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Abstract

Cloud-based multimedia application has emerged as a popular service, delivering on-

demand media computing and storage to millions of users. Though widely deployed, the

quality of service (QoS) in current cloud-based multimedia service is not satisfying, due to

the varying user demands and strict response time requirements. This thesis investigates

resource allocation approaches to improve QoS for cloud-based multimedia services.

A service model is desired to quantify the user demands and resource allocation. To

meet this need, we propose a queueing model to characterize the cloud service process,

based on which we investigate the response time minimization problem and the resource

cost minimization problem in single-service scenario, multi-service scenario, and priority-

service scenario, respectively.

Dynamic workload causes the unbalanced resource utilization and local congestion in

multimedia cloud. To address this issue, we propose a two-time-scale resource configura-

tion (TRC) scheme to dynamically allocate virtual machines (VMs) to adapt to varying
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workload. Based on the TRC scheme, we solve the optimal VM configuration problems

to minimize the resource cost or minimize the average response time for the single-site

cloud scenario and the multi-site cloud scenario, respectively.

We propose optimal workload scheduling schemes at user level and task level, respec-

tively. At user level, we optimize the workload assignment to minimize the response

time or minimize the resource cost. At task level, we introduce a directed acyclic graph

to model the precedence constraints among tasks, and then solve the execution time

minimization problems for sequential structure, parallel structure, and mixed structure,

respectively.

Cloud gaming is an emerging interactive multimedia service. However, current cloud

gaming suffers from a high bandwidth consumption and a large response delay. We

propose a hybrid streaming framework to provide a high quality cloud gaming experience.

We solve the delay-rate-distortion (d-R-D) optimization problem to minimize the overall

distortion under the bandwidth and response delay constraints.
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Chapter 1

Introduction

1.1 Motivation

Recent years have witnessed the rapid advances in cloud computing. According to the

forecast from IDC [1], the worldwide revenue on public cloud services is expected to

rise from $56.6 billion in 2014 to $127 billion in 2018, enjoying a five-year compound

annual growth rate of 22.8%, which is about six times that of traditional IT industry.

Due to the elastic and on-demand resource provisioning in cloud computing, numerous

IT enterprises have moved their services to cloud side. Today, the most popular social

network service, like Facebook [2], email service, like Gmail [3], online office service,

like Microsoft Office Online [4], and on-demand gaming service, like OnLive [5], are all

hosted on cloud data centers. Even the U.S. federal government has employed Amazon

Web Service (AWS) cloud solutions in the Civilian Agencies and the Department of

Defense to reduce IT maintenance cost and boost efficiencies [6]. The emergence of cloud

computing has introduced a significant change to the traditional IT industry by making

hardware and software as accessible services in daily life.

Cloud computing has been envisioned as the next generation computing paradigm.

Compared with the conventional computing paradigms, a unique feature of cloud com-

puting is to enable the rapid and elastic resource provisioning. In cloud data centers, a

shared pool of servers are managed to provide on-demand computation, communication,

and storage resources as utilities in a scalable manner [7]. To efficiently provide resources,

virtualization techniques have been applied in cloud to package computation resources

1



into virtual machines (VMs). By managing VMs, cloud computing is able to provision

or release resources in a fine granularity to meet service demands [8].

As the popularity of mobile devices, online multimedia services have been widely

used in recent years, like photo and video sharing, online gaming, and media retrieval.

Compared with the general Internet services, multimedia services typically demand in-

tensive computation and high bandwidth, which impose burdens to client devices, e-

specially to the resource-constrained thin devices. On the other hand, the workload

intensity varies quickly in online multimedia service. In order to accommodate the burst

of workload, multimedia service providers (MSPs) traditionally need to over-provision

computation and bandwidth resources to guarantee the quality of service (QoS). How-

ever, over-provisioning is costly and ineffective, leading to low resource utilization in

non-peaked period and a high resource cost.

The emergence of cloud computing provides an effective solution for multimedia ser-

vices. Running multimedia applications on cloud eases users from the continuous hard-

ware upgrade and software installation. In cloud-based multimedia services, the intensive

computation tasks are executed on cloud servers, greatly reducing the hardware require-

ments on the user side. Furthermore, migrating multimedia services to cloud environment

can benefit MSPs. The elastic and on-demand resource provisioning in cloud enables M-

SPs to serve millions of users at the same time with the quality assurance. In addition,

leasing cloud resources can effectively reduce the overhead cost on dedicated servers. By

dynamically configuring cloud resources, MSPs can enhance the resource utilization. As

a result, an increasing number of MSPs have deployed services on cloud. For example,

Netflix, one of the major internet media streaming providers, has moved its streaming ser-

vices, retrieval engines, and media data to AWS public cloud to handle the ever-growing

users [9].

Multimedia services bring new issues to cloud computing. First of all, multimedia

services are delay-sensitive. Response time is one of the important QoS factors in cloud-

based multimedia services, especially in the interactive multimedia services, like cloud

gaming. But the workload in cloud varies rapidly. The occasional workload bursts will

cause the suddenly peaked computation demands and accordingly extend the response

time. Thus, it is necessary to develop a dynamic resource configuration scheme to meet

response time requirements under the varying workload. Besides response time, another

important concern for MSPs is the resource cost. MSPs lease a certain amount of VMs
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from cloud computing providers. If the leased VMs are more than the real demands,

resources cannot be fully utilized, causing the unnecessary waste. Conversely, if the allo-

cated resources are less than the real demands, the response time will increase, which will

degrade QoS and may even result in the loss of user access. Therefore, MSPs desire an

economic resource allocation scheme to provide services at a low resource cost. Further-

more, the diversified multimedia services make the resource allocation more complicated.

There exist different types of multimedia services, which have heterogeneous resource

demands and QoS requirements. VMs are configured with different resource capacities.

It is a challenge to satisfy all the QoS requirements by allocating VMs to each service.

Therefore, MSPs require an efficient resource allocation scheme to optimally configure

computation resources.

Considering the above mentioned issues, an effective resource allocation scheme is

urgently needed. MSPs can benefit from the resource allocation scheme, which enables

MSPs to provide satisfactory services at a low resource cost. Users can also benefit from

the resource allocation scheme, which enables them to receive services with the high

quality of experience (QoE). Driven by these demands, we, therefore, study the resource

allocation for multimedia services over cloud computing in this thesis.

1.2 Objective

Cloud-based multimedia services involve three roles: users, MSPs, and cloud computing

providers, which are illustrated in Figure 1.1. As customers, users send requests to cloud

data center for the interested services. By leasing VMs from cloud computing providers,

MSPs offer on-demand services. Once the requests enter cloud data center, a dispatcher

will distribute the requests to the corresponding service. By monitoring the workload,

a service model will quantitatively analyze the user demands, the QoS requirements,

and the required cloud resources. Through the service modeling, the resource allocation

module will allocate VMs to each service and dynamically adjust VMs to adapt to the

varying workload. If the leased VMs cannot satisfy user demands, the resource allocation

module will request on-demand VMs from cloud computing providers to guarantee the

QoS. A workload scheduler distributes the incoming requests to VMs inside a specific

service, so that all the allocated resources can be utilized in a balanced manner.
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Figure 1.1: Illustration of cloud-based multimedia service.

In this thesis, we aim to optimally allocate cloud resources for multimedia services to

maximize the QoE from the users’ perspective or to minimize the total resource cost from

the MSPs’ perspective. In order to achieve this objective, we need to resolve a number

of challenges, which will be presented in the following section.

1.3 Challenges in Multimedia Cloud Computing

Multimedia cloud computing not only presents new opportunities to users and MSPs,

but also brings new challenges. Despite the fact that tremendous interests have been

drawn from research communities, many challenges have not been fully addressed yet.

First of all, it is challenging to quantify the relationship among the allocated resources,

user demands, and response time. In multimedia cloud, there is a trade-off between the

response time and the resource cost. The under-provisioned resources would slow down

services and deteriorate QoS, while the over-provisioned resources would reduce response

time but lead to a high resource cost. Thus, it is a challenge for MSPs to precisely model
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the dynamic user demands and effectively allocate resources. Many research work [10–12]

apply utility functions to formulate the QoS performance and the allocated resources.

However, the utility function cannot represent the service process. Moreover, multimedia

services often have different priorities. For example, the real-time health monitoring

service demands a higher priority than the on-demand video service. However, current

resource management schemes [13,14] are mainly designed for the first-come first-served

(FCFS) service discipline. Therefore, an effective modeling method is needed to represent

the cloud service process under different service disciplines.

Secondly, it is challenging to dynamically configure cloud resources to accommodate

the varying workload. Most cloud computing providers [15–17] offer two different pricing

plans, the reservation plan and the on-demand plan. In the reservation plan, MSPs make

a onetime upfront payment for a VM instance and in turn receive a discount on the hourly

rate. Compared to the reservation plan, the on-demand plan is more flexible. In the on-

demand plan, a VM instance can be paid by usage without long-term commitment. MSPs

need to determine the required number and class of VMs for each service. However, it is

difficult to achieve an optimal VM allocation, since multimedia services demand different

resources, while VMs are configured with heterogeneous capacities. In addition, even

if the resources are initially allocated, the varying workload may cause the unbalanced

resource utilization and the local congestion, where some services in cloud suffer from a

burst of requests, while others may be under-loaded. Thus, an efficient resource allocation

scheme should not only determine VM allocation at the initial stage, but also dynamically

reconfigure VMs such that all resources can be fully utilized. Currently, the state-of-the-

art resource allocation approach, used in Amazon Elastic Beanstalk [18], is designed

based on the utilization. This approach can guarantee that the resource utilization is

always lower than the threshold, but it cannot balance the resource utilizations among

services.

Thirdly, it is challenging to optimally schedule the workload among the allocated

cloud resources. There are two levels of workload scheduling in multimedia cloud. The

first level is the user level scheduling, in which users’ requests are distributed to differ-

ent VMs according to the current load intensity at each VM. Since different VMs have

different rates for processing user requests. It is difficult to schedule workload to each

VM to achieve the best service performance. Compared to the user level scheduling, task

level scheduling performs in a finer granularity. A complex multimedia service can be

5



regarded as a work flow, composed of a set of tasks. The objective of task level scheduling

is to minimize the total execution time by optimally assigning tasks to different VMs.

However, it is a challenge to determine the task assignment, since there are precedence

constraints among tasks. Some tasks can run in parallel, while some other tasks must

be processed sequentially. Some previous research work [19–21] employ the best-effort

scheduling scheme. Workload in cloud will be assigned to the virtual server, which can

provide the fastest or the earliest service. However, this scheme cannot guarantee the

required QoS performance. Some researchers [22, 23] studied the scheduling problem by

considering the CPU utilization at each cloud server to reduce the total power consump-

tion. But these studies do not consider the heterogeneous resource demands.

Finally, it is challenging to guarantee the QoS for interactive multimedia services,

like cloud gaming [5, 24, 25]. In cloud gaming, cloud servers fully or partially render

game scenes and stream the encoded game frames to clients, while user’s control events

are captured and transmitted back to cloud servers. Most existing cloud gaming sys-

tems [5, 24, 25] transmit the encoded game frames using video streaming. However,

video streaming demands a large bandwidth capacity to deliver the high-definition game

frames. Some researchers used the attention model [26, 27] to allocate different rates

to each content in proportional to its importance. However, the game attention model

cannot precisely track player’s attentions. The so-called less important object may be

the focus of players. Simply encoding these contents with low rates may degrade the user

experience. Therefore, it is still a challenge to provide users with a high quality cloud

gaming experience under the bandwidth and delay constraints.

1.4 Main Contributions

In this thesis, we study the resource allocation for multimedia services over cloud com-

puting. The main contributions in this thesis are illustrated in Figure 1.2.

• We propose a queueing model to represent cloud service process. Based on the

queueing model, we theoretically study the equilibrium demands for scheduling,

computation, and bandwidth resources in multimedia services and derive the rela-

tionship among the allocated resources, user demands, and response time. More-

over, we investigate the resource optimization in three different scenarios: the
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Figure 1.2: Illustration of main contributions in this thesis.

single-service scenario, the multi-service scenario, and the priority-service scenario.

In each scenario, we formulate and solve the response time minimization problem

and the resource cost minimization problem, respectively, to determine the optimal

resource allocation.

• We propose a two-time-scale resource configuration (TRC) scheme to dynamically

adjust VMs to deal with varying workload. In the TRC scheme, we first allocate

resources in a mid-long time scale to determine the optimal number and class of

VMs, and then reconfigure resources in a fine-grained time scale to address the

dynamic demands. By considering different time scales, the proposed TRC scheme

is able to flexibly adjust resources according to the real demands. We also investi-

gate the resource cost minimization problem and the response time minimization

problem in the single-site scenario and the multi-site scenario, respectively. Since

the formulated problems are nonlinear integer programming, we develop heuristics

to allocate resources in an efficient way.

• We study the workload scheduling in cloud to balance the resource utilization.

Specifically, we investigate the user level workload scheduling and the task level
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workload scheduling. At the user level, we optimize the workload assignment for

the allocated VMs to achieve the minimal response time or the minimal resource

cost. At the task level, we introduce a directed acyclic graph (DAG) to characterize

the precedence constraints among tasks. Based on the DAG, we investigate the

task scheduling for the sequential structure, parallel structure, and mixed structure

services, respectively, and determine the optimal task assignment to minimize the

total execution time.

• We propose a hybrid streaming framework to provide high quality cloud gaming

experience under the bandwidth and response delay constraints. In the proposed

framework, cloud server not only transmits the encoded game frames, but also pro-

gressively transmits graphics data, including geometry meshes and textures. The

received graphics data are used to render a game frame, which provides extra refer-

ence candidate for encoding the following frames. As the accumulation of graphics

data, the residual between the captured frame and the rendered graphics frame is

decreasing, leading to the low encoding rate. Based on the proposed framework,

we study the delay-rate-distortion optimization problem, where we optimize the

rate allocation between video stream and graphics stream to achieve the minimal

distortion under the given bandwidth and response delay constraints.

In this thesis, we formulate the resource allocation in cloud based multimedia services

into constrained optimization problems, with an objective to minimize the response time

or minimize the resource cost, subject to the resource constraints or QoS constraints.

The summary of optimization problems is shown in Table 1.1.

1.5 Thesis Organization

The rest of this thesis is organized as follows.

Chapter 2 first gives an introduction of cloud computing, and then reviews the

recent advances in resource allocation, workload scheduling, cloud gaming, and queueing

theory.

Chapter 3 presents the queueing model based resource allocation. We investigate

the resource allocation problems in single-service scenario, multi-service scenario, and

priority-service scenario.
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Optimization problem Problem type Solution

Minimize response time by optimizing resource Convex Lagrange
allocation in single-service scenario in Eq. (3.4) optimization multiplier

Minimize resource cost by optimizing resource Convex Lagrange
allocation in single-service scenario in Eq. (3.7) optimization multiplier

Minimize response time by optimizing resource Convex Interior point
allocation in multi-service scenario in Eq. (3.12) optimization method

Minimize resource cost by optimizing resource Convex Interior point
allocation in multi-service scenario in Eq. (3.13) optimization method

Minimize response time by optimizing resource Convex Interior point
allocation in priority-service scenario in Eq. (3.17) optimization method

Minimize resource cost by optimizing resource Convex Interior point
allocation in priority-service scenario in Eq. (3.18) optimization method

Minimize resource cost by optimizing VM Nonlinear integer Heuristic
allocation in single-site cloud in Eq. (4.4) programming

Minimize average response time by optimizing Nonlinear integer Heuristic
VM reconfiguration in single-site cloud in Eq. (4.6) programming

Minimize resource cost by optimizing VM Nonlinear integer Heuristic
allocation in multi-site cloud in Eq. (4.9) programming

Minimize average response time by jointly Mixed integer Heuristic
optimizing workload assignment and VM nonlinear
reconfiguration in multi-site cloud in Eq. (4.13) programming

Minimize response time by optimizing workload Convex Lagrange
scheduling weights in Eq. (5.1) optimization multiplier

Minimize resource cost by jointly optimizing Mixed integer Heuristic
workload scheduling weights and nonlinear
VM allocation in Eq. (5.3) programming

Minimize execution time by optimizing task- 0-1 integer Heuristic
level scheduling for mixed structure in Eq. (5.6) programming

Minimize total distortion by optimizing rates Convex Lagrange
for video stream and graphics stream in Eq. (6.11) optimization multiplier

Table 1.1: Summary of optimization problems

Chapter 4 studies the dynamic resource configuration based on the proposed TRC

scheme. The response time minimization problem and the resource cost minimization

problem are examined in single-site cloud scenario and multi-site cloud scenario, respec-

tively.

Chapter 5 investigates the workload scheduling problem. At the user level, the

workload scheduling weights are optimized to minimize the response time or minimize
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the overall cost. At the task level, the task assignments are determined to achieve the

minimal execution time.

Chapter 6 proposes a hybrid streaming framework for cloud gaming. With the

framework, we study the delay-rate-distortion optimization problem, where we optimize

the rate allocation to achieve the minimal distortion under the bandwidth and response

delay constraints.

Chapter 7 concludes the whole thesis and suggests the future research directions.
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Chapter 2

Background

This chapter begins with a general overview of cloud computing, including the definition

of cloud computing, service models, and QoS in multimedia cloud. Following that, we

review the recent advances in the areas of cloud resource allocation, workload scheduling,

cloud gaming, and queueing theory in resource allocation.

2.1 Cloud Computing Overview

2.1.1 Cloud Computing Definition

Cloud computing is becoming a popular term in various IT magazines, websites, and TV

programs. The widely used analogy to explain cloud computing is the public utilities, like

electricity and water. Just as the centralized utilities free individuals from the burdens

of generating electricity or pumping water, cloud computing frees users from purchasing,

installing, and maintaining hardware and software resources. By using the centralized

computing resources on cloud, the cost on each individual user will be greatly reduced.

National Institute of Standards and Technology (NIST) gives a more concise and

specific definition of cloud computing [7]: “Cloud computing is a model for enabling con-

venient, on-demand network access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services) that can be rapidly provi-

sioned and released with minimal management effort or service provider interaction.”

The definition from NIST not only presents an objective concept of cloud computing,
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but also describes a series of essential characteristics of cloud computing. First of all,

cloud computing enables on-demand self-service. Users are able to freely request a vari-

ety of cloud resources, such as storage, bandwidth, and CPU. Secondly, resource pooling

is used inside cloud data center to serve multiple users with a multi-tenant architecture.

From users’ perspective, they have no idea about the location of the provided resources,

which is referred to as resource location transparency. Thirdly, rapid elasticity is enabled

in cloud. Thus, capacities of allocated resources can be dynamically adjusted to meet the

varying user demands. Fourthly, cloud service is measurable. Since cloud adopts the pay-

as-you-go model to charge services by the resource usage, computing resources in cloud

need to be monitored, controlled, and measured for both the providers and users. Lastly,

cloud computing requires broad network to enable the access of users from heterogeneous

client devices.

Cloud computing shares the similar features with utility computing and grid comput-

ing. Thus, people may confuse cloud computing with utility or grid computing. In the

following, we will compare these related techniques to give a clear view of cloud com-

puting. Utility computing is a service provisioning model, which is initialized in 1961 by

John McCarthy on a speech at MIT centennial [28]. In utility computing, hardware and

software resources are provided to users as needed, and the fees are charged based on the

real usage. Utility computing utilizes the principle of consolidation, in which physical

resources are shared by multiple users. For efficiency, computing resources are packaged

as metered services, and users just pay a low initial cost to acquire the resources. The

major concern in utility computing is the business model in resource metering. Besides

utility computing, another similar technique is grid computing. Grid computing is de-

fined as “a type of parallel and distributed system, which enables the sharing, selection,

and aggregation of geographically distributed computing resources at runtime depending

on their availability, capability, performance, and users’ QoS requirements” [29]. Grid

computing works as a super virtual mainframe composed of a cluster of loosely coupled

computers, which are used to process computationally intensive applications. In grid,

a task is generally divided into subtasks to be distributed to the grid computers. The

major concern in grid computing is how to better utilize the parallel computing resources

to process the large-scale task in a short time.

Based on the above descriptions, we can get the relationship among cloud computing,

utility computing, and grid computing. Utility computing focuses on how computing
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resources are packed as metered services to satisfy users’ demands, but it has no speci-

fication about resource management and allocation. On the other hand, grid computing

concerns the task division and parallel computing using the loosely coupled grid com-

puters, but does not take the service charge into consideration. Currently, most grid

platforms are sponsored by government and education organizations for research purpos-

es. Compared to the two alternative paradigms, cloud computing is actually an evolution

of utility and grid computing. Cloud uses the similar parallel processing technology as

grid and the service business model as utility computing. Moreover, cloud computing

develops its own features, such as virtualization techniques, centralized resource manage-

ment, rapid elasticity, and high degree of scalability.

2.1.2 Service Models

According to the service provision, cloud computing can be categorized into three models,

namely Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as

a Service (SaaS) [30]. The three models correspond to three levels, i.e. hardware level,

system level, and application level [31]. As shown in Figure 2.1, IaaS is at the lowest

hardware level, overlaid by PaaS at system level and SaaS at application level.

Data Centers

Servers, network, disks

IaaS (hardware level)

Virtual machines, storage,

bandwidth

PaaS (system level)

API, IDE, modeling

SaaS (application level)

Game, email, media application

Figure 2.1: Illustration of cloud computing service models.

• IaaS delivers computing resources such as virtual machines, storage, connections,
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and bandwidth to users. By renting the resources, users are able to set up any

operating system or application environment. IaaS provides users with a high

degree of flexibility, but users have to build the required environment from scratch.

The provided infrastructure is virtualized, flexible, and scalable to meet the varying

user demands. Classical IaaS examples include Amazon EC2 [15], , GoGrid [32],

etc.

• PaaS delivers the high level integrated development environment to users. Users

are able to utilize the provided application programming interface (API) and devel-

opment environment to build, test, or host the customized applications. Compared

to IaaS, PaaS users are free from the set up and maintenance of network, storage,

and operating systems. Prime PaaS examples include Google App Engine [33] and

Engine Yard [34].

• SaaS delivers software applications as services. In SaaS, users are able to access

the provided software, which are executed on cloud servers, through a thin client

interface, like web browser. The major benefit to users is that SaaS eliminates the

investment in expensive local computers and the burdens of software installation at

client side. As consumers, users do not concern about the hardware and application

environment. They can send requests to providers and enjoy the interested services

as they were performed on the local machine. Classical SaaS application include

social media service, like Facebook [2], online office software service, like GMail [3]

and Google Docs [35], and cloud gaming service, like OnLive [5] and CiiNow [25].

2.1.3 Cloud Computing Issues

Cloud computing not only brings benefits, but also introduces new issues, like data

security, privacy, and energy consumption.

• Data security: In cloud environment, data are centralized on data center. From

user’s perspective, storing data remotely on cloud enables the flexible and on-

demand access, but it also brings security threats towards the personal data. De-

spite the cloud data center is more powerful and reliable than personal computers,

it still faces up with many attacks. For example, a collection of around 500 private
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photos of various celebrities were posted on web site in August 2014 [36], and these

images were obtained by hackers via a breach of Apple’s iCloud service [37]. Besides

data breach, data loss in cloud is another serious threat, which may occur when

a hard drive died without a backup. For instance, Amazon Web Service suffered

from a hardware failure on Eastern weekend in 2011 and lost some customers data

due to operation errors [38]. To protect data security, researchers have developed

some effective methods [39–41], including data encryption, third party monitoring

mechanism, user data security assurance, etc.

• Privacy: As the increasing use of cloud services, like email, online photo sharing,

and video broadcast, the privacy issue is becoming an important public concern.

Once uploading the personal data to cloud data center, users shift the data control

and privacy to service providers, who are able to monitor user’s communications

and access the personal data. To pursue commercial benefits, some cloud service

providers may disclose user profile to third parties. Many countries have laws

and regulations to protect cloud user privacy. For example, Canadian privacy

laws mandates that any organization collecting personal information has a legal

obligation to ensure that the privacy of their clients is protected. Some researchers

[42,43] proposed the privacy preserved digital identity management to address the

privacy issue from the technical perspective.

• Energy consumption: With the expanded scale, energy consumption in cloud

data centers is taken as a critical issue of both economic importance and environ-

mental urgency. According to the study in [44], data centers in U.S. consumed

electricity up to 100 billion kilowatt hours (kWh) in 2011, leading to a signifi-

cant cost and emission of carbon dioxide. Many research work [45, 46] have been

developed on the efficient energy use in cloud computing.

2.1.4 Multimedia Cloud Computing

Multimedia processing imposes new challenges to cloud computing, due to the special

characteristics, like delay sensitivity, high computation intensity, and large bandwidth

demands. Compared to the general services, multimedia processing not only demands

computation resources from cloud, but also requires QoS guarantees. Therefore, simply
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migrating multimedia services to cloud without considering QoS requirements may de-

grade the user experience. To better utilize cloud computing for multimedia services,

Zhu et al. [47] proposed the concept of multimedia cloud computing, where the key

concern was how cloud can effectively provide QoS-satisfied multimedia services for all

users. Multimedia cloud computing is a new and open area, which attracts considerable

attentions from researchers.

Some researchers started from architecture perspective to investigate how to support

multimedia services on cloud. Zhu et al. [47] proposed a media edge cloud computing

architecture, which physically placed computing servers at the edge of cloud in order to

reduce transmission delays. Ferretti et al. [48] presented a cross-layer cloud architecture,

which enabled wireless devices to seamlessly access multimedia services. Hui et al. [49]

developed a layered media cloud architecture. The QoS control was implemented across

three layers, namely media service layer, media overlay layer, and resource management

layer. Specifically, the media service layer negotiated QoS requests with users, the media

overlay layer ensured the security of data transmission, and the resource management

layer adjusted resources to support QoS provision.

As the popularity of smart phones and tablets, multimedia cloud provides an ideal

platform for mobile services. Miao et al. [50] proposed a collaborative rendering frame-

work for cloud based free viewpoint video (FVV). In the framework, the cloud rendering

was conducted during the stationary viewing time to achieve a high visual quality, while

the local rendering was applied during the switch viewing time in order to conceal the

interaction delay. Wang et al. [51] investigated cloud mobile gaming, an approach that

enabled multi-player games on mobile devices. They proposed a rendering adaption tech-

nique to dynamically vary the complexity of graphics rendering according to the workload

and computation constraints.

Multimedia cloud has also been widely used in social media field. Wu et al. [52] pre-

sented a mobile social TV framework, which provided transcoding services for different

platforms and supported co-viewing experiences through chat exchanges among viewing

users. Zhang et al. [53] presented a cloud-based interactive mobile visual search frame-

work for social activities. In their work, mobile users captured a photo and circled the

region-of-interest in the photo to identify the users’ visual intent. Searching results were

mapped to the sensory context, and related entities would be recommended to users.
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2.2 Resource Allocation and Workload Scheduling

Cloud computing changes the traditional way we use computing resources. Users send

requests to cloud, and virtual servers will be allocated to offer corresponding services.

Since millions of requests are sent to cloud at the same time, resource allocation and

workload scheduling become the critical issues. Resource allocation research focuses

on how to effectively and economically manage cloud resources to serve all requests,

while workload scheduling research investigates how to schedule workload to balance

the load intensity at each server and pursue an efficiently distributed processing. In

the following, we will summarize the recent advances in cloud resource allocation and

workload scheduling.

2.2.1 Resource Allocation

The basis of cloud computing is virtualization techniques. Many researchers focus on

the VM consolidation problem to exploit how to efficiently utilize available resources to

consolidate multiple VMs. Nathuji et al. [54] proposed a hierarchical resource manage-

ment system, where cloud resources are divided according to the local and global policies.

On the local level, the system leveraged guest operating system resource management

strategies. On the global level, the consolidation of VMs was handled by applying live mi-

gration. Verma et al. [55] formulated the problem of dynamic placement of applications

in virtualized heterogeneous systems as a continuous optimization: at each time frame

the placement of VMs was optimized to minimize resource consumption or maximize per-

formance. Chaisiri et al. [56] studied the trade-off between the advance reservation and

the on-demand resource allocation, and proposed a VM placement algorithm based on

stochastic integer programming. The proposed algorithm minimized the total resource

cost on an IaaS cloud.

Besides VM consolidation problem, the dynamic resource allocation is a challenging

topic. Padala et al. [57] modeled and designed a feedback-driven resource control system

based on the control theory. The system had a two-layered controller architecture, in

which a utilization controller controlled the resource allocation for a single application and

a decision controller controlled the resource allocation across multiple applications. Song

et al. [58] presented a dynamic resource allocation approach according to the application
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priorities. The proposed approach used machine learning to obtain utility functions

for applications and defined priorities in advance. Cherkasova et al. [59] classified the

application requests into disk- and CPU-bound ones and then constructed the dynamic

scaling functions for the system capacity according to the prediction of the required

resources. Lin et al. [60] developed a self-organizing model to adaptively manage cloud

resources in the absence of centralized management control.

As an increasing number of multimedia services are deployed on cloud, there is an

upsurge of research interests in resource allocation for cloud-based multimedia services.

