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ABSTRACT 

THERMO-SOLUTAL CONVECTION WITH SORET EFFECT 

Md. Abdur Rahman 

Master of Applied Science 

Mechanical and Industrial Engineering, 2008 

School of Graduate Studies 

Ryerson University, Toronto, On, M5B 2K3, Canada 

In the present study, the onset of thennal convection in a liquid layer overlying a porous layer 

where the whole system is being laterally heated is investigated. The non-linear two-di1nensional 

Navier Stokes equations, the energy equation, the mass balance equation and the continuity 

equation are solved for the liquid layer. Instead of the Navier Stokes equations, the Brinkman 

model is used for the porous layer. The partial differential equations are solved numerically 

using the finite element technique. A two-dimensional geometrical model with lateral heating is 

considered. Two different cases are analyzed in this thesis. In the first case, the gravity dtiven 

buoyancy convection and the Marangoni convection are studied. For the Marangoni convection, 

the tnicrogravity condition is considered and the surface tension is assumed to vary linearly with 

temperature. Different aspect ratios, as well as thickness ratios, are studied in detail for both the 

buoyancy and the Marangoni convection. Results revealed that for both the buoyancy and the 

Marangoni cases, flow penetrates into the porous layer, only when the thickness ratio is more 

than 0.90. In the case of thenno-solutal convection in the presence of Soret effect, it has been 

found that the isopropanol cmnponent goes either towards the hot or the cold walls depending on 

the fluid mixtures which has been used in the system. 
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CHAPTER! 

Introduction and Literature Review 

1.1 Introduction 

A vertically stacked system of porous and fluid layers.1 with heat and mass transfer taking place 

through the interface.1 is related to many natural phenomena and various industrial applications. 

The related problem of a liquid layer overlying a porous layer is also found in many 

environmental and engineering applications as well. The water layer of a pond or a lake with a 

muddy bottom layer, transport phenomena that occurs from soil to water and vice versa, the 

geothermal system are some of the examples of environmental applications. The thermodiffusion 

effect or the Soret effect is the mass flux in a mixture due to a temperature gradient. This effect is 

very weak but can be important in the analysis of compositional variation in hydrocarbon 

reservoirs. 

1.2 Literature Review 

1.2.1 Onset of gravity driven and Marangoni convection 

Saghir et a!. [ 1] studied Marangoni and gravity driven convection in a liquid layer overlying a 

porous layer. They analyzed the onset of thermal convection for both the bottom and lateral 

heating conditions. For the bottom heating case, they found that when natural convection was in 

the liquid layer, the aspect ratio changed the flow configuration. However, when the natural 

convection was in the porous layer, the aspect ratio had no effect on the flow pattern. They also 

found that large convective motion was present for a low thickness ratio and weakens as the 
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thickness ratio increased further. For both bottom and lateral heating cases, they found that the 

liquid layer thickness determines whether the flow is dominant in the liquid layer or in the 

porous layer and in some cases multi-cell formation occurs due to changing of the aspect ratio. 

Nield and Bejan [2] devoted a collection of their works in the area of convection in porous media 

in their book. They defined a porous medium as a material consisting of a solid matrix with an 

interconnected void. The solid matrix is either rigid or undergoes small deformations. The 

interconnectedness of the void (the pores) allows the flow of one or more fluids through the 

material. They defined the porosity ¢, as the fraction of total volume of the medium that is 

occupied by void space, or the liquid in this present case. So 1- ¢ is the fraction occupied by the 

solid beads. Within Vt, let Vj represent the volume occupied by the fluid and Vs represent the 

volume occupied by the solid, where Vt = Vj· + Vs. Then the porosity of the porous medium can 

be defined as¢ = v 1. 
Vt 

Nield [3] first formulated the onset of convection in a fluid layer overlying a porous layer. He 

proposed an analytic solution including the Marangoni effect at a deformable upper surface. He 

found that the Marangoni and gravity effects are additive for the onset of convection in a fluid 

layer overlying a porous medium. 

Birikh [ 4] studied the effect of thermo capillary on convection in a horizontal liquid layer. He 

calculated the critical characteristic thickness for some liquids. He found that the convection was 

purely thermal when the thickness of the liquid layer was greater than the critical value and 

largely capillary when the thickness of the liquid layer was less than the critical value. 

Villers and Platten [ 5] analyzed the convection in acetone due to the coupled buoyancy and 

Marangoni case. From their numerical simulations, they found that, with fluids of Prandtl 
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number much greater than one, temperature fluctuations constitute dangerous sources of 

instability. 

Pearson [ 6] investigated the convection cells which were induced by surface tension. He found 

that two factors tending to instability would be relevant. The first one is due to temperature 

variations and the second is due to relative concentration variations. He also found that surface 

tension forces are responsible for cellular motion in many cases where the criteria given in terms 

of buoyancy forces would not allow for instability. 

Kozak et al. [7] studied Marangoni convection in a liquid layer overlying a porous layer taking 

into consideration evaporation at the free surface. They studied different aspect ratios, thickness 

ratios and temperatures for the pure thermocapillary case. For lateral heating case, they found 

that switching of the flow from the liquid layer into the porous layer is due to the ratio of liquid 

thickness to the porous thickness. Also, they found that, for thermocapillary flow without 

evaporation, multi cell formation occurs by changing the aspect ratio. Their analysis showed that 

evaporation has a strong effect on the convection cell pattern in both liquid and porous dominant 

flow. They also verified that the two-dimensional flow model is a good representation of the 

three-dimensional situation. 

Hadid and Roux [8] analyzed thermocapillary convection of low Prandtl number liquids 

subjected to a horizontal temperature gradient in a lateral heating cavity. They observed that, for 

the case with low-Prandtl number fluids (Pr = 0.015), the flow field is almost independent of the 

temperature field. For an aspect ratio A = 4, they found that the flow field and the surface 

velocity were the same for both insulating and conducting horizontal walls. Also, they found 

that, for a small Reynolds number the flow reached the fully developed Poiseuille-Couette flow 
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solution in the central region of the cavity. But, for high Reynolds number, the length of the 

region of fully developed Poiseuille-Couette flow was reduced and even disappeared. 

Schwabe et a/. [9] observed the multi-roll-structure of thermocapillary flow for a thin liquid 

layer. They studied a microgravity experiment for thermocapillary flow structures without 

coupling to buoyancy in a 20.0 mm wide annular layer with a free surface of variable depth 

heated by the outer wall and cooled at the inside. They found that the multi-roll was dominated 

by thermocapillarity for the layers with thickness up to 5 mm. Also, a variety of flow structures 

were found for the thin fluid layers with a free flat surface and a temperature gradient parallel to 

it. 

Schwabe [ 1 0] studied the Marangoni convection instability in small circular containers under the 

microgravity condition. He observed the instability during the 12 minute microgravity-phase of a 

3.0 mm thick layer of silicone oil heated from below. He showed some pictures of the flow 

structures of the instabilities. He found that the flow structure at t = 334.5 seconds after launch, 

convection developed in all containers but rather structureless compared to later times. 

Mokhtar et a/. [ 11] analyzed the Marangoni convection in a fluid saturated porous layer heated 

from below. They obtained the closest form of an analytical solution for the onset of steady 

Marangoni convection in a fluid saturated porous layer. They found that the Marangoni numbers 

depend on the Darcy number and the Biot number. They also found that the critical Marangoni 

number increases as the Darcy number increases. 

Bahloul et a/. [12] studied surface tension effect on convection in a binary fluid layer under a 

zero gravity environment. They found that the different flow regimes depend on the thermal and 

solutal Marangoni numbers. Also, they found that the parallel flow approximation is in good 
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agreement with the numerical results, independently of the strength of the convective motion, in 

the range of the parameters considered in their study. 

Delache and Ouarzazi [ 13] observed mixed convection patterns in a bottom heated porous media. 

In the case of convective instability, they obtained an analytical criterion which specifies the 

conditions about the observability of their Tmodes (moving three dimensional modes) or L rolls 

(stationary longitudinal rolls) at the onset of convection. They also examined how their 

predictions are modified in the presence of some permanent disturbances located at the entrance 

cross section of the channel. Their numerical solutions showed that the mixed mode is composed 

with the two types of pattern at the same spatial location. 

Kandaswamy and Eswaramurthi [ 14] studied numerically the buoyancy-driven convection of 

water in a porous cavity with variable side wall temperatures. They found that the strength of 

convection and the heat transfer rate become weak due to more flow restriction in the porous 

medium for small porosity. They found that, when the Darcy number is small, the heat transfer 

takes place by the mode of conduction. The convective heat transfer rate goes down as the Darcy 

number decreases. They also observed that the Darcy number, which depends on the 

permeability of the porous medium, has strong effects on convection in the porous-filled cavity. 

The motion of the fluid particle is higher for higher values of the Darcy number and the flow is 

restricted largely in the case of very low values of Darcy number. 

Kim and Choi [ 15] investigated the effects of the Rayleigh number, aspect ratio and thickness 

ratio on convection in the composite layer of a bottom heated porous layer and an overlying fluid 

layer. They found that, at the supercritical Rayleigh number regime (when the depth ratio, d > 

0.12), the number of recirculating cells increase continuously as the Rayleigh number increases, 

which in tum increases the Nusselt number. For that depth ratio range, convection was limited to 
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the fluid layer, while conduction was the dominating heat transfer mode in the porous layer. For 

d = 0.1 0, the recirculating cells were continuously readjusting their positions and sizes in the 

composite layer as the Rayleigh number increases. 

Chen & Chen [16] studied convective stability in bottom heated superposed fluid and porous 

layers. The depth ratio d, which is the ratio of the thickness of the fluid layer to that of the porous 

layer, was varied from 0 to 1.0. They detected the onset of convection by changing the slope in 

the heat flux curve. Their results showed a decrease in the critical Rayleigh number as the depth 

of the fluid layer is increased from zero. They confirmed the sudden decrease in the critical 

wavelength between d = 0.10 and 0.20 (as predicted by the linear theory) by temperature 

measurements and by the pattern exhibited in the liquid crystal film. They also found that the 

convection cells were generally three dimensional. 

Desaive et a/. [17] analyzed instability of a coupled capillary and gravity driven liquid film 

overlying a porous layer. Their aims were to develop the linear stability analysis of a porous

liquid bilayer system. Instead of Darcy's law, they used the Brinkman model for their analysis. 

They assumed that the upper fluid boundary was either rigid or free and would include a 

Marangoni effect. For the short wave mode, they found that convection takes place only in the 

fluid region. They also found that Brinkman's model gives qualitatively the same results as 

Darcy's law. Indeed, the effective viscosity introduced in Brinkman's approach didn't 

significantly affect the critical stability conditions. The critical depth ratio disappeared at very 

large and at very small Darcy numbers. In the pure thermocapillary case, they found that 

convection was confined to the fluid layer except for the very small fluid depth. 

Shivakumara et a/. [ 18] studied surface-tension-driven convection in a two-layer system 

comprising an incompressible fluid-saturated porous layer over which laid a layer of the same 
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fluid. They investigated the effect of variation of different physical parameters on the onset of 

Marangoni convection. They found that the ratio of the thickness of the fluid layer to that of the 

porous layer have a profound effect on the stability of the system. They also found that the 

decrease in Da (Darcy number) increases the critical Marangoni numbers, thus making the 

system more stable. 

Smith and Davis [19] analyzed convective instabilities of a dynamic thermocapillary liquid layer. 

They found that an increase in Biot number (B) always results in an increase of the Marangoni 

number (Ma) in the system. When B = 0, the minimum Marangoni number over the neutral 

surface is a function of Pr only. They also found that as the Prandtl number of the fluid 

decreases, the critical Marangoni number and the critical wave number of the instability increase. 

The results of their analysis showed that the increasing behavior of Mac with decreasing Pr is 

due to the stabilizing effect of heat convection by horizontal velocity perturbations. But when 

Ma is fixed, an increase in Pr would cause an increase in vertical convection and the layer 

becomes unstable. As a result, Mac decreases as Pr increases. 

