
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2013

A Cost Efficiency Analysis and Mechanism for
Dynamic Partially Reconfigurable Computing
Systems
David Diaz
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Systems Architecture Commons

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by
an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Diaz, David, "A Cost Efficiency Analysis and Mechanism for Dynamic Partially Reconfigurable Computing Systems" (2013). Theses
and dissertations. Paper 2068.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/2068?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F2068&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

A COST EFFICIENCY ANALYSIS AND MECHANISM FOR

DYNAMIC PARTIALLY RECONFIGURABLE COMPUTING

SYSTEMS

by

David Diaz

Bachelor of Engineering, Ryerson, 2009

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2013

c©David Diaz 2013

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions of individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopy or by other

means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

I understand that my thesis may be made electronically available to the public.

ii

A COST EFFICIENCY ANALYSIS AND MECHANISM FOR DYNAMIC

PARTIALLY RECONFIGURABLE COMPUTING SYSTEMS

Master of Applied Science 2013

David Diaz

Electrical and Computer Engineering

Ryerson University

Abstract

Dynamic Partially Reconfigurable Computing Systems have proven to be useful in envi-

ronments where a multiplicity of tasks is required. These systems used Dynamic Virtual

Components (DVCs) for reconfiguration. However, the computing architecture (dedicated,

software, hybrid) of the DVC must be selected during the design stage. In this thesis, a

mechanism in which we evaluate and analyze the cost efficiency of a DVC based on a cost

efficiency factor (CEF) is proposed. Data centric and stream centric experimental tests were

performed and the CEF of a 3D stereo-panoramic augmented reality hybrid DVC was de-

termined. The results show that development costs and number of units to be produced

influence the cost efficiency of a DVC. From the results it is concluded that the CEF can

be a useful tool for selecting the computing architecture of a DVC, particularly when only a

few units are to be deployed.

iii

Acknowledgements

Completing my Master of Applied Science studies would never have been possible without

the guidance of my professors, help from friends, and support from my family.

I would like to express my deepest gratitude to Dr. Lev Kirischian, my supervisor, for his

guidance, patience, motivation, enthusiasm and immense knowledge. I could have not chosen

a better supervisor for my thesis and I am glad to have chosen his lab for my graduate studies

in pursue of my graduate degree.

I would also like to give my sincere thanks to my fellow colleagues Victor Dumitriu and Artur

Saakov for their help in the lab. Their advice and sharing of their knowledge throughout my

graduate studies is greatly appreciated.

I also would like to thank the Department of Electrical and Computer Engineering at Ryerson

University for giving me this educational opportunity.

And lastly, I would like to thank my parents and my brother who have given me their support

in pursuing my educational goals.

iv

Dedication

This thesis is dedicated to my mother Gilda, my father Roberto, and my brother Roberto J.

for their love throughout my life and their never ending support and encouragement in

achieving my education goals in life.

v

Contents

1 Thesis Introduction 1

1.1 Motivation Statement . 1

1.2 Objectives . 3

1.3 Original Contributions . 4

1.4 Thesis Organization . 4

2 Related Works 6

2.1 Introduction . 6

2.2 Related Work Observation & Analysis . 6

2.3 Summary . 12

3 Proposed Approach to Evaluate the Cost Effectiveness of a DVC 13

3.1 Introduction . 13

3.2 Concepts and Theory Analysis . 13

3.2.1 Summary . 26

4 Approach Using Experimental Applications 27

4.1 Introduction . 27

4.2 DPRS Experimental Setup . 28

4.3 Data Centric Experiment Test . 29

4.3.1 Sobel Mask Computation Description 29

4.3.2 Sobel Mask Computation Principles 29

vi

4.3.3 Sobel Mask Experimental Implementation 30

4.3.4 Sobel Mask DVC Symbol . 33

4.3.5 Sobel Mask DVC I/O Signals . 33

4.3.6 Sobel Mask DVC Organization . 35

4.3.7 Collected Experimental Data From Sobel Mask DVCs 36

4.4 Stream Based Experiment Test . 37

4.4.1 RGB to YCBCR Conversion Description 37

4.4.2 RGB to YCBCR Principles . 37

4.4.3 RGB to YCBCR Experimental Implementation 38

4.4.4 RGB to YCBCR DVC Symbol . 38

4.4.5 RGB to YCBCR DVC I/O Signals . 38

4.4.6 RGB to YCBCR DVC Organization 40

4.4.7 Collected Experimental Data from RGB to YCBCR DVCs 40

4.5 Data and Stream Based Experiment . 41

4.5.1 NUI-ARDS DVC . 41

4.5.2 NUI-ARDS DVC Description . 41

4.5.3 NUI-ARDS DVC Principles . 44

4.5.4 NUI-ARDS DVC Implementation . 50

4.5.5 NUI-ARDS DVC Symbol . 53

4.5.6 NUI-ARDS DVC I/O Signals . 54

4.5.7 NUI-ARDS DVC Organization . 54

4.6 Summary . 57

vii

5 CEF Analysis and Discussion 58

5.1 Introduction . 58

5.2 CEF Analysis Explanation . 58

5.3 Analysis of Data Centric Experiment Test 59

5.3.1 Sobel Mask Experiment Analysis . 59

5.3.2 Sobel Mask Experiment Discussion 61

5.4 Analysis of Stream Centric Experiment Test 62

5.4.1 YCBCR Converter Experiment Analysis 62

5.4.2 YCBCR Experiment Discussion . 63

5.5 Hybrid Software Code Optimization CEF . 64

5.6 NUI ARDs CEF Vs. CPR Analysis . 68

5.7 Summary . 69

6 Conclusion and Future Work 71

Appendices 74

Appendix A Microblaze mb2 Component Internal Organization 74

Appendix B NUI-ARDS Component I/O Signals 76

Appendix C CEF Calculations 79

C.1 Optimized Code . 80

C.2 Non-Optimized Code . 83

C.3 NUI-ARDS CEF . 86

viii

Bibliography 87

ix

List of Tables

3.1 Engineering Avg. Wage per Hour (Toronto) 19

4.1 Sobel DVC input signals . 34

4.2 Sobel DVC output signals . 34

4.3 MAC hwacc input signals . 35

4.4 MAC hwacc output signals . 35

4.5 Sobel mask experimental data . 37

4.6 Input Signals . 39

4.7 Output Signals . 39

4.8 RGB to YCBCR Experimental Data . 40

5.1 Selected UC equivalent resource Spartan FPGA chip cost 59

5.2 Sobel mask DVC development cost . 60

5.3 RGB to YCBCR DVC Development Cost . 62

5.4 Un-Optimized code execution time for Sobel mask DVC 65

5.5 Un-Optimized code execution time for RGB to YCBCR DVC 65

B.1 Input signals required by NUI-ARDS . 77

B.2 Output signals produced by NUI-ARDS . 78

C.1 Sobel Dedicated DVC CEF Calculations . 80

C.2 Sobel Software DVC CEF Calculations . 80

C.3 Sobel Hybrid DVC CEF Calculations . 81

x

C.4 YCBCR Dedicated DVC CEF Calculations 81

C.5 YCBCR Software DVC CEF Calculations . 81

C.6 YCBCR Hybrid DVC CEF Calculations . 82

C.7 Sobel dedicated DVC CEF calculations (Non-Optimized Code) 83

C.8 Sobel Software DVC CEF Calculations (Non-Optimized Code) 83

C.9 Sobel Hybrid DVC CEF Calculations (Non-Optimized Code) 84

C.10 YCBCR Dedicated DVC CEF Calculations (Non-Optimized Code) 84

C.11 YCBCR Software DVC CEF Calculations (Non-Optimized Code) 84

C.12 YCBCR Hybrid DVC CEF Calculations (Non-Optimized Code) 85

C.13 NUI-ARDS Hybrid DVC CEF Calculations 86

xi

List of Figures

2.1 Diagram of a general dedicated computing architecture 7

2.2 Diagram of a general software computing architecture 7

2.3 Diagram of a general hybrid computing architecture 8

2.4 Diagram of a DRCA . 9

2.5 General diagram of a DPRCA . 9

3.1 Direct and indirect computing device component costs 16

3.2 DPRCS with different sized slots and DVC 17

3.3 FPGA Vs. ASIC Startups . 20

4.1 MARS Experimental Embedded Platform On-Chip Architecture Organization 28

4.2 General and Sobel mask structure . 31

4.3 Sobel mask implementation images . 32

4.4 Measurement of task execution . 33

4.5 Sobel mask DVC symbol . 34

4.6 Dedicated circuit accelerator for Sobel and YCBCR computation 35

4.7 Sobel mask hybrid DVC internal organization 36

4.8 Sobel mask software DVC internal organization 36

4.9 Sobel Mask DVC symbol . 39

4.10 Example of NUI ARDS visual display capability 42

4.11 Controller interface motion capture design 43

4.12 Visual display divided into grid blocks . 45

xii

4.13 Six bit encoding scheme for (8 bit) red channel 45

4.14 Six bit encoding scheme for (8 bit) green channel 46

4.15 Six bit encoding scheme for (8 bit) blue channel 46

4.16 Six bit encoding scheme for pixel transparency 47

4.17 Virtual video layer (vvl) shifting . 48

4.18 Construction of virtual 3D pointer . 49

4.19 MARS Platform with NUI-ARDS and RCS PRocessor 51

4.20 NUI-ARDS as part of the RCS Processor Internal Components 52

4.21 The NUI-ARDS DVC . 53

4.22 Software execution flow chart for the mb1 Microblaze component 56

5.1 CEF for Sobel mask DVCs . 60

5.2 CEF for YCBCR DVCs . 63

5.3 CEF for YCBCR DVCs . 66

5.4 CEF for YCBCR DVCs . 67

5.5 A CEF and CPR comparison of Sobel DVCs 68

5.6 A CEF and CPR comparison of a Hybrid NUI-ARDS DVC 69

A.1 Microblaze mb2 internal component organization for for Sobel mask and

YCBCR Hybrid DVC Experiments . 74

A.2 mb2 Microblaze mb2 internal component organization for Sobel mask and

YCBCR Software DVC Experiments . 75

xiii

List of Abbreviations

3D-SPADS 3D Stereo-Panoramic Acquisition and Display System

ASIC Application Specific Integrated Circuit

BRAM Block RAM (Xilinx)

FPGA Field Programble Gate Array

CPR Cost-Performance Ratio

CEF Cost Efficiency Factor

CLB Configurable logic block

CPU Central processing unit

DPRCS Dynamic Partially Reconfigurable Computing System

DRCA Dynamic reconfigurable Computing system

DVC Dynamic Virtual Component

FPS Frames per second

HW Hardware

I/O Input/Output

LED Light Emitting Diode

LUT Look-up table

MB Megabyte

NUI-ARDS Natural User Interface Augmented Reality Display System

xiv

SoC System on chip

VHDL Very-high-Speed-integrated-circuit hardware description language

VVL virtual video layers

XVGA Extended Video Graphics Array

xv

1 Thesis Introduction

1.1 Motivation Statement

The motivation behind this thesis is to provide the embedded reconfigurable engineering com-

munity with an approach that will help guide hardware design engineers in determining the

correct and most appropriate computing architecture design for a particular reconfigurable

region allocated for a specific application in a Dynamic Partially Reconfigurable Computing

System(DPRCS). Currently the most widely explored approaches involve the use of perfor-

mance [1], power [2], area [3], and resources [4] for analysis of various computing systems.

