Lakes with curly-leaf pondweed (CLP)   b.  Lakes with Eurasian watermilfoil (EWI) 

  c.  Lakes with both CLP and EWI Kilometres 
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they meant to the spread of IS.  This was supported by other studies and, according to Thum and 

Lennon (2010), propagule pressure was one of the most important influences on invasion success 

(Lockwood et al., 2005; Sheppard et al., 2006).  Propagule pressure includes both the number   

being introduced (how many organisms) and the number of times these introductions occur 

(Gertzen et al., 2011).  Variables connected to accessing a lake (game fish, access, boat launch, 

state launch as well as distance to I-87) were found to be significant for both species in the bivariate 

analyses and related to the use of the lakes. Fishing or recreational boating was considered a 

measure of propagation potential for AIS, and the significance of such variables in this study 

supported propagule pressure as being important in determining the presence of CLP and EWI 

within the Adirondack lakes (Devine, 1998; Bruckerhoff et al., 2015).   

Distance to Interstate 87 was the primary predictor across all five multiple regression 

models (for both AIS) and elevation (which was considered a natural influence that impacts 

dispersal through water flow) was also strongly related.  These were both part of human access to 

lakes because lakes at higher elevations would presumably be more difficult to access due to rough 

terrain and steep topography. The distance to I-87 exits, associated with recreational use of the 

lakes, had a more direct association because as (Euclidean) distance increased between a lake and 

available exits from the highway, there were fewer of either AIS in the lakes. The distance to I-87 

was statistically significant for both AIS, indicating that the closer a lake was to an I-87 exit, the 

greater the probability of either AIS being present.  Buchan and Padilla (2000) found that EWI 

was most likely to spread to lakes that had a high occurrence of boat traffic. This variable (distance 

to I-87) had a significant (p < 5%) negative correlation to both AIS that was consistent through all 

tests, showing that as the distance between I-87 exits and a lake increased, the likelihood of either 

AIS being found would decrease. In theory, the closer a lake is to the main thoroughfare the greater 

the boat traffic to that lake. It was evident on the map (Figure 7) that there were two strips of 

invaded lakes, one along the I-87 (blue strip) and one going from the middle of the north section, 

across the Park in a southwestern direction (pink strip). The blue strip followed the direction of I-

87 and the pink strip was more associated with lower elevations. 

Elevation was expected to be strongly correlated to both AIS, especially in a mountainous 

region like the Park. The significant negative (or inverse) correlation to elevation as a predictor for 

both species suggested that as elevation increased, the likelihood of either species being present 

would decrease. Headwaters are usually in higher elevations, and because water flows to lower 
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elevations, it was to be expected that AIS would spread from high to low elevations with the water, 

increasing in numbers as water flowed through lakes and onward.  It would be possible for IS to 

spread from low to high elevation (against the water current) but this would require outside help 

such as through human activity and movement (Johnson et al., 2001). 

This movement related to those predictors (such as fishing and recreational boating) that drive 

human activities (Buchan and Padilla, 2000; Dullinger et al., 2009; Bruckerhoff et al., 2015). The 

second strip (pink) on the map (Figure 7) follows the lower land to the west of the mountain range, 

(high elevation points were shaded in brown between the two strips of invaded lakes), rather than 

the highway. This area might be more affected by the elevation variable. A more specific study 

would be needed to distinguish between these two predictors and their mapped locations.  

Regardless, both of these strips of invaded lakes appeared to have a significant influence on the 

presence of AIS. Another feature of elevation was that because water flows to lower elevations, 

everything in that water (chemicals, pollutants, nutrients, sediments) also moves to lower 

elevations (Francis and Chadwick, 2012). Thus lakes at lower elevations would then be more 

polluted, have more nutrients and sedimentation and other components that might affect water 

quality and change the natural environmental conditions to favour AIS. Invasive species 

researchers (Devine, 1998; Trebitz & Taylor, 2007; Shusky et al., 2009; Pysek et al., 2012) found 

that it was common for greater numbers of, and a greater variety of, IS to be associated with areas 

that are nutrient rich (agricultural runoff).  Water chemistry was not directly monitored in this 

study, but agricultural activity and % developed areas were intended as representative measures as 

suggested by several studies (Roth et al., 1996; Peterson and Vieglais, 2001; Shandas and Alberti, 

2009). However, these predictors did not show strong correlations to either AIS. In order to clarify 

this, since these other studies show strong correlations, further studies are needed (Elton, 1958; 

Capers et al., 2009; Shusky et al., 2009). 

Just as distance to the I-87 was important for human-mediated dispersal, the distance from 

an invaded lake to a new, uninvaded lake was important as a source of spread and influenced 

propagule pressure. Shorter travel distances between these lakes would result in greater possible 

propagule pressure. Thus the distance to the nearest invaded lake predictor would be expected to 

show a strong negative correlation to the presence of AIS. While it was strongly (and negatively) 

correlated with the presence of EWI, and was highly significant (at 1%), it was not selected by any 

of the CLP models. This was puzzling since many researchers agree that habitats nearby would be  
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more likely to be invaded due to their proximity (Kearney and Porter, 2009; Francis and Chadwick, 

2012; Espeland, 2013; Havel et al., 2015) and, the first law of geography states that locations closer 

to each other are more similar than those farther apart and thus should support the same species 

easily (Espeland, 2013). An explanation for the lack of significance for CLP might be due to the 

fact that turions are the main propagule and these often use human-mediated dispersal, requiring 

humans to move between the lakes. However, there may not be easy or direct access between the 
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lakes being considered, either due to poor roads between them or no direct water connection. It 

has been suggested that for many IS, sexual reproduction is “energetically expensive” compared 

to asexual propagation, and as a result, sexual reproduction (which produces seeds) is rarely the 

main strategy for their spread (Engelhardt and Ritchie, 2002; Martin and Valentine, 2014; 

Bruckerhoff et al., 2015).  CLP does not tend to use sexual reproduction as much as it does 

fragments or the vegetative buds (turions) which move with water flow (elevation) or human-

mediated dispersal (Mills et al., 1993; Havel et al., 2014). This would need more study to 

distinguish between lakes that have direct and easy access to other lakes and those that were a bit 

harder to actually reach with trailered boats. Other aspects of the lake such as the populations of 

fish species present or the abiotic factors, would impact how humans use the lake. This may have 

more bearing on dispersal success than does the Euclidean distance between lakes that was used 

for the nearest invaded lake predictor. Nevertheless, travel time between lakes does impact the 

success of AIS spread. Since nearby lakes would be more similar (First law of Geography), they 

should support the same AIS. This appeared true for EWI because the nearest invaded lake 

predictor was highly significant (99%) and was important to its propagation since EWI can use 

seeds which move without needing roads or prescribed paths. Therefore a variable using Euclidean 

distance to a nearby lake, rather than actual travel distance, may be more appropriate for IS that 

use this type of dispersal (Trebitz et al., 2007; Shusky et al., 2009). The significance of the nearest 

invaded lake metric to EWI in this study supported other research with respect to EWI’s ability to 

spread by natural means and by human activities, although, EWI primarily spreads by simple 

fragments that get transported in some way (Francis and Chadwick, 2012; Martin and Valentine, 

2014; Bruckerhoff et al., 2015). Boating activity has been found as the main vector for transporting 

and dispersing EWI, especially in a recreational area like the Park (Johnson and Padilla, 1996; 

Shaker et al., 2013). The movement of boats and aquatic recreational gear between lakes transports 

fragments and the less time the fragment is out of the water, the better it can survive (Johnson et 

al., 2001; Bruckerhoff et al., 2015). It would be the nearby lakes that could be easiest to reach 

while fragments were still viable (Bruckerhoff et al., 2015). Fragments from EWI, whether leaves 

or stem sections, have survived out of water for 18 hours (longer than CLP is known to survive), 

but if they were embedded within a mass of plant material, EWI fragments survived up to 48 hours 

(Bruckerhoff et al., 2015).  This allowed fragments more travel time between lakes.   
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Curly-leaf pondweed was found to depend primarily on turions (specialized vegetative 

buds that act as propagules) for dispersal rather than seeds or fragments and as a result had a slow 

dispersal rate (Mills et al., 1993; Caffrey and Monahan, 2006).These turions were not as easily 

spread by attaching themselves to boats or propellers, but could be found in coils of other aquatic 

plants stuck on boats (Xie et al., 2014; Bruckerhoff et al., 2015). Bruckerhoff et al. (2015) found 

that asexual reproduction of CLP by fragments was not very successful because their fragments 

dry out within 12 hours. Conversely, the turions could survive 28 days before becoming inviable 