Hooman and Gurgenci [20] studied the Benard convection in a porous medium using a non

Darcy model. They studied the effects of fluid viscosity variation on isotherms, streamlines, and 

the Nusselt number. They examined the application of the effective and average Rayleigh 

number. With a fixed value of Da (Darcy number), they found that an increase in either Ra 

(Raleigh-Darcy number, Ra = Da.Ra1) or Ra1 (fluid Raleigh number) leads to stronger convective 

flows. They found that the reference temperature at which the fluid properties should be 

evaluated is a decreasing function of the Darcy number and is approximately independent of the 

other parameters. They recommended that, by applying this reference temperature, anyone can 

reduce the computational time and expense required for solving a variable property problem. 
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Silberstein et a!. [21] examined the onset criteria of natural convection in fibrous insulating 

materials with permeable interfaces. They studied two configurations of practical interest for the 

building industry either with or without an impermeable fluid-porous interface: a vertical porous 

layer placed in between two fluid cavities and a horizontal fluid-porous layer system 

representative of an insulated attic in the winter time. In the horizontal bi-layer configuration 

(with ascendant heat flow), they found that convection sets in the porous insulant. They also 

found that the thermal consequences of the early fluid motion are directly connected to the flow 

dynamics of the fluid layer above the insulant. But a serious degradation of the thermal 

properties of the insulation seems to occur only for highly permeable products such as loose-fills 

placed under very severe climatic conditions. For the evolution of the global heat flow through 

the system with the temperature gradient, the behavior of the three-layer system depends strongly 

on the permeability of the fluid-porous interface. Their experimental and numerical data showed 

that the sensibility of porous materials to convection depends strongly on the boundary 

conditions (isothermocity, permeability etc.) of the fluid-porous interface. 

1.2.2 Onset of Thermo-solutal Convection with So ret Effect 

Saghir et al. [22] investigated double diffusive and Marangoni convection in a multi-cavity 

system. They numerically investigated the interaction between the Marangoni convection and the 

double diffusive convection. They solved the problem for two different cases. In the first case, 

they assumed that the upper horizontal surface was a fixed wall, and in the second case, the 

upper horizontal wall was a free surface in order to study the thermal and solutal interface 

tension gradient effect at the free surface. From their analysis, they found that the double 

diffusive convection plays a major role in the intrusion of the salted water into fresh water. They 
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also found that the temperature and salinity induce a strong convection. In addition, they found 

that, when a free surface exists in the system, other surface forces namely the thermal and solutal 

Marangoni convection enhances convection. 

Tanny and Yakubov [23] investigated the mixing process of a double-diffusive two-layer system 

in a laterally heated enclosure. They found that for the lateral heating enclosure, a circulating 

flow was induced in each layer such that the interface separating the layers was simultaneously 

exposed to destabilizing the shear and double diffusive convection. Their results showed that 

when the flow adjacent to the interface was unstable, the mixing time was relatively short. On 

the other hand, when the interfacial flow was stable, no vortices existed at the interface and the 

mixing time was much longer. They also found that the appearance of vortices at the interface 

separating the layers is an instability phenomenon. The critical Rayleigh number for the onset of 

interfacial instabilities increases with the buoyancy ratio (solutal Rayleigh number) of the 

system. And for given buoyancy ratio, the non-dimensional mixing time for stable experiments is 

larger than for unstable experiments. Also, they found that, for both stable and unstable 

conditions, the non-dimensional mixing time increases with the buoyancy ratio of the system. 

Jiang et a/. [24] studied thermo-gravitational convection for a binary mixture of methane and n

butane in a vertical porous column. Their numerical results revealed that the lighter fluid 

component migrated to the hot side of the cavity. Also, they found that, as the permeability 

increases, the component separation in the thermal diffusion or Soret effect process increases, 

reaches its peak and then decreases. They explained the convection effect on the thermal 

diffusion in a hydrocarbon binary system in terms of the characteristic times. When the 

characteristic time of the convective flow is larger than the characteristic time of the thermal 

diffusion, then the Soret effect is the dominant force for the composition separation in the cavity 
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and maximum separation is reached when the characteristic time is equal to the time of thermal 

diffusion. And when the characteristic time is less than the time of thermal diffusion, the 

buoyancy convection becomes dominant and that corresponds to permeability greater than 10 

md. 

Bergeon et a!. [25] investigated numerically the Marangoni convection with Soret effect in a 

binary mixture. They found that, for the large Soret coefficient, convection is initiated by solutal 

effects and leads to a single large roll. They found that, as the Marangoni number increases, the 

one-roll states are succeeded by two-roll states with up flow in the centre of the cell. They also 

found that forMa (Marangoni number) between the thermal-solutal and thermal thresholds, a 

weak convective flow (the Soret regime) exists. ForMa higher than the pure thermal threshold, a 

much stronger flow resembles convection in a pure fluid and the concentration field was mixed 

(the Marangoni regime). They found that, for larger SM (Marangoni Soret parameter), the 

branches which are the first to bifurcate may terminate while still in the Soret regime. However, 

they found that, for negative SM, the distinction was more complicated than for positive SM: the 

Soret branches were unstable and co-exist with stable Marangoni branches. 

Mansour et a/. [26] studied the thermosolutal convection developed in a horizontal shallow 

porous layer salted from below and subject to a cross flux of heat. They studied the combined 

effect of thermodiffusion and lateral heating on double diffusive natural convection in a 

horizontal porous layer, filled with a binary fluid and subjected to uniform fluxes of heat and 

mass on its long sides. Their obtained results showed that the qJ-N (where qJ is separation ratio 

and N is the buoyancy ratio) plane can be divided into four regions with different characteristics 

in terms of multiplicity of solutions. They also found that the increase of Soret parameter (({J) 
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above some threshold leads to the disappearance of the multiplicity of solutions. Finally, they 

recommended that the Soret effect may modify considerably the heat transfer. 

Jiang eta/. [27] simulated the Ludwig-Soret effect of a water-ethanol mixture in a cavity filled 

with aluminum oxide powder under high pressure. They analyzed the thermal diffusion or Soret 

effect, globally with a separation ratio and locally with the distributions of ethanol mole fraction, 

on the horizontal and vertical lines in the center of the porous cavity. They found that, when the 

value of permeability was less than 104 md, the composition separation in the cavity was evident, 

and when the value of permeability was larger than 1 04 md, the thermosolutal convection created 

a mixing of the substances and the separation is diminished. From their investigation, they found 

that the thermal conductivity of aluminum oxide has no significant effect on the compositional 

separation at the steady state of the thermosolutal convection. 

Benano-Melly eta/. [28] modeled a thermogravitational experiment in a laterally heated porous 

medium. They showed that, when solutal and thermal buoyancy forces oppose each other, 

multiple convection-roll flow patterns develop. They investigated the solutal buoyancy force, 

combined solutal and thermal buoyancy forces, and counteracting solutal and thermal buoyancy 

forces for both the positive and the negative Soret numbers. They showed that the separation 

ratio increases with increasing Lewis number and Soret number. They also showed that the 

separation ratio increases with increasing aspect ratio. However the separation ratio increases 

with increasing thermal Rayleigh number, reaches its peak and then decreases. 

Platten [29] studied the Soret effect of an elementary Soret cell. His results were provided for 

several systems, with both negative and positive Soret coefficients, and comparison between 

several laboratories was made for the same systems. In earth conditions, five European labs 

decided to investigate independently the same systems, i.e., same chemical compounds from the 
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same batch with the same purity, same composition, and same temperature. After two years of 

individual work, the comparison of results produced by different labs showed that the benchmark 

campaign was a success. The highest difference from the mean was only 7% for one particular 

system. Therefore, they (the five European labs) were able to propose benchmark values, and 

they deny the need sometimes expressed to go to microgravity for measuring Soret coefficients, 

at least for usual organic mixtures near room temperature. 

Alexandrov and Aseev [30] analyzed the thermodiffusion and temperature-dependent diffusivity 

of a binary melt. They found that the concentration and temperature fields in the liquid, solid and 

mixed state phases are functions of all thermophysical parameters. They determi9ed the rate of 

solidification and two-phase zone thickness. Their theory demonstrated that the mushy zone 

could be treated as a self-similar object. From their study, they found that the thermodiffusion 

and temperature dependent diffusivity modifying the heat and mass transfer are essential. They 

also found that the influence of the Soret effect on the crystallization process was characterized 

by the sign of the thermodiffusion coefficient. 

Er-Raki eta/. [31] studied thermosolutal convection induced in a vertical porous medium. They 

studied analytically and numerically the thermosolutal natural convection induced in a vertical 

porous layer heated and salted with uniform fluxes. They found that for a particular situation, 

where the external mass flux is compensated by the Soret effect, the boundary layer regime 

remains absent in the case of concentration independently of the governing parameters. 

Ming-chun eta/. [32] investigated Soret (mass transfer caused by the temperature gradient) and 

Dufour (heat transfer caused by the concentration gradient) effects in a strongly endothermic 

chemical reaction system of porous media. They discussed the influence of the Soret and Dufour 

effects on the heat transfer, mass transfer and the chemical reaction in the porous medium. They 
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Chapter 2 

Mathematical Formulation and Numerical Approach 

2.1 Model Description 

The schematic diagram for this study is illustrated in Figure 2.1. It represents a two-dimensional 

rectangular cavity split into a liquid layer and a porous layer. The incompressible liquid layer, 

whose solutal expansion is Pc and thermal expansion coefficient is fir, has a height of d1 and a 

width of H. The physical properties of the liquid are assumed constant. The top wall of the liquid 

layer is a non-deformable free surface. The liquid layer overlays a homogeneous and rectangular . 

porous layer that is saturated with the liquid. It is assumed that the liquid and the porous layer are 

in thermal equilibrium. The porous matrix has a porosity = 0.39, which corresponds to glass 

bead of 3.25 mm diameter. The Darcy number is set to a constant of Da = l.OE-05 for the entire 

analysis. The porous layer has the same width of Hand a height of d2• The total thickness is 

Free surface 

I Liquid layer 

L 

I 
Porous layer 

H 

Figure 2.1 Geometrical model of the two-dimensional cavity 
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analyzed the reaction features of packed bed of pellets under different conditions by varying the 

key parameters. Their calculated results showed that, when the convectional velocity is lower or 

when the initial temperature of the feeding gas is higher, the Soret and Dufour effects can't be 

ignored. They found that both the temperature field of the bulk flow and the solid fractional 

conversion increases with an increase in the convection velocity or in the initial temperature of 

the feeding gas. The concentration distribution of the product gas decreases with an increase in 

the convection velocity and increases with the initial temperature of the feeding gas. 

1.3 Research objective 

The objective of this research is to investigate the onset of thermal convection in a liquid ·layer 

overlying a porous layer, where the whole system is laterally heated. Several cases are 

considered for this research. First, pure buoyancy and Marangoni convection are analyzed for 

different thickness ratios, aspect ratios, Rayleigh numbers, Marangoni numbers and Prandtl 

numbers. Then, thermo-solutal convection with transient condition is studied by taking into 

consideration the molecular diffusion effect. Finally, thermo-solutal convection with 

thermodiffusion or Soret effect in reduced gravity condition is studied. 
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For the entire analysis, the height of the cavity, L = O.Olm. The aspect ratio is the ratio of width 

of the cavity to its thickness, AR = HIL and will be studied throughout the thesis. The 

gravitational acceleration term is set to act in the negative Y-direction. 

2.2 Liquid Layer Governing Equations 

The flow under consideration is assumed laminar and incompressible. The model is presented in 

Cartesian coordinates. The complete continuity, momentum balance, energy balance and mass 

balance equations are solved simultaneously in order to study the convection patterns. Using the 

finite element technique, the equations are solved numerically for both the liquid layer and the 

porous layer of the cavity. Following are the governing equations, boundary conditions and 

numerical procedure used for the various cases in this study. The equations are presented for the 

two-dimensional transient model, but similar equations without the t (time) term are used for the 

steady state model. The dimensional and non-dimensional equations are explained in detail in 

Appendix A. 

2.2.1 Continuity Equation 

The equation of continuity is a partial differential equation which represents the conservation of 

mass for an infinitesimal control volume. The continuity equation for an incompressible fluid is 

given by: 

[
au+ 8v] = 0 ax ay (2.1) 
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2.2.2 Momentum Balance Equation 

For the liquid layer, the momentum balance equation is represented by the Navier-Stokes 

equations. The flow model is Newtonian, incompressible and steady or transient. In the x 

direction, the principle of conservation of linear momentum dictates that: 

(2.2) 

In they direction, the momentum equation is written as follow: 

(2.3) 

The Boussinesq approximation in the momentum equation in they-direction allows for modeling 

of buoyancy effects for an incompressible fluid. The Boussinesq approximation has the 

following two assumptions: the variations in fluid density affect only the buoyancy term; the 

fluid density is a function of temperature and species concentration only [33]. 