These types of analyses are useful when trying to develop a computing system that has strict

performance requirements, low power, less chip space allocation and use particular resources

more than others on chip. These constraint based analyses are useful when a computing

system is being designed to meet particular constraint needs. However, in practice, during

the design stage there are other factors such as number of units to be deployed and devel-

opment costs. In the early years of FPGAs reconfigurable resources available on chip for a

particular design may have been limited and, therefore, resource constraint analyses were

useful to fit the design on the chip. Today, FPGA chips such as Xilinx’s Virtex 7 are huge in

terms of configurable resources [5] ; therefore, the limitation of not having enough resources

or space is less of an issue. Also, the same VHDL architecture design on a newer FPGA may

take up less power due to advancements in manufacturing technology that reduces static and

dynamic power and increases performance [6]. These constraints become less critical as new

design factors appear. Also, there are situations where the constraint variable is not strict

1

and instead of having a specific constraint value there is a range for the constraint. Let’s

assume we are to design a computing architecture for a configurable region on an FPGA.

Now let us suppose there are three types of architectures considered for production. Each

of the three designs have varying degree of performance, power, resources, and area but all

of them are within the specified constraint range. Presented with this situation how does

a design engineer select the most appropriate architecture for the given task? The design

engineer may use his previous experience or intuition regarding each computing architecture

option (qualitative analysis) and select one for production. However, this approach has a

few drawbacks. It assumes the engineer has lots of experience behind him but he would not

have the quantitative analysis to support his decision. To avoid this situation and provide

a quantitative analysis to support more subjective qualitative analysis, some form of ana-

lytic mechanism needs to be introduced. A quantitative analysis previously introduced as a

solution to this problem is the cost performance ratio (CPR). This CPR analysis takes into

consideration the performance and cost of the system and is currently used to arrive at a

decision. However, this earlier CPR analysis is based on the assumption that development

costs are relatively small because large numbers of units will be produced. This assumption

does limit its use for the design of Dynamic Virctual Components (DVCs) for partially re-

configurable systems because only a few DVCs may be deployed and more of the resources

are directed to the development cost of a DVC; therefore, a design engineer should also take

into account development cost and the number of units to be produced. For this reason a

more refined version of the CPR is proposed to address the quantity and development costs

in the cost efficiency analysis of a DVC.

2

1.2 Objectives

In order to address our motivation and achieve the goal of proposing a valid mechanism to

determine the cost efficiency of a DVC the following steps need to be taken:

1. Research & analyze currently available methods that may be applicable for the effi-

ciency analysis of partial reconfigurable systems.

2. Propose an alternative approach based on the concept of a Cost-Efficiency Factor

(CEF).

3. Test the proposed approach by implementation of dedicated hardware components,

hybrid components and software based components.

4. Analyze the results from the two test experiments.

5. Implement the proposed approach during the computing architecture design phase of

an industry specific application involving live 3D stereo panoramic video streaming

with a remote robotic control system.

6. Identify any foreseeable limitations or future improvements to the proposed approach

as observed during test experiments and specific industry application implementation.

3

1.3 Original Contributions

The contributed research work to the objectives stated previously are:

1. Analysis of currently available methods.

2. Concept and approach of using a CEF as the mechanism of determining the correct

computing architecture design for a particular application for dynamic partially recon-

figurable computing systems.

3. Software and Hybrid computing architecture implementation for two test applications.

4. Computing Architecture design and Implementation of the Natural User Interface Aug-

mented Reality Display System (NUI-ARDS).

5. Experimental results and discussion of computing architecture design using a CEF

approach.

1.4 Thesis Organization

The remaining organization of this thesis is as follows:

1. Chapter 2 is dedicated to the collection and analysis of current related work in the

field and to highlight the need for the proposed approach.

2. Chapter 3 proposes the concept of using a Cost-Efficiency Factor (CEF). It will discuss

how this CEF can be used in determining the correct computing architecture design of

a given programmable logic given that a dynamic partially reconfigurable computing

system is to be used.

4

3. In chapter 4, two experimental test will be examined and the results presented. The

CEF for a complex design and implementation of an industrial application involving

3D stereo panoramic video streaming with augmented reality and remote robotic agent

control system is determined.

4. Chapter 5 discusses the results and the implications CEF can have in the design of

dynamic partially reconfigurable computing systems.

5

2 Related Works

2.1 Introduction

Over the years embedded digital systems development has become more prominent as de-

vices become smaller in size and specialized in function. To date embedded systems have

become an integral part of every computer systems; however, the engineering design aspect

of computer systems still remains to be fully explored. This chapter will overview the current

available approaches for the design of embedded partially reconfigurable systems.

2.2 Related Work Observation & Analysis

Computer systems are commonly categorized into one of the following three main comput-

ing architecture: Dedicated, Software, or Hybrid computing systems. Dedicated computing

architectures generally consists of dedicated hardware that is specifically designed for a

particular task and does not contain any sequential processing elements such as a micro-

processor. A diagram for the general organization of a dedicated computing architecture

is depicted in Figure 2.1. In this type of computing architecture there exists only inputs

and outputs, data paths, and control units for data synchronization. Dedicated computer

architectures are usually suited for computational intensive tasks. On the other hand, a

CPU-based computing architecture, the cheapest and most general purpose architecture to

utilize, may not be optimized for the intended task. This type of computing architecture,

depicted in Figure 2.2, contains a sequential processing element such as a microprocessor and

no dedicated hardware components. This CPU-based computing architectures are suitable

6

Figure 2.1: Diagram of a general dedicated computing architecture [7]

for algorithmic intensive or are very sequential by nature tasks. A hybrid computing archi-

tecture, depicted in Figure 2.3, tries to take advantage of both worlds by containing both

a sequential processing element (sequential instruction processor) and a dedicated hardware

(HW accelerator). A communication infrastructure is then used to exchange data between

both systems. In order to take advantage of all three computing architectures one can use

Figure 2.2: Diagram of a general software computing architecture [7]

7

Figure 2.3: Diagram of a general hybrid computing architecture [7]

a dynamic reconfigurable computing architecture (DRCA) depicted in Figure 2.4. This type

of computing architecture usually consists of two sections: a static section and a dynamic

(Reconfigurable) section. The static section usually consists of a microprocessor and the

dynamic section consists of reconfigurable logic which can be reconfigured by the micropro-

cessor whenever a different architecture(dedicated, software or hybrid) is needed for a given

task. For example, this approach is effective for small dynamic sections in which the time

in between tasks is greater than the reconfiguration time. The reconfiguration time is the

time it takes for the programmable logic area to be reconfigured with another computing

architecture.

8

Figure 2.4: Diagram of a DRCA

A potential problem may arise when other tasks are required to continue executing

while at the same time another programmable computing architecture is needed for a new

task execution. In this situation a Dynamic Partially Reconfigurable Computing Architec-

ture(DPRCA), depicted in Figure 2.5, has been proposed as a possible solution. A DPRCA

Figure 2.5: General diagram of a DPRCA

[8, 9] is similar to a DRCA except that the programmable logic section of DPRCA consists of

9

multiple slots. Each slot can be reconfigured with any Dynamic Virtual Component(DVC)

which can be either a Dedicated, Software, or Hybrid computing architecture design. One

advantage of a DPRCA is that the hardware can adapt depending on the task at hand.

Traditionally, a task is usually constructed or adapted to fit a particular computing architec-

ture but in a DPRCA one can think of adapting the computing architecture to fit the task

instead, which is achieved by loading reconfigurable slots with a specific DVC depending

on the task that needs to be performed. However, in order to adapt the computing archi-

tecture to the given task one must have a way to determine which computing architecture

type is to be implemented in a DVC for a particular task, the main focus of this thesis.

Previous related work done in this area revolves around the idea of simulating computer ar-

chitecture performance, effectively mapping a given task onto whatever processing elements

are available or how to create effective architectures for a particular task. In [10] and [11]

the emphasis is on computer architecture modeling of hybrid architectures so that one can

determine if a hybrid architecture is suitable for the task. However, the results are very

related to how well the simulators are built. Even well built simulators have flaws, such as

the inability to consider new technology resources, the assumption that all resources avail-

able are the same and unlimited, and that all solutions are possible to develop in terms of

cost. To build a simulator one must have a particular method to solve the problem, how-

ever, to our knowledge, there is no method or simulators capable of making the decision as

to which computing architecture should be implemented in a DVC given a particular task.

Much work has also been done in using algorithms for finding optimum hardware software

partitioning methods to address constraints such as configuration area, configuration blocks

(CLBs), available resources, and power consumption. In [12] a Particle Swarm Optimization

10

inspired approach is used to find a range of valid hardware-software partitioning solutions.

However, a method for selecting which of the implementations should actually be used in a

DVC design for a particular task is not provided. Other works such as [13] try to find ways

in which to effectively schedule tasks between dedicated hardware and software architectures

in order to improve efficiency in terms of performance and area. This would result in having

many possible solutions but not in providing a quantitative analysis to help decide as to

which computing architecture should be implemented into the DVC. From a hardware com-

puting architecture point of view there has been work done such as [14] and [15] that show

the benefits and limitations of both heterogeneous and homogeneous computing systems. In

[14] the system cost is discussed in terms of the cost of the processors selected and the links

between them but a DVC could also potentially be a dedicated or hybrid architecture. [15]

Looks at how heterogeneous architectures can provide a more linear performance increase

when compared to homogeneous architectures under certain task conditions by having more

optimized processing components (such as multipliers, LUTs, Dividers, etc) catered towards

specific functions. This however would also lead to multiple architecture solutions for a DVC

but without being able to know which of them should actually be implemented as a DVC.

However, all the preceding approaches are constraint driven. On the other hand there is a

need to have an evaluation based on a cost-efficiency of the system. There are few works

[16, 17, 18, 19] which consider ratio between performance and cost; however, these works

focused on mass production, thus the number of units as well as the cost of research and

development plus the cost of design were implicitly embedded in the cost of each unit, and

this is not explicitly analyzed.

11

2.3 Summary

In summary, there has been much work done as to how to design proper dedicated, software

and hybrid architectures. Many techniques have been developed to properly construct com-

puting architectures and the advantages and disadvantages of each architecture has been

explored. However, there has not been any method or technique, to our knowledge, that will

aid in the selection of the correct computing architecture to be implemented into a DVC

given multiple possible solutions which meet all task requirements.

12

3 Proposed Approach to Evaluate the Cost
Effectiveness of a DVC

3.1 Introduction

Given all the previous research work done into how to design proper dedicated, software,

and hybrid computing architectures our approach will focus on how to determine the correct

computing architecture implementation for a DVC given a particular task to perform. This

decision will require certain efficiency measurement mechanism and in this work the use of a

CEF is proposed as such mechanism. It will be explained in detail in this chapter and used

as a mean to arrive at a decision for a FPGA-based computer architecture. Before proposing

our approach, we first analyze and discuss the various factors that affect the cost of a given

on-chip computing architecture.