(Bruckerhoff et al., 2015). Once turions were released into the lakes or rivers, they moved with the 

current (high to low elevation) and stayed dormant until a change in conditions (temperature or 

light levels) could cause them to germinate (Xia et al., 2014). Once they gained access to a new 

area and developed to the point of producing turions, CLP can be very hard to control and manage, 

allowing them to become well-established in that lake. Lake area was found to be significant to 

both EWI and CLP in the bivariate analysis, yet was only found in one multivariate model for 

CLP, which was not statistically significant (Table 3). It showed a negative correlation, supporting 

the fact that CLP was more prominent in small lakes and did seem to like shallower water (Mills 

et al., 1993).  It was surprising that lake area, or any other variables related to the type of lake, was 

not more prominent in determining the presence of EWI since it can grow in large, deep lakes 

(although it also grew well in medium depth water) (Nichols and Shaw, 1986). This lack of 

significance in this study could be simply because lake area was more significant when looking at 

AISR that included a number of AIS (Trebitz et al., 2007). A common finding in the ecological 

literature is that species-area relationships exist meaning that a larger area will have more species 

(Shaker et al., 2017). Thus, larger lakes support more species as well as more IS and many studies 

that found lake area to be correlated to AIS were studying AISR (Engelhardt and Ritchie, 2002; 

Capers et al., 2009), rather than only one or two species (Shaker et al., 2017). EWI, is common in 

both shallow and deep water and is found in large or small lakes, although it becomes dominant, 

and thus a greater problem, in shallower water and smaller lakes (Trebitz et al., 2007). Ultimately, 

EWI can live in deep water and grow 10 metres to reach light if needed, and it can grow submerged, 

or it can float. Because of this adaptability, neither predictor (lake area or lake depth) was found 

to be significant to the presence of EWI alone.  

Nevertheless, these are not the only variables that represented propagation. Other variables 

that could act as proxies for propagule pressure were game fish and state launch which were both 
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found to be significantly correlated in the bivariate analyses (Dullinger, 2009).  Both of these were 

shown to be significantly correlated with CLP in the bivariate analysis, but just game fish was 

significant in all five multiple regression models. EWI, however, did not show a multivariate 

relationship to game fish (Table 3). The game fish variable measured the presence of three fish 

(yellow perch, small mouth bass, rainbow trout) that were favoured by the anglers who bring in 

boats and fishing gear, thereby aiding in dispersal (Dullinger, 2007; Bruckerhoff et al., 2015). The 

presence of these fish would be the incentive for anglers to enter a particular lake (Buchan and 

Padilla, 2000; Johnson et al., 2001; Shaker et al., 2017). The state launch predictor represented 

public launch sites that were accessible to tourists and residents and acted as an access point for 

dispersal. Although game fish did not appear in the top models for EWI, state launch was in all 

five models. This was understood to show a connection to recreational fishing because anglers 

might enter the lakes via launch sites. So even if the game fish predictor did not show strongly for 

EWI, this does not mean anglers were not represented by the predictors that were – such as state 

launch sites. State launch sites would also include water activities other than fishing, (water skiing, 

speed boating and other water sports) and thus indicated a connection to broader human activities.  

6.1.2 Predictors related to land use and land cover type 

The presence of mixed forest around the lakes did correlate to EWI indicating that forest 

appeared to impact in some way the environment that EWI preferred.  It was a positive correlation 

showing that higher percent mixed forest supported higher EWI.  Shandas and Alberti (2009) 

found that the presence of riparian vegetation strongly affected instream biological conditions and 

Roth et al. (1996) suggested that it supported aquatic systems by increasing organic debris. Buchan 

and Padilla (2000), whose study was similar to this thesis, found that percent forest cover was 

more important than human access or development for EWI because it related to nutrients in the 

water. Inorganic carbon, a known limiting factor for EWI, can be supplied by the presence of 

riparian vegetation, and thus the presence of forest becomes an important negative predictor 

(Keast, 1984; Buchan and Padilla, 2000; Smith et al., 2002; Thum and Lennon, 2010). The percent 

deciduous forest was negatively correlated to only two (EWI) models in this study yet the 

correlation to percent mixed forest was positive which might be related to different carbon levels 

from each. However, another explanation for this correlation was found in research by Shaker and 

Rapp (2013) that investigated the lake and landscape predictor of lake associations. The findings 



   

47 
 

suggested a connection between deciduous forest and land ownership. They were looking at lake 

associations and their connection to the predictors, but the thought processes might also be applied 

to this study (Shaker and Rapp, 2013). They proposed that the presence of large areas of deciduous 

forest around a lake was an indication of state ownership of large tracts of forest and thus that 

particular lake would have less privately owned properties along its shore. With respect to the 

negative correlation between percent deciduous forest and the presence of EWI, it could indeed be 

related to the fact that the land around the lake was state owned forest, resulting in fewer access 

points for boats. This might reduce boat entry to that lake which in turn, would present fewer 

opportunities for EWI to be introduced. This connection was speculative and requires more 

specific studies to determine if the state owned land around lakes does indeed limit the number 

and type of access points/launch sites for boats which in turn would mean there were fewer entry 

points for human-mediated dispersal of AIS. Future studies could also investigate a more direct 

relationship to dissolved inorganic carbon and if this would be different between the two types of 

forest (mixed and deciduous). 

It has long been accepted that IS are connected, and helped, by human activities (Elton, 

1958). Therefore, it would be expected that there was some level of correlation between those 

factors and IS in Adirondack Park as well (Elton, 1958; Mills et al., 1993; Devine, 1998; 

Bruckerhoff et al., 2015). Not surprising, these AIS showed a level of correlation to the 

development of nearby land and the type of land cover yet it was smaller than suggested by other 

studies (Elton, 1958; Buchan and Padilla, 2000; Francis and Chadwick, 2012). Despite a stronger 

bivariate relationship to levels of human development and human land cover use, the type of 

human activity in the multiple regression analysis that related to CLP centred around those 

activities (fishing) that aided dispersal and not those that might affect aquatic conditions 

(agriculture or industry). This demonstrated that characteristics commonly accepted as 

significantly correlated to IS in general, may not be significant for a single species. This would 

need to be studied with more specific details on the location of the sample along with evidence of 

the nutrient source and a direct measure of water chemistry. Eurasian watermilfoil was found by 

numerous researchers to be connected to human activity and disturbance and this study supported 

that to some degree (Mills et al., 1993; Buchan and Padilla, 2000; Trebitz, 2007; Shusky et al., 

2009). As a result, it was expected that correlations would occur between many variables, such as 

percent cultivated areas or areas with a high level of development. However, these relationships 
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were not strongly represented in the best fit models. The lack of significance of these variables 

could simply be because their occurrence across a study area that had such a variety of land use 

types, was low. The raw data showed that these variables were not well represented across all the 

invaded lakes. As a result, their representation in the Park, and particularly in proximity to the 

sampled lakes, was low.  In an area with high levels of industry and development, a similar analysis 

would likely show a strong correlation between those variables and these AIS.  

6.2 Modelling to management 

The synergy of ecology should be incorporated into ecological analysis if true 

understanding is to be gained and if it is to be applied to the real world. In this thesis, multiple 

regression was conducted which gave a more realistic picture of the relationships between 

variables and the aquatic invasive species. The initial OLS analysis compared covariates 

simultaneously and only reported the overall statistical fit but did not show the individual 

significance of the variables. Therefore, multiple logistic regression was performed on each model 

separately to evaluate the variables within the model. The predictive multivariate models indicated 

the level of the relationship between the predictors and the AIS (the dependent variable). The 

predictors found in each model were then considered as a unit that acted together and gave the 

most effective predictions. This gave more useful information than just the bivariate models. By 

evaluating the models, none of them had issues with collinearity as indicated by VIFs below 2.5, 

the accepted level, and as such the results were accepted with confidence knowing they were not 

violating assumptions.   