Miao et al. [50] studied the resource allocation for cloud-based FVV system. By jointly

considering rate allocation among texture, depth, and channel rate, they investigated

the bandwidth allocation problem to minimize the distortion under the given rate con-

straints. Wu et al. [61] presented a cloud-based video on demand (VoD) system, and

investigated the relationship between the dynamic viewing behavior and the allocated

cloud resources. Wang et al. [62] proposed a cloud-based live media streaming framework,

which adaptively leased or adjusted cloud resources according to the temporal or spatial

dynamics of user demands. Niu et al. [63] explored the cloud bandwidth allocation and

pricing strategies. They stated that the utility of a tenant depended not only on the

bandwidth usage, but also on the demand that was satisfied with performance guaran-

tee. Thus, they formulated the cloud bandwidth pricing problem as the social welfare

maximization problem, which was solved by distributed cutting-plane method. Yu et

al. [64] proposed a video streaming workload prediction technique. With this method,

multimedia workload can be inspected from the user access perspective.

2.2.2 Workload Scheduling

Workload scheduling, also known as load balancing, balances workload among all the

available servers and enhances service quality. Hui et al. [65] presented a cloud load

balancing technique to allocate the required resources to different applications in the

shortest time. To achieve this goal, they considered not only the computation capacity of

each server, but also the bandwidth capacity by assigning traffic through a set of parallel

links. Srikantaiah et al. [23] studied the problem of workload scheduling for multi-tiered

web applications in virtualized heterogeneous systems to minimize resource consumption,

while meeting the performance requirements. To handle the optimization over multiple
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resources, they proposed a heuristic to solve the multidimensional bin packing problem.

The proposed heuristic was workload type and application dependent. Zhang et al. [66]

explored the scheduling policy for the collaborative processing in mobile cloud computing.

In this study, a mobile application was represented by a sequence of fine-grained tasks,

and each of them was executed either on mobile device or on cloud side. They formulated

the minimum energy consumption problem into a constrained shortest path problem on

a directed acyclic graph. Chang et al. [67] applied an ant colony optimization algorithm

for workload scheduling in distributed heterogeneous systems. They assumed each job as

an ant and sent ants to search for resources. By using the ant algorithm, they minimized

the makespan of a given set of jobs by balancing the entire system load. Tai et al. [68]

proposed a burst workload balancer, which predicted the variations in user demands and

accordingly adjusted the workload scheduling strategy.

Besides the user level workload scheduling, some researchers explore the internal

relationship among tasks and study the task level scheduling. Zhu et al. proposed the

cloud-based PhotoSynth service [69], where they explored the parallelization on the user

level and the task level, respectively. On the user level parallelization, all tasks of a user

were allocated to one server to process, but users can be served in parallel on cloud.

On the task level parallelization, tasks of a user were distributed to different servers to

compute in parallel. Yassa et al. [70] proposed a multi-objective scheduling approach for

cloud. In this work, they formulated the workload scheduling problem as a constraint

optimization problem with multiple objectives, including the execution time, resource

cost, and energy consumption. The proposed technique allowed servers to work under

different voltage supply levels by sacrificing the computation speed. Silberstein et al. [71]

presented a scheduling algorithm by adapting the multi-level feedback queue approach

in the distributed grid environment.

2.3 Cloud Gaming

Cloud gaming, also known as real-time game streaming, runs the computer games at cloud

servers and streams the rendered frames back to users. Cloud gaming relieves users from

endless hardware upgrades and solves the incompatibility issues between games and client

machines. Currently, two different approaches are used in cloud gaming services: the

19



video streaming and the graphics streaming. The difference between these two approaches

is if the rendering is executed on cloud servers or on clients. With video streaming, the

cloud server renders the game scenes and streams the encoded game frames to client

devices. This approach enables smooth game experience on thin devices. OnLive [5] and

GaiKai [24] are typical cloud gaming providers using video streaming technique. Huang et

al. [72,73] presented the first open source cloud gaming system, named GamingAnywhere.

Cai et al. [74] presented the remote rendering game-as-a-service architecture and analyzed

the system benefits and related research issues. Semsarzadeh et al. [75] utilized the game

engine’s information to accelerate the video encoding for cloud gaming service. In the

proposed mechanism, the cloud server directly acquired object motion information from

game engine and thus removed the motion estimation procedure in conventional video

encoding. Cai et al. [76] explored the correlation of game videos for different players in

the same game scene and proposed a cooperative video sharing scheme.

On the other hand, as the hardware upgrade on mobile devices, graphics streaming

becomes an alternative approach. In graphics streaming, the required game models and

textures are downloaded to client devices. After receiving the necessary graphics data,

users can start playing the game, and the remaining graphics data will be gradually

transmitted while users are playing the game. Since the actual games are running on

local devices, graphics streaming enables a shorter interaction delay. Kalydo [77] adopts

this approach for their online game service. Jurgelionis et al. [78] presented a distributed

gaming project, which realized the video streaming protocol and 3D streaming protocol

independently. Eisert et al. [79] proposed a graphics streaming framework for remote

gaming in a local area network. They used a game server to intercept all OpenGL or

DirectX commands and streamed the commands and graphics data to clients. With the

local graphics chips, client devices can reconstruct the game scenes.

Besides streaming approaches, adaptive rate control is another challenge in cloud gam-

ing. Wang et al. [51, 80] proposed a rendering adaption scheme, in which they adjusted

bit rates to be transmitted by dynamically varying the rendering parameters. Shirmo-

hammadi [81] presented a context aware approach to determine how important a game

object was by building an importance matrix. Priority was assigned to each game object

according to its importance to the player. Hemmati et al. [26] studied the video content

adaption schemes for game scenes. In this work, they excluded the less important game

objects from the game scene to reduce the processing time and rendering complexity
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on cloud servers. Ahmadi et al. presented a game attention model in [27] for content

adaption in encoding game frames.

Existing cloud gaming systems are mainly proprietary and closed, which imposes

challenges for researchers to measure the QoS. Chen et al. [82, 83] studied the QoS in

commercial cloud gaming systems and presented a suite of measurement techniques. By

utilizing these techniques, they compared QoS in OnLive [5] and StreamMyGame [84].

Najaran et al. [85] studied the scalability of cloud-based multi-player first person shooter

(FPS) gaming system. In this work, they employed a publish-subscribe system to reduce

the aggregate bandwidth requirement. Hariri et al. [86] developed a network traffic model

in FPS games. In this study, the network traffic was represented by the packet size and

inter-packet interval, and a hierarchical hidden Markov model was constructed to provide

packet level statistics.

2.4 Queueing Theory in Resource Allocation

Queueing theory is an important mathematical tool to model, analyze, and design service

systems. A generic queueing process consists of the following steps: 1) customers enter

a system, 2) customers wait in a line, 3) customers are served by a server, and then 4)

customers leave the system. The performance metrics of a queueing system can be derived

analytically. In queueing theory, a model is constructed to analyze the expected queue

lengths and waiting time. Generally, a queueing system can be described by Kendall’s

Notation [87] A/B/m/K/n/D, where A is the distribution function of the inter arrival

time, B is the distribution function of the server time, m is the number of servers, K is

the capacity of the queueing system, n is the number of customer sources, and D is the

service discipline, like FCFS or priority service discipline. Queueing theory can effectively

model the service behavior in a system and evaluate the key performance metrics. As a

result, it has been widely applied in communication networks, traffic engineering, airplane

scheduling, computing, and design of shops or hospitals.

Queueing theory has also been used to resolve problems in resource allocation. Wu

et al. [61] used a queueing network model to characterize the dynamic viewing behaviors

in cloud VoD and investigated the equilibrium demands for streaming server capacity.

Parandehgheibi et al. [88] investigated the rate allocation problem in a fading Gaussian
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multiple-access channel with fixed transmission power. The objective in [88] was to maxi-

mize a concave utility function of expected rates for users. They first applied information

theory and queueing theory to solve the problem, respectively. After that, they made a

connection between the two approaches by finding that the information theoretic capac-

ity region and queueing theoretic stability region were equivalent. Wu et al. [89] studied

the latency problem in cloud gaming, and proposed an online access control algorithm

to dispatch requests and allocate servers. Their objective was to reduce the operational

cost while ensuring the user quality of experience (QoE) requirements. Towards this

objective, they employed Lyapunov drift [90] for queueing networks to derive the online

algorithm with proved upper bounds. Suresh Varma et al. [91] analyzed the performance

of provided cloud services with queueing theory, and they derived the key parameters,

like mean waiting time, throughput, and utilization in the cloud.

2.5 Chapter Summary

This chapter introduced cloud computing, from the cloud definition, service models,

to multimedia cloud computing. After that, we reviewed the recent advances in cloud

resource allocation and workload scheduling, and presented the previous research work for

cloud gaming. Lastly, we discussed the utilization of queueing theory in solving resource

allocation problems.

Existing research work is the foundation of our study. By reviewing the related

literatures, we can find that some critical challenges, such as cloud service modeling,

dynamic resource allocation, and delay-rate-distortion optimized cloud gaming, have not

been completely addressed yet. These gaps inspire our research interests. In the following

chapters, these problems will be studied.
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Chapter 3

Queueing Model based Resource

Optimization for Multimedia Cloud

In multimedia cloud, it is challenging to quantify the dynamic user demands and then

allocate appropriate cloud resources to meet these demands. In this chapter, we introduce

a queueing model to characterize the service process in multimedia cloud. Based on the

queueing model, we investigate the response time minimization problem and the resource

cost minimization problem in single-service scenario, multi-service scenario, and priority-

service scenario, respectively.

3.1 Introduction

For multimedia service providers (MSPs), there are two major concerns: the response

time and the resource cost. Generally, different multimedia services have different quality

of service (QoS) requirements. Delay is an important QoS metric for many multimedia

services such as image/video retrieval, video streaming, and cloud gaming. We focus

on delay-sensitive cloud-based multimedia services, in which the response time is the

dominant component in end-to-end service delay. The response time in cloud is defined

as the duration from the time when the request arrives at the data center to the time

when the service result completely departs from the data center. A lower response time

means a faster service for the user’s request. Therefore, it is important for the MSP

to meet response time requirements for all users. Besides the response time, another
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concern is the resource cost. In order to provide services, the MSP needs to rent required

resources according to user demands. If the allocated resources are far more than the real

demands, resources cannot be fully utilized, leading to the resource waste. Conversely,

if the allocated resources are less than the demands, the QoS requirements cannot be

guaranteed. Therefore, the MSP needs to quantify the user demands, and accordingly

determine the optimal resource allocation.

However, it is challenging to satisfy these two concerns. Firstly, there exist different

types of multimedia services, which have heterogenous resource demands. Secondly,

different multimedia services have different requirements on response time. For example,

compared to the image/video retrieval, the cloud gaming needs a lower response time

such that users can enjoy a smooth and real-time interactive experience. The MSP

should meet different response time requirements for various services. Thirdly, there

is a trade-off between the response time and the resource cost. The under-provisioned

resources would slow down the service and deteriorate QoS, while the over-provisioned

resources would result in the unnecessary waste. Lastly, multimedia services may demand

different priorities in the practical cloud. For example, some urgent applications, like real-

time health monitoring, demand a higher priority to process abnormal events. However,

current resource management schemes typically use the first-come first-served (FCFS)

service discipline, which cannot adapt to services with different priorities. Therefore, a

challenge for the MSP is how to optimize resources for the differentiated services.

To address above mentioned challenges, we propose the queueing model based resource

allocation in this chapter. Our contributions can be summarized as follows.

1. We investigate the cloud resource allocation problem using queueing theory. Specif-

ically, we introduce a queueing model to characterize the service process in multi-

media cloud. We theoretically analyze the equilibrium demands for the schedule,

computation, and bandwidth resources and derive the relationship between the

allocated resource capacity and the response time.

2. Based on the proposed queueing model, we study the resource optimization in three

different scenarios: the single-service scenario, the multi-service scenario, and the

priority-service scenario. In each scenario, we formulate and solve the response

time minimization problem and the resource cost minimization problem, respec-

tively. Simulation results indicate that the proposed resource allocation schemes
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can effectively allocate resources to achieve the minimal response time under a

certain budget or provide satisfactory services at the minimal resource cost.

The remainder of this chapter is organized as follows. Section 3.2 presents the pro-

posed system models. Based on the proposed models, we optimize resources for multi-

media cloud in Section 3.3 under the single-service scenario, the multi-service scenario,

and the priority-service scenario, respectively. Section 3.4 presents extensive performance

evaluations. Finally, we summarize this work in Section 3.5.

3.2 System Models

In this section, we present the system models, including the data center architecture, the

queueing model, and the cost model.

3.2.1 Data Center Architecture

Master server

Computing servers

Transmission

server

Multimedia

service provider

Service

requests

Results or

media data

Users

Figure 3.1: Illustration of multimedia cloud data center architecture.

Currently, most of clouds are built in the form of data centers [92]. Figure 3.1 il-

lustrates the multimedia cloud data center architecture, which consists of the master

server, a number of computing servers, and the transmission server. All servers are vir-

tual clusters [93] composed by multiple VMs in order to provide more powerful resource
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capacity. When requests arrive at the data center, the master server works as a scheduler,

receiving all the requests and then distributing them to computing servers. The waiting

time at the master server is dependent on the scheduling rate of the master server. The

computing servers utilize the allocated computation resources to serve each request. The

master server and computing servers are connected with high-speed communication links.

Therefore, the internal latency for transferring requests is assumed to be negligible. The

resource capacity at each computing server directly determines the processing speed. Af-

ter processing, the service results or the requested media data will be sent back to users.

The transmission server acts as a gateway node, which controls the overall traffic and

directs the given packets to the specific destination. The allocated bandwidth at the

transmission server determines how fast the results can be transmitted back to users.

The allocated cloud resources include the schedule resource, the computation resource,

and the bandwidth resource. Owing to the varying workload, the resources have to be

dynamically adjusted. Therefore, we divide the time domain into time slots with a fixed

length, and the cloud resources will be dynamically allocated in each time slot. Suppose

that there are N computing servers in the data center. At time slot t, we will denote by

S(t) the allocated schedule resource in terms of the requests scheduled per second, C
(t)
i

the allocated computation resource at computing server i in terms of the instructions

executed per second, and B(t) the allocated bandwidth resource in terms of the number

of bits transmitted per second. Thus, the goal of resource allocation is to determine the

optimal values of S(t), C
(t)
i (∀i = 1, 2, . . . , N), and B(t).

For each service in cloud, there are four parameters related to the resource demands:

the average request arrival rate λ(t), the average task size F , the average result size

D, and the upper bound of response time τ . Specifically, λ(t) represents the workload

intensity of the service. When a service suffers from simultaneous bursts of requests,

the workload intensity is heavy, and thus the MSP needs to allocate more resources.

F indicates the computation complexity of the service. D represents the demands on

bandwidth. In order to avoid the congestion in transmission, the bandwidth demands of

each service should be satisfied. τ indicates the QoS requirement of the service. We will

introduce a queueing model to analyze the relationship between dynamic demands and

QoS requirements.
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3.2.2 Queueing Model

We introduce a queueing model to analyze the service of requests. The queueing model is

shown in Figure 3.2. The model consists of three concatenated queueing systems, which

are the schedule queue, the computation queue, and the transmission queue. The master

server maintains the schedule queue for all requests. Since two consecutive arriving re-

quests may be sent from different users, the numbers of requests occur in non-overlapping

intervals are independent random variables. According to Arlitt’s study [94], the requests

on a web server can be modeled by a Poisson process. Thus, we assume that the arrival

of requests follows a Poisson process with an average of λ(t). The requests are scheduled

to computing servers at the rate S(t) by the master server. Each computing server man-

ages a corresponding computation queue to process requests. According to [95], subflows

resulting from stochastically splitting a Poisson flow are still Poisson flows. Therefore,

the arrivals of requests in the i-th computation queue can be modeled as a Poisson pro-

cess with an average of λ
(t)
i . After processing, the service results are sent back to users

through the transmission server at the rate Bt. During the cloud service, the resource

availability is guaranteed by the service level agreement (SLA) and no request is dropped

during the process. Therefore, the number of results is equal to the number of received

requests.
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Figure 3.2: Queueing model of the data center in multimedia cloud.

We apply the proposed queueing model to represent the service process in multimedia

cloud. The allocated cloud resources are represented by the capacity of the servers in

each queueing system. For example, the allocated transmission resource is represented by

the outbound bandwidth of the transmission server. It should be noted that the service

rate in each queue must be larger than the request arrival rate to avoid overflow. This
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constraint means that the actual allocated resources should satisfy the resource demands,

otherwise the local congestion will occur in the service. In each queueing system, the

waiting time of a job in the queue corresponds to the waiting time of the request for

available resources, while the service time of the job represents the real processing time

of the request. The total response time for a request in multimedia cloud is the sum of

the waiting time and service time in the three concatenated queueing systems.

3.2.3 Cost Model

In order to deploy services, the MSP needs to rent required resources from the cloud

computing provider. The resource cost in cloud is determined by the resource capacity

and the occupied time. The more powerful resources will lead to a higher resource

cost. The allocated cloud resources in our study include the schedule resource, the

computation resource, and the bandwidth resource. We employ a linear function to

model the relationship of the resource cost and the actual resource allocation. The total

resource cost Ctot(t) at time slot t can be formulated as

Ctot(t) =
(

αS(t) + β

N
∑

i=1

C
(t)
i + γB(t)

)

t̄, (3.1)

where t̄ is the time slot length, α, β, and γ are price rates for the schedule resource,

computation resource, and bandwidth resource, respectively. The linear cost model in

Equation (3.1) has been justified by the numerical analysis on Amazon EC2 virtual

machine (VM) instances [15].

3.3 Queueing Model based Resource Optimization

In this section, we will use the proposed queueing model to study the resource optimiza-

tion problems for multimedia cloud. We consider three different scenarios, namely the

single-service scenario, the multi-service scenario, and the priority-service scenario. In

each scenario, we optimize cloud resources to minimize the response time or minimize

the resource cost, respectively.
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3.3.1 Single-service Scenario

We first study the single-service scenario, in which there is only one multimedia service

provided by the MSP. All users send requests for the same service. Requests enter into the

schedule queue first. The schedule queue can be modeled as an M/M/1 queueing system

with a mean service rate S(t). In order to maintain a stable queue, λ(t) < S(t) is required.

The response time of a request in the schedule queue is given by [96] T
sche(t)
sing = 1/S(t)

1−λ(t)/S(t) .

We denote by pi the probability of a request assigned to the i-th computation queue

for service. Thus, λ
(t)
i = piλ(t) and

∑N
i=1 pi = 1. The service time at the computation

queue depends on the allocated computation resource C
(t)
i and the task size F . According

to [97,98], the execution time can be approximated as the exponential distribution with

an average of F/C
(t)
i . The probability density function (PDF) of execution time can be

given by f(x) =
C

(t)
i

F
e−

C
(t)
i
F

x, (x ≥ 0). To avoid a congestion in the queue, the constraint

piλ
(t)F < C

(t)
i should be satisfied. Therefore, the response time in computation queue i

is given by T
comp(i)(t)
sing =

F/C
(t)
i

1−piλ(t)F/C
(t)
i

. Considering that a request may be assigned to any

of the computation queues, the equilibrium response time is formulated by T
comp(t)
sing =

∑N
i=1 piT

comp(i)(t)
sing =

∑N
i=1

piF/C
(t)
i

1−piλ(t)F/C
(t)
i

. As no request is dropped in multimedia cloud,

the average arrival rate of results at the transmission queue is λ(t). The transmission

time is a random variable which depends on the result size D and the bandwidth resource

B(t). From [61,99], the PDF of the transmission time can be approximately formulated as

f(x) = B(t)

D
e−

B(t)

D
x, (x ≥ 0). To maintain the transmission queue stable, the transmission

demands should be no more than the bandwidth capacity. Thus, λ(t)D < B(t) is required.

The response time in the transmission queue is given by T
tran(t)
sing = D/B(t)

1−λ(t)D/B(t) .

Based on the above analysis, the equilibrium response time in the single-service sce-

nario is the sum of response time in the three phases, which can be formulated as

T
tot(t)
sing = T

sche(t)
sing + T

comp(t)
sing + T

tran(t)
sing

=
1/S(t)

1− λ(t)/S(t)
+

N
∑

i=1

piF/C
(t)
i

1− piλ(t)F/C
(t)
i

+
D/B(t)

1− λ(t)D/B(t)
.

(3.2)
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The total resource cost in the single-service scenario can be formulated as

Ctot(t)sing =

(

αS(t) + β

N
∑

i=1

C
(t)
i + γB(t)

)

t̄. (3.3)

Response Time Minimization Problem

For cloud based multimedia services, reducing the response time can greatly reduce the

end-to-end delay and improve the quality of user experience. However, there is a trade-

off between the response time and the resource allocation. We therefore formulate the

response time minimization problem, which is stated as: to minimize the response time

in the single-service scenario by jointly optimizing the allocated schedule resource, the

computation resource, and the bandwidth resource, subject to the queueing stability

constraint in each queueing system and the resource cost constraint. Mathematically,

the problem can be formulated as

Minimize
{S(t),C

(t)
1 ,··· ,C(t)

N
,B(t)}

T
tot(t)
sing

subject to

λ(t) < S(t),

piλ
(t)F < C

(t)
i , ∀i = 1, . . . , N,

λ(t)D < B(t),
(

αS(t) + β
∑N

i=1C
(t)
i + γB(t)

)

t̄ ≤ Cmax,

(3.4)

where T
tot(t)
sing , given by Equation (3.2), is the total response time, and Cmax is the upper

bound of resource cost. The objective function in Equation (3.4) is the equilibrium

response time. The first, second, and third constraints represent the queueing stability

requirements for each queue, and the constraint
(

αS(t) + β
∑N

i=1C
(t)
i + γB(t)

)

t̄ ≤ Cmax

represents the budget constraint.

Lemma 3.1. The optimization problem in Equation (3.4) is a convex optimization prob-

lem.

Proof. The constraint functions in Equation (3.4) are all real-valued linear functions.

Therefore, they are all convex [100]. The objective function in Equation (3.4) can be
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expressed as

T
tot(t)
sing =

1

S(t) − λ(t)
+

N
∑

i=1

piF

C
(t)
i − piλ(t)F

+
D

B(t) − λ(t)D

= l
(

S(t)
)

+
N
∑

i=1

gi

(

C
(t)
i

)

+ h
(

B(t)
)

,

where l(·), gi(·), and h(·) are single-variable functions. The second derivative of l
(

S(t)
)

is derived as l′′
(

S(t)
)

= d2

d(S(t))2

(

1
S(t)−λ(t)

)

= 2

(S(t)−λ(t))
3 , which is positive in the feasible

region S(t) > λ(t). Therefore, l
(

S(t)
)

is convex when S(t) > λ(t). The second derivative

of gi

(

C
(t)
i

)

is given by g′′i

(

C
(t)
i

)

= d2

d(C
(t)
i )2

(

piF

C
(t)
i −piλ(t)F

)

= 2piF
(

C
(t)
i −piλ(t)F

)3 , which is pos-

itive in the feasible region C
(t)
i > piλ

(t)F . Therefore, gi

(

C
(t)
i

)

is convex. The second

derivative of h
(

B(t)
)

is given by h′′ (B(t)
)

= d2

d(B(t))2

(

D
B(t)−λ(t)D

)

= 2D

(B(t)−λ(t)D)
3 > 0 in

feasible region B(t) > λ(t)D. Therefore, h
(

B(t)
)

is convex. Thus, l
(

S(t)
)

, gi

(

C
(t)
i

)

and

h
(

B(t)
)

are convex functions in feasible region. Since the objective function in Equation

(3.4) is the summation of l
(

S(t)
)

, gi

(

C
(t)
i

)

and h
(

B(t)
)

, it is convex [100]. Therefore,

the optimization problem in Equation (3.4) is a convex optimization problem since the

objective function and all constraint functions are convex in feasible region.

Since the optimization problem in Equation (3.4) is a convex optimization problem,

Lagrange multiplier method can be used to find the optimal solution [100]. Observing

Equation (3.4), we can find that all constraints are inequality constraints. We derive

Equation (3.4) as following

Minimize
{S(t),C

(t)
1 ,··· ,C(t)

N
,B(t)}

T
tot(t)
sing

subject to

λ(t) − S(t) < 0,

piλ
(t)F − C

(t)
i < 0, ∀i = 1, . . . , N,

λ(t)D −B(t) < 0,
(

αS(t) + β
∑N

i=1C
(t)
i + γB(t)

)

t̄− Cmax ≤ 0.
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Thus, the Lagrange function can be formulated as

L
(

S(t), C
(t)
1 , C

(t)
2 , . . . , C

(t)
N , B(t), µ1, µ21, µ22, . . . , µ2N , µ3, µ4

)

= T
tot(t)
sing + µ1

(

λ(t) − S(t)
)

+

N
∑

i=1

µ2i

(

piλ
(t)F − C

(t)
i

)

+ µ3

(

λ(t)D −B(t)
)

+ µ4

(

(αS(t) + β

N
∑

i=1

C
(t)
i + γB(t))t̄− Cmax

)

,

where µ1, µ2i (∀i = 1, . . . , N), µ3, and µ4 are Lagrange multipliers. The optimal solution

S(t)∗, C
(t)∗
i (∀i = 1, . . . , N), B(t)∗ exists such that the following conditions can be satisfied

simultaneously.



































































































































































∂

∂S(t)
L
(

S(t), C
(t)
i , B(t), µ1, µ2i, µ3, µ4

)

= 0, ∀i = 1, 2, . . . , N

∂

∂C
(t)
i

L
(

S(t), C
(t)
i , B(t), µ1, µ2i, µ3, µ4

)

= 0, ∀i = 1, 2, . . . , N

∂

∂B(t)
L
(

S(t), C
(t)
i , B(t), µ1, µ2i, µ3, µ4

)

= 0, ∀i = 1, 2, . . . , N

λ(t) − S(t) < 0,

piλ
(t)F − C

(t)
i < 0, ∀i = 1, 2, . . . , N

λ(t)D − B(t) < 0,
(

αS(t) + β

N
∑

i=1

C
(t)
i + γB(t)

)

t̄− Cmax ≤ 0,

µ1

(

λ(t) − S(t)
)

= 0,

µ2i

(

piλ
(t)F − C

(t)
i

)

= 0, ∀i = 1, 2, . . . , N

µ3

(

λ(t)D −B(t)
)

= 0,

µ4

((

αS(t) + β
N
∑

i=1

C
(t)
i + γB(t)

)

t̄− Cmax

)

= 0,

µ1, µ2i, µ3, µ4 ≥ 0, ∀i = 1, 2, . . . , N.

(3.5)

By solving the above equations, we can get the optimal analytical solution to the opti-

mization problem in Equation (3.4). The detailed derivation is given in Appendix A.1
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and the optimal solution is given as follows.

S(t)∗ =
Cmax − (α+ βF + γD)λ(t)t̄

(√
α +
√
βF
∑N

i=1

√
pi +
√
γD
)√

αt̄
+ λ(t),

C
(t)∗
i =

(

Cmax − (α + βF + γD)λ(t) t̄
)√

piF
(√

α +
√
βF
∑N

i=1

√
pi +
√
γD
)√

βt̄
+ piλ

(t)F, ∀i = 1, 2, . . . , N

B(t)∗ =

(

Cmax − (α + βF + γD)λ(t)t̄
)√

D
(√

α +
√
βF
∑N

i=1

√
pi +
√
γD
)√

γt̄
+ λ(t)D.

(3.6)

It should be pointed out that the optimal analytical solution (3.6) is obtained under

the schedule probability settings pi, (∀i = 1, . . . , N). The response time is dependent on

the schedule probability settings. The following theorem gives the schedule probability

setting to achieve the maximal response time or the minimal response time, respectively.

Theorem 3.1. Given the response time minimization problem in Equation (3.4) based

on the schedule probabilities pi (∀i = 1, . . . , N), we have the following two statements:

1) when pi (∀i = 1, . . . , N) is 1 and all other probabilities pi′ (i
′ 6= i, i′ = 1, . . . , N) are

0, we can achieve the minimal response time T
tot(t)(min)
sing =

(
√
α+

√
βF+

√
γD)

2

Cmax
t̄

−(αλ(t)+βFλ(t)+γDλ(t))
; 2)

when schedule probabilities are all equal, i.e. p1 = p2 = · · · = pN = 1
N
, we suffer from

the maximal response time T
tot(t)(max)
sing =

(
√
α+

√
N
√
βF+

√
γD)

2

Cmax
t̄

−(αλ(t)+βFλ(t)+γDλ(t))
.