3.2 Concepts and Theory Analysis

When hardware design engineers build computing architectures many factors that affect the

cost of a computing architecture are considered. In most published literature in the field, the

term “cost” for the FPGA-based SoC usually refers to how many configurable logic blocks

or how much area, power, or memory is required for a particular computing architecture

[20]. For the purpose of this thesis the cost of a particular DVC architecture will refer to

the monetary quantity required to produce the DVC.

In general, determining the cost of an entire computing architecture can be very complex

and may change over time. However, as we will show in this study, it is a critical aspect to

13

consider when designing a DVC. There are many trends and factors that are well known to

affect the design of a computing architecture and they may be associated with manufacturing

technology, quantity of production, market target and development costs [21]. The manu-

facturing of a specific computing architecture (e.g. ASIC) decreases as time passes because

the manufacturing techniques improve over time which leads to a higher yield. Yield is the

number of computing architecture components that pass the testing stage. For integrated

circuits, the manufacturing cost consists of many variable costs such as the cost of die, testing

die, die yield, cost of packaging, etc. Without going into copious details regarding integrated

circuit costs, it is important to note that die size and yield have an important effect on its

cost. The more die area required by the computing architecture leads to an increase in the

cost of the integrated circuit. This is important to take into account if there are various DVC

candidates that require different die areas. Manufacturing affects cost because it is always

evolving over time. Improvements in the manufacturing process over the years contributes

to cost reduction as die yield improves and contributes to the reduction of die cost which

designers don’t have control over. Both of these cost reductions translate into a reduced

integrate circuit cost which is important, particularly if there are multiple competitors.

When manufacturing any type of integrated chip there is usually the question of quantity.

Determining how many chips are to be manufactured with a given computing architecture is

important when considering costs. The three major common computing design markets are:

low cost design, cost-performance design and high-performance design market areas [21]. In

each design area the design objective is different. In a low cost design market the goal of

the computing architecture design is to arrive at the least cost solution for the computing

architecture with performance being acceptable and not a priority in the decision process.

14

Usually, in a low cost design market the demand for the computing architecture is high

hence large quantity orders are expected. In a cost-performance computing architecture

market the goal is to design a computing architecture which is neither cheap nor expensive

but rather has the best performance for its cost. For the high-performance design market

the computing architecture goal is purely performance driven and the cost is not a primary

concern, usually these types of computing architectures are not produced in large numbers

due to the large cost associated with them. The key concept to understand here is that the

relationship between price and quantity can get intricate.

We will now discuss some important cost implications for a product containing an on-

chip computing architecture design. Two main cost categories that affect the development

of a computing architecture product are direct and indirect costs. Direct costs are directly

associated with the making of a product and are usually 10% to 30% of component costs

[21]. Direct component cost refers to the raw components available for production which do

not need to be acquired externally from the company through purchase. Some examples of

direct costs are: purchasing of components(which are not internally available), labour, and

warranty. Indirect costs result from the architecture design and cannot be associated to the

production of a single product. Examples of indirect costs are: research and development

(R&D), manufacturing equipment maintenance, marketing, building rental, cost of financing

and sales. Figure 3.1 shows how the cost of a product evolves in each step of its production.

Indirect costs range usually from 10% to 45% of the average selling price [21]. The average

selling price of the product is defined as the summation of components costs, direct costs and

indirect costs. On top of all these costs it is possible to add an additional average discount

cost resulting in the list price of the product. The list price is the price most likely seen by

15

consumers and includes costs if the product is to be sold at a discount price. In markets where

there is high competition the list price may not exist and to further compete companies have

the option of reducing direct, indirect and component costs. Since at every production stage

the preceding cost affects the subsequent costs it is very crucial to select the appropriate

computing architecture in order to gain a cost advantage over a rival competitor in a cost-

performance or low-performance design market. These cost implications also highlight the

need of having some form of quantitative mechanism that will help design engineers to

determine the correct computing architecture approach with some form of computational or

logical analysis to support their decision instead of relying solely on past experiences and

intuition (qualitative analysis).

Figure 3.1: The cost component of a computing device as the price evolves with the addition
of direct and indirect cost [21].

After discussing the many factors that may affect the production of computing architec-

ture we will specifically identify and discuss those factors that are applicable in the decision

process for the development of a DVC. Firstly, since a DVC is to be loaded into a slot located

in a DPRCS the cost of the integrated circuit for a particular DVC can be considered as

part of the overall cost (both static and dynamic sections of the DPRCS) of the integrated

circuit that would house the entire DPRCS. This means that the integrated circuit design

16

cost may be affected by the DVC architecture. If a DPRCS is to be used for a partic-

ular application with three possible DVC variations (Dedicated, software, or hybrid) and

each requiring a different size of integrated circuit area resulting in three DPRCS variations

with different integrated circuit area needs. Figure 3.2 illustrates such a situation when a

Field-Programmable Gate Array (FPGA) logic device is used for implementation. In Figure

3.2B the Hybrid variant of the DPRCS requires 1600 configurable logic blocks(CLBs) which

requires a larger and more costly FPGA chip than the dedicated and software DVC archi-

tectures in Figure 3.2A and Figure 3.2C, both of which can fit on a smaller sized FPGA

chip.

Figure 3.2: DPRCS with different sized slots and DVC

This observation suggests that any method used in determining the nature of a DVC must

take into account the integrated circuit cost of the static and dynamic area of the DPRCS in

which the DVC will be placed in. When dealing with FPGA’s as the reconfigurable platform

the integrated circuit cost of the DPRCS can be considered as the cost incurred by the

resources required by the static and dynamic area. The incurred resources can be viewed

17

as fine grain such as LUTs, flip flops,and gates or viewed as course grain such as divider,

adders, and multipliers. For the purpose of this study we will simplify the resources to the

amount of CLBs required by both the static and the dynamic sections. The cost of each

section is proportional to the platform cost (an FPGA in this case) where the fraction is

the percentage of CLB’s used by each section. In equation 3.1, SSC represents the cost of

the static section of the DPRCS, SSR represents the resource count (CLB count) required

by the dynamic section. The term TR represents the total resource count available in the

reconfigurable platform and RPC refers to the reconfigurable platform cost which is the

cost of the FPGA chip in this case. In equation 3.2, DSC refers to the cost of the dynamic

section of the DPRCS and DSR refers to the resource count required by the dynamic section

which in our case is the resource count required by the DVC.

SSC =
SSR

TR
×RPC (3.1)

DSC =
DSR

TR
×RPC (3.2)

The second direct cost required by DVC are its labour development cost. Depending on

which architecture is deployed different knowledge and expertise with different cost values is

required. For example, if the choice was made that a particular DVC is to be deployed using a

dedicated hardware then one must employ skilled labour with hardware knowledge. However,

if the DVC is to be deployed on a software based DVC then one can simply acquire skilled

labour with software programming knowledge. Table 3.1 shows how different engineering

skill set levels may vary in cost, having an effect on labour cost which is an important factor

in the development of a computing architectures. Table 3.1 is the average Canadian labour

18

cost for electrical, computer, and software engineers for 2010 obtained from Living In Canada

[7] data. Since these labour skills have different labour cost any methodology that will help

determine the nature of the DVC to be produced should probably take into consideration

this variable.

Table 3.1: Engineering Avg. Wage per Hour (Toronto)

Electrical Engineer Software Engineer Computer Engineer

$34.53 $36.60 $31.78

A third factor that may influence the nature of the DVC is its market area. If the DVC

is to be used in thousands of units rather than just tens of units then perhaps a higher

DVC cost may or may not be worth it in some cases. Therefore the number of units to be

produced will have to be considered in some way as well.

After discussing some costs related to embedded digital systems we will look at how these

costs influence architecture design decisions. Currently when designing reconfigurable sys-

tems designers have three main general architecture design approaches to choose from. One

design approach may consist of using an Application Specific Integrated Chip (ASIC), an-

other option is to use a Field programmable Gate Array (FPGA), and lastly a Microprocessor

could be used as well. In order to compare the three types of implementation solutions and

select the most appropriate one, development designers commonly use a cost-performance

ratio (CPR) for comparison. This CPR is calculated using Equation 3.3.

Cost-Performance Ratio (CPR) =
Performance

Cost
(3.3)

Where CPR is equal to the performance metric of the computing architecture divided by

19

its price [22]. Simply using the CPR computing systems with an FPGA approach can be seen

as inefficient. ASIC based computing systems give higher performance over FPGAs, have

lower power consumption, and are less expensive compared to FPGA chips that can cost

more than $1,000. Therefore when the performance of a microprocessor architecture is not

enough the CPR clearly indicates that an ASIC design is a better design solution because

of its superior performance gains and price per chip compared to its FPGA counterpart.

However, in reality this appears not to be the case and the industry shows quite a different

picture. FPGAs architecture designs today are vast and FPGA manufacturers like Xilix and

Altera continue to produce and sell millions of FPGAs chips yearly. Figure 3.3 shows how

FPGA designs over the resent years and into the future will continue to rise while ASIC

designs continue to fall. If the CPR as it is used currently is correct then there should have

been an increase in ASIC designs and a steady fall in FPGA instead. This contradiction

implies we must take a look and reassess the way in which the CPR is used for the design

of computing architectures.

Figure 3.3: FPGA Vs. ASIC Startups [23]

20

Today, embedded systems can be found in many markets such as consumer electronics,

aviation and aerospace, medicine, machinery and other custom electronics. Furthermore, the

computing designs in these areas are multi-functional. In the past, it was fairly common to

find an electronic device designed for a single function. Today, electronic devices are increas-

ingly becoming multi-functional and at the same time they must continue to be reliable, low

power, low cost and fast enough to perform all the functions required. One example of such

a device is mobile phones. They are not just used to make phone calls but also for taking

pictures, editing documents, listening to music, watching video, and sending or receiving

data using multiple wireless standards. Cell phones are a good example of a consumer mar-

ket electronic where the production of units is very large. However, the design market for

consumer electronics is just a small part of the overall embedded systems market and the

number of units produced or manufactured in other sectors range from a hundred units to

just tens of unit only. This means that systems are now being designed to be multi-functional

and limited units being produced. For this reason many designs requiring multiple functions

and limit units to be produced have turned to FPGAs. FPGAs provide the reconfigurable

ability to allow the computing architecture to be multi-functional without the need to have

large ASIC development costs or long development cycles for limited production.

Over the last few years, FPGA configurable logic gates have gone from a few millions to

hundreds of million. The large size FPGAs allows embedded reconfigurable design engineers

to develop a System on Chip (SoC) on a single FPGA. Although larger FPGAs provide

the ability to have a SoC on a large FPGA changes or modifications to the design result

in large compilation times and larger configuration bit streams. For this reason partial re-

configurable systems have become a viable solution to this problem. This is because the

21

particular component (which we address in this study as a DVC) of the design that needs

to be changed or modified can be recompiled with the three common architectures discussed

earlier. Although this solution leads to lower compilation times and smaller bit streams it

presents a question as to how a designer would now select the proper computing architecture

for a particular DVC given that they have three main options to choose from. At first glance

it appears that the CPR could help in this decision making. However, the current CPR

already fails in explaining why configurable computing systems have become more abundant

in the industry and perhaps the CPR should be modified in order to more accurately address

and explain the current architectural design issue faced by engineers when determining the

computing architecture of a DVC in partially reconfigurable computing systems. The biggest

disconnect between how the CPR is obtained and the development of DVC is that CPR does

not explicitly take into account the number of units to be produced. When designers use

CPR most inherently assume that the number of units to be produced is extremely high;

however, as we explained before, that is only the case for the consumer market but not for

the entire engineering marker as a whole. Therefore, by using the CPR as it is currently used

for partially reconfigurable computing systems we are incorrectly assuming that the DVC

to be designed will be deployed in thousands of units when in reality the DVC might only

be deployed in tens of custom units. We also have to acknowledge that since the quantity

of computing architectures can be few, we must take into account the development cost

portion of direct cost which can substantially affect the final cost of a computing system.