Adirondack Park has over 10,000 bodies of water which spread over a large area (almost 

25,000 km2), with various levels of legislation governing it. There are over 30 organizations 

working together to manage the Park with upwards of 700 volunteers (APIPP, 2015).  Even with 

all these groups working together to manage IS it is difficult to cover the whole area with complete 

efficiency.  If nothing else, IS are hard to manage because they act differently in different 

environments and are often very adaptable to new conditions (Pimental et al., 2005; Havel et al., 

2015). Because of this, as well as limited resources (both funding and manpower), predictive 

models have been gaining attention as a management tool for environmental planners. Using 

multiple regression to build these models has proven to be a practical strategy that incorporated 

many predictor variables and took into account how they might interact with each other to 

influence the presence of AIS. These multivariate models gave specific information that was more 
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suited to decision-making than were straight bivariate models. Within the Park, environmental 

planners focus on prevention and early detection, which then leads to rapid response actions 

(APIPP, 2015). Limited funds that must be spread across many departments and numerous lakes 

mean that actions must be prioritized. Models such as those built in this thesis could be used to 

determine which lakes were the most likely to be invaded and thus require extra attention. Each 

model should be considered as a group of predictors with strong correlations to the AIS tested. 

The first model produced for CLP using the multi-model framework had the fewest number of 

variables (game fish, elevation, distance to I-87), and those same variables were found together in 

the other top models. These variables were also the only ones that had statistically significant 

coefficients within the CLP models. Such consistency was not present for the EWI models. The 

top “best fit” model for EWI (model five) had four predictors (distance to I-87 exits, lake elevation, 

state launch and nearest invaded lake) that acted as proxies for propagule pressure and three other 

predictors (% developed open space, % mixed forest and SHEI) (Table 4). Those predictors most 

related to propagule pressure indicated that lakes close to an I-87 exit had a shorter distance for 

transporting boats and the state launch predictor showed which lakes had public piers or launch 

sites suitable for large boats. Both of these, like the common variables for CLP, encouraged human 

activity and thus would aid in the dispersal of EWI. This human activity created a connection 

between those lakes with high boat activity and the number of entry points for EWI, thus ensuring 

a successful introduction. Both distance to nearest invaded lake and distance to I-87 were 

negatively correlated which could be interpreted as: lakes that were easy to get to from I-87 and 

that were also close to already invaded lakes were more likely to be vulnerable to EWI, even better 

if they had several state launches. Resource managers could then use these predictors to identify 

vulnerable lakes. 

The top “best fit” model for CLP (model three), demonstrated that the presence of anglers 

and their boats was the main source of AIS dispersal (Buchan and Padilla, 1999; Johnson et al., 

2001; Bruckerhoff et al., 2015). Knowing these predictors (lake elevation, distance to I-87, game 

fish and lake area) and their significant relationship to the presence of CLP would allow resource 

managers to locate lakes matching these characteristics and to actively protect the lake by targeting 

any points of entry and initiating boat inspections and cleaning stations. Smaller lakes at low 

elevations, (with any of the three popular fish species and easy access from the I-87), could harbour 

a certain vulnerability for CLP. Lakes having all of the repeating predictor variables to some 
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degree, should be prioritized for constant monitoring in order to catch invasions as early as 

possible. The other predictors (AI_DO, % dev open space and lake area) that were strongly 

correlated with CLP should also be considered when looking for matching lakes (whether they are 

positively or negatively correlated is also important to consider). However, just these predictors 

(ai_do, percent developed open space and lake area) without the other repeating predictors would 

not be useful for predicting the possibility of CLP spreading to that lake. The value of using 

multivariate predictive models was that this gave a combination of predictors that were most 

significant when found together. For instance, for EWI, the presence of state launches on a lake 

put those lakes on the map for recreational boaters and anglers. Public launch sites were easier to 

monitor, so the fact that state launches were found to be highly correlated to the presence of EWI 

would be good news from a monitoring point of view.  (However, the presence of this predictor in 

the best models might also be due to the fact that there were more data available for this variable, 

because it was public, than for the private sites. Overall, considering the top predictors for EWI 

(distance to I-87, nearest invaded lake and state launch as well as lake elevation) are categorized 

as propagule pressure, it would be a starting point to help resource managers identify vulnerable 

lakes. It would require searching for all of these predictors, as a group, present for one lake and 

label it as vulnerable to that AIS. Resource managers could then set up monitoring for those 

identified lakes, to proactively prevent the spread by creating a protocol to protect them. The Park, 

specifically APIPP, already has several programs (i.e., boat wash stations, boat launch stewards, 

awareness programs, public signs and warnings) set up to manage AIS. The use of predictive 

models would help determine particularly sensitive areas that would benefit from these programs 

(APIPP, 2014; Shaker et al., 2017). For managing EWI, according to the repeating predictors in 

the top models, a low elevation lake with an abundance of mixed forest and developed open space 

in its riparian zone that is also close to an Interstate 87 exit with invaded lakes nearby, might be 

considered vulnerable to future EWI invasion. The other predictors that might increase the 

likelihood of EWI invasions were the presence of open water or lakes with low SHEI values.  Small 

amounts of deciduous forest around the lakes might also support EWI. Again, just like with CLP, 

the presence of these variables individually would not be as useful for predicting the presence of 

EWI as would using the models as a whole by grouping the predictors together. This illustrated 

how such an analysis can be used for managing IS and guiding decisions for future management 

plans within the Park.  
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Conducting a study like this that focussed on only two known AIS, showed differences 

between the two species that supported the need for running individual analyses. As it pertained 

to the use of these models for managing AIS, the ability to analyse the species separately may only 

be important if a particularly damaging species were found in an area and its spread required 

serious attention.  Otherwise, the distinctions between the known invaders may be of little or no 

help to resource managers, and in fact, they may even prefer a broader scope that would cover the 

majority of AIS with which they were concerned rather than spending resources (e.g. money) to 

fight individual species.  The significance here was that EWI was known as one of the most 

aggressive and damaging AIS and as such, finding a difference between it and another less 

damaging AIS (such as CLP) would allow more stringent actions against EWI (Buchan and 

Padilla, 2000; Martin and Valentine, 2014). Also, by analysing these species separately, it was 

evident that predictor variables could certainly be narrowed down if a particular species required 

more attention due to the damage it caused.  

The final objective for this study was to use GWLR to determine if this statistical method 

was useful for dealing with environmental issues.  Because spatial analysis was needed for 

ecological studies and standard statistical analysis had assumptions that were not always valid for 

spatially explicit data, traditional analysis might be less than ideal for environmental issues. Using 

GWLR for analysis of spatially varying data incorporated the regional variations into the multiple 

regression via the distance-decay and bandwidth size and thus allowed a more specific application. 

Using the lower AIC score as the better model with a difference of three between the two model 

types being considered a significant difference, there was enough information to declare the higher 

∆AIC score as a definite improvement. The comparison (for CLP) between traditional MLR and 

GWLR did not show much of an improvement which again could be because of the small sample 

size. GWLR analysis has been considered as more accurate as sample size increased 

(Fotheringham and Oshan, 2016). In fact, Fotheringham and Oshan (2016), felt that sample sizes 

for GWR in general should not be lower than 100 for accuracy. If samples were small, analysts 

felt the bandwidth would approach global and then using GWR would be meaningless. This was 

seen here with CLP. The bandwidth size approached 100% for four of the models (Table 5). The 

total number of lakes was over 100 (126 in total), but as the number of invaded lakes used to 

determine the relationships between the covariates was lower than the total of 126, the statistical 

accuracy might be affected. Conversely, EWI was present in more lakes and thus provided more 
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data on which to base the calculations.  EWI showed significant improvements for local models 

with ∆AIC scores for all five models greater than 5.07 which indicated that all of them were better 

models by incorporating regional variations with model four having the greatest improvement 

(∆AIC = 7.728). Thus, using GWLR analysis for predictive models with regional variation should 

show a more accurate association between the dependent and independent variables, providing 

suitable data and sample sizes were available. In summary, there should be more confidence in 

analysing predictive models using GWLR providing there was an appropriate sample size. 
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Chapter 7: Conclusion  

7.1 Limitations  

 This thesis focused on only two IS which resulted in smaller sample sizes for analysis than 

if all the AIS within the Park were used. This must be considered when using the findings for 

decision-making.  Looking at one species that was present in only a small percentage of monitored 

lakes, may not provide enough data for analysis, specifically when looking at correlations between 

the characteristics of the lake and the presence of that IS. The number of lakes invaded by CLP 

was only 14 out of the 126 monitored lakes, thus providing limited data points. This may explain 

why the results for CLP showed less significance than those for EWI.  However, even though the 

statistical findings for EWI, which had more invaded lakes than CLP, showed greater significant 

values, there were still significant predictors produced for CLP.   