2.2.3 Energy balance Equation 

The thermal energy conservation equation assuming cJ> = 0, for an incompressible fluid is 

expressed as: 

(2.4) 

2.2.4 Mass Balance Equation 

The mass balance equation for the species can be expressed as: 
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[
oc oc oc] [o 2c o2c] [o 2

T o2T] Po · -+u-+v- =po.DM. -2 +-2 +po.DT. --2 +--2 ot ox oy ox oy ox oy (2.5) 

In the above equations, u and v represent the velocities in the x and y directions in a Cartesian 

coordinate system. The p, po, p, fJr, fJc, T, and g are the pressure, density of the fluid at reference 

temperature T0 , dynamic viscosity, coefficient of thermal expansion associated with temperature 

variations, coefficient of solutal expansion associated with concentration variations, temperature 

and gravitational acceleration, respectively. Also (CP)f, kf, DM and Dr denote the specific heat at 

constant pressure, the conductivity of the fluid, the molecular diffusivity and the thermal 

diffusion coefficient of the fluid, respectively. 

2.3 Porous Layer Governing Equations 

For the saturated porous matrix, the Brinkman model is used. Following are the continuity, 

momentum balance, energy balance and mass balance equations for the porous medium. 

2.3.1 Continuity Equation 

As the fluid is incompressible, the continuity equation for the porous layer is also given by: 

(2.6) 

2.3.2 Momentum Balance Equation 

Darcy was the first to formulate the basic equation of flow in porous media based on the 

proportionality between the flow rate and the applied pressure difference that was revealed from 

experiment. Conventionally, Darcy's law was used as the momentum balance equation in a 
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porous medium. However, as noted by Deasive et a/. (200 1 ), it suffers from mathematical 

inaccuracy due to the inability to impose a no-slip boundary condition. Consequently, in this 

study, the Brinkman equation is used to represent the momentum equation. In the x direction, the 

momentum equation is written as follows: 

(2.7) 

In they direction, the momentum equation is represented by: 

(2.8) 

Here, the permeability is denoted by K in the Darcy term on the left hand side of the above 

equations (2.7)-(2.8). The Brinkman form of the momentum equation is suitable when one wants 

to match a solution in a porous medium and in an adjacent viscous fluid. The Brinkman 

extension is added as the second term on the right hand side of the above equations. 

2.3.3 Energy Balance Equations 

The energy balance equation for the porous layer is given by: 

(2.9) 

In addition to the governing equation, the following constitutive thermal relationship is used for 

the overall thermal conductivity: 

k e = ¢ .k f + (1 - ¢) .k s (2.10) 
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Where, ke is the effective thermal conductivity, k1 is the conductivity of the fluid and ks is the 

conductivity of the solid. The effective thermal property is related to the fluid and solid matrix 

properties by the relation in equation (2.10). The porosity is denoted by cp. In general, the 

dynamic viscosity f.J and the effective dynamic viscosity f.le are only approximately equal to each 

other. However, the Brinkman approximation sets the viscosity and the effective viscosity equal 

to each other. 

2.3.4 Mass Balance Equation 

The mass balance equation for the species can be expressed as: 

(2.11) 

2.4 Non-Dimensional Analysis 

Non-dimensional formulation of the governing equations has many advantages. Scaling variables 

and assembling the non-dimensional parameters provides a measure of the importance of the 

various terms in the equations and identifies the dominant physical phenomena [34]. Equations 

(2.1)- (2.11) were rendered dimensionless by using the following non-dimensional groups: 

(2.12) 

Where U, V, X and Y are the non-dimensional x and y component of velocity, and non 

dimensional x andy coordinates, respectively. Pis the non-dimensional pressure term and ()is 
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the non-dimensional temperature term. The characteristic length, temperature and velocity are 

denoted by L, T, and u0 . In the non-dimensional analysis, several other parameters appear, such 

as the Reynolds number Re, the Prandtl number Pr, the Darcy number Da, thermal Raleigh 

number for the liquid layer RaLL, solutal Raleigh number for the liquid layer RaLc, thermal 

Raleigh number for the porous layer RapL, solutal Raleigh number for the porous layer Rape, 

Schmidt number Sc. The parameters in equation (2.12) are used in the analysis, which are fully 

outlined in Appendix A. The governing equations in the dimensionless form are described in the 

sections below. 

2.5 Non-Dimensional Liquid Layer Governing Equations 

2.5.1 Continuity Equation 

[au+ av]=o 
ax aY 

2.5.2 Momentum Balance Equation 

The Navier-Stokes Equations for the X and Y directions are given as follows: 

X direction: 

Y direction: 

Without thermodiffusion 
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(2.13) 

(2.14) 

(2.15) 



Including thermodiffusion 

Re.- +-[V]---+ - 2 +-2 - .(1+-) .[RaPL.B-Rapc·c] [av] 1 _ aP [ a
2
v a

2
v] [ 1 J d2 3 

ar Da ay ax ay Pr.Re.Da d1 

2.5.3 Energy Balance equation 

2.5.4 Mass Balance Equation 

Mass balance Equation for the species without thermodiffusion is: 

[ac + u ac + v ac] = _1_ [a2c + a2c] 
ar . ax . ay Re.Sc. aX 2 aY 2 

With thermodiffusion is: 

2.6 Non Dimensional Porous Layer Governing Equation 

2.6.1 Continuity Equation 

[ au+ av]=o 
ax ay 

2.6.2 Momentum Balance Equation 

X direction: 

Including thermodiffusion 
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(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 



Re .[au]+-1 .[U)= _ ap +[a
2U + a

2U] 
¢ 8r Da ax aX2 aY2 

(2.21) 

Y direction: 

Without thermodiffusion 

_1 .[v]=-ap +[a
2

V +a
2
VJ-[ RaPL J.(I+d2)3.B 

Da ay aX2 aY2 Pr.Re.Da d1 (2.22) 

Including thermodiffusion 

Re [av] 1 ap [ a2

V a
2

VJ [ 1 J d2 3 [ ] -.- +-[V)=--+ - 2 +-2 - .(1+-) .RaPL ·B-Rapc ·C 
¢ ar Da aY ax aY Pr.Re.Da d1 (2.23) 

2.6.3 Energy Balance Equation 

Re.Pr.[aB + U. aB + V. aB] =G.[ a2~ + a2~] 
ar ax aY ax aY (2.24) 

(2.25) 

Where, ke is the effective thermal conductivity, k 1 is conductivity of the fluid, ks is the 

conductivity ofthe solid and G is the ratio between ke and k1 . 

The definitions of the thermal Raleigh number for the liquid layer Rarr, solutal Raleigh number 

for the liquid layer Rare, thermal Raleigh number for the porous layer Rapr and solutal Raleigh 

number for the porous layer Rape are varied depending on the case studied. The same also 

applies to the definition of the Reynolds number, which is fully derived in Appendix A. 

2.6.4 Mass Balance Equation 
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The mass balance Equation for the species is the same as for the liquid layer. 

From Appendix A, the case without thermodiffusion, the Reynolds number is defined as: 

3 
Re = RaLL. (1 + dz) 

Pr d 1 
(2.26) 

The above equations also show a clear relationship between the thermal liquid Rayleigh number 

and the thermal porous Rayleigh number for the case without diffusion and steady state. This 

derivation is also showed in Appendix A. By assuming that the thickness of the porous layer is 

approximately that of the entire height of the cavity, this relationship can be expressed as: 

(
d 2 )

3 

RaPL = RaLL· Da. d
1 

(2.27) 

Each geometrical model also has its own specific boundary conditions depending on the case 

studied and these are presented next. 

2. 7 Model Boundary Conditions 

In order to analyze the fluid motion properly, the basic conservation laws have to be applied 

along with the appropriate boundary conditions on each segment of the boundary. In the present 

case, the cavity is laterally heated and the horizontal temperature gradient is applied parallel to 

the free surface. The left vertical wall is fixed at a cold temperature T c, while the right vertical 

wall is maintained at a hot temperature T H· The bottom surface is insulated, while the top surface 

of the liquid cavity has a non-deformable free surface through which heat is lost to the 

surroundings by natural convection. Since Marangoni convection is studied, the heat loss through 

the free surface to the surrounding gas is by natural convection. Therefore, the non-dimensional 

heat flux Q = Bi.B is applied, where Bi is the Biot number. The boundary conditions for the four 

walls of the cavity are presented in Figure 2.2. To take into consideration the Marangoni effect, 
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which is the variation of surface tension along the free surface, a boundary condition for the 

shear stress jump along the liquid-gas interface is included. To account for this, a new non-

dimensional surface tension is defined as, CJm = M a • It is a function of the Marangoni 
Re.Pr 

number,M a = lyi.~T.L, the Reynolds number Re, and the Prandtl number Pr, defined previously. 
a.f.L 

For the present experiment, a linear variation of surface tension with temperature is specified at 

the free surface. 

V = 0 (J = Ma Bi = 1 
' m Re.Pr' 

U= V= 0, B= 0 
Liquid Layer 

U= V= 0, B= 1 

U= 0, B= 0 U= 0, B= 1 
Porous Layer 

Figure 2.2 Lateral heating boundary condition 

2.8 Numerical Solution technique 

The fluid dynamic analysis package FIDAP 8. 7.0 that uses the finite element method is used in 

this study. The source code for several cases is outlined in Appendix B. For free surface 

problems, FIDAP 8.7.0 utilizes the segregated solver. This is an uncoupled method where each 

degree of freedom is solved seperately. To update the free surface during iteration, the normal 

stress update algorithm is used for the various cases. In post-processing operations, variables 

such as the stream function, heat fluxes, flow rates and mass fluxes can be derived from the 

numerically computed velocity, pressure, temperature and species fields. These capabilites are 
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provided by the graphs postprocessor programme FIPOST, which can also graphically display 

the numerical results. 

2.8.1 Finite Element Analysis 

The numerical procedure consisted of solving the non-dimensional Equations (2.13) to (2.25) 

using the finite element technique. The finite element technique reduces the infinite number of 

degrees of freedom in a problem to a finite number by solving a system of equations. For the 

present two-dimensional model, the computational domain was divided into many small 

quadrilaterals. To achieve greater accuracy in the results, a finer mesh was applied to the vertical 

walls of the rectangular cavity and at the free surface where the driving force of the flow is 

located. 

9 (1, 5) 6 (3, 5) 3 (5, 5) 

8 (1, 3) 5 (3, 3) 2 (5, 3) 

7(1,1) 4 (3, 1) 1 (5, 1) 

Figure 2.3 Node numbers for key-points 

The mesh was defined with a finite number of elements, where the variables were evaluated 

simultaniously. As can be seen in Figure 2.3, the free surface of the cavity is defined by key

points 3 to 9, and the fluid-porous layer interface by key-points 2 to 8. The velocities, 

temperature, pressure and species are unknown and are numerically calculated at each node in 

the meshed cavity. The convergence criterion for the iterative solution of symmetric and non-
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symmetric linear equation systems is 1.0E-6. Therefore, the iterations will continue until an error 

of 1.0E-6 is found between two consecutive iterations. 

2.8.2 Mesh Sensitivity Analysis 

Performing a mesh sensitivity ananlysis is an integral part of producing accurate, time-efficient 

and cost-effective results. For this study,we used the same mesh as used by Kozak eta!. (2004). 

They used a mesh of 120 elements in the x-axis by 40 elements in the y-axis for the two

dimensional laterally heating conditions. Since a high temperature gradient has been assumed to 

occur parallel to the free surface, fine nodal spacing near the hot and cold wall, as well as the 

free surface has been used (figure 2.4). 

(a) (b) 

Figure 2.4 Finite element mesh for model defined by 240 elements in the X-axis by 80 elements 

in the Y-axis: (a) AR= 1, and (b) AR=2 
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CHAPTER3 

Buoyancy and Marangoni convection 

3.1 Introduction 

To study the patterns of fluid motion, the discipline of fluid mechanics utilizes several different 

techniques to visualize the flow. One common type of line pattern is a stream line, which is a line 

everywhere tangent to the velocity vector at any given instant [35]. In this study, to display the 

results of computed flow fields for the two-dimensional modeling, stream functions are 

employed. The stream function 'P is a clever device that allows us to satisfy the continuity 

equation and then solve the momentum equation directly for the single variable 'P. For two-

dimensional incompressible flow, the stream function 'P is determined using the following 

relationships: U = a'l' and V = - aa'l' . The lines of constant 'Pare the stream line pattern of the 
av x 

flow in the graphical results. 

Two different cases are studied in this present chapter. The first case is the buoyancy or gravity 

driven convection and the second case is the Marangoni or thermocapillary convection with two 

different fluid mixtures. The fluid mixtures used for the present study are 90% water-1 0% 

isopropanol and 50% water-50% isopropanol. To see the effects of the Prandtl number on 

buoyancy and Marangoni convection, these two different water-isopropanol mixtures has been 

selected. The physical properties of water-isopropanol mixtures are given in Appendix C. Both 

the buoyancy and Marangoni convections are studied and compared with each other for two 

different Rayleigh numbers (calculated from two different temperature differences). To analyze 

the results, streamline contours, isotherms and velocities at the vertical median of the cavity have 
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been plotted. To observe the flow phenomena, two different aspect ratios and thickness ratios 

have been used. From the results, it could be seen whether the flow penetrates in the porous layer 

or not. The results are compared to the similar analysis by Saghir eta!. (2005) and Kozak eta!. 