The proof of Theorem 3.1 is given in Appendix A.2. Theorem 3.1 reveals that using

one computation queue in the single-service scenario can achieve the lower response time

than using multiple computation queues. The reason behind the theorem is that the

single computation queue can fully utilize the available resources. For multiple compu-

tation queues, the scheduled demands must accurately match the allocated resources,

otherwise it may result in the unbalanced resource utilization and deteriorate QoS. We

verify Theorem 3.1 in the following example. The number of computing servers is set

as 3, Cmax is set as $5000, and λ is 150 requests/s. Figure 3.3 shows the response time

with different schedule probabilities. In Figure 3.3, p1, p2, and p3 are all in the range of

[0, 1]. If p1 and p2 are given, p3 can be determined by 1 − p1 − p2. From Figure 3.3, we

can see that the response time reaches the minimal value 0.0183 seconds when (p1, p2, p3)

are at (1, 0, 0), (0, 1, 0) and (0, 0, 1), while it reaches the maximal value 0.0337 seconds
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at (1
3
, 1
3
, 1
3
), which justifies the statements in Theorem 3.1. Moreover, when p2 is fixed,

the maximal response time is acquired at p1 = p3 = 1−p2
2

. Similar conclusions can be

acquired when p1 or p3 is fixed.
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Figure 3.3: Response time with different schedule probability settings.

Resource Cost Minimization Problem

From the economic perspective, the MSP would always like to provide satisfactory ser-

vices at the minimal resource cost. Therefore, we formulate the resource cost mini-

mization problem, which can be stated as: to minimize the total resource cost in the

single-service scenario by jointly optimizing the allocated schedule resource, the compu-

tation resource, and the bandwidth resource, subject to the queueing stability constraint

in each queueing system and the response time constraint. Mathematically, the problem

can be formulated as follows.

Minimize
{S(t),C

(t)
1 ,··· ,C(t)

N
,B(t)}

Ctot(t)sing =
(

αS(t) + β
∑N

i=1C
(t)
i + γB(t)

)

t̄

subject to

λ(t) < S(t),

piλ
(t)F < C

(t)
i , ∀i = 1, . . . , N,

λ(t)D < B(t),

T
tot(t)
sing ≤ τ,

(3.7)
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where T
tot(t)
sing is given by Equation (3.2) and τ is the upper bound of the response time.

Similarly, we employ the Lagrange multiplier method [100] to solve the optimization

problem in Equation (3.7), and get the optimal analytical solution as follows.

S(t)∗ =

√
α +
√
βF
∑N

i=1

√
pi +
√
γD√

ατ
+ λ(t),

C
(t)∗
i =

(√
α +
√
βF
∑N

i=1

√
pi +
√
γD
)√

piF
√
βτ

+ piλ
(t)F, ∀i = 1, . . . , N,

B(t)∗ =

(√
α +
√
βF
∑N

i=1

√
pi +
√
γD
)√

D
√
γτ

+ λ(t)D.

(3.8)

The optimal analytical solution (3.8) is also obtained under the schedule probability

settings pi (∀i = 1, 2, . . . , N). In order to investigate the relationship between the resource

cost and the schedule probability settings, we derive the following theorem.

Theorem 3.2. Given the resource cost optimization problem in Equation (3.7), we have

the following two statements: 1) when schedule probability pi (∀i = 1, . . . , N) is 1 and all

other probabilities pi′ (i
′ 6= i, i′ = 1, . . . , N) are 0, we can achieve the minimal resource

cost Ctot(t)(min)
sing =

(

(
√
α+

√
βF+

√
γD)2

τ
+ (α + βF + γD)λ(t)

)

t̄; 2) when schedule probabilities

are all equal, i.e. p1 = p2 = · · · = pN = 1
N
, we suffer from the maximal resource cost

Ctot(t)(max)
sing =

(

(
√
α+

√
N
√
βF+

√
γD)2

τ
+ (α+ βF + γD)λ(t)

)

t̄.

We prove the Theorem 3.2 in Appendix A.3. Similar to Theorem 3.1, Theorem 3.2

indicates that under the same QoS constraint, the resource cost of using one computation

queue in the single-service scenario is lower than that of using multiple computation

queues. We verify Theorem 3.2 in a numerical example. The number of computing

servers is 3, and the response time upper bound τ is set as 0.1 seconds. The other

parameters are configured the same as those in the example for Theorem 3.1. Figure

3.4 shows the resource cost with different schedule probabilities. From Figure 3.4, we

can find that the minimal resource cost $2987.8 is achieved when (p1, p2, p3) is equal to

(1, 0, 0), (0, 1, 0) or (0, 0, 1), while the maximal resource cost $3368.3 is reached when

(p1, p2, p3) is (
1
3
, 1
3
, 1
3
). The example verifies Theorem 3.2.
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Figure 3.4: Total resource cost with different schedule probability settings.

3.3.2 Multi-service Scenario

In this subsection, we extend our study to the multi-service scenario, in which multiple

services are provided in cloud. Specifically, different services have different processing

procedures, different task sizes and result sizes, as well as different requirements on

response time. Suppose that there are M classes of services deployed by the MSP. Each

service requires a specific processing procedure. According to Theorem 3.1 and Theorem

3.2, using one computation queue to serve one class of requests performs better than

using multiple computation queues. As a result, we employ M computation queues to

provide M services in multi-service scenario, in which computation queue i is used to

serve class-i requests. In cloud environment, resources can be on-demand provisioned or

released. The number of computation queues can be dynamically changed according to

the number of services.

Suppose that the request arrivals for each class follow a Poisson process with average

arrival rates λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
M , respectively. According to Poisson composition property,

the total arrivals of the requests still follow a Poisson process with an average λ(t) =
∑M

i=1 λ
(t)
i . Thus, the schedule queue is modeled as an M/M/1 queueing system. The

response time in the schedule queue is T
sche(t)
mult = 1/S(t)

1−λ(t)/S(t) . For class-i service, the

average task size is denoted by Fi, and the execution time is a random variable, which

follows exponential distribution [97,98] with an average of Fi/C
(t)
i . The response time in

computation queue i is given by T
comp(i)(t)
mult =

Fi/C
(t)
i

1−λ
(t)
i Fi/C

(t)
i

. We also consider the average
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response time for all requests in the computation phase, which is formulated as T
comp(t)
mult =

∑M
i=1

λ
(t)
i

λ(t)T
comp(i)(t)
mult =

∑M
i=1

λ
(t)
i Fi/C

(t)
i

λ(t)(1−λ
(t)
i Fi/C

(t)
i )

. After processing, all service results are sent to

the transmission queue. Different services have different result sizes, leading to different

transmission time. The transmission queue can be viewed as a queueing system in which

customers are grouped into a single arrival stream and the service distribution is a mixture

of M exponential distributions. Therefore, the service time follows the hyper-exponential

distribution [96]. The transmission queue is modeled as an M/HM/1 queueing system,

where HM represents the hyperexponential-M distribution. The response time of the

M/HM/1 queue can be derived from M/G/1 queue according to queueing theory [96].

The response time in the transmission queue is given by T
tran(t)
mult =

∑M
i=1 λ

(t)
i D2

i

(B(t))2−B(t)
∑M

i=1 λ
(t)
i Di

+
∑M

i=1 λ
(t)
i Di

λ(t)B(t) . To ensure that the transmission service can be completed,
∑M

i=1 λ
(t)
i Di < B(t)

is required.

Based on the above analysis, we can get the response time for class-i service as

T
tot(i)(t)
mult = T sche(t)

mult + T
comp(i)(t)
mult + T

tran(t)
mult

=
1/S(t)

1− λ(t)/S(t)
+

Fi/C
(t)
i

1− λ
(t)
i Fi/C

(t)
i

+

∑M
i=1 λ

(t)
i D2

i

(B(t))2 −B(t)
∑M

i=1 λ
(t)
i Di

+

∑M
i=1 λ

(t)
i Di

λ(t)B(t)
.

(3.9)

Furthermore, the average response time in the multi-service scenario can be formulated

as follows.

T
tot(t)
mult = T

sche(t)
mult + T

comp(t)
mult + T

tran(t)
mult

=
1/S(t)

1− λ(t)/S(t)
+

M
∑

i=1

λ
(t)
i Fi/C

(t)
i

λ(t)(1− λ
(t)
i Fi/C

(t)
i )

+

∑M
i=1 λ

(t)
i D2

i

(B(t))2 −B(t)
∑M

i=1 λ
(t)
i Di

+

∑M
i=1 λ

(t)
i Di

λ(t)B(t)
.

(3.10)

And the total resource cost in the multi-service scenario is given by

Ctot(t)mult =

(

αS(t) + β
M
∑

i=1

C
(t)
i + γB(t)

)

t̄. (3.11)
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Response Time Minimization Problem

Given a certain budget, it is a challenge for the MSP to satisfy response time requirement

for diverse services. Therefore, we formulate the response time minimization problem,

which can be stated as: to minimize the response time in multi-service scenario by jointly

optimizing the allocated schedule resource, the computation resource, and the bandwidth

resource, subject to the queueing stability constraint in each queueing system and the

resource cost constraint. Mathematically, the problem can be formulated as follows.

Minimize
{S(t),C

(t)
1 ,··· ,C(t)

M
,B(t)}

T
tot(t)
mult

subject to

λ(t) < S(t),

λ
(t)
i Fi < C

(t)
i , ∀i = 1, . . . ,M,

∑M
i=1 λ

(t)
i Di < B(t),

(αS(t) + β
∑M

i=1C
(t)
i + γB(t))t̄ ≤ Cmax,

(3.12)

where T
tot(t)
mult , given by Equation (3.10), is the average response time for all services and

Cmax is the upper bound of the resource cost. The response time minimization problem

in Equation (3.12) is a convex optimization problem [100]. Efficient solution methods for

convex optimization problems are well developed. In this paper, we use the interior-point

methods [100] to solve the formulated optimization problem.

Furthermore, when comparing the problem in Equation (3.4) in the single-service

scenario and the problem in Equation (3.12) in the multi-service scenario, we have the

following theorem.

Theorem 3.3. The minimal response time obtained from the response time minimization

problem in Equation (3.4) in the single-service scenario is equal to that obtained from

the response time minimization problem in Equation (3.12) in the multi-service scenario,

when the number of classes equal to 1.

The proof of Theorem 3.3 is given in Appendix A.4. Theorem 3.3 reveals that if

users in the multi-service scenario request for the same service, the MSP can efficiently

configure resources according to the optimal analytical solution to problem in Equation

(3.4) without applying primal-dual interior-point method to solve problem in Equation

(3.12).
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Resource Cost Minimization Problem

MSPs need to guarantee QoS provisioning for all services. However, it is challenging to

achieve an economical resource allocation. Thus, we formulate the resource cost min-

imization problem, which can be stated as: to minimize the total resource cost in the

multi-service scenario by jointly optimizing the allocated schedule resource, the compu-

tation resource, and the bandwidth resource, subject to the queueing stability constraint

in each queueing system and the requirement on response time for each service. Mathe-

matically, the problem can be formulated as follows.

Minimize
{S(t),C

(t)
1 ,··· ,C(t)

M
,B(t)}

Ctot(t)mult = (αS(t) + β
∑M

i=1C
(t)
i + γB(t))t̄

subject to

λ(t) < S(t),

λ
(t)
i Fi < C

(t)
i , ∀i = 1, . . . ,M,

∑M
i=1 λ

(t)
i Di < B(t),

T
tot(i)(t)
mult ≤ τi, ∀i = 1, . . . ,M,

(3.13)

where T
tot(i)(t)
mult is the response time of class-i service, which is given by Equation (3.9), and

τi is the upper bound of response time for class-i service. The resource cost minimization

problem in Equation (3.13) can be solved by using the primal-dual interior-point methods

[100]. To examine the relationship between the resource cost optimization problem in

Equation (3.7) in the single-service scenario and the problem in Equation (3.13) in the

multi-service scenario, we derive the following theorem.

Theorem 3.4. The minimal resource cost obtained from the optimization problem in E-

quation (3.7) for the single-service scenario is equal to the minimal resource cost obtained

from the optimization problem in Equation (3.13) for the multi-service scenario with the

number of classes equal to 1.

The proof of Theorem 3.4 is given in Appendix A.5. Intuitively, when all users request

for the same service in the multi-service scenario, resources will be allocated to the only

requested service, which is the same as the single-service scenario. From Theorem 3.3

and Theorem 3.4, we can find that the proposed optimal resource allocation in the single-

service scenario is a special case of that in the multi-service scenario.
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3.3.3 Priority-service Scenario

Until now, we only discuss the non-priority service scheme, i.e. all services have the same

priority in terms of response time. In practice, some urgent multimedia services, like

the real-time health monitoring, need to be processed as soon as possible, and thus such

requests should have a higher priority than other services. In this subsection, we extend

our study to the priority-service scenario, in which requests for the higher-priority service

should be processed before those for the lower-priority service. Specifically, we study the

preemptive priority discipline.

Suppose that there are M services with different priorities. The service with a smaller

index number has a higher priority. When requests arrive at data center, the master

server always schedules requests with the highest priority first. Therefore, the schedule

queue is modeled as an M/M/1 queue with preemptive priority. The response time

for scheduling class-i requests is given by T
sche(i)(t)
prio = 1/S(t)

1−σ
(i−1)
sche

+
∑i

k=1 (λ
(t)
k

/(S(t))2)

(1−σ
(i−1)
sche

)(1−σ
(i)
sche

)
, where

σ
(i)
sche =

∑i
k=1

λ
(t)
k

S(t) . To avoid the congestion in the schedule queue, σ
(M)
sche =

∑M
i=1

λ
(t)
i

S(t) <

1 should be satisfied. Since schedule rates are the same for all requests, the average

response time in the schedule queue is given by T
sche(t)
prio = 1/S(t)

1−λ(t)/S(t) . In computation

phase, M computation queues are used to store requests with the corresponding priority.

The total computation resources are aggregated to provide service. Requests with the

highest priority have the preemptive right to obtain service immediately. The total

computation resource is denoted as C(t), and the average task size of class-i application

is Fi. Thus, the service process at the computing server can be modeled as a preemptive

priority queue with unequal service rates. According to [101], the response time of class-i

service in the computation queue is given by T
comp(i)(t)
prio = Fi/C(t)

1−σ
(i−1)
comp

+
∑i

k=1

(

λ
(t)
k

F 2
k
/(C(t))2

)

(1−σ
(i−1)
comp )(1−σ

(i)
comp)

,

where σ
(i)
comp =

∑i
k=1

λ
(t)
k

Fk

C(t) . Moreover, σ
(M)
comp =

∑M
i=1

λ
(t)
i Fi

C(t) < 1 is required. Since the

service rates are unequal for different services, the mean response time is given by [101]

T
comp(t)
prio =

∑M
i=1

λ
(t)
i

T
comp(i)(t)
prio

λ(t) . After processing, all service results are sent through the

transmission server. The results in the higher-priority classes are transmitted prior to

those in the lower-priority classes. The allocated bandwidth resource is denoted by

B(t). Thus, the response time for delivering class-i results is given by [101] T
tran(i)(t)
prio =

Di/B
(t)

1−σ
(i−1)
tran

+
∑i

k=1 (λ
(t)
k

D2
k
/(B(t))2)

(1−σ
(i−1)
tran )(1−σ

(i)
tran)

, where σ
(i)
tran =

∑i
k=1

λ
(t)
k

Dk

B(t) . To ensure the transmission queue
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stable, σ
(M)
tran =

∑M
i=1

λ
(t)
i Di

B(t) < 1 should be satisfied. Thus, the mean response time in the

transmission phase is formulated as T
tran(t)
prio =

∑M
i=1

λ
(t)
i T

tran(i)(t)
prio

λ(t) .

Based on the above analysis, the total response time in the priority-service scenario

is the sum of response time in the three phases, which can be given by

T
tot(t)
prio = T

sche(t)
prio + T

comp(t)
prio + T

tran(t)
prio . (3.14)

Furthermore, we can formulate the response time for the class-i service as

T
tot(i)(t)
prio = T

sche(i)(t)
prio + T

comp(i)(t)
prio + T

tran(i)(t)
prio , ∀i = 1, 2, . . . ,M. (3.15)

Additionally, the total resource cost in priority-service scenario is

Ctot(t)prio =
(

αS(t) + βC(t) + γB(t)
)

t̄. (3.16)

Response Time Minimization Problem

In multimedia cloud, priority service discipline has been widely used. The MSP has to

support different priority services and minimize the mean response time. Therefore, we

formulate the response time minimization problem in the priority-service scenario, which

can be stated as: to minimize the mean response time for all services by jointly optimizing

the allocated schedule resource, the computation resource, and the bandwidth resource,

subject to the queueing stability constraint in each queueing system and the resource cost

constraint. Mathematically, the response time minimization problem can be formulated

as
Minimize

{S(t),C(t),B(t)}
T

tot(t)
prio

subject to

λ(t) < S(t),
∑M

i=1 λ
(t)
i Fi < C(t),

∑M
i=1 λ

(t)
i Di < B(t),

(αS(t) + βC(t) + γB(t))t̄ ≤ Cmax,

(3.17)

where T
tot(t)
prio is given in Equation (3.14), and Cmax is the upper bound of resource cost.

Intuitively, the priority service scheme reduces the waiting time for the higher priority
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services at the expense of a longer waiting time for the lower priority services. There are

two questions in priority-service scenario: 1) how the introduction of priorities affects the

overall response time, and 2) how the priority can be assigned appropriately? To answer

the two questions, we do theoretical analysis and get the following theorem.

Theorem 3.5. With the same resource cost constraint and the same services, the re-

sponse time of the highest priority service (class-1 service) in the priority-service scenario

is always no larger than the response time of the same service (class-1 service) in the

multi-service scenario.

The proof of Theorem 3.5 is given in Appendix A.6. Theorem 3.5 shows that the

highest priority service in the priority-service scenario has a lower response time than

the same service in the multi-service scenario. In the priority discipline, the highest

priority requests have the preemptive right to obtain service. But in the multi-service

scenario, different services take the same privilege and have to wait for the completion of

previous requests. As expected, the imposition of priorities decreases the response time

for the higher priority service.

We next examine the impact of priority assignment to the response time. Schrage

and Miller [102] propose the shortest processing time (SPT) rule, which is described as

follows. If the objective of a queue is to reduce the overall mean delay, the priority should

be given to the group of customers that has the faster service rate. Therefore, the priority

assignment in the practical multimedia cloud should depend on the primary objective.

Specifically, if the primary objective in multimedia cloud is to reduce the response time

for one specific service, like the real-time health monitoring, this service should be given

the highest priority. However, if the primary objective is to reduce the overall delay for

all services, the SPT rule should be employed to give the higher priority to the service

with a faster processing rate.

Resource Cost Minimization Problem

In multimedia cloud, different priority services require different response time. It is chal-

lenging for the MSP to support heterogeneous QoS provisioning at the minimal resource

cost. Therefore, we formulate the resource cost minimization problem, which can be stat-

ed as: to minimize the total resource cost in priority-service scenario by jointly optimizing
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the allocated schedule resource, the computation resource, and the bandwidth resource,

subject to the queueing stability constraints and the response time constraint for each

service. Mathematically, the resource cost minimization problem can be formulated as

follows.
Minimize

{S(t),C(t),B(t)}
Ctot(t)prio = (αS(t) + βC(t) + γB(t))t̄

subject to

λ(t) < S(t),
∑M

i=1 λ
(t)
i Fi < C(t),

∑M
i=1 λ

(t)
i Di < B(t),

T
tot(i)(t)
prio ≤ τi, ∀i = 1, . . . ,M,

(3.18)

where T
tot(i)(t)
prio , given in Equation (3.15), is the response time for class-i service, and τi is

the upper bound of response time. We use the primal-dual interior-point method [100]

to solve the resource cost minimization problem in Equation (3.18).

3.4 Simulations

We evaluate the proposed resource allocation schemes by extensive simulations. In order

to make our simulations more convincing, we use the practical parameters and pricing

rates of Windows Azure. Windows Azure [16] is a cloud platform developed by Microsoft,

which provides on-demand computation and bandwidth resources for services through

Microsoft data centers.

3.4.1 Simulations in Single-service Scenario

We first implement simulations to evaluate the resource allocation in the single-service

scenario. We employ one medium instance as the master server to schedule requests and

four extra large instances as the computing cluster to process requests. The detailed con-

figuration and price rates can be found from [16]. Since major cloud computing providers

(e.g. Amazon EC2 [15], Microsoft Azure [16], etc.) commonly charge resource usage at

an hourly rate, we assume that the proposed resource allocation schemes periodically run

at the beginning of each time slot with a fixed length of 1 hour. Similar assumptions are

made in [61]. In the single-service scenario, the upper bound of the response time τ = 50
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Figure 3.5: Simulation results of resource allocation in the single-service scenario: (a)
comparison of response time, (b) comparison of response time in each phase when λ=120
requests/s, (c) comparison of resource cost, and (d) comparison of resource cost in each
phase when λ=120 requests/s.

ms. The resource cost constraint is set to Cmax = 5000 dollars.

Currently, the state-of-the-art resource allocation scheme [103] is based on utilization

threshold, which has been applied by Amazon AWS Elastic Beanstalk [18]. In the uti-

lization scheme, the resource provisioning will be triggered when the utilization is higher

than δh and stopped until utilization is lower or equal to δl (δl < δh). In our simula-

tions, we compare the performance among the following three schemes: 1) the proposed

allocation scheme, in which the cloud resources are optimally allocated by solving the

optimization problem in Equation (3.4) or that in Equation (3.7); 2) the equal alloca-

tion scheme, in which the resource cost for schedule, computation, and transmission are
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evenly allocated; and 3) the utilization scheme [103], in which δl and δh are set as 0.7

and 0.8.

Figure 3.5(a) shows the comparison of response time when λ varies from 50 requests/s

to 120 requests/s. From Figure 3.5(a), we can see that the proposed allocation scheme

achieves a much smaller response time compared to the other schemes under the same re-

source cost constraint. We analyze the reason behind Figure 3.5(a). The equal allocation

scheme simply divides resource cost on the three phases, which fails to consider the real

resource demands and thus takes the longest response time. The utilization scheme [103]

only guarantees that the utilization in the service is lower than the upper bound. How-

ever, it cannot ensure that the budget is optimally allocated to the resources which are

mostly needed. For the proposed resource allocation scheme, it searches the whole fea-

sible region to find the optimal solution such that the response time can be minimized.

Figure 3.5(b) gives a close look of the response time in the schedule, computation, and

transmission phases when λ is 120 requests/s. As shown in Figure 3.5(b), the equal allo-

cation scheme and the utilization scheme cannot optimally allocate resources among the

three phases, leading to a higher response time. For instance, the equal allocation scheme

allocates less resource in the computation phase and thus it takes longer response time

to process requests. Next, we evaluate the resource cost among the three schemes, which

is shown in Figure 3.5(c). From Figure 3.5(c), we can see that the proposed optimal

allocation scheme achieves a lower resource cost compared to the other schemes under

the same response time constraint. We can get the reason from the detailed resource cost

shown in Figure 3.5(d), when arrival rate is 120 requests/s. Compared to the proposed

optimal allocation scheme, the equal allocation scheme configures too much resources in

the schedule and transmission phases. As a result, users’ requests cannot be processed

in time and all jobs will be congested in the computation queue, which deteriorates the

system performance. The utilization scheme allocates excessive resources in each phase

in order to ensure that the service utilization falls in a certain range, which leads to a

higher total resource cost than the proposed allocation scheme.

3.4.2 Simulations in Multi-service Scenario

In this subsection, we evaluate the performance of the proposed resource allocation

schemes in the multi-service scenario. Three classes of multimedia services are tested
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Figure 3.6: Simulation results of resource allocation in the multi-service scenario: (a)
request arrival rate at each service in a 12-hour period, (b) comparison of response time,
(c) comparison of resource cost, and (d) comparison of detailed resource cost at the 6th
time slot.

in our simulations, including the free viewpoint video (FVV) service [50], content-based

image retrieval (CBIR) service [53], and 3D model (3DModel) delivery service [104]. D-

ifferent services have different request arrival rates, different task sizes, different result

sizes, and different requirements on the response time. Specifically, the FVV service

needs a low response time to guarantee the user interactive experience, the CBIR service

demands intensive computation resource due to the high computation complexity, and

the 3DModel service requires a large amount of bandwidth to deliver 3D models to users.

We compare the performance among: 1) the proposed optimal allocation scheme, in

which the resources are allocated by solving the optimization problem in Equation (3.12)
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or that in Equation (3.13); 2) the equal allocation scheme, in which the resource cost is

evenly allocated; and 3) the utilization scheme [103] with δl = 0.7 and δh = 0.8. We record

the arrivals of requests in a 12-hour period, which is shown in Figure 3.6(a). The workload

intensity in each service varies over time. Given the resource cost constraint, we compare

the average response time in the 12-hour period in Figure 3.6(b). From Figure 3.6(b),

we can see that the proposed optimal allocation scheme takes the lower response time

compared to the equal allocation scheme and the utilization scheme [103]. Furthermore,

we compare the resource cost of the three schemes in Figure 3.6(c), from which we can

find that the proposed optimal allocation scheme achieves the lowest resource cost among

the three scheme. Figure 3.6(d) compares the detailed resource cost at the 6th time slot.

As presented in Figure 3.6(a), the FVV service encounters a surge of requests at the 6th

time slot. As a result, the proposed resource allocation scheme assigns more resources to

the FVV service such that the local congestion can be effectively addressed. Compared

with the proposed scheme, the equal allocation scheme and the utilization scheme assign

excessive resources in the schedule and transmission phases and limited resources in the

computation phase, leading to a higher resource cost than the proposed scheme, as shown

in Figure 3.6(c).

3.4.3 Simulations in Priority-service Scenario

In this subsection, we evaluate the performance of the proposed resource allocation

schemes in the priority-service scenario. We still employ the FVV, CBIR, and 3DModel

services in our simulations. The FVV service enjoys the highest priority, while the 3D-

Model service is assigned the lowest priority. The arrivals of requests for each service

vary as in Figure 3.6(a). We compare the proposed optimal allocation scheme, the equal

allocation scheme, and the utilization scheme [103].

Figure 3.7(a) shows the comparison of the response time. From Figure 3.7(a), we

can see that the proposed resource allocation scheme takes a lower response time than

the other two schemes. Moreover, we compare the response time of FVV service in the

multi-service scenario and that in the priority-service scenario, which is shown in Figure

3.7(b). As stated in Theorem 3.5, priority service scheme reduces the response time for the

highest priority service, which is the FVV service in our simulation. From Figure 3.7(b),

we can find that the FVV service indeed enjoys a faster service in the priority-service
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Figure 3.7: Simulation results of resource allocation in the priority-service scenario: (a)
comparison of response time, (b) comparison of response time for FVV service in multi-
service scenario and that in priority-service scenario, (c) comparison of resource cost, and
(d) comparison of detailed resource cost at the 3rd time slot.

scenario compared to that in the multi-service scenario, which justifies the statement

of Theorem 3.5. Next, we evaluate the proposed resource cost minimization scheme.

As shown in Figure 3.7(c), the proposed optimal resource allocation scheme provides

satisfactory services at a much lower resource cost than the equal allocation scheme and

the utilization scheme. The detailed resource cost at the 3rd time slot is compared in

Figure 3.7(d). As shown in Figure 3.6(a), there is a request peak for the CBIR service

at the 3rd time slot. As a result, more computing resources are demanded at that time.

Compared to the equal allocation scheme and the utilization scheme in Figure 3.7(d),

the proposed optimal allocation scheme deploys more resources in computation such that
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the surge of resource demands can be effectively satisfied.

3.5 Chapter Summary

In this chapter, we introduce a queueing model to characterize the service process in

multimedia cloud. The proposed queueing model consists of three concatenated queue-

ing systems, which are the schedule queue, the computation queue, and the transmission

queue. We theoretically analyze the equilibrium demands and derive the relationships

between the response time and the allocated cloud resources. Based on the proposed

queueing model, we investigate resource optimization problems in three different sce-

narios: single-service scenario, multi-service scenario, and priority-service scenario. In

each scenario, we formulate and solve the response time minimization problem and the

resource cost minimization problem, respectively. Extensive simulation results demon-

strate that the proposed resource allocation schemes can optimally utilize cloud resources

to achieve the minimal response time under a certain budget or provide the satisfactory

services at the minimal resource cost.
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Chapter 4

Dynamic Resource Configuration for

Cloud based Multimedia Services

In multimedia cloud, multimedia service providers (MSPs) rent virtual machines (VM-

s) and supply various media services. There are two key challenges for MSPs: 1) how

to allocate the required number and class of VMs at the minimal cost ; and 2) how to

dynamically adjust VMs to adapt to the varying workload. In this chapter, we study

the dynamic resource configuration. We propose a two-time-scale resource configuration

(TRC) scheme, which allocates VMs in a mid-long time scale and dynamically adjusts

VMs in a fine-grained time scale. Based on the TRC scheme, we investigate resource

optimization problems in single-site cloud scenario and multi-site cloud scenario, respec-

tively.

4.1 Introduction

In multimedia cloud, three major roles are involved in the service: cloud computing

providers, MSPs, and users. As the computing resource suppliers, cloud computing

providers operate the cloud infrastructure and provide VMs as service. MSPs deploy

multimedia services on the leased VMs. As customers, users send requests for the inter-

ested services on cloud.

