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AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A
THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.



Speeding up calibration of Latent Dirichlet Allocation model to improve topic analysis

in Software Engineering

Master of Science 2017

Jorge Arturo López
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Abstract

Extraction of topics from large text corpuses helps improve Software Engineering

(SE) processes. Latent Dirichlet Allocation (LDA) represents one of the algorithmic

tools to understand, search, exploit, and summarize a large corpus of data (documents),

and it is often used to perform such analysis. However, calibration of the models is

computationally expensive, especially if iterating over a large number of topics. Our goal

is to create a simple formula allowing analysts to estimate the number of topics, so that

the top X topics include the desired proportion of documents under study. We derived

the formula from the empirical analysis of three SE-related text corpuses. We believe

that practitioners can use our formula to expedite LDA analysis. The formula is also of

interest to theoreticians, as it suggests that different SE text corpuses have similar

underlying properties.
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The values in brackets represent 90% confidence interval of the coefficients. . . . . . . . . 64

5.5 Linear regression models for slope term b̂ (flexible model:Equations 5.8 and 5.9). The

values in brackets represent 90% confidence interval of the coefficients. . . . . . . . . . . . 65

5.6 Linear regression models for b̂ (constrained model: Equations 5.12 and 5.13). The values

in brackets represent 90% confidence interval of the coefficients. . . . . . . . . . . . . . . . 67

5.7 Summary statistics for the RMSE: Dataset 1 . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8 Summary statistics for the RMSE: Dataset 2 . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1 Sample plots included in this appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.1 List of programs included in this appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Figures

2.1 Representation of a document as a vector of term frequency (tf)’s . . . . . . . . . . . . . 6

2.2 Clustering of three documents with a vocabulary of two words, adapted from [34] . . . . 8

2.3 Overlapping Clusters, adapted from [34] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Mixture of Gaussian probabilities representing topic proportions, adapted from [34] . . . 9

2.5 Mixture of topics in a document, adapted from [34] . . . . . . . . . . . . . . . . . . . . . 10

3.1 A fitting of a small piece of text processed with a Topic Model, adapted from [14] . . . . 13

3.2 Output of an LDA inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Representation of a generative process and the problem of statistical inference, adapted

from [78] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Example of one topic extracted from the issues of Science journal published between 1880

and 2000 (every 10 years as shown in [22], but shown every 40 years here). Top panel

shows the tracking of ten top words for this topic for a given year; and bottom panel

shows how the inferred probability of terms associated with this topic (that was labeled

with “neuroscience”by an analyst) varies throughout the years. Adapted from [22]. . . . . 20

4.1 Diagram of the Probabilistic Latent Semantic Analysis (pLSI) model without using plates

notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Diagram of the pLSI model using plates notation . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 LDA graphical model without using plates notation. . . . . . . . . . . . . . . . . . . . . . 32

4.4 LDA graphical model using plates notation, adapted from [14]. The components with the

dashed lines refers to the smoothed LDA model. φ is a multinomial distribution that is

sampled from a Dirichlet distribution with parameter β. This sampling occurs repeatedly

for each topic until K topics have been produced. . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Graphical model representation of the DTM, adapted from [13]. . . . . . . . . . . . . . . 34

4.6 Contour plots of different probability density (pd)’s when the weight of the distribution

(dark big point) is centred in a particular point. Adapted from [16] . . . . . . . . . . . . . 37

4.7 Dirichlet distribution with variations of α when weight of the distribution is distributed

on the plane between the three words, adapted from [16] . . . . . . . . . . . . . . . . . . 38

4.8 Dirichlet distribution with α < 1, increased pd at the corners of the simplex . . . . . . . 39

x



4.9 Word and topic simplex embedded, adapted from [14]. This geometrical representation

of the simplex considers 3 words and 3 topics. Looked perpendicularly from above, the

contoured lines represent a smooth distribution placed by LDA. The vertices of the word

simplex represent distributions with p = 1 while the ones of the topic simplex mean

different distributions over words. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.10 Diagram of the LDA variational model, adapted from [1] . . . . . . . . . . . . . . . . . . 44

5.1 Process of data for performing a LDA inference . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Probability per term for Topic 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Document frequency per term for topic 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4 Keywords vs idf for topic 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 LDA inference for topic 1 showing terms plotted against its idf and probability. . . . . . . 53

5.6 Time needed to compute (calibrate) LDA model for a given number of topics K (the input

data are Android subset, January 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.7 Fitted empirical data for X = 5, 10, 25, 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.8 Linear relation between log(F ) and log(K) breaks approximately at K > 200, example

for X=5,10,25, and 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.9 Summary statistics for the RMSE: Dataset 1. ‘Flex - simple’ uses Equations 5.6 and 5.8;

‘Flex - complex’ uses Equations 5.7 and 5.9. ‘Constr - simple’ uses Equation 5.12; ‘Constr

- complex’ uses Equation 5.13. ‘Ind. fit - flex’ shows RMSE for flexible linear model

(Eq. 5.4 fitted individually to every data subset), while ‘Ind. fit - constr’ depicts RMSE

for constraint linear model (Eq. 5.10 fitted individually to every data subset). . . . . . . 69

5.10 Summary statistics for the RMSE: Dataset 2. Flex - simple’ uses Equations 5.6 and 5.8;

‘Flex - complex’ uses Equations 5.7 and 5.9. ‘Constr - simple’ uses Equation 5.12; ‘Constr

- complex’ uses Equation 5.13. ‘Ind. fit - flex’ shows RMSE for flexible linear model

(Eq. 5.4 fitted individually to every data subset), while ‘Ind. fit - constr’ depicts RMSE

for constraint linear model (Eq. 5.10 fitted individually to every data subset). . . . . . . . 70

5.11 10-fold cross validation of the fit of the ‘Constrained - complex’ model (Equation 5.13). . 72

5.12 Performance of the constrained complex model for different values of X: Dataset 1. . . . 73

5.13 Performance of the constrained complex model model for different values of X: Dataset 2. 74

5.14 Performance of the constrained complex model for different values of N : Dataset 1. . . . 75

5.15 Performance of the constrained complex model model for different values of N : Dataset 2. 76

5.16 Performance of the constrained complex mode per dataset: Dataset 1. . . . . . . . . . . . 77

5.17 Performance of the constrained complex model per dataset: Dataset 2. . . . . . . . . . . 78

5.18 Fitting for a selection of top X using the constrained-complex model for Dataset 1 . . . . 79

5.19 Decision tree for selecting the best fitting model. The path to the best-performing model

is given by the dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



Chapter 1

Introduction

Latent Dirichlet Allocation (LDA) is a probabilistic model that can uncover common

topics within a group of documents (such as support tickets1 or defect descriptions),

based on the analysis of words extracted from these documents. LDA is employed in

a wide variety of areas, ranging from music [38] to robot learning [32]. LDA is gaining

popularity in the Software Engineering (SE) community, where it is used in a number of

areas including software maintenance [1], traceability [8, 49], a posteriori requirements

identification [38], and program comprehension [38]. LDA is attractive because it is

unsupervised, requiring no a priori annotations.

1.1 Motivation

Analysis of various SE-related text corpuses aids in Software (SW) development. For ex-

ample, analysis of artifacts created during development can improve SW traceability [9],

while mining text of defects and support tickets can help to understand which particular

features are causing users the most grief [1]. The former improves code comprehension;

the latter enhances business risk analysis, and prioritization of maintenance tasks. My

1Reports on specific problems in an issue tracking system, including their statuses and additional significant data that
are logged in a call center or help desk.

1
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work is motivated by my industrial experience in SW maintenance, resolving product

issues. A representative example is as follows. The software product was returning a

cryptic error message if it could not connect to the central data repository (which hap-

pened frequently). This error message triggered more than a 1,000 calls from confused

clients, overloading support personnel. This problem came to attention a month later,

when an analyst read (mined) thousands of support tickets opened within the last month

and identified a cluster of tickets associated with the error message. Fixing the problem

(thereby satisfying customers and relieving support personnel) was simple: the message

text was improved, and documentation associated with the message was enhanced. How-

ever, identifying the problem was laborious and time consuming. Other practitioners

report similar challenges [1]. To diagnose such problems, the analyst often needs to

identify a small set of topics containing a large portion of the documents, so that s/he

can recognize “key” topics: e.g., the analyst from our example sifted through thousands

of support tickets to find priority problem areas. Fortunately, automatic topic analysis

techniques, such as LDA [14] can expedite the process.

1.2 Research Statement

Selecting the optimal number of topics to be identified in the LDA model determines

greatly its performance and outcome expected [39]. Thus, the problem can be described

as follows: an analyst needs to pick K, such that top X topics would contain a certain

fraction F of the documents. For example, pick the value of K, such that top 5 topics

would contain 80% of all the support tickets under study. This outcome can be achieved

by iterating over the values of K until reaching the desired outcome. This process,

however, is resource-intensive.

Probabilistic Topic Models (TMs), such as LDA, require to be provided with the value

2
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of number of topics K. Internally, the model also needs two additional parameters: α

and β, that are calculated automatically for each parameter K [8]. It is known that

the processing time, necessary to find the optimal values of K by iterating, grows expo-

nentially [85]. Therefore, this thesis addresses the following research question: How

can we quickly select the number of topics K so that the top X topics include a certain

fraction F of the N documents under study?

1.3 Novelty and contribution

We are proposing a formula to quickly estimate K in LDA by means of X, F , and N ,

which would be invaluable in the realm of software system development and maintenance.

For example, practitioners can use the formula to determine a short-list of the most

frequently reported product field failures, which, in turn, can inform their decisions

regarding corrective product maintenance; businesses can identify the most frequently

reported user issues in order to inform their decisions regarding product evolution, and

risk analysis; management can obtain a more definitive answer to the question “how many

problematic areas does the product contain?”, rather than an answer such as “somewhere

between 5 and 100 depending on the granularity”.

1.4 Organization

The chapters are organized as follows:

1. In Chapter 2, we provide the background for progressing into the subject matter of

this thesis.

2. In Chapter 3, we perform a review of the available information that we deem to be

more relevant to embrace TMs and LDA.

3



CHAPTER 1. INTRODUCTION 1.4. ORGANIZATION

3. In Chapter 4, we present the foundations of the LDA, its evolution and inner work-

ings.

4. In Chapter 5, we show how the LDA model works using data from a Q&A reposi-

tory, and we also propose the development of a formula to calibrate it. This involves

readily calculating K (number of topics to be extracted with LDA) using this for-

mula.

5. Finally, in Chapter 6, we outline the ideas of this thesis and identify directions of

future work.

4



Chapter 2

Background

This chapter serves as a preamble for further discussing TMs. Here, we will review basic

but important concepts that will allow us to better understand the focus of this thesis.

The review does not intend to be exhaustive, but only at a level of detail that help us to

understand further discussions. These concepts vary from the term frequency - inverse

document frequency (tf-idf) scheme to mixture models.

2.1 Document Representation

One method for representing a document is simply as a vector of word counts, for example,

let us suppose that we have a document containing just one phrase. After we perform

stop word removal and word stemming, we annotate underneath of each word its count

(tf) (See Figure 2.1). This concept was introduced in the 50’s [56] followed by a term

weighting function called (inverse document frequency (idf)), introduced in the 70’s [69].

Commonly, documents are described in terms of the topics they represent. For exam-

ple, documents on databases would contain several words, such as “table”, “create”, or

“select”. The purpose of the tf-idf scheme is to find important words in the text corpora.

Salton and McGill introduced this scheme in 1983 [72]. They defined tf-idf as the mea-

sure of how significant a term in a text corpus is. This significance can be understood as
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Figure 2.1: Representation of a document as a vector of tf’s

the concentration rate of the term into relatively short quantity of documents.

The idf [25] is defined by equation (2.1), where N is the total number of documents in

the corpus with N = |D|. The term {d ∈ D : t ∈ d} represents the number of documents

where the term t appears (i.e., tf(t, d) �= 0). The tf-idf is given by tf×idf. The higher

the tf-idf score, the more important this word is for describing the document.

idf(t,D) = log
N

{d ∈ D : t ∈ d} . (2.1)

The applications of the tf-idf scheme are numerous. Ramos [67], exemplifies the use

of tf-idf for deciding which terms are more favorable to include in a query. Terms that

possesses a high tf-idf indicate that they have a strong relationship with the document

where they are located. Therefore, this may imply that if those terms are shown in the

query would catch the attention of the user.

Berger et al. [11] proposed several tf-idf based algorithms. For instance, one in-

cludes enhancements to improve tf-idf performance and another one implements statis-

tical translation.

Even though it was widely used, tf-idf didn’t include sufficient reduction in description

of terms length and provided limited document information on statistical structure.
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2.2 Document clustering

Clustering textual documents refers to grouping related documents. Unlike a multiclass

classification problem (which is a supervised learning task, where we would like to label

what a new article is about, and labels are provided in the training examples), the

problem of clustering is an unsupervised learning task that consists in uncovering the

cluster structure from data input alone [34].

One of the simplest algorithms for clustering is K-means. Here a dataset is divided

in K different and non-overlapping clusters. Let us consider C1 . . . CK clusters, then two

conditions must be met:

1. C1 ∪C2 ∪ . . .∪CK = 1, . . . , n meaning that each observation belongs to at least one

of the CK ,

2. CK ∩ CK′ = 0, ∀K �= K ′.

In this algorithm, the data points are scored by determining its distance from the center

of the cluster in question [50].

As documents can be represented as vectors (Xi) we can consider to cluster a collection

of them (Zj). Supposing that our vocabulary consists of only two words for simplicity,

then the collection of documents can be clustered as Figure 2.2 indicates. Let us call

these clusters, topics. I.e., we can say that Topic 1 is cluster 1, Topic 2 – cluster 2, and

so on. Moreover, we may label them according to the semantic contents of the topic;

in this case we may say (not the algorithm) that topic 1 is about “Computer Science”,

topic 2 is about “Genetics”, etc.
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Figure 2.2: Clustering of three documents with a vocabulary of two words, adapted from [34]

2.3 Mixture models

In order to illustrate the reason for using a probabilistic model, let us exemplify the

concept of uncertainty in cluster assignments using the K-means algorithm. In Figure

2.3, it is unclear if observation xi belongs to cluster 1 or cluster 3. The overlapping among

the clusters represent uncertainty areas, where we are not positive about the assignment

of an observation xi to a particular cluster.

A mixture model is a probabilistic model that in our case represents the topics of a

document as a combination of weighted Gaussian distributions. For instance, let us create

a mixture of Gaussian distributions with the respective topic probabilities: π1=0.55,

π2=0.27, and π3=0.18 (chosen arbitrarily), represented by the vector π = [0.55, 0.27, 0.18]

for K=3, where 0 ≤ πi ≤ 1 and
∑K

i=1 πi = 1 [34, 42]. This mixture is shown graphically

in Figure 2.4.
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Figure 2.3: Overlapping Clusters, adapted from [34]

Figure 2.4: Mixture of Gaussian probabilities representing topic proportions, adapted from [34]
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Figure 2.5: Mixture of topics in a document, adapted from [34]

2.4 Mixed Membership Modeling

In the context of document analysis, we have seen that clustering captures the topics

that permeate a text corpus in which every document is assigned only to one topic (hard

assignment). However, very often, the case is that a document represents more than one

topic. We need models that are able to capture the uncertainty when a document may

belong to several topics (soft assignment), see Figure 2.5. In that case, the document

has membership in topics 1,2,3 and 4, also the relative proportion of occurrence for each

topic is captured.

Such models that allow to associate any document with a set of topics are known as

mixed membership models [18].

2.4.1 Bag of words

Let us consider the case where we extract all the words that are present in a given

document. The order of these words are unimportant. Given that this collection of
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words may contain multiple occurrences of a unique word we call this a multiset. This

representation of a document is called a Bag-of-words (BoW) [88].

2.4.2 Prior probability

We need a clustering model for this BoW document representation. This is where the

prior probability (prior) comes into play, as we do need to specify the prior that a given

document is related to a specific topic. We express the prior in Equation 2.2 below.

It poses the question: what is the probability that the observed word is from topic K

(without observing the document content)?

p(zi = K) = πK , (2.2)

where zi is the topic assignment vector, K is the topic number, and π = [π1, π2, . . . , πK ]

represents the corpus-wide topic prevalence.

In the BoW model representation the words of each document in the collection are

going to be assigned a probability of occurrence within each uncovered topic. In this

way, we will obtain topic probability vectors over words. For example, if K=4, z1 =

(0.6, 0.25, 0.15), z2 = (0.8, 0.12, 0.08), z3 = (0.9, 0.08, 0.02) and, z4 = (0.5, 0.33, 0.17).

Each vector component corresponds to the probability of occurrence of the wi in zK .

Note that the vectors elements are ordered in decreasing order of probability. For details

see [34].

Moreover, we can ask: what is the likelihood of seeing xi, given that the observation

xi ∈ topic K? This can be expressed as: p(xi|zi = K,μK ,ΣK) = N(xi|μK ,ΣK), where

N(·) is the Normal distribution with parameters μK (mean) and ΣK (covariance matrix).

For more information on statistical and probability concepts, see [71].
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Chapter 3

Literature Review

Information Retrieval (IR) using Probabilistic Topic Models, and in particular LDA, is a

relative new area of research in machine learning [17]. In the following sections, we review

the concept of TMs and their evolution from the tf-idf scheme to the LDA model. We

also discuss the selection of number of topics in LDA and take a look into its applications,

inside and outside the realm of SE.

3.1 Probabilistic Topic Models

The basic idea behind TMs is that, given a large unstructured text, the hidden topics are

discovered. TMs are directed to answer the question: “what is this text talking about?”.

This concept is illustrated in Figure 3.1 using a toy example (as the text analyzed may

contain billions of words [74]). Here, each of the words from the text is assigned to a

topic, i.e., a list of related words on the same subject. The output of a TM is the most

likely words per each of the most likely topics. We will see later that the number of topics

and the number of words are parameterizable.

A more formal definition of TMs, as per [14, 78], is that they are a set of machine

learning techniques aimed to extract the thematic structure in a massive collection of

documents. These are IR / Data Mining (DM) techniques that use the texts latent
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Figure 3.1: A fitting of a small piece of text processed with a Topic Model, adapted from [14]

information for clustering the documents; i.e., grouping them according to the similarity

found amongst them.