(2004). 

3.2 Convection in the presence of Buoyancy 

The main accelerating factor for buoyancy convection is the gravity force. For a liquid having 

density differences L1p1; arising from temperature or concentration differences, the gravitational 

body force (or buoyancy force) g.L1p1 will drive the motion. In the present analysis, concentration 

difference is not taken into consideration. As the buoyancy convection is directly proportional to 

the Rayleigh numbers, we use two different Rayleigh numbers (for L1T= 5 andL1T= 10). Also, to 

observe the effect of Prandtl number on the buoyancy convection, two different water

isopropanol mixtures having different Prandtl numbers has been selected. For the simulation, 

heat transfer from the free surface has been allowed by using the non-dimensional heat flux 

equation Q = Bi. e, where Bi is the Biot number and Bi = 1 has been kept for the entire analysis. 

3.2.1 Various effects on Buoyancy Convection 

From the linear stability analysis performed by Saghir et a!. (2005), Kozak et a!. (2004 ), and 

Desaive et a!. (200 1 ), as the fluid layer thickness decreases, the flow penetrates into the porous 

layer. Figure 3.1 shows streamlines of buoyancy convection for two different aspect ratios and 

thickness ratios with the thermal liquid Rayleigh number held constant at RaLL=8.29E04. When d 

is set to 0.50, the flow remains in the liquid layer for both AR = 1 and 2 and the porous layer acts 

simply as a rigid wall barrier preventing the flow from protruding in the porous cavity (figure 
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3.1a). When d =0.90, the flow dominates the porous layer of the cavity with the cell now within 

the porous layer itself (figure 3.1b). For both the thickness ratios, it is clear that the maximum 

streamline values increase as the aspect ratio increases from AR = 1 to AR = 2. The reason behind 

it is that, as the aspect ratio increases, the liquid gets more space to move and also the 

gravitational force becomes more active. However, as the thickness ratio increases, the 

streamline values decrease. The reason behind it is that, as the thickness ratio increases, the 

liquid gets less space to move and also the gravitational force becomes less effective. 

L1 'P = 4.29E-4 L1 'P = 4. 73E-4 

(a) d= 0.50 

L1 'P = 7. 61 E-5 L1 'P = 7 .82E-5 

(b) d= 0.90 

AR= 1 AR=2 

Figure 3.1 Streamlines for the buoyancy convection (Pr = 1 0.85, RaLL = 8.29£04, Ma = 1) 
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Figure 3.2 represents the isotherms for two different aspect ratios and thickness ratios. From this 

figure, it can be easily seen that, for all the cases, the isotherms in the liquid layers are strongly 

distorted and locally there exists negative horizontal temperature gradients, :: due to the 

presence of natural convection in the liquid layer. 

As predicted earlier from the linear stability analysis by Kandaswamy and Eswaramurthi (2008), 

the convective heat transfer rate goes down and the motion of the fluid particles becomes lower 

as the Darcy number in the porous layer decreases. So, as in our case the Darcy number is l.OE-

05, the heat transfer in the porous layer takes place by the mode of conduction. For thickness 

ratio d = 0.50, the corresponding isotherms are slightly distorted from their vertical position 

(figure 3.2a). So, the convective fluid flow or motion is present in the porous layer. However, the 

flow is very weak and the heat transfer takes place as a conductive mode. But as the thickness 

ratio increases, the buoyancy-driven convection dominates in the porous layer and the isotherms 

are strongly distorted from their vertical positions (figure 3.2b). That reflects the presence of 

strong convective flow in the porous layer. For all the cases, a large temperature gradient exists 

both near the cold (left) and the hot (right) wall. 
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(a) d= 0.50 

(b) d= 0.90 

AR= 1 AR=2 

Figure 3.2 Temperature contours for the buoyancy convection 

(Pr = 1 0.85, RaLL = 8.29e04, Ma = 1) 

Figure 3.3 shows the comparison of velocities for two thermal Rayleigh numbers having same 

Prandtl number 10.85 and thickness ratio 0.50. From these figures we can see that for the both 

AR = 1 and 2, the velocity increases with increasing the thermal Rayleigh number. For all the 

cases, we can clearly observe that the velocity is deformed in the liquid layer. This indicates the 

presence of convective flow in the liquid layers. Also we can easily realize that for all the cases a 

single cell rotating in the counter clockwise direction is present in the liquid layer. The shape of 
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the velocity profiles remains same for both thermal Rayleigh numbers. For all the cases a very 

weak convective flow is observed in the porous layer. 

----- Ra = 8.29E04 
--Ra = 1.67EOS 

-S.OE-4 

-0.002 8E-17 0.002 0.004 0.006 0.008 0.01 

L(m) 

(a)AR = 1 

S.OE-4 

3.0E-4 

,.-... 
l.OE-4 (/) a 

"-" -l.OE-4 ;::s 
----- Ra = 8.29E04 

-3.0E-4 --Ra = 1.67EOS 

-S.OE-4 

0 0.002 0.004 0.006 0.008 0.01 

L (m) 

(b)AR = 2 

Figure 3.3 Effects of thermal Rayleigh number 

Figure 3.4 represents the effect ofPrandtl number on velocity profiles. We plot velocities for two 

different water-isopropanol mixtures having same temperature difference (11T = 5) and same 

thickness ratio (d= 0.50). One ofthe using liquids is 90o/o water-10% isopropanol having Prandtl 
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number of 10.85 and another one is 50% water-50% isopropanol having Prandtl number of 

49.17. From the figure we can see that velocity decreases with increasing Prandtl number. The 

reason behind it is that the liquid having Prandtl number 10.85 has higher thermal conductivity 

than the liquid having Prandtl number 49.17 [Appendix C]. 

4.0E-4 
3.0E-4 
2.0E-4 

,--.... 1.0E-4 tl.l 

a O.OE+O ........., 
~ -1.0E-4 

-2.0E-4 ----· Pr = 10.85 

-3.0E-4 --Pr=49.17 

-4.0E-4 

0 0.002 0.004 0.006 0.008 0.01 

L(m) 

(a)AR = 1 

6.0E-4 

4.0E-4 

,--.... 2.0E-4 
tl.l 

a ........., 
~ -2.0E-4 

-4.0E-4 --Pr=49.17 

-6.0E-4 

0 0.002 0.004 0.006 0.008 0.01 

L (m) 

(b)AR = 2 

Figure 3.4 Effects of Prandtl number 
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3.3 Convection in the presence of Marangoni 

The Marangoni effect (also called Gibbs-Marangoni effect) is the convection in a liquid layer 

due to the surface tension differences. Since a liquid with a high surface tension pulls more 

strongly on the surrounding liquid than one with a low surface tension, the presence of a gradient 

in surface tension will naturally cause the liquid to flow away from regions of low surface 

tension. The surface tension gradient can in turn be caused by concentration gradient or by a 

temperature gradient. For our present analysis only temperature gradient is taken into 

consideration and two different Marangoni numbers (calculated for L1 T = 5 and I 0) are used. 

Marangoni effect is important for the convections in micro-gravity conditions. So we use 

microgravity condition (g = 1 OE-5.g0 ) to investigate the Marangoni convection. We calculated 

non-dimensional Marangoni numbers by using coefficient of surface tension for water

isopropanol mixtures [36]. 

3.3.1 Various effects on Marangoni Convection 

Figure 3.5 represents the streamlines of thermocapillary convection for two different aspect 

ratios and thickness ratios. From this figure we can see that for the thickness ratio d = 0.50 the 

flow is limited to the liquid layer only (figure 3.5a). The porous layer acts as a solid wall and the 

flow remains only in the liquid layer. When the thickness ratio dis set to 0.90, the flow becomes 

partially dominant in the porous layer for both AR = 1 and 2 (figure 3.5b). Also, we can see that 

the streamline values get weaker as the aspect ratio increases. However, in the case of buoyancy 

convection, streamline values get stronger as the aspect ratio increases (figure 3.1). We can also 

see that the flow gets weaker when the thickness ratio d increases. This is the same as for 

buoyancy convection (figure 3.1). It is also noted that, for all the cases, the center of the 
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convective cell appears close to the free surface and hot side wall. This is due to the presence of 

the surface tension force at the free surface and the steep temperature gradient near the hot wall. 
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(a) d = 0.50 

4.0E-3 

L1 'l' = 8.3E-3 L1 'l' = 8.0E-3 

(b) d= 0.90 

AR= 1 AR=2 

Figure 3.5 Streamlines for Marangoni convection (Pr = 10.85, RaLL = 0.829, Ma = 2.21£4) 

The isotherms for different aspect ratios and thickness ratios are shown in figure 3 .6. As in the 

buoyancy convection (figure 3.2), the isotherms in the liquid layer are strongly distorted and, 

locally, there exists negative horizontal temperature gradients. That is due to the presence of 

thermocapillary convection in the liquid layer. For both thickness ratios d (even ford= 0.90), the 
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corresponding isotherms in the porous layer are distorted from their vertical positions. But if we 

compare with figure 3 .2, we can see that the distortions of the isotherms in the porous layer are 

less than from the buoyancy convection. Also, we can see that, as the thickness ratio d increases, 

isotherms move towards the cold wall. That indicates, as the thickness ratio increases, convective 

flow dominates more into the porous layer. 

(a) d= 0.50 

(b) d= 0.90 

AR= 1 AR=2 

Figure 3.6 Temperature contours for Marangoni convection 

(Pr = 10.85, Rarr = 0.829, Ma = 2.21E4) 

Figure 3.7 represents the difference in velocities for the buoyancy and the Marangoni 

convection. From this figure, we can see that the buoyancy convection is stronger than the 
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Marangoni convection. Since strong gravity force dominates the buoyancy convection, 

convection becomes very strong. However, a mimic microgravity condition is considered for the 

Marangoni convection, so convection becomes too weak to be noticed due to the absence of 

buoyancy. From the figure, we can also observe that the velocity in the free surface is zero for 

the buoyancy convection but non-zero for the Marangoni convection. The reason behind it is 

that, at the free surface, we applied the no slip boundary condition for the buoyancy convection. 

And for the Marangoni convection, we consider the upper surface as a free surface. 
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Figure 3.7 Comparison between the buoyancy and the Marangoni convection (Pr = 10.85) 
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Figure 3.8 represents the effect of changing the Marangoni number for the same liquid having 

the same Prandtl number. From this figure, we can easily observe that convective flow increases 

with increasing Marangoni number. From figure 3.8a, we can also see that the velocity variation 

due to the change of Marangoni number for aspect ratio AR = 1 is very small. However, figure 

3.8b shows that the velocity for AR = 2 is very sensitive to the Marangoni number. 
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Figure 3.8 Effect ofMarangoni number (Pr = 1 0.85, d = 0.50) 
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Figure 3.9 shows the velocity profiles of two different Prandtl numbers for the same temperature 

difference and thickness ratio. Two different water-isopropanol mixtures having Prandtl numbers 

10.85 and 49.17 are used for this analysis. From this figure, we can easily realize that, for the 

both AR = 1 and 2, the convective flow becomes weaker with increasing Prandtl number. The 

same scenario happened for the buoyancy convection as well (figure 3.4). 
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Figure 3.9 Effect ofPrandtl number (d= 0.50, 11T= 5) 
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3.4 Summary 

In this chapter, the buoyancy and Marangoni convections with different aspect ratios and 

thickness ratios are studied in detail for two different water-isopropanol mixtures having 

different Prandtl numbers. From the results, it has been found that the buoyancy convection is 

stronger than the Marangoni convection. For the buoyancy convection, both the aspect ratio and 

thickness ratio determine whether the flow dominates in the porous layer or not. As the thickness 

ratio increases, flow penetrates deeper into the porous layer. Also, for the buoyancy convection, 

the convective flow increases with increasing Rayleigh number and decreases with increasing 

Prandtl number. For the Marangoni convection, it has been confirmed that the effects of aspect 

ratio and thickness ratio on the convective flow are negligible. Convective flow increases with 

increasing Marangoni number and decreases with the Prandtl number. 
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CHAPTER4 

Thermo-Solutal Convection in the Presence of Thermodiffusion 

4.1 Introduction 

In the previous chapter, the mass balance equation was not considered. In the present chapter, we 

are going to study the thermo-solutal convection by taking into account diffusion (both 

molecular and thermal) in the mass balance equation. 