 It is important to note that this thesis was specific to Adirondack Park in New York State. 

For management purposes this can be a limitation since the specific findings should only be applied 

to the lakes of that Park.  For instance, the significance of the lake elevation and the distance to I-

87 to the presence of both IS can be applied to the Adirondack Park area.  The same predictors 

would probably not play such a significant role in another natural resource area that had little 

variation in elevation and thus could not be assumed to relate to the presence of CLP or EWI in all 

areas. Never the less, the technique used and the process of using the predictors from that 

technique, could be applied to other areas if suitable data were available. With this technique, it 

was also important to use predictors from several of the top models (the top five) not just the single 

top model, since this would show which predictors were consistently present plus give other 

predictors for consideration. 

 In this thesis, several conclusions were explained using the available data (i.e. the strong 

impact of lake elevation or the lack of significance for human development within this Park).  

Other scientific studies (Trebitz, 2007; Capers et al., 2009; Francis and Chadwick, 2012) have 

found the presence of human development (agriculture, industry) as a key element in the success 

of IS in general and thus those characteristics were expected to provide greater correlations in this 

study. These variables were proxies for other lake and landscape characteristics (such as % 

agriculture represented nutrient loading). One important aspect of this thesis and its applicability 

to environmental management was to use data that were publicly available and thus easily 

accessed. Because only certain types of data were available, many metrics were proxies for other 
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areas of interest. This may have introduced a lower level of clarity in the statistical analysis but 

using proxies is an accepted practice as long as the relationship has previously been proven (Klein, 

1979; Wagner and Fortin, 2005; Dullinger et al., 2009; Shusky et al., 2009). In order to ascertain 

the connections, the variables used in this thesis were researched to ensure there were distinct 

connections that demonstrated these proxies were acceptable, and thus their use was justified (Roth 

et al., 1996; Dullinger et al., 2009). Other measures that might not be specifically found in publicly 

available data, such as information on native species or direct measures of water chemistry, might 

add layers of understanding to modelling for managing IS. However, the findings of this study 

were strong and definite correlations were produced while using the publicly available lake and 

landscape variables.  

7.2 Future Direction  

 This thesis was limited in the number of IS analysed and was specific to one Park, but it 

demonstrated the feasibility of using publicly available data in a methodology that could 

realistically be used for developing management strategies. This thesis also demonstrated that 

predictors could be found for specific IS that would allow those species to be targeted 

independently if they were particularly damaging.  By taking all the predictors found in the best 

models and searching for their combined presence in a lake (or near a lake), vulnerable lakes could 

be given higher priorities.  While this research supplied a group of predictors for both CLP and 

EWI, the next step would be to locate those lakes in the Park using the predictors. This would 

allow a practical application in fighting IS. Also, applying this methodology to the other AIS in 

the Park, the top predictors for all of them could be compared to find if the same overlapping 

predictors from this study (lake elevation and distance to I-87) showed strong correlations to the 

other AIS. If they did, then it would suggest that those predictors should definitely be given top 

priority when setting up management strategies. While the findings of this study were valuable 

there is still much work to be done, within the Adirondack Park to find predictors for the other 

AIS, as well as in other managed natural resources with data specific to those areas. This same 

model building could be expanded if other more specific data were available such as which native 

species were present, measures of water chemistry (especially related to pollution) or even 

evidence of climate change (water temperature) in efforts to fine tune the predictive ability. Even 

without adding other variables, the significance of the predictors established while using the 

publicly available data, was strong for those related to propagule pressure and human movement 
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within the Park. This gave valuable information that could be applied to management strategies 

right away to make protecting the vulnerable lakes more cost effective for the Park authorities. 

In conclusion, conducting multiple regression on variables found to be significant with 

bivariate analysis was used to build predictive models for managing invasive species spread.  This 

thesis met the objectives set forth with several significant findings that could be practically applied 

to establish pro-active policies for protecting lakes against IS to some degree. Using only those 

data that were publicly available from government organizations or environmental agencies 

provided clear predictors and established statistical relationships between the independent 

variables and the two different aquatic invaders studied. Using ordinary least squares regression 

to build the models produced thousands of models of which the five “best fit” models for each AIS 

of interest, CLP and EWI were analysed further. By building multivariate predictive models, a 

group of predictor variables were identified that when found together became strong predictors for 

the presence of the AIS studied.  These models gave clear indications of what characteristics might 

impact the ability of an AIS to access a lake as well as the lake conditions/characteristics that were 

strongly connected to either CLP or EWI. The predictors with the strongest correlation to CLP or 

EWI were those related in some way to propagule pressure. These were the distance from the I-

87, lake access (elevation for water flow, launch sites for boat access) and the presence of nearby 

lakes that were previously invaded. Because these related to propagule pressure and thus dispersal, 

the vectors (boats, fishing equipment, and human use of lakes) that were part of these predictors 

could be targeted by resource managers in efforts to limit the spread of these two AIS. There were 

still other predictors, such as developed open space for both AIS, percent mixed forest for EWI 

and the aggregation index for CLP that could also be used to identify potentially vulnerable lakes. 

The value of multivariate models was that lakes with all of the selected predictors could be 

specifically detected rather than a slew of lakes with a few individual variables identified by 

bivariate analysis. As the sample size increased, using GWLR produced a more accurate or better 

fit model compared to the global analysis. When determining the significance of the predictors, 

GWLR incorporated local variations for a more meaningful estimate. This also allowed for better 

spatial analysis overall since GWLR considered the heterogeneity present in environmental 

research that could be missed with traditional statistical approaches. 

 The data were used in this thesis to build predictive models with significant findings 

(especially for Eurasian watermilfoil), but it must be stressed that this type of analysis is best when 
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used within a specific area. Therefore, the predictors found significant in this study should not be 

used to identify vulnerable lakes in another conservation area, for example Algonquin Park in 

Ontario, Canada.  The same technique could be applied to local public data collected within 

Algonquin, and predictive models could then be built for that particular park. For instance, an area 

without human disturbance or recreational activity (no boats being transported between lakes) 

might have completely different predictors than those established by this modelling approach. This 

thesis did not find large correlations between the two AIS being studied (CLP and EWI) and 

environmental conditions or human disturbance as other studies found.  While this is important to 

acknowledge here and examine, it also emphasized that IS research using predictive models must 

be done on a regional level. There were several findings in this thesis that might be improved by 

using more specific data (water chemistry, agricultural management practices, etc.) in order to 

determine if other factors might be acting on the lakes that were not represented by the variables 

employed in this analysis. One key point from the guiding research question was to use data that 

were publicly available in order to demonstrate that simple but useful analysis could be undertaken 

using available data to identify predictors that would help prioritize lakes. This was accomplished 

as demonstrated by the findings. Once the lakes needing urgent attention were identified they could 

be protected against the aquatic invaders. The last objective was to investigate GWLR to determine 

its applicability to environmental studies and in particular to invasive species management. The 

evaluation was done by comparing the local GWLR values (AIC scores) which incorporated local 

variations, to the traditional global models that used multiple logistic regression. The findings from 

this study showed that if the sample size was suitable, GWLR models for EWI were definitely an 

improvement over the global models as established by a difference in the AIC scores that were 

greater than three. 

 The initial research question was answered by successfully establishing predictors that 

could be used by resource managers and it also developed a workable technique to determine the 

likelihood of either aquatic invader spreading to new lakes, but it should not stop there. While 

these findings were valuable, there is still much work to be done and more research required. With 

more modelling conducted, a broader list of predictors for AIS in general within the Park would 

be possible which would help with decision-making by natural resource managers working to slow 

the spread of AIS across the Park. Ideally, more studies like this could be used in other areas to 

manage invasive species despite limited funding.  
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Appendix A: Initial list of variables from Dr Shaker’s data set. (These were formatted and tested 

at the beginning of the study).  