Unfortunately the CPR fails to address the development cost because of its inherit assump-

tion that development cost becomes insignificant by the fact that millions of units are to be

produced. To address these two main issues, we propose a modification to the way the CPR

22

is calculated by making sure that development cost and quantity of computing units to be

sold are taken into consideration when determining the correct computing architecture of a

DVC. Lastly the design of a DVC must also take into consideration the cost of reconfigurable

resources required by the DVC since the price of an FPGA chip increases with size.

Taking into consideration all the aspects that affect the cost of a computing architecture

and examining how the design of DPRCS has evolved we propose the use of a Cost-Efficiency

Factor (CEF), Equation 3.4, to help guide the decision process as to whether a particular

DVC should be implemented as a dedicated , software, or hybrid computing architecture.

As one can see in Equation 3.4 the CEF, unlike the CPR, takes into account the number

of DVC units to be produced and their development cost. The cost of the reconfigurable

resources required, and the performance obtained from the computing architecture solution

are the same as in Equation 3.

CEF (Ai) =
P (Ai)

UC + DC(Ai)
Nunits

(3.4)

Where:

Ai = Architecture Ai

CEF (Ai) = Cost Efficiency Factor of Architecture Ai

P (Ai) = Performance of Architecture Ai

DC(Ai) = DT (Ai) × AC(Ai) = Development cost of Architecture Ai

DT (Ai) = Development Time for Architecture Ai

AC(Ai) = Average Development Cost for Architecture Ai

23

Nunits = Number of units to be produced

UC = Unit Cost: SSC + DSC + manufacturing + etc

The Unit Cost term, UC, consists of the platform cost (static + dynamic) and indirect

costs such as manufacturing, packaging, etc. The P (Ai) term is the desired performance

metric result for the proposed DVC architecture. For example, in a video application the

P (Ai) variable can be frames per second(fps) or bits per second(bps) in a data execution.

The Development Cost term, DC(Ai), is calculated based on the number of hours needed

to develop the architecture (DT (Ai)) and the average national wage for such particular

work AC(Ai). The average national wage may or may not be the same for all possible

architecture solutions and varies depending on location. Lastly the Nunits term represents

the total number of computing units anticipated for production. This term is important

because it is important to notice that a particular DVC may or may not be used in millions

of of DPRCS instead it may just be used in tens of units. Since the quantity of DPRCS

with the specified DVC unit to be produced has an effect on costs and varies depending on

application one cannot eliminate the Nunits term. Assuming the DVC will be used in millions

of units would be incorrect since it is not always the case, especially in areas concerning R&D

or specialized custom systems where production is few.

The units for the CEF factor is always performance metric per dollar. Therefore, if we

are designing a system for video processing then one performance metric could be frames

per second (FPS), then the CEF would be FPS per dollar. With this information the

designer can see how much performance metric is attained per every dollar that is put into

developing the architecture. The higher the CEF value the more cost effective the design

is since one is getting a higher performance value per every dollar spent on developing the

24

design. This type of computing architecture analysis can be beneficial in the design of a

DVC architecture tailored towards the cost-efficiency computing market or application such

as multitasking smart-phones, and high performance video streaming. It is important to

note that performance metric calculations and analysis for a given computing architecture

may differ from one application to another application; therefore, during the CEF analysis

one must decide on one particular performance metric. For example, if the performance

metric for the dedicated DVC is FPS then the performance metric for the software and

hybrid DVCs should also be FPS.

Although there may be many ways to analyze and measure performance there are two

widely used performance metrics which are execution time and throughput. Execution time

is the time elapsed from the start of the task to the end of the task. Execution time includes

everything the computing system needs to do to accomplish the task such as memory access,

I/O bus service routines and Operating System (OS) overheads. Throughput is the amount

of work done within a specified time. One way to increase throughput is to reduce the task

execution time but one can also take advantage of parallelism in tasks as well. For the

purpose of determining the CEF in this study, we analyze performance in terms of execution

time.

In order to determine what kind of an impact our proposed CEF approach may have on

the architecture design decision of a DVC we need to consider multiple experiments that: 1)

Contain commonly used architecture features such as architectures that are mostly stream

based where data is mostly coming in, processed and sent out quickly without the need to

store large amounts of data; and, 2) Architectures that are memory centric in which data

that is being processed and its results need to be stored in memory. For this reason we

25

designed three experiments that will help us to see how useful the CEF can be in the design

of DVC architectures.

The first experiment involves RGB to YCBCR colour conversion which is a more of a

streaming application since the RGB colours are convert to YCBCR colours and do not have

to be necessarily stored. The second experiment deals with Sobel mask computation for the

purpose edge detection techniques. This experiment is more memory centric because the

inputs and outputs to the Sobel mask calculations need to be stored so that they can be

further processed. The third experiment is more complex and incorporates both streaming

and memory centric features of the first two experiments.

3.2.1 Summary

By using equation 3.4 along with performance requirements and costs we will demonstrate

how a CEF value can be used to correctly select the proper DVC computing architecture for

a particular application for development in situations where cost-performance is of impor-

tance without ignoring the development costs and without the assumption that production

will always be extremely high. In this study, we evaluate the use of a CEF on three experi-

mental implementations: RGB to YCBCR colour conversion, Sobel Mask computations and

a natural user interface with augmented reality display system(NUI-ARDS). The detailed

experimental procedure and observations for these experiments are described in the following

chapter 4.

26

4 Approach Using Experimental
Applications

4.1 Introduction

In this thesis we use three video processing applications as mentioned in chapter 3 to demon-

strate how the CEF can help guide a design engineer or an automatic tool select the most

appropriate computing architectural structure of a DVC to be developed. The applications

used for this study are in the area of edge detection, colour conversions, and augmented

reality. We will look at all three applications and evaluate the usefulness of a CEF when

designing a DVC for a DPRCS hardware platform. The following is a list of experiments

selected to examine our proposed use of a CEF for determining the architectural nature of

a DVC which were introduced in chapter 3:

1. Sobel Mask Computation

2. RGB to YCBCR Colour Conversion

3. Natural User Interface with Augmented Reality (NUI-ARDS)

The reason these three experiments were chosen was that they deal with streaming and

memory centric architecture applications which are very commonly found in computing

designs and, therefore, will give us a good measure as to how this CEF can address the

design concern of DVC in partially reconfigurable computing systems.

27

4.2 DPRS Experimental Setup

In order to perform the three listed experiments, an appropriate platform is required. For

the purpose of this thesis an existing Multi-Application Reconfigurable System (MARS)

platform was selected. MARS is a custom platform consisting of a Virtex 4 FPGA with a

1024 x 768 projector display, 3D stereo panoramic capture, memory for video buffering, and

a stereo camera for motion tracking. The embedded DPRS inside the Virtex 4 FPGA in

which the DVC would be placed is depicted in Figure 4.1.

Figure 4.1: MARS Experimental Embedded Platform On-Chip Architecture Organization

28

4.3 Data Centric Experiment Test

4.3.1 Sobel Mask Computation Description

In image processing a common task performed that is computationally intensive and requires

memory storage for the inputs and output results is edge detection. There are many edge

detection methods and algorithms but in this particular experiment we specifically implement

Sobel mask computation DVC for the purpose of an Edge detection application.

4.3.2 Sobel Mask Computation Principles

Edge detection is defined as an approach for segmenting an image based on abrupt local

changes and this process is explained in [24]. When performing edge detection on an image

there are three main tasks to perform:

1. Take the image and apply some method or process to reduce noise. One example of

image noise reduction is image smoothing.

2. Extract all possible edge points from the given image using local operations such as

various masks (for example a Sobel mask).

3. Select and determine the true edge points from the set of points obtained in step 2.

To extract all possible edge points in an image one can take advantage of the image

gradient. The strength and direction of the gradient at each pixel of an image can be

determined using equation 4.1 where the gradient is denoted by ∇f . The original image is

29

denoted as f . The term gx is the gradient vector component in the x-direction and the term

gy is the component of the gradient vector in the y-direction.

∇ ≡ grad(f) ≡

gx
gy

 =

∂f
∂x

∂f
∂y

 (4.1)

In order to calculate the partial derivatives to obtain the gradient of an image one can

use Sobel partial derivatives using Equations 4.2 and 4.3. Where the variables Z1 to Z9

represent the colour(red, blue, or green) values for the image pixels under the Sobel mask as

depicted in figure 4.3.

gx =
∂f

∂x
= (z7 + 2z8 + z9)− (z1 + 2z2 + z3) (4.2)

(4.3)

The main purpose of this experiment is to determine the appropriate computing archi-

tecture for the computation of the gradient in an application that would be performing the

three main steps in edge detection. Our goal is to determine if the DVC component that

will be responsible for gradient computation in step 2 should be implemented as a dedicated,

hybrid, or software DVC.

4.3.3 Sobel Mask Experimental Implementation

In our experimental setup, we use a Sobel mask to obtain the partial derivatives of an image

that is of 32x32 pixels in size. The Sobel equations 4.2 and 4.3 used for partial derivatives are

implemented using a mask as depicted in Figure 4.2(A). The variables M0,0 to M2,2 represent

30

the value for each element in a mask, thus different masks have different element values.

The Sobel mask in Figure 4.2(B) was applied on the image to get the gradient in the

x-direction, gx. The mask is implemented by aligning the mask starting at the top left corner

of the image and sliding it along the image with each pixel of the image centred under the

mask centre element. At each pixel the partial derivative is calculated using the mask. since

the image pixel has to be centred under the mask the gradient for the first and last row, and

the first and last columns cannot be calculated. Figure 4.3 illustrates how this calculation

process was performed. In Figure 4.3, (A) shows the starting pixel position in the image,

(B) shows how the mask is shifted and centered for the next pixel in the image and (C)

shows the last pixel position in the image from which the gradient can be calculated using

the Sobel mask.

Figure 4.2: [A]General 3x3 mask structure [B]Sobel Mask

The gradient for pixels along the first and last rows, and for pixels along the first and

last columns can not be computed because the mask cannot be centred on these pixels which

results in the final image being two rows and two columns smaller than the original image.

For the purpose of this experiment a random set of values were used for pixel image values.