This chapter has been divided into two major parts. First, molecular diffusion has been applied in 

the model and the importance of thermo-solutal convection for both the buoyancy and the 

Marangoni cases has been observed. In the second part, thermodiffusion has been added in the 

model and how thermodiffusion affects the thermo-solutal convection, has been seen. To activate 

thermodiffusion, both the molecular diffusion coefficient DM and the thermodiffusion coefficient 

Dr in the mass balance equation have been taken into consideration. Both Dr and DM are 

assumed as a constant. For the entire calculation, we consider the temperature difference L1T = 5 

and the aspect ratio AR = 1. 

4.2 Thermo-solutal Convection 

As noted by Saghir et a!. (1998), when heat and species transfer exist within a fluid layer, the 

temperature and concentration gradients create a convection mode. An equal mass flux at the 

liquid-porous interface has been assumed. The model with all the boundary conditions used for 

the study of thermo-solutal convection is given in figure 4.1. For the analysis of thermo-solutal 

convection, the thickness ratio d = 0.50 has been considered. 
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To see the effects of thermo-solutal convection with respect to time, the transient condition has 

been used. The term transient means that the simulations are time dependent. To solve the 

problems in FIDAP in the transient condition, we used the backward Euler time integration 

method with a variable time increment option. The first 5 time steps has been kept as fixed with 

a time step increment dt = 1.0E-6s. After 5 time steps, the calculation switches from the fixed 

time increment method to the variable time increment method. 

V = O,Bi = 1 

90% water-1 0% isopropanol 

U= V= 0, B= 0 (Liquid layer) U= V= 0, B= 1 

U = O, B = 0 90% water-1 0% isopropanol U = O, B = 1 

(Porous layer) 

ae 
V=0-=0 

'an 

Figure 4.1 Model descriptions with boundary conditions 

4.2.1 Buoyancy Convection Condition 

To investigate the effects of gravity on thermo-solutal convection, the earth gravity condition is 

used. As noted by Benano-Melly et a!. (200 1 ), in some cases, the solutal Rayleigh number RaLc 

can be so high that instead of the thermal buoyancy force, the solutal buoyancy force becomes 

dominant. Then convective flow can change direction or multiple-roll configurations can appear. 
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Figure 4.2 represents the streamlines and temperature contours for the time step t = 975.6s. 

Figure 4.2a shows the streamlines for the case with 90% water-1 0% isopropanol in the entire 

cavity. For this case, the calculated thermal Rayleigh number RaLL is 1.036£4 and solutal 

Rayleigh number RaLc = 9.36£5. As in the present case RaLc > RaLL, multicells appear in the 

liquid layer. We can also see that the flow in the porous layer is not negligible but too weak as 

compared to the flow in the liquid layer. The reason is that the molecules in the porous layer 

can't diffuse as fast due to friction with porous particles. Figure 4.2b represents the temperature 

contours for the time step t = 975.6s. From this figure, it can be clearly observed that the 

isotherms in the porous layer are slightly distorted from their vertical positions. So the 

convective flow in the porous layer is not negligible but it is weak. However, the isotherms in the 

liquid layer for the cases with single liquid are strongly distorted from their vertical positions. 

That reflects the presence of strong convective flow in the liquid layer. 

6.5E-4 

L1 'P = 1.8E-3 

(a) Streamlines (b) Temperature contours 

Figure 4.2 Streamline and temperature contours 
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4.3 Thermodiffusion 

In the previous section, the thermo-solutal convection has been studied. In the present section, 

the thermo-solutal convection in the presence of thermodiffusion or Soret effect has been 

studied. The mass flux in a mixture due to a temperature gradient is known as the 

thermodiffusion or Soret effect. The separation of the components of a mixture subjected to a 

temperature difference is measured by the Soret coefficient Sr = DriDM. For the water-

isopropanol binary mixture, the sign of the Soret coefficient is strongly dependent on the 

concentration. From figure 4.3, it can be seen that the Soret coefficient is positive Sr > 0 if the 

water content is less than 75%, otherwise the Soret coefficient is negative. So, to analyze the 

effect of thermodiffusion or the Soret effect on thermo-solutal convection, two water-isopropanol 

mixtures having negative and positive Soret coefficients have been chosen. One of the liquid 

mixtures is 90% water-10% isopropanol and another one is 50% water-50% isopropanol. Figure 

4.3 shows the Soret coefficients for the water-isopropanol binary mixtures. 
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Figure 4.3 Dependence of the Soret coefficient on the mass fraction of water in water-

isopropanol mixture (298.15 K) [37] 
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To activate thermodiffusion, both the molecular diffusion coefficient DM and the thermodiffusion 

coefficient Dr in the mass balance equation have been taken into consideration. During the 

calculation, both Dr and DM have been assumed to be fixed. From the results, it would be seen 

how thermodiffusion will create convection without presence of the buoyancy and the surface 

tension. To minimize the buoyancy effect, a mimic microgravity condition (g = l.OE-7.g0 ) has 

been used. To see the effects of thermodiffusion on convection with respect to time, the model 

has been considered as transient in nature. To solve the problem in FIDAP with transient 

condition, backward Euler time integration method with variable time increment option has been 

used. 

As noted by Jiang eta!. (2004), when the characteristic time of the convective flow is larger than 

the characteristic time of the thermal diffusion, then the Soret effect is the dominant force for the 

composition separation in the cavity and maximum separation is reached when characteristic 

time is equal to the time of thermal diffusion. From the physical properties of isopropanol we can 

see that the characteristic time of the thermal diffusion for two water-isopropanol mixtures are 

11.49E4s and 55.56E4s (Appendix C). So to analyze the thermodiffusion or Soret effect, we set 

our calculation end time t end= 5.0E05s. To analyze the Soret effect in details, we analyze two 

different cases. In the first case, initially 90% water-1 0% isopropanol is set in the whole cavity. 

And for the second case, initially 50% water-50% isopropanol is set in the whole cavity. For the 

entire analysis, we consider a temperature difference of L1 T = 5 and the reference temperature of 

the cavity is set the average of hot and cold temperature. 
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4.3.1 Thermodiffusion with negative S T 

In the present analysis, only a single liquid mixture 90% water-1 0% isopropanol having negative 

Soret coefficient is used both in the liquid and in the porous layer. The model descriptions and 

the boundary conditions are given in figure 4.4. 

U= V= 0, B= 0 

o() 
U=V=0-=0 

'on 

90% water-1 0% isopropanol 

(Liquid layer) U= V= 0, B= 1 

U = O, B = 0 90% water-1 0% isopropanol U = O, B = 1 

(Porous layer) 

o() 
V=0-=0 

'on 

Figure 4.4 Model descriptions and boundary conditions 

As mentioned earlier in the literature review (chapter 1 ), thermodiffusion in a binary mixture 

have been studied earlier by a lot of researchers. Most of them found that due to the presence of 

thermodiffusion in a binary mixture, the molecules separate from each other towards the hot and 

cold walls. If the Soret coefficient of the mixture is negative then lighter component moves 

towards the hot wall and heavier component moves towards the cold wall. Figure 4.5 shows the 

streamline contours for different thickness ratios at the time step 500,000s. Figure 4.5a shows the 

streamlines when the cavity doesn't have any porous medium. From this figure, it can be seen 

that the streamline values are very weak as compare to the buoyancy and Marangoni 
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convections. The main reason behind it is that for this analysis micro gravity condition (g = 1 Oe-

7 .g0 ) has been considered and the thermocapillary effect has not been considered. Only 

thermodiffusion effect is considered for this study. As the effect of thermodiffusion on 

convection is very weak, the maximum and minimum streamline values are very small. Also, the 

difference between the maximum streamline values and the minimum streamline values are very 

small. However, as the thickness ratio increases, the convective flow becomes weak. When d is 

0.50, the flow remains in the liquid layer only and the flow in the porous layer is negligible 

(figure 4.5b ). When there is no liquid layer (d = 1.0), the convective flow covers the entire 

cavity. But the flow is very weak compared to the previous cases where the liquid layer exists 

(figure 4.5c). 

L1IJI = 1.16e-ll 

(a) d= 0.0 

L1IJI = 5.69e-13 

(b) d= 0.50 

Figure 4.5 Streamline contours 

L11J1 = 2.63e-16 

(c)d=l.O 

Figure 4.6 shows the temperature contours in the cavity for the time step t = 500,000s. From this 

figure, it can be seen that for all the thickness ratios, the isotherms are almost vertically parallel. 

Also the shapes of the isotherms both in the liquid layer and the porous layer are almost the 

same. That shows very weak convective flow exists in the whole cavity. However, for the 
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----

thermo-solutal convection with buoyancy, the isotherms In the liquid layer were strongly 

distorted from their vertical positions. 
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Figure 4.6 Temperature contours 

Figure 4.7 represents the isopropanol distributions in the cavity for the thickness ratio d = 0.50 

only. From this figure, we can see that, as the time increases, the concentration of isopropanol 

near the hot (right) wall increases. In the same time, the concentration of isopropanol near the 

cold (left) wall decreases. Due to the presence of thermodiffusion effect, lighter molecules 

(isopropanol) migrate to the hot wall and heavier molecules (water) migrate to the cold wall. A 

similar analysis was done by Jiang eta/. (2004). They found that, in the lateral heating condition, 

lighter fluid component migrates to the hot side of the cavity. If the concentration along different 

positions in the cavity has been plotted, it can be easily understood how thermodiffusion affects 

the isopropanol distributions. Figure 4.8 reflects the isopropanol distribution for different time 

steps along the horizontal direction of the cavity. From this figure, we can see that, at the initial 

time step t = Os, both the porous and the liquid layer have the same concentration (0.1 0). But as 

the time increases, the concentration near the cold wall (at H = Om) decreases and the 

concentration near the hot wall (at H = O.Olm) increases. For all the time steps, the concentration 
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varies linearly with distance. At the time t = 500,000s, the isopropanol distribution line appears 

completely linear. 
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L1C = 2.4e-3 L1C = 8.4e-3 L1 C = 1.14e-2 

(a) t = l,OOOs (b) t = IO,OOOs (c) t = 500,000s 

Figure 4.7 Isopropanol distributions with negative Sr (d = 0.50) 
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Figure 4.8 Isopropanol distributions along the horizontal direction of the cavity 
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4.3.2 Thermodiffusion with PositiveS r 

In the previous section, thermodiffusion convection with the liquid having a negative Soret 

coefficient has been studied. As the Soret coefficient of the liquid 90% water-1 Oo/o isopropanol is 

negative, it was found that isopropanol molecules move towards the hot wall. In the present 

section, the thermodiffusion for the liquid 50% water-50% isopropanol has been examined. The 

Soret coefficient of the liquid 50% water-50% isopropanol is positive. So, in the present analysis, 

isopropanol molecules would move towards the cold wall. The model and the boundary 

conditions used for the present analysis are the same as figure 4.4. 

Figure 4.9 shows the isopropanol distributions in the cavity for different time steps. At the 

beginning (t = Os), the concentration of isopropanol was uniform everywhere in the cavity. From 

this figure we can see that as the time increases, the concentration of isopropanol near the hot 

(right) wall decreases. In the same time the concentration of isopropanol near the cold (left) wall 

increases. Due to the presence of thermodiffusion effect, lighter molecules (isopropanol) migrate 

to the cold wall and heavier molecules (water) migrate to the hot wall. If we compare figure 4.9 

with the figure 4.7, we can see that two figures have quite opposite behaviours. For the 

thermodiffusion with liquid 90% water-1 Oo/o isopropanol, isopropanol component migrates to the 

hot side wall. But for the thermodiffusion with liquid 50o/o water-50% isopropanol, isopropanol 

component migrates to the cold side wall. The reason behind it is that the two liquid mixtures 

have two different Soret coefficients and Prandtl numbers. The Soret coefficient of 90% water-

1 0% isopropanol is negative. But the Soret coefficient of 50% water-50% isopropanol is 

positive. 
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Figure 4.9 Isopropanol distributions with positive Sr (d = 0.50) 

Figure 4.10 shows the isopropanol distribution for different time steps along the horizontal 

direction of the cavity. From this figure it can be seen that at t = Os both the porous and the liquid 

layer have the same concentration (0.50). But as the time increases, the concentration near the 

cold wall (H =Om) increases and the concentration near the hot wall (H = O.Olm) decreases. At 

the time t = 500,000s the isopropanol distribution line appears completely linear. If we compare 

this figure with figure 4.8, we can easily distinguish the difference of thermodiffusion effect 

between the liquid mixtures having positive and negative Soret coefficient. 
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Figure 4.10 Isopropanol distributions along the horizontal direction of the cavity 

4.3.3 Separation ratio 

To measure the thermodiffusion effect on binary mixture, the separation ratio is calculated. The 

separation ratio is a very good device to understand the mass transfer process due to the 

thermodiffusion convection. Figure 4.11 shows the calculated separation ratios for different 

porosities at the time step t = 500,000s. From figures 4.11a and 4.11b, it can be seen that the 

separation ratio decreases with increasing porosity. The reason is, as the porosity increases, the 
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distances between the porous particles are increased and more liquid exists In the porous 

medium. Hence, due to the presence of more liquid, the buoyancy force becomes strong in the 

porous medium and reduces the thermodiffusion effect. If figure 4.11 b is compared with the 

figure 4.11a, it can be seen that, for the same porosity the separation ratio of the liquid mixture 

having negative Sr is higher than that of the liquid mixture having positive Sr. 