The above mentioned techniques are algorithms that represent statistical methods to

discover, and annotate hidden thematic structure of high volumes of information. All of

them follow the same essential concept: a document is a mixture of topics and a topic is a

probability distribution over words. A TM represents a generative model for documents

[78], given that it stipulates a probabilistic procedure that generates documents. In order

to generate a new document, we select a distribution over topics. Following this action,

for each of the terms in that document, we select a topic randomly in accordance with

this distribution, and then we choose a term from that topic. By applying statistical

methods (such as statistical inference) we are able to reverse this process, and deduce

the collection of topics that generated the set of documents. In Table 3.1, we show a real

inference of five topics that we extracted from the DBA Q&A forum in stackexchange.com

using the LDA TM. At the time of extraction, this collection consisted of over 50,000
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Table 3.1: Example of obtaining 5 topics and 20 keywords using LDA from the dba.stackexchange.com
corpus

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5

keyword prob. keyword prob. keyword prob. keyword prob. keyword prob.
server 0.022 index 0.021 tabl 0.044 select 0.023 server 0.018
databas 0.021 row 0.021 null 0.025 date 0.016 databas 0.016
mysql 0.018 queri 0.018 key 0.017 name 0.014 sql 0.014
user 0.013 tabl 0.015 select 0.014 dbo 0.014 use 0.013
use 0.013 select 0.014 creat 0.013 end 0.011 tabl 0.013
sql 0.012 time 0.012 name 0.013 valu 0.011 file 0.013
connect 0.012 use 0.011 column 0.013 sys 0.009 data 0.012
log 0.011 order 0.008 valu 0.012 sql 0.008 innodb 0.012
error 0.011 join 0.008 use 0.011 join 0.008 log 0.011
can 0.010 column 0.007 user 0.010 error 0.008 size 0.010
file 0.009 read 0.007 insert 0.010 set 0.007 can 0.010
master 0.009 product 0.006 row 0.009 object 0.007 queri 0.009
replic 0.008 can 0.006 int 0.009 null 0.006 mysql 0.008
set 0.008 data 0.005 can 0.008 declar 0.006 run 0.007
run 0.007 plan 0.005 data 0.008 type 0.006 will 0.007
creat 0.007 cost 0.005 queri 0.007 count 0.005 transact 0.006
oracl 0.007 date 0.005 default 0.007 procedur 0.005 page 0.006
slave 0.006 scan 0.005 varchar 0.007 varchar 0.005 buffer 0.006
tri 0.006 one 0.005 type 0.007 max 0.005 read 0.006
data 0.006 updat 0.005 primari 0.007 order 0.004 time 0.005

Q&A entries. Here we selected the first 20 keywords (terms) for 5 topics in which they

have the highest probability of occurrence under each topic. The keywords of the topics

are all related to databases. For instance, for topic 1, the arrangement of the output

keywords suggests that the main issue expressed by the users, which posted in this forum

(approximately 3,500 posts/ documents in topic 1 for year 2014), is related to how they

can connect to the Database Management System (DBMS).

With topic models, we are able to represent a text corpus as a collection of topics that

are individually interpretable. These topics provide a probability distribution over terms

that discerns clusters of coherent words [20, 78].

Figure 3.2 shows the general output of an inference performed with a TM (such as

LDA), which is a matrix Mk,t, where K are the keywords (rows) and t are the topics
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Figure 3.2: Output of an LDA inference

(columns), where p(Ki) ≥ p(Ki+1) and p(ti) ≥ p(ti+1).

3.2 Generative Models

A probabilistic topic model is a stochastic model that indicates how it is possible to

generate keywords in documents based on latent (i.e. random) variables [78]. The purpose

of performing an inference is to uncover the hidden variables that are able to explain the

observed ones.

In Figure 3.3 (a) our toy example explains how documents can be generated using a

TM. We have only two topics related to 1 (birds) and 2 (machinery). The containers rep-

resent BoWs [31]. The first drawing represents three documents that express a different

distribution over words. For instance, the documents generated (1 and 3) were sampled

exclusively from topic 1 and topic 2 and then the keywords from these documents have

p = 1.0 1 of coming from these topics, however, document 2 was generated from a mix-

1The value of p is chosen at random, and for illustration purposes
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Figure 3.3: Representation of a generative process and the problem of statistical inference, adapted from
[78]

ture of topic 1 and topic 2. This means that the keywords generated in each document

had p = 0.5 footnote[1] of coming from any of the two topics. In Figure 3.3 (b), we are

concerned with knowing what are the topics that may have generated the documents,

given the observed terms. This is the problem of statistical inference: how to derive the

probability distribution over words for each topic, the distribution over topics with each

topic, and additionally determining the topics that generated each of the terms? Note

that the numbers above the words in the documents indicate what is the topic that sam-

pled the word. TMs are able to capture polysemy. For example in Figure 3.3, the term

crane can refer to a bird or to a machinery, and both topics can assign high probability

to them.
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3.3 Evolution of Topic Models

In this section we discuss the progression of TMs from the tf-idf scheme, to the Latent

Semantic Analysis (LSI), to the pLSI, and to the LDA model.

• Latent Semantic Analysis (LSI) was presented by S. Deerwester [28] in 1990.

It is a well-known method for indexing and retrieving the hidden latent semantic

structure of terms in a text corpus. LSI was created as a response to deal with the

deficiencies of the tf-idf scheme.

This model handles the problem of synonymy and polysemy, by collecting infor-

mation on the semantic content of the documents, not solely on their words. LSI

achieves this by implementing the Singular Value Decomposition (SVD) [53, 83] of

the large matrix containing term-by-document elements that represents a document

collection in an Information Retrieval system.

The latent space of topics in the corpus (i.e., the vector space where the topics are

found by the TM) is discovered by using word co-occurrence (i.e., the degree of

semantic similarity in documents of the text corpus) [52]. For instance, consider a

fragment of the Internet indexed by Google where the term “Database Design” will

be close in the latent space for a pair of documents that contain related terms on

the subject. However, within an intranet of a software development company two

documents will be related exclusively if they share several terms.

Even though LSI represents an advance in the probabilistic modeling of text, it still

does not take into account the probabilistic model at the level of corpus.

• Probabilistic Latent Semantic Indexing (pLSI) was introduced by Hoffman

[24, 46, 47, 64] in 19992. The pLSI differs from the LSI in that it offers a sound

2pLSI model is also known as the aspect model.

17



CHAPTER 3. LITERATURE REVIEW 3.4. LDA MODEL

statistical foundation. This means that it is based on the likelihood principle [11],

which details a generative model for generating the words in the documents of the

text corpora.

pLSI models each term in a document as a sample that comes from a mixture model.

The mixture is represented by the topics (random multinomial variables) modelled

as a probability distribution of a fixed collection of topics.

pLSI represents a good method for text analysis. However, it possesses two deficien-

cies [14]: 1) it consists of a large number of parameters that grow with the size of

the corpus (and may lead to another major problem: overfitting), 2) it is not well

known how to assign probability to a document that is not contained in the training

set.

3.4 LDA model

LDA is the most popular modern TM and is the focus of our discussion. LDA was

developed by Blei, Ng, and Jordan in 2002 [6, 13, 14].

LDA is a generative probabilistic model. The ideas behind it are as follows:

• Treat the data from observations arriving from some sort of general probabilistic

process, including the structure that we want to find in the data (i.e., hidden vari-

ables) that for documents reflect the thematic structure of the collection to which

we do not have access.

• Infer the hidden structure by using posterior inference. This refers to the calculation

of the conditional distribution of the hidden variables, given the documents under

study.

• Allows situating new data into the estimated model.
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Therefore, topic models such as LDA, help us to discover topics in a corpus. A

topic is a distribution over terms. For example, let us consider an article (i.e. corpus),

the different words that compose this corpus are related to a set of topics. Each topic

represents a distribution over terms in the vocabulary, and different topics have different

words with different probabilities. LDA is used in a broad range of applications covering

audio, imaging, computer code, and social networks (please see section 3.7 for more

information). In addition, to supply the corpus that we want to analyze with the model,

we also need to provide K, which is the number of top topics to be identified.

3.5 Dynamic Topic Models

Unlike static LDA, where it is assumed that the order of the documents to be modeled

does not matter, the Dynamic Topic Model (DTM) approach assumes that topics change

over time. In this model, the order of the documents is respected, and instead of being

a single distribution over words, topics become a sequence of distributions over words.

With DTM it is possible to track how a particular topic changes over time [17, 22]. An

illustration of a DTM can be seen in Figure 3.4.

3.6 Selection of the number of topics

Selecting the number of topics (K) in the LDA model determines greatly its performance

and outcome expected [39], hence the problem identified is as follows: An IT practitioner

needs to discover a minor collection of issues including a broad fraction of documents.

This need can be formally expressed as determining the value K, in such a way that the

top X topics include a portion of the documents. This is challenging, because optimal

K values may vary by research domain, and topic specificity increases with K.

Probabilistic topic models, such as LDA, require to be provided with the value of

19



CHAPTER 3. LITERATURE REVIEW 3.6. SELECTION OF THE NUMBER OF TOPICS

Figure 3.4: Example of one topic extracted from the issues of Science journal published between 1880
and 2000 (every 10 years as shown in [22], but shown every 40 years here). Top panel shows the tracking
of ten top words for this topic for a given year; and bottom panel shows how the inferred probability of
terms associated with this topic (that was labeled with “neuroscience”by an analyst) varies throughout
the years. Adapted from [22].
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number of topics K. Internally the model also needs two additional parameters α and

β that need to be calculated for each parameter K [14]. There is limited work made on

the selection of the number of topics. Many authors, such as Grant and Cordy [38] and

Taddy [79], recognize this challenge. Wang et al. [85] point out that the processing time

necessary to find the optimal values of this parameter by iterating may be very large.

Taddy [79] identifies three methods for learning the number of topics from data. The

first one is Cross-Validation (CV), the second one is non-parametric model such as Hier-

archical Dirichlet Process (HDP), the third one is marginal likelihood. Cross Validation

(CV) is considered to be the most common method selected by researchers. More specif-

ically, n-Fold CV is a technique to evaluate the performance of the prediction model.

Here, the data is split into n segments of about the same size for training while reserv-

ing a portion of data (held-out data) for testing purposes. Then the model is repeatedly

learned on the training sets data, and evaluated based on their goodness-of-fit to held-out

test data, where fitness is based upon a statistical measure, such as perplexity or likeli-

hood. Models are evaluated for several K values, and the one with the best fit is selected

[2, 45]. However, CV is not a large scale method and the statistical/error information

that it provides may be difficult to understand [42]. In the non-parametric technique,

hierarchical Dirichlet processes [80], infer the number of topics automatically [45]. In

marginal likelihood, the problem of selecting the optimal K becomes an optimization

problem to maximize the log likelihood of the data, addressed by using a variational

expectation-maximization procedure [14].

Additional techniques that researchers have developed include: Arun et al. [7] who

propose a measure for selecting the correct K based on viewing LDA as a matrix factor-

ization mechanism and computing the Kullback-Leibler divergence (KL), and Greene et

al. [40] who propose a term-centric stability analysis strategy.
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Heuristics is another way to determine the number of topics. Here, researchers identify

K with “prior knowledge” of the domain [19]. For example, Zhao et al. [92] proposes

a method based on the analysis of variation of statistical perplexity [51] during topic

modeling.

In practice, researchers typically employ prior knowledge or CV to select K. Some

using prior knowledge do not elaborate on their rationale for choosing K, as in [86],

where K= 5 topics is used to categorize developer interactions. Others provide some

justification; for example, to study topics in the Q&A Website Stack Overflow, Barua et

al. [10] chose K= 40 to provide topic sets with medium granularity which implies that

the topics represent the general tendency in the data set, while staying different from each

other. Yet others report using a similar rationale, but experimenting with several values

for K before settling on the optimal value. Some determine the optimal value based on

manual inspection from among the experimental K values, as having the best quality

topic set [1]. Others employ CV to determine the optimal K. For example, to predict

customer behaviours, values of K from 5 to 18 are used on two datasets, with 3- and 4-

fold CV, respectively [59]. Each fold’s optimal K is identified using the log-likelihood,

and one final K for a dataset is calculated as the average over its folds.

In some situations, the optimal K is identified using an oracle. This occurs when

the topic model itself is being studied by evaluating its ability to uncover topics and

relationships which are known in advance. In such work, e.g. [37, 63, 82], models are

created for various values of K, and an optimal model is selected as the one being most

accurate according to the oracle.

CV is the most advocated means of model selection, and thus determination of opti-

mal K value [45]. In fact, Arcuri and Fraser argue that n-fold CV is a precondition of

achieving scientifically-sound results [5]. For the researcher wishing to use LDA, perform-

22



CHAPTER 3. LITERATURE REVIEW 3.7. APPLICATIONS OF LDA

ing n-fold CV is often impractical: it is resource-intensive, and the functionality is not

available in any toolkit. Acruri and Frasier note that few SE researchers attempt CV;

most simply select the model (and thus K value) based on the entire pool of data, calling

into question the validity of the results [5] . Without a practical means of performing

CV, the researcher must rely on guidelines and heuristics. Such guidance for selecting

K is crucial for LDA, since its performance is particularly sensitive to the value of K

chosen [45], and there is no single value of K that is appropriate in all situations and all

datasets [38, 84].

Selecting quickly the value for K is the objective that we would like to tackle in this

thesis.

3.7 Applications of LDA

LDA is ubiquitous and is used in many research fields. For example, for finding patterns

in music [44]. In population genetics it is leveraged to discover ancestral populations

[17, 33]. In computer vision, for classification and organization of images, where they are

analyzed to became collections of “visual words” [17] including analysis of video [87, 88].

In bioinformatics, where the job of the TM is focused on three major tasks: biological

data clustering analysis, biological data classification, and biological feature extraction

[54]. We will now focus on applications of LDA in the area of SE. We shall note that

the application categories explained may overlap between each other (i.e., both Feature

Location Technique and Software Traceability have a goal to automate the comprehension

of SW artifacts).
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3.7.1 Bug localization

This is one of the most common tasks in SE. Here the developers use information about

a bug in order to identify the faulty code where the bug resides. Once this have been

achieved, they can work on its resolution. There have been previous efforts in IR-based

bug localization. For instance LSI-based techniques have been used in source code re-

trieval that include clustering and feature location [60], however it has been proved that

LDA-based technique is more effective [57]. Lukins et al. [58] have proposed a LDA-

based technique that performs automated bug localization on Agile software. Essentially,

a model is created using LDA by inputting the issue descriptions in the Issue Tracking

System (ITS). With the model created, a query (made by the developer debugging the

code) based on the issue description of the bug that needs to be fixed, inquires the model

and provides the probable location of the piece of code that needs to be fixed. We should

note that the query for finding the bug is as effective as the developer debugging the code

that creates it. An experienced developer will yield to better results that will outline the

bug in a query. Bug localization automation may decrease the costs associated with

maintaining SW (i.e., developer effort).

3.7.2 Software traceability

With the growing complexity of SW systems, automated SW traceability has become an

essential function in SE. In large companies SW projects often comprise of thousands of

SW artifacts (i.e, source code, analysis and design documents, test plans and test cases,

bug reports, etc.). The objective of Software Traceability is to identify the relationships

amongst these artifacts. Basically, SW traceability creates a cross-reference (by means of

links) between the SW and the artifact (e.g., linking source code to use cases). Asuncion

et al. [9] identify two categories of SW traceability: retrospective traceability (that
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takes place retroactively in static sets of artifacts) and prospective traceability (that

takes place on-line, at the moment the artifacts are being produced). They propose a

prospective traceability technique based on LDA. Gethers et al. [37] propose an approach

that combines orthogonal Information Recovery techniques to recover traceability links

in software artifacts.

3.7.3 Feature Location

LDA-based Feature Location Technique (FLT) has the purpose of finding the source

code that implements certain functionality. SW systems suffer continuous code changes

to adapt to new functionality. Typically, a developer — who is new to the SW — will

struggle trying to comprehend it, so s/he can identify the part of the source code where the

change needs to be implemented. Given that by using FLT the effort that the developer

spent in this task is decreased, the SW cost will also do so. A study of LDA-based

FLT is provided by Biggers et al. [12], in which they measure the performance effects of

implementing FLT on several Java systems. For a detailed analysis and categorization

study of FLTs see [30].

3.7.4 Source code labeling

It is intended to assist the developer in understanding source code with labels, for in-

stance, software visualization tools or a collection of representative terms. Labels provide

developers with a “quick look” information to focus on the software component areas

which they need to analyze in details to make a decision. These labels can be gathered

using an IR method, such as LDA. Panichella et al. [65] investigates the way in which

the source code artifact labelling is implemented using LDA.
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3.7.5 Test case prioritization

It is recognized that software developers are not always able to execute large sets of

tests for every single source code change they have, considering the amount of time and

effort that this action would involve. Then, test case prioritization becomes a solution

to save time and effort in this process. Thomas et al. [81] propose a technique that uses

linguistic data in the test cases (i.e., identifier names, string literals, and comments) to

map functionality to each test case. The test cases can then be prioritized for execution.

3.8 Prerequisites of LDA

In order to implement LDA, it is necessary to perform a preparation over the dataset

under study. This preparation refers to basically removing “stop-words” (such as “the”,

“of”, or “and”). Otherwise they will pervade the topics that have been learned and may

cover semantic word patterns that can be important for us [27].

3.9 Limitations of LDA

Despite being the most popular Topic Model in use, LDA presents the following disad-

vantages, that some authors have tried to mitigate:

1. Number of topics (K). As discussed above, it is a pre-requisite to provide K by

the user in order to implement LDA. As we have mentioned, with a K too small

the topics produced would be very wide, whereas a too large K would produce

topics that are difficult to differentiate. To overcome this problem, a non-parametric

model called Hierarchical Dirichlet processes [80] can be used to learn the optimal

K. However, this process is very onerous computationally. Choosing K is a central

discussion in this thesis.
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2. Labeling. LDA does not provide labelling for the topics inferred. It is up to the

user to describe what is the label of the topic that the keywords are referring to.

For example, in the inferred topic keywords “school, teacher, blackboard, president,

book”, it should be labeled as “education”. In this regard there are efforts that try

to provide labels to topics automatically [61].

3. BoW assumption. Words that need to be inferred together in the same topic (as one

word), such as “Royal Canadian Mounted Police”, are disaggregated in their com-

ponent words and assigned to different topics. This is because the BoW assumption

allows it. This assumption can be relaxed using LDA extension implementation,

such as [15].
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Chapter 4

Methodology

We have reviewed the basic concept of topic models including LDA. In this chapter we

will develop the LDA model by explaining its mathematical foundations.

4.1 Notation and terminology

In order to start explaining the models, we need to formally define a common terminology,

such as words, documents, and text corpus [14]. Our discussion will involve the following:

w – will refer to a term or word in the vocabulary (V ). It is the basic unit of discrete

data, and wi ∈ V .

d – will refer to a document defined as a sequence of N words, described by d =

{w1, w2, . . . , wN}, where wn represents the nth word in the sequence.

M – will refer to the number of documents in the text corpus, denoted byD, consisting

of M documents: D = {d1, d2, . . . , dM}.
K – will refer to the selected number of topics.

z - will refer to an unobserved topic that pervades the corpus (there would be K

unobserved topics in total).

θ – it is a multinomial distribution used to model the topic proportions.