In order to determine performance we used a system cpu time approach because it pro-

31

Figure 4.3: Sequence of images depicting implementation of Sobel mask on a 32x332 pixel
image

32

vided the best comparable measurements between the three types of systems. Each DVC

asserts a signal to indicate the start of the gradient computation and deasserts the signal

when the gradient computation has been completed. The start and end signal of the gradi-

ent task were captured using a digital analyzer connected to an output pin on the MARS

platform. The execution time for the task was taken to be the time between the rise and

fall of the signal as depicted in Figure 4.4. The hybrid and software DVC have no operating

system overhead and all low level software is written in C to ensure that the execution time

measured consisted only of system CPU time.

Figure 4.4: Measurement of task execution

4.3.4 Sobel Mask DVC Symbol

Figure 4.5 show a block diagram of the Sobel Mask DVC.

4.3.5 Sobel Mask DVC I/O Signals

Table 4.1 explains the input and output signals of the Sobel Mask DVC.

33

Figure 4.5: Sobel mask DVC symbol

Table 4.1: Sobel DVC input signals
Name Size Description
RGB Image 32x32 pixels 32x32 pixel image to

which the Sobel Mask
will be applied to.

Table 4.2: Sobel DVC output signals
Name Size Description
RGB Image 30x30 pixels This is a 30x30 pixel image

resulting from the applied
Sobel Mask computation

Star End 1 bit This signal is used to deter-
mine the start and end of
the Sobel Mask Computa-
tion on a 32x32 image

34

4.3.6 Sobel Mask DVC Organization

The organization of components within the dedicated Sobel Mask DVC were treated as a

black box hardware accelerator. Figure 4.6 shows the dedicated computing accelerator and

its interface signals. The input and output signals for the dedicated DVC are defined in

tables 4.3 and 4.4.

Figure 4.6: Dedicated circuit accelerator for Sobel and YCBCR computation

Table 4.3: MAC hwacc input signals
Name Size Description
clk 1 bit Clock input signal
dIn 32 bits Input data for computation
dValid 1 bit Signals if data on dIn is

valid (active high)
rst 1 bit Component reset signal (ac-

tive high)

Table 4.4: MAC hwacc output signals
Name Size Description
dout 32 bits Output data signal of com-

puted results
dRead 1 bit Determines if dIn has be

latched (active high)
dwrite 1 bit Determines if data on dout

is valid (ative high)

35

The organization of internal components for the hybrid Sobel mask DVC is depicted in

Figure 4.7 and a more detailed Microblaze structure is found in appendix A.

Figure 4.7: Sobel mask hybrid DVC internal organization

The organization of internal components for the Software Sobel mask DVC is depicted

in Figure 4.8 and a more detailed Microblaze structure is found in appendix A.

Figure 4.8: Sobel mask software DVC internal organization

4.3.7 Collected Experimental Data From Sobel Mask DVCs

Table 4.5 shows the observed experimental execution times and CEF calculation for the three

types of DVC considered.

36

Table 4.5: Sobel mask experimental data
DVC Type Execution Time Development Time Development Cost
Dedicated 20.67 µs 80 hr $2762.40
Hybrid 556 µs 30 hr $1045.32
Software 484 µs 6 hr $216.60

4.4 Stream Based Experiment Test

4.4.1 RGB to YCBCR Conversion Description

In image processing there are many colour schemes to work with and many times it is

necessary to convert from one colour scheme to another depending on the application. In

this experiment our goal was to determine the proper computing architecture for an RGB

to YCBCR converter DVC.

4.4.2 RGB to YCBCR Principles

Today, there are many hardware and software colour imaging systems and there are millions

of colours to manage and organize in some way so that systems can exchange image data

correctly. Colour images are made up of colour pixels where each pixel colour is determined

by the system using a particular colour model such as the RGB(Red, Green, Blue) colour

model [24]. The RGB colour model assumes that an image is composed of three distinct

images; one red, one green and one blue image. When combined these three images produce

the resulting RGB colour image.

In the YCBCR encoding model the colour image is composed of three image components:

the luma, blue-difference and red difference components. The luma component, Y′, carries

the (Achromatic) brightness information of the image. The blue difference (CB) and red

37

difference (CR) components carry the colour information of the image. To convert an RGB

image into its YCBCR components Equations 4.4, 4.5, and 4.6 [25] can be used for an 8 bit

pixel depth digital image.

Y ′ = 16 +
65.738×R′

D

256
+

129.057×G′
D

256
+

129.057×B′
D

256
(4.4)

CB = 128 +
37.945×R′

D

256
− 74.494×G′

D

256
+

112.439 ∗B′
D

256
(4.5)

CR = 128 +
112.439×R′

D

256
− 94.154×G′

D

256
+

18.285×B′
D

256
(4.6)

The terms R′
D, G′

D and B′
D refer to the red, green, and blue pixel values of the image

respectively.

4.4.3 RGB to YCBCR Experimental Implementation

A randomly generated 32x32 RGB matrix was initially generated. Then the matrix was

converted to its YCBCR component values using equations 4.4, 4.5, 4.6. The execution time

is taken as system time and obtained in the same manner as in section 4.3.3.

4.4.4 RGB to YCBCR DVC Symbol

Figure 4.9 shows a block diagram of the RGB to YCBCR DVC.

4.4.5 RGB to YCBCR DVC I/O Signals

Tables 4.6 and 4.7 explains the input and output signals of the Sobel Mask DVC.

38

Figure 4.9: Sobel Mask DVC symbol

Table 4.6: Input Signals

Name Size Description
RGB Image 32x32 pixels 32x32 pixel RGB image to

be convert into YCBCR val-
ues

Table 4.7: Output Signals

Name Size Description
YCBCR Image 32x32 pixels The converted 32x32 pixel

YCBCR image.
Start End 1 bit This signal is used to deter-

mine the start and end of
the RGB to YCBCR conver-
sion task on a 32x32 pixel
image

39

4.4.6 RGB to YCBCR DVC Organization

The organization of components within the RGB to YCBCR dedicated DVC was previously

designed in the lab and depicted in Figure 4.6. The YCBCR accelerator is the same compo-

nent however configured differently before sending the data for computation. For example,

the accelerator is configured to expect six or three sets of values depending if the task is a

Sobel or YCBCR operation, respectively.

The organization of internal components for the RGB to YCBCR hybrid DVC is depicted

in Figure 4.7 with the accelerator component configured for YCBCR operations. Similarly,

the organization of internal components for the software RGB to YCBCR DVC is depicted

in Figure 4.8 configured for YCBCR operations.

4.4.7 Collected Experimental Data from RGB to YCBCR DVCs

Table 4.8 shows the observed experimental execution times, development time and develop-

ment cost for the three types of DVCs considered for the RGB to YCBCR task.

Table 4.8: RGB to YCBCR Experimental Data
DVC Type Execution Time Development Time Development Cost
Dedicated 21.66 µs 40 hr $1381.20
Hybrid 800 µs 30 hr $1045.32
Software 122 ms 6 hr $216.60

40

4.5 Data and Stream Based Experiment

4.5.1 NUI-ARDS DVC

In our third experimental test we apply our methodology to a more complex application to

determine the CEF of a DVC that would extend the capabilities of an existing 3D stereo-

panoramic vision system depicted earlier in Figure 4.1.

4.5.2 NUI-ARDS DVC Description

The 3D Stereo-Panoramic Acquisition and Display System (3D-SPADS) [26] developed in

the Embedded Reconfigurable Systems Lab at Ryerson University displays captured video on

three screens. A portion of the captured video displayed in the center screen can be seen in 3D

by the human eye. Our goal is to provide a DVC computing architecture for a Natural User

Interface Augmented reality Display System (NUI ARDS) which could extend the systems

capability by allowing 3D virtual objects to be superimposed on the center screen. Our

main objective is to determine the cost effectiveness of the computing architecture using

our proposed analysis. The added capability would allow the 3D-SPADS to be used in

applications such as telepresence or telemedicine by allowing a human operator to remotely

control, plan, and manipulate a robotic agents movement or action. Figure 4.10 illustrates

an example of how the NUI ARDS could work.

The architecture design selected needs to also meet the following functional and technical

specifications.

Functional Specifications

41

Figure 4.10: Example of NUI ARDS visual display capability

1. System should be able to inject virtual objects into the captured video data.

2. Virtual objects can be 3D or 2D such as pop-up menus, and 3D pointer.

3. Virtual objects follow the movement of the human operators interface device.

4. The size and shape of virtual objects should react to movement of the human operator

interface device.

5. Allow human operator to select robotic agents motion path.

Technical Specifications

1. Virtual objects should be superimposed on captured stereo video data from XVGA

camera 1 and VGA camera 2.

2. The entire display is divided into 3 screens, left screen, center screen, and right screen.

The left screen displays the captured left peripheral video data, the right screen displays

the right peripheral video data. The center screen displays both the left and right video

42

data simultaneously for the left and right eye respectively to provide a stereoscopic

display.

3. Each virtual object displayed is no more than 64x64 pixels in size.

4. System should be a loadable and unloadable DVC on the MARS platform.

5. The position and tracking of the human operator interface device is with respect to

the xyz Cartesian co-ordinate system in Figure 4.11:

Figure 4.11: Controller interface motion capture design

In this design situation a dedicated DVC was eliminated from consideration because

the human-computer interaction with the system is vastly slower than the processing speed

of the 3D-SPADS system. For example, the required 60 FPS with a screen resolution of

1024x768 means that the system has 9.82 frames to process a single character input by

43

a human operator if a keyboard control device was used at a speed of 367 characters per

second. With this system the user uses hand motion and selection of points which is even

slower. With a user randomly selecting any 10 points at 0.45 point selections per second the

system has even more time for processing. However, this system needs to draw 2D and 3D

images and then output the appropriate pixel. Adding special dedicated hardware for the

drawing of images is possible but can also be done by the processor at a slower rate without

affecting the user interaction with the system. In this situation, a hybrid DVC is a good

computing architecture candidate.

4.5.3 NUI-ARDS DVC Principles

Graphical display systems such as computer graphics cards usually have a large frame buffers

to store entire display image where the system can make any change before output to the

screen. This type of approach requires large amounts of memory and in our case a 1024x768

display resolution with a 24 bit RGB colour depth would require 2.25 MB of memory. For

an embedded system with minimal memory available 2.25 MB would take up almost all the

memory available on the Virtex 4 [27] which would also be required by other components. In

this case, we developed a different approach for displaying virtual graphical images superim-

posed on live video stream which lead us to use a bitmap approach. To superimpose virtual

objects onto the live video stream the display screen is divided into 32x32 pixel sections

which we refer to as grid blocks. In each grid block a virtual object can be injected into the

display. Figure 4.12 depicts how the display screen is divided into grid blocks and how the

virtual image to be superimposed onto the live video stream is stored in memory.

44

Figure 4.12: Visual display divided into grid blocks

Each virtual image pixel colour information is encoded into six bits. One bit is used for

transparency, two bits for red channel, three bits for green channel, and two bits for blue

channel. The six bits are decoded using the method in tables 4.13 to 4.16 in order to get the

actual eight bit RGB virtual image colour channel data output on the display.