~ 
4.40 

~ 1.27 
6 3.90 0~ 

·~ 
3.40 

·~ 1.22 1-o 1-o 

r::: 
2.90 

r::: 
0 0 

·~ ·~ 1.17 
1-o 2.40 1-o 
0 0 
0.. 

1.90 
0.. 

1.12 0 0 
r:/) r:/) 

0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80 

Porosity, cp Porosity, cp 

(a) Negative Sr (b) Positive Sr 

Figure 4.11 Separation ratios for different porosities 

Figure 4.12 shows the effect of gravitational acceleration on thermodiffusion at the time step t = 

500,000s. This figure clearly shows that the separation ratio decreases with increasing 

gravitational acceleration. And the minimum separation appears at the earth gravity condition (g 

= 9.8m/s2
). As mentioned earlier in the chapter 3, the gravitational force is the main accelerating 

factor for the buoyancy body force term. So the buoyancy force increases with increasing 

gravitational acceleration and reduces the thermodiffusion effect. However, the separation ratio 

of the liquid mixture having negative Sr is more sensitive to the gravitational force than that of 

the liquid mixture having positive Sr. 
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Figure 4.12 Separation ratios for different gravities 
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4.4 Thermo-Solutal Convection for Combined Fluid 

In the previous two sections, thermo-solutal convection has been studied only for a single liquid 

mixture. In this section the thermo-solutal convection for combined liquid mixtures would be 

analyzed. To investigate the effects of gravity and surface tension on thermo-solutal convection, 

both the buoyancy and the Marangoni convections are studied in detail. For the buoyancy case, 

the earth gravity condition and, for the Marangoni case, the microgravity condition (g = 1.0E-

5.g0 ) has been studied. The model description and boundary conditions are given in figure 4.13. 

U= V= 0, B= 0 

Ma 
V = 0, CJm = -R p , Bi = 1 e. r 

90% water-1 Oo/o isopropanol 

(Liquid layer) U= V= 0, B= 1 

u = 0, () = 0 50o/o water-50% isopropanol u = 0, e = 1 

(Porous layer) 

ae 
V=0-=0 

'an 

Figure 4.13 Model descriptions with boundary conditions 

4.4.1 Buoyancy Convection Condition 

Figure 4.14 represents the streamlines and temperature contours for the time step t = 975.6s. 

Figure 4.14a shows the streamlines for the case when 90% water-1 0% isopropanol is set in the 

liquid layer and 50% water-50% isopropanol is set in the porous layer. Due to the presence of 

two different liquid mixtures having positive and negative solutal expansion coefficients, 
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multicells appear in the liquid layer and the convective flow becomes weaker than the cases with 

a single liquid mixture. For all the cases, it can be seen that the flow in the porous layer is not 

negligible but is weak compared to the flow in the liquid layer. The reason for this is that the 

molecules in the porous layer can't diffuse so fast due to the friction with porous particles. 

Figure 4.14b represents the temperature contours for the time step t = 975.6s. From this figure, it 

can be seen that, for all the cases, the isotherms in the porous layer are slightly distorted from 

their vertical positions. So the convective flow in the porous layer is not negligible but too weak. 

~I 
___. I 

A'P= 7.0E-5 

(a) Streamlines, (b) Temperature contours 

Figure 4.14 Streamline contours 

Figure 4.15 represents the isopropanol distributions in the cavity for different time steps. At the 

beginning of the calculation, the concentration of isopropanol in the porous layer was set to 0.50 

and the concentration of isopropanol in the liquid layer was set to 0.1 0. From this figure, it can 

be interestingly seen that, as the time increases, the concentration of isopropanol in the liquid 

layer becomes higher than that of the porous layer. The reason is that the gravitational force 

accelerates the heavier component (water) in the downward direction of the cavity and hence the 

lighter component (isopropanol) moves in the upward direction of the cavity. Also, for the time 
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step t = 975.6s, we can see that the isopropanol distribution in the porous layer is almost linear. 

But, due to the presence of convective flow in the liquid layer, the concentration lines are 

nonlinear. 

0.12 

0.48 

L1C = 0.04 

(a) t = Os 

L1C = 0.012 

(b) t = 406.5s 

Figure 4.15 Isopropanol distributions 

L1C = 0.012 

(c) t = 975.6s 

Figure 4.16 shows the concentration of isopropanol for various time steps along the vertical 

median direction of the cavity. From this figure, it can be seen that, at the initial time t = Os, the 

porous layer has the constant concentration of 0.50 and the liquid layer has the constant 

concentration of 0.1 0. But, as the time increases, the concentration of isopropanol in the porous 

layer decreases and in the liquid layer increases. As discussed earlier, the reason is that the 

gravitational force attracts heavier component (water) in downward direction. So as the time 

increases, water component migrates to the lower portion and isopropanol component migrates 

to the upper portion of the cavity. It can be also observed that the concentration for the time step 

t = 162.6s and for the time step t = 975.6s are almost the same. Also, when the time step has been 

increased further, the concentration remains uniform (not shown in the figure). However, for the 

liquid with 90% water-10% isopropanol, the calculated thermal characteristic time, Trh is 769.23s 
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and the diffusive characteristic time, TD is 1.15E5s (Appendix C). So to observe the effect of 

molecular diffusion on thermo-solutal convection, it is needed to continue the calculation up to 

the time step t = 1.15E5s. But, in the earth gravity condition, due to the presence of strong 

buoyancy (both thermal and solutal), molecular diffusion can't be effective. So, within a very 

short time interval, molecules separate in the top and bottom portions of the cavity and only 

buoyancy continues the convection in the cavity. 
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Figure 4.16 Concentration of isopropanol along the vertical median direction 

4.4.2 Marangoni Convection Condition 

In the previous section, we studied the thermo-solutal convection in the presence of buoyancy. 

But, due to the presence of the strong buoyancy effect, we couldn't observe the influence of 

molecular diffusion on thermo-solutal convection. To observe the effects of molecular diffusion 

and surface tension on thermo-solutal convection, both the microgravity condition and the free 

upper surface have been considered for the present study. As in this buoyancy case, initially, we 

set 90% water-1 0% isopropanol in the liquid layer and 50o/o water-50o/o isopropanol in the porous 

layer. For this case, the calculated Marangoni number Ma = 2.21E4, the thermal Rayleigh 

number Rau = 0.1036 and the solutal Rayleigh number RaLc = 9.365. 
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Figure 4.17 shows the streamlines and isotherms for the time step t = 25,641s. From figure 4.17a, 

it can be seen that the flow does not exist in the porous layer. The flow remains in the liquid 

layer only and the porous layer simply acts as a wall. However, for the buoyancy case the centre 

of the vortex was near to the hot wall and multicells were appeared (figure 4.14a). But for the 

Marangoni case, the centre of the vortex is near the free surface. Also, near the free surface, 

streamlines are congested. These are due to the presence of the thermo capillary effect. From the 

figure 4.17b, we can see that both in the liquid layer and the porous layer, the isotherms are not 

vertically parallel. That reflects the presence of weak convective flow in the whole cavity. But, in 

the liquid layer, the isotherms are strongly distorted. However, the isotherms in the porous layer 

are weakly distorted from their vertical positions. Also, in the liquid layer, the isotherms are 

congested both near the hot and cold walls. So it can be said that the flow inside the porous layer 

is very weak as compared to the liquid layer. 

0.67 

(a) Streamlines (b) Temperature contours 

Figure 4.17 Streamlines and temperature contours 

Figure 4.18 shows the isopropanol distributions for various time steps in the cavity. From this 

figure, it can be easily seen that at the early time step, the porous layer has higher concentration 

than that of liquid layer (figure 4.18a). But, as the time increases, the difference in concentration 
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between the liquid layer and the porous layer decreases (figure 4.18b). At the time t = 25,641s 

(which is less than the calculated diffusive characteristic time rv = 115,000s), the concentration 

of isopropanol becomes uniform in the whole cavity (figure 4.18c). If we compare figure 4.18 

with the buoyancy case (figure 4.15), we can see that, for the Marangoni case, the two different 

water-isopropanol mixtures diffuse more slowly than for the buoyancy case. Also, for the 

Marangoni case, the difference in concentration with respect to time decreases slowly. However 

for the buoyancy case, instead of mixing the isopropanol component goes into upper portion and 

the water component goes into the bottom portion of the cavity. The main reason is that, for the 

buoyancy case, the strong gravitational force was effective but, for the Marangoni case, the 

gravitational force is not negligible but too weak, so it doesn't have a strong effect on the 

molecular movements. 

(a) t = 769.2s (b) t = 7,692.3s (c) t = 25,641s 

Figure 4.18 Isopropanol distributions 

Figure 4.19 shows the concentration of isopropanol for various time steps along the vertical 

median direction of the cavity. From this figure, we can clearly see that, initially (t = Os), the 

porous layer has the concentration of 0.50 and the liquid layer has the concentration of 0.1 0. 

Then it can be seen that the concentration of isopropanol gradually decreases with increasing 
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time steps. And, at the time step t = 25,641s, the concentration of isopropanol becomes uniform 

in the whole cavity. But this time step is not more than the diffusive characteristic time rn = 

115,000s. As the upper surface is assumed to be free, the Marangoni or thermocapillary effect 

influences on thermo-solutal convection. So, before reaching the diffusive characteristic time, the 

water and isopropanol components are completely mixed together and create a uniform water-

isopropanol mixture of concentration (isopropanol) 0.17. 
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0.50 ~ .g 

(.) 0.40 ro 
c.t: - · -t= 5128.2s 

--t=2564ls 
<.f) 0.30 <.f) 

ro s 0.20 ._, 
0 
~ 0.10 ro 
0.. 
0 
1-o 0.00 0.. 
0 
<.f) 

0 ...... 0.002 0.004 0.006 0.008 0.01 

L(m) 

Figure 4.19 Concentration of isopropanol along the vertical median direction 

Figure 4.20 shows the comparison of isopropanol distribution between the buoyancy and the 

Marangoni convection at the time step t = 769.23s. From this figure, we can see that, for the 

buoyancy convection, the water and isopropanol components are mixed in the whole cavity. 

However, for the Marangoni convection, the concentration of isopropanol in the porous layer is 

almost 0;50 and in the liquid layer is almost 0.1 0. So it is clear that, for the Marangoni case, the 

isopropanol components diffuse very slowly with respect to time. However, for the buoyancy 

case, isopropanol components diffuse strongly within a very short time step. 
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Figure 4.20 Comparison between the buoyancy and the Marangoni case 
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4.5 Thermodiffusion Effect for Combined Fluid 

In the previous section (section 4.3), it has been studied thermodiffusion convections for single 

liquid mixtures. From the results, it has been found that, for the liquid mixture having a negative 

Soret coefficient, the isopropanol component moves towards the hot wall. However, for the 

liquid mixture having a positive Soret coefficient, the isopropanol component moves towards the 

cold wall. Now we are interested to see what will happen if we use two different liquid mixtures 

(both negative and positive Soret coefficients) in the same model. To analyze this case, initially, 

90% water-1 0% isopropanol has been set in the liquid layer and 50% water-50% isopropanol has 

been set in the porous layer. The model including boundary conditions is shown in figure 4.~ 1. 

The solution methods for FIDAP are kept the same as the thermo-solutal convection with 

combined fluid. 

U= V= 0, B= 0 

U= 0, B= 0 

ae 
U=V=0-=0 

'an 

90% water-1 0% isopropanol 

(Liquid layer) 

50% water-50% isopropanol 

(Porous layer) 

ae 
V=0-=0 

'an 

U= V= 0, B= 1 

U= 0, (} = 1 

Figure 4.21 Model descriptions and boundary conditions for thermodiffusion 
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Figure 4.22 shows the streamline contours for different time steps. From this figure, we can see 

that the streamlines are quite different from the cases with single liquid mixtures. In the early 

time step, three cells appear in the liquid layer. Two cells are rotating in the clockwise direction 

and the other cell in the middle is rotating in the counter-clockwise direction (figure 4.22a). But, 

as the time increases, flow directions of the rolls are changed (figure 4.22b ). The reason behind it 

is that, as the present model has two different mass fractions, with respect to time these two 

liquids mix together due to the molecular diffusion. At the same time, due to the thermodiffusion 

effect, isopropanol molecules in the liquid layer move towards the hot wall (due to the negative 

Sr) and isopropanol molecules in the porous layer move towards the cold wall (due to the 

positive Sr). When the time increases further at t = 5.0E05s, it can be seen that only a single cell 

having flow in the clockwise direction appears in the liquid layer (figure 4.22c). As this time step 

is more than the diffusive characteristic time ( TD = 1.15E05 s ), thermodiffusion is now completely 

effective. We can also see that for, all the time steps, the streamline values are too weak to 

penetrate into the porous layer. 