Lake and Landscape 
variables 

Composition Metrics Landscape Diversity Metrics 

Boat Launch % Deciduous Forest PR 

State Launch % Mixed Forest PRD 

Campground % Evergreen Forest RPR 

Game Fish % Shrub Scrub SHDI 

Access type % Herbaceous SIDI 

Lake Elevation % Hay/Pasture SHEI 

Distance to I-87 % Cultivated Crop SIEI 

Perimeter (Km) % Emergent Herb Wetland MSIEI 

Perimeter (Mi) % Woody Wetland AI_DO 

Max Depth % Open Water AI_EF 

Min Depth % Barren Land PLADJ_DO 

Lake Area (Ha) % Developed High Intensity PLADJ_EF 

Area (Km) % Developed Med Intensity PLADJ_EF 

Area (Acres) % Developed Low Intensity ENNAM_DO 

Nearest invaded lake % Developed Open Space ENNAM_EF 

Distance to Census point  AreaM-DO 

Distance to populated area  AreaM-EF 

Population 2000   

PA-ratio   

Shape Length   

Shape Area   
Note: The transformed variables are in bold.  

Note: AI, aggregation index; PLADJ, percentage of like adjacency; AREA_AM, area-weighted mean 

patch area; ENN_AM, area-weighted mean Euclidean nearest neighbour distance; RPR, relative patch 

richness; SHDI, Shannon’s diversity index; SHEI, Shannon’s evenness index; SIDI, Simpson’s diversity 

index; SIEI, Simpson’s Evenness index; Game Fish indicated the number of game fish together. 
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Appendix B: Building models in SAM using the “model selection and multi-modal inference” 

tool 

B.1: The models built for curly-leaf pondweed (CLP) using all retained variables  
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B.2: The first few models built for Eurasian watermilfoil (EWI) using all retained variables 
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Appendix C: Analysis of first five models using Multiple Logistic Regression Analysis  

C.1: Results of multiple logistic regression for curly-leaf pondweed (CLP) 

 

Model 1 (3 Variables)  

 

 

Model 2 (5 Variables)  
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Model 3 (4 Variables)  

 

 

 

Model 4 (4 Variables)  
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Model 5 (6 Variables)  
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C2: Results of multiple logistic regression for Eurasian watermilfoil (EWI) 

 

Model 1 (8 Variables)  

 

    

 

Model 2 (8 Variables)  
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Model 3 (7 Variables)  
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Model 4 (7 Variables)  

 

 

 

Model 5 (7 Variables)  
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Appendix D: The statistical output using geographically weighted logistic regression in the 

GWR4 program - for the first five models of each aquatic invasive species 

 

 D.1: Statistical output from GWLR for curly-leaf pondweed (CLP) 

***************************************************************************** 
*             Semiparametric Geographically Weighted Regression             * 
*                         Release 1.0.90 (GWR 4.0.90)                       * 
*                               12 May 2015                                 * 
*                 (Originally coded by T. Nakaya: 1 Nov 2009)               * 
*                                                                           * 
*              Tomoki Nakaya(1), Martin Charlton(2), Chris Brunsdon (2)     * 
*              Paul Lewis (2), Jing Yao (3), A Stewart Fotheringham (4)     * 
*                       (c) GWR4 development team                           * 
* (1) Ritsumeikan University, (2) National University of Ireland, Maynooth, * 
*         (3) University of Glasgow, (4) Arizona State University           * 
***************************************************************************** 
 

Model 1: Curly-leaf pondweed (CLP)  

 
Program began at 4/16/2017 7:23:31 PM 
Model settings--------------------------------- 
Model type: Logistic 
Geographic kernel: adaptive Gaussian 
Method for optimal bandwidth search: Golden section search 
Criterion for optimal bandwidth: AICc 
Number of varying coefficients: 4 
Number of fixed coefficients:   0 
 
Modelling options--------------------------------- 
Standardisation of independent variables: On 
Testing geographical variability of local coefficients: On 
Local to Global Variable selection: OFF 
Global to Local Variable selection: OFF 
Prediction at non-regression points: OFF 
 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field11: clp 
Offset variable is not specified 
 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field15: GameFish 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field29: d_i87 
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***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   4 
Deviance:                             39.092896 
Classic AIC:                           47.092896 
AICc:                                      47.423475 
BIC/MDL:                              58.438024 
Percent deviance explained             0.555286 
 
Variable                  Estimate    Standard Error      z(Est/SE)        Exp(Est)   
-------------------- --------------- --------------- --------------- ---------------  
Intercept                  -3.831883        0.750591       -5.105152        0.021669 
GameFish                  1.093022        0.463071        2.360379        2.983276 
ElevatFt                    -0.876844        0.446930       -1.961926        0.416094 
d_i87                        -1.714018        0.704973       -2.431325        0.180141 
 
***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
 
Bandwidth search <golden section search> 
 Limits: 58,  126 
 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    58.000 Criterion:     47.157 
  p1            Bandwidth:    59.447 Criterion:     47.209 
  p2            Bandwidth:    60.342 Criterion:     47.218 
  pU            Bandwidth:    61.790 Criterion:     47.242 
 iter    1 (p1) Bandwidth:    59.447 Criterion:     47.209 Diff:      0.895 
 iter    2 (p1) Bandwidth:    58.895 Criterion:     47.157 Diff:      0.553 
Best bandwidth size 58.000 
Minimum AICc       47.157 
 
***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                   58.894582 
Coordinate                Min              Max           Range 
--------------- --------------- --------------- --------------- 
X-coord           477564.308000   636437.598000   158873.290000 
Y-coord          4773262.610000  4963309.550000   190046.940000 
 
  Diagnostic information 
Effective number of parameters (model: trace(S)):                          6.152986 
Effective number of parameters (variance: trace(S'WSW^-1)):      0.176094 
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Degree of freedom (model: n - trace(S)):                                 119.847014 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):           113.870122 
Deviance:                             34.110361 
Classic AIC:                           46.416333 
AICc:                                      47.156987 
BIC/MDL:                              63.867936 
Percent deviance explained             0.611966 
***************************************************************************** 
Program terminated at 4/16/2017 7:23:48 PM 

 

Model 2: Curly-leaf pondweed (CLP) 

 
Program began at 4/16/2017 7:25:41 PM 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field11: clp 
Offset variable is not specified 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field15: GameFish 
Independent variable with varying (Local) coefficient: field21: DevOSpMd 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field29: d_i87 
Independent variable with varying (Local) coefficient: field36: ai_do 
***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   6 
Deviance:                             37.136735 
Classic AIC:                          49.136735 
AICc:                                     49.842617 
BIC/MDL:                             66.154426 
Percent deviance explained             0.577539 
 
Variable                  Estimate    Standard Error      z(Est/SE)        Exp(Est)   
----------------        ---------------       ---------------    ------------      ---------------  
Intercept               -4.073254        0.904339       -4.504121        0.017022 
GameFish               1.152430        0.520637        2.213498        3.165875 
DevOSpMd             0.858927        0.642915        1.335989        2.360627 
ElevatFt                  -0.606886        0.523062       -1.160257        0.545045 
d_i87                      -1.893362        0.865518       -2.187549        0.150565 
ai_do                      -0.690319        0.883038       -0.781755        0.501416 
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***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
Bandwidth search <golden section search> 
  Limits: 62,  126 
 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    62.000 Criterion:     51.032 
  p1            Bandwidth:    86.446 Criterion:     50.406 
  p2            Bandwidth:   101.554 Criterion:     50.179 
  pU            Bandwidth:   126.000 Criterion:     49.840 
 iter    1 (p2) Bandwidth:   101.554 Criterion:     50.179 Diff:     15.108 
 iter    2 (p2) Bandwidth:   110.892 Criterion:     49.995 Diff:      9.337 
 iter    3 (p2) Bandwidth:   116.663 Criterion:     49.938 Diff:      5.771 
 iter    4 (p2) Bandwidth:   120.229 Criterion:     49.905 Diff:      3.567 
 iter    5 (p2) Bandwidth:   122.433 Criterion:     49.870 Diff:      2.204 
The upper limit in your search has been selected as the optimal bandwidth size. 
Best bandwidth size 126.000 
Minimum AICc       49.840 
***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                  126.000000 
Coordinate                Min                   Max                 Range 
---------------        ---------------       ---------------        --------------- 
X-coord           477564.308000   636437.598000   158873.290000 
Y-coord          4773262.610000  4963309.550000   190046.940000 
 