Figure 4.13: Six bit encoding scheme for (8 bit) red channel

45

Figure 4.14: Six bit encoding scheme for (8 bit) green channel

Figure 4.15: Six bit encoding scheme for (8 bit) blue channel

46

Figure 4.16: Six bit encoding scheme for pixel transparency

In order to superimpose 3D virtual images there must be an offset between the left and

right eye virtual images presented to the human operator to account for disparity. Disparity

is the slight difference between two images when captured by image capturing devices such

as the human eyes or in our case the front two cameras of the 3D-SPADS. Without any

disparity virtual images will be visible in 2D. In order to provide such disparity we consider

having two video display layers. One layer contains the visible video stream display area

and the other layer contains the virtual video layer area which consists of the virtual images.

Figure 4.17 depicts how the virtual video layer can be moved vertically or horizontally in

order to calibrate the disparity for displaying 3D virtual images properly.

In order to superimpose virtual images onto the live video stream there needs to be a

component that will determine whether or not the pixel to be displayed should come from

a virtual image object or from the live video stream. This component can also be either

dedicated, software, or hybrid based. Mixing and combining the three types of computing

architectures for each component leads to the design of a dedicated, software or hybrid

computing system. For example, if the drawing of virtual images into memory is performed

by software and the display part is done by dedicated hardware then the computing system

is a hybrid DVC. If the drawing of virtual images were to be dedicated hardware as well

then the result would be a dedicated DVC.

Complex virtual 3D images that are to be superimposed onto the live video stream can

47

Figure 4.17: Virtual video layer (vvl) shifting

48

be broken down into smaller components such as point, lines, and colour gradients. The

construction of virtual 3D images falls into three categories pertaining to the field of 3D

computer graphics; 3D modeling, layout & animation, and rendering [28, 29]. 3D modeling

deals with the method or process involved in the creation of the 3D image. For example, a

3D pyramid can be built by drawing a point at the corners of the pyramid and then drawing

lines between the points in order create the pyramid shape. Layout & animation deal with

the mechanism as to how the objects are positioned in the scene, how they interact with each

other, and how their size and shape may change over time. Rendering is when the 3D object

model is displayed on the screen with simulated lighting that affects the visibility aspect of

the 3D object displayed. There are many complex mechanics to achieve rending such as ray

tracing [30], ambient occlusion [31], and index [32]. For the purpose of this study we will us

a more simplified approach by rendering 3D objects using our understanding of visual 3D

effects and shading as depicted in Figure 4.18.

Figure 4.18: Construction of a virtual 3D pointer using primitive shapes (points, lines) and
shading

49

4.5.4 NUI-ARDS DVC Implementation

The design path taken was to divide the tasks into a sequential system and into a Parallel

system in order to design a hybrid DVC. Since it is not necessary to draw images very fast and

drawing various virtual image shapes was necessary, the component responsible for drawing

virtual objects into memory can be a microprocessor or a processor with an accelerator that

can specifically draw a particular object. However, from our Sobel mask execution results

that show that software architecture is more appropriate for data centric tasks we chose to

have the software processor perform data centric tasks such as drawing images into memory.

For the software portion of the design a Xilinx’s Microblaze soft-core processor can be used. A

microprocessor is a sequential processing system and many different images can be produced

by using programming algorithms such as Bresenham’s line and circle algorithms [33] [31].

On the other hand, the YCBCR experiment showed it is reasonable to have dedicated

hardware for streaming tasks such as displaying streaming video and virtual images simulta-

neously. In our design the injection of virtual images and the video controller component are

responsible for superimposing virtual images onto the video data stream maintaining the 60

FPS specification of the system. Therefore, the components that perform the display aspect

of our task were implemented as the dedicated hardware portion of the NUI-ARDS hybrid

design.

The NUI-ARDS system was divided into components so that only the components needed

for the current active mode can be loaded and unloaded into reconfigurable slots. The MARS

platform contains a sub component called the RCS Video Processor which may contain the

NUI-ARDS DVC as an on-chip plug-gable device by means of partial reconfiguration. Within

50

the NUI-ARDS DVC lies the NUI AR COMPONENT sub component responsible for the

creation of virtual objects which can then be superimposed on the video stream. Figure

4.19 depicts how the NUI-ARDS is a loadable DVC of the RCS Video Processor running on

the MARS platform or as loadable DVC on its own. Figure 4.20 shows how the NUI-ARDS

forms part of the RCS Processor.

Figure 4.19: MARS Platform with NUI-ARDS and RCS PRocessor

51

Figure 4.20: NUI-ARDS as part of the RCS Processor Internal Components

52

4.5.5 NUI-ARDS DVC Symbol

Figure 4.21 shows a block diagram of the NUI-ARDS DVC.

Figure 4.21: The NUI-ARDS DVC

53

4.5.6 NUI-ARDS DVC I/O Signals

The description of the input and output signals for the NUI-ARDS can be found in Appendix

B.

4.5.7 NUI-ARDS DVC Organization

The NUI-ARDS DVC component is responsible for manipulating the video stream data

obtained from stereo-cameras. A 65 MHz clock frequency is used for the projector device

horizontal and vertical sync signals and is also used by the NUI-ARDS DVC. In order

to display and manipulate the video stream data correctly the NUI-ARDS DVC requires

information about display signals and human operator input signals. The human operator

input signals is provided by an infrared LED controller with a button so that the human

operator can point and select the desired position using the button. The display signals

are provide by the buffering and display component and the human operator signals are

provided by the motion calculator [26]. Within the NUI-ARDS there are memory modules

based on BRAMs which the soft-core processor (Microblaze) can use to perform its drawing

task. The images stored in memory by Microblaze are displayed when the horizontal and

vertical counts of the projector device and pointer device are equal or if that area of the

screen has been selected by the user as a valid destination for the robotic agent. At the end

of each frame the image memories are checked for any new content which will need to be

displayed next.

The Internal organization schematic of NUI-ARDS can be found in documentation [34].

The NUI-ARDS is composed of the following components: NUI AR COMPONENT, Two

54

VO Injector2, Two VGA Controller, Two vv counters, two vvl shifter, Two vo maps, Thirty-

one img32x32, One img32x32memctlr, Two mux4to1, and Eight mux8to1.

The NUI AR COMPONENT is responsible for providing the left and right image of a virtual

object (stored in BRAMs) to a pair of VO Injector components. The VO Injector component

is responsible for determining whether the pixel data from BRAM or the pixel data from the

VGA camera should be passed on to the VGA Controller. The VGA Controller component

is responsible for combining the video data obtained from a camera and the virtual object

stored in BRAM. For stereoscopic vision, two VGA Controllers are used; one for the left

eye projector display device and the other for the right eye projector display device. The

vvl shifter component is responsible for shifting the virtual video layer left and right or

up and down to provide the proper video disparity in order to correctly produce virtual

3D objects. The vo map component is memory reserved for storing the type of virtual

object that needs to be displayed at the current grid block. The img32x32 component is

block memory used for storing the pixel data of a particular virtual image. The mux4to1

component is used to select which memory bank of img32x32 components is to be used for

display. The mux8to1 component is used to select which of the eight img32x32 components

in the selected memory bank is to be used for display. The Microblaze component, mb1, is

found inside the NUI AR COMPONENT component and it’s internal organization can be

found in documentation [34]. The flow chart in Figure 4.22 shows the program execution

flow on the mb1 processor component.

For the purpose of this thesis only a few parts of the design have been explained, however

a full component description and their principles of operation can be found in the documen-

tation report [34].

55

Figure 4.22: Software execution flow chart for the mb1 Microblaze component

56

4.6 Summary

In this chapter we focused on the implementation of the NUI-ARDS Hybrid DVC and the

implementation and gathering of experimental data for three Sobel mask and and three RGB

to YCBCR DVCs. In the following chapter 5 we focus on the experimental data analysis

from the experiments performed in this chapter and discuss our findings.

57

5 CEF Analysis and Discussion

5.1 Introduction

In this chapter we analyze the experimental data presented in chapter 4 and discuss our

findings. The calculated CEF is used to determine the most appropriate DVC computing

architecture design for the two experiment applications presented in chapter 4

5.2 CEF Analysis Explanation

In our analysis we take into consideration that the DVC components were designed by an

averaged skilled engineer with knowledge of both software and hardware for SoC design.

From this assumption we used an average wage of $34.19 per hour for the average cost

(AC) value and calculation of development cost (DC) for the given DVC. The average wage

was determined by taking the average wage of software and hardware engineers from Table

3.1 in Chapter 3. To determine the cost of the silicon required by a given DVC can be a

complicated task since the cost depends the resource granularity level you are looking at.

The cost of silicon area or resource taken up by a DVC can be quantified in many ways such

as determining the number of flip-flop, number of configurable logic blocks, number of Ram

Bit, or even number of look-up-tables(LUTs). Each of these resources also have a different

cost associated with them. For example, a RAM16 memory resource may be more expensive

than using a LUT. Therefore, a DVC with large amounts of RAM16 compared to a DVC

with few RAM16 resources, and if all other resources are equal, would have a higher cost. To

simplify this calculation, we chose to assign unit cost (UC) to the price of an FPGA device

58

with equivalent resources to accommodate the given DVC. Table 5.1 shows the Spartan 3E

FPGA prices selected for the use of UC for the Sobel mask and YCBCR experiment analysis.

Table 5.1: Selected UC equivalent resource Spartan FPGA chip cost

FPGA Chip CLB Count Price
XC3S1200E-4FGG320C 3688 $67.56
XC3S250E-4VQG100C 612 $14.50
XC3S100E-4VQG100C 240 $10.51

5.3 Analysis of Data Centric Experiment Test

5.3.1 Sobel Mask Experiment Analysis

In section 4.3.7 we obtained the execution time for the computation of a Sobel Mask task

and its resulting silicon area required. Since the dedicated DVC requires 65 CLBs we took

the UC for the dedicated implementation to be $10.51. Similarly, we took the $67.56 as the

UC for both the Software and Hybrid implementation. Although the Software DVC takes

up about half the resources when compared to the Hybrid DVC there was no other FPGA

pricing within the same family that had a similar amount of CLBs at the time of analysis.

Using this data we were then able to calculate the CEF for each Sobel mask DVC. Figure

5.1 shows the CEF results in a graph format while Tables C.1, C.2 and C.3 in appendix C.1

show the detailed calculations performed.

The calculated development cost (DC) for each Sobel Mask DVC is listed in Table 5.2.

59

Figure 5.1: CEF for Sobel mask DVCs

Table 5.2: Sobel mask DVC development cost

DVC Architecture Development Cost (DC)
Dedicated $2735.20
Software $205.14
Hybrid $1025.70

60

5.3.2 Sobel Mask Experiment Discussion

From Figure 5.1 we can see that the most cost efficient design is the dedicated DVC followed

by the software DVC and then the hybrid DVC. Ideally, when an (dedicated circuit) acceler-

ator is added to a design it is expected that the execution time for the same task is decreased;

thus increasing performance. However, it is noticed in Table 4.5 that the performance for the

hybrid DVC is lower than the software DVC. In order to determine the reason for this obser-

vation, we went back to analyze the design and noticed that although the software DVC and

hybrid DVC had similar software code when it comes the time to optimize the code for both

the software and hybrid DVC, that the optimized software DVC code had fewer instructions

compared to that of the Hybrid. The extra instructions present in the optimized code of the

Hybrid DVC could not be removed because they are configuration signals needed to control

the Sobel mask computing accelerator. This means that the performance increase obtained

by the accelerator for the purpose of computing the gradient was overshadowed by the extra

time required for proper control signals between the processor and the dedicated circuit. For

example, in order to send data out of the processor a 32 bit Fast Simplix Link (FSL) was

used. From the processors point of view these are control and data signals bunched up for

the dedicated circuit. In order to send out the control signals and bit shifting to align the

data and control signals in the proper order was necessary. The extra time required by these

instructions appears to be greater than the gain in performance given by the accelerator.