φ – it is a multinomial distribution of z.
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Figure 4.1: Diagram of the pLSI model without using plates notation

α and β are the hyperparameters of the model; α controls the topic distributions per

document, while β controls the terms’ distribution per topic.

4.2 From pLSI to LDA

The starting point, in order to understand how LDA works, is to continue discussing pLSI.

We present in Figure 4.1 the pLSI model in graphical form. Here the nodes represent

random variables, the solid ones are observed variables, because we know their outcome.

The arrows symbolize dependency, this means that the outcome of the target variable

depends on the value of the origin variable [24].

To simplify representation of the models we are going to introduce the concept of

rectangular plates to denote multiple repetition in our models. With them we can dis-

card the use of repeating nodes and use indexes, greatly simplifying diagramming of the

models. For additional information on plate notation, see [90]. In Figure 4.2 we present

the same diagram of pLSI using “plate notation”.

The pLSI model establishes that a document d and a word wn are conditionally inde-
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Figure 4.2: Diagram of the pLSI model using plates notation

pendent, given an unobserved topic z, and can be represented as:

p(d, wn) = p(d)
∑
z

p(wn|z)p(z|d). (4.1)

pLSI has two major issues [14]:

• Lacks of clarity on how to generate probability of not yet seen documents.

• The number of parameters grows linearly in M , which may lead to overfitting.

LDA addresses these two problems by introducing a K-parameter (K-topic), instead

of using a large collection of parameters related to the training set, therefore, eliminating

the possibility of overfitting.

4.3 Graphical Representation of LDA and DTM

Now, let us illustrate the graphical models for LDA and DTM.

4.3.1 LDA graphical model

Figure 4.3 illustrates the LDA model in the graphical form. As in the pLSI model, the

nodes represent random variables and the solid ones are observed variables. The arcs
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also represent dependency. θ’s are topic proportions, the z’s are the topic assignments

and the w’s, are the observed words. Note that α and β are called hyperparameters.

α governs the amount of smoothing of the topic distributions per document [78], and β

determines the amount of smoothing of the word distributions in every topic [78].

The same graphical model can be rewritten in plates notation, as illustrated in Figure

4.4.

4.3.2 DTM graphical model

In Figure 4.5 we can appreciate the DTM graphical model, here as we have reviewed,

the model keeps track of topics changing over time [22]. Contrary to static LDA that

makes the assumption that documents are exchangable (i.e., their order is unimportant

for determining the topics that pervade the documents, and the disaggregation of every

document into those topics), it is a sin equa non condition for a DTM that the corpus

be organized as a sequential collection of documents. In this Figure each LDA model

represents a slice of time and βK,t represents a vector for topic K in slice t. In order to

make the model work for sequential modeling, the static LDA models are connected (i.e.,

βK,1 → βK,2 → . . . → βK,T ) and each slice t depends on the previous slice t− 1.

4.4 Dirichlet distribution

As described in Chapter 3, Blei et al. [14] broaden the pLSI model by bringing in the

LDA model and expanding it with a Dirichlet prior on θ. The probability density of a

K-dimensional Dirichlet distribution is:

Dir(α1, α2, . . . , αK) =
Γ(
∑

i αi)∏
i Γ(αi)

K∏
i=1

θαi−1
i , (4.2)
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Figure 4.3: LDA graphical model without using plates notation.
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Figure 4.4: LDA graphical model using plates notation, adapted from [14]. The components with the
dashed lines refers to the smoothed LDA model. φ is a multinomial distribution that is sampled from a
Dirichlet distribution with parameter β. This sampling occurs repeatedly for each topic until K topics
have been produced.
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Figure 4.5: Graphical model representation of the DTM, adapted from [13].
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where Γ denotes the Gamma function and the α is a K-dimensional vector with elements

αi > 0.

Moreover, the generative process of the LDA model can be described in terms of the

following joint distribution that includes a topic mixture θ, a set of N topics z, and a

collection of N words w [14, 16, 17]:

p(θ, z, w|α, β) = p(θ|α)
K∏

n=1

p(zn|θ)p(wn|zn, β). (4.3)

As we have seen, LDA is a generative probabilistic model, where the documents are

shown as random mixtures over latent topics and each document is a distribution over

words. Generating each document w in a corpus D is done as per Algorithm 1 [14, 89].

Data: words w ∈ document d
Result: topic assignments z
begin

foreach topic z from a Dirichlet distribution with parameter β do
Choose a multinomial distribution φz

end
foreach document w do

Pick a multinomial distribution θd from the Dirichlet distribution with parameter α
end
foreach of the N words wn do

Choose a topic z ∈ 1, 2, . . . ,K from the multinomial distribution θd;
Choose a word w from the multinomial distribution φz;

end

end
Algorithm 1: LDA algorithm, adapted from [14].

4.5 The Simplex

The Latent Space where the Dirichlet distribution “lives” is also known as the simplex1.

The Dirichlet variable θ is defined in the (K − 1)-simplex, θ exists in this space if the

following conditions are met: θi ≥ 0,
∑K

i=1 θi = 1 [15].

In order to explain this concept, we will start by exemplifying using only words, and
1A generalization of the concept of triangles to an arbitrary number of dimensions.
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then using both words and topics. Considering only three words (e.g., a, b, and c). For

convenience, we will call the (K− 1)-simplex as the simplex; and in this case it would be

a 2-dimensional simplex (or 2-D triangle), with each of the vertices representing each of

the words2. The outcomes of this multinomial distribution are represented by a vector

P of probabilities of the elements a, b and c that sum to 1.

We can start by looking at a probability distribution that occurs in this 2-D Simplex.

Let us suppose that a pd of a word situates at vertex of word a (which will denote by

A to differentiate a word from a vertex), then P = {1, 0, 0}. If we situate the pd at the

middle of the edge A−B, then P = {1
2
, 1
2
, 0}, if the pd is situated at the centroid of the

triangle, then P = {1
3
, 1
3
, 1
3
}, which implies that all three words have the same probability

of occurrence. Figure 4.6 illustrates this concept3.

One of the parameters of the Dirichlet distribution is α, in Figure 4.7 we present several

variations of the shape of the distribution, based on different values of this parameter.

We can see that in Figure 4.7(a) the distribution places some probability in words B and

C, in Figure 4.7(b) it places probability on words A and C, while in Figure 4.7(c) places

less probability in A,C and in figure 4.7(d) places probability in A,B. Observe that the

peakiness of the distribution is determined by the value of α, if its value is small it means

that the Dirichlet is spread out, while if its value is greater means that the distribution

is more peaky. Values of α < 1 imply increased sparsity, placing pd at the corners of the

simplex [16] (see example in Figure 4.8).

Now that the concept of word simplex has been illustrated, we proceed to exhibit

the combined representation of probabilities of words and topics in the simplex. LDA

contemplates that the word simplex contains K points that constitutes a sub-simplex

2If all of the probability density resides in one of the corners, say corner A, then almost certainly (i.e., with probability
1.0) the outcome would be A.

3It is not possible for a term in a Dirichlet distribution to have p = 0 or p = 1, however, for illustration purposes we
will allow that.
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Figure 4.6: Contour plots of different pd’s when the weight of the distribution (dark big point) is centred
in a particular point. Adapted from [16]
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Figure 4.7: Dirichlet distribution with variations of α when weight of the distribution is distributed on
the plane between the three words, adapted from [16]
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Figure 4.8: Dirichlet distribution with α < 1, increased pd at the corners of the simplex

which is known as the topic simplex. Therefore any point in the topic simplex represents

a point in the word simplex too. In LDA the words of the observed and unseen documents

are generated at random by selecting a topic that is sampled from the smooth distribution

with a parameter selected at random in the topic simplex. The LDA states that every

word is represented as a distribution of words over a distribution of topics. This is

portrayed in Figure 4.9.

4.6 Posterior calculation for LDA

By applying the Bayes’ rule to the LDA model, the direct approach for calculating the

topic inference equation becomes:

p(θ, z|w, α, β) = p(θ, z, w|α, β)
p(w|α, β) , (4.4)
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Figure 4.9: Word and topic simplex embedded, adapted from [14]. This geometrical representation of
the simplex considers 3 words and 3 topics. Looked perpendicularly from above, the contoured lines
represent a smooth distribution placed by LDA. The vertices of the word simplex represent distributions
with p = 1 while the ones of the topic simplex mean different distributions over words.
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where

p(w|α, β) = Γ(
∑

i αi)∏
i Γ(αj)

∫
(

K∏
i=1

θαi−1
i )(

N∏
n=1

K∑
i=1

V∏
j=1

(θiβij)
wj

ndθ (4.5)

is the marginal probability of the observations. Equation 4.5 is defined as the posterior

distribution (posterior), and resolving it has become a fundamental problem of statistical

inference. However, there is a limitation for computing this distribution: the denominator

is intractable. Given this constraint, it is possible to approximate the resolution by using

sampling based algorithms and variational algorithms. In the following section we will

discuss these techniques.

4.7 Approximation techniques

Here we will discuss two of the available methods4 for approximating the posterior: CGS

and variational inference.

4.7.1 Collapsed Gibbs Sampling

CGS [1, 8, 27, 41, 66] represents a sampling based technique for approximating the

posterior of LDA. CGS belongs to the family of algorithms of Markov Chain Monte Carlo

(MCMC) [3, 36], and it is straightforward to be implemented, being able to extract from

a large corpus a collection of topics. Building a Markov chain using MCMC algorithms,

CGS will converge after a number of iterations are executed [27]. It is called “collapsed”

because θ and φ are marginalized out, and only the latent variables z is sampled [66]. This

has the effect of reducing drastically the space that is being explored by the algorithm,

and therefore it will have a better performance.

The multinomial parameter for topics in a document θj means which topics emerge

in document j, while the multinomial parameter for words in a topic φK indicates which

4Note that the LDA R package (that we will discuss in Chapter 5) implements Collapsed Gibbs Sampling (CGS).
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words are important for topic K [41].

We would like to use CGS to approximate the variables φ and θ, however it is not

a direct approximation. These variables can be estimated by using approximations of

z (Equation 4.6) [66]. CGS is an iterative process: the start of the process is called

“burning” phase, where the Gibbs samples are poor estimates. In this phase, the samples

are rejected and the consecutive ones start to estimate the distribution of interest. For

more details see [23, 68, 78].

p(zij = K|z¬ij, x, α, β) = 1

Z
aKjbwK , (4.6)

where aKj = N¬ij
Kj + α, bwK =

N¬ij
wK+β

N¬ij
K +V β

, and Z is the normalization constant Z =
∑

K aKjbwK .

The superscript ¬ij means that it is omitted from
∑

j NwKj. NKj =
∑

w NwKj and

NwK =
∑

j NwKj are counts of the number of times a word w has been assigned to

topic K, and the number of times a word in document j has been assigned to topic K,

respectively.

One iteration of the CGS consists in choosing a sample for zij as stated by (4.6) for

each term i in each document j.

Taking into account the value sampled for zij the counts NKj, NK , NwK are brought

up to date, and with this sample we are able to approximate θ̂j and φ̂K :

φ̂wK =
NwK + β

NK + V β
(4.7)

θ̂Kj =
NKj + α

Nj +Kα
(4.8)

Implementation of CGS for LDA is shown in pseudocode of Porteous et al. [66] in Al-
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gorithm 2. After the CGS algorithm is done, the variables φ and θ can be approximated.

In the algorithm, N is a count variable for keeping track of the number of times any word

is assigned to topic K; w is the representation of the text corpus; and z is used to handle

the current topic assignment for each of the N words in w. An additional representation

of CGS is given by Gao et al. in [35].

begin
foreach i = 1 to N do

u ← draw from Uniform[0,1];
foreach k = 1 to K do

P [k] ← P [k − 1] +
(N¬ij

kj +α)(N¬ij
xijk

+β)

N¬ij
k +V β

;

end
foreach k = 1 to K do

if u < P [k]/P [K] then
zij = k, STOP

end

end

end

end
Algorithm 2: LDA Gibbs sampling, adapted from [66].

4.7.2 Variational inference

Variational inference is another available technique to infer the posterior [1, 14, 21]. In

this case this inference is performed through optimization (which we will discuss below).

Equation 4.9 is often called the variational model, which assumes independence among

all the latent variables and it is the result of simplifying the graphical model of LDA,

where only the nodes θ and z have been left, and nodes γ and φ (variational parameters)

have been inserted (see Figure 4.10).

q(Z, θ|γ, φ) = q(θ|γ)
N∏

n=1

q(Zn|φn), (4.9)

where γ is a Dirichlet parameter and φ = (φ1, . . . , φn) are the multinomial parameters.

The problem of variational inference becomes a problem of optimizing the variational
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Figure 4.10: Diagram of the LDA variational model, adapted from [1]

parameters γ and φ. This can be achieved by minimizing the distance between the true

model, p(θ, Z|α, β), and the variational model (for instance using the KL [43]):

min
γ,θ

KL[q(θ, Z|γ, φ) ‖ p(θ, Z|α, β)]. (4.10)

This optimization problem is not tractable, however it can be estimated iteratively [1]

by using the following two equations:

γi = αi +
∑

i =1
Kφni, (4.11)

φni ∝ βiwnexp[Ψ(γi)], (4.12)

where ψ is the bi-gamma function.

We present a variational inference procedure in Algorithm 3 as per [14].
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initialize Φ0
ni ←− 1/K for all i and n;

initialize γi ← αi +N/K for all i;
repeat

for n = 1 to N do
for i = 1 to K do

Φt+1
ni ←− βiwn

exp(Ψ(γi));
end
normalize Φt+1

n to sum to 1;
end

γt+1 ←− α+
∑N

n=1 Φ
t+1
n ;

until convergence;
Algorithm 3: Variational inference algorithm, adapted from [14].
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Chapter 5

Implementation and Calibration

In this chapter we will perform analysis in the following freely available datasets from the

Questions and Answers (Q&A) forums of stackoverflow.com: android, dba and salesforce.

StackOverflow consists of the StackExchange network of Q&A sites, which are forums for

professional and enthusiast programmers that can post questions and answers on a forum

associated with a particular product(s). First, we will start by exemplifying the usage of

LDA in the dba dataset only, for the sake of brevity. Second, we will assume the problem

of finding a formula to quickly select the number of topics K for implementing LDA. The

programming was done using the LDA implementation in the R language package, with

the exception of one script programmed in Perl.

5.1 Processing of datasets

All our datasets will undergo a common processing comprised by the following steps (see

Figure 5.1) which include:
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Figure 5.1: Process of data for performing a LDA inference

1. Data Extraction. The text corpus used was the dba forum of StackExchange (https:

//dba.stackexchange.com). The dataset was extracted from https://archive.

org/download/stackexchange [4].

2. Data Conversion. The file from the repository was in Extensible Markup Language

(XML) format and for performing the LDA inference we needed the data in Comma

Separated Value file (CSV) format; therefore, a Perl script for doing the conversion

was created: “xml2csv.pl” (see Appendix B.1). This script keeps the text for all the

questions but eliminates those answers that have less than three votes and were not

officially accepted as an answer (by the person who asked the question).

3. Data Cleansing. This step involved the following actions:

(a) Converting to lowercase all words.

(b) Removal of punctuation signs.

(c) Removing stopwords (i.e., most common words in English, such as “and”, “the”,

or “a”).

(d) Stemming applicable words (i.e., reducing words to their word stem, such as

“computers” and “computing” to “comput”).

(e) White-space char elimination.
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(f) Removing terms which have tf-idf smaller than the median of all the tf-idf values.

I.e., we eliminate the terms with low “importance”.

4. LDA inference. Here is where the LDA is applied to the data. This processing is

particular to what our objective is. In our case, we have two types of processing, the

first one is to illustrate the usage of LDA by generating a matrix of topic-keywords

(similar to Figure 3.2), and the second one is to generate term frequencies to perform

analysis and deduce the formula for calibrating the model.

5.2 Mining of Q&A forums

The volume of Q&A in stackexchange.com forums varies from forum to forum. In the case

of database-administrators-site (extracted from https://dba.stackexchange.com) [76],

there were approximately 50,000 entries at the time we downloaded the data. The file

that we extracted included several periods by year and month. This repository contains

unstructured data for both questions and answers. One of the managers in charge of the

product might be wondering what the users are talking about it. Then, LDA can be

applied and its output provide the necessary analytics to help responding this question.

All LDA-related computations are performed using R-package ‘topicmodels’ [48] (which

in turn uses the C code implementation of LDA by Blei et al. [14]).

For performing the analysis to illustrate the usage of LDA, we follow the processing

of the dataset as depicted in Figure 5.1. In this case the “LDA Inference” step was

accomplished by the developed program “analysis db2 idf.R” (see Appendix B.2) which

involves these specific tasks:

1. Extraction of data will be by year (2015) and by their respective months.

2. The number of topics to be extracted will be 5, and the number of keywords per

topic will be 20 (specifically for this example).
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3. The probability per topic/keyword will be outputted.

4. The idf will be calculated.

The output of this LDA inference for each of the five topics would produce a list of

keywords, their probability of belonging to a given topic, number of documents, and idf.

Example of an output for topic 1 is given in Table 5.1.

Table 5.1: Topic 1 of the LDA inference of 5 topics and 20 keywords

KEYWORD PROBABILITY #doc idf

server 0.022 1582 0.214
databas 0.021 1497 0.238
mysql 0.018 710 0.562
user 0.013 948 0.436
use 0.013 1631 0.200
sql 0.012 1151 0.352

connect 0.012 874 0.471
log 0.011 714 0.559
error 0.011 959 0.431
can 0.010 1582 0.214
file 0.009 829 0.494

master 0.009 407 0.803
replic 0.008 481 0.731
set 0.008 921 0.449
run 0.007 1036 0.397
creat 0.007 902 0.458
oracl 0.007 393 0.818
slave 0.006 288 0.953
tri 0.006 1018 0.405
data 0.006 847 0.485

For better appreciation of the data, let us render the data in this table in the graphical

format. Figure 5.2 shows the probability of occurrence in descending order for each of

the keywords in topic 1. Figure 5.3 shows the number of documents1, where each of the

keywords appears. The last plot in this sequence is Figure 5.4; it shows that the closer

the value of idf to 0 is for a term, the more widespread the term is, and vice versa.

Now, let us plot the keywords of topic 1 to show its idf and probability as Figure 5.5

1The overall number of documents for topic 1 is 2587 (N).
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Figure 5.2: Probability per term for Topic 1

indicates. The figure shows that the most important and widespread words are ‘server‘

and ‘databas‘ and the the least widespread ones are ‘master‘, ‘oracl‘, ‘slave‘. Eyeballing

the overall set of keywords, we may conjecture that this topic aggregates Q&A related

to master/slave – replication connect/error – how to connect to db? etc.

We would like to mention that a manual validation of the subsets of documents has

taken place.
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Figure 5.3: Document frequency per term for topic 1
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Figure 5.4: Keywords vs idf for topic 1.