There are two challenges for MSPs. The first challenge is how to allocate the opti-

mal number and class of VMs for each service. If too many VMs are allocated to one
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service, the service speed can be increased, but the cost will also be increased. The

under-provisioned resources would slow down the service, while the over-provisioned re-

sources would lead to the unnecessary resource waste. MSPs have to avoid both under-

provisioning and over-provisioning. Additionally, multimedia services have heterogeneous

resource demands, while each type of VM has a different pre-configured resource capac-

ity. An inappropriate VM allocation would cause the unnecessary waste. Thus, MSPs

need the optimal resource allocation to satisfy resource demands at the minimal resource

cost. Besides VM allocation, another challenge for MSPs is how to dynamically adjust

VMs to adapt to the varying workload. Since thousands of users may request multime-

dia services from cloud at the same time, the instantaneous burst of requests will cause

local congestion and unacceptable response time. Moreover, the varying workload leads

to unbalanced resource utilization. For instance, the allocated VMs in one service can-

not handle the request burst, while VMs in other services may be underloaded. Thus,

an effective resource allocation scheme should be able to appropriately allocate VMs to

avoid resource under-provisioning or over-provisioning and dynamically reconfigure VMs

to satisfy time-varying workload.

To address aforementioned challenges, we study the dynamic resource configuration

in this chapter. Our contributions are summarized as follows.

1. We propose a TRC scheme to allocate VMs and dynamically reconfigure VMs.

Since major cloud computing providers, like Amazon EC2 [15], charge VMs on an

hourly basis, MSPs need to determine the required VMs in each hour. Therefore,

we focus on the resource allocation problem in a mid-long time scale, determining

the optimal number and classes of VMs. On the other hand, we dynamically

reallocate VMs among services in a fine-grained time scale to deal with the varying

workload. By considering two different time scales, the proposed TRC scheme is

able to flexibly allocate resources according to the real demands.

2. Based on the proposed TRC scheme, we study resource allocation problems in

single-site cloud scenario and multi-site cloud scenario, respectively. In each s-

cenario, we investigate the resource cost minimization problem and the response

time minimization problem. Since the formulated problems are nonlinear integer

programming, which are known as NP-hard [105,106], we propose heuristics to al-

locate resources in an efficient way. The proposed heuristics are sub-optimal but
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lightweight, which are demonstrated to perform close to the optimal solutions based

on the simulation results.

The remainder of this chapter is organized as follows. Section 4.2 presents system

models. Based on the proposed models, we study resource allocation and resource recon-

figuration problems for single-site cloud scenario in Section 4.3 and for multi-site cloud

scenario in Section 4.4. Section 4.5 presents extensive performance evaluations. Finally,

we conclude the chapter in Section 4.6.

4.2 System Models

4.2.1 Multimedia Cloud Architecture

Currently, most of clouds are built in the form of data centers [92]. The cloud data

center consists of a bunch of physical computing servers, which support the running

and provisioning of VMs. Different classes of VM instances generally have different

resource capacities in terms of CPU frequency, processor numbers, memory size, and I/O

rates. VMs can form virtual cluster [61,93] to provide faster services and more powerful

resources.

The multimedia cloud architecture is illustrated in Figure 4.1. When a request arrives

at data center, the dispatcher will firstly distribute the request to the corresponding

service. The demand monitor performs the live monitoring on the type and number

of requests, and forwards information to the service level agreement (SLA) negotiator.

Based on the workload information, the SLA negotiator will determine QoS requirements

for each service. With demand statistics and QoS requirements, the proposed TRC

scheme will determine the class and the number of VMs for each service to achieve

the minimal resource cost, while guaranteeing response time requirement. If the initially

reserved VMs cannot satisfy resource demands, the proposed scheme will send requests to

cloud computing providers for additional on-demand VMs. After resource allocation, the

proposed scheme will inspect the varying resource demands and dynamically reconfigure

VMs among services. The resource reconfiguration works in a fine-grained time scale.

Thus, the varying resource demands in each service can be effectively satisfied.
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Figure 4.1: Illustration of multimedia cloud architecture.

4.2.2 VM Pricing Plan

Generally, major cloud computing providers [15, 16, 32] offer two different pricing plans,

i.e. the reservation plan and the on-demand plan. In the reservation plan, MSPs make

a one-time upfront payment for a VM instance and in turn receive a significant discount

on the hourly rate for that instance. The reservation plan needs to be committed for a

certain term. For example, the shortest term of reservation plan in Amazon EC2 [15] is

1 year. Besides the reservation plan, the on-demand plan provides a more flexible VM

usage. In the on-demand plan, the VMs can be paid by the hourly usage without long-

term commitment and upfront payment. But the price rates in the on-demand plan are

higher than those in the reservation plan. In each plan, the hourly price rate is defined

in dollars ($) per VM instance per hour, and VMs with different resource capacities have

different price rates. Moreover, different sites generally have different price rates. For

example, Amazon EC2 [15] currently has nine sites around the globe, in which the site

at Sao Paulo charges the highest price rates [107].
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4.2.3 Two-time-scale Resource Configuration (TRC) Scheme

We propose a TRC scheme to manage cloud resources. Two different time scales are

considered in the scheme. We will denote by t1 as the mid-long time scale for resource

allocation and t2 as the fine-grained time scale for resource reconfiguration. In scale t1,

our objective is to minimize the resource cost by optimizing VM allocation. On the other

hand, the workload in cloud changes dynamically, leading to the variation in demands.

The initially allocated VMs at t1 scale cannot adapt to the varying demands. Therefore,

we perform resource reconfiguration in a fine-grained time scale t2. In resource recon-

figuration, the initially configured VMs are reallocated among services according to real

demands. We study the resource reconfiguration problem, in which the average response

time is minimized by adjusting VMs among services. By considering two different time

scales, the proposed TRC scheme is able to capture the macro trend and the local varia-

tion of demands. Specifically, the resource allocation in t1 scale can neglect noises arising

from instantaneous fluctuations, while the resource reconfiguration in time scale t2 can

flexibly adjust resources corresponding to the real workload variations.

Suppose that L data centers are available. The set of data centers can be denoted as

D = {D1, D2, . . . , DL}. In each data center, we will denote by I the set of VMs. Since

different classes of VMs are charged at different price rates, let prli and pdli denote the price

rates of class-i (∀i ∈ I) VM instance at Dl in the reservation plan and the on-demand

plan, respectively. The MSP may reserve a certain number of VMs at the initial stage,

and let Kini
li denote the number of initially reserved class-i VMs at Dl. We will denote

by J the set of services. Due to the heterogeneous resource capacities, different classes

of VMs have different service rates. We will denote by µij the average service rate of

class-i VM instance for processing type-j requests. At Dl, K
r
lij and Kd

lij are the numbers

of allocated class-i VMs for type-j service in the reservation plan and on-demand plan,

respectively. We will present the proposed TRC scheme to determine the optimal values

of Kr
lij and Kd

lij at different time scales.

4.2.4 Workload Prediction Model

Since two consecutive incoming requests may be sent from different users, the numbers of

requests occur in non-overlapping intervals are independent random variables. We assume

that the arrivals of requests for type-j service is a Poisson process with an average of λj . In
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order to predict λj , we use the autoregressive integrated moving average (ARIMA) model,

which has been applied to predict demands on P2P and cloud media system with high

accuracy [108,109]. In ARIMA(p, d, q) model, a given time series Y is differenced d times

to get a stationary series X , and each sample xt can be estimated as a linear weighted

sum of p previous samples (xt−1, . . . , xt−p) and q previous random errors (ǫt−1, . . . , ǫt−q).

Since Poisson process has the property of stationary increments [110], we can obtain

a stationary process when performing one order difference. We therefore have d = 1

in the ARIMA(p, d, q) model. Figure 4.2(a) shows the one order difference of request

arrivals with an average rate of λ = 300 requests/s. In order to identify the orders

p and q, the standard technique is to match the patterns of the autocorrelation and

partial autocorrelation of the differenced time series with the theoretical patterns of

known models. Figure 4.2(b) and Figure 4.2(c) plot the autocorrelation function r̂k

and the partial autocorrelation function ϕ̂kk, respectively. We can find that the partial

autocorrelation cuts off after lag k = 2 and the autocorrelation tails off as damped sine

wave, which identifies p = 2 and q = 0 [111]. Therefore, we derive an ARIMA(2,1,0)

model to predict the workload at t + 1, which is given by

λt+1
j = λt

j + ϕ1(λ
t
j − λt−1

j ) + ϕ2(λ
t−1
j − λt−2

j ) + ǫt, (4.1)

where ǫt is the white noise, which can be treated as zero in practice [111], and ϕ1, ϕ2 are

coefficients, which can be acquired by training the model with historical statistics.

4.3 Dynamic Resource Configuration for Single-site

Cloud

In this section, we will study the optimal resource allocation and resource reconfiguration

in single-site cloud scenario, in which MSP deploys services at one data center and all

users send requests to the data center for service.

4.3.1 Resource Allocation for Single-site Cloud

The objective for resource allocation in t1 time scale is to minimize the total resource

cost. We use τt1 to denote the beginning time instant of t1 period. The cost of allocated
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Figure 4.2: Determination of ARIMA model parameters: (a) one order difference of
request arrivals with an average rate of 300 requests/s, (b) autocorrelation of series in
(a), and (c) partial autocorrelations of series in (a).

VMs can be formulated as

Csgl =
∑

i∈I

∑

j∈J
priK

r(τt1 )
ij +

∑

i∈I

∑

j∈J
pdiK

d(τt1 )
ij , (4.2)

where
∑

i∈I
∑

j∈J priK
r(τt1 )
ij is the cost in the reservation plan and

∑

i∈I
∑

j∈J pdiK
d(τt1 )
ij

is the cost in the on-demand plan.

In type-j service, a number of
(

K
r(τt1 )
ij +K

d(τt1 )
ij

)

class-i VMs are allocated. To

balance workload among VMs, we schedule requests to each cluster in proportion to its

service rate [112, 113], i.e. the cluster with a higher service rate will be assigned more

requests to process. Thus, a type-j request is scheduled to class-i virtual cluster with
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a probability of ω
(τt1)
ij =

(K
r(τt1

)

ij +K
d(τt1

)

ij )µij

∑

i∈I

(

(K
r(τt1

)

ij +K
d(τt1

)

ij )µij

) . The performance of this scheduling

scheme has been evaluated in our previous work [112]. The arrival requests are split into

independent sub-processes. With the decomposition property of Poisson process [114],

the requests scheduled to class-i virtual cluster still follow a Poisson process with an

average rate of ω
(τt1)
ij λ

(τt1 )
j . Similar to assumptions commonly used in multimedia cloud

literatures [61,115], we assume the service time at each cluster is exponential distribution

with rate (K
r(t)
ij +K

d(t)
ij )µij. The service process at class-i cluster is therefore modeled as

an M/M/1 queuing system [114]. To make the queue stable, the request incoming rate

must be less than the service rate, i.e. the constraint ω
(τt1)
ij λ

(τt1 )
j < (K

r(τt1 )
ij +K

d(τt1 )
ij )µij

is required. Thus, the mean response time of type-j service can be formulated as

T
R(τt1 )
j =

∑

i∈I

ω
(τt1 )
ij

(K
r(τt1 )
ij +K

d(τt1 )
ij )µij − ω

(τt1 )
ij λ

(τt1 )
j

. (4.3)

In addition, the amount of allocated class-i VMs from the reservation plan should be no

more than the number of initially reserved class-i VMs. Thus, constraints
∑

j∈J K
r(τt1 )
ij ≤

Kini
i , (∀i ∈ I) need to be satisfied.

Based on the above analysis, we can formulate the optimal resource allocation problem

for single-site cloud as follows.

Minimize
{K

r(τt1
)

ij ,K
d(τt1

)

ij }

∑

i∈I

∑

j∈J
priK

r(τt1 )
ij +

∑

i∈I

∑

j∈J
pdiK

d(τt1 )
ij

subject to
∑

i∈I
ω
(τt1

)

ij

(K
r(τt1

)

ij +K
d(τt1

)

ij )µij−ω
(τt1

)

ij λ
(τt1

)

j

≤ TU
j , ∀j ∈ J ,

ω
(τt1)
ij λ

(τt1 )
j < (K

r(τt1 )
ij +K

d(τt1 )
ij )µij, ∀i ∈ I, ∀j ∈ J ,

∑

j∈J K
r(τt1 )
ij ≤ Kini

i , ∀i ∈ I,
K

r(τt1 )
ij , K

d(τt1 )
ij ≥ 0, ∀i ∈ I, ∀j ∈ J ,

K
r(τt1 )
ij , K

d(τt1 )
ij ∈ Z, ∀i ∈ I, ∀j ∈ J ,

(4.4)

where TU
j is the upper bound of the response time for type-j service.

The optimization problem in Equation (4.4) is an integer programming, which is

known to be NP-hard [116]. The problem can be solved by the branch-and-bound method
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[116]. However, the branch-and-bound method takes exponential time complexity, which

cannot satisfy the real-time requirement for practical applications. Therefore, we propose

a heuristic to efficiently allocate VMs. In the heuristic, we introduce the unit cost, which

is the equivalent cost of using one VM instance to process one unit request. In a service,

the VM instance with a lower unit cost is more desirable and should be allocated to

the service first. The heuristic is presented in Algorithm 4.1. Observing the proposed

heuristic, we can find that the time complexities of step 1 and steps 3-13 are linear and the

time complexity of step 2 is determined by the adopted sorting algorithm. If we use heap

sort in step 2, the time complexity in the worst case is O(n logn) [117], which is much

smaller than the exponential time complexity of the branch-and-bound method [118].

Algorithm 4.1: Heuristic for Resource Allocation in Single-site Cloud

1: Compute qrij =
pri
µij

and qdij =
pdi
µij

, which are unit costs of using one reserved and one

on-demand class-i VM instance to process one type-j request, respectively.
2: Let set Q = {qrij, qdij |∀i ∈ I, ∀j ∈ J} and sort set Q in an ascending order.
3: repeat
4: Select the smallest qvij(v = r or d) from Q.
5: if qvij is from reserved VMs (i.e. v = r) then

6: Allocate K
r(τt1 )
ij (K

r(τt1 )
ij ≤ Kini

i ) reserved VMs to process requests

λ′
j , (λ′

j ≤ λ
(τt1 )
j ) such that 1

K
r(τt1

)

ij µij−λ′
j

= TU
j .

7: Update Kini
i = Kini

i −K
r(τt1 )
ij , λ

(τt1 )
j = λ

(τt1 )
j − λ′

j .
8: else if qvij is from on-demand VMs (i.e. v = d) then

9: Allocate K
d(τt1 )
ij on-demand VMs to process all remaining type-j requests λ

(τt1 )
j

such that 1

K
d(τt1

)

ij µij−λ
(τt1

)

j

= TU
j .

10: Update λ
(τt1 )
j = 0.

11: end if
12: until all requests are processed (i.e. λ

(τt1 )
j = 0, ∀j ∈ J).

13: return K
r(τt1 )
ij and K

d(τt1 )
ij , (∀i ∈ I, ∀j ∈ J).

4.3.2 Resource Reconfiguration for Single-site Cloud

The proposed resource allocation in Section 4.3.1 determines the number of VMs for each

service in t1 scale. However, the allocated VMs cannot adapt to the dynamic demands.
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Some services are short of resources while some services still have idle VMs. In order to

address this issue, we propose the optimal resource reconfiguration in t2 scale, in which

we reconfigure the VMs allocated in time scale t1 to minimize the average response time.

Let τt2 be the beginning time instant of each t2 time slot.

Let K
r(τt2 )
ij and K

d(τt2 )
ij be the numbers of reconfigured class-i VMs in the reservation

plan and on-demand plan, respectively. According to Equation (4.3), the response time of

type-j service is formulated as T
R(τt2 )
j =

∑

i∈I
ω
(τt2

)

ij
(

K
r(τt2

)

ij +K
d(τt2

)

ij

)

µij−ω
(τt2

)

ij λ
(τt2

)

j

. The average

response time in the single-site cloud is therefore given by

T
R(τt2 )

sgl =
∑

j∈J

(

λ
(τt2

)

j

λ
(τt2

)T
R(τt2 )
j

)

=
∑

j∈J

(

λ
(τt2

)

j

λ
(τt2

)

∑

i∈I

ω
(τt2

)

ij

(K
r(τt2

)

ij +K
d(τt2

)

ij )µij−ω
(τt2

)

ij λ
(τt2

)

j

)

.

(4.5)

where λ(τt2 ) =
∑

j∈J λ
(τt2 )
j is the total workload in the data center.

In resource reconfiguration, our objective is to best utilize the initially allocated VMs

to adapt to the varying workload. Thus, there is no subscription for extra VMs, i.e.

the number of reconfigured class-i VMs in t2 scale should be no more than the num-

ber of allocated class-i VMs in t1 scale. Constraints
∑

j∈J K
r(τt2 )
ij ≤ ∑j∈J K

r(τt1 )
ij and

∑

j∈J K
d(τt2 )
ij ≤∑j∈J K

d(τt1 )
ij (∀i ∈ I) are required.

Based on the above analysis, we can formulate the optimal resource reconfiguration

problem as

Minimize
{K

r(τt2
)

ij ,K
d(τt2

)

ij }

∑

j∈J

(

λ
(τt2

)

j

λ
(τt2

)

∑

i∈I

ω
(τt2

)

ij

(K
r(τt2

)

ij +K
d(τt2

)

ij )µij−ω
(τt2

)

ij λ
(τt2

)

j

)

subject to

ω
(τt2 )
ij λ

(τt2 )
j < (K

r(τt2 )
ij +K

d(τt2 )
ij )µij , ∀i ∈ I, ∀j ∈ J ,

∑

j∈J K
r(τt2 )
ij ≤∑j∈J K

r(τt1 )
ij , ∀i ∈ I,

∑

j∈J K
d(τt2 )
ij ≤∑j∈J K

d(τt1 )
ij , ∀i ∈ I,

K
r(τt2 )
ij , K

d(τt2 )
ij ≥ 0, ∀i ∈ I, ∀j ∈ J ,

K
r(τt2 )

ij , K
d(τt2 )

ij ∈ Z, ∀i ∈ I, ∀j ∈ J .

(4.6)

The resource reconfiguration problem in Equation (4.6) is a nonlinear integer pro-
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gramming, which can be solved by the branch-and-bound method [116]. However, the

branch-and-bound method has an intensive computation complexity, thus not suitable

for real-time applications. In order to reconfigure resources in an efficient way, we propose

a heuristic in Algorithm 4.2. The idea of the heuristic is to reallocate VMs according

to the utilization at each service. In queueing theory [114, 119], the utilization ρ = λ/µ

represents the fraction of time that the server is busy, in which λ is the average arrival

rate and µ is the average service rate. A higher utilization ρ means a higher percentage

of time when the server is busy. In the heuristic, we firstly compute the utilization ρj of

type-j service and the average utilization ρ̄ among all services. If the difference between

ρj and ρ̄ is larger than a threshold ǫ, we reallocate extra VMs to type-j service from

the service with the lowest utilization. The threshold ǫ is the sensitivity for unbalanced

resource utilization, which can be used to control the frequency of resource reconfigura-

tion. In practice, reallocating VMs too frequently will introduce extra overhead for cloud.

Therefore, the threshold ǫ should be determined based on the variance of the arriving

requests.

Algorithm 4.2: Heuristic for Resource Reconfiguration in Single-site Cloud

1: Calculate ρ
(τt2 )
j =

λ
(τt2

)

j

∑

i∈I(K
r(τt1

)

ij +K
d(τt1

)

ij )µij

and insert it into a min heap Hρ [120].

Calculate ρ̄ =
∑

j∈J ρ
(τt2 )
j /|J |.

2: for j in J do

3: while ρ
(τt2 )
j − ρ̄ > ǫ do

4: Get j′ from the root of Hρ.

5: Reallocate VMs from type-j′ service to type-j service such that ρ
(τt2 )

j′ − ρ̄ = ǫ.
VMs with a higher service rate for type-j service will be reallocated first.

6: Update Hρ to get the new lowest utilization.
7: end while
8: end for
9: return K

r(τt2 )
ij and K

d(τt2 )
ij , (∀i ∈ I, ∀j ∈ J ).
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4.4 Dynamic Resource Configuration for Multi-site

Cloud

In this section, we extend our study to multi-site cloud scenario, in which MSP can

deploy services on geographically distributed data centers.

4.4.1 Resource Allocation for Multi-site Cloud

Multi-site cloud covers a larger geographical scale and requires an efficient resource al-

location. Therefore, we study the distributed resource allocation approach in multi-site

cloud, which can be performed in parallel at each site. Since services are deployed on data

centers at geographically distributed locations, the total resource cost can be formulated

as

Cmul =
∑

Dl∈D

∑

i∈I

∑

j∈J
prliK

r(τt1 )

lij +
∑

Dl∈D

∑

i∈I

∑

j∈J
pdliK

d(τt1 )

lij , (4.7)

in which
∑

Dl∈D
∑

i∈I
∑

j∈J prliK
r(τt1 )

lij represents the cost in the reservation plan and
∑

Dl∈D
∑

i∈I
∑

j∈J pdliK
d(τt1 )

lij represents the cost in the on-demand plan. To maintain a

stable queue, the service rate must be faster than the request arrival rate, i.e. ω
(τt1)

lij λ
(τt1 )

lj <

(K
r(τt1 )

lij +K
d(τt1 )

lij )µij is required. According to Equation (4.3), the response time of type-j

service at Dl can be formulated as

T
R(τt1 )

lj =
∑

i∈I
ω
(τt1

)

lij

(K
r(τt1

)

lij
+K

d(τt1
)

lij
)µij−ω

(τt1
)

lij
λ
(τt1

)

lj

. (4.8)

On the other hand, the number of allocated VMs at Dl from the reservation plan should

be no more than the initially reserved VMs. The constraints can be represented by
∑

j∈J K
r(τt1 )

lij ≤ Kini
li .

Based on the above analysis, the optimal resource allocation problem for multi-site

cloud can be formulated as follows.
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Minimize
{K

r(τt1
)

lij
,K

d(τt1
)

lij
}

∑

Dl∈D

∑

i∈I

∑

j∈J
prliK

r(τt1 )

lij +
∑

Dl∈D

∑

i∈I

∑

j∈J
pdliK

d(τt1 )

lij

subject to
∑

i∈I
ω
(τt1

)

lij

(K
r(τt1

)

lij
+K

d(τt1
)

lij
)µij−ω

(τt1
)

lij
λ
(τt1

)

lj

≤ TU
j , ∀Dl ∈ D, ∀j ∈ J ,

ω
(τt1)

lij λ
(τt1 )

lj < (K
r(τt1 )

lij +K
d(τt1 )

lij )µij, ∀Dl ∈ D, ∀i ∈ I, ∀j ∈ J ,
∑

j∈J K
r(τt1 )

lij ≤ Kini
li , ∀Dl ∈ D, ∀i ∈ I,

K
r(τt1 )

lij , K
d(τt1 )

lij ≥ 0, ∀Dl ∈ D, ∀i ∈ I, ∀j ∈ J ,
K

r(τt1 )

lij , K
d(τt1 )

lij ∈ Z, ∀Dl ∈ D, ∀i ∈ I, ∀j ∈ J ,
(4.9)

where TU
j is the upper bound of response time for type-j service.

The optimization problem in Equation (4.9) is a nonlinear integer programming,

which is known to be NP-hard [116]. From the objective function in Equation (4.9), we

can find the resource allocation at Dl does not need information from any other sites.

Therefore, if the minimal resource cost can be achieved at each single site, the total

resource cost in multi-site cloud will be minimized. Based on the analysis, we propose a

heuristic for multi-site cloud in Algorithm 4.3, which is based on our previous heuristic

in single-site cloud. The proposed heuristic is a distributed resource allocation approach,

which can be performed in parallel at each data center.

Algorithm 4.3: Heuristic for Resource Allocation in Multi-site Cloud

1: for each Dl ∈ D do

2: Collect request arrival rate λ
(τt1 )

lj and the initially reserved VMs Kini
li at Dl

3: Allocate VMs at Dl by using the Heuristic for Resource Allocation in Single-site
Cloud in Algorithm 4.1.

4: end for

4.4.2 Resource Reconfiguration for Multi-site Cloud

In multi-site cloud, the local congestion may occur due to the time-varying workload.

For example, the instantaneous surge of local requests may result in unacceptable service

delay at one site, while at the same time, some other sites may have insufficient load
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and underutilized VMs. To address this issue, we perform resource reconfiguration for

multi-site cloud. Comparing with single-site cloud, the resource reconfiguration in multi-

site not only reallocates VMs among services at each site, but also balances workload by

transferring excessive requests to the underloaded sites for service. By jointly optimizing

the global workload assignment and the local resource reconfiguration, we can achieve

the minimal average response time for the whole system.

In the proposed resource reconfiguration, if local congestion appears at any site, exces-

sive requests will be redirected to other sites for service. The transmission delay between

Dl and Dl′ is denoted as d
(τt2)

ll′ . Specially, when l′ = l, d
(τt2 )

ll = 0. Let z
(τt2 )

ll′j denote the

probability that type-j requests are transferred from Dl to Dl′ . Because all requests have

to be served, we have
∑

Dl′∈D z
(τt2 )

ll′j = 1 and 0 ≤ z
(τt2 )

ll′j ≤ 1. In practice, the workload

redirection is transparent to users. Users just request services and they do not need to

know which data center receives and processes their requests. We assume that users’

requests will be first sent to the closest data center. The arrivals of type-j requests at Dl

before load redirection is denoted as λ
(τt2 )

lj . If a request is transferred to Dl′, the response

time is the sum of the execution time at Dl′ and the transmission delay, which is given

by T
E(τt2)

l′j + d
(τt2 )

ll′ , where T
E(τt2)

l′j is the execution time at Dl′. Therefore, the average

response time of type-j service at Dl can be formulated as

T
R(τt2 )

lj =
∑

Dl′∈D

(

z
(τt2 )

ll′j (T
E(τt2)

l′j + d
(τt2 )

ll′ )
)

. (4.10)

At Dl, a number of K
r(τt2 )

lij reserved and K
d(τt2 )

lij on-demand class-i VMs are reallocated

to the type-j service. In workload transfer mechanism, requests from other data centers

may be transferred to Dl. After load redirection, the request arrivals of type-j service

are λ̃
(τt2 )

lj =
∑

Dl′∈D z
(τt2 )

l′lj λ
(τt2 )

l′j . According to properties of Poisson distribution [121], the

sum of multiple independent Poisson variables is still Poisson distributed. Thus, the

arrivals of type-j requests at Dl still follow Poisson distribution. To ensure a stable

queue, ω
(τt2 )

lij λ̃
(τt2 )

lj < (K
r(τt2 )

lij + K
d(τt2 )

lij )µij is required. Therefore, the execution time for

type-j service at Dl can be given by

T
E(τt2 )

lj =
∑

i∈I

ω
(τt2 )

lij

(K
r(τt2 )

lij +K
d(τt2 )

lij )µij − ω
(τt2 )

lij λ̃
(τt2 )

lj

. (4.11)
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Based on the above analysis, the average response time in multi-site cloud can be formu-

lated as

T
R(τt2 )

mul =
∑

Dl∈D

∑

j∈J

(

λ
(τt2

)

lj

λ
(τt2

)T
R(τt2 )

lj

)

=
∑

Dl∈D

∑

j∈J

(

λ
(τt2

)

lj

λ
(τt2

)

∑

Dl′∈D

(

z
(τt2 )

ll′j

(

T
E(τt2 )

l′j + d
(τt2 )

ll′

))

)

,

(4.12)

where λ(τt2 ) =
∑

Dl∈D
∑

j∈J λ
(τt2 )

lj is the total workload in the multi-site cloud, and T
E(τt2)

l′j

is given by Equation (4.11).

On the other hand, the goal of resource reconfiguration is to balance workload and

adjust resources among different sites. There are no extra VMs subscribed during the

reconfiguration. Thus, we need to satisfy VM amount constraints, which are given by
∑

j∈J K
r(τt2 )

lij ≤∑j∈J K
r(τt1 )

lij and
∑

j∈J K
d(τt2 )

lij ≤∑j∈J K
d(τt1 )

lij .