In addition to a lower performance, the hybrid DVC also had 5 times the development cost

which further contributed to its lower CEF value compared to that of the Software DVC

for this particular task. The dedicated DVC development cost was twice expensive than the

61

hybrid; however, it gave a performance increase 10 times greater which reduced the effect of

having a large development cost even when only small quantities were to be produced.

5.4 Analysis of Stream Centric Experiment Test

5.4.1 YCBCR Converter Experiment Analysis

In section 4.4.7 we obtained the execution time for the RGB to YCBCR task and its resulting

silicon area required. Since the dedicated DVC requires 281 CLBs we took the UC for the

dedicated implementation to be $14.50. Similarly, we took the $67.56 as the UC for both

the Software and Hybrid implementation. As in the Sobel Mask experiment, although the

Software DVC took up about half the resources when compared to the Hybrid DVC there

was no other FPGA pricing within the same family that had a similar amount of CLBs at

the time of analysis. Using this data we were then able to calculate the CEF for each YCBCR

DVC. Figure 5.2 shows the CEF results in a graph format while Tables C.4, C.5, and C.6 in

appendix C.1 shows the detailed calculations performed.

The calculated development cost (DC) for each RGB to YCBCR DVC is listed in Table

5.3.

Table 5.3: RGB to YCBCR DVC Development Cost

YCBCR DVC Development Cost (DC)
Dedicated $1367.60
Software $205.14
Hybrid $1025.70

62

Figure 5.2: CEF for YCBCR DVCs

5.4.2 YCBCR Experiment Discussion

From Figure 5.2 we can see that the most cost efficient design is the dedicated DVC followed

by the hybrid and then software DVC respectively. The execution time for the hybrid in

this situation was faster than the software by 10 times; however, its development cost was

5 times higher. This means that the performance increase obtained by the accelerator was

more influential than the development cost associated with the increased performance in the

determination of the CEF. The dedicated hardware, once again, had the best CEF because

its performance was far greater than its development cost. However, that does not mean

the only choice to consider should be the dedicated DVC. The dedicated DVC is clearly

the most cost efficient but sometime its large speed increase may not be necessary and the

63

hybrid or software DVC performance could more than enough to meet the performance

specification. Another reason not to select a dedicated DVC is simply because of its time to

market. The development time to market is important to consider, especially in competitive

markets where cost efficiency is also important. A longer development time extends the time

to market which means other competitors that may have gone with the option of a hybrid

or software DVC (with shorter development time) instead but still meet the performance

requirements would have an advantage by receiving extra revenue from hitting the market

first.

5.5 Hybrid Software Code Optimization CEF

Since companies are always looking to be the first to release their product to the market, it is

possible for them to produce more than one design that may or may not be optimized either

software or hardware wise. However, the results show that the code optimization can play

a role and affect the performance of a hybrid and software DVC. This lack of optimization

is also commonly seen when companies are developing prototypes or when companies just

want to test the market. Sometimes a product may be released to market knowing that its

software may not be optimized; however, getting it out into the market is better and once in

the market slowly optimize components such as software can be accomplished by releasing

new versions or new models of the product. For this reason we decided to take a look and

see how a lack of optimization in software may affect our decision to select a DVC. Tables

5.4 and 5.5 show the execution time of each DVC for both the Sobel mask computation and

RGB to YCBCR tasks.

64

Table 5.4: Un-Optimized code execution time for Sobel mask DVC

Sobel Mask DVC Execution time
Hardware 20.67 µs
Software 6.29 ms
Hybrid 4.8 ms

Table 5.5: Un-Optimized code execution time for RGB to YCBCR DVC

YCBCR DVC Execution time
Hardware 21.66 µs
Software 149.0 ms
Hybrid 3.4 ms

From the Table 5.4 we observed that the execution time for the Sobel mask DVC is now

faster for a dedicated DVC than for a software DVC which is the effect of both designs

not being optimized to their full potential. On the other hand, Table 5.5 shows that the

DVC optimization did not affect which DVC was faster than the other. To see what effect

this had on the CEF results we recalculated the CEF for both Sobel mask and the RGB to

YCBCR task for analysis. Tables C.7, C.8 and C.9 in appendix C.2 shows the detailed CEF

calculations for the Sobel mask task using non-optimized software code. Figure 5.3 shows

the resulting CEF graph.

Tables C.10, C.11 and C.12 in appendix C.2 show the detailed CEF calculations for the

RGB to YCBCR task using non optimized software code. Figure 5.4 shows the resulting

CEF graph.

The software DVC for the Sobel mask task was 1.15 times faster then the hybrid DVC

for the optimized software CEF results shown in Figure 5.4. Figure 5.4 also depicts that the

software Sobel mask DVC maintains its cost efficient above the hybrid DVC no matter how

65

Figure 5.3: CEF for YCBCR DVCs

many units are produced. From this result one might expect a similar outcome with the

CEF calculations for non optimized software DVCs; however, this is not the case. Figure 5.3

shows that even though the Sobel mask hybrid DVC is 1.31 times faster than the software

Sobel mask DVC it did not keep its CEF value higher than that of the Sobel mask software

DVC throughout all product production levels. From Table C.8 we see that for production

quantities of 50 units and up the CEF for the hybrid DVC is higher then that of the software

DVC, hence a hybrid DVC approach is the most cost effective. However, for quantities lower

than 50 units the CEF is less than that of software DVC which means that a software DVC

would be more cost effective in this case. This analysis is important because it shows how the

development cost is linked to cost efficiency and that it should not be left out of consideration.

By comparing the DC(Ai)/Nunits values from Table C.8 and Table C.9 we noticed that

66

Figure 5.4: CEF for YCBCR DVCs

although the Sobel mask hybrid DVC has a higher CEF when it reaches its maximum CEF.

The rate at which the maximum CEF is reached is related to the rate at which the cost

per unit term DC(Ai)/Nunits reaches zero. Since the Hybrid DVC development cost was 5

times higher than that of the software Sobel mask DVC, the rate at which the cost per unit

reached zero was slower for the Sobel hybrid DVC compared to that of the Sobel software

DVC.

Figure 5.5 shows how in the case of the Sobel mask the CEF curves for the hybrid and

software DVCs intersect at some point while the CPR curves never intersect even though

the number of units is low. It also demonstrates how the CPR fails to correctly select the

most cost effeicent computing architecture when the number of units to be produced is low.

67

Figure 5.5: A CEF and CPR comparison of Sobel DVCs

5.6 NUI ARDs CEF Vs. CPR Analysis

In section 4.5 we implemented a NUI-ARDS hybrid DVC. The main purpose of this exper-

iment is to go through the steps one would take in order to calculate a CEF for a more

complex hybrid DVC. By Using the development cost data from our implementation process

the CEF for the particular NUI-ARDS hybrid DVC was determined. Figure 5.6 shows the

CEF analysis for the NUI-ARDS hybrid DVC compared to a CPR analysis.

When comparing both the CEF and CPR curves in Figure 5.6 both lines eventually level

off at the same value but their rising rate level is different. The CPR reaches the maximum

cost performance ratio from the very beginning, however, the CEF levels off gradually as

number of units to be produced increases. When the number of units to be produced is

68

Figure 5.6: A CEF and CPR comparison of a Hybrid NUI-ARDS DVC

significantly large the CPR becomes a special case of the CEF where development cost per

unit is zero. This demonstrates how the CPR is appropriate to use only in cases where large

number of DVCs are to be produced. However, when only a few DVCs are to be produced

a CEF should be used to properly correct for development costs.

5.7 Summary

After analyzing and determining the CEF of various DVCs we determined the most cost ef-

fective DVC for the applications of Sobel mask computation and RGB to YCBCR conversion.

Under optimized software code conditions the software Sobel mask DVC had the best CEF

for any number of units produced. Similarly, the hybrid RGB to YCBCR DVC has the best

69

CEF as well. Under non-optimized code conditions however the best CEF DVC for Sobel

mask depended on the number of units to be produced. At lower production units the Sobel

mask software DVC was the better choice. However, at higher levels of unit productions

the Sobel Hybrid DVC was the better choice. For NUI-ARDS hybrid component design the

CEF was calculated for various production levels. As production units of the NUI-ARDS

hybrid DVC incremented its CEF increased by 55% from 50 and 100 units in production as

per Table C.13.

70

6 Conclusion and Future Work

In Chapter 2 we looked into previous work analyses involving computing architectures.

Specifically, we looked for cost effective analysis and found that previous work did not

research much about the cost efficiency of a dynamic reconfigurable system in terms of

monetary cost. Various cost analyses pertaining to the cost of silicon area, cost of power,

cost of performance, and cost of specific resources were encountered. However, not much

attention was paid to the monetary cost of developing a computing system. The current way

of analyzing the cost effectiveness of a DVC computer architecture is determined in terms

of monetary value for the Cost Performance Ratio (CPR) where performance is divided by

price. This CPR evaluation mechanism is a valid and valuable tool if the assumption that

large quantities of units will be produced is true. However, if this assumption is not correct

and low production quantities are desired, such as in custom electronic design markets, then

the CPR may fail to give a more realistic solution. In Chapter 1 we expressed our motivation

of finding an adequate method in determining the cost effectiveness of a DVC for partially

reconfigurable computing systems. Then in chapter 3 a potential analysis method based on

a cost efficiency factor that took into account the development cost and production quantity

of a computing system was proposed. Three Experimental tests listed in section 4 were then

introduced to explore the usefulness of the CEF. The first experiment involved a data centric

task in the form of Sobel mask computation application. The second experiment involved a

stream based application in the form of an RGB to YCBCR converter. The last experiment

involved the design of a complex system containing both data and stream based application

characteristics and determined the resulting cost efficiency of the design. Because such a

71

design is quite large only the CEF for the hybrid component design was calculated as an

example for the application of the method in more complex systems. The data from all the

experiments was then recorded and analyzed. The results from the Sobel mask and YCBCR

experiments showed that the development cost of a computing architecture indeed affects its

cost efficiency. However, the effect it has on the CEF at different levels of unit production

depends on various factors such as how much the performance difference is between two

architectures, or how much performance increase is achieved versus the extra hours put into

the design. Without some form of mechanism to compare the changes in these factors it

becomes difficult to properly select the computing architecture for a DVC. However, with

the introduction of the CEF all these factors are taken into account giving us a tool for

determining the most cost efficient computing architecture type of a DVC for any quantity

of units to be produced. In order to systematically select the computing architecture of a

DVC for a DPRCS the following steps can be followed:

1. Determine task to be performed by DVC.

2. Determine or estimate number of DVC to be deployed.

3. Determine or estimate development time in hours, cost per hour, unit cost, and per-

formance for dedicated DVC.

4. Determine or estimate development time in hours, cost per hour, unit cost, and per-

formance for Software DVC.