~-~ -3.9E-14 

L1'P= 5.48e-14 L1 'P = 1.08e-13 L1'P= 2.23e-13 

(a) t = 2,000s (b) t = lO,OOOs (c) t = 500,000s 

Figure 4.22 Streamline contours 
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To see the nature of the convective flow due to the thermodiffusion, we plot the horizontal 

component of velocity in the vertical median direction of the cavity. From figure 4.23, we can 

easily see that, for all the time steps, the flow in the porous layer is too weak. For the time t = 

2,000s, a very weak counter-clockwise direction flow exists in the liquid layer. But, for the timet 

= 1 O,OOOs, stronger clockwise direction convective flow exists in the liquid layer. As the time 

increases further, it can be seen that, at t = 500,000s, the convective flow in the liquid layer 

becomes strong due to the thermodiffusion effect. 

2.0E-09 ·•····••· t = 2000s 
1.5E-09 

----- t = 1 0000s 
--. l.OE-09 
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0 0.005 0.01 
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Figure 4.23 Velocity profiles at the vertical median direction 

Figure 4.24 represents the isopropanol distributions in the cavity for different time steps. From 

this figure, it can be seen that, at the early time step (t = 2000s ), the concentration of isopropanol 

in the liquid layer is 0.114 and in the porous layer is 0.484 (figure 4.24a). But, as the time 

increases, the concentrations of isopropanol both in the liquid and the porous layer are changed 

(figure 4.24b). When the time increases further, we can clearly see the two different effects of 

thermodiffusion on isopropanol distribution (figure 4.24c ). Initially 90% water-1 0% isopropanol 

is set in the liquid layer. So, due to the effect of thermodiffusion (negative Soret coefficient), in 

the liquid layer, isopropanol molecules migrate to the hot (right) wall. And 50% water-50% 
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isopropanol is set in the porous layer. So, due to the effect of thermodiffusion (positive Soret 

coefficient), in the porous layer, isopropanol molecules migrate to the cold (left) wall. 

0.114 

----
V.LtOLt 

LIC = 4.1e-2 

(a) t = 2,000s 

__./ 

_. 

LIC = 1.1e-2 

(b) t = 1 OO,OOOs 

Figure 4.24 Isopropanol distributions 

LIC= 5.0e-3 

(c) t = 500,000s 

Figure 4.25 shows the isopropanol distribution for different time steps along the vertical 

direction of the cavity. From this figure, we can see that, initially t = Os, the concentration of 

isopropanol in the porous layer is 0.50 and in the liquid layer is 0.1 0. But, as the time increases, 

the concentration of isopropanol in the porous layer gradually decreases and, in the liquid layer, 

gradually increases. At the time step t = 500000s, the difference in concentrations of isopropanol 

in the whole cavity becomes minimum. 
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Figure 4.25 Isopropanol distributions along the vertical direction 

4.6 Summary 

In this chapter, thermo-solutal convection and thermodiffusion convection are studied in detail. 

For the thermo-solutal convection, both buoyancy and Marangoni cases are studied. In the 

buoyancy case, the convective flows for the single and double liquid mixtures have been 

observed. But, due to the presence of strong buoyancy effects, the thermo-solutal effect has not 

been seen on convection. However, the thermo-solutal effect on convection has seen in the 

Marangoni case. Three different cases for the thermo-solutal convection with thermodiffusion or 
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the Soret effect have been studied. For the liquid with negative So ret coefficient (90% water-

1 0% isopropanol), it has been found that isopropanol moves toward the hot wall. And, for the 

liquid with positive Soret coefficient (50% water-50% isopropanol), it has been found that 

isopropanol moves toward the cold wall. However, it has been confirmed that porosity and 

gravitational acceleration have strong effects on thermodiffusion. For another case with 

combined liquid mixtures in the liquid and porous layer, we have found that, at the early time 

step, multi cells appear in the liquid layer. But after crossing the diffusive characteristic time, a 

single cell having a clockwise rotating direction appears. 
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CHAPTERS 

Conclusion and Future Work 

In this thesis, thermodiffusion, buoyancy and Marangoni convection have been studied in detail. 

A rectangular finite cavity with a lateral heating condition has been considered. Several cases are 

examined and they include: convection in the presence of buoyancy and thermocapillary effects, 

thermo-solutal convection in the presence of molecular diffusion convection and 

thermodiffusion. 

For the buoyancy convection case, it has been found that the switching of the flow from fluid 

layer don1inated to porous layer dominated convection depends upon the thickness ratio, aspect 

ratio, Prandtl number and Rayleigh number of the liquid. The convective flow occupies the entire 

cavity when the thickness ratio has a value of d = 0.90. For the Marangoni convection, it has 

been confirmed that the critical thickness ratio value is d = 0.90. Below this value, the flow is 

limited to the liquid layer, and above it, the flow switches to the porous layer. Also, for the 

Marangoni case, there is no significant change in convection due to the change of aspect ratios 

from 1 to 2. 

For the buoyancy case with thermo-solutal convection, it has been found that the convective flow 

is very strong. But the Marangoni case with thermo-solutal convection is too weak as compare to 

the buoyancy case. For the thermo-solutal convection in the presence of thermodiffusion or the 

Soret effect, it has been found that isopropanol components migrate to either to hot or cold walls 

depending on the physical properties (Soret coefficient) of the liquid mixture. For the liquid 

mixture having a negative Soret coefficient, isopropanol moves towards the hot wall. However, 

for the liquid mixture having a positive Soret coefficient, isopropanol moves towards the cold 
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wall. For the case with two different water-isopropanol mixtures, a clockwise rotating direction 

flow was found at a time step greater than the characteristic time defmed as, rD= L21 DM. 

For further study, it would be interesting to analyze the thermodiffusion effect for different 

aspect ratios of the model, including different binary or turnery mixtures. Also, it would be 

interesting to observe the thermodiffusion effect in the presence of g-jitter. 
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APPENDIX A 

Non-Dimensional Analysis of Governing Equations 

The following dimensionless variables are substituted into the dimensional equations in order to 

render them non-dimensional: 

A.l Thermo-solutal Convection 

A.l.l Liquid Layer 

A.l.l.l Continuity Equation 

[
au+ av] = 0 ax ay 

Substitute the non-dimensional terms 

[au+ av]=o 
ax ay 

A.1.1.2 X-direction Momentum Balance equation 

Substitute the non-dimensional terms 
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(A.l) 

(A.2) 

(A.3) 

(A.4) 



[ l 
a(P.p.uo) 

a(U.uo) (U ) a(U.uo) (V ) a(U.uo) _ _ L [ a a(U.uo) a a(U.uo)] 
P1 a(~) + uo . a(X.L) + .uo . a(Y.L) - a(X.L) + f1 a(X .L). a(X.L) + a(Y .L)" a(Y.L) 

Simplified the equation we get: 

Re.[au + u. au+ v. au]=_ aP + [a
2
u + a

2
u] 

ar ax aY ax ax 2 ay2 
(A.5) 

A.1.1.3 Y-direction Momentum Balance equation 

(A.6) 

Substitute the non-dimensional terms and take out the common variables to get: 

U~ [aV aV aV] _ J1.U0 ap J1.U0 [ a2V a2V] r n ] Pr-· -+U.-+V.- ---2-.-+-2-. --2 +-2 -prg·l.f'r·t1T.B-f3c-t1C.C 
L ar ax aY L ay L ax aY 

Where, (T- TJ = !J.T.B and (c- cJ = !J.C.C 

2 
Multiply the above equation by the factor of~ 

f.J..Uo 

Re -+U.-+V.- =--+ - 2 +-
2 

---.prg[pr.t1T.B-f3c-t1C.C] [
av av av] aP [a

2
V a

2
VJ L

2 

ar ax ay aY ax ay p.u
0 

~---~-----~ 

Simplify the * term: 
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3 
Substitute the thermal Rayleigh number (for the liquid layer), Rau = g.pr.tlT.d1 and solutal 

v.a 

3 
Rayleigh number (for the liquid layer), RaLc = g.pc.I1C.d1 in the* term 

v.a 

So, 

Substitute in the Prandtl number, Pr = J.i.( C P) 1 , the thermal diffusivity of the fluid, a = k 1 

kf (p.Cp)f 

p1 .u .L 
, the Reynolds number, Re = o and L = d1 + d2 in the * term to obtain 

J.1 

So the final form of the non-dimensional equation in the y-direction can be expressed as: 

[av av av] aP [ a2v a2v] 1 d2 3 Re -+U.-+V.- =--+ --+- ---.(1+-) .[RaLL.B-RaLc·C] ar ax aY aY ax2 ay2 Pr.Re d1 (A.7) 

A.1.1.4 Energy balance equation 

[aT aT aT] [a2T a2T] (p.C )r. -+u.-+v.- =kr -2 +-2 
p . at ax 8y ax 8y 

(A.8) 

Substitute the non-dimensional parameters to obtain: 

( .C ) ·[llT.aB + U.u 0 .llT. ae + V.u 0 .1lT. ae] = krllT ·[ 82B + a2B] 
P p 

1 a(r.L) L ax L ay L2 ax2 aY2 

uo 

Extract the common variables from both left hand side and right hand side: 
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Multiplying above equation by the factor of L
2 

k1 .~T 

p 1 .u .L Jl.( C P) 1 Substitute the Reynolds number, Re = o and the Prandtl number, Pr = , to get the 
J1 kf 

non-dimensional form of the energy balance equation 

Re.Pr .[aB + u. aB + v. ao] = [ a2~ + a2~] 
ar ax ay ax ay 

(A.9) 

A.l.l.S Mass Balance equation 

(A.IO) 

Substitute the non-dimensional parameters to obtain: 

[ ~c.ac (U ) ~c.ac (V ) ~c.ac]- D [ a ac~c.c) a ac~c.c)J 
Pr a(:~)+ .u • . B(X.L) + .u • . B(Y.L) - PJ· M · B(X L). B(X.L) + B(Y.L). B(Y.L) 

Extract the common variables from both left hand side and right hand side: 

Multiplying above equation by the factor of L 
Pj·I1C.uo 
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Now, 

D M =DM _v_ 
u

0
L v . u

0
.L 

Substitute the Schmidt number, Sc = ~ and Reynolds number, Re = uoL, we get 
D M v 

Finally the non-dimensional form of the mass balance equation 

[ac +U ac +V ac]=-I_fa2c + 82CJ 
8r . ax . 8Y Re.Sc t 8%2 8Y2 

(A.ll) 

A.1.2 Porous Layer 

A.1.2.1 Continuity equation 

The derivation of Continuity equation for porous layer is same as for liquid layer. 