In multi-site cloud, we jointly optimize the workload transfer among sites and the

resource reconfiguration in each site. The optimal resource reconfiguration problem can

be formulated as

Minimize
{z

(τt2
)

ll′j
,K

r(τt2
)

lij
,K

d(τt2
)

lij
}

∑

Dl∈D

∑

j∈J

(

λ
(τt2

)

lj

λ
(τt2

)

∑

Dl′∈D

(

z
(τt2 )

ll′j

(

T
E(τt2)

l′j + d
(τt2 )

ll′

))

)

subject to

ω
(τt2 )

lij λ̃
(τt2 )

lj < (K
r(τt2 )

lij +K
d(τt2 )

lij )µij, ∀Dl ∈ D, ∀i ∈ I, ∀j ∈ J ,
∑

j∈J K
r(τt2 )

lij ≤∑j∈J K
r(τt1 )

lij , ∀Dl ∈ D, ∀i ∈ I,
∑

j∈J K
d(τt2 )

lij ≤∑j∈J K
d(τt1 )

lij , ∀Dl ∈ D, ∀i ∈ I,
∑

Dl′∈D z
(τt2 )

ll′j = 1, ∀Dl ∈ D, ∀j ∈ J ,
0 ≤ z

(τt2 )

ll′j ≤ 1, ∀Dl, Dl′ ∈ D, ∀j ∈ J ,
K

r(τt2 )

lij , K
d(τt2 )

lij ≥ 0, ∀Dl ∈ D, ∀i ∈ I, ∀j ∈ J ,
z
(τt2 )

ll′j ∈ R, K
r(τt2 )

lij , K
d(τt2 )

lij ∈ Z, ∀Dl, Dl′ ∈ D, ∀i ∈ I, ∀j ∈ J ,

(4.13)

The optimal resource reconfiguration problem in Equation (4.13) is a mixed integer

nonlinear programming, which is known as NP-hard problem [122, 123]. The problem

can be solved by the branch-and-bound method [116]. However, the branch-and-bound

method needs to inspect all candidate solutions, which is not suitable for large scale cloud

systems. For service providers, they require rapid and efficient resource reconfiguration

and load balancing schemes. For this reason, we present a heuristic in Algorithm 4.4,
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Algorithm 4.4: Heuristic for Resource Reconfiguration in Multi-site Cloud

1: Calculate utilization for each service before request redirection

ρ
(τt2 )

lj =
λ
(τt2

)

lj

∑

i∈I(K
r(τt1

)

lij
+K

d(τt1
)

lij
)µij

and insert ρ
(τt2 )

lj into a min heap Hρj [120]. Calculate

average utilization ρ̄j =
∑

Dl∈D ρ
(τt2 )

lj /L, where L is the number of data centers.
2: for each site Dl, (Dl ∈ D) do
3: while ρ

(τt2 )

lj − ρ̄j > ǫj do
4: Get site Dl′ which has the lowest utilization for service j from the root of Hρj .

5: Redirect type-j service requests from Dl to Dl′ such that ρ
(τt2 )

l′j − ρ̄ = ǫj
6: Update Hρj to get the new lowest utilization.
7: end while
8: end for
9: for each site Dl, (Dl ∈ D) do

10: Reallocate VMs among services according to the Heuristic for Resource
Reconfiguration in Single-site Cloud in Algorithm 4.2.

11: end for

which can reconfigure VMs and balance load in a practical way. The proposed heuristic

firstly balance load among sites according to the difference of resource utilization and then

reconfigure resources among services at each site. Moreover, the resource reconfiguration

can be performed at each site in parallel after the global workload balancing.

4.5 Performance Evaluation

We verify the proposed schemes by numerical simulations. Amazon EC2 [15] is a popular

cloud computing platform allowing service providers to lease VMs for various services.

To make our simulations convincible, we apply the price rates and VM configurations

of Amazon EC2 in our simulations. Four classes of VM instances are tested, including

small, large, extra large standard instances, and extra large high-CPU instance. The

detailed configuration and price rates can be found from [15]. As the hourly VM rental

is used by Amazon EC2 [15], the resource allocation time scale t1 is set as 1 hour.
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4.5.1 Simulations for Single-site Cloud

In single-site cloud scenario, we select Amazon’s data center at Ireland as the site to

deploy services. We first verify the proposed resource allocation scheme. Currently, the

state-of-the-art resource allocation scheme, adopted by Amazon Elastic Beanstalk [18],

is based on utilization threshold, in which the VM provisioning will be triggered when

utilization ρ is higher than δh and stopped until utilization ρ is lower than or equal to

δl (δl < δh). We compare the resource cost among the following alternative schemes:

1) the optimal allocation scheme, in which VMs are allocated optimally by solving the

optimization problem in Equation (4.2), 2) the proposed heuristic in Algorithm 4.1, and

3) the utilization scheme [18] with δl and δh set as 0.5 and 0.7, respectively.

Figure 4.3(a) presents the comparison of resource cost among the three schemes. We

can see that the optimal resource allocation scheme can achieve the lowest resource cost

in Figure 4.3(a). Compared with the utilization scheme [18], the proposed heuristic

can provide satisfactory services at a lower resource cost. We analyze the reason. The

proposed heuristic is based on a greedy idea, which only considers the current best choice

without making a global inspection, while the optimal allocation scheme searches the

whole feasible region to find the globally optimal solution. Thus, the proposed heuristic

is a sub-optimal but lightweight solution. The utilization scheme [18] only guarantees that

the utilization at each service is lower than the upper bound. However, it fails to assign

the most suitable VMs to each service. Figure 4.3(b) gives a close look at the resource

cost in each service when the total load reaches 15000 requests/s. Compared with the

utilization scheme [18], the optimal allocation scheme and the proposed heuristic consume

a lower resource cost. We also record the arrivals of requests in a 9-hour period. During

the period, the mean request arrival rate is varied as in Figure 4.3(c). The corresponding

resource cost among the three schemes is compared in Figure 4.3(d). From Figure 4.3(d),

we find that the proposed heuristic performs close to the optimal allocation scheme.

Next, we evaluate the proposed optimal resource reconfiguration scheme for single-

site cloud. In the simulation, we compare the average response time among the following

schemes: 1) the optimal reconfiguration scheme, in which VMs are reconfigured by solving

the optimization problem in Equation (4.5), 2) the proposed heuristic in Algorithm 4.2,

and 3) the utilization scheme [18], in which the initially allocated VMs for each service

remain unchanged during the one hour period. Figure 4.4(a) displays a close view of
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Figure 4.3: Simulation results of resource allocation for single-site cloud: (a) comparison
of resource cost when λ varies from 5000 requests/s to 15000 requests/s, (b) comparison
of resource cost in each service when λ=15000 requests/s, (c) mean request arrival rate
in a 9-hour period, and (d) comparison of resource cost in the 9-hour period.

the time-varying request arrival rate during the 5th hour in Figure 4.3(c), during which

the arrival rate increases from 12000 requests/s to 14000 requests/s. We verify the

proposed resource reconfiguration scheme on the time-varying workload in Figure 4.4(a).

The t2 scale is set as 5 minutes. The comparison of the average response time among

the three schemes is shown in Figure 4.4(b). From Figure 4.4(b), we can find that the

optimal reconfiguration scheme reaches the lowest average response time compared to the

other two schemes. The utilization scheme does not adjust VMs to adapt to the time-

varying workload, leading to the unbalanced resource utilization. The proposed heuristic

inspects the utilization in each service and correspondingly adjusts VMs to balance the
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Figure 4.4: Simulation results of resource reconfiguration for single-site cloud: (a) request
arrival rate during the 5th hour in Figure 4.3(c), (b) comparison of average response time
among the three schemes, (c) request arrivals for each service between 50-55 minutes,
and (d) total service rate of allocated VMs for each service.

workload. Thus, the proposed heuristic can reduce average response time compared to

the utilization scheme. In addition, we show the arrivals of requests for each service

between 50-55 minutes in Figure 4.4(c). To have a close view on the resource allocations

at that time slot, we show the service rate for each service in Figure 4.4(d). Compared

with the utilization scheme, the optimal reconfiguration scheme and the heuristic allocate

more resources to the heavy services (e.g. App2 and App3) while less resources to the

light services (e.g. App1 and App5), thus reducing the average response time.
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4.5.2 Simulations for Multi-site Cloud

We perform simulations to evaluate the proposed schemes for multi-site cloud scenario.

In our simulations, three Amazon data centers are employed, in which D1 is located at

Tokyo, D2 is located at Ireland which is also used in Section 4.5.1, and D3 is located at

East Virginia. In terms of price rates of VM instances, D1 is the most expensive site,

while D3 is the cheapest site. The detailed price rates at each site can be found from [15].
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Figure 4.5: Simulation results of resource allocation for multi-site cloud: (a) compar-
ison of resource cost when λ varies from 5000 requests/s to 15000 requests/s, and (b)
comparison of resource cost at each data center when λ = 15000 requests/s.

Firstly, we evaluate the proposed resource allocation scheme for multi-site cloud.

We compare the total resource cost among: 1) the optimal allocation scheme, in which

the VMs are determined by solving the optimization problem in Equation (4.9), 2) the

proposed heuristic in Algorithm 4.3, and 3) the utilization scheme in [18]. Figure 4.5(a)

shows the comparison of resource cost among the three schemes. From Figure 4.5(a), we

can see that the proposed optimal resource allocation scheme can provide services at a

lower resource cost than the heuristic and the utilization scheme [18]. Meanwhile, we also

find that the proposed heuristic performs close to the optimal resource allocation scheme.

The optimal allocation scheme provides the globally optimal benchmark but takes long

time to converge, while the proposed heuristic is sub-optimal but lightweight and efficient.

Figure 4.5(b) compares the resource cost at each data center when λ = 15000 requests/s.

From Figure 4.5(b), we can find that the optimal allocation scheme reaches the lowest

cost at each data center, while the proposed heuristic has a lower cost than the utilization
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scheme.
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Figure 4.6: Simulation results of resource reconfiguration for multi-site cloud: (a) com-
parison of average response time among the three schemes, (b) comparison of average
response time between the resource reconfiguration without workload balancing and that
with workload balancing, (c) request arrivals in each data center, and (d) workload as-
signment in multi-site cloud at the 4th time slot.

Next, we evaluate the resource reconfiguration scheme for multi-site cloud. We com-

pare the average response time among the following schemes: 1) the proposed optimal

resource reconfiguration scheme, in which the workload assignment and the local VM

allocation are determined by solving the optimization problem in Equation (4.12), 2) the

proposed heuristic in Algorithm 4.4, and 3) the utilization scheme, in which the initial

VM allocation at each site remains unchanged. The comparison results of the average

response time among the three schemes are shown in Figure 4.6(a). From Figure 4.6(a),
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we can see that the optimal reconfiguration scheme takes the lowest average response

time. Since the utilization scheme keeps the allocated resources unchanged, resources

among services cannot be dynamically adjusted, leading to a higher response time. The

proposed heuristic reconfigures both workload assignment and local VM allocation ac-

cording to the utilization. Thus, the proposed heuristic can achieve lower response time

compared with the utilization scheme. We also compare the average response time be-

tween the optimal resource reconfiguration with workload balancing and that without

workload balancing. The comparison results are shown in Figure 4.6(b). From Figure

4.6(b), we can find that the resource reconfiguration with workload balancing can achieve

lower average response time. Since we jointly optimize the workload assignment and the

resource reconfiguration, each request can be assigned to the most appropriate site for

service and the allocated VMs in each site can be optimally utilized. Therefore, the pro-

posed resource configuration with workload balancing can achieve the globally minimal

average response time. We also evaluate the performance of workload balancing in the

proposed resource reconfiguration scheme. The arrivals of requests at each data cent are

shown in Figure 4.6(c). At the 4th time slot in Figure 4.6(c), data centers 1 and 2 have

light workload, while data center 3 reaches a peak of 4000 requests/s. By applying the

proposed resource reconfiguration scheme, the workload is assigned as shown in Figure

4.6(d). From Figure 4.6(d), we can find that data centers 1 and 2 process all their local

requests and help data center 3 to serve partial workload such that data center 3 can

effectively avoid the local congestion.

4.6 Chapter Summary

In this chapter, we study the dynamic resource configuration for cloud based multimedia

services. We first propose a TRC scheme, which considers resource configuration in two

different time scales. Specifically, the proposed scheme captures the pattern of workload

and performs resource allocation in a mid-long time scale, while in a fine-grained time

scale, the proposed scheme dynamically reallocates resources to cope with the varying

workload. Based on the TRC scheme, we study resource allocation and resource reconfig-

uration problems in single-site cloud scenario and multi-site cloud scenario, respectively.

In each scenario, we investigate the resource allocation problem, which optimally allo-
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cates VMs to achieve the minimal resource cost, and the resource reconfiguration problem,

which dynamically adjusts VMs according to varying demands to minimize the average

response time. Since the formulated optimization problems are nonlinear integer pro-

gramming, we propose heuristics to efficiently allocate resources in real time. Simulation

results demonstrate that the proposed dynamic resource configuration schemes not only

allocate resources effectively to achieve a low resource cost, but also reconfigure resources

dynamically to reach low average response time.
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Chapter 5

Optimization of Workload

Scheduling over Multimedia Cloud

Given the allocated cloud resources, another challenge for multimedia service providers

(MSPs) is how to effectively schedule workload to diverse virtual machines (VMs) for

distributed processing. In this chapter, we study the optimization of workload scheduling

at two different levels: the user level scheduling and the task level scheduling. Simulation

results demonstrate that the proposed schemes can optimize workload scheduling to

achieve the minimal response time or the minimal resource cost.

5.1 Introduction

Workload scheduling aims to enhance the overall system performance by balancing work-

load among VMs. Generally, there are two levels of workload scheduling in cloud. The

first level is the user level scheduling, where requests for a service are distributed to dif-

ferent virtual clusters according to the load intensity at each cluster. By balancing user

requests, the user level scheduling can effectively avoid local congestions. Compared to

the user level scheduling, the task level scheduling is performed in a finer granularity.

In general, a multimedia service can be decomposed into a set of tasks. Some tasks can

run in parallel, while some tasks must be processed sequentially. The goal of task level

scheduling is to assign tasks to VMs for the efficient execution. The two-level workload

scheduling is performed in a hierarchical way.
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However, there are challenges to achieve the optimal workload scheduling. First of all,

VMs have heterogeneous resource capacities and thus process users’ requests at different

rates. It is difficult to schedule workload to match the service rate at each virtual serv-

er. Secondly, the workload varies rapidly. Accordingly, the workload scheduling scheme

needs to adapt to the varying workload. Thirdly, there are diverse precedence constraints

among tasks in a multimedia service. For instance, Figure 5.1 shows a video retrieval

service [124], where the concept detection cannot be executed until visual features have

been extracted. When assigning tasks to VMs, it is difficult to satisfy all these precedence

constraints. Fourthly, multimedia services have different operation structures. Generally,

there are three basic structures: sequential, parallel, and mixed structures. In the sequen-

tial structure, tasks are executed in a serial order, where a task cannot be started until

all of its previous tasks have been completed. In the parallel structure, tasks can be per-

formed concurrently. Mixed structure combines both sequential and parallel structures.

It is a challenge to find an effective scheduling scheme for different structures.

Color feature

extraction

SIFT feature

extraction

Haar-like

feature

extraction

Concept

detection

Face

detection

Multimodal

fusion

Retrieval

results

Video

query

Figure 5.1: Illustration of video retrieval service.

To address the above mentioned challenges, we investigate the optimal workload

scheduling problems at the user level and the task level, respectively. The major contri-

butions can be summarized as follows.

• We examine two workload scheduling problems at user level. The first problem is

the response time minimization problem, which optimizes the workload schedul-

ing weights to minimize the response time. The formulated problem is a convex

optimization. We derive the optimal analytical solution. The second problem

is the resource cost minimization problem, which jointly optimizes the workload

scheduling weights and the required VMs to minimize the cost. The resource cost

minimization problem is a mixed integer non-linear programming. We propose a
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greedy algorithm to efficiently schedule the workload.

• We also investigate the optimal workload scheduling problem at task level. A di-

rected acyclic graph is introduced to characterize the precedence constraints among

tasks. Based on the model, we optimize the task level scheduling for the sequential,

parallel, and mixed structures, respectively. In each structure, we optimize the task

assignment on different VMs to minimize the total execution time. Additionally,

we propose a heuristic to efficiently achieve the optimal task level scheduling.

The remainder of this chapter is organized as follows. The optimization of workload

scheduling at user level and task level are presented in Section 5.2 and 5.3, respectively.

The chapter is summarized in Section 5.4

5.2 Optimization of User Level Workload Scheduling

5.2.1 User Level Workload Scheduling Model

Since the workload keeps varying, we divide the time domain into slots and denote by

t the time slot for the workload scheduling in our model. Suppose that N classes of

VMs are available in a service. A number of VMs in the same class work together as the

virtual cluster [93] to provide a faster service.

Figure 5.2 shows the workload scheduling model. S is the workload scheduler and

C1, . . . , CN are the virtual clusters. In time slot t, the numbers of allocated class-i VMs

in the reservation scheme and the on-demand scheme are denoted by K
r(t)
i and K

d(t)
i ,

respectively. Similar to assumptions in literatures [61, 115], we assume the service time

at each cluster is exponential distribution with a mean service rate (K
r(t)
i + K

d(t)
i )µi.

The arrivals of requests in time slot t are assumed to be a Poisson process with an

average of λ(t). As shown in Figure 5.2, the incoming requests are distributed to the

class-i virtual cluster with the corresponding scheduling weight ω
(t)
i (∀i = 1, 2, . . . , N).

Thus, the arrivals of scheduled requests to class-i virtual cluster also follow a Poisson

Process with an average of ω
(t)
i λ(t). The service process at class-i virtual cluster can be

modeled as an M/M/1 queueing system [114]. To make the queueing system stable,

ω
(t)
i λ(t) < (K

r(t)
i +K

d(t)
i )µi is required. The response time Ti at the class-i virtual cluster
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Figure 5.2: The workload scheduling model for cloud based multimedia service.

can be formulated as Ti =
1

(K
r(t)
i +K

d(t)
i )µi−ω

(t)
i λ(t)

, and thus the mean response time is given

by T =
∑N

i=1 ωiTi =
∑N

i=1
ω
(t)
i

(K
r(t)
i +K

d(t)
i )µi−ω

(t)
i λ(t)

.

5.2.2 Response Time Minimization Problem

In multimedia cloud, MSPs hope to balance the workload to provide services at a low

delay. However, it is challenging to determine the optimal workload scheduling weights,

due to the heterogeneous resource capacities and varying demands. Therefore, we formu-

late the response time minimization problem, which can be stated as: to minimize the

mean response time by optimizing the workload scheduling weights, subject to the queue-

ing stability constraint, the workload conservation constraint, and the scheduling weight

constraints. Mathematically, the response time minimization problem can be formulated

as follows.

Minimize
{ω1,ω2,...,ωN}

∑N
i=1

ω
(t)
i

(K
r(t)
i +K

d(t)
i )µi−ω

(t)
i λ(t)

subject to

ω
(t)
i λ(t) < (K

r(t)
i +K

d(t)
i )µi,

∀i = 1, . . . , N,
∑N

i=1 ωi = 1,

ωi ≥ 0, ∀i = 1, . . . , N.

(5.1)

In Equation (5.1), the objective function is the mean response time. The constraints

ω
(t)
i λ(t) < (K

r(t)
i +K

d(t)
i )µi (∀i = 1, . . . , N) represent the queueing stability constraint at

each virtual cluster. The constraint
∑N

i=1 ωi = 1 is the workload conservation constraint,

i.e. all workloads should be scheduled. The constraints ωi ≥ 0 (∀i = 1, . . . , N) represent
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the scheduling weight constraints.

The response time minimization problem in Equation (5.1) is a convex optimization

problem [100]. We use the Lagrange multiplier method [100] to solve the problem and get

the optimal analytical solution to the response time minimization problem in Equation

(5.1) as follows.

ω
(t)
i =

λ(t)
√

ξ
(t)
i +ξ

(t)
i

∑N
j=1

√

ξ
(t)
j −

√

ξ
(t)
i

∑N
j=1 ξ

(t)
j

λ(t)
∑N

j=1

√

ξ
(t)
j

, ∀i = 1, 2, . . . , N, (5.2)

where ξ
(t)
i = (K

r(t)
i +K

d(t)
i )µi represents the total service rate at the class-i virtual cluster.

Intuitively, the workload scheduling weight should be proportional to the service rate

ξ
(t)
i at the class-i virtual cluster. A cluster with a higher service rate should be assigned

with more requests to process, while a cluster with a lower service rate should be assigned

with less workload. Thus, the intuitive heuristic scheduling scheme uses the normalized

service rate
ξ
(t)
i

∑N
j=1 ξ

(t)
j

as the scheduling weight. Compared to the optimal scheduling

scheme, the heuristic scheduling scheme is a lightweight but sub-optimal solution. The

performance comparison between the optimal scheduling scheme and the heuristic is

presented in Section 5.2.4.

5.2.3 Resource Cost Minimization Problem

MSPs always want to provide satisfactory services at the minimal resource cost. Suppose

that the price rates of one class-i VM instance in the reservation plan and the on-demand

plan are pri and pdi , respectively. Thus, the total resource cost at time slot t can be given

by
∑N

i=1 (p
r
iK

r(t)
i + pdiK

d(t)
i ). The resource cost minimization problem can be stated as:

to minimize the total resource cost by jointly optimizing the workload scheduling weights

and the required VMs, subject to the response time constraint, the queueing stability

constraints, the VM reservation constraint, the workload conservation constraint, and the

workload scheduling weight constraints. Mathematically, the resource cost minimization
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problem can be formulated as follows.

Minimize






K
r(t)
1 , ...,K

r(t)
N

,

K
d(t)
1 , ...,K

d(t)
N

,

ω1, ..., ωN







∑N
i=1

(

priK
r(t)
i + pdiK

d(t)
i

)

subject to
∑N

i=1
ω
(t)
i

(K
r(t)
i +K

d(t)
i )µi−ω

(t)
i λ(t)

≤ τ,

ω
(t)
i λ(t) < (K

r(t)
i +K

d(t)
i )µi, ∀i = 1, . . . , N,

K
r(t)
i ≤ Kini

i , ∀i = 1, . . . , N,
∑N

i=1 ωi = 1,

ωi ≥ 0, ∀i = 1, . . . , N,

(5.3)

where τ is the upper bound of the application response time, and Kini
i is the initially

reserved class-i VMs.

In Equation (5.3), the objective function is the total resource cost. The constraint
∑N

i=1
ω
(t)
i

(K
r(t)
i +K

d(t)
i )µi−ω

(t)
i λ(t)

≤ τ represents the response time constraint. The constraints

ω
(t)
i λ(t) < (K

r(t)
i + K

d(t)
i )µi (∀i = 1, . . . , N) are the queueing stability constraints. The

constraint K
r(t)
i ≤ Kini

i is the class-i VM reservation constraint, i.e. the utilized class-

i VMs from the reservation scheme cannot exceed the initially reserved class-i VMs.

The constraint
∑N

i=1 ωi = 1 is the workload conservation constraint. The constraints

ωi ≥ 0 (∀i = 1, . . . , N) are the workload scheduling weight constraints.

The resource cost minimization problem in Equation (5.3) is a mixed integer non-

linear programming, which is known to be NP-hard [116]. The problem can be solved by

the branch-and-bound method [116]. But MSPs require a rapid and efficient workload

scheduling scheme, which can quickly adapt to the time-varying workload. Therefore, we

propose a greedy algorithm, which is presented in Algorithm 5.1.

5.2.4 Simulations

In this section, we perform simulations to evaluate the proposed optimal workload schedul-

ing schemes. Amazon EC2 [15] is Amazon’s cloud computing platform. We employ the

price rates and VM configurations of Amazon EC2 in the simulation. Three classes of

VMs are used. The reservation and on-demand price rates for the three classes of VMs
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Algorithm 5.1: Greedy Algorithm for Joint Workload Scheduling and VM Allo-
cation

1: Compute qri =
pri
µi

and qdi =
pdi
µi
, which are the cost rates of using one reserved and

on-demand class-i VM to process one unit request, respectively. Let set
Q = {qr1, qd1 , . . . , qrN , qdN}.

2: Sort set Q in an ascending order.
3: repeat
4: Select the smallest qvi (∀i = 1, 2, . . . , N, v = r or d) from the set Q
5: if qvi from the reserved VMs (i.e. v = r) then

6: Schedule the user requests λ
r(t)
i to the selected class-i reserved VMs as long as

the requirements 1

K
r(t)
i µi−λ

r(t)
i

≤ τ and K
r(t)
i ≤ Kini

i are satisfied. Update

λ(t) = λ(t) − λ
r(t)
i .

7: else if qvi from the on-demand VMs (i.e. v = d) then

8: Schedule all unscheduled user requests λ(t) as λ
d(t)
i to the selected class-i

on-demand VMs until the requirement 1

K
r(t)
i µi−λ

(t)
i

≤ τ is satisfied. Update

λ(t) = 0.
9: end if

10: until all requests are processed (i.e. λ(t) = 0).

11: Compute the scheduling weight ωi =
λ
r(t)
i +λ

d(t)
i

λ(t) , and the total resource cost

C(t) =
∑N

i=1

(

priK
r(t)
i + pdiK

d(t)
i

)

.

are pr = {0.05$/h, 0.20$/h, 0.40$/h} and pd ={0.085$/h, 0.34$/h, 0.68$/h}, respective-
ly. The numbers of initially reserved VMs are Kini = {60, 30, 20}, and the service rates

for each class of VM instance are µ = {25 requests/s, 97 requests/s, 185 requests/s}.
We first compare the response time between the proposed optimal scheduling scheme,

which is the optimal solution in Equation (5.2), and the heuristic scheduling scheme, in

which the scheduling weight is the normalized service rate ξi
∑N

i=1 ξi
. The optimal scheduling

scheme is the globally optimal benchmark, while the heuristic scheduling scheme is a

sub-optimal but lightweight solution. The comparison of the response time between the

two schemes is shown in Figure 5.3. The mean request arrival rate increases from 4000

requests/s to 5000 requests/s. From Figure 5.3, we can see that the proposed optimal

scheduling scheme achieves lower response time compared to the heuristic scheduling

scheme under the same request arrival rate. Figure 5.3 also shows that the heuristic

scheduling scheme using the normalized service rate as the scheduling weight performs
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very close to the optimal scheduling scheme when the system workload is light. The

difference of the response time between the two schemes is increased when the workload

becomes heavier. When the arrival rate is 5000 requests/s, the difference of the response

time between the two schemes is 0.007 seconds.
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Figure 5.3: Comparison of response time between the optimal scheduling scheme and the
heuristic scheduling scheme.

Next, we compare the resource cost between the proposed optimal scheduling scheme,

in which the scheduling weights and the required VMs are optimally obtained by solving

the optimization problem in Equation (5.3), and the proposed greedy algorithm. The

optimal scheduling scheme is the globally optimal benchmark but not practical, while

the greedy algorithm is sub-optimal but efficient and practical. The comparison of the

resource cost between the proposed optimal scheduling scheme and the proposed greedy

algorithm is shown in Figure 5.4. The mean request arrival rate increases from 1000

requests/s to 5000 requests/s. From Figure 5.4, we can see that the optimal scheduling

scheme can achieve a lower resource cost compared to the greedy algorithm under the

same request arrival rate. Moreover, Figure 5.4 shows that the proposed greedy algorithm

has a close performance to the optimal benchmark. The greedy algorithm only considers

the current best choice but fails to make a global inspection, while the optimal scheduling

scheme searches the whole feasible region to find the globally optimal solution. Thus,

the greedy algorithm achieves the sub-optimal solution with a lighter computation.
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Figure 5.4: Comparison of resource cost between the optimal scheduling scheme and the
greedy algorithm.

5.3 Optimization of Task Level Workload Scheduling

In this section, we study the task level scheduling problem. We propose an optimal

workload scheduling scheme to assign each task to different VM for distributed processing

5.3.1 Task Level Workload Scheduling Model

To characterize precedence constraints among multimedia tasks, we introduce a directed

acyclic graph (DAG), which is a directed graph with no path that starts and ends at the

same vertex. The DAG can be denoted as: DAG = (V,E), where V is the set of vertices

and E is the set of edges. Suppose that a multimedia service can be decomposed into

K tasks. Each vertex in DAG represents a task. Thus, V = {V1, V2, . . . , VK} represents
the set of tasks. Each edge in DAG characterizes a precedence constraint between two

tasks. The edge Ek′k represents that task Vk cannot be executed until task Vk′ has

finished. Thus, the execution of task Vk′ is a precedence constraint for task Vk. Figure

5.5 illustrates the DAG of the video retrieval framework in Figure 5.1. There are 6 tasks

in Figure 5.5, and the video query and the retrieval result are denoted as source and sink,

which represent the start and the end of DAG.

Suppose that there are N types of VM instances. Each task can be served by any

VM instance. Let tkj denote the execution time by using type-j VM instance to execute
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Figure 5.5: The DAG of the video retrieval framework in Figure 5.1.

task Vk, and let pj be the resource cost for renting one type-j VM instance. We assume

that each task can only be assigned to one VM instance for execution. Therefore, the

purpose of task-level scheduling is to optimally assign tasks to VMs. To represent the

task assignment, we introduce skj , which is given by

skj =

{

1 if Vk is assigned to a type-j VM instance,

0 otherwise.

We will propose the optimal task scheduling scheme to determine the optimal value of

skj (Vk ∈ V, ∀j = 1, 2, . . . , N) to minimize the total execution time.