52



CHAPTER 5. IMPLEMENTATION AND CALIBRATION 5.2. MINING OF Q&A FORUMS

0.2 0.4 0.6 0.8

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

TOPIC 1 2015 − db2

N= 2587
idf

pr
ob

ab
ilit

y

server databas

mysql 

user
use sql

connect
logerror

can
file master

replicsetrun creat oracl 
slave tri data

Figure 5.5: LDA inference for topic 1 showing terms plotted against its idf and probability.

53



CHAPTER 5. IMPLEMENTATION AND CALIBRATION 5.3. CALIBRATION

5.3 Calibration

In this section we will develop our proposed model for calculating in a straightforward

way the number of topics for implementing LDA. Calibration of LDA can consume a

large amount of computing resources. Steyvers and Griffits [78], agree on the idea that

selecting the number of topics influences greatly the understandability of the results

produced by LDA. A K which is too small can produce very broad topics, and one which

is too large may affect the interpretability of the topics. Our aim is to create a simple

formula for readily calculating the number of topics, therefore addressing our research

question:

How can we quickly select the number of topics K so that the top X topics include a

certain fraction F of the N documents under study?

Note that we do not speed up computation of a particular LDA model. Rather, we

drastically reduce the number of LDA models that have to be computed and calibrated.

In the worst-case scenario, one will need to compute up to N models, while usage of

our formula reduces the number of models to, at best, one. In practice, given that our

approximation is not perfect, one may have to compute a couple ofLDA models to obtain

the desired value of F .

5.3.1 Datasets

We will use for our study the three downloaded datasets from stackoverflow.com. They

are:

1. android (android.stackoverflow.com)[75]

2. database administration(dba.stackoverflow.com)[76]

3. salesforce (salesforce.stackoverflow.com)[77]
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All of them can be downloaded at https://archive.org/download/stackexchange [4].

In Table 5.2 we show a summary of these datasets.

Table 5.2: Datasets considered

Dataset Selected data from-to (period) Number of questions

android 2014-2015 (monthly) 15765

dba 2012-2014 (monthly and quarterly) 39174

salesforce 2014-2015 (monthly) 25965

As we plan to process several periods for these datasets, the expanded table of pro-

cessed datasets is as Table 5.3 illustrates.

Table 5.3: Expanded list of number of subsets processed by dataset. Year refers to the yearly data that

is available to be extracted from the corpus.

Dataset Periodicity Year Num. of files Num. of subsets

android monthly 2014 12 588

android monthly 2015 12 588

dba monthly 2012 12 588

dba monthly 2013 12 588

dba monthly 2014 12 588

dba quarterly 2012 4 196

dba quarterly 2013 4 196

dba quarterly 2014 4 196

salesforce monthly 2014 12 588

salesforce monthly 2015 12 588

Totals 96 4704

5.3.2 Processing of datasets for model calibration

In order to generate the information to perform our analysis for deducing the formula to

calibrate the model, we will execute the processing of datasets as depicted in Section 5.1.

The specific step corresponds to the LDA inference consists in processing each considered

dataset (android, dba, and salesforce) for several periods: years-months/quarters, com-

prising 96 data files. Moreover we consider each of these yearly files to be divided into
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temporal subsets (i.e., 12 for monthly and 4 for quarterly subsets) times the number of

top X we computed (49, i.e. X = 2, 3, . . . , 50). We will produce for each dataset/period

the topic frequency for the words contained in them. For each dataset, we will calculate

the distribution of the number of posts per topic, with K = 2, 3, . . . , N . For each K and

for each top topics X = 2, 3, . . . , 50, we will calculate the empirical value of F as follows:

F = P/N, (5.1)

where P is the overall number of documents in top X topics. We achieve this, by running

the developed programs: “do lda analysis topics.R” (See Appendix B.4) to process by

year-monthly and the program “do lda quarter inc.R” (See Appendix B.5) to process by

year-quarterly.

Once we have generated the frequency files for each dataset-year-period (month-

ly/quarterly), we proceed to bind all of these files in one file, we achieve this by running

the developed program “convVar k200.R” (See Appendix B.7)

After doing this we commence our analysis for inferring our formula. The developed

scripts for supporting this analysis are: “verifyFit k200.R” (See Appendix B.8) and –

“verifyFit k200.R analysis.R” (See Appendix B.9) for generating the performance plots.

5.3.3 Time consumption to iterate over K

Figure 5.6 illustrates the processing time to iterate over K in order to determine the

number of topics for the model. Here, we have plotted the times needed to compute LDA

model for a given K, while K = 2, 3, . . . , N . We arbitrarily chose the Android dataset,

for January of 2014. This data subset has N = 614. Notice that time to compute the

LDA model grows (non-monotonically) with the increase of K. The maximum time for

computing the model (when K = 602) is ≈ 6690 seconds; the overall time to compute
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all 613 models for this subset is ≈ 1276576 seconds (or ≈ 15 days). The times shown

here are for one subset; however, the behaviour is similar for all the subsets under study.

Thus, it is beneficial to reduce the number of calibrations of LDA models.

5.3.4 Creating fitted values

We notice that the graph of log(F ) against log(K) for a given X forms a straight line

(e.g., see Figure 5.7), suggesting Power Law relationship between F and K [55], [62].

The law takes form

F = aKb, (5.2)

where a and b are some constants. Log transformation of Equation 5.2 yields:

log(F ) = log(a) + b log(K). (5.3)

Eyeballing Figure 5.7 suggests that the values of log(a) and b vary (at least with the

change in X). The question then becomes: can we estimate the values of a and b for a

given dataset based on some attributes of the dataset?

Given that N and X are (almost) readily available to us, let us assume that a and

b are governed by N and X. In order to find a(X,N) and b(X,N), we will compute

empirical values of a and b, denoted by â and b̂, respectively, by fitting linear regression

model (Equation 5.3) to the data points for each dataset and for each value of X (we set

X = 2, 3, . . . , 50).

We will consider two models: 1) a more flexible one, where a and b are independent of

each other and 2) a more constrained one, where a = X−b. The second model is obtained

via ansatz (an educated guess).

Further exploratory analysis shows that if K > 0.75N or if K > 200, then the linear

relation between log(F ) against log(K) breaks (example is shown in Figure 5.8). From
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practical perspective, an analyst would rarely be interested in a large number of topics

K. Thus, if we filter out data for large values of K, then we may improve the fit of linear

models while preserving the models’ practicality. We will try two different filters, hence

the two datasets:

1. Dataset 1: retain the data if K ≤ 0.75N ;

2. Dataset 2: retain the data if K ≤ 0.75N and K ≤ 200.

We discuss in the following sections the fit of the flexible and the constraint models.

Comparison of the models is given in Section 5.4.

Flexible Model

In the flexible case, Equation 5.2 becomes

F = a(X,N)Kb(X,N). (5.4)

Solving it for K yields:

K =

[
F

a(X,N)

]1/b(X,N)

. (5.5)

The value of N can be easily extracted from the dataset. The values of F and X are

provided by an analyst. However, we still need to define the functional form of a(X,N)

and b(X,N) to compute Equation 5.5.

To compute a(X,N) we examined a number of relations between â and X,N . A

regression of the form

â = α1 + α2 ln(X) + α3 ln(N) (5.6)

yields good results. For both datasets, the regression model is valid and statistically

significant. In the case of Datasets 1 and 2 it explains most of the variability (R2 ≈ 0.87

and R2 ≈ 0.96, respectively). As expected, the fit to Dataset 2 is better than to Dataset
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1, as we filter larger number of “anomalous” data points. Details of validity and the

values of coefficients are given in Table 5.4.

We also defined a more complex (yet statistically significant relation between â and

X,N , namely

â = α1 + α2 ln(X) + α3 ln(N) + α4 ln(X)2 + α5 ln(N)2. (5.7)

The model is valid and statistically significant as shown in Table 5.4. In the case of

Datasets 1 and 2 the model explains more variability than Equation 5.6 (R2 ≈ 0.91 and

R2 ≈ 0.98, respectively). However, the improvement is not dramatic.

Similarly, we explored relations between b̂ and X,N to compute b(X,N). A regression

of the form

b̂ = α1 + α2X + α3N (5.8)

yields adequate results. As in the above case (Eq. 5.6), the model is valid and statistically

significant, but it cannot explain as much variability: R2 ≈ 0.54 for Datasets 1 and

R2 ≈ 0.78 Dataset 2. Details of validity and the values of coefficients are given in

Table 5.5.

A more complex relation between b̂ and X,N is given by

b̂ = α1 + α2X + α3N + α4N
2 + α5 ln(N) + α6 ln(X). (5.9)

Table 5.5 shows that the model is valid and statistically significant2. In the case of the

Datasets 1 and 2, the model explains more variability than Equation 5.8 (R2 ≈ 0.60

and R2 ≈ 0.83, respectively). However, it still cannot explain as much variability as the

2In the case of Dataset 1, p-value of the N2 term is > 0.05. We keep it for consistency – addition of the term does
not degrade the R2 value. To make sure that inclusion of the N2 term does not bias the final result, we also executed
the final validation (discussed in Section 5.4) while using the formula with and without the N2 term. For Dataset 1, we
obtained the same result for both formulas; for Dataset 2, the result was marginally better for the formula without the
N2 term. However, the models calibrated on Dataset 1 prevailed over the models calibrated on Dataset 2. Thus, from
practical perspective, it is acceptable to keep the N2 term (assuming that one will favor better performing models).
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models for the intercept term (defined in Equations 5.6 and 5.7).
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Figure 5.6: Time needed to compute (calibrate) LDA model for a given number of topics K (the input
data are Android subset, January 2014).
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Figure 5.7: Fitted empirical data for X = 5, 10, 25, 50

62



CHAPTER 5. IMPLEMENTATION AND CALIBRATION 5.3. CALIBRATION

Figure 5.8: Linear relation between log(F ) and log(K) breaks approximately at K > 200, example for
X=5,10,25, and 50
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Constrained Model

In the constrained case, Equation 5.2 becomes

F = a(X,N)Kb(X,N) = X−b(X,N)Kb(X,N). (5.10)

Solving it for K yields:

K =

[
F

Xb(X,N)

]1/b(X,N)

. (5.11)

To find a relation between b̂ and X,N we explore two regression models. A simple

regression model is given by:

b(X,N) = α1 + α2X + α3N, (5.12)

and a more complex one by:

b(X,N) = α1 + α2X + α3N + α4 ln(X). (5.13)

Both models are valid and statistically significant. Model’s details are given in Table 5.6.

Simple model (Eq. 5.12) explains 79% of variability (R2 ≈ 0.79), while a more complex

model, given by Eq. 5.13, explains 83% of variability (R2 ≈ 0.83).
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5.4 Analysis of results

In order to estimate goodness of fit of our approximation of a and b, we compute the

Root-Mean-Square Error (RMSE) (defined by Equation 5.14) between the actual value

of F and the ones given to us by Equation 5.4 for each dataset and for each value of X

(where X = 2, 3, . . . , 50). Summary statistics for various models is given in Tables 5.7

and 5.8 and Figures 5.9 and 5.10.

RMSE =

√∑
(y − ŷ)2

n
, (5.14)

where y is an actual value of F , ŷ is the predicted value of F , and n is the number of

values to predict.

By looking at the Tables 5.7 and 5.8 we can appreciate that the performance of the

model varies based on various factors, discussed in the following paragraphs.

Table 5.7: Summary statistics for the RMSE: Dataset 1

Statistic n Mean St. Dev. Min Max

Flex-simple 4,704 0.028 0.013 0.006 0.072
Flex-complex 4,704 0.019 0.005 0.006 0.042
Constrained-simple 4,704 0.018 0.006 0.006 0.040
Constrained-complex 4,704 0.018 0.006 0.004 0.039
Individual fit-flex 4,704 0.018 0.005 0.005 0.032
Individual fit-constrained 4,704 0.017 0.006 0.004 0.038

Table 5.8: Summary statistics for the RMSE: Dataset 2

Statistic n Mean St. Dev. Min Max

Flex-simple 4,704 0.034 0.020 0.010 0.226
Flex-complex 4,704 0.022 0.007 0.009 0.071
Constrained-simple 4,704 0.023 0.006 0.009 0.046
Constrained-complex 4,704 0.023 0.006 0.007 0.044
Individual fit-flex 4,704 0.018 0.005 0.006 0.038
Individual fit-constrained 4,704 0.021 0.006 0.005 0.041
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Figure 5.9: Summary statistics for the RMSE: Dataset 1. ‘Flex - simple’ uses Equations 5.6 and 5.8;
‘Flex - complex’ uses Equations 5.7 and 5.9. ‘Constr - simple’ uses Equation 5.12; ‘Constr - complex’
uses Equation 5.13. ‘Ind. fit - flex’ shows RMSE for flexible linear model (Eq. 5.4 fitted individually to
every data subset), while ‘Ind. fit - constr’ depicts RMSE for constraint linear model (Eq. 5.10 fitted
individually to every data subset).

5.4.1 Selection of the best performing model

In order to select the best performance model, we focus on the RMSE stats (provided in

Tables 5.7 and 5.8) and select the model that minimizes the mean RMSE.

For Dataset 1 (DS1), among four models, constrained-complex model yields the lowest

mean, min, and max RMSE values, comparable with the performance of individually-
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Figure 5.10: Summary statistics for the RMSE: Dataset 2. Flex - simple’ uses Equations 5.6 and 5.8;
‘Flex - complex’ uses Equations 5.7 and 5.9. ‘Constr - simple’ uses Equation 5.12; ‘Constr - complex’
uses Equation 5.13. ‘Ind. fit - flex’ shows RMSE for flexible linear model (Eq. 5.4 fitted individually to
every data subset), while ‘Ind. fit - constr’ depicts RMSE for constraint linear model (Eq. 5.10 fitted
individually to every data subset).

fitted lines. Thus, constrained-complex model is the winner for DS1.

In the case of Dataset 2 (DS2), RMSE of the flex-complex model is slightly lower

than that of the constrained-complex model (0.022 vs. 0.032). However, the min and

max values of the flex-complex are worse than that of the constrained-complex model

(0.009 vs. 0.007 and 0.071 vs. 0.044, respectively). Thus, the constrained-complex can
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be considered a winner for DS2 too.

5.4.2 Analysis of the best performing model

To verify robustness of the results of the the best performing (constrained-complex)

model and make sure that we are not overfitting, we performed 10-fold cross validation3.

We split 96 data subsets into ten partitions. We then fit Equation 5.13 to nine out of

ten partitions. We then fit the constrained model (Equation 5.10) to the raw data of the

tenth partition and compute the RMSE value. The process is repeated nine more times,

alternating partitions of the test and train sets. The resulting ten values of the RMSE

are shown in Figure 5.11. As we can see, for both Dataset 1 (mean ≈ 0.018) and Dataset

2 (mean ≈ 0.024) the RMSE values are comparable to those reported in Tables 5.7 and

5.8. Thus, we are not overfitting.

In Figures 5.12 and 5.13 we can observe that for small values of X the RMSE is smaller

and it increases as X gets larger. The X grows fast until approximately X = 20 and

then it starts to slow down in growth.

In the other hand, in Figures 5.14 and 5.15 we can see that the relation between N

and the RMSE varies in a similar manner to X for small values of N and large values

of N . Therefore, we can say that the quality of RMSE is not influenced significantly by

N , but it is influenced by X in the sense that the smaller the value of X the better the

predictions are.

In the case of the datasets analyzed, for the Dataset 1 the fitting from higher to

lower is android, salesforce, dba monthly, and dba quarterly (see Figure 5.16) and for

the Dataset 2 is android, dba quarterly, salesforce monthly and dba monthly (see Figure

5.17).

Finally, Figure 5.18 shows one plot that demonstrates the fitting achieved with the

3The listing for performing the validation is given in Appendix B.10
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Figure 5.11: 10-fold cross validation of the fit of the ‘Constrained - complex’ model (Equation 5.13).

constrained-complex model for Dataset 1. By eyeballing this plot we can appreciate that

starting at the left corner the fit is very good, then it goes above the data and when it

gets the right side, it starts to deteriorate. The same behaviour applies to all X’s shown

(X = 5, 10, 25, and 50, these values of X were selected at random). For a larger selection

of plots that show this fitting please see Appendix A.

In the case of Dataset 1, the model yields better results (i.e. lower RMSE) for data

splits per-month in comparison with the data splits per-quarter, as can be seen in Fig-
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Figure 5.12: Performance of the constrained complex model for different values of X: Dataset 1.

ure 5.16. We conjecture that the larger number of documents in the quarterly subsets

plays a role here: Figure 5.14 shows that RMSE increases slightly for large values of N .

However, in the case of Dataset 2 the RMSE for per-quarter data splits is on par or

better than in the case of per-month splits (as can be seen in Figure 5.17). We also
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Figure 5.13: Performance of the constrained complex model model for different values of X: Dataset 2.

see that for small and large values of N the performance is comparable as shown in

Figure 5.15. We conjecture that this can be explained by the fact that we truncate our

K values at 200 and get rid of the error factor contributed by the larger values of K.
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Figure 5.14: Performance of the constrained complex model for different values of N : Dataset 1.

The case when K > 0.75N

Based on our experiments, Equation 5.2 holds for K ≤ 0.75N . As K → N , the Power

Law approximation deteriorates (see Figure 5.7 for an example). Likely, this is because
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Figure 5.15: Performance of the constrained complex model model for different values of N : Dataset 2.

the average number of documents per topic becomes too small for LDA to process. It

seems, empirically, that the average number of posts per topic should be 4 or greater,

hence the K ≤ 0.75N constraint.
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Figure 5.16: Performance of the constrained complex mode per dataset: Dataset 1.

Summary

In conclusion, we can appreciate graphically (in Figure 5.19) the “path” that leads to the

best-performing model F = X−b(X,N)Kb(X,N) with the more complex prediction variable
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Figure 5.17: Performance of the constrained complex model per dataset: Dataset 2.

b(X,N) = α1 + α2X + α3N + α4 ln(X). The model performs well with the K ≤ 0.75N

(Dataset 1) filter.
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Figure 5.19: Decision tree for selecting the best fitting model. The path to the best-performing model
is given by the dashed line.

5.5 Threats to Validity

In the following paragraphs we outline some of the limitations of our study and their

impacts as per [26, 70].

Threats to conclusion validity are about the degree to which conclusions attained

about relationships in our data are reasonable. To verify the absence of overfitting, we
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performed 10-fold cross validation analysis of our best model.

Threats to construct validity involves the relationship among the concepts and theo-

ries that backs the experiment and what is measured and affected. In this regard, the

experiments that we have carried out were designed based on formal knowledge. We have

also used the data from three different sources, partitioning the data either monthly or

quarterly.

Threats to internal validity [29] comprise potential errors in our execution of the study

process, these errors may influence the accuracy of our results and the conclusions we

deduce from them. In order to avoid introducing bias we used an automated procedure

for data extraction and processing, that included the creation of scripts in Perl and R

languages.