  Diagnostic information 
Effective number of parameters (model: trace(S)):                          6.742477 
Effective number of parameters (variance: trace(S'WSW^-1)):               -0.021306 
Degree of freedom (model: n - trace(S)):                                 119.257523 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):           112.493741 
Deviance:                             35.472302 
Classic AIC:                          48.957255 
AICc:                                     49.840133 
BIC/MDL:                              68.080820 
Percent deviance explained             0.596473 
***************************************************************************** 
 GWR Analysis of Deviance Table 
***************************************************************************** 
Source                 Deviance             DOF     Deviance/DOF 
------------          ----------------     - ---------- ---------------- 
Global model      37.137           120.000         0.309 
GWR model        35.472           112.494         0.315 
Difference             1.664               7.506         0.222 
***************************************************************************** 
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Program terminated at 4/16/2017 7:26:14 PM 

 

Model 3: Curly-leaf pondweed (CLP)  
Program began at 4/16/2017 7:27:06 PM 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field11: clp 
Offset variable is not specified 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field15: GameFish 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field29: d_i87 
Independent variable with varying (Local) coefficient: field30: AreaHaMd 
***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   5 
Deviance:                             36.787573 
Classic AIC:                          46.787573 
AICc:                                     47.287573 
BIC/MDL:                             60.968982 
Percent deviance explained             0.581511 
 
Variable                  Estimate    Standard Error      z(Est/SE)        Exp(Est)   
-------------------- --------------- --------------- --------------- ---------------  
Intercept                  -4.094107        0.845804       -4.840491        0.016671 
GameFish                    1.650865        0.645602        2.557094        5.211485 
ElevatFt                   -1.187299        0.521518       -2.276621        0.305044 
d_i87                      -1.733932        0.758635       -2.285595        0.176589 
AreaHaMd                   -0.863359        0.582180       -1.482975        0.421743 
 
***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
Bandwidth search <golden section search> 
  Limits: 60,  126 
 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    60.000 Criterion:     48.541 
  p1            Bandwidth:    85.210 Criterion:     48.022 
  p2            Bandwidth:   100.790 Criterion:     47.790 
  pU            Bandwidth:   126.000 Criterion:     47.440 
 iter    1 (p2) Bandwidth:   100.790 Criterion:     47.790 Diff:     15.580 
 iter    2 (p2) Bandwidth:   110.420 Criterion:     47.592 Diff:      9.629 
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 iter    3 (p2) Bandwidth:   116.371 Criterion:     47.565 Diff:      5.951 
 iter    4 (p2) Bandwidth:   120.049 Criterion:     47.493 Diff:      3.678 
 iter    5 (p2) Bandwidth:   122.322 Criterion:     47.451 Diff:      2.273 
The upper limit in your search has been selected as the optimal bandwidth size. 
Best bandwidth size 126.000 
Minimum AICc       47.440 
 
***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                  126.000000 
Coordinate                Min                  Max                   Range 
---------------          ---------------       ---------------      --------------- 
X-coord           477564.308000   636437.598000   158873.290000 
Y-coord           4773262.610000  4963309.550000   190046.940000 
 
  Diagnostic information 
Effective number of parameters (model: trace(S)):                          5.576769 
Effective number of parameters (variance: trace(S'WSW^-1)):               -0.114910 
Degree of freedom (model: n - trace(S)):                                 120.423231 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):           114.731552 
Deviance:                             35.672005 
Classic AIC:                          46.825543 
AICc:                                     47.439781 
BIC/MDL:                             62.642832 
Percent deviance explained             0.594201 
 
*********************************************************** 
Program terminated at 4/16/2017 7:27:29 PM 

 
Model 4: Curly-leaf pondweed (CLP)  
Program began at 4/16/2017 7:28:04 PM 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field11: clp 
Offset variable is not specified 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field15: GameFish 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field29: d_i87 
Independent variable with varying (Local) coefficient: field36: ai_do 
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***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   5 
Deviance:                             39.071736 
Classic AIC:                          49.071736 
AICc:                                     49.571736 
BIC/MDL:                             63.253146 
Percent deviance explained             0.555527 
 
Variable               Estimate      Standard Error      z(Est/SE)        Exp(Est)   
-----------------     ---------------     ---------------        -----------       ---------------  
Intercept            -3.814153        0.755003       -5.051838        0.022056 
GameFish            1.113367        0.485534        2.293077        3.044592 
ElevatFt              -0.888486        0.454797       -1.953589        0.411278 
d_i87                  -1.705212        0.703434       -2.424123        0.181734 
ai_do                  -0.100547        0.683028       -0.147208        0.904342 
 
***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
Bandwidth search <golden section search> 
  Limits: 60,  126 
 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    60.000 Criterion:     50.291 
  p1            Bandwidth:    85.210 Criterion:     50.057 
  p2            Bandwidth:   100.790 Criterion:     49.816 
  pU            Bandwidth:   126.000 Criterion:     49.566 
 iter    1 (p2) Bandwidth:   100.790 Criterion:     49.816 Diff:     15.580 
 iter    2 (p2) Bandwidth:   110.420 Criterion:     49.663 Diff:      9.629 
 iter    3 (p2) Bandwidth:   116.371 Criterion:     49.628 Diff:      5.951 
 iter    4 (p2) Bandwidth:   120.049 Criterion:     49.613 Diff:      3.678 
 iter    5 (p2) Bandwidth:   122.322 Criterion:     49.583 Diff:      2.273 
The upper limit in your search has been selected as the optimal bandwidth size. 
Best bandwidth size 126.000 
Minimum AICc       49.566 
***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                  126.000000 
Coordinate                Min              Max           Range 
--------------- --------------- --------------- --------------- 
X-coord           477564.308000   636437.598000   158873.290000 
Y-coord          4773262.610000  4963309.550000   190046.940000 
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  Diagnostic information 
Effective number of parameters (model: trace(S)):                          5.627171 
Effective number of parameters (variance: trace(S'WSW^-1)):     0.146752 
Degree of freedom (model: n - trace(S)):                                       120.372829 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):   114.598905 
Deviance:                              37.686496 
Classic AIC:                           48.940839 
AICc:                                      49.565641 
BIC/MDL:                              64.901083 
Percent deviance explained             0.571285 
***************************************************************************** 
Program terminated at 4/16/2017 7:28:26 PM 

 

Model 5: Curly-leaf pondweed (CLP)  

 
Program began at 6/14/2017 10:57:32 PM 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field11: clp 
Offset variable is not specified 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field15: GameFish 
Independent variable with varying (Local) coefficient: field21: DevOSpMd 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field28: MinDpMd 
Independent variable with varying (Local) coefficient: field29: d_i87 
Independent variable with varying (Local) coefficient: field31: NearDMd 
Independent variable with varying (Local) coefficient: field36: ai_do 
***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   8 
Deviance:                              29.058635 
Classic AIC:                           45.058635 
AICc:                                      46.289405 
BIC/MDL:                              67.748891 
Percent deviance explained             0.669434 
 
Variable                     Estimate       Standard Error      z(Est/SE)        Exp(Est)   
--------------------     ---------------        ---------------       ---------------   ---------------  
Intercept                 -6.036598        1.835230       -3.289288        0.002390 
GameFish                 1.313375        0.638236        2.057821        3.718703 
DevOSpMd              1.325874        0.879623        1.507321        3.765476 
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ElevatFt                   -0.711676        0.774867       -0.918449        0.490821 
MinDpMd                0.708141        0.725834        0.975624        2.030213 
d_i87                      -3.368972        1.497689       -2.249447        0.034425 
NearDMd               -1.547528        0.676546       -2.287394        0.212773 
ai_do                       -1.364563        1.226437       -1.112624        0.255492 
 
***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
 
Bandwidth search <golden section search> 
  Limits: 66,  126 
 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    66.000 Criterion:     46.345 
  p1            Bandwidth:    88.918 Criterion:     46.035 
  p2            Bandwidth:   103.082 Criterion:     46.060 
  pU            Bandwidth:   126.000 Criterion:     46.019 
 iter    1 (p1) Bandwidth:    88.918 Criterion:     46.035 Diff:     14.164 
The upper limit in your search has been selected as the optimal bandwidth size. 
Best bandwidth size 126.000 
Minimum AICc       46.019 
 
***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                  126.000000 
Coordinate                Min              Max           Range 
--------------- --------------- --------------- --------------- 
X-coord           477564.308000   636437.598000   158873.290000 
Y-coord          4773262.610000  4963309.550000   190046.940000 
 