5.3.2 Optimal Task Level Scheduling for Sequential Structure

We first investigate the sequential structure, in which all tasks are executed serially. Our

objective is to minimize the total execution time. As described in Section 5.3.1, one

task can only be assigned to one VM instance. If the task Vk is scheduled to type-j VM

instance, skj = 1 and skj′ = 0 (j′ 6= j). Thus, the execution time of Vk is given by
∑N

j=1 s
k
j t

k
j ,

which represents that the type-j VM instance takes tkj to execute Vk, if Vk is scheduled

to the VM instance. Since all tasks are executed serially in the sequential structure, the

total execution time is the sum of the execution time for each task. Therefore, the total

execution time is given by T tot
seq =

∑K
k=1

∑N
j=1 s

k
j t

k
j . The cost for processing Vk is denoted

by
∑N

j=1 s
k
jpj. Thus, the total resource cost for serving the multimedia application is

Ctot
seq =

∑K
k=1

∑N
j=1 s

k
jpj . In addition, every task should be assigned to one VM instance
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for execution. Thus, constraints
∑N

j=1 s
k
j = 1 (Vk ∈ V) have to be satisfied. Based

on the above analysis, we can formulate the task schedule optimization problem for the

sequential structure as follows.

Minimize
{skj }

∑K
k=1

∑N
j=1 s

k
j t

k
j

subject to
∑K

k=1

∑N
j=1 s

k
jpj ≤ Cmax,

∑N
j=1 s

k
j = 1,

skj ∈ {0, 1}, Vk ∈ V, ∀j = 1, . . . , N,

(5.4)

where Cmax is the upper bound of resource cost. The optimization problem in Equation

(5.4) is a 0-1 integer programming, which can be solved by enumerating every possible

skj . But the time complexity of enumeration cannot satisfy the real-time requirement for

the practical application. Therefore, we propose a heuristic in Section 5.3.5 to efficiently

solve problem in Equation (5.4).

5.3.3 Optimal Task Level Scheduling for Parallel Structure

In this subsection, we study the optimal task-level scheduling for the parallel struc-

ture, in which all tasks can be executed concurrently. Thus, the application can de-

ploy different tasks to different VMs for distributed processing. According to Section

5.3.1, the execution time of Vk is given by
∑N

j=1 s
k
j t

k
j . The total execution time in the

parallel structure depends on the largest execution time among all tasks, which can

be formulated as T tot
par = max{Vk∈V}{

∑N
j=1 s

k
j t

k
j}. The total resource cost is given by

Ctot
par =

∑K
k=1

∑N
j=1 s

k
jpj. Additionally, constraints

∑N
j=1 s

k
j = 1 (Vk ∈ V) are required to

guarantee all tasks are executed. Therefore, the task schedule optimization problem for

the parallel structure can be formulated as

Minimize
{sk

j
}

max{Vk∈V}{
∑N

j=1 s
k
j t

k
j}

subject to
∑K

k=1

∑N
j=1 s

k
jpj ≤ Cmax,

∑N
j=1 s

k
j = 1,

skj ∈ {0, 1}, Vk ∈ V, ∀j = 1, . . . , N.

(5.5)
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The optimization problem in Equation (5.5) is a 0-1 integer programming, which can be

solved by the enumeration method.

5.3.4 Optimal Task Level Scheduling for Mixed Structure

We extend our study to the mixed structure in this subsection. In the mixed structure,

some tasks can be processed in parallel, while some tasks must be executed serially. The

video retrieval framework in Figure 5.1 is an example of mixed structure. In the DAG

of mixed structure, there are multiple paths from source to sink. The tasks in each path

must be executed sequentially, while different paths can be taken as parallel structures.

Suppose that there are W paths in a DAG, and let Ψw denote the set of vertices on

the wth path. The execution time of Vk is given by
∑N

j=1 s
k
j t

k
j , and thus the execution

time for Ψw can be formulated as
∑

k∈Ψw

∑N
j=1 s

k
j t

k
j . Therefore, the total execution time

is T tot
mix = max{w∈W}

{

∑

Vk∈Ψw

∑N
j=1 s

k
j t

k
j

}

, which represents the largest execution time

among all paths. The total resource cost is Ctot
mix =

∑K
k=1

∑N
j=1 s

k
jpj . Moreover, we need

to satisfy constraints
∑N

j=1 s
k
j = 1 (Vk ∈ V) to process all tasks. Therefore, we can

formulate the optimal task schedule problem for the mixed structure as follows.

Minimize
{skj }

max{w∈W}

{

∑

Vk∈Ψw

∑N
j=1 s

k
j t

k
j

}

subject to
∑K

k=1

∑N
j=1 s

k
jpj ≤ Cmax,

∑N
j=1 s

k
j = 1,

skj ∈ {0, 1}, Vk ∈ V,

∀j = 1, 2, . . . , N, ∀w = 1, 2, . . . ,W.

(5.6)

The optimization problem in Equation (5.6) is a 0-1 integer programming.

5.3.5 Heuristic for Optimal Task Level Scheduling

The task schedule optimization problems in Equations (5.4), (5.5), and (5.6) are all 0-1

integer programming, which is NP-complete [105]. By exhaustively searching along both

task dimension and VM dimension, the optimal solutions can be achieved. However, the

enumeration method is quite inefficient, especially when the number of tasks is huge.
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Therefore, we propose a heuristic to efficiently approach the optimal task scheduling.

The core of the heuristic is to find critical tasks [125], which are on the longest path and

determine the total execution time. By speeding up the execution of critical tasks, we

can reduce the total execution time. The proposed heuristic is presented in Algorithm

5.2.

Algorithm 5.2: Heuristic for Optimal Task Scheduling

1: Schedule each task to the cheapest VM and compute Ctot and T tot. Let τk and Ck

denote current execution time and resource cost for Vk, respectively.
2: If Ctot > Cupp, no solution exists.
3: while Ctot < Cupp, do
4: Calculate the earliest start time ek ← max{ek′ + τk

′ |Ek′k ∈ E}, and the latest
start time lk ← min{lk′′ − τk

′′ |Ekk′′ ∈ E}. Moreover, initialize e1 ← 0. If ek = lk,
Vk is a critical task.

5: for each critical task Vk, do

6: If tkj < τk, ∆tkj ← τk − tkj , ∆Ck
j ← pj − Ck, ρ

k
j ←

∆tkj
∆Ck

j

, which represents that

reschedule Vk to type-j VM needs ∆Ck
j more cost but saves ∆tkj time.

7: end for
8: Sort all ρkj in descending order.
9: Select maximal ρkj and reschedule Vk to type-j VM.

10: Update T tot ← T tot −∆tkj , C
tot ← Ctot +∆Ck

j , τ
k ← tkj , C

k ← pj .
11: end while
12: return T tot.

5.3.6 Simulations

In this section, we perform experiments to evaluate the proposed optimal task-level

scheduling. Our experiments consist of the numerical simulation and the practical mul-

timedia application.

We first verify the proposed task scheduling scheme in the numerical simulation. Four

types of VMs are provided, including small, large, extra large standard instances, and

medium high-CPU instances. The detailed configuration and price rate can be found

from [15]. The number of tasks varies from 4 to 20.

In the simulation, we compare the total execution time among the proposed optimal

task schedule scheme, in which tasks are scheduled by solving optimization problems in
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Equations (5.4), (5.5), and (5.6), the proposed heuristic in Algorithm 5.2, and the static

execution scheme, in which all tasks are executed on the medium standard instance. The

optimal task schedule scheme is achieved by enumeration, which is optimal benchmark

but not efficient, while the proposed heuristic is near optimal but lightweight and prac-

tical. The comparison results of the total execution time for the sequential, the parallel,

and the mixed structures are shown in Figure 5.6(a), 5.6(b), and 5.6(c), respectively.

We can see that the proposed optimal task scheduling scheme can achieve lower execu-

tion time compared to the proposed heuristic and the static execution scheme under the

same resource cost constraint. Additionally, we can find that the total execution time

acquired by the proposed heuristic is quite close to the globally optimal solution. Thus,

the proposed heuristic can approach the optimal task scheduling in an efficient way. The

static execution scheme employs one type of VM instance to execute all tasks, thus the

application cannot be effectively processed in a distributed manner, leading to a longer

execution time. Comparing Figure 5.6(a), 5.6(b), and 5.6(c), we also find that the total

execution time in the mixed structure is longer than that in the parallel structure but

lower than that in the sequential structure, which conforms Amdahl’s law [126] that the

execution time for a program is determined by the sequential portion of the program.

Since the sequential structure has the largest sequential portion, the execution time for

the sequential structure is the longest.

Next, we evaluate the proposed heuristic for optimal task scheduling by applying it

to the video retrieval framework [124]. All video queries and video database are from

TRECVID 2009 search task [127]. Each video query is around 5 seconds. VMs are

supported by two servers (Intel i7 CPU 3.07GHz, 8G RAM, and 1T hard drive). The

comparison of the total execution time between the proposed heuristic and the static

execution scheme is shown in Figure 5.6(d). From Figure 5.6(d), we can see that the

proposed heuristic can process video queries with lower execution time than the static

scheme. When the number of queries is 100, the proposed heuristic can reduce the total

execution time by 28% compared to the static execution scheme.

At last, we compare the actual running time to achieve the numerical solution by the

proposed heuristic and the enumeration method. The two approaches are implemented

in C++ on a server, which is configured with Intel i7 CPU 3.07GHz and 8G RAM. We

conduct 5 rounds test and calculate the mean running time for each configuration with

different number of tasks. The comparison of the running time is presented in Table

86



4 8 12 16 20
0

5

10

15

20

Number of tasks

T
o

ta
l 
e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

Optimal schedule scheme

Proposed heuristic

Static execution scheme

(a)

4 8 12 16 20
0

5

10

15

20

Number of tasks

T
o

ta
l 
e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

Optimal schedule scheme

Proposed heuristic

Static execution scheme

(b)

4 8 12 16 20
0

2

4

6

8

10

Number of tasks

T
o

ta
l 
e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

Optimal schedule scheme

Proposed heuristic

Static execution scheme

(c)

20 40 60 80 10010
0

100

200

300

400

500

600

700

Number of video queries

T
o

ta
l 
e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
o

n
d

s
)

Proposed heuristic

Static execution scheme

(d)

Figure 5.6: Comparison results of the total execution time (a) for sequential structure,
(b) for parallel structure, (c) for mixed structure, (d) for video retrieval framework.

5.1. As demonstrated in Table 5.1, the proposed heuristic can achieve the numerical

solution at a much lower running time, compared to the enumeration method. Since the

time complexity for the enumeration method is exponential, the running time increases

significantly as the number of tasks increases.

Table 5.1: Comparison of running time
Number of Number of Running time (ms)
VM types tasks Proposed heuristic Enumeration
4 4 0.001 0.001
4 8 0.001 2.800
4 12 0.001 609.000
4 16 0.002 198,694.000
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5.4 Chapter Summary

In this chapter, we study the optimal workload scheduling schemes at the user level

and the task level to best utilize the allocated cloud resources. At the user level, users’

requests are distributed according to the current load intensity at each virtual cluster.

We optimize the workload assignment to minimize the response time or minimize the

resource cost. Heuristics are proposed to efficiently schedule workload. Furthermore, we

study the task level scheduling, in which a multimedia service is decomposed into tasks

and these tasks are assigned to appropriate VMs for efficient processing. We introduce a

directed acyclic graph to model precedence constraints among tasks. Based on the model,

we formulate and solve the execution time minimization problem for sequential, parallel,

and mixed structures. Simulation results demonstrate that the proposed schemes can

optimize workload scheduling to achieve a minimal response time or a minimal resource

cost.
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Chapter 6

Delay-rate-distortion Optimization

for Cloud Gaming with Hybrid

Streaming

Cloud gaming is an emerging interactive multimedia service, offering players a ubiquitous

gaming experience. However, due to the huge data transmission, cloud gaming suffers

from high bandwidth consumption and response delay. In this chapter, we propose a novel

hybrid streaming framework, jointly applying video streaming and graphics streaming to

provide users with a high quality cloud gaming experience. Based on the proposed

framework, we investigate the delay-rate-distortion (d-R-D) optimization problem for

cloud gaming, in which we optimize the rate allocation between the video stream and

the graphics stream to minimize the overall distortion under the bandwidth and response

delay constraints. Moreover, we analyze the relationship among distortion, source rate,

and response delay in cloud gaming, and propose a practical rate allocation algorithm.

Experimental results demonstrate that the proposed hybrid streaming can achieve the

lowest distortion under the constraints of bandwidth and response delay, compared to

the traditional video streaming and graphics streaming.
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6.1 Introduction

Driven by the increasing shipments of smart phones and tablets, the worldwide game

market enjoys an annual growth rate of 18.3% in 2013 and is expected to reach $128 billion

by 2017 [128]. With the popularity of mobile devices, users strongly desire ubiquitous

gaming experience, where users are able to play games anywhere anytime on any devices.

The emergence of cloud gaming effectively meets this desire. In cloud gaming, cloud

servers fully or partially render game scenes and stream compressed game frames to

clients, while user’s inputs from mice, keyboard, and touch screen are recorded and

transmitted back to cloud servers to control the actions of game characters. Cloud

gaming benefits both users and game developers. Due to the shift of computationally

intensive tasks to cloud servers, cloud gaming reduces hardware requirements at user

side and frees users from the unlimited hardware upgrade. Moreover, users’ profiles and

game progresses are stored on cloud servers, which enable continuous game playing when

users switch to different devices. From game developers’ perspectives, deploying games

on cloud can support various end devices, which addresses the incompatibility issues and

reduces the development cost. Due to the popularity of cloud gaming, an increasing

number of corporations have been attracted by the potential market, like OnLive [5],

GaiKai [24], Microsoft [129], Kalydo [77], StreamMyGame [84], CiiNOW [25], and so on.

Current cloud gaming systems mainly use two different approaches: the video stream-

ing and the graphics streaming. The difference between these two approaches is which

device (e.g., the server or the client) renders the game scenes. With video streaming, the

cloud server renders the game scenes and streams the encoded game frames to client. This

approach enables smooth game experience on thin devices. OnLive [5] and GaiKai [24]

are typical cloud gaming providers using video streaming technique. Video streaming is

ideal to resource constrained devices, since all workload is done by cloud servers. As the

release of computationally powerful mobile devices in recent years, graphics streaming

becomes an alternative approach for cloud gaming. In graphics streaming, the required

game models and textures are downloaded to client devices. After receiving the necessary

graphics data, users can start playing the game, and the remaining graphics data will be

gradually transmitted while users are playing the game. Since the actual games are run-

ning on local devices, graphics streaming enables a shorter interaction delay. Kalydo [77]

adopts this approach for their online game service.

90



However, both streaming approaches have limitations. In video streaming, the cap-

tured game scene is transmitted in a frame-by-frame manner, which consumes a large

bandwidth. In OnLive [5], the minimum bandwidth requirement is 2 Megabits per second

(Mbps) and a higher resolution performance, like 720P (1280×720), requires a bandwidth
higher than 5 Mbps. Thus, users are required to have a high-speed network connection.

Additionally, cloud gaming is a highly interactive application. Users expect a low re-

sponse delay when playing games. It is challenging to meet the tight delay requirement

in video streaming, since each high-definition frame has to go through the whole pipeline

of rendering, capturing, encoding, transmission, decoding, and display. Compared to

video streaming, cloud gaming with graphics streaming has a lower response delay, since

game rendering is performed on local devices. But in graphics streaming, the client has

to receive the required graphics data prior to rendering the game scene. When users

start playing a new game or move into a new game scene, it takes a buffering period to

download the required graphics data, which is unacceptable for real-time games.

Existing cloud gaming systems are built on video streaming or graphics streaming.

The video streaming consumes a high bandwidth and is sensitive to delay, while the

graphics streaming requires buffering delay when players move into a new scene. To fill

this gap, we propose a novel hybrid streaming framework, which integrates the video

and graphics streaming approaches. Based on the framework, we study the d-R-D op-

timization problem to minimize the overall distortion during game playing. Our main

contributions are summarized as follows:

• We propose a hybrid streaming framework by jointly using video streaming and

graphics streaming approaches. In the proposed framework, cloud server not only

transmits the encoded video frame, but also sends the graphics data. The received

graphics data are used to render a game frame, which provides an additional ref-

erence candidate for video encoding. When encoding a captured game frame, the

encoder will choose the reference frame with a lower residual error, from the pre-

vious frame and the rendered frame. As the accumulation of graphics data, the

rendered graphics frame has a lower residual than the previous frame, leading to

a lower encoding bit rate. After transmitting all the game data, cloud servers can

skip encoding. As a result, the bit rate and the response delay can be reduced.

• Based on the proposed framework, we formulate the rate allocation problem as the
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d-R-D optimization problem. Specifically, we optimize the source rates for video

stream and graphics stream to minimize the total distortion during game playing

period under the bandwidth and the response delay constraints. Furthermore, we

perform theoretical analysis on the relationship among distortion, source rate, and

response delay in cloud gaming, and develop a practical rate allocation algorithm

to efficiently allocate source rates for the proposed hybrid streaming framework.

The remainder of this chapter is organized as follows. Section 6.2 presents the pro-

posed hybrid streaming framework. Based on the proposed framework, we study the

source rate allocation problem in Section 6.3 and present extensive performance evalua-

tions in Section 6.4. Finally, we summarize the chapter in Section 6.5.

6.2 Hybrid Streaming Framework for Cloud Gaming

Figure 6.1 illustrates the architecture of the proposed hybrid streaming framework. Dur-

ing gaming, user’s inputs on keyboard, mouse, or touchpad, are encoded and transmitted

to cloud. After decoding user inputs, cloud server will push them into a queue. By re-

playing the user’s inputs, cloud server can acquire the user’s current game status, like

position, viewpoint, and movement. Once a game frame is rendered, the server will cap-

ture the game frame and compress it by video encoder. We introduce two sync buffers at

both the cloud and the client sides. Cloud server not only transmits the encoded video

frame, but also sends the graphics data, including geometry mesh and textures. The

graphics data will be updated at the sync buffers and used to render a graphics frame.

When encoding a captured game frame, the encoder will choose the reference frame from

the previous frame and the rendered graphics frame. The reference frame with a lower

residual will be used, in order to reduce the encoding bit rate. The proposed rate alloca-

tion algorithm dynamically allocates source rates to the video stream and the graphics

stream. If all the required game data have been transmitted to client, cloud server will

skip video encoding and notify the client by sending a skip signal. Once a skip signal is

received at client, a switch will notify the video decoder to skip decoding, and directly

display the rendered graphics frame. In such a case, the game rendering is transferred

from cloud server to client device, which effectively reduces the bandwidth consumption

and the encoding delay at cloud.
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Figure 6.1: Illustration of proposed hybrid streaming framework for cloud gaming.

By jointly using video streaming and graphics streaming, the proposed framework

has the following features. First of all, the proposed framework eliminates the initial

buffering delay compared to the graphics streaming. When users start playing a new

game or move into a new game scene, the sync buffers are empty. Cloud servers will use

the previous video frame as reference, which is illustrated in Figure 6.2(a). By streaming

the compressed video frames to client, users can directly play the game without any

initial delay. In addition, the proposed framework effectively reduces the overall bit rates

compared to the video streaming. During game playing, the graphics buffers accumulate

more and more game data. Once received sufficient game data, the frame rendered

from sync buffer has a lower residual than the previous video frame, which is illustrated

in Figure 6.2(b). In video encoding, a lower residual leads to a less coding bit rate.

Therefore, choosing reference frame with a lower residual can effectively reduce the overall

coding bit rates.

To efficiently transmit graphics data to client, we apply a scalable delivery scheme

in the proposed framework. The scalable delivery scheme requires the multi-resolution

representation of graphics data and the progressive transmission. Hoppe et al. [130]

proposed the progressive mesh representation to enable a multi-resolution rendering of

3D meshes. The core operations in progressive mesh are edge collapse and vertex split.
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Figure 6.2: Illustration of reference frame selection: (a) when the synch buffer is empty,
and (b) when the synch buffer collects sufficient game data.

As shown in Figure 6.3, the edge collapse operation will unify two adjacent vertices Vs

and Vt into one single vertex Vs. After the edge collapse, the vertex Vt and two faces

{Vs, Vt, Vl} and {Vs, Vr, Vt} are removed. The simplified 3D mesh by the edge collapse

can be reversed by the vertex split. As illustrated in Figure 6.3, the vertex split operation

adds a new vertex Vt near the vertex Vs and thus two new faces {Vs, Vt, Vl} and {Vs, Vr, Vt}
can be constructed.

Vs Vt Vs

Vl

Vr Vr

Vl

Edge collapse

Vertex split

Figure 6.3: Edge collapse and vertex split in progressive mesh.

Based on the edge collapse and vertex split operations, a game model can be rendered

progressively. Given a initial game model Mini, we apply a series of edge collapse opera-

tions to simplify the model by reducing vertices and faces. This process can be denoted as

Mini
edge collapse−−−−−−−→ · · · edge collapse−−−−−−−→ Mbase, where the finally simplified model Mbase is called

the base mesh. Given the base mesh, the original game model can be reconstructed by

a series of vertex split operations, i.e. Mbase
vertex split−−−−−−→ · · · vertex split−−−−−−→ Mini. Therefore, a

game model can be represented by the base mesh and a series of vertex splits informa-
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tion. The client can render a simple and coarse quality model after receiving the base

mesh, and then incrementally enhance the rendering quality by adding more vertices and

faces. Figure 6.4(a) shows an equipped Orc warrior from WoW [131], and the initial

mesh and the base mesh of the Orc warrior are shown in Figure 6.4(b) and Figure6.4(c),

respectively.

(a) (b) (c)

Figure 6.4: Illustration of progressive mesh representation: (a) the Orc warrior from
WoW, (b) the initial mesh of the warrior (3344 faces), and (c) the base mesh of the
warrior (171 faces).

Besides the progressive mesh compression, we employ the adaptive scalable texture

compression (ASTC) to compress the textures. ASTC is a block-based fixed-rate lossy

texture compression algorithm [132]. In the proposed framework, we compress textures

at two different bit rates, in which the high rate texture is compressed by ASTC at 8 bpp

and the low rate texture is compressed at 2 bpp. If the client bandwidth is not sufficient,

the low rate textures will be transmitted to client to adapt to the limited bandwidth.

Figure 6.5(a) shows the ocular texture of the Orc warrior, and the corresponding textures

compressed by ASTC at 8 bpp and 2 bpp are shown in Figure 6.5(b) and Figure 6.5(c),

respectively.
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(a) (b) (c)

Figure 6.5: Illustration of ASTC: (a) the original ocular texture of the Orc warrior
from World of Warcraft, (b) the reconstructed texture compressed at 8 bpp, and (c) the
reconstructed texture compressed at 2 bpp.

6.3 Optimal Rate Allocation for Hybrid Streaming

Framework

In this section, we investigate the source rate allocation problem in the proposed hybrid

streaming framework. Specifically, we formulate the problem as a d-R-D optimization,

which aims to minimize the overall distortion under the bandwidth and the response

delay constraints by optimizing the allocated rates for video stream and graphics stream.

6.3.1 Problem Formulation

In the proposed hybrid streaming framework, there is a trade-off in source rate allocation.

If cloud servers allocate a higher source rate for video stream, it will take a longer time

for the client to receive all the necessary game data. On the other hand, if a higher rate

is allocated to graphics stream, the visual quality in the video stream will be degraded.

Therefore, we need to determine the optimal rate allocation for video stream and graphics

stream.

Suppose the current time is t, and Rt
V and Rt

G are the allocated rates for video

stream and graphics stream at t. We formulate the rate allocation problem as a d-R-

D optimization. Let Dtot be the total distortion at client for the whole game playing

period, Rt
tot be the total bit rate allocation at t, dttot be the total response delay at t. To

minimize the total distortion under the bandwidth and the response delay constraints,
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we can formulate the rate allocation problem as

Minimize
{Rt

V
,Rt

G
}
Dtot

subject to

Rt
tot ≤ Rmax,

dttot ≤ dmax,

(6.1)

where Rmax is the maximum bandwidth capacity and dmax is the maximum tolerable

response delay. In Equation (6.1), Dtot represents the total distortion during the gaming

process, Rt
tot ≤ Rmax and dttot ≤ dmax represent the bandwidth and response delay

constraints, respectively.

6.3.2 Gaming Process

According to the current time t, the gaming process can be divided into: the past period

before t, the current time instant at t, and the future period after t. The total distortion

Dtot can be formulated as

Dtot = Dt−
pas +Dt

cur +Dt+
fut, (6.2)

where Dt−
pas is the past distortion, Dt

cur is the current distortion, and Dt+
fut is the future

distortion. Among the three terms, Dt−
pas occurs before t. So, it is a constant. In the

following, we will focus on the analysis of Dt
cur and Dt+

fut.

During game playing, the cloud server progressively transmits game data, including

geometry meshes and textures, to the client. Let Ωt denote the set of received game data

from the start time to the current time t. Specially, Ω0 is the initial set, which represents

the game data available at the start time. If the game is played for the first time, the

buffer is empty at the beginning, i.e. Ω0 = ∅. As the game playing, game assets are

received and accumulated in the sync buffer, and accordingly, the game data set keeps

increasing, which can be represented as Ωt = Ωt−1 ∪ {x}t, where x represents game data

and {x}t represents the game data received in the interval between time instant t − 1

and time instant t. As the more game data received at client, the quality of the rendered

frame will be refined progressively.

Fig. 6.6 illustrates the gaming process. The residual of the rendered frame decreases

with time. Suppose tα is the threshold time instant after which the residual of the
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Figure 6.6: Illustration of gaming process.

rendered frame is lower than that of the previous frame. Therefore, the cloud server

chooses the previous frame as reference from the beginning to tα and chooses the rendered

frame as reference after tα. Let Ωθ be the set of all the required game data, and tθ be

the expected time when Ωθ is reached. Thus, the decoded video frame is displayed as

game frame from the beginning to tθ, and the locally rendered frame is displayed after tθ.

Given the current set Ωt and the allocated rate Rt
G, the expected tθ can be determined by

tθ = t +
B{Ωθ\Ω

t}

Rt
G

, where Ωθ\Ωt = {x ∈ Ωθ|x 6∈ Ωt}, representing the set of game data in

Ωθ but not in Ωt yet, B{Ωθ\Ωt} is the data size of the set {Ωθ\Ωt}, and B{Ωθ\Ω
t}

Rt
G

represents

the expected remaining time to reach Ωθ under the current set Ω
t and the allocated rate

Rt
G. Specifically, if Ωθ = Ωt, i.e. the current game set contains the required game data,

we will have Ωθ\Ωt = ∅ and thus tθ = t + B∅

Rt
G

= t, indicating that the locally rendered

frame is already displayed at client. Let DV be the distortion of the decoded video frame,

and DG be the distortion of the locally rendered frame. Based on the analysis of gaming

process, if t < tθ, the distortion is determined by DV ; if t ≥ tθ, the distortion is caused

by DG. Therefore, the current distortion Dt
cur can be given by

Dt
cur =

{

DV , if t < tθ,

DG, if t ≥ tθ,
(6.3)

where the close form functions of DV and DG will be investigated in Section 6.3.3.

Rt
V and Rt

G affect not only the current game quality, but also the duration required to

transmit all game data. Although the accurate value of Dt+
fut is unknown at current time

t, the expectation of Dt+
fut can be computed. Suppose t̃ is the expected playing time in

the current game scene. In practice, t̃ can be estimated from players’ statistics. Suppose

tV and tG are the remaining time lengths of using the video frame and the rendered frame
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(a)

(b)

Figure 6.7: Illustration of tV and tG in two different situations: (a) when t̃ < tθ, and (b)
when t̃ ≥ tθ.

as game frame, respectively. According to the user’s playing time t̃, tV and tG can be

determined in two different situations. If t̃ is shorter than tθ, as illustrated in Figure

6.7(a), the received game data until the time when the user leaves the current scene is

not sufficient for rendering a high quality frame. Therefore, the video frame will be used

during the gaming session. On the other hand, if t̃ is longer than tθ, as illustrated in

Figure 6.7(b), the video frame will be displayed from t to tθ, and the rendered frame will

be displayed from tθ to t̃. Based on the above analysis, we can formulate tV and tG as

{

tV = t̃− t, tG = 0, if t̃ < tθ,

tV = tθ − t, tG = t̃− tθ, if t̃ ≥ tθ.
(6.4)

The expected distortionDt+
fut can be represented as the sum of the expected distortions

in both periods, the tV period and the tG period. Dt+
fut can therefore be formulated as

Dt+
fut = (tVDV + tGDG) · f

=

{

(t̃− t)DV · f, if t̃ < tθ,
(

(tθ − t)DV + (t̃− tθ)DG

)

· f, if t̃ ≥ tθ,

(6.5)

where f is the frame rate.
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6.3.3 Rate-Distortion (R-D) Analysis

In the proposed framework, we use H.264/AVC codec to compress the video frame. Cloud

gaming demands the real-time service. The decoding of bi-direction (B) frames will

introduce extra delays, since it depends on the decoding of bi-direction reference frames.