5. Determine or estimate development time in hours, cost per hour, unit cost, and per-

formance for Hybrid DVC.

72

6. Calculate the CEF for each DVC.

7. Select the DVC with the highest CEF for the determined task in step 1.

Moving forward these steps could potentially be used by a component which automat-

ically selects which DVC to load into a reconfigurable slot on a DPRCS based on their

CEF. Future work can also involve determining the most cost effective computer graphics

generating DVC. A dedicated and software version of the NUI-ARDS component could be

implemented and then compared to the CEF of the hybrid NUI-ARDS. The possibility of

refining and determining the UC term in the CEF factor analysis can be further explored as

well. FPGA chips have many different configurable resources each with potentially different

costs associated with it. Determining the most appropriate level of granularity for the cal-

culation of the UC would be useful. Further more, since a Hybrid DVC has both a software

and dedicated circuit portions the CEF could benefit from splitting the CEF calculations

into two portions reflecting a more refine way of calculating the CEF for a hybrid DVC.

73

A Microblaze mb2 Component Internal Or-

ganization

Figure A.1: Microblaze mb2 internal component organization for for Sobel mask and YCBCR

Hybrid DVC Experiments

74

Figure A.2: mb2 Microblaze mb2 internal component organization for Sobel mask and
YCBCR Software DVC Experiments

75

B NUI-ARDS Component I/O Signals

76

Table B.1: Input signals required by NUI-ARDS

77

Table B.2: Output signals produced by NUI-ARDS

78

C CEF Calculations

79

C.1 Optimized Code

Table C.1: Sobel Dedicated DVC CEF Calculations

Table C.2: Sobel Software DVC CEF Calculations

80

Table C.3: Sobel Hybrid DVC CEF Calculations

Table C.4: YCBCR Dedicated DVC CEF Calculations

Table C.5: YCBCR Software DVC CEF Calculations

81

Table C.6: YCBCR Hybrid DVC CEF Calculations

82

C.2 Non-Optimized Code

Table C.7: Sobel dedicated DVC CEF calculations (Non-Optimized Code)

Table C.8: Sobel Software DVC CEF Calculations (Non-Optimized Code)

83

Table C.9: Sobel Hybrid DVC CEF Calculations (Non-Optimized Code)

Table C.10: YCBCR Dedicated DVC CEF Calculations (Non-Optimized Code)

Table C.11: YCBCR Software DVC CEF Calculations (Non-Optimized Code)

84

Table C.12: YCBCR Hybrid DVC CEF Calculations (Non-Optimized Code)

85

C.3 NUI-ARDS CEF

Table C.13: NUI-ARDS Hybrid DVC CEF Calculations

86

Bibliography
[1] D. Menasce and V. Almeida, “Cost-performance analysis of heterogeneity in supercom-

puter architectures,” in Supercomputing ’90., Proceedings of, 1990, pp. 169–177.

[2] P.-A. Hsiung, P.-H. Lu, and L. C-W, “Energy efficient co-scheduling in dynami-
cally reconfigurable systems,” in Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2007 5th IEEE/ACM/IFIP International Conference on, 2007, pp.
87–92.

[3] Z. J. Yang, A. Kumar, and H. Yajun, “An area-efficient dynamically reconfigurable
spatial division multiplexing network-on-chip with static throughput guarantee,” in
Field-Programmable Technology (FPT), 2010 International Conference on, 2010, pp.
389–392.

[4] E.-B. Bourennane, S. Bouchoux, J. Miteran, M. Paindavoine, and S. Bouillant, “Cost
comparison of image rotation implantations on static and dynamic reconfigurable FP-
GAs,” in Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International
Conference on, vol. 3, 2002, pp. III–3176–III–3179.

[5] Xilinx. (2008, Sept.) 7 Series FPGAs Overview. [Online]. Available:
http://www.xilinx.com/support/documentation/user guides/ug070.pdf

[6] Altera. (2013, Jun.) The breakthrough advantage for FPGAs with Tri-Gate
technology. [Online]. Available: http://www.altera.com/literature/wp/wp-01201-fpga-
tri-gate-technology.pdf

[7] D. Diaz, V. Dumitriu, and L. Kirischian, “Cost-performance analysis of component ar-
chitectural designs for dynamic partially reconfigurable systems,” in Electrical Computer
Engineering (CCECE), 2012 25th IEEE Canadian Conference on, 2012, pp. 1–6.

[8] S. Borgio, D. Bosisio, F. Ferrandi, M. Monchiero, M. Santambrogio, D. Sciuto, and
A. Tumeo, “Hardware DWT accelerator for multiprocessor system-on-chip on FPGA,”
in Embedded Computer Systems: Architectures, Modeling and Simulation, 2006. IC-
SAMOS 2006. International Conference on, 2006, pp. 107–114.

[9] M. Hubner, C. Tradowsky, D. Gohringer, L. Braun, F. Thoma, J. Henkel, and J. Becker,
“Dynamic processor reconfiguration,” in Reconfigurable Computing and FPGAs (Re-
ConFig 2011 International Conference on, 2011, pp. 123–128.

[10] V. Pranav and J. Lee, “Simulation of hybrid computer architectures: simulators,
methodologies and recommendations,” in Very Large Scale Integration, 2007. VLSI
- SoC 2007. IFIP International Conference on, 2007, pp. 157–162.

[11] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli, “Hybrid performance modeling and
prediction of large-scale computing systems,” in Complex, Intelligent and Software In-
tensive Systems, 2008. CISIS 2008. International Conference on, March, pp. 132–138.

87

[12] M. B. Abdelhalim and S. Habib, “Modeling communication cost and hardware alter-
natives in PSO based HW/SW partitioning,” in Microelectronics, 2007. ICM 2007.
Internatonal Conference on, Dec., pp. 111–114.

[13] P. Saha and T. El-Ghazawi, “Software/hardware co-scheduling for reconfigurable com-
puting systems,” in Field-Programmable Custom Computing Machines, 2007. FCCM
2007. 15th Annual IEEE Symposium on, April, pp. 299–300.

[14] S. Prakash and A. Parker, “A design method for optimal synthesis of application-specific
heterogeneous multiprocessor systems,” in Heterogeneous Processing, 1992. Proceedings.
Workshop on, Mar., pp. 75–80.

[15] D. Menasce and V. Almeida, “Cost-performance analysis of heterogeneity in supercom-
puter architectures,” in Supercomputing ’90., Proceedings of, Nov., pp. 169–177.

[16] H. Muller, P. Stallard, and D. Warren, “The role of associative memory in virtual shared
memory architectures: a price-performance comparison,” in Parallel and Distributed
Processing, 1996. PDP ’96. Proceedings of the Fourth Euromicro Workshop on, 1996,
pp. 41–49.

[17] E. G. Cale, L. L. Gremillion, and J. L. McKenney, “Price/performance patterns of
U. S. computer systems,” Commun. ACM, vol. 22, no. 4, pp. 225–233, Apr. 1979.
[Online]. Available: http://doi.acm.org/10.1145/359094.359097

[18] F. Sijstermans, “The TriMedia processor: the price-performance challenge for media
processing,” in Multimedia and Expo, 2001. ICME 2001. IEEE International Conference
on, 2001, pp. 222–225.

[19] S. H. Fuller, “Price/performance comparison of C.mmp and the PDP-10,” in
Proceedings of the 3rd annual symposium on Computer architecture, ser. ISCA
’76. New York, NY, USA: ACM, 1976, pp. 195–202. [Online]. Available:
http://doi.acm.org/10.1145/800110.803580

[20] S. A. Ryan, A. M. Jones, and R. H. Deaves, “A low-cost SoC architecture for the next-
generation home-networked set-top box,” in Consumer Electronics, 2009. ICCE ’09.
Digest of Technical Papers International Conference on, 2009, pp. 1–2.

[21] J. Hennessy and D. Patterson, “Computer Architecture: A Quantitative Approach 3rd
edition,” in Hennessy, John, and Patterson, David, 2003, pp. 169–177.

[22] M. Majmudar, C. Docan, M. Parashar, and C. Marty, “Cost vs. performance of VaR
on accelerator platforms,” in Proceedings of the 2nd Workshop on High Performance
Computational Finance, ser. WHPCF ’09. New York, NY, USA: ACM, 2009, pp.
9:1–9:8. [Online]. Available: http://doi.acm.org/10.1145/1645413.1645422

[23] M. Uno. (2008, Sept) FPGAs Leveling with ASICs, ASSPs. [Online]. Available:
http://techon.nikkeibp.co.jp/article/HONSHI/20080924/158406/fig2.jpg

88

[24] R. C. Gonzalez, Digital Image Processing: Third Edition. Upper Saddle River, NJ:
Pearson Education Inc., 2008.

[25] E. Prathibha, Y. Siva, and A. Manjunath, “Design and implementation of color conver-
sion module RGB to YCbCr and vice versa,” IJCI International Journal of Computer
Science Issues, Special Issue, ICVCI-2011, vol. 1, no. 1, pp. 13–18, 2011.

[26] D. Marcantonio, V. Dumitriu, and S. Artur, “Stereo-panoramic acquisition and display
system,” in Stereo-Panoramic Acquisition and Display System, 2010.

[27] Xilinx. (2010, Aug) Virtex-4 Family Overview. [Online]. Available:
http://www.altera.com/literature/wp/wp-01201-fpga-tri-gate-technology.pdf

[28] J. S. Joon, Y. M. Chan, and K. C. Weng, “A case study of integrating principles of
photography and photorealistic for 3D rendering,” in Computer Graphics, Imaging and
Visualisation, 2007. CGIV ’07, 2007, pp. 62–70.

[29] M. Kefi, V. Barichard, and P. Richard, “A constraint-solver based tool for user-assisted
interactive 3D layout,” in Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th
International Conference on, vol. 1, 2012, pp. 199–206.

[30] Y. Quan, W.-H. Li, Y.-J. Pang, and G.-J. Liu, “An efficient point rendering system for
ray tracing,” in Machine Learning and Cybernetics, 2005. Proceedings of 2005 Interna-
tional Conference on, vol. 9, 2005, pp. 5429–5431 Vol. 9.

[31] L. Szirmay-Kalos, T. Umenhoffer, B. Toth, L. Szecsi, and M. Casasayas, “Volumetric
Ambient Occlusion,” in Volumetric Ambient Occlusion, vol. PP, no. 99, 2009, pp. 1–1.

[32] B.-S. Liang, Y.-C. Lee, W.-C. Yeh, and C.-W. Jen, “Index rendering: hardware-efficient
architecture for 3-D graphics in multimedia system,” Multimedia, IEEE Transactions
on, vol. 4, no. 3, pp. 343–360, 2002.

[33] W. Wright, “Parallelization of Bresenham’s line and circle algorithms,” Computer
Graphics and Applications, IEEE, vol. 10, no. 5, pp. 60–67, 1990.

[34] D. ”Diaz, “”natural user interface augmented reality display system with robotic agent
path selection (NUI-ARDS) documentation”,” Ryerson University ERSL Lab, pp. 1–
235, Dec. 2012.

89

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2013

	A Cost Efficiency Analysis and Mechanism for Dynamic Partially Reconfigurable Computing Systems
	David Diaz
	Recommended Citation