  Diagnostic information 
Effective number of parameters (model: trace(S)):                          8.814509 
Effective number of parameters (variance: trace(S'WSW^-1)):                0.176785 
Degree of freedom (model: n - trace(S)):                                 117.185491 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):           108.547766 
Deviance:                             26.901236 
Classic AIC:                           44.530255 
AICc:                                      46.019427 
BIC/MDL:                              69.530689 
Percent deviance explained             0.693976 
 
***************************************************************************** 
Program terminated at 6/14/2017 10:58:35 PM 
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D.2: Statistical output from GWLR for Eurasian watermilfoil (EWI) 

 

Model 1: Eurasian watermilfoil (EWI) 
 
***************************************************************************** 
*             Semiparametric Geographically Weighted Regression             * 
*                         Release 1.0.90 (GWR 4.0.90)                       * 
*                               12 May 2015                                 * 
*                 (Originally coded by T. Nakaya: 1 Nov 2009)               * 
*                                                                           * 
*              Tomoki Nakaya(1), Martin Charlton(2), Chris Brunsdon (2)     * 
*              Paul Lewis (2), Jing Yao (3), A Stewart Fotheringham (4)     * 
*                       (c) GWR4 development team                           * 
* (1) Ritsumeikan University, (2) National University of Ireland, Maynooth, * 
*         (3) University of Glasgow, (4) Arizona State University           * 
***************************************************************************** 
Program began at 6/14/2017 10:42:10 PM 
Model settings--------------------------------- 
Model type: Logistic 
Geographic kernel: adaptive Gaussian 
Method for optimal bandwidth search: Golden section search 
Criterion for optimal bandwidth: AICc 
Number of varying coefficients: 9 
Number of fixed coefficients:   0 
 
Modelling options--------------------------------- 
Standardisation of independent variables: On 
Testing geographical variability of local coefficients: On 
Local to Global Variable selection: OFF 
Global to Local Variable selection: OFF 
Prediction at non-regression points: OFF 
 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field10: ewi 
Offset variable is not specified 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field18: StateLnc 
Independent variable with varying (Local) coefficient: field21: DevOSpMd 
Independent variable with varying (Local) coefficient: field22: DecForMd 
Independent variable with varying (Local) coefficient: field23: MixForMd 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field29: d_i87 
Independent variable with varying (Local) coefficient: field31: NearDMd 
Independent variable with varying (Local) coefficient: field33: shei 
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***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   9 
Deviance:                              81.145039 
Classic AIC:                           99.145039 
AICc:                                    100.696763 
BIC/MDL:                             124.671576 
Percent deviance explained             0.498338 
 
Variable                  Estimate       Standard Error      z(Est/SE)        Exp(Est)   
--------------------      ---------------      ---------------     ---------------    ---------------  
Intercept                 -1.291932        0.358256       -3.606169        0.274739 
StateLnc                   0.506364        0.312331        1.621241        1.659247 
DevOSpMd              0.863370        0.344310        2.507535        2.371138 
DecForMd               -0.404135        0.381201       -1.060163        0.667554 
MixForMd                0.549944        0.377532        1.456682        1.733156 
ElevatFt                   -0.686071        0.347090       -1.976633        0.503551 
d_i87                       -1.285287        0.619440       -2.074919        0.276571 
NearDMd               -1.265628        0.365716       -3.460686        0.282062 
shei                         -0.702619        0.372787       -1.884770        0.495287 
***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
Bandwidth search <golden section search> 
  Limits: 68,  126 
 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    68.000 Criterion:     97.098 
  p1            Bandwidth:    69.235 Criterion:     97.204 
  p2            Bandwidth:    69.998 Criterion:     97.204 
  pU            Bandwidth:    71.232 Criterion:     97.292 
The lower limit in your search has been selected as the optimal bandwidth size. 
A new sesssion is recommended to try with a smaller lowest limit of the bandwidth search. 
Best bandwidth size 68.000 
Minimum AICc       97.098 
***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                   68.000000 
Coordinate                Min                         Max                     Range 
---------------           ---------------         ---------------            --------------- 
X-coord           477564.308000     636437.598000   158873.290000 
Y-coord          4773262.610000    4963309.550000   190046.940000 
 
  Diagnostic information 
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Effective number of parameters (model: trace(S)):                               12.490323 
Effective number of parameters (variance: trace(S'WSW^-1)):               -0.289648 
Degree of freedom (model: n - trace(S)):                                               113.509677 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):           100.729707 
Deviance:                              69.122437 
Classic AIC:                           94.103083 
AICc:                                      97.098354 
BIC/MDL:                             129.529159 
Percent deviance explained             0.572665 
***************************************************************************** 
Program terminated at 6/14/2017 10:43:59 PM 

 

Model 2: Eurasian watermilfoil (EWI) 

 
Program began at 4/17/2017 1:12:25 PM 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field10: ewi 
Offset variable is not specified 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field18: StateLnc 
Independent variable with varying (Local) coefficient: field21: DevOSpMd 
Independent variable with varying (Local) coefficient: field22: DecForMd 
Independent variable with varying (Local) coefficient: field23: MixForMd 
Independent variable with varying (Local) coefficient: field25: OpenWatr 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field29: d_i87 
Independent variable with varying (Local) coefficient: field31: NearDMd 
***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   9 
Deviance:                              81.779462 
Classic AIC:                           99.779462 
AICc:                                    101.331186 
BIC/MDL:                            125.305999 
Percent deviance explained             0.494415 
 
Variable                  Estimate        Standard Error      z(Est/SE)        Exp(Est)   
--------------------    ---------------       ---------------       -------------     ---------------  
Intercept                -1.320941        0.365735       -3.611746        0.266884 
StateLnc                   0.518497        0.312657        1.658358        1.679502 
DevOSpMd              0.862415        0.340884        2.529937        2.368874 
DecForMd              -0.390381        0.402677       -0.969464        0.676799 
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MixForMd               0.457637        0.348287        1.313968        1.580336 
OpenWatr               0.592004        0.334532        1.769647        1.807607 
ElevatFt                  -0.680183        0.351591       -1.934587        0.506524 
d_i87                      -1.274427        0.616169       -2.068309        0.279591 
NearDMd               -1.195427        0.360790       -3.313357        0.302575 
 
***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
 
Bandwidth search <golden section search> 
  Limits: 68,  126 
 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    68.000 Criterion:     95.945 
  p1            Bandwidth:    69.235 Criterion:     96.081 
  p2            Bandwidth:    69.998 Criterion:     96.081 
  pU            Bandwidth:    71.232 Criterion:     96.229 
The lower limit in your search has been selected as the optimal bandwidth size. 
A new session is recommended to try with a smaller lowest limit of the bandwidth search. 
Best bandwidth size 68.000 
Minimum AICc       95.945 
***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                   68.000000 
Coordinate                Min              Max           Range 
--------------- --------------- --------------- --------------- 
X-coord           477564.308000   636437.598000   158873.290000 
Y-coord          4773262.610000  4963309.550000   190046.940000 
 
  Diagnostic information 
Effective number of parameters (model: trace(S)):                            12.465380 
Effective number of parameters (variance: trace(S'WSW^-1)):                0.181334 
Degree of freedom (model: n - trace(S)):                                                113.534620 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):           101.250574 
Deviance:                              68.030804 
Classic AIC:                            92.961564 
AICc:                                      95.944665 
BIC/MDL:                             128.316896 
Percent deviance explained             0.579414 
***************************************************************************** 
Program terminated at 4/17/2017 1:13:52 PM 
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Model 3: Eurasian watermilfoil (EWI)   
 
Program began at 4/17/2017 1:14:29 PM 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field10: ewi 
Offset variable is not specified 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field18: StateLnc 
Independent variable with varying (Local) coefficient: field21: DevOSpMd 
Independent variable with varying (Local) coefficient: field22: DecForMd 
Independent variable with varying (Local) coefficient: field23: MixForMd 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field29: d_i87 
Independent variable with varying (Local) coefficient: field31: NearDMd 
 
***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   8 
Deviance:                               85.135088 
Classic AIC:                          101.135088 
AICc:                                     102.365857 
BIC/MDL:                             123.825343 
Percent deviance explained             0.473670 
 