A.1.2.2 X-direction Momentum Balance equation 

(A.l2) 

Substitute the non-dimensional terms 
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Simplified the equation and substitute the Reynolds number, Re
1 

= pfl.uo.L and Darcy number, 
J.li 

Da = ~ to get the non-dimensional form of the X-momentum balance equation 
L 

Re1 ·[au]+-1 .[u]=-aP +[a
2

U +a
2

UJ 
¢ ar Da ax aX 2 aY2 

A.1.2.3 ¥-direction Momentum Balance equation 

Substitute the non-dimensional terms and take out the common variables to get 

(A.13) 

(A.14) 

PfJ u~ [av] J.lJ.uo v = _J.lJ.Uo ap J.lJ·Uo [a
2
V a

2
V]- r a AT B- fl AC c] · · + · 2 · + 2 · 2 + 2 Pft·g·I.Pn·0 · JJcJ·0 · ¢ L ar K L aY L ax ay 

Multiply the above equation by the factor of_!!__. 
Jll.Uo 

_Re_l ·[_aV]+-1 [V]=--ap +[-a2_~ +-a2_~]--L-2 ·PJJ.g.[pn.~T.B-f3CI.!1C.C] 
¢ ar Da ay ax ay J11.uo 

~--------------------~ 

Simplify the ** term: 

p fl.g.f3n.11T.L2 p f1.g.f3cJ·!1C.L2 
-=-----.B- .C 

J.lJ.Uo J.lJ.Uo 

Substitute the thermal Rayleigh number (for the porous layer),RaPL = g.f3n.!1T.d2.K and solutal 
v1.a1 

Rayleigh number (for the porous layer), Ra PC = -=-g--=-.f3--==c:...:....1 ·-11_C_.d~2=--·K_ 
vi.aJ 
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,the Prandtl number 



JLJ .( c p) fl kfl 
Pr1 = , the thermal diffusivity of the fluid a 1 = , the Reynolds number, 

kfl (p.Cp)JI 

PJI"uo.L K 
Re 1 = , the Darcy number Da = -

2 
and L = d1 + d2 we get, 

JLJ L 

** = 1 [R (} C}( dz )3 ----. apr· -Rape· 1+-
Pr1 .Re1 .Da d1 

So the final form of the non-dimensional equation in the y-direction can be expressed as: 

Re1 .[av]+-1 .[V)=- 8P +[8
2

V + 8
2

V]-
¢ 8r Da 8Y 8X 2 8Y2 

[ 
1 ].(1+ d 2

)
3 .[Rapr·B-Rapc·C] 

Pr1 • Re1 .Da d1 

A.1.2.4 Energy equation for porous layer 

Substitute the non-dimensional parameters to obtain: 

( .C ) ·[11T.8B + U.u0 .!1T. ae + V.u 0 .11T. ae] = ke.I1T ·[ 8
28 + 8

28] 
p p 

11 a(r.L) L ax L ay L2 8X2 8Y2 

uo 

Extract the common variables from both left hand side and right hand side: 

Multiplying above equation by the factor of L
2 

k11 .11T 
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(A.15) 

(A.16) 



. PJI.u .L J.ll.(CP)fl 
Substitute the Reynolds number Re 1 = o and the Prandtl numberPr1 = , to get 

J.li k f l 

the non-dimensional form of the energy balance equation 

Rei.Pr~.[ae +V. ae + v. ae] =a[ a2~ + a2~] a, ax ay ax ay 
(A.17) 

Where, G = ~ = ¢.k f l + (1- ¢).ks = ¢ + (1- ¢) . .5_ 
k f l k f l k f l (A.18) 

Also ke is the effective thermal conductivity, k 11 is conductivity of the fluid, ks is the 

conductivity of the solid, and G is the non-dimensional overall thermal conductivity. 

A.1.2.5 Mass Balance Equation 

The mass balance equation for the porous layer is the same as the mass balance equation for the 

liquid layer. 

A.2 Thermodiffusion Convection 

A.2.1 Liquid Layer 

The Continuity, Momentum balance and the Energy balance equations for thermodiffusion case 

(in the liquid layer) are the same as for the molecular diffusion case (equations A.2 to A.9). But 

the Mass balance equation for the thermodiffusion case is different from molecular diffusion. 

A.2.1.1 Mass Balance equation for the liquid layer 
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(A.19) 

Substitute the non-dimensional parameters to obtain: 

[ ~J.c.ac u ~J.c.ac v ~J.c.ac]- D [ a a(~J.C.C) a a(~J.C.c)J 
Pr a(~)+ .u •. a( XL)+ .u •. a(Y L) - P1 M· a(x L) · a(x L) + a(Y L)" a(Y.L) 

D [ a a(~J.T.B) a a(~J.T.B)] 
+ PJ· r· a(X.L). a(X.L) + a(Y.L). a(Y.L) 

Extract the common variables from both left hand side and right hand side: 

Multiplying above equation by the factor of L 
Pj·I1C.uo 

Now, 

DM=DM_v_ 
u

0
.L v . u

0
.L 

v 

Sc.u0 .L 

Where, Schmidt number, Sc = f.1 
pf.DM 

We have, characteristic velocity, u0 = ~g.f3r.11T.L 

So 
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v 

u
0
.L 

= rE[l+ d2] ~ 
v~· dl 

And, 

DT.~T - DM.ST.~T 

u0 .L.~C u0 .L.~C 

D -a M - T· 
U0 .L.~C 

_ DM v.aT 
- ---;-· U

0
.L.l 

=aT fE[l+ d2] ~ 
sc·v~· dl 

Where the Soret coefficient, ST = DT , aT = ~T.ST, solutal difference, LIC = 1, Prandtl number, 
DM 

Pr = p.CP and liquid Rayleigh number (in liquid layer), RaLL = g.pT.I1T.d? 
}(! v.a 

Finally the non-dimensional form of the mass balance equation 

(A.20) 
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A.2.2 Porous Layer 

For the porous layer we have two different situations: ( 1) the compositions of the liquid both in 

the liquid layer and in the porous layer are the same, (2) the compositions of the liquid in the 

liquid layer is different from the porous layer. 

A.2.2.1 For the case when same compositions present both in the liquid and in the porous 

layer 

A.2.2.1.1 Continuity equation 

The derivation of Continuity equation for porous layer is same as for liquid layer. 

A.2.2.1.2 X-direction Momentum Balance equation 

(A.22) 

Substitute the non-dimensional terms 

Simplified the equation by taking out the common variables on both the left hand side and right 

hand side: 

Multiplying above equations by a factor of _!!__to further simplify the equation: 
Jl.Uo 
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. 0uL K 
Substitute the Reynolds number, Re = o and Darcy number, Da =- to get the non-

JL L2 

dimensional form of the X-momentum balance equation 

Re Re .[au]+-1 .[u]= _ aP +[a
2U + a2UJ 

¢ ar Da ax aX 2 aY2 

(A.23) 

A.2.2.1.3 ¥-direction Momentum Balance equation 

(A.24) 

Substitute the non-dimensional terms and take out the common variables to get: 

PJ u~[av] j.l.UOV=-f-l.Uo aP f.l.Uo[a
2
V a

2
V]- fn AT{}-R Ace] · · + · 2 • + 2 • 2 + 2 PJ·g·lPr·u · JJc·u · ¢ L ar K L ay L ax ay 

Where, (T- TJ = ,1T.B and (c -co)= ~C.C 

Multiply the above equation by the factor of_£__ . 
JL.Uo 

-.- +-[V]=--+ - 2 +-2 --.p1.g.[/Jr.~T.B-Pc-,1C.C] Re [av] 1 aP [ a
2
v a

2
VJ L

2 

¢ ar Da ay aX ay f.l.U
0 

~--------~--------~ 

Simplify the * * * term: 
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Substitute the thermal Rayleigh number (for the porous layer), RaPL = g.f3r.I1T.d2.K and solutal 
v.a 

Rayleigh number (for the porous layer), Rape= g.f3c.I1C.d2.K in the*** term, we get 
v.a 

Substitute in the Prandtl number Pr = p.( C P) 1 , the thermal diffusivity of the fluid a = k 1 , 
k! (p.Cp)f 

p1 .u .L K 
the Reynolds number, Re = o and the Darcy number Da = -

2 
we get 

f.1 L 

Noting thatL = d1 + d2 , the equation becomes 

So the final form of the non-dimensional equation in the y-direction can be expressed as: 

Re .[av]+-1 .[v]=- aP +[82V + 82VJ-
¢ 8r Da BY 8X 2 8Y2 

[ 1 J.(l + d2 )3 .[RaPL .e-Rapc-C] 
Pr.Re.Da d1 

(A.25) 

A.2.2.1.4 Energy equation for porous layer 

(A.26) 

Substitute the non-dimensional parameters to obtain: 
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( .C ) ·[11T.aB + U.u0 .1'1T. aB + V.u0 .1'1T. ao] = ke.I1T ·[ a2B + a
2
B] 

P p 
1 a(r.L) L ax L aY L2 ax2 aY2 

uo 

Extract the common variables from both left hand side and right hand side: 

Multiplying above equation by the factor of _!!__ k1 .11T 

. p f"u .L f.l. ( C P) 1 Substitute the Reynolds number Re = a and the Prandtl number Pr = , to get the 
f.l kf 

non-dimensional form of the energy balance equation 

Re.Pr.[ao + u. ao + v. ao] =a[ a2~ + a2~ J 
ar ax aY ax ay (A.27) 

(A.28) 

Also ke is the effective thermal conductivity, k 1 is the conductivity of the fluid, ks is the 

conductivity of the solid, and G is the non-dimensional overall thermal conductivity. 

A.2.2.1.5 Mass balance equation for porous layer 

The mass balance equation for the porous layer (when same compositions present both in the 

liquid and in the porous layer) is the same as for the liquid layer (equation A.20). 
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A.2.2.2 For the case when different compositions present in the liquid and in the porous 

layer 

When different compositions present in the liquid layer and in the porous layer, the Continuity 

equation, the Momentum balance equations and the Energy balance equation are the same as the 

case of molecular diffusion (equations A.l2). But the Mass balance equation for the 

thermodiffusion case is different from the molecular diffusion case. 

A.2.2.2.1 Mass Balance equation for the liquid layer 

(A.29) 

Substitute the non-dimensional parameters to obtain: 

[
11C.aC U 11C.aC V !1C.aC]- D [ a a(11C.C) a a(11C.C)] 

Pti· a(:~)+ .u". a(X.L) + .u". a(Y L) - Pti· MI. a(x L) · a(x L) + a(Y.L) · a(Y L) 

D [ a a(!1T.B) a a(11T.B)] 
+ PJ n· a(X.L). a(X.L) + a(Y.L). a(Y.L) 

Extract the common variables from both left hand side and right hand side: 

Multiplying above equation by the factor of L 
PJ!"I1C.uo 

[ac +V. ac + v. ac] = DMI .[a
2

~ + a 2

~]+ Dn.I1T ·[ a
2

~ + a2

~] 
ar ax ay U

0
.L ax ay U

0
.L.I1C ax ay 

Now, 
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DMI = DMI .____!:L_ 
uo.L VI uoL 

1 
=---

Where, Schmidt number, Sc
1 

= ____!l_ and Re1 = uo .L 
DMI vl 

And, 

DTI .!J.T - DMI.STI.!J.T 

U
0
.L.!J.C u

0
L.!J.C 

DMI 
=an.--=-~ 

u
0
.L.!J.C 

_ DMI vi.aTI 
-~·U0L.I 
= a TI ____!l_ 

Sc
1 

• u
0
.L 

Where the Soret coefficient,Sn = Dn , an = !J.T.Sn, solutal difference, L1C = 1. 
DMI 

Finally the non-dimensional form of the mass balance equation 
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APPENDIXB 

Input Files 

B.l Buoyancy Convection 

Title 

Buoyancy Convection in Fluid/Porous Laterally Heated Cavity 

/lateral heating Bouncy case 

fimesh(2-d, imax=5, jmax=5) 

exp1 

/1 2 3 4 5 

/1 015 029 

1 0 121 0 241 

expJ 

/1 2 3 4 5 

/1 015 029 

1 0 41 0 81 

I 

/physical dimension of the problem 

/the aspect ratio is varied here from 1 to 6 for different cases 

$ar=1 

$ar1=$ar/2 

/the thickness of the liquid and porous layer is varied here 

$d1=0.5 
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$d2=0.5 

$1=$d1+$d2 

I 

point 

In ij k x y z 

1 5 1 1 $ar 0 0 

2 5 3 1 $ar $d2 0 

3 55 1 $ar $1 0 

4 3 1 1 $ar1 0 0 

5 3 3 1 $ar 1 $d2 0 

6 3 5 1 $ar1 $1 0 

7 1 1 1 0. 0. 0 

8 1 3 1 0. $d2 0 

9 1 5 1 0. $1 0 

line 

/1st Plane 

2 1 

54 

87 

2 3 5.5 4 

56 5.5 4 

8 9 5.5 4 

4 1 5.5 4 
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52 5.5 4 

6 3 5.5 4 

4 7 5.5 4 

58 5.5 4 

6 9 5.5 4 

surface 

1 8 

29 

elements( continuum,quad,nodes=9 ,entity="porous ") 

72 

elements( continuum,quad,nodes=9,entity="fluid") 

83 

elements(boundary,edge,nodes=3,entity="interface") 

82 

elements(boundary,edge,nodes=3,entity="freec") 

39 

bcnode( coordinate) 

33 

99 

/define a temperature of 1 for the right vertical wall and 0 for left wall 

bcnode( temperature,constant) 

1 3 1 

790 
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bcnode(uy,constant) 

390 

1 7 0 

bcnode( surface, constant) 

390 

bcnode( ux, constant) 

1 2 0 

780 

bcnode( velocity ,constant) 

230 

390 

890 

I 

I 

/Physical parameters 

I 

/the physical parameters can be varied depending on the case studied 

$da=1e-5 

$por=0.39 

$biot=1 

$pr=10.85 

$ra1 =8.29e4 

$tr 1 =( 1 +($d2/$d 1) )"\ 3 

90 



$re=($tr1 *$ra1/$pr)"\0.5 

I 

end 

fiprep 