Thus, in cloud gaming systems, like GamingAnyWhere [72], the B frame encoding is

disabled. In our work, we utilize the IPPPP coding structure. When encoding the

captured game frame, there are two reference frames to be chosen: one is the previous

frame, and the other is the rendered frame from graphics buffer. The reference frame

with a lower residual will be used in encoding, which is similar to the multiple reference

frame selection in H.264/AVC encoding [133].

According to the previous research work on the rate-distortion analysis [134,135], the

rate and the average distortion can be formulated as the functions of quantization step

size. Supposing the mean squared error (MSE) is used as the distortion measure. The

relationship of the average distortion DV and the quantization step size Qstep is given

by [135] DV = MSE = ρQstep + γ, where ρ and γ are the distortion model parameters.

In addition, the rate Rt
V can be represented by [134] Rt

V = µ
Qstep

+ ν, where µ and ν are

the rate model parameters. By eliminating Qstep, we can get the close form relationship

between DV and Rt
V as

DV =
ρµ

Rt
V − ν

+ γ. (6.6)

The distortion DG is determined by the received game data set. The progressive mesh

representation is a continuous and lossless representation [130]. Therefore, once all the

vertex splits of a game model have been received, the geometry mesh of the model at

client is the same as that at cloud server. In contrast to progressive mesh, ASTC is a

lossy texture compression [132]. According to the study in [132], the distortion of ASTC

is affected by the bit rate. The higher bit rate used in the compressed texture, the lower

distortion can be achieved. Using the fixed bit rate in texture compression, the distortion

DG can be assumed as a constant, which is given by

DG = σASTC . (6.7)

where σASTC is the distortion caused by texture compression.

We conduct experiments to verify the rate and distortion models in Equation (6.6)

100



2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

Bit rate R
V
 (kb/s)

D
is

to
rt

io
n 

D
V
 (

M
S

E
)

 

 

D
V
 vs. R

V

D
V
=35595/(R

V
−442)+0.0574

95% confidence bounds

(a)

2000 4000 6000 8000
0

10

20

30

40

Bit rate R
V
 (kb/s)

D
is

to
rt

io
n 

D
V
 (

M
S

E
)

 

 

D
V
 vs. R

V
D

V
 = 18712 / (R

V
 − 146.3) − 1.078

95% confidence bounds

(b)

Figure 6.8: Experimental results for verifying the relationship between the distortion DV

and the bit rate Rt
V : (a) for Orc warrior sequence, and (b) for Human warrior sequence.

and Equation (6.7). We capture two sequences from the online game WoW [131]: one is

the Orc warrior sequence and the other is the Human warrior sequence. Figure 6.8 shows

the relationship and fitting results of the average distortion DV and the bit rate Rt
V . It

can be seen from Figure 6.8 that the distortion DV would decrease as the increase of Rt
V .

Furthermore, we use the rate-distortion model in Equation (6.6) to fit the relationship

between DV and Rt
V and draw the fitted function curve in Figure 6.8(a) and Figure

6.8(b), where all the true (Rt
V , DV ) points fall into the 95% confidence bounds of the

fitting function. The narrow confidence bounds indicate that the rate-distortion model

in Equation (6.6) is reliable.

Similarly, we conduct experiments to verify Equation (6.7). We assume that the

client has collected all the required geometry meshes and textures compressed by ASTC.

During the test, the frame rendered at cloud server uses the original textures, while the

frame rendered at client uses the reconstructed textures. Figure 6.9 shows the distortion

of each rendered frame given an ASTC bit rate. From Figure 6.9, we can see that the

distortion with ASTC at 8 bpp is lower than that at 2 bpp. Figure 6.9(a) and Figure

6.9(b) also indicate that the frames rendered with same bit rate textures have a relatively

flat distortion, which justifies Equation (6.7).
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Figure 6.9: Distortion of each frame in ASTC: (a) for Orc warrior sequence, and (b) for
Human warrior sequence.

6.3.4 Response Delay Analysis

Besides distortion and rate, response delay is another important user-perceived QoS met-

ric in cloud gaming. The response delay is defined as the duration from the time when the

user gives an input on the client device to the time when the resulting game frame is dis-

played to the user. The response delay in cloud gaming consists of multiple components.

Similar to [82], we divide the response delay into the following four components.

• Network delay dtnet: dtnet represents the network round-trip-time (RTT), which

includes the delays for transmitting user input to server and sending game frame

back to client.

• Rendering delay dtren: dtren represents the delay for the game software at cloud

server to process user input and render the next game frame.

• Encoding delay dtenc: d
t
enc represents the time for the cloud server to capture the

game frame and encode it into bit stream for the client.

• Decoding delay dtdec: d
t
dec represents the delay for the client to decode and display

the game frame.

Thus, the total response delay dtot can be formulated as the sum of the four components,

which is given by

dttot = dtnet + dtren + dtenc + dtdec. (6.8)
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Among the four components, dtnet can be measured by the Internet Control Message Pro-

tocol (ICMP) Ping command from the client to the server, and dtren is game dependent,

which can be acquired from the rendering frame rate at cloud server. If the cloud gaming

system is proprietary and closed, dtren can also be approximated from the PC version of

the game. Similar measurement techniques have been used in study [82].

Measuring the encoding delay dtenc is not straightforward, because dtenc is determined

by the encoding complexity, while the encoding complexity relates with the distortion

and the bit rate. In H.264/AVC encoding, the motion estimation is the most time

consuming part, which takes more than 90% encoding time [136]. Similar to [136, 137],

we approximate the encoding time by the motion estimation time (MET) in our work.

The major operation in motion estimation is the sum of absolute difference (SAD). Thus,

the MET can be acquired as the total number of CPU clock cycles consumed by all the

SAD operations divided by the number of clock cycles per second [136]. Therefore, the

encoding delay dtenc can be given by [136]

dtenc ≈ MET =
M(2λ + 1)2η · α(Rt

V ) · c0
fCLK

, if t < tθ, (6.9)

where M is the number of macroblocks in a frame, λ is the motion estimation search

range, η is the number of reference frames, (2λ + 1)2η is the total number of SAD in

a 3D search cube for each macroblock, α(Rt
V ) is the ratios of the actual number of

SAD operations to the theoretical total number of SAD operations, M(2λ+1)2η ·α(Rt
V )

represents the actual number of SAD operations in a frame, c0 is the number of CPU

cycles required for one SAD operation, and fCLK is the clock frequency of the CPU. As

presented in [136], the function α(·) in Equation (6.9) can be fitted as an exponential

function. Equation (6.9) is the motion estimation time for full search. In practical

encoder, the fast search methods, like diamond search and hexagonal search, are usually

used. To accommodate the fast search methods, the motion estimation time in Equation

(6.9) can be revised by multiplying a coefficient ϑ, where 0 < ϑ ≤ 1. We utilize the

exhaustive full search to achieve the minimum predictive residuals.

In order to justify Equation (6.9), we conduct experiments and draw the actual en-

coding delay dtenc and the bit rate Rt
V in Figure 6.10. The model in Equation (6.9) is

used as the function to fit the relationship of dtenc and Rt
V . Figure 6.10 indicates that

the relationship can be well fitted by the function in Equation (6.9), and all actual (Rt
V ,
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Figure 6.10: Experimental results for verifying the relationship between the encoding
delay dtenc and the bit rate Rt

V : (a) for Orc warrior sequence, and (b) for Human warrior
sequence.

denc) points are within the 95% confidence bounds.

Furthermore, when t ≥ tθ, the locally rendered graphics frame is displayed. In such

a case, the cloud server will skip encoding the frame. Therefore, the encoding delay is

approximated as 0. Based on the above analysis, we can formulate the encoding delay

at cloud server as

dtenc ≈
{

M(2λ+1)2η·α(Rt
V
)·c0

fCLK
, if t < tθ,

0, if t ≥ tθ,
(6.10)

As the last component, the decoding delay dtdec cannot be directly measured by the

cloud server. When cloud server transmits the currently encoded frame to client, the

decoding of the frame has not occurred yet. In the previous cloud gaming study [82], the

delay at client is derived by measuring the total response delay and then subtracting the

delays for network, rendering, and encoding. Therefore, the measured decoding delay is

not for the frame which is currently encoded, but for the previous frame. Inspired by

study [82], we use the most recent decoding delay to approximate the current decoding

delay at client. Specifically, the actual decoding delay at time t− 1 is measured by the

client and sent back to the cloud server as the decoding delay dtdec.

With the four delay components dtnet, d
t
ren, d

t
enc, and dtdec, the cloud server can calculate

the total response delay dttot by Equation (6.8). During game playing, the cloud server can

dynamically adjust encoding parameters to satisfy the total response delay constraint.

104



For example, if the current network delay dtnet increases, the cloud server can choose a

larger quantization step size to reduce the encoding delay dtenc and accordingly reduce

the total response delay dttot.

6.3.5 Rate Allocation Algorithm

Based on the above analysis, the optimal rate allocation problem in Equation (6.1) can

be formulated as

Minimize
{Rt

V
,Rt

G
}
Dtot = Dt−

pas +Dt
cur +Dt+

fut

subject to

Dt
cur =

{

DV , if t < tθ,

DG, if t ≥ tθ,

Dt+
fut =

{

(t̃− t)DV · f, if t̃ < tθ,
(

(tθ − t)DV + (t̃− tθ)DG

)

· f, if t̃ ≥ tθ,

DV = ρµ
Rt

V
−ν

+ γ,

DG = σASTC ,

Rt
tot ≤ Rmax,

Rt
tot = Rt

V +Rt
G,

dttot ≤ dmax,

dttot = dtnet + dtren + dtenc + dtdec,

dtenc ≈
{

M(2λ+1)2η·α(Rt
V )·c0

fCLK
, if t < tθ,

0, if t ≥ tθ.

(6.11)

In Equation (6.11), the target of the rate allocation is to minimize the total distortion

Dtot for the given bandwidth Rmax and the given response delay dmax, by optimizing

source rates for video stream Rt
V and graphics stream Rt

G. A higher Rt
V is required to

provide a video frame with a lower distortion. But the increase of Rt
V will reduce Rt

G

and accordingly extends the time for video streaming. Moreover, a higher Rt
V will cause

a longer encoding delay. On the other hand, if a higher bit rate is allocated to Rt
G, the

distortion DV will increase, since a lower rate is left for Rt
V . Therefore, it is infeasible to

simultaneously minimize the total distortion, bit rate, and response delay. The optimal

rate allocation problem in Equation (6.11) is to find the Pareto optimal tradeoff [138]
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among the optimization criteria.

According to the relationship of current time t, time tθ, and total playing time t̃, the

optimization problem Equation (6.11) can be studied in the following cases.

Case 1: Given tθ ≤ t ≤ t̃, i.e. Ωθ ⊆ Ωt, the client has received all the required

game data. Therefore, the locally rendered frame is displayed at client. We can get the

following theorem.

Theorem 6.1. Given tθ ≤ t ≤ t̃, the rate allocation to video stream is Rt
V = 0.

Proof. Given tθ ≤ t ≤ t̃, i.e. Ωθ ⊆ Ωt, Equation (6.11) is converted to

Minimize
{Rt

V
,Rt

G
}
Dtot = Dt−

pas +Dt
cur +Dt+

fut

subject to

Dt
cur = DG,

Dt+
fut = (t̃− t)DG · f,

DV = ρµ
Rt

V
−ν

+ γ,

DG = σASTC ,

Rt
V +Rt

G ≤ Rmax,

dtnet + dtren + dtenc + dtdec ≤ dmax,

dtenc ≈ 0.

(6.12)

The objective can be represented as Dtot = Dt−
pas + DG + (t̃ − t)DG · f , where the total

distortion is only determined by DG and has nothing with DV . Since Rt
V has no effect

on the total distortion, Rt
V will be reduced to 0. Theorem 6.1 is proved.

Intuitively, if the client can independently render the graphics frame, there is no need

for the cloud server to stream the encoded video frames after tθ. Accordingly, Rt
V will

be reduced to 0.

Case 2: Given t ≤ t̃ ≤ tθ, the expected game playing time t̃ is no longer than tθ.

Thus, the client cannot receive all the required game data before the client leaves the

scene. We then have the following theorem.

Theorem 6.2. Given t ≤ t̃ ≤ tθ, the optimal solution (Rt
V
∗
, Rt

G
∗
) to Equation (6.11) is

Rt
V
∗
= max {Rt

V |Rt
V ≤ Rmax, dtenc(R

t
V ) ≤ dmax − dtnet − dtren − dtdec}, Rt

G
∗
= Rmax−Rt

V
∗
.
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Proof. Given t ≤ t̃ ≤ tθ, Equation (6.11) is converted to

Minimize
{Rt

V
,Rt

G
}
Dtot = Dt−

pas +Dt
cur +Dt+

fut

subject to

Dt
cur = DV ,

Dt+
fut = (t̃− t)DV · f,

DV = ρµ
Rt

V
−ν

+ γ,

DG = σASTC ,

Rt
V +Rt

G ≤ Rmax,

dtnet + dtren + dtenc + dtdec ≤ dmax,

dtenc ≈
M(2λ+1)2η·α(Rt

V )·c0
fCLK

,

(6.13)

where Dtot is determined by DV and has no relationship with DG. Since DV is a

monotonically decreasing function of Rt
V , the optimal allocation Rt

V
∗
is the largest Rt

V

which simultaneously meets Rt
V ≤ Rmax and dtnet + dtren + dtenc(R

t
V ) + dtdec ≤ dmax,

i.e. Rt
V
∗
= max {Rt

V |Rt
V ≤ Rmax, dtenc(R

t
V ) ≤ dmax − dtnet − dtren − dtdec}. After allocat-

ing rate to Rt
V , the remaining rate will be allocated to Rt

G, and Rt
G
∗
= Rmax −Rt

V
∗
.

Therefore, Theorem 6.2 is proved.

The proof of Theorem 6.2 is given in Appendix ??. The intuition of Theorem 6.2 is

that, if the client cannot render a high-quality frame from the accumulated graphics data

at the client by the end of current session, the available source rate should be allocated

to Rt
V as much as possible. In such a situation, the video stream will be always used.

Case 3: Given t < tθ < t̃, the client will display the decoded video frame from t to tθ

and then display the rendered frame from tθ to t̃. The distortion DV is determined by Rt
V ,

and the length of the video stream is determined by Rt
G. Thus, it requires an optimal rate

allocation between Rt
V and Rt

G to minimize the total distortion. By analyzing Equation

(6.11), we can get the following Lemma.

Lemma 6.1. Given t < tθ < t̃, Equation (6.11) is a convex optimization problem.

Proof. Given t < tθ < t̃, the optimization problem in Equation (6.11) can be converted
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to
Minimize
{Rt

V
,Rt

G
}
Dtot = Dt−

pas +Dt
cur +Dt+

fut

subject to

Dt
cur = DV ,

Dt+
fut =

(

(tθ − t)DV + (t̃− tθ)DG

)

· f,
DV = ρµ

Rt
V
−ν

+ γ,

DG = σASTC ,

Rt
V +Rt

G ≤ Rmax,

dtnet + dtren + dtenc + dtdec ≤ dmax,

dtenc ≈
M(2λ+1)2η·α(Rt

V
)·c0

fCLK
,

(6.14)

where α(Rt
V ) is an exponential function of Rt

V . In Equation (6.14), the bandwidth con-

straint and the response delay constraint are both convex, since the bandwidth constraint

is a linear real-value function and the response delay constraint is the sum of convex func-

tions. To prove the convexity of the objective function, we derive the Hessian matrix of

Dtot as following.

∇2Dtot(R
t
V , R

t
G) =





2(tθ−t)ρµ
(Rt

V
−ν)3

B{Ωθ\Ω
t}ρµ

Rt
G

2(Rt
V
−ν)2

B{Ωθ\Ω
t}ρµ

Rt
G

2(Rt
V
−ν)2

2B{Ωθ\Ω
t}(DV +DG)

RT
G

2



 (6.15)

We can find that the Hessian matrix ∇2Dtot(R
t
V , R

t
G) is positive semidefinite, and thus

the objective function in Equation (6.14) is convex [138]. Based on the above analysis,

given t < tθ < t̃, Equation (6.11) is a convex optimization problem. The Lemma 6.1 is

proved.

Since the optimization problem in Equation (6.11) is a convex optimization, we can

use Lagrange multiplier method [138] to solve it. The Lagrange function of Equation

(6.11) is given by

L(Rt
V , R

t
G, λ, κ) = Dtot(R

t
V , R

t
G) + λ ·

[

Rt
tot(R

t
V , R

t
G)− Rmax

]

+ κ ·
[

dttot(R
t
V , R

t
G)− dmax

]

,

(6.16)

where λ ≥ 0 and κ ≥ 0 are Lagrange multipliers associated with the inequality con-

straints. According to KKT conditions, the optimal primal solution Rt
V
∗
and Rt

G
∗
and

dual solution λ∗ and κ∗ exist such that the following conditions can be satisfied simulta-
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neously.
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t
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∂Rt
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∣

∣

∣

Rt
V

∗,Rt
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= 0,

λ∗ ·
[

Rt
tot(R

t
V
∗
, Rt

G
∗
)−Rmax

]

= 0,

κ∗ ·
[

dttot(R
t
V
∗
, Rt

G
∗
)− dmax

]

= 0.

(6.17a)

(6.17b)

(6.17c)

(6.17d)

To solve the above equations, we use the Newton’s method [138] to iteratively find

the optimal solutions to the optimization problem in Equation (6.11). Suppose δkδkδk =

(Rt
V
k+1−Rt

V
k
, Rt

G
k+1−Rt

G
k
)T , which is the vector of update directions of primal variables

in Newton’s method. Given (Rt
V
k
, Rt

G
k
, λk, κk), (δkδkδk, λk+1, κk+1) can be solved from the

following linear system [138].







∇2L(Rt
V
k
, Rt

G
k
, λk, κk) ∇Rt

tot(R
t
V
k
, Rt

G
k
) ∇dttot(Rt

V
k
, Rt

G
k
)

∇Rt
tot(R

t
V
k
, Rt

G
k
) 0 0

∇dttot(Rt
V
k
, Rt

G
k
) 0 0













δkδkδk

λk+1 − λk

κk+1 − λk







=







−∇Dtot(R
t
V
k
, Rt

G
k
)

Rmax −Rt
tot(R

t
V
k
, Rt

G
k
)

dmax − dttot(R
t
V
k
, Rt

G
k
)







(6.18)

With the solved δkδkδk, we can have (Rt
V
k+1

, Rt
G
k+1

)T = (Rt
V
k
, Rt

G
k
)T + δkδkδk. By repeating

the above process, the optimal rate allocation Rt
V
∗
and Rt

G
∗
to Equation (6.11) will be

achieved until exceeding the maximum number of iterations or δkδkδk ≤ ǫǫǫ, where ǫǫǫ is the

vector of tolerable errors.

Based on the above discussions, we develop an efficient rate allocation algorithm, as

illustrated in Algorithm 6.1. In Algorithm 6.1, the cloud server collects the required model

parameters, determines the relationships of t, tθ, and t̃, and then finds the corresponding

optimal rate allocation Rt
V
∗
and Rt

G
∗
. The rate allocation algorithm is conducted in every

∆t, which is set as one second in our work.
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Algorithm 6.1: Rate Allocation Algorithm for Hybrid Streaming Framework

1: Initialize model parameters ρ, µ, ν, γ, σASTC , and the game data set Ωθ for the
requested game.

2: Estimate the expected game playing time t̃ according to the user’s historical
statistics, and set t = 0.

3: Set tθ =∞, if client device has no graphics rendering capacity,
4: while t < t̃ do
5: Check the game data set Ωt in the sync buffer at cloud side.
6: if Ωθ ⊆ Ωt then
7: Rt

V
∗
= 0, Rt

G
∗
= Rmax,

8: else
9: Compute Dtot(R

t
V
∗|t̃≤tθ

, Rt
G
∗|t̃≤tθ

), where
Rt

V
∗|t̃≤tθ

= max {Rt
V |dtenc(Rt

V ) ≤ dmax − dtnet − dtren − dtdec, Rt
V ≤ Rmax},

Rt
G
∗|t̃≤tθ

= Rmax − Rt
V
∗
.

10: Compute Dtot(R
t
V
∗|t̃>tθ

, Rt
G
∗|t̃>tθ

), where Rt
V
∗|t̃>tθ

and Rt
G
∗|t̃>tθ

can be acquired
by repeatedly solve Equation (6.18) until exceeding the maximum number of
iterations or δkδkδk ≤ ǫǫǫ.

11: if Dtot(R
t
V
∗|t̃≤tθ

, Rt
G
∗|t̃≤tθ

) ≤ Dtot(R
t
V
∗|t̃>tθ

, Rt
G
∗|t̃>tθ

) then
12: Rt

V
∗
= Rt

V
∗|t̃≤tθ

, and Rt
G
∗
= Rt

G
∗|t̃≤tθ

.
13: else
14: Rt

V
∗
= Rt

V
∗|t̃>tθ

, and Rt
G
∗
= Rt

G
∗|t̃>tθ

.
15: end if
16: end if
17: t = t +∆t
18: end while

6.4 Performance Evaluation

In this section, we conduct experiments to evaluate the proposed hybrid streaming frame-

work and the rate allocation algorithm.

6.4.1 Experiment Setup

In our experiments, a server with Intel i7 CPU 3.07GHz, 12G RAM, and NVIDIA GeForce

GTX 660 is used as the cloud server, and a laptop with Intel i5 2.5GHz, 4G RAM, and

Intel HD Graphics 4000 is used as the client device. We tested two games: the multi-

player online role-playing game WoW released by Blizzard Entertainment [131] and the

first person shooter game Angry Bots released by Unity Technology [139]. Since the game
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WoW is a proprietary game, the game source is closed to the public. Thus, we exported

the game models and textures of WoW and rendered 3D game scenes with these assets.

Two WoW game scenes are used in the test: the Orc warrior scene and the Human warrior

scene. The game Angry Bots is an open-source game. The game assets and scripts are

available to the public. Besides the game software, we use WoW Model Viewer to export

the WoW game assets, use OpenSceneGraph to render the 3D game scene, use OpenMesh

to generate progressive mesh representation of game models, use Live555 to set up the

RTSP server for video streaming, use x264 [140] as video codec, and use ffplay [141] as the

media player at client. The screen resolution of all games is set to 1280×720 (720P). For

fair comparisons, we need to make sure the game screens are compared with identical

game environment, i.e. the avatars in the game are played with the same movement

and the identical actions. To achieve this, we record the avatar’s animation path. By

replaying the animation event, the cloud server can control the avatars to repeatedly

move in certain game scenes and perform the exactly same actions. Each game test lasts

for five minutes. The game screenshots are shown in Figure 6.11. During the evaluation,

the captured game frame at cloud server is taken as the benchmark. We adopt PSNR

as the visual quality metric by calculating the distortion between the displayed game

frame at client and the benchmark at server. To simulate the network conditions, we

use dummynet [142] to control the network bandwidth. Specifically, the maximal bit

rate Rmax varies from 1 Mbps to 6 Mbps. When Rmax is under 2 Mbps (inclusive), the

low rate textures are transmitted to client to save bandwidth. Otherwise, the high rate

textures are used.

6.4.2 Comparison with Video Streaming Approach

We first compare the proposed hybrid streaming framework with the video streaming

approach. The comparison of PSNR performance under different bandwidths is shown

in Figure 6.12. We can see that the proposed hybrid streaming framework can achieve a

significantly higher average PSNR than the video streaming under the same bandwidth

constraint. The PSNR of the hybrid streaming increases by 8.35 dB, 6.54 dB, and 8.61

dB in average than the video streaming in Orc warrior, Human warrior, and Angry

Bots scenes, respectively. In the hybrid streaming framework, cloud server gradually

transmits game data to client. After receiving the required game data, the client can
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(a)

(b)

(c)

Figure 6.11: Game screenshots: (a) WoW Orc warrior scene, (b) WoW human warrior
scene, and (c) Angry Bots scene.

locally render a game frame, which has a better quality than the decoded video frame.

Thus, the average PSNR is improved. As shown in Figure 6.12, the PSNR curve of the

hybrid streaming becomes flat when Rmax is relatively large, which corresponds to the

distortion of compressed textures. To give a clear illustration, Figure 6.13 and Figure 6.14

compare the temporal PSNR performance when Rmax is 2 Mbps and 6 Mbps, respectively.

In Figure 6.13 and Figure 6.14, the initial PSNR of hybrid streaming is lower than the

video streaming, because part of bit rates are allocated for delivering the game data and

the quality of the video frame is accordingly affected. After a short period, the client has

received all the game data and rendered a high quality frame. Thus, the PSNR of hybrid

streaming increases. As shown in Figure 6.13(c), the hybrid streaming has an initial

PSNR of 29.62 dB, which is 5.86 dB lower than video streaming, but after tθ = 120

seconds, the hybrid streaming reaches 44.25 dB, which is 7.52 dB higher than video

streaming. Overall, the average PSNR in hybrid streaming is 37.91 dB, which increases

by 3.65 dB compared to video streaming in Figure 6.13(c). Comparing Figure 6.13 and

Figure 6.14, the cloud server spends less time on delivering game data when Rmax is 6

Mbps, and as a result, tθ in Figure 6.14 can be reached earlier than that in Figure 6.13.

We also investigate the impact of response delay on the visual quality of cloud gaming.
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Figure 6.12: Comparison of the PSNR performance under different bandwidths: (a) Orc
warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.

In the experiments, the network delay is set as 40 ms, the maximal bit rate Rmax is 6

Mbps, and the response delay dmax is set as {120, 130, 140, 150, 200, 300} ms. Figure

6.15 shows the comparison of PSNR for different response delays. From Figure 6.15,

it can be seen that the average PSNR increases with dmax but becomes quite flat for a

larger dmax. This is because that a low response delay dmax leads to a low encoding delay

denc, which constrains the coding bit rate. When increasing dmax, the limit of coding

rate is increased, leading to a higher visual quality. But when dmax increases to a certain

value, the bandwidth Rmax becomes the new bottleneck to limit coding rate, and hence

the average PSNR tends to be flat. As shown in Figure 6.15, dmax has a less impact on

the hybrid streaming framework. We analyzed the reason. In hybrid streaming, when

Rt
V is constrained by dmax, the extra bit rates will be allocated to Rt

G, leading to a faster
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Figure 6.13: Comparison of the temporal PSNR performance when Rmax = 2 Mbps: (a)
Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.

delivery of game data. Once receiving all the game assets, the client can locally render

the graphics frame. Furthermore, given dmax = 150 ms and Rmax = 6 Mbps, we compare

the PSNR under different network delays in Figure 6.16. It can be seen from Figure 6.16

that the average PSNR decreases with the increase of network delay, and the reduction

of PSNR in the hybrid steaming is lower than the video streaming. The reason is that a

high PSNR of locally rendered frame is not affected by the network delay. As shown in

Figure 6.16(a), when the network delay dnet = 80 ms, the hybrid streaming can achieve

the average PSNR of 49.41 dB, which represents a 19.66 dB improvement over the video

streaming.

Next, we compare the overall data size in the hybrid streaming and the video stream-

ing. Figure 6.17 presents the overall data size with the maximal bit rate Rmax fixed at
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Figure 6.14: Comparison of the temporal PSNR performance when Rmax = 6 Mbps: (a)
Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.

2 Mbps and 6 Mbps. It can be seen that the hybrid streaming can effectively save the

overall transmission data size. Compared to the video streaming, the hybrid streaming in

Figure 6.17(c) reduces the overall transmission data size by 60.55% with Rmax = 2 Mbps

and by 85.08% with Rmax = 6 Mbps. Moreover, we observe that the overall transmission

in hybrid streaming at 6 Mbps is almost same as that at 2 Mbps. This is because that

a higher Rmax can allocate a higher rate for graphics stream Rt
G and accordingly reduce

the length of video streaming period, leading to a lower overall data size. To give a clear

illustration, Figure 6.18 shows the accumulated data size in each second when Rmax is

2 Mbps. In Figure 6.18, the hybrid streaming has the similar transmission data size as

the video streaming at the beginning period. After tθ, the required game data has been

received by client and the locally rendered frame is displayed as game frame. Since then,
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Figure 6.15: Comparison of the PSNR performance for different response delays when
Rmax = 6 Mbps: (a) Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots
scene.

there is no more transmission between the server and the client in hybrid streaming. As a

result, the hybrid streaming consumes less overall bit rates compared to video streaming.

6.4.3 Comparison with Graphics Streaming Approach

In this subsection, we compare the proposed hybrid streaming framework with the graph-

ics streaming approach. In graphics streaming, the game assets are transmitted to client.

After receiving all the necessary assets, the client can start rendering the game frame.

For fair comparison, we use the same textures and game models in the hybrid streaming

and graphics streaming. Figure 6.19 compares the PSNR performance under different

bandwidths. As shown in Figure 6.19, the hybrid streaming can achieve a higher PSNR
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Figure 6.16: Comparison of the PSNR performance under different network delays when
dmax = 150 ms and Rmax = 6 Mbps: (a) Orc warrior scene, (b) Human warrior scene,
and (c) Angry Bots scene.

than the graphics streaming under the same bandwidth constraint. The PSNR of hybrid

streaming increases by 3.31 dB, 3.68 dB, and 4.40 dB in average compared to the graph-

ics streaming for the Orc warrior, Human warrior, and Angry Bots scenes, respectively.