Threats to external validity [73] include the degree to which we can generalize our

results. The subjects of our study contain three datasets for several periods comprising

thousands of data points. The results cannot be generalized to other datasets, rather the

design of this study is based on the concept of the critical case [91]. If the model does

not work “out-of-the-box”, one can re-calibrate it by following our methodology.
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Conclusion and Future Work

LDA is a widespread IR probabilistic topic model technique for performing analysis of

text corpora. We have reviewed its roots, its basic functioning, its applications in the

SE arena, exemplified its usage, and derived a formula from SE-related text corpuses to

calibrate the model.

The problem that we have addressed in this thesis, was to find in an expedited manner

the number of topics (K), which the LDA model requires to be implemented.

To answer the research question “How can we quickly select the number of topics K

so that the top X topics include a certain fraction F of the N documents under study?”,

we created a simple, closed-form Power Law expression (5.11), estimating K with X, F ,

and N as input. Although Power Law occurs frequently in SE [55], to the best of our

knowledge, this is the first appearance of the power law in LDA parameter calibration.

Moreover, we established that LDA models and (5.11) become unstable if K > 0.75N .

Practitioners can accelerate LDA analysis by using (5.11) with (5.13) to suggest

the number of topics required to answer a particular question (e.g., to identify cus-

tomers’ pain-points and to prioritize maintainers tasks). They can forego the often

computationally-prohibitive current practice of iterating over all values of K to identify

the optimal value. Formula (5.11) is also of interest to theoreticians as it suggests that dif-
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ferent SE-related text corpuses (in our case a technical Q&A forum and an issue-tracking

system) might have similar underlying properties.

The formula is validated on three datasets and, as discussed in Section 5.5, cannot be

generalized to other datasets. However the results do hint the existence of underlying

structural similarities in the datasets.

In the future, we plan to analyze additional SE-related text corpuses and extend our

work to non-SE-related text corpuses . Also, we would like to find ways for improving the

formula for K.
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Appendix A

Sample Plots

We are including in this section a selection of sample plots that show the fitting for the

datasets considered (Table A.1).

Table A.1: Sample plots included in this appendix

Dataset name Period Year Month or Quarter number Filter

android monthly 2015 2,4,6,8,10,12 DS1
android monthly 2015 2,12 DS2
dba quarterly 2012 1,2,3,4 DS1
dba quarterly 2012 2,4 DS2
dba monthly 2014 2,4,6,8,10,12 DS1
dba monthly 2014 2,12 DS2
salesforce monthly 2015 2,4,6,8,10 DS1
salesforce monthly 2015 2,12 DS2
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APPENDIX A. SAMPLE PLOTS A.1. ANDROID DATASET

A.1 android dataset
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A.2 dba quarterly dataset
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A.3 dba monthly dataset
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A.4 salesforce dataset
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Appendix B

Code listings

The following Table (B.1) is the list of scripts developed for the implementation and

calibration of LDA.

Table B.1: List of programs included in this appendix

Name Language Objective

xml2csv.pl Perl Convert format of corpus from XML to CSV

do analysis db2 idf.R R LDA inference for dba corpus with idf
calculation

utilsdb2.R ” Utility functions for dba LDA inference
do lda analysis topics.R ” LDA inference for monthly datasets
do lda quarter inc.R ” LDA inference for quarterly dataset
utils.R ” Utility functions for dba LDA inference (monthly and quarterly)
convVar k200.R ” Binds topic frequency files to be analyzed with

the regression model
verifyFit k200.R ” Iterates over datasets, and computes the RMSE

of the approx. formulas
verifyFit k200 analysis.R ” Plots the RMSE boxplots per model and per

dataset name
validate fit.R ” Performs validation using 10 folds

B.1 Program: xml2csv.pl

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 #This s c r i p t reads in XML data from StackOver f low and re turns i t in t e x t format

3 #Output ” t i t l e \ t body ” , one l i n e per pos t

4 #
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5 #Usage example : p e r l xml2csv . p l Posts . xml Posts . xml . csv

6 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 use warnings ;

8 use s t r i c t ;

9

10 use XML: : Simple ; # use XML: : Twig f o r b i g f i l e s

11 use HTML: : S t r i p ;

12

13 use ut f8 ;

14 use Text : : Unidecode ; #t r a n s l a t e s unicode in t o a s c i i

15

16 my $minVoteCount = 3 ; #minimum number o f vo t e s r e qu i r ed to save an answer

17

18 sub trans form ;

19

20 i f ( scalar (@ARGV) != 2 ) {
21 print ”usage : xml2csv . p l i n f i l e n ame ou t f i l e name \n” ;
22 exit ;

23 }
24

25 #read XML f i l e i n t o memory

26 my $ r e f = XMLin( $ARGV[ 0 ] ) ;

27

28 open( my $ f id , ”>” . $ARGV[ 1 ] )

29 or die ( ”Cannot open $ARGV[ 1 ] : $ !\n” ) ; #expor t to CSV

30

31 my $hs = HTML: : Str ip−>new ( ) ;

32 print $ f i d ” c r e a t e t s \ t i d \ t t ag s \ t t i t l e \ tbody\ tanswers \n” ; #header

33 foreach ( @{ $re f−>{row} } ) {
34 i f ( $ −>{PostTypeId} == ”1” ) { #i f the pos t i s the o r i g i n a l que s t i on

35 my $creat ionDate = ( $ −>{CreationDate } ) ;

36 my $ id = $ −>{Id } ;
37 my $tags = $ −>{Tags } ;
38 my $bestAnswerId = $ −>{AcceptedAnswerId } ;
39

40 #remove ”<” and r ep l a c e ”>” wi th ” ”

41

42 $tags =˜ s/></ˆ&ˆ/g ;

43 $tags =˜ s/ˆ<//g ;

44 $tags =˜ s/>$//g ;

45

46 my $ t i t l e = trans form ( $ −>{Ti t l e } ) ;

47 my $body = trans form ( $hs−>parse ( $ −>{Body} ) ) ; #s t r i p HTML tag s

116



APPENDIX B. CODE LISTINGS B.1. PROGRAM: XML2CSV.PL

48 my $answers = getAnswersText ( $id , $minVoteCount , $bestAnswerId ) ;

49 print $ f i d join ( ”\ t ” , ( $creat ionDate , $id , $tags , $ t i t l e , $body , $answers ) )

. ”\n” ;
50 }
51 }
52 close $ f i d ;

53 $hs−>eof ;

54

55 #conver t unicode to a s c i i and make i t lower case

56 sub trans form {
57 my ( $txt ) = @ ;

58 $txt =˜ s/\n | \ t | \ r / /g ; #rep l a c e new l i n e or tab wi th space

59 $txt =˜ s / [ [ : punct : ] ] / /g ; #rep l a c e punctuat ion wi th space

60 return lc ( unidecode ( $txt ) ) ; #conver t #conver t unicode to l a t i n and change

words to lowercase

61 }
62

63 sub getAnswersText {
64 my ( $quest ionId , $minVote , $AcceptedAnswerId ) = @ ;

65 my $answers = ”” ;

66

67 foreach ( @{ $re f−>{row} } ) {
68 i f (

69 (

70 ( $ −>{PostTypeId} eq ”2” ) #record type = answer

71 and ( $ −>{ParentId } eq $ques t i on Id ) #answer to que s t i on $que s t i on Id

72 and ( ( $ −>{Score } + 0 ) >= $minVote ) #minimal vo te

73 )

74 or ( #always ge t accepted answer

75 defined ( $AcceptedAnswerId ) and ( $ −>{Id} eq $AcceptedAnswerId )

76 )

77 )

78 {
79 $answers .= trans form ( $hs−>parse ( $ −>{Body} ) ) . ” ” ;

80 }
81 }
82 return $answers ;

83 }
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B.2 Program: do analysis db2 idf.R

1 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## The s c r i p t reads po s t s in d e l im i t e d format , and genera t e s a l i s t o f keyword

3 ## Usage : Rscr ip t my Sc r i p t name .R out d i r e c t o r y/ in f i l e name yyyy

4 ## This program inc l u d e s the p r o b a b i l i t y per keyword

5 ## a l s o i n c l u d e s the s p e c i f i c i t y by keyword by t o p i c

6 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 l ibrary (tm)

8 l ibrary ( f o r each )

9 l ibrary ( d oPa r a l l e l )

10 l ibrary ( s t r i n g r ) ## added to handle s t r i n g f unc t i on s

11

12 memory . l im i t (24356)

13 memory . s i z e (max = TRUE)

14

15 source ( ” u t i l s db2 .R” )

16 xURL <− ”http : //dba . stackexchange . com/que s t i on s/”

17 xSystime <− format ( Sys . time ( ) , ”%a−%b−%d %H−%M−%S %Y” )

18 ## fo l l ow i n g l i n e s commented out to run in PC ##

19 ##args <− commandArgs( t r a i l i n gOn l y = TRUE)

20 ##outDir <− args [ 1 ]

21 ##readFrom <− pas t e ( args [ 1 ] , args [ 2 ] , sep=””)

22 ##year <− as . i n t e g e r ( args [ 3 ] )

23

24

25 ## fo l l ow i n g l i n e s hardcoded to run in PC ##

26 readFrom <− ”nondb2 . awk” ##”Posts . xml . f i l t e r e d . csv . new” ##”db2 . awk”

27 year <− 2015

28 ##

29 ##month <− as . i n t e g e r ( args [ 3 ] )

30

31 topKeywordCount <− 20 ## SET TO 20 FOR THIS RUN

32

33 ## corp <− createCorp ( readFrom)

34 corp <− createCorp ( readFrom , year ) ## added year

35

36 # To acces s o r i g i n a l i d o f a document in VCorp run corp [ [ index o f document 1 to

N ] ] $meta$ i d

37 # To acces s o r i g i n a l i d o f a document in DocumentTermMatrix run dtm$dimnames$Docs

[ index o f document 1 to N ]

38

39 cat ( ”DEBUG a f t e r c a l l i n g createCorp ! \n” )
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40 ## Bui ld a Document−Term Matrix

41 dtm <− DocumentTermMatrix ( corp , control = l i s t (minWordLength = 2) ) #keep words o f

l e n gh t 2 or l onge r

42 cat ( ”Before t f−i d f : term count =” , ncol (dtm) , ” , doc count =” , nrow(dtm) , ”\n” )#
dtm <− removeFrequentWords (dtm) #removing based on median t f−i d f va lue

43 cat ( ”After t f−i d f : term count =” , ncol (dtm) , ” , doc count =” , nrow(dtm) , ”\n”
n l i k e l y event )

44 cat ( ”After removing terms appear ing only in 1 document : term count =” , ncol (dtm) ,

” , doc count =” , nrow(dtm) , ”\n” )
45

46 #setup p a r a l l e l backend to use 8 proce s so r s

47 c l<−makeCluster (8 ) ## change to 8 f o r mu l t i p r o c e s s i n g

48 r e g i s t e rDoPa r a l l e l ( c l )

49

50 fo r each ( topicCount = c (5 ) #max = 1 t op i c per document ## changed t o p i c count=5

51 , . packages=’ top icmode l s ’ #inc l ude package

52 ) %do%

53 { #change to %dopar% fo r mu l t i e xecu t i on

54 cat ( ”∗RUNNING SINGLE PROCESSING∗\n” )
55 cat ( ”TopicCount : ” , topicCount , ”\n” ) #to screen (no screen output i s p a r a l l e l

mode)

56 mdl <− LDA(dtm , topicCount ) #LDA model

57 top i c . keyword <− terms (mdl , topKeywordCount )

58 mdl . post <− po s t e r i o r (mdl ) #ge t p o s t e r i o r data

59 }
60

61 ## the f o l l ow i n g nes ted loop was added to append the p−va lue per t o p i c . keyword

62 Ttopic . keyword <− t op i c . keyword ## make a copy

63

64 ## the f o l l ow i n g nes ted loop was added to wr i t e the p−va l u e s o f t o p i c s by column

65

66 outPval <− paste ( ” pva lues ” , xSystime , ” ” , readFrom , ” ” , year , ”−” , topicCount ,

” . txt ” , sep = ”” )

67 for ( j in 1 : topicCount ) {
68 cat ( ”TOPIC ” , j , ”\n” , append = T,

69 f i l e = outPval )

70 cat ( ”KEYWORD,PROBABILITY\n” , append = T,

71 f i l e = outPval )

72 for ( i in 1 : topKeywordCount ) {
73

74 Ttopic . keyword [ i , j ] <−
75 Ttopic . keyword [ i , j ] <− paste ( t op i c . keyword [ i , j ] , ” , ” , mdl . post$terms [ [ j ,

t op i c . keyword [ i , j ] ] ] )
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76 cat ( Ttopic . keyword [ [ i , j ] ] , ”\n” , append = T,

77 f i l e = outPval )

78 }
79 }
80

81 write . csv ( Ttopic . keyword ,

82 f i l e = paste ( ” pva lues ” , xSystime , ” ” , readFrom , ” ” , year , ”−” ,

topicCount , ” . csv ” , sep = ”” ) )

83

84 ## code added to suppor t r epor t c r ea t i on

85

86 ## Wil l r e t r i e v e a l l i d s and que s t i on s

87 t <− t op i c s (mdl )

88 l en <− length ( t op i c s (mdl ) )

89 saveTo <− paste ( ”Report−” , xSystime , ” ” , readFrom , ”−” , year , ” . txt ” )

90 cat ( ” ques t i on id \ tque s t i on d e s c r i p t i o n \ t t o p i c \ t \n” , sep=”\ t ” , append = T, f i l e =

saveTo ) # to f i l e

91 for ( i in 1 : l en ) {
92 r i <− corp [ [ i ] ] $meta$ id

93 rq <− corp [ [ i ] ] $meta$quest

94 rt <− t [ i ]

95 r <− paste (xURL, r i , ”\ t ” , rq , ”\ t ” , rt , sep=”” )

96 cat ( r , ”\n” , append = T, f i l e = saveTo ) # to f i l e

97 }
98

99 ## The f o l l ow i n g code was added f o r genera t ing the s p e c i f i c i t y per keyword

100

101 ## t i s number o f terms in dtm

102 ## tC i s the index o f topicCount

103 ## kC in the index o f topKeywordCount

104 ## topKeywordCount i s the number o f keywords

105 ## dC i s the index o f number o f t o p i c s

106 ## countKw i s the counter o f the keyword t ha t appears in the t o p i c s

107

108 allDocuments <− nrow(dtm) ## Size in rows o f dtm

109 al lKeywords <− ncol (dtm)

110 countKw <− matrix (0 , topKeywordCount , topicCount ) ## i n i t i a l i z e count keyword

matrix wi th 0

111

112 ## code added to c a l c u l a t e f r e q u en c i e s

113 countKw <− array (0 ,dim=c ( topKeywordCount , topicCount ) ) ## inte rmed ia t e array to

handle the count ing o f kW in al lDocuments

114 t <− t op i c s (mdl ) ## documents and the t o p i c s i t b e l ong s to
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115 z <− as .matrix (dtm) ## dtm as matrix

116 dfz <− as . data . frame ( z ) ## conver t s z to data frame

117 tK <− 0 ## array (0 , dim=c ( topKeywordCount , topicCount ) )

118

119 acumTo <− rep (0 , topicCount ) ## i n i t i a l i z e acum of t o p i c s

120 for ( i in 1 : topKeywordCount ) {
121 acumKw<−0

122 for ( j in 1 : topicCount ) {
123 xlookup <− t op i c . keyword [ i , j ]

124 co lZ <− which(colnames ( z )==top i c . keyword [ i , j ] ) ## f i n d s the column in z

t ha t the kW i s in

125

126 for ( k in 1 : al lDocuments ) {
127 i f ( d fz [ [ co lZ ] ] [ k ] > 0) {
128 tK <− t [ [ k ] ] ## indek t k i s the t o p i c number

129

130 i f ( tK==j ) {
131 i f ( d fz [ [ co lZ ] ] [ k ] > 0) {
132 acumKw <− acumKw + 1

133 }
134 }
135 }
136 }
137

138 i f ( ! i s . null (acumKw) ) {
139 countKw [ i , j ] <− acumKw

140 acumKw <−0

141 }
142 }
143

144 }
145

146 ## Ca l cu l a t i on o f N as the number o f documents per t o p i c

147 for ( i in 1 :nrow(dtm) ) {
148 top i c<−t [ [ i ] ]

149 acumTo [ t op i c ]<−acumTo [ t op i c ]+1

150 }
151

152 ## the f o l l ow i n g nes ted loop was added to wr i t e the t o p i c s by column

153 out Id f <− paste ( ” i d f ” , xSystime , ” ” , readFrom , ” ” , year , ”−” , topicCount , ” .

txt ” , sep = ”” )

154 for ( j in 1 : topicCount ) {
155 cat ( ”TOPIC ” , j , ”\n” , append = T,
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156 f i l e = out Id f )

157 cat ( ”KEYWORD,PROBABILITY,N, d , i d f \n” , append = T,

158 f i l e = out Id f )

159 for ( i in 1 : topKeywordCount ) {
160

161 i d f<−log10 (acumTo [ j ] /countKw [ i , j ] )

162 cat ( ” i j ” , i , ” ” , j , ” i d f= log ( ” , acumTo [ j ] , ”/” , countKw [ i , j ] , ” ) \n” )
163 Ttopic . keyword [ i , j ] <−
164 paste ( t op i c . keyword [ i , j ] , ” , ” , mdl . post$terms [ [ j , t op i c . keyword [ i , j ] ] ] , ” , ”

,

165 acumTo [ j ] , ” , ” , countKw [ i , j ] , ” , ” , i d f ) ## going to work wi th a copy

o f t o p i c . keywords in s t ead

166 cat ( Ttopic . keyword [ [ i , j ] ] , ”\n” , append = T,

167 f i l e = out Id f )

168 }
169 }
170

171 cat ( ”Done\n” )
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B.3 Program: utilsdb2.R

1 l ibrary ( top icmode l s )

2 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 ## This func t i on reads the data from csv f i l e , c l eans i t and re tu rns tm t e x t

Corpus

4 ## readFromfileName − name o f the f i l e to read from

5 ## year f i l t e r

6 ## year − op t i ona l : year when docs were created , format = YYYY

7 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 createCorp <− function ( readFromfileName , year ) {
9 cat ( ”@ createCorp \n” )

10 l ibrary (tm)

11 ## Load the data

12 Posts <− read . del im ( f i l e = readFromfileName , header = T, quote = ”” , sep = ”\ t ”
)

13

14 cat ( ”Read” , nrow( Posts ) , ” rows from” , readFromfileName , ”\n” )
15 cat ( ” year to p roce s s =” , year , ”\n” )
16

17 ## the f o l l ow i n g l i n e s to f i l t e r by year

18 i f ( ! missing ( year ) ) {
19 Posts$create ts <− as . POSIXlt ( Posts$create ts )