Variable                  Estimate       Standard Error      z(Est/SE)        Exp(Est)   
--------------------     ---------------     ---------------      --------------- ---------------  
Intercept                -1.179764        0.332505       -3.548106        0.307351 
StateLnc                 0.604725         0.298668        2.024742        1.830749 
DevOSpMd            0.785894         0.329135        2.387759        2.194369 
DecForMd            -0.537207         0.358025       -1.500475        0.584378 
MixForMd             0.314800         0.311652        1.010099        1.369985 
ElevatFt                -0.699359         0.331162       -2.111835        0.496904 
d_i87                    -1.142769         0.556764       -2.052518        0.318935 
NearDMd            -1.228873         0.346265       -3.548940        0.292622 
 
***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
 
Bandwidth search <golden section search> 
  Limits: 66,  126 
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 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    66.000 Criterion:     97.033 
  p1            Bandwidth:    67.277 Criterion:     97.101 
  p2            Bandwidth:    68.067 Criterion:     97.250 
  pU            Bandwidth:    69.344 Criterion:     97.399 
 iter    1 (p1) Bandwidth:    67.277 Criterion:     97.101 Diff:      0.789 
 iter    2 (p1) Bandwidth:    66.789 Criterion:     97.033 Diff:      0.488 
Best bandwidth size 66.000 
Minimum AICc       97.033 
***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                   66.789337 
Coordinate                Min                        Max                 Range 
---------------         ---------------            ---------------          --------------- 
X-coord          477564.308000      636437.598000    158873.290000 
Y-coord          4773262.610000   4963309.550000   190046.940000 
 
  Diagnostic information 
Effective number of parameters (model: trace(S)):                         11.327022 
Effective number of parameters (variance: trace(S'WSW^-1)):                0.168796 
Degree of freedom (model: n - trace(S)):                                            114.672978 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):           103.514753 
Deviance:                              71.921921 
Classic AIC:                           94.575964 
AICc:                                      97.032633 
BIC/MDL:                             126.702590 
Percent deviance explained             0.555358 
***************************************************************************** 
Program terminated at 4/17/2017 1:15:32 PM 

 

Model 4: Eurasian watermilfoil (EWI)    

 
Program began at 4/17/2017 1:16:15 PM 
***************************************************************************** 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field10: ewi 
Offset variable is not specified 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field18: StateLnc 
Independent variable with varying (Local) coefficient: field21: DevOSpMd 
Independent variable with varying (Local) coefficient: field23: MixForMd 
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Independent variable with varying (Local) coefficient: field25: OpenWatr 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field29: d_i87 
Independent variable with varying (Local) coefficient: field31: NearDMd 
 
***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   8 
Deviance:                               82.708095 
Classic AIC:                            98.708095 
AICc:                                       99.938864 
BIC/MDL:                             121.398350 
Percent deviance explained             0.488674 
 
Variable                      Estimate       Standard Error      z(Est/SE)        Exp(Est)   
--------------------       ---------------      ---------------      ---------------    ---------------  
Intercept                  -1.399836        0.370082       -3.782502        0.246637 
StateLnc                    0.542482        0.314668        1.723982        1.720272 
DevOSpMd               0.905590        0.333591        2.714675        2.473390 
MixForMd                0.502526        0.360166        1.395261        1.652891 
OpenWatr                0.683735        0.327019        2.090814        1.981264 
ElevatFt                   -0.713597        0.354157       -2.014919        0.489879 
d_i87                       -1.457844        0.607647       -2.399162        0.232738 
NearDMd               -1.262460        0.359271       -3.513945        0.282957 
 
***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
Bandwidth search <golden section search> 
  Limits: 66,  126 
 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    66.000 Criterion:     93.493 
  p1            Bandwidth:    67.277 Criterion:     93.520 
  p2            Bandwidth:    68.067 Criterion:     93.690 
  pU            Bandwidth:    69.344 Criterion:     93.842 
 iter    1 (p1) Bandwidth:    67.277 Criterion:     93.520 Diff:      0.789 
 iter    2 (p1) Bandwidth:    66.789 Criterion:     93.493 Diff:      0.488 
Best bandwidth size 66.000 
Minimum AICc       93.493 
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***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                   66.789337 
Coordinate                Min                        Max                    Range 
--------------- -        --------------          --------------- -            -------------- 
X-coord           477564.308000      636437.598000     158873.290000 
Y-coord          4773262.610000     4963309.550000   190046.940000 
 
  Diagnostic information 
Effective number of parameters (model: trace(S)):                         11.373791 
Effective number of parameters (variance: trace(S'WSW^-1)):               -0.193185 
Degree of freedom (model: n - trace(S)):                                         114.626209 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):           103.059233 
Deviance:                              68.267819 
Classic AIC:                            91.015401 
AICc:                                       93.492592 
BIC/MDL:                             123.274678 
Percent deviance explained             0.577948 
 
***************************************************************************** 
Program terminated at 4/17/2017 1:17:17 PM 

 

Model 5: Eurasian watermilfoil (EWI)   
Program began at 4/17/2017 1:17:51 PM 
***************************************************************************** 
 
Variable settings--------------------------------- 
Areal key is not specified 
Easting (x-coord): field13 : labx 
Northing (y-coord): field14: laby 
Cartesian coordinates: Euclidean distance 
Dependent variable: field10: ewi 
Offset variable is not specified 
Intercept: varying (Local) intercept 
Independent variable with varying (Local) coefficient: field18: StateLnc 
Independent variable with varying (Local) coefficient: field21: DevOSpMd 
Independent variable with varying (Local) coefficient: field23: MixForMd 
Independent variable with varying (Local) coefficient: field26: ElevatFt 
Independent variable with varying (Local) coefficient: field29: d_i87 
Independent variable with varying (Local) coefficient: field31: NearDMd 
Independent variable with varying (Local) coefficient: field33: shei 
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***************************************************************************** 
  Global regression result 
***************************************************************************** 
  < Diagnostic information > 
Number of parameters:                   8 
Deviance:                             82.266843 
Classic AIC:                          98.266843 
AICc:                                     99.497612 
BIC/MDL:                           120.957098 
Percent deviance explained             0.491402 
 
Variable                  Estimate       Standard Error      z(Est/SE)        Exp(Est)   
--------------------     ---------------     ---------------        ---------------   ---------------  
Intercept                -1.373714        0.359162       -3.824779        0.253165 
StateLnc                  0.512013        0.314891        1.626002        1.668647 
DevOSpMd             0.910937        0.336761        2.704999        2.486651 
MixForMd              0.583488         0.385819        1.512335        1.792279 
ElevatFt                 -0.706161         0.346278       -2.039287        0.493535 
d_i87                      -1.498644         0.602013       -2.489389        0.223433 
NearDMd              -1.342033         0.363572       -3.691241        0.261314 
shei                         -0.781710        0.367346       -2.127997        0.457623 
 
***************************************************************************** 
  GWR (Geographically weighted regression) bandwidth selection 
***************************************************************************** 
 
Bandwidth search <golden section search> 
  Limits: 66,  126 
 Golden section search begins... 
 Initial values 
  pL            Bandwidth:    66.000 Criterion:     94.629 
  p1            Bandwidth:    67.277 Criterion:     94.626 
  p2            Bandwidth:    68.067 Criterion:     94.771 
  pU            Bandwidth:    69.344 Criterion:     94.903 
 iter    1 (p1) Bandwidth:    67.277 Criterion:     94.626 Diff:      0.789 
Best bandwidth size 67.000 
Minimum AICc       94.626 
 
***************************************************************************** 
  GWR (Geographically weighted regression) result 
***************************************************************************** 
  Bandwidth and geographic ranges 
Bandwidth size:                   67.277174 
Coordinate                Min                     Max                  Range 
---------------        ---------------        ---------------          --------------- 
X-coord           477564.308000   636437.598000   158873.290000 
Y-coord          4773262.610000  4963309.550000   190046.940000 
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  Diagnostic information 
Effective number of parameters (model: trace(S)):                              11.240113 
Effective number of parameters (variance: trace(S'WSW^-1)):                0.190190 
Degree of freedom (model: n - trace(S)):                                                114.759887 
Degree of freedom (residual: n - 2trace(S) + trace(S'WSW^-1)):           103.709964 
Deviance:                             69.727344 
Classic AIC:                          92.207570 
AICc:                                     94.626354 
BIC/MDL:                           124.087699 
Percent deviance explained             0.568925 
**************************************************************************** 
Program terminated at 4/17/2017 1:18:48 PM 
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