The reason is that graphics streaming takes a buffering period to collect all the required

game assets. In this period, the client cannot render a high quality frame and has a

very low PSNR. As a result, the overall quality is degraded. Compared to the graph-

ics streaming, the proposed framework applies the streamed video frame in the initial

period, and accordingly has a higher initial PSNR. To view the PSNR performance in

more detail, Figure 6.20 and Figure 6.21 illustrate the temporal PSNR with the fixed

Rmax at 2 Mbps and 6 Mbps, respectively. From Figure 6.20 and Figure 6.21, we can
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Figure 6.17: Comparison of the overall data size when Rmax is fixed at 2 Mbps and 6
Mbps: (a) Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.

see that graphics streaming has a relatively low PSNR at the beginning, due to the lack

of game data. In contrast, the proposed hybrid streaming achieves a higher PSNR in

this period. As a cost, hybrid streaming takes a longer period to transmit all the game

data to client. We also compare the overall data size in the hybrid streaming and the

graphics streaming. Figure 6.22 shows the overall transmission data size with Rmax fixed

at 2 Mbps and 6 Mbps. Compared to the graphics streaming in Figure 6.22, the hybrid

streaming consumes a higher transmission data size, due to the video streaming in the

beginning period.
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Figure 6.18: Comparison of the accumulated data size in each second when Rmax is fixed
at 2 Mbps: (a) Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.

6.4.4 Evaluation of Rate Allocation Algorithm

The proposed rate allocation algorithm is evaluated in this subsection. In the ex-

periments, we select different rate allocation pairs of (Rt
V , R

t
G) and compare the P-

SNR performance. The selected rate allocation pairs include: 1)the optimal alloca-

tion, which is acquired by solving the optimization problem in Equation (6.11); 2)

(Rt
V , R

t
G) = (0.7Rmax, 0.3Rmax) represents rate allocation with a high rate for video

stream; 3) (Rt
V , R

t
G) = (0.5Rmax, 0.5Rmax) represents even rate allocation; and 4)

(Rt
V , R

t
G) = (0.3Rmax, 0.7Rmax) represents rate allocation with a high rate for graphics

stream. Special cases, like (Rt
V , R

t
G) = (Rmax, 0) and (Rt

V , R
t
G) = (0, Rmax), which

represent the video streaming and graphics streaming respectively, have been compared
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Figure 6.19: Comparison of the PSNR performance under different bandwidths: (a) Orc
warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.

before and hence are not included in this evaluation. Figure 6.23 compares the average

PSNR under different bandwidths when the response delay dmax is fixed at 150 ms. It

can be seen from Figure 6.23 that for a given maximal response delay dmax, the proposed

rate allocation algorithm can achieve a higher average PSNR compare to the other alter-

native rate allocation pairs. From Figure 6.23, we can also find that the rate allocation

pair (0.7Rmax, 0.3Rmax) achieves a high PSNR when Rmax is lower than 2 Mbps, but a

low PSNR when Rmax is 6 Mpbs. The reason is that the PSNR in video encoding is not

linearly increased with Rt
V . Therefore, when Rt

V is relatively high, the increment of Rt
V

cannot get an equivalent return on the PSNR performance, but will limit the allocation

of Rt
G, leading to a slow improvement on the overall quality. To give a more detailed

illustration, Figure 6.24 illustrates the temporal PSNR in the first 100 seconds when
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Figure 6.20: Comparison of the temporal PSNR performance when Rmax = 2 Mbps: (a)
Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.

Rmax = 6 Mbps. As shown in Figure 6.24, the rate allocation pair (0.7Rmax, 0.3Rmax)

reaches the best quality at the beginning, but starts locally rendering later than other

allocations. For the Angry Bots scene, the game assets have not been completely received

in the first 100 seconds with the allocation pairs (0.7Rmax, 0.3Rmax). Compared to the

other rate allocation pairs, the proposed rate allocation algorithm can achieve an optimal

balance between the quality of video streaming and the length of video streaming.

6.5 Chapter Summary

In this chapter, we propose a novel hybrid streaming framework for cloud gaming to

provide users with a high quality gaming experience under the constraints of bandwidth
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Figure 6.21: Comparison of the temporal PSNR performance when Rmax = 6 Mbps: (a)
Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.

and response delay. The proposed framework jointly applies video streaming and graphics

streaming. Based on the proposed framework, we study the rate allocation problem

as a d-R-D optimization, in which we optimize the allocated rates between the video

stream and the graphics stream to minimize the total distortion under the bandwidth and

response delay constraints. We perform in-depth analysis on the relationship among the

video distortion, the source rate, and the response delay in cloud gaming, and propose a

practical rate allocation algorithm. Experimental results demonstrate that the proposed

hybrid streaming framework can optimally allocate source rates between video stream

and graphics stream to achieve the minimal distortion under the bandwidth and response

delay constraints.
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Figure 6.22: Comparison of the overall data size when Rmax is fixed at 2 Mbps and 6
Mbps: (a) Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.
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Figure 6.23: Comparison of the average PSNR under different bandwidths with dmax

fixed at 150 ms: (a) Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots
scene.
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Figure 6.24: Comparison of the temporal PSNR in the first 100 seconds with Rmax fixed
at 6 Mbps: (a) Orc warrior scene, (b) Human warrior scene, and (c) Angry Bots scene.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we study resource allocation for cloud-based multimedia services to guar-

antee the quality of service (QoS). The major contribution is a coherent cloud resource

management framework, involving the cloud service modeling, dynamic resource config-

urations, user level and task level workload scheduling, and quality of experience (QoE)

optimization for cloud gaming.

In Chapter 3, we studied the modeling for cloud based multimedia services. We

introduced a queueing model to characterize the service process in multimedia cloud.

The proposed queueing model was composed by three concatenated queueing systems,

which were the schedule queue, the computation queue, and the transmission queue. We

analyzed the equilibrium demands and derived the relationships between the response

time and the allocated cloud resources. Based on the proposed queueing model, we

investigated resource optimization problems for multimedia cloud computing in three

different scenarios: single-service scenario, multi-service scenario, and priority-service

scenario. In each scenario, we formulated and solved the response time minimization

problem and the resource cost minimization problem, respectively. The proposed resource

allocation schemes can optimally allocate cloud resources for different service scenarios

to achieve the minimal response time under a certain budget or provide the satisfactory

services at the minimal resource cost

In Chapter 4, we investigated the dynamic resource configuration. We first proposed
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a two-time-scale resource configuration (TRC) scheme. The proposed scheme allocated

virtual machines (VMs) in a mid-long time scale to reduce the cost, and dynamically re-

allocated VMs in a fine-grained time scale to cope with the varying workload. Based on

the TRC scheme, we studied resource optimization problems in single-site cloud scenario

and multi-site cloud scenario, respectively. In each scenario, we formulated the resource

cost minimization problem, which optimally allocated VMs to achieve the minimal re-

source cost, and the response time minimization problem, which dynamically adjusted

VMs according to varying demands to minimize the average response time. Since the

formulated problems were integer nonlinear programming, we proposed heuristics to ef-

ficiently allocate resources. Evaluation results showed that the proposed dynamic VMs

configuration schemes not only allocated VMs to attain a low resource cost, but also

dynamically reconfigured VMs to reduce the average response time.

In Chapter 5, we presented the study on workload scheduling to best utilize the

allocated resources. Specifically, we investigated the user level and task level workload

scheduling, respectively. At the user level, we applied queuing theory to model the re-

quest scheduling in cloud services. Based on the model, we optimized the workload

assignment to minimize the required response time or minimize the total resource cost.

We proposed lightweight heuristics to efficiently solve the formulated problems. In ad-

dition, we studied the workload scheduling at the task level. We introduced a directed

acyclic graph to model the precedence constraints among tasks. Based on the model, we

formulated and solved the execution time minimization problem for sequential structure,

parallel structure, and mixed structure services. By conducting simulations, we demon-

strated that the proposed workload scheduling scheme can make the best use of allocated

resources to achieve a low response time.

In Chapter 6, we proposed a hybrid streaming framework for cloud gaming. The

proposed framework jointly applied video streaming and graphics streaming. In the

framework, the cloud server not only transmitted the encoded video frame, but also

progressively transmitted graphics data. The received graphics data was used to render

a graphics frame, which provided an additional reference candidate for video encoding.

As the accumulation of graphics data at client, the frame rendered from the graphics

buffer generated a lower residual to the captured frame than the previous video frame,

which reduced the encoding bit rate. Based on the proposed framework, we formulated

the rate allocation problem as a delay-rate-distortion (d-R-D) optimization, in which
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we optimized the allocated rates between the video stream and the graphics stream

to minimize the total distortion under the bandwidth and response delay constraints.

We performed thorough analysis on the rate-distortion relationship and the response

delay in cloud gaming, and proposed a practical rate allocation algorithm. Extensive

simulations demonstrated that the proposed hybrid streaming framework can optimally

allocate source rates to achieve a low distortion under the bandwidth and response delay

constraints.

7.2 Future Work

Despite the advancements and research efforts have been made on cloud-based multime-

dia services, there are still many open problems in multimedia cloud computing. The

following directions are worth for future exploration.

7.2.1 Big Data on Multimedia Cloud

Living in the information era, we are surrounded by an enormous amount of digital

content. According to IDC digital universe study [143], the total amount of generated

digital content in 2013 is 4.4 trillion gigabytes, and this number will be doubled in every

two years. In such a situation, big data is emerged as the huge data sets, whose size and

complexity are beyond the processing capability of personal computers. Cloud computing

provides possible solutions to store and process big data. However, big data processing

introduces challenges into cloud. Big data analysis requires distributed processing on

cloud. However, due to the huge data size, the internal data transmission will introduce a

large delay. Service providers, therefore, demand an efficient scheduling scheme which can

support distributed processing with the minimal data transmission delay. The proposed

directed acyclic graph (DAG) model in Chapter 5 can be used to model this problem, in

which the distributed task is represented by the vertex and the delay of data transmission

between two tasks is represented by the edge. An optimal scheduling problem can be

formulated based on the model.
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7.2.2 Collaborative Media Computing and Rendering

With the hardware upgrades for client devices in recent years, it becomes possible to col-

laboratively utilize resources on cloud server and client devices to compute, process, and

render media contents. Cloud servers are powerful in computation, but cloud processing

introduces a large transmission delay. By applying collaborative media computing and

rendering, the local processing on client devices can effectively eliminate the transmission

delay and accordingly improve the user experience. In Chapter 6, we have studied the

collaboration of using graphics processing capability in cloud servers and client devices

to improve the cloud gaming experience. As the next step, we will extend our work to

other media applications and explore the collaborative media computing and rendering.

7.2.3 Joint Resource Allocation of Cloud and Network

The current research work on resource allocation focuses on the resources in cloud data

center, while ignoring the varying network conditions, which may affect the quality of

user experience. For example, the cloud-gaming users sometimes cannot receive high-

quality frames rendered at the cloud server, due to the unpredicted network performance

and the limited bandwidth at client side. When allocating resources to cloud gaming

servers, we should take the network performance into account. Therefore, a joint resource

allocation of cloud computing and network conditions is necessary. By jointly optimizing

the resources in the cloud, at the clients, and in the networks, we can achieve the highest

end-to-end quality of experience for users.

7.2.4 Optimization of Internal Traffic Management in Cloud

In current cloud data center, the bandwidth resource is shared by all virtual servers. Due

to the varying workload, the bandwidth demand at each server is dynamically changing,

leading to an unpredicted internal transmission performance. Similar to the traffic man-

agement in physical world, cloud computing can control the internal traffic routing of

user’s work flow, and the physical positions of the start and destination servers. By

optimizing the positions of servers and the traffic path, we can achieve the best network

performance and reduce the risk of internal transmission congestion for cloud computing.
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7.2.5 Mobile multimedia applications

Driven by the rapid advances of smart phones and mobile devices, mobile users not only

expect a broadband Internet connection, but also desire a universal multimedia experi-

ence. However, due to the limited power and processing capacity, it is still a challenge

to conduct the computation-intensive multimedia processing on mobile devices. Fortu-

nately, the emerging cloud computing provides a solution. In this thesis, the proposed

resource allocation methods are generic resource management schemes on cloud side,

which are independent of client devices and transmission routes. In mobile applications,

the wireless transmission and the content adaption have to be specially considered. In

the next step, we will extend our work to the specific mobile multimedia applications by

investigating how the proposed resource allocation methods can improve the performance

of mobile multimedia applications.
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Appendix A

Proofs

A.1 Derivation of Solution to the Optimization Prob-

lem (3.4)

According to Lagrange multiplier method [100], the optimal solution to the optimization

problem (3.4) must simultaneously satisfy all conditions in Equation (3.5). We first

analyze the conditions in Equation (3.5). Since λ(t) − S(t) < 0 and µ1

(

λ(t) − S(t)
)

= 0,

we can get that the Lagrange multiplier µ1 = 0. Similarly, we can get µ2i = 0 (∀i =
1, 2, . . . , N) from piλ

(t)F − C
(t)
i < 0 and µ2i

(

piλ
(t)F − C

(t)
i

)

= 0, and get µ3 = 0 from

λ(t)D − B(t) < 0 and µ3

(

λ(t)D −B(t)
)

= 0. Since µ1 = 0, µ2i = 0 (∀i = 1, 2, . . . , N),

and µ3 = 0, the Lagrange function is simplified as

L
(

S(t), C
(t)
1 , C

(t)
2 , . . . , C

(t)
N , B(t), µ4

)

= T
tot(t)
sing +µ4

(

(αS(t) + β

N
∑

i=1

C
(t)
i + γB(t))t̄− Cmax

)

,

Next, we calculate the partial derivation of Lagrange function with respect to each

optimization variable as follows.

∂
∂S(t)L

(

S(t), C
(t)
1 , C

(t)
2 , . . . , C

(t)
N , B(t), µ4

)

= − 1
(S(t)−λ(t))2

+ µ4αt̄ = 0,

∂

∂C
(t)
i

L
(

S(t), C
(t)
1 , C

(t)
2 , . . . , C

(t)
N , B(t), µ4

)

= − piF

(C
(t)
i −piλ(t)F )2

+ µ4βt̄ = 0, ∀i = 1, 2, . . . , N

∂
∂B(t)L

(

S(t), C
(t)
1 , C

(t)
2 , . . . , C

(t)
N , B(t), µ4

)

= − D
(B(t)−λ(t)D)2

+ µ4γt̄ = 0.

(A.1)
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Considering S(t) > λ(t), µ4 ≥ 0 and − 1
(S(t)−λ(t))2

+ µ4αt̄ = 0, we can derive that µ4 > 0

and S(t) =
√

1
µ4αt̄

+ λ(t). Similarly, we can derive that C
(t)
i =

√

piF
µ4βt̄

+ piλ
(t)F (∀i =

1, 2, . . . , N), andB(t) =
√

D
µ4γt̄

+λ(t)D. Due to µ4

((

αS(t) + β
∑N

i=1C
(t)
i + γB(t)

)

t̄− Cmax

)

=

0 and µ4 > 0, we can derive that
(

αS(t) + β
∑N

i=1C
(t)
i + γB(t)

)

t̄ − Cmax = 0. By rep-

resenting S(t), C
(t)
i (∀i = 1, 2, . . . , N), B(t) in terms of µ4, we can have the following

derivation.

(

αS(t) + β
∑N

i=1C
(t)
i + γB(t)

)

t̄− Cmax

= αt̄
(√

1
µ4αt̄

+ λ(t)
)

+ βt̄
∑N

i=1

(√

piF
µ4βt̄

+ piλ
(t)F

)

+ γt̄
(√

D
µ4γt̄

+ λ(t)D
)

− Cmax

= αt̄
√

1
µ4αt̄

+ αt̄λ(t) + βt̄
∑N

i=1

√

piF
µ4βt̄

+ βt̄
∑N

i=1 piλ
(t)F + γt̄

√

D
µ4γt̄

+ γt̄λ(t)D − Cmax

=
√
αt̄√
µ4

+
√

βt̄
∑N

i=1

√
piF√
µ4

+

√
γt̄
√
D

√
µ4

+ (α + βF + γD)λ(t) t̄− Cmax

= 1√
µ4

(√
αt̄+

√

βt̄
∑N

i=1

√
piF +

√

γt̄
√
D
)

+ (α + βF + γD)λ(t)t̄− Cmax

= 0.

(A.2)

From Equation (A.2), we can derive that 1√
µ4

= Cmax−(α+βF+γD)λ(t) t̄√
αt̄+
√

βt̄
∑N

i=1

√
piF+
√

γt̄
√
D
. With the

representation of 1√
µ4
, we can achieve the solution to the optimization problem (3.4) as

follows

S(t)∗ =
√

1
µ4αt̄

+ λ(t)

= Cmax−(α+βF+γD)λ(t) t̄

(
√
α+

√
βF

∑N
i=1

√
pi+

√
γD)

√
αt̄

+ λ(t),

C
(t)∗
i =

√

piF
µ4βt̄

+ piλ
(t)F

=
(Cmax−(α+βF+γD)λ(t) t̄)

√
piF

(
√
α+

√
βF

∑N
i=1

√
pi+

√
γD)

√
βt̄

+ piλ
(t)F, ∀i = 1, 2, . . . , N,

B(t)∗ =
√

D
µ4γt̄

+ λ(t)D

=
(Cmax−(α+βF+γD)λ(t) t̄)

√
D

(
√
α+

√
βF

∑N
i=1

√
pi+

√
γD)

√
γt̄
+ λ(t)D,

µ1 = 0,

µ2i = 0 ∀i = 1, 2, . . . , N,

µ3 = 0,

µ4 =

(√
αt̄+
√

βt̄
∑N

i=1

√
piF+
√

γt̄
√
D

Cmax−(α+βF+γD)λ(t) t̄

)2

.

(A.3)
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Therefore, the optimal solution to the optimization problem in Equation (3.4) can be

achieved.

A.2 Proof of Theorem 3.1

Proof. Substituting the optimal solution (3.6) to the objective function in Equation (3.4),

we can get

T
tot(t)
sing =

(√
α +
√
βF
∑N

i=1

√
pi +
√
γD
)2

Cmax

t̄
− (αλ(t) + βFλ(t) + γDλ(t))

=

(

ξ +
√
βFy

)2

δ
, (A.4)

where ξ =
√
α+
√
γD > 0, y =

∑N
i=1

√
pi > 0, and δ = Cmax

t̄
− (αλ(t) + βFλ(t) + γDλ(t)).

We can find that the schedule probabilities only affect the term y. In the following proof,

we will first prove that T
tot(t)
sing monotonically increases with y. Based on this conclusion,

we will find the schedule probabilities to achieve the minimal y and accordingly achieve

the minimal T
tot(t)
sing . Similarly, we will obtain the schedule probabilities for the maximal

T
tot(t)
sing .

As the first step, we will prove that T
tot(t)
sing is a monotonically increasing function

of y. Given 0 < y1 < y2, we can get that (ξ +
√
βFy1)

2 < (ξ +
√
βFy2)

2, due to

ξ > 0 and
√
βF > 0. Moreover, according to constraints in Equation (3.4), we can get

αλ(t)+βFλ(t)+γDλ(t) = αλ(t)+βF
∑N

i=1 piλ
(t)+γDλ(t) < αS+β

∑N
i=1Ci+γB ≤ Cmax

t̄
.

Thus, δ = Cmax

t̄
− (αλ(t) + βFλ(t) + γDλ(t)) in Equation (A.4) is positive. We therefore

derive that (ξ+
√
βFy1)2

δ
< (ξ+

√
βFy2)2

δ
for any given 0 < y1 < y2. So, T

tot(t)
sing in Equation (A.4)

is a monotonically increasing function of y. Thus, the minimal T
tot(t)
sing will be achieved at

the minimal y, while the maximal T
tot(t)
sing will be achieved at the maximal y.

To achieve the minimal T
tot(t)
sing in Equation (A.4), we need to find the minimal y =

∑N
i=1

√
pi. We have the inequation y2 = (

∑N
i=1

√
pi)

2 =
∑N

i=1 pi+
∑N

i=1

∑N
i′=i+1 (2

√
pi
√
pi′)

≥ ∑N
i=1 pi = 1, and the equality holds if and only if pipi′ = 0 (i 6= i′). Therefore, solv-

ing the equations
∑N

i=1 pi = 1 and pipi′ = 0 (i 6= i′), we can get that y reaches the

minimal value 1 when probability pi is 1 and all other probabilities pi′ (i
′ 6= i) are 0.

Therefore, when schedule probability pi (∀i = 1, . . . , N) is 1 and all other probabilities

pi′ (i
′ 6= i, i′ = 1, . . . , N) are 0, we can achieve the minimal response time, which is given

133



by

T
tot(t)(min)
sing =

(√
α +
√
βF +

√
γD
)2

Cmax

t̄
− (αλ(t) + βFλ(t) + γDλ(t))

. (A.5)

The first statement in Theorem 3.1 is proved.

Similarly, we will obtain the maximal y, leading to the maximal T
tot(t)
sing . From inequa-

tion (
√
pi−
√
pi′)

2 ≥ 0, we can derive that pi + pi′ ≥ 2
√
pi
√
pi′, (∀i, i′ = 1, . . . , N). Thus,

we can derive the following relationship

y2 = (
∑N

i=1

√
pi)

2

=
∑N

i=1 pi +
∑N

i=1

∑N
i′=i+1 (2

√
pi
√
pi′)

≤∑N
i=1 pi +

∑N
i=1

∑N
i′=i+1 (pi + pi′)

= p1+ p2+ p3 + · · ·+ pN−1 + pN

+(N − 1) p1+ p2+ p3 + · · ·+ pN−1 + pN

+ (N − 2) p2+ p3 + · · ·+ pN−1 + pN

+ · · ·
+ pN−1 + pN

= N
∑N

i=1 pi

= N,

and the equality holds if and only if pi = pi′ (i 6= i′, ∀i, i′ = 1, . . . , N). Since
∑N

i=1 pi = 1,

we can get that when p1 = p2 = . . . = pN = 1
N
, the maximal y =

√
N is achieved. Thus,

when the schedule probabilities are all equal, i.e. p1 = p2 = · · · = pN = 1
N
, the maximal

response time is achieved. The maximal response time is given by

T
tot(t)(max)
sing =

(√
α +
√
N
√
βF +

√
γD
)2

Cmax

t̄
− (αλ(t) + βFλ(t) + γDλ(t))

. (A.6)

The second statement in Theorem 3.1 is proved.
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A.3 Proof of Theorem 3.2

Proof. Substituting the optimal analytical solution in (3.8) to the objective function in

Equation (3.7), we can get the total resource cost as

Ctot(t)sing =
(
√
α +
√
βF
∑N

i=1

√
pi +
√
γD)2t̄

τ
+ (α + βF + γD)λ(t)t̄ =

(ξ +
√
βFy)2t̄

τ
+̟,

(A.7)

where ξ =
√
α +
√
γD > 0, y =

∑N
i=1

√
pi > 0, and ̟ = (α + βF + γD)λ(t)t̄ > 0.

Similar to the proof of Theorem 1, we first prove that the resource cost Ctot(t)sing in

Equation (A.7) is a monotonically increasing function of y. Given 0 < y1 < y2, we can

derive that (ξ+
√
βFy1)2 t̄
τ

+̟ < (ξ+
√
βFy2)2 t̄
τ

+̟, since ξ > 0, t̄ > 0, τ > 0 and ̟ > 0. So,

Ctot(t)sing in Equation (A.7) is a monotonically increasing function of y. Thus, the minimal

resource cost will be achieved at the minimal y, while the maximal resource cost achieved

at the maximal y.

To achieve the minimal resource cost, we need to find the minimal y. From the

proof in Theorem 1, we can get that y =
∑N

i=1

√
pi reaches the minimal value 1 when

probability pi (∀i = 1, . . . , N) is 1 and all other probabilities pi′ (i
′ 6= i, i′ = 1, . . . , N) are

0. The minimal total resource cost is given by

Ctot(t)(min)
sing =

(
√
α +
√
βF +

√
γD)2t̄

τ
+ (α+ βF + γD)λ(t)t̄. (A.8)

Therefore, the first statement in Theorem 3.2 is proved.

To get the maximal resource cost, we need to find the maximal y. According to

the proof in Theorem 1, y =
∑N

i=1

√
pi reaches the maximal value

√
N when schedule

probability p1 = p2 = . . . = pN = 1
N
. The maximal total resource cost is given by

Ctot(t)(max)
sing =

(
√
α +
√
N
√
βF +

√
γD)2t̄

τ
+ (α+ βF + γD)λ(t)t̄. (A.9)

Thus, the second statement in Theorem 3.2 is proved.
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A.4 Proof of Theorem 3.3

Proof. When the number of services is 1 in the multi-service scenario (suppose that the

only provided service is class-i service), the optimization problem in Equation (3.12) will

be changed to:

Minimize
{S(t),C

(t)
i ,B(t)}

T
tot(t)
mult = 1/S(t)

1−λ
(t)
i /S(t)

+
Fi/C

(t)
i

1−λ
(t)
i Fi/C

(t)
i

+ Di/B(t)

1−λ
(t)
i Di/B(t)

subject to

λ
(t)
i < S(t),

λ
(t)
i Fi < C

(t)
i ,

λ
(t)
i Di < B(t),

(αS(t) + βC
(t)
i + γB(t))t̄ ≤ Cmax.

(A.10)

We can find that the optimization problem in Equation (3.4) is identical to the opti-

mization problem in Equation (A.10), when the schedule probabilities in Equation (3.4)

are pi = 1 and pi′ = 0 (i′ 6= i). According to Theorem 3.1, the minimal response time

in Equation (3.4) will be achieved under such schedule probability settings. Therefore,

Theorem 3.3 is proved.

A.5 Proof of Theorem 3.4

Proof. When there is only one class of service provided (suppose that it is class-i service),

the resource cost minimization problem in Equation (3.13) is changed to the following:

Minimize
{S(t),C

(t)
i ,B(t)}

Ctot(t)mult = (αS(t) + βC
(t)
i + γB(t))t̄

subject to

λ
(t)
i < S(t),

λ
(t)
i Fi < C

(t)
i ,

λ
(t)
i Di < B(t),
1/S(t)

1−λ
(t)
i /S(t)

+
Fi/C

(t)
i

1−λ
(t)
i Fi/C

(t)
i

+ Di/B(t)

1−λ
(t)
i Di/B(t)

≤ τi.

(A.11)
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We can find that the optimization problem in Equation (3.7) is the same as the opti-

mization problem in Equation (A.11) when the schedule probabilities in Equation (3.7)

are pi = 1, pi′ = 0 (i′ 6= i). According to Theorem 3.2, the minimal resource cost in

Equation (3.7) is achieved under such schedule probability settings. Therefore, Theorem

3.4 is proved.

A.6 Proof of Theorem 3.5

Proof. To prove Theorem 3.5, we first prove that the optimal solution for optimization

problem in Equation (3.12) is also a feasible solution for optimization problem in Equation

(3.17). Suppose that the optimal solution for Equation (3.12) is {S(t), C
(t)
1 , . . . , C

(t)
M , B(t)},

which satisfies all constraints in Equation (3.12). With the same services, the cor-

responding resource allocation {S(t), C(t) =
∑M

i=1C
(t)
i , B(t)} is also a feasible solution

for optimization problem in Equation (3.17), since it can meet all constraints in Equa-

tion (3.17). Therefore, with the resource allocation {S(t), C
(t)
1 , . . . , C

(t)
M , B(t)}, the re-

sponse time for processing class-1 service in multi-service scenario is given by T
tot(1)(t)
mult =

T
sche(1)(t)
mult +T

comp(1)(t)
mult +T

tran(1)(t)
mult , while the corresponding response time in priority-service

scenario is given by T
tot(1)(t)
prio = T

sche(1)(t)
prio + T

comp(1)(t)
prio + T

tran(1)(t)
prio .

Next, we will compare the response time of schedule, computation, and transmission

in T
tot(1)
mult and those in T

tot(1)
prio , respectively. In schedule phase, since λ(t) =

∑M
i=1 λ

(t)
i ≥ λ

(t)
1 ,

(T
sche(1)(t)
mult = 1

S(t)−λ(t) ) ≥ (T
sche(1)(t)
prio = 1

S(t)−λ
(t)
1

); in computation phase, since C
(t)
1 ≤ C(t),

(T
comp(1)(t)
mult = F1

C
(t)
1 −λ

(t)
1 F1

) ≥ (T
comp(1)(t)
prio = F1

C(t)−λ
(t)
1 F1

); in transmission phase, according

to the conclusion in [96] that the highest priority class in priority queue always has

the smaller response time than its counterpart in M/HM/1 queue, we can get that

T
tran(1)
mult ≥ T

tran(1)
prio . So, based on the above comparisons, we can get that T

tot(1)
mult ≥ T

tot(1)
prio .

Therefore, Theorem 3.5 is proved.
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