20 Posts <− subset ( Posts , Posts$create ts$year == ( year − 1900) )

21 cat ( ”Kept” , nrow( Posts ) , ” rows\n” )
22 }
23

24 return ( doCorpCreation ( Posts ) )

25 }
26

27 ## t h i s i s a p r i v a t e f unc t i on f o r corpus c r ea t i on

28 doCorpCreation <− function ( Posts ) {
29

30 Posts <− data . frame ( doc id = Posts$ id , ques t i on = Posts$t i t le , tx t = paste (

Posts$t i t le , Posts$body , Posts$answers , sep =” ” ) ) ## added que s t i on

31 ## Bui ld a corpus

32 pos t s . r eader <− readTabular (mapping=l i s t ( content=” txt ” , id=”doc id ” , quest=”

ques t i on ” ) ) ## added que s t i on

33

34 corp <− VCorpus ( DataframeSource ( Posts ) , r eaderContro l=l i s t ( reader=post s . r eader )

)

35

36 ## Transform data
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37 ## mc. cores = 1 to f i x run time error

38

39 corp = tm map( corp , content t rans fo rmer ( to lower ) , mc . c o r e s=1) #conver t ing to

lower case

40 corp = tm map( corp , removeWords , stopwords ( ’ e n g l i s h ’ ) , mc . c o r e s=1) # Remove

Stopwords

41 corp = tm map( corp , stemDocument , mc . co r e s=1) # Stemming

42 corp = tm map( corp , str ipWhitespace , mc . co r e s=1) # Eliminate wh i t e space char

43

44 cat ( ”Created corpus from” , length ( corp ) , ”documents\n” )
45 return ( corp )

46 }
47

48 ## Removes t o p i c s from the Document Term Matrix us ing t f−i d f approach

49 ## dtm − Document Term Matrix to proces s

50 ## th r e s h o l d − remove words wi th t f−i d f v a l u e s sma l l e r than t h r e s h o l d

51 ## t h i s parameter i s o p t i ona l : i f t h r e s h o l d i s not de f ined , we w i l l remove

52 ## most f r e quen t words , based on the median va lue o f t f−i d f ( a t l e a s t 50%)

53 ## Se t t i n g t h r e s h o l d = 0 w i l l e l im ina t e words appear ing in every document

54 removeFrequentWords <− function (dtm , th r e sho ld ) {
55 l ibrary ( ” slam” )

56 termTf id f <− tapply (dtm$v/row sums (dtm) [ dtm$ i ] , dtm$ j , mean) ∗
57 log2 ( nDocs (dtm)/col sums (dtm > 0) )

58

59 # i f no t h e s ho l d i s prov ided then s e t the t h r s h o l d va lue to median o f t f−i d f

60 # d i s t r i b u t i o n , removing at l e a s t 50% of the words

61 i f ( missing ( th r e sho ld ) ) {
62 th re sho ld <− median( termTf id f )

63 }
64

65 # remove terms which have t f−i d f sma l l e r than the median o f a l l t he t f−i d f

v a l u e s

66 # t h i s w i l l s h r ink the d i c t i onay by approx imate ly 50%

67 dtm <− dtm [ , termTf id f > th r e sho ld ]

68 dtm <− dtm [row sums (dtm) > 0 , ] #remove docs t h a t have no terms remaining (

u n l i k e l y event )

69 return (dtm)

70 }
71

72 ## This f unc t i on re tu rns f requency o f t o p i c s f o r a g iven LDA model

73 ## dat − Document Term Matrix to f e ed to the LDA model

74 ## topicCount − Number o f t o p i c s in the LDA model

75 getTopicsFrequency <− function ( dat , topicCount ) {
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76 mdl <− LDA( dat , topicCount ) #LDA model

77

78 mdl . alpha <− mdl@alpha

79 mdl . beta .mean <− mean(mdl@beta )

80 mdl . beta . sd <− sd (mdl@beta )

81

82 return ( l i s t (

83 mdl . alpha = mdl . alpha ,

84 mdl . beta .mean = mdl . beta .mean,

85 mdl . beta . sd = mdl . beta . sd ,

86 t op i c . frequency = as . vector ( table ( t op i c s ( mdl ) ) )

87 ) )

88 }
89

90 incCa lc <− function ( totCount ) {
91 ## Function to c a l c u l a t e increments , 2 . . 100 , 1 101 . .200 5 , 201 . .300 10 . . .

capped to 25 a f t e r totCount >= 600 to 25

92 numRanges <− cei l ing ( totCount/100) ## t h i s i s to ensure t ha t i f goes beyond

100 ’ s i t i s taken in to account

93 vecRanges = matrix (nrow = 1 , ncol = numRanges )

94 vecCount <− c ( )

95 MRanges <− matrix (nrow = numRanges , ncol = 2)

96 ix <− 1

97

98 maxCount <− 1

99 cat ( ”numRanges=” , numRanges , ”\n” )
100 for ( i in 1 : numRanges ) {
101 indI <− (100∗ i )−100+1

102 indJ <− 100∗ i

103

104 MRanges [ i , 1 ] <− i nd I

105 MRanges [ i , 2 ] <− indJ

106

107 cat ( ” i=” , i , ” from=” , MRanges [ i , 1 ] , ” to ” , MRanges [ i , 2 ] )

108

109 cat ( ” ind I=” , indI , ” indJ=” , indJ , ” i=” , i , ”\n” )
110

111 p <− i

112

113 i f (p > 1 && p < 7) {p <− 5∗ ( i −1)} else { i f (p !=1) {p <−25}}
114

115 cat ( ”p=” ,p , ”\n” )
116

125



APPENDIX B. CODE LISTINGS B.3. PROGRAM: UTILSDB2.R

117 for ( j in seq ( from=MRanges [ i , 1 ] , to=MRanges [ i , 2 ] , by=p) ) {
118

119 i f ( j < totCount ) { ## This i s to l im i t the c a l c u l a t i o n o f i n t e r v a l s up

to totCount

120 vecCount [ i x ] <− j

121 maxCount <− i x

122 cat ( ” j =” , j , ”\n” )
123 cat ( ”vecCount [ ” , ix , ”]=” , vecCount [ i x ] , ”\n” )
124 ix <− i x + 1

125 }
126 }
127 cat ( ”maxCount=” , maxCount , ”\n” )
128 }
129 return ( vecCount )

130 }
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B.4 Program: do lda analysis topics.R

1 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## The s c r i p t reads po s t s in d e l im i t e d format , and genera t e s

3 ## d i s t r i b u t i o n o f LDA t o p i c s f o r a g iven month year ,

4 ## sav ing the output in in f i l e name + ”. year−month . t o p i c f requency ”

5 ## Usage : Rscr ip t do lda ana l y s i s .R in f i l e name year month

6 ##

7 ## This ve r s i on adds a Semaphore in order to slowdown the proces s o f w r i t i n g in a

p a r a l l e l p roce s s ing

8 ## inc l u d e s r e f a c t o r i n g changes ( i . e . t a k in g out semaphore code from fo r loop . . )

9 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 l ibrary (tm)

11 l ibrary ( f o r each )

12 l ibrary ( d oPa r a l l e l )

13

14 source ( ” u t i l s .R” )

15

16 args <− commandArgs( t r a i l i n gOn l y = TRUE)

17 readFrom <− args [ 1 ]

18 year <− as . integer ( args [ 2 ] )

19 month <− as . integer ( args [ 3 ] )

20

21 semaphoreFileName <− paste ( ” semaf ” , Sys . ge tp id ( ) , sep=’ ’ ) # append R’ s proces s

id to semaphore to avoid c o n f l i c t

22 i f ( f i l e . exists ( semaphoreFileName ) ) { f i l e . remove( semaphoreFileName ) }
23

24 saveTo <− paste ( readFrom , ” . ” , year , ”−” , month , ” . t op i c f requency ” , sep =”” )

25

26 corp <− createCorp ( readFrom , year , month)

27

28 ## Bui ld a Document−Term Matrix

29 dtm <− DocumentTermMatrix ( corp , control = l i s t (minWordLength = 2) ) #keep words o f

l e n gh t 2 or l onge r

30 cat ( ”Before t f−i d f : term count =” , ncol (dtm) , ” , doc count =” , nrow(dtm) , ”\n” )
31 dtm <− removeFrequentWords (dtm) #removing based on median t f−i d f va lue

32 cat ( ”After t f−i d f : term count =” , ncol (dtm) , ” , doc count =” , nrow(dtm) , ”\n” )
33 ## the f o l l ow i n g l i n e commented out to avoid sparse error

34 dtm <− removeSparseTerms (dtm , 1 − ( 1 . 1/nrow(dtm) ) ) #remove terms appear ing only

in 1 document

35 dtm <− dtm [row sums (dtm) > 0 , ] #remove docs t ha t have no terms remaining (

u n l i k e l y event )

36 cat ( ”After removing terms appear ing only in 1 document : term count =” , ncol (dtm) ,
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” , doc count =” , nrow(dtm) , ”\n” )
37

38 #setup p a r a l l e l backend to use 8 proce s so r s

39 c l<−makeCluster (8 )

40 r e g i s t e rDoPa r a l l e l ( c l )

41

42 cat ( ” topicCount \ tmdl . alpha \ tmdl . beta .mean\ tmdl . beta . sd\ tt ime ( sec ) \ t t o p i c .

f r equency \n” , sep=”\ t ” , append = T

43 , f i l e = saveTo ) # to f i l e

44

45 fo r each ( topicCount = 2 :nrow(dtm) #max = 1 t op i c per document

46 , . packages=’ top icmode l s ’ #inc l ude package

47 ) %dopar% { #change to %do% fo r s e q u e n t i a l e xecu t i on

48 startRun <− Sys . time ( )

49

50 va l <− getTopicsFrequency (dtm , topicCount )

51

52 p r e f i x <− paste ( topicCount , va l$mdl . alpha , va l$mdl . beta .mean, va l$mdl . beta . sd ,

d i f f t im e ( Sys . time ( ) , startRun , un i t s = ” s e c s ” ) , sep=”\ t ” )
53

54 cat ( ”TopicCount : ” , topicCount , ”\n” ) #to screen (no screen output i s p a r a l l e l

mode)

55

56 while ( f i l e . exists ( semaphoreFileName )==TRUE) {
57 Sys . s l e e p (1 ) ; cat ( ” in whi l e s l e e p i n g 1 sec \n” ) ;
58 }
59 f i l e . create ( semaphoreFileName ) ## loc k f i l e

60 for ( i in 1 : length ( va l$ t op i c . frequency ) ) {
61 #cat (” in ca t f o r ” , i , Sys . time () , f i l e . e x i s t s ( semaphoreFileName ) , ”\n”)
62 cat ( p r e f i x , va l$ t op i c . frequency [ i ]

63 , ”\n” , sep=”\ t ” , append = T

64 , f i l e = saveTo ) # to f i l e

65 }
66 f i l e . remove( semaphoreFileName ) ## unlock f i l e

67 #cat (” Semaphore i s ” , f i l e . e x i s t s ( semaphoreFileName ) , ”\n”)
68 }
69 cat ( ”Saved data to ” , saveTo , ”\n” )
70 cat ( ”Done\n” )
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B.5 Program: do lda quarter inc.R

1 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## The s c r i p t reads po s t s in d e l im i t e d format , and genera t e s

3 ## d i s t r i b u t i o n o f LDA t o p i c s f o r a g iven quarter−year ,

4 ## sav ing the output in in f i l e name + ”.” + year ”−q” + quar t e r ” . t o p i c

f requency ”

5 ## Usage : Rscr ip t do lda quar t e r inc .R in f i l e name year quar t e r

6 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 l ibrary (tm)

8 l ibrary ( f o r each )

9 l ibrary ( d oPa r a l l e l )

10

11 source ( ” u t i l s .R” )

12

13 args <− commandArgs( t r a i l i n gOn l y = TRUE)

14 readFrom <− args [ 1 ]

15 year <− as . integer ( args [ 2 ] )

16 quarte r <− as . integer ( args [ 3 ] )

17

18 semaphoreFileName <− paste ( ” semaf ” , Sys . ge tp id ( ) , sep=’ ’ ) # append R’ s proces s

id to semaphore to avoid c o n f l i c t

19 i f ( f i l e . exists ( semaphoreFileName ) ) { f i l e . remove( semaphoreFileName ) }
20

21 saveTo <− paste ( readFrom , ” . ” , year , ”−q” , quarter , ” . t op i c f requency ” , sep =”” )

22

23 corp <− createCorpQuarter ( readFrom , year , quarte r )

24

25 ## Bui ld a Document−Term Matrix

26 dtm <− DocumentTermMatrix ( corp , control = l i s t (minWordLength = 2) ) #keep words o f

l e n gh t 2 or l onge r

27 cat ( ”Before t f−i d f : term count =” , ncol (dtm) , ” , doc count =” , nrow(dtm) , ”\n” )
28 dtm <− removeFrequentWords (dtm) #removing based on median t f−i d f va lue

29 cat ( ”After t f−i d f : term count =” , ncol (dtm) , ” , doc count =” , nrow(dtm) , ”\n” )
30 ## the f o l l ow i n g l i n e commented out to avoid sparse error

31 dtm <− removeSparseTerms (dtm , 1 − ( 1 . 1/nrow(dtm) ) ) #remove terms appear ing only

in 1 document

32 dtm <− dtm [row sums (dtm) > 0 , ] #remove docs t ha t have no terms remaining (

u n l i k e l y event )

33 cat ( ”After removing terms appear ing only in 1 document : term count =” , ncol (dtm) ,

” , doc count =” , nrow(dtm) , ”\n” )
34

35 #setup p a r a l l e l backend to use 8 proce s so r s
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36 c l<−makeCluster (8 )

37 r e g i s t e rDoPa r a l l e l ( c l )

38

39 cat ( ” topicCount \ tmdl . alpha \ tmdl . beta .mean\ tmdl . beta . sd\ tt ime ( sec ) \ t t o p i c .

f r equency \n” , sep=”\ t ” , append = T

40 , f i l e = saveTo ) # to f i l e

41

42 vecCount <− incCa lc (nrow(dtm) )

43

44 ## foreach ( topicCount = 2: nrow(dtm) #max = 1 t op i c per document

45 cat ( ” l enght ( vecCount )=” , length ( vecCount ) , ”\n” )
46 fo r each ( ix = 2 : length ( vecCount )

47 , . packages=’ top icmode l s ’ #inc l ude package

48 ) %do% { #change to %dopar% fo r mu l t i p roce s s execu t i on

49

50 topicCount <− vecCount [ i x ]

51

52 startRun <− Sys . time ( )

53

54 va l <− getTopicsFrequency (dtm , topicCount )

55

56 p r e f i x <− paste ( topicCount , va l$mdl . alpha , va l$mdl . beta .mean, va l$mdl . beta . sd ,

d i f f t im e ( Sys . time ( ) , startRun , un i t s = ” s e c s ” ) , sep=”\ t ” )
57

58 cat ( ”TopicCount : ” , topicCount , ”\n” ) #to screen (no screen output i s p a r a l l e l

mode)

59

60 while ( f i l e . exists ( semaphoreFileName )==TRUE) {
61 Sys . s l e e p (1 ) ; cat ( ” in whi l e s l e e p i n g 1 sec \n” ) ;
62 }
63 f i l e . create ( semaphoreFileName ) ## loc k f i l e

64 for ( i in 1 : length ( va l$ t op i c . frequency ) ) {
65 cat ( p r e f i x , va l$ t op i c . frequency [ i ]

66 , ”\n” , sep=”\ t ” , append = T

67 , f i l e = saveTo ) # to f i l e

68 }
69 f i l e . remove( semaphoreFileName )

70 }
71 cat ( ”Saved data to ” , saveTo , ”\n” )
72 cat ( ”Done\n” )
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B.6 Program: utils.R

1 l ibrary ( top icmode l s )

2 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 ## The func t i on ta k e s term document matrix ( sparse r ep r e s en t a t i on ) , tdm , and

expor t s i t to f i l e

4 ## fi leName in the f o l l ow i n g format ” dist inctWordCount wordId :WordCount . . . ” , one

document per

5 ## l i n e . For example , ”2 15:7 21:4” means t ha t a document con ta ins two d i s t i n c t

words

6 ## with i d s 15 and 21 , appear ing 7 and 4 times , r e s p e c t i v e l y .

7 ## This format i s used by LDA and HDP−LDA code prov ided by Ble i ’ s team .

8 ##

9 ## The func t i on saves d i c t i ona r y o f words , one word per l i n e to f i l e fi leName ,

s u f f i x e d by ” . d i c ” .

10 ## Id o f a g iven word i s g i ven by word ’ s l i n e number in the f i l e f i leName . d i c ;

11 ## l i n e number count s t a r t s from 1.

12 ##

13 ## The func t i on saves document ”names” , one name per l i n e to f i l e fi leName ,

s u f f i x e d by ” . doc ” .

14 ## Id o f a g i ven document i s e q u i v a l e n t to the document ’ s l i n e number in the f i l e

f i leName . doc ;

15 ## l i n e number count s t a r t s from 1.

16 ##

17 ## Usage example : e xpo r t 2 l da c (myTermDocMatrix , ”˜/ foo . t x t ”)

18 ## Note t ha t the e x i s t i n g f i l e w i l l be o v e rwr i t t en

19 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 export2 lda c <− function (tdm , f i leName ) {
21 # We assume tha t

22 # j − term (a . k . a . word ) i d s

23 # i − doc i d s

24 # v − word f requency

25

26 f i d <− f i l e ( f i leName , ”w” ) # overwr i t e e x i s t i n g f i l e

27 docIds <− unique (tdm$ i )

28 for ( docId in docIds ) {
29 # I am not c e r t a i n i f $ j i s guaranteed to be consecu t i v e ;

30 # hence the i n e f f i c i e n t search us ing which

31 wordIndexes <− which( tdm$ i == docId )

32 cat ( length ( wordIndexes ) , f i l e = f id , sep = ”” , append = T)

33 for ( wordIndex in wordIndexes ) {
34 cat ( ” ” , tdm$ j [ wordIndex ] , ” : ” , tdm$v [ wordIndex ] , f i l e = f id , sep = ”” ,

append = T)
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35 }
36 cat ( ”\n” , f i l e = f id , sep = ”” , append = T)

37 }
38 close ( f i d )

39

40 # save d i c t i ona r y o f words

41 write (tdm$dimnames$Terms , f i l e = paste ( f i leName , ” . d i c ” , sep=”” ) , sep = ”\n” )
42

43 # save o r i g i n a l document names

44 write (tdm$dimnames$Docs , f i l e = paste ( f i leName , ” . doc” , sep=”” ) , sep = ”\n” )
45 }
46

47 ## This func t i on reads the data from csv f i l e , c l eans i t and re tu rns tm t e x t

Corpus

48 ## readFromfileName − name o f the f i l e to read from

49 ## Quarter ly F i l t e r (mandatory ) :

50 ## year − mandatory : year when docs were created , format = YYYY

51 ## month − mandatory : month when docs were crea t ed

52 createCorpQuarter <− function ( readFromfileName , year , quar te r ) {
53 l ibrary (tm)

54 ## Load the data

55 Posts <− read . del im ( f i l e = readFromfileName , header = T, quote = ”” , sep = ”\ t ”
)

56

57 cat ( ”Read” , nrow( Posts ) , ” rows from” , readFromfileName , ”\n” )
58

59 i f ( ! missing ( year ) & ! missing ( quarte r ) ) {
60 Posts$create ts <− as . POSIXlt ( Posts$create ts )

61 Posts <− subset ( Posts , qua r t e r s ( Posts$create ts ) == paste ( ”Q” , quarter , sep =

”” )

62 & Posts$create ts$year == ( year − 1900) )

63 cat ( ”Kept” , nrow( Posts ) , ” rows\n” )
64 } else {
65 stop ( ”Provide year and quarte r ” )

66 }
67

68 return ( doCorpCreation ( Posts ) )

69 }
70

71

72 ## This func t i on reads the data from csv f i l e , c l eans i t and re tu rns tm t e x t

Corpus

73 ## readFromfileName − name o f the f i l e to read from
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74 ## Monthly F i l t e r ( op t i ona l ) :

75 ## year − op t i ona l : year when docs were created , format = YYYY

76 ## month − op t i ona l : month when docs were crea t ed

77 createCorp <− function ( readFromfileName , year , month) {
78 l ibrary (tm)

79 ## Load the data

80 Posts <− read . del im ( f i l e = readFromfileName , header = T, quote = ”” , sep = ”\ t ”
)

81

82 cat ( ”Read” , nrow( Posts ) , ” rows from” , readFromfileName , ”\n” )
83

84 i f ( ! missing ( year ) & ! missing (month) ) {
85 Posts$create ts <− as . POSIXlt ( Posts$create ts )

86 Posts <− subset ( Posts , Posts$create ts$mon == (month − 1)

87 & Posts$create ts$year == ( year − 1900) )

88 cat ( ”Kept” , nrow( Posts ) , ” rows\n” )
89 }
90

91 return ( doCorpCreation ( Posts ) )

92 }
93

94 ## t h i s i s a p r i v a t e f unc t i on f o r corpus c r ea t i on

95 doCorpCreation <− function ( Posts ) {
96 # Concatenate columns , o the rw i s e DataframeSource g e t s confused

97 Posts <− data . frame (paste ( Posts$t i t le , Posts$body , Posts$answers , sep =” ” ) )

98

99 ## Bui ld a corpus

100 corp <− Corpus ( DataframeSource ( Posts ) )

101

102 ## Transform data

103 corp = tm map( corp , content t rans fo rmer ( to lower ) ) #conver t ing to lower case

104 corp = tm map( corp , removeWords , stopwords ( ’ e n g l i s h ’ ) ) # Remove Stopwords

105 corp = tm map( corp , stemDocument ) # Stemming

106 corp = tm map( corp , s t r ipWhitespace ) # Eliminate wh i t e space char

107

108 cat ( ”Created corpus from” , length ( corp ) , ”documents\n” )
109 return ( corp )

110 }
111

112 ## Removes t o p i c s from the Document Term Matrix us ing t f−i d f approach

113 ## dtm − Document Term Matrix to proces s

114 ## th r e s h o l d − remove words wi th t f−i d f v a l u e s sma l l e r than t h r e s h o l d

115 ## t h i s parameter i s o p t i ona l : i f t h r e s h o l d i s not de f ined , we w i l l remove
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116 ## most f r e quen t words , based on the median va lue o f t f−i d f ( a t l e a s t 50%)

117 ## Se t t i n g t h r e s h o l d = 0 w i l l e l im ina t e words appear ing in every document

118 removeFrequentWords <− function (dtm , th r e sho ld ) {
119 l ibrary ( ” slam” )

120 termTf id f <− tapply (dtm$v/row sums (dtm) [ dtm$ i ] , dtm$ j , mean) ∗
121 log2 ( nDocs (dtm)/col sums (dtm > 0) )

122

123 # i f no t h e s ho l d i s prov ided then s e t the t h r s h o l d va lue to median o f t f−i d f

124 # d i s t r i b u t i o n , removing at l e a s t 50% of the words

125 i f ( missing ( th r e sho ld ) ) {
126 th re sho ld <− median( termTf id f )

127 }
128

129 # remove terms which have t f−i d f sma l l e r than the median o f a l l t he t f−i d f

v a l u e s

130 # t h i s w i l l s h r ink the d i c t i onay by approx imate ly 50%

131 dtm <− dtm [ , termTf id f > th r e sho ld ]

132 dtm <− dtm [row sums (dtm) > 0 , ] #remove docs t h a t have no terms remaining (

u n l i k e l y event )

133 return (dtm)

134 }
135

136 ## This f unc t i on re tu rns f requency o f t o p i c s f o r a g iven LDA model

137 ## dat − Document Term Matrix to f e ed to the LDA model

138 ## topicCount − Number o f t o p i c s in the LDA model

139 getTopicsFrequency <− function ( dat , topicCount ) {
140 mdl <− LDA( dat , topicCount ) #LDA model

141

142 mdl . alpha <− mdl@alpha

143 mdl . beta .mean <− mean(mdl@beta )

144 mdl . beta . sd <− sd (mdl@beta )

145

146 return ( l i s t (

147 mdl . alpha = mdl . alpha ,

148 mdl . beta .mean = mdl . beta .mean,

149 mdl . beta . sd = mdl . beta . sd ,

150 top i c . frequency = as . vector ( table ( t op i c s ( mdl ) ) )

151 ) )

152 }
153 incCa lc <− function ( totCount ) {
154 ## Function to c a l c u l a t e increments , 2 . . 100 , 1 101 . .200 5 , 201 . .300 10 . . .

capped to 25 a f t e r totCount >= 600 to 25

155 numRanges <− cei l ing ( totCount/100) ## t h i s i s to ensure t ha t i f goes beyond
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100 ’ s i t i s taken in to account

156 vecRanges = matrix (nrow = 1 , ncol = numRanges )

157 vecCount <− c ( )

158 MRanges <− matrix (nrow = numRanges , ncol = 2)

159 ix <− 1

160

161 maxCount <− 1

162 cat ( ”numRanges=” , numRanges , ”\n” )
163 for ( i in 1 : numRanges ) {
164 indI <− (100∗ i )−100+1

165 indJ <− 100∗ i

166

167 MRanges [ i , 1 ] <− i nd I

168 MRanges [ i , 2 ] <− indJ

169

170 cat ( ” i=” , i , ” from=” , MRanges [ i , 1 ] , ” to ” , MRanges [ i , 2 ] )

171

172 cat ( ” ind I=” , indI , ” indJ=” , indJ , ” i=” , i , ”\n” )
173

174 p <− i

175

176 i f (p > 1 && p < 7) {p <− 5∗ ( i −1)} else { i f (p !=1) {p <−25}}
177

178 cat ( ”p=” ,p , ”\n” )
179

180 for ( j in seq ( from=MRanges [ i , 1 ] , to=MRanges [ i , 2 ] , by=p) ) {
181

182 i f ( j < totCount ) { ## This i s to l im i t the c a l c u l a t i o n o f i n t e r v a l s up

to totCount

183 vecCount [ i x ] <− j

184 maxCount <− i x

185 cat ( ” j =” , j , ”\n” )
186 cat ( ”vecCount [ ” , ix , ”]=” , vecCount [ i x ] , ”\n” )
187 ix <− i x + 1

188 }
189 }
190 cat ( ”maxCount=” , maxCount , ”\n” )
191 }
192 return ( vecCount )

193 }
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B.7 Program: convVar k200.R

1 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ### This program reads the ∗ . t o p i c . f r equency f i l e s f o r each da t a s e t g e t s the top

f requency f o r x=2..50 , and merges them up t o g e t h e r

3 ### fo r them to be ana lyzed l a t e r wi th a r e g r e s s i on model

4 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 r eadF i l e <− function ( fName) {
6 dat <− read . del im ( f i l e = fName , header = T, f i l l =T, sep = ”\ t ” ,

7 row .names=NULL)

8 colnames ( dat )<−c (colnames ( dat ) [−1] , ”x” )

9 dat$x<−NULL
10 dat<−as . data . frame ( dat )

11 return ( dat )

12 }
13

14 p r o c e s sF i l e <− function ( dat ) {
15 top icCountLi s t <− sort (unique ( s t r t o i ( dat$topicCount ) ) ) ## making sure the l i s t

i s ordered

16

17 timeframe type = vector ( )

18 timeframe = vector ( )

19 datase t name = vector ( )

20 topicCount = vector ( )

21 pos tFract ion = vector ( )

22 topXX = vector ( )

23 documentCount = vector ( )

24

25 topX <− data . frame ( timeframe type = vector ( ) , t imeframe = vector ( ) , da ta se t

name = vector ( ) , topicCount = vector ( ) , pos tFrac t i on = vector ( ) , topXX =

vector ( ) , documentCount = vector ( ) )

26

27 for ( x in 2 : 50 ) {#top X t o p i c s

28 for ( t in top icCountLi s t ) { ## s t r t o i ( topicCount )

29 i f ( t < x ) { ## to avoid wr i t i n g NA’ s

30 next

31 }
32 else

33 {
34 d <− dat [which( dat$topicCount == t ) , ]

35 f r e q <− sort (d$ t op i c . frequency , d e c r ea s ing = T)

36 documentCount <− sum ( f r e q ) #number o f docs in corpus

37 pos tFract ion = sum( f r e q [ 1 : x ] ) / documentCount # t h i s i s an F va lue f o r a
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g iven top X

38 i f ( i s .na( pos tFrac t i on ) ) {
39 cat ( ”====================== po s t f r a c t i o n i s NA program sk ip s

i n t e r a c t i o n t=” , t , ”===============\n” )
40 cat ( ”x=” , x , ” documentCount=” , documentCount , ”\n” )
41 next

42 }
43 topX <− rbind ( topX , data . frame ( timeframe type = Xtimeframe type [ i dsName

] , t imeframe = Xtimeframe [ i l i s t f ] , da ta se t name = Xdataset name [ i

dsName ] , topicCount = t , po s tFrac t i on = postFract ion , topXX = x ,

documentCount = documentCount ) )

44 }
45 }
46 }
47 ## wr i t e s output f i l e every t ime f i n i s h e s p roce s s ing one f requency f i l e

48

49 fName <− paste ( outPath , ”topX” , ” . csv ” , sep = ”” )

50

51 i f ( f i r s t im e ) {
52 cat ( ”∗∗ WRITING OUTPUT FILE FIRSTIME∗∗” , f i r s t ime , ”\n” )
53 cat ( dir ( outPath ) , ”\n” )
54 ## cat (”FILE EXIST NOT NEGATED:” , fName , ” i s ” , f i l e . e x i s t s ( fName) , ”\n”)
55 ## cat (”FILE EXIST NEGATED:” , fName , ” i s ” , ! f i l e . e x i s t s ( fName) , ”\n”)
56 write . table ( topX , f i l e = fName , sep = ” , ” , row .names=FALSE, col .names=TRUE,

append = T)

57 f i r s t im e <<− FALSE

58 print ( f i l e . i n f o ( fName) )

59 } else {
60 cat ( ”∗∗ WRITING OUTPUT FILE SUCCESIVE ∗∗” , f i r s t ime , ”\n” )
61 write . table ( topX , f i l e = fName , sep = ” , ” , row .names=FALSE, col .names=FALSE,

append = T)

62 print ( f i l e . i n f o ( fName) )

63 }
64 } ## EOF

65

66

67 ##############################################################

68 ##### main #####

69 ##############################################################

70

71 XSystime <<− format ( Sys . time ( ) , ”%a−%b−%d %H−%M−%S %Y” )

72 dsName <− c ( ” s a l e s f o r c e−m−” , ”dba−m−” , ”dba−q−” , ” android−m−” ) ## to handle the

ds names
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73

74 ### t e s t dsName <− c (” t e s t−q−”) ## to handle the ds names

75

76 Xtimeframe type <<− c ( ”monthly” , ”monthly” , ” qua r t e r l y ” , ”monthly” )

77 Xdataset name <<− c ( ” s a l e s f o r c e ” , ”dba” , ”dba” , ” android ” )

78

79 FKdir <− c ( )

80 ou tL i s t f <− c ( ) ### t h i s i s the output d i r e c t o r y o f the f i l e s to be p l o t t e d , may

not be used

81 f fD i r <− c ( )

82 i dsName <<− 1

83 f i r s t im e <<− TRUE ## t h i s f l a g was p laced a f t e r f i r s t , f o r so i t wrote the hdrs

each time ds changed !

84 for ( i dsName in 1 : length (dsName) ) {
85 cat ( ”DEBUG: Proce s s ing datase t=” , dsName [ i dsName ] , ” at : ” , XSystime , ”\n” )
86

87 ## former FKdir [ i dsName ] <− f i l e . path (”˜” , ”Thesis ” , ” F i t t i n g ” , pas t e (dsName [ i

dsName ] , ”FK” , sep=””) , ” f i l e s −FK”)

88 ## former f fD i r [ i dsName ] <− f i l e . path (”˜” , ”Thesis ” , ” F i t t i n g ” , pas t e (dsName [ i

dsName ] , ”FK” , sep=””) , ” f i l e s −f r e q u en c i e s ”)

89

90 FKdir [ i dsName ] <− f i l e .path ( ”/media” , ”data” , ” t h e s i s ” , ”Thes i s ” , ” F i t t i n g ” ,

paste (dsName [ i dsName ] , ”FK” , sep=”” ) , ” f i l e s −FK” )

91 f fD i r [ i dsName ] <− f i l e .path ( ”/media” , ”data” , ” t h e s i s ” , ”Thes i s ” , ” F i t t i n g ” ,

paste (dsName [ i dsName ] , ”FK” , sep=”” ) , ” f i l e s −f r e qu en c i e s ” )

92

93

94 setwd ( f fD i r [ i dsName ] )

95 cat ( ”DEBUG: f fD i r [ ” , i dsName , ”]=” , f fD i r [ i dsName ] , ”\n” )
96

97 l i s t f <− l i s t . f i l e s ( pattern=”Posts . xml . csv ” )

98

99 ## former outPath <<− f i l e . path (”˜” , ”Thesis ” , ” F i t t i n g ” ,”/”)

100 outPath <<− f i l e .path ( ”/media” , ”data” , ” t h e s i s ” , ”Thes i s ” , ” F i t t i n g ” , ”/” )

101 ##} ## ends here f o r debugg ing purposes next code d ea c t i v a t e d :

102 ## for ( i dsName in 1 : l e n g t h (dsName) ) {
103

104 for ( i l i s t f in 1 : length ( l i s t f ) ) {
105 readFromfileName <− l i s t f [ i l i s t f ]

106 cat ( ” l i s t f [ ” , i l i s t f , ”]=” , l i s t f [ i l i s t f ] , ”\n” )
107 Xtimeframe <<− vector ( )

108 Xtimeframe [ i l i s t f ] <− substr (gsub ( ” \\ . ” , ”−” , readFromfileName ) ,15 ,21)

109 readFromfileName <− gsub ( ” ” , ”” , readFromfileName , f i x e d = TRUE)
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110 cat ( ”DEBUG: Reading=” , readFromfileName , ” Xtimeframe=” , Xtimeframe [ i l i s t f ] ,

”\n” )
111 dat <− r e adF i l e ( readFromfileName )

112 p r o c e s sF i l e ( dat )

113 }
114 }
115 cat ( ”∗∗ END OF EXECUTION ∗∗\n” )
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B.8 Program: verifyFit k200.R

1 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ## This program i t e r a t e s over the s p e c i f i e d da ta se t s , and computes the RMSE of

the approximation formulas

3 ##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4

5 #se t to True i f you want to enab l e f i l t e r i n g o f K > 200 , e l s e s e t to Fa lse

6 data f i l t e r 200 <− T

7

8 readFromfileName = ”topX . csv . o r i g i n a l . z ip ”

9

10 i f (data f i l t e r 200) {
11 model f i l e name <− ” . /models/models f i t t i n g . remove top 25 percent and va lue s gt

200 . rda”

12 models performance f i l e name <− ” . /models/models performance . remove top 25

percent and va lue s gt 200 . csv ”

13 } else {
14 model f i l e name <− ” . /models/models f i t t i n g . remove top 25 percent . rda”

15 models performance f i l e name <− ” . /models/models performance . remove top 25

percent . csv ”

16 }
17

18 load (model f i l e name)

19 ############################################################################

20 ##### de f i n e approximation formulas #####

21 ############################################################################

22

23 # The ” f l e x i b l e ” model a (X, N) ∗ Kˆb (X,N)

24 # K == top i c count

25 # X == the top−X
26 # N == number o f documents

27 model two param simple <− function (K, X, N) {
28

29 va l <− data . frame (X = X, N = N)

30 a <− predict ( dat . lm . i n t e r c ep t , va l ) # 1.171 + 0.649 ∗ l o g (X) − 0.116 ∗ l o g (N)

31 b <− predict ( dat . lm . s lope , va l ) # −0.841 + 0.002 ∗ X + 0.00003 ∗ N

32

33 exp( a + b ∗ log (K) )

34 }
35

36 model two param complex <− function (K, X, N) {
37
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38 va l <− data . frame (X = X, N = N)

39 a <− predict ( dat . lm . i n t e r c e p t . complex , va l )

40 b <− predict ( dat . lm . s l op e . complex , va l )

41

42 exp( a + b ∗ log (K) )

43 }
44

45 # The ” cons t ra ined ” model Xˆ−b (X, N) ∗ Kˆb (X,N)

46 # K == top i c count

47 # X == the top−X
48 # N == number o f documents

49

50 model one param simple <− function (K, X, N) {
51 va l <− data . frame (X = X, N = N)

52 b <− predict ( dat . lm . b , va l ) #−8.408351E−01 + 2.110667E−03 ∗ X + 3.397901E−05 ∗
N

53

54 Xˆ−b ∗ Kˆb

55 }
56

57 model one param complex <− function (K, X, N) {
58 va l <− data . frame (X = X, N = N)

59 b <− predict ( dat . lm . b . complex , va l )

60

61 Xˆ−b ∗ Kˆb

62 }
63

64

65 #############################################################################

66 ##### he l p e r s #####

67 #############################################################################

68

69 # root−mean−square er ror

70 rmse <− function ( actua l , expected ) {
71 sqrt (mean( ( expected−ac tua l ) ˆ2) )

72 }
73

74 ############################################################################

75 ##### main #####

76 ############################################################################

77

78 dat <− read . csv ( unz ( readFromfileName , ”topX . csv . o r i g i n a l ” ) , header = T, sep = ” , ”

, row .names = NULL) ## NOT EXCEL
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79 val idGroups <− unique (paste ( dat$timeframe type , dat$timeframe , dat$datase t name ,

sep = ” ” ) )

80

81 dat . s t a t s <− data . frame ( )

82 for ( iG in 1 : length ( val idGroups ) ) {
83 s <− s tr sp l i t ( val idGroups [ iG ] , ” ” )

84 sd f <− as . data . frame ( s )

85 p1 <− as . character ( sd f [ 1 , ] ) ## timeframe type

86 p2 <− as . character ( sd f [ 2 , ] ) ## timeframe

87 p3 <− as . character ( sd f [ 3 , ] ) ## da ta s e t name

88

89 cat ( ”p1=” , p1 , ” p2=” , p2 , ” p3=” , p3 , ” iG=” , iG , ”\n” )
90 for ( itopXX in 2 : 50 ) {
91 ds <− dat [ dat$timeframe type == p1 & dat$timeframe == p2 & dat$datase t name

== p3 & dat$topXX == itopXX , ]

92 #cat (” p1=”, p1 , ” p2=”, p2 , ” p3=”, p3 , ” itopXX=”, itopXX , ” iG=”, iG , ”\n”)
93

94 i f (data f i l t e r 200) { #i f True −− keep only va l u e s o f K <= 200

95 ds <− ds [ ds$topicCount <= 200 , ]

96 }
97 ds <− ds [ ds$topicCount < 0 .75 ∗ max( ds$documentCount ) , ]

98

99

100 #f i t i n d v i dua l f l e x model

101 ds . lm . f l e x <− lm( log ( pos tFrac t i on ) ˜ log ( topicCount ) , data = ds )

102

103 #f i t i n d v i dua l cons t ra ined model

104 ds . lm . c on s t r <− n l s ( ds$pos tFract ion ˜ ds$topXXˆ(−b) ∗ ds$topicCount ˆb , data =

ds , start = l i s t ( b = −1) )

105

106

107 F . ds . lm . f l e x <− exp(predict ( ds . lm . f l e x ) ) #keep in mind t ha t we are opera t ing

on log−transform data here , need to conver t i t back

108 F . ds . lm . c on s t r <− predict ( ds . lm . c on s t r )

109

110 F .model two param simple <− model two param simple ( ds$topicCount , ds$topXX

[ 1 ] , ds$documentCount [ 1 ] )

111 F .model one param simple <− model one param simple ( ds$topicCount , ds$topXX

[ 1 ] , ds$documentCount [ 1 ] )

112 F .model two param complex <− model two param complex( ds$topicCount , ds$topXX

[ 1 ] , ds$documentCount [ 1 ] )

113 F .model one param complex <− model one param complex( ds$topicCount , ds$topXX

[ 1 ] , ds$documentCount [ 1 ] )
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114

115 #compute rmse and save s t a t s

116 dat . s t a t s <− rbind ( dat . s t a t s ,

117 data . frame (

118 dt pa r t i t i o n = p1 ,

119 time frame = p2 ,

120 datase t name = p3 ,

121 X = ds$topXX [ 1 ] ,

122 N = ds$documentCount [ 1 ] ,

123 rmse f l e x model s imple = rmse ( ds$postFract ion , F .model two param simple ) ,

124 rmse c on s t r a i n t model s imple = rmse ( ds$postFract ion , F .model one param

simple ) ,

125 rmse f l e x model complex = rmse ( ds$postFract ion , F .model two param complex

) ,

126 rmse c on s t r a i n t model complex = rmse ( ds$postFract ion , F .model one param

complex) ,

127 rmse t a i l o r e d f l e x lm = rmse ( ds$postFract ion , F . ds . lm . f l e x ) ,

128 rmse t a i l o r e d cons t r lm = rmse ( ds$postFract ion , F . ds . lm . c on s t r )

129 )

130 )

131 }
132 }
133

134 write . csv ( dat . s t a t s , models performance f i l e name , row .names = FALSE)
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B.9 Program: verifyFit k200 analysis.R

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 #se t to True i f you want to enab l e f i l t e r i n g o f K > 200 , e l s e s e t to Fa lse

3 #p l o t s the RMSE bo xp l o t s per model and per da t a s e t name

4 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 data f i l t e r 200 <− F

6

7 i f (data f i l t e r 200) {
8 model f i l e name <− ” . /models/models f i t t i n g . remove top 25 percent and va lue s gt

200 . rda”

9 models performance f i l e name <− ” . /models/models performance . remove top 25

percent and va lue s gt 200 . csv ”

10 rmse per model f i l e name <− ” . /models/models performance remove top 25 percent

and va lue s gt 200 . pdf ”

11 rmse per datase t f i l e name <− ” . /models/models performance per datase t remove

top 25 percent and va lue s gt 200 . pdf ”

12 rmse per x f i l e name <− ” . /models/models performance per x remove top 25

percent and va lue s gt 200 . pdf ”

13 rmse per n f i l e name <− ” . /models/models performance per n remove top 25

percent and va lue s gt 200 . pdf ”

14 } else {
15 model f i l e name <− ” . /models/models f i t t i n g . remove top 25 percent . rda”

16 models performance f i l e name <− ” . /models/models performance . remove top 25

percent . csv ”

17 rmse per model f i l e name <− ” . /models/models performance remove top 25 percent

. pdf ”

18 rmse per datase t f i l e name <− ” . /models/models performance per datase t remove

top 25 percent . pdf ”

19 rmse per x f i l e name <− ” . /models/models performance per x remove top 25

percent . pdf ”

20 rmse per n f i l e name <− ” . /models/models performance per n remove top 25

percent . pdf ”

21

22 }
23

24

25 dat . s t a t s <− read . csv ( models performance f i l e name)

26

27 #l e t ’ s v i s u a l i z e performance o f the models

28 l ibrary ( t i dy r )

29 dat . s t a t s . long <− gather ( dat . s t a t s , model name , rmse , rmse f l e x model s imple : rmse

t a i l o r e d cons t r lm , factor key=TRUE)
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30

31 #reorder f o r box−p l o t

32 dat . s t a t s . long$model name <− factor ( dat . s t a t s . long$model name , levels=c ( ”rmse

f l e x model s imple ” , ”rmse f l e x model complex” , ”rmse c on s t r a i n t model s imple ”

, ”rmse c on s t r a i n t model complex” , ”rmse t a i l o r e d f l e x lm” , ”rmse t a i l o r e d

cons t r lm” ) )

33

34 pdf ( rmse per model f i l e name)

35 boxplot ( rmse ˜ model name ,

36 data = dat . s t a t s . long ,

37 log = ”y” ,

38 #x la b = ”Model Name” ,

39 l a s = 2 ,

40 ylab = ”RMSE” ,

41 par (mar = c (12 , 5 , 4 , 2)+ 0 . 1 ) ,

42 names = c ( ”Flex − s imple ” , ”Flex − complex” , ”Constr . − s imple ” , ”Constr .

− complex” , ” Ind . f i t − f l e x ” , ” Ind . f i t − cons t r ” )

43 )

44 grid ( )

45 dev . of f ( )

46

47 pdf ( rmse per datase t f i l e name)

48 dat . s t a t s$ds merged name <− as . factor (paste ( dat . s t a t s$datase t name , ”−” , dat .

s t a t s$dt pa r t i t i o n ) )

49 boxplot ( rmse c on s t r a i n t model complex ˜ ds merged name ,

50 data = dat . s t a t s ,

51 log = ”y” ,

52 #x la b = ”Model Name” ,

53 l a s = 2 ,

54 ylab = ”RMSE” ,

55 par (mar = c (12 , 5 , 4 , 2)+ 0 . 1 )

56 #names = c (” Flex − s imp le ” , ”Flex − complex ” , ”Constr . − s imp le ” , ”Constr

. − complex ” , ” Ind . f i t − f l e x ” , ” Ind . f i t − cons t r ”)

57 )

58 grid ( )

59 dev . of f ( )

60

61 pdf ( rmse per datase t f i l e name)

62 dat . s t a t s$ds merged name <− as . factor (paste ( dat . s t a t s$datase t name , ”−” , dat .

s t a t s$dt pa r t i t i o n ) )

63 boxplot ( rmse c on s t r a i n t model complex ˜ ds merged name ,

64 data = dat . s t a t s ,

65 log = ”y” ,
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66 #x la b = ”Model Name” ,

67 main = ”Model − const ra ined , complex” ,

68 l a s = 2 ,

69 ylab = ”RMSE” ,

70 par (mar = c (12 , 5 , 4 , 2)+ 0 . 1 )

71 #names = c (” Flex − s imp le ” , ”Flex − complex ” , ”Constr . − s imp le ” , ”Constr

. − complex ” , ” Ind . f i t − f l e x ” , ” Ind . f i t − cons t r ”)

72 )

73 grid ( )

74 dev . of f ( )

75

76 pdf ( rmse per x f i l e name)

77 boxplot ( rmse c on s t r a i n t model complex ˜ X,

78 data = dat . s t a t s ,

79 log = ”y” ,

80 xlab = ”X” ,

81 main = ”Model − const ra ined , complex” ,

82 #l a s = 2 ,

83 ylab = ”RMSE”

84 #par (mar = c (12 , 5 , 4 , 2)+ 0 .1 )

85 #names = c (” Flex − s imp le ” , ”Flex − complex ” , ”Constr . − s imp le ” , ”Constr

. − complex ” , ” Ind . f i t − f l e x ” , ” Ind . f i t − cons t r ”)

86 )

87 grid ( )

88 dev . of f ( )

89

90 pdf ( rmse per n f i l e name)

91 boxplot ( rmse c on s t r a i n t model complex ˜ N,

92 data = dat . s t a t s ,

93 log = ”y” ,

94 xlab = ”N” ,

95 main = ”Model − const ra ined , complex” ,

96 #l a s = 2 ,

97 ylab = ”RMSE”

98 #par (mar = c (12 , 5 , 4 , 2)+ 0 .1 )

99 #names = c (” Flex − s imp le ” , ”Flex − complex ” , ”Constr . − s imp le ” , ”Constr

. − complex ” , ” Ind . f i t − f l e x ” , ” Ind . f i t − cons t r ”)

100 )

101 grid ( )

102 dev . of f ( )

103

104

105 #summary s t a t s
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106 l ibrary ( s t a r g a z e r )

107 s t a r g a z e r ( dat . s t a t s [ , 6 : 1 1 ] )
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B.10 Program: validate fit.R

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 # se t to True i f you want to enab l e f i l t e r i n g o f K > 200 , e l s e s e t to Fa lse

3 # performs v a l i d a t i o n us ing 10 f o l d s

4 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 data f i l t e r 200 <− F

6

7 # root−mean−square er ror

8 rmse <− function ( actua l , expected ) {
9 sqrt (mean( ( expected−ac tua l ) ˆ2) )

10 }
11

12 # one param complex p r e d i c t i on model

13 model one param complex <− function (K, X, N) {
14 va l <− data . frame (X = X, N = N)

15 b <− predict ( dat . lm . b . complex , va l )

16

17 Xˆ−b ∗ Kˆb

18 }
19

20

21 ###########################################################################

22 ##### ge t raw data #####

23 ###########################################################################

24

25 readFromfileName = ”topX . csv . o r i g i n a l . z ip ”

26 dat . raw <− read . csv ( unz ( readFromfileName , ”topX . csv . o r i g i n a l ” ) , header = T, sep =

” , ” , row .names = NULL)

27

28 #add key column

29 dat . raw$data subset name <− paste ( dat . raw$timeframe type , dat . raw$timeframe , dat .

raw$datase t name)

30

31 ###########################################################################

32 ##### ge t the i n d i v i d u a l f i t o f b−va l u e s #####

33 ###########################################################################

34

35 i f (data f i l t e r 200) {
36 to f i t f i l e name <− ” to f i t . remove top 25 percent and va lue s gt 200 . csv ”

37 } else {
38 to f i t f i l e name <− ” to f i t . remove top 25 percent . csv ”

39 }
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40 dat <− read . csv ( to f i t f i l e name)

41

42 #add key column

43 dat$data subset name <− paste ( dat$time i n t e r va l , dat$time frame , dat$datase t name

)

44

45

46

47 ###########################################################################

48 ##### do run 10− f o l d v a l i d a t i o n #####

49 ###########################################################################

50

51 #s p l i t 96 da t a s e t s i n t o 10 f o l d s

52 unique data subse t s <− unique ( dat$data subset name)

53 require ( c a r e t )

54 f o l d s <− c r ea t eFo ld s (c ( 1 : length (unique data subse t s ) ) , k = 10 , l i s t = TRUE,

returnTra in = FALSE)

55

56 rmse per f o l d <− c ( )

57 for ( f in 1 : 10 ) {
58 t r a i n subse t s <− unique data subse t s [− f o l d s [ [ f ] ] ]

59 t e s t subse t s <− unique data subse t s [ f o l d s [ [ f ] ] ]

60

61

62 #l e t ’ s s e l e c t the b va l u e s a s s o c i a t e d wi th the data s u b s e t s in the t r a i n s e t

63 t r a i n data <− dat [ dat$data subset name %in% t r a i n subsets , ]

64

65 #complex coans t ra ined model : compute the model f o r the va lue o f b

66 dat . lm . b . complex <− lm(b ˜ X + N + log (X) , data = t ra i n data )

67

68 #l e t us see how the model f o r b va lue f i t s the raw data f o r the t e s t s e t

69 dat . raw . t e s t <− dat . raw [ dat . raw$data subset name %in% t e s t subsets , ]

70

71 #app ly DS1 or DS2 f i l t e r

72 i f (data f i l t e r 200) { #i f True −− keep only va l u e s o f K <= 200

73 dat . raw . t e s t <− dat . raw . t e s t [ dat . raw . t e s t$topicCount <= 200 , ]

74 }
75 dat . raw . t e s t <− dat . raw . t e s t [ dat . raw . t e s t$topicCount < 0 .75 ∗ dat . raw . t e s t$

documentCount , ]

76

77

78 f i tted va lue s <− model one param complex( dat . raw . t e s t$topicCount , dat . raw . t e s t$

topXX , dat . raw . t e s t$documentCount )
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79 #compute and save rmse per f o l d

80 rmse per f o l d <− c ( rmse per fo ld , rmse ( dat . raw . t e s t$postFract ion , f i tted va lue s

) )

81 }
82

83

84 ###########################################################################

85 ##### show summary s t a t s #####

86 ###########################################################################

87

88 summary( rmse per f o l d )

89

90

91 i f (data f i l t e r 200) {
92 f i g u r e f i l e name <− ” . / f i g u r e s /one param complex 10− f o l d v a l i d a t i o n DS2 . pdf ”

93 rmse . df . ds2 <− data . frame ( f i t e r name = ”Dataset 2” , rmse = rmse per f o l d )

94 } else {
95 f i g u r e f i l e name <− ” . / f i g u r e s /one param complex 10− f o l d v a l i d a t i o n DS1 . pdf ”

96 rmse . df . ds1 <− data . frame ( f i t e r name = ”Dataset 1” , rmse = rmse per f o l d )

97 }
98

99 pdf ( f i g u r e f i l e name)

100 boxplot ( rmse per fo ld ,

101 ylab = ”RMSE” ,

102 xlab = ”Constr . − complex”

103 )

104 grid ( )

105 dev . of f ( )

106

107 #need to run the s c r i p t tw i ce wi th data f i l t e r 200 = T and data f i l t e r 200 = F to

ge t the f i g u r e be low c o r r e c t l y

108 pdf ( ” . / f i g u r e s /one param complex 10− f o l d v a l i d a t i o n DS both . pdf ” )

109 rmse . df . ds both <− rbind ( rmse . df . ds1 , rmse . df . ds2 )

110 plot ( rmse . df . ds both$ f i t e r name , rmse . df . ds both$rmse ,

111 ylab = ”RMSE” ,

112 xlab = ”Constr . − complex”

113 )

114 grid ( )

115 dev . of f ( )
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Glossary

F word frequency. 3, 54, 56–58, 68

K Refers to the selected number of topics. vi, ix, x, 2–4, 7, 8, 11, 14, 19, 21–23, 26, 28,

30, 31, 33, 35, 36, 42, 43, 46, 54, 56, 58, 61, 66, 82, 83

M Refers to the number of documents in the text corpus, denoted by D, consisting of

M documents: D = {d1, d2, . . . , dM}. 28

N total number of documents in corpus. 3, 6, 54, 57, 58

X top X topics. 3, 54, 56–58, 68

α Hyperparameter of the model, controls the topic distributions per document. 29

β Hyperparameter of the model, controls the term distributions. 29

φ Multinomial distribution on z. 28

θ Multinomial distribution used to model the topic proportions. 28

d Refers to a document defined as a sequence ofN words, described by d = {w1, w2, . . . , wN}
where wN represents the nth word in the sequence. 28

w Refers to a term or word in the vocabulary (V ). It is the basic unit of discrete data,

and wi ∈ V . 11, 28
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Glossary Glossary

SE-related text corpuses Any text corpus associated with software, processes, prod-

ucts and projects. 1, 82, 83

perplexity measurement of how well a probability distribution or probability model

predicts a sample. 21, 22

polysemy when a word may have more than one meaning (i.e., crane, bank, etc.). 16,

17

synonymy when one word meaning can be expressed by many words (i.e., defect and

bug). 17
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Acronyms

BoW Bag-of-words. 11, 15, 27

CGS Collapsed Gibbs Sampling. 41–43

CSV Comma Separated Value file. 47

CV Cross-Validation. 21–23

DBMS Database Management System. 14

DM Data Mining. 12

DTM Dynamic Topic Models. vi, ix, 19, 30, 31, 34

FLT Feature Location Technique. 25

HDP Hierarchical Dirichlet Process. 21

idf inverse document frequency. 5, 6, 49

IR Information Retrieval. 12, 24, 82

ITS Issue Tracking System. 24

KL Kullback-Leibler divergence. 21, 44
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Acronyms Acronyms

LDA Latent Dirichlet Allocation. vi, viii–x, 1, 3, 4, 14, 18, 19, 23–31, 33, 35, 36, 39–42,

46–49, 54, 55, 76, 82, 115

LSI Latent Semantic Analysis. 17, 24

MCMC Markov Chain Monte Carlo. 41

pd probability density. ix, 36, 37, 39

pLSI Probabilistic Latent Semantic Analysis. ix, 17, 18, 29–31

posterior posterior distribution. 41, 43

prior prior probability. 11

Q&A Questions and Answers. 46, 48, 50

RMSE Root-Mean-Square Error. 68, 69, 71

SE Software Engineering. 1, 23, 24, 82

SVD Singular Value Decomposition. 17

SW Software. 1, 2, 23–25

tf term frequency. ix, 5, 6

tf-idf term frequency - inverse document frequency. 5, 6, 12, 17, 48

TMs Topic Models. 2, 3, 5, 16

XML Extensible Markup Language. 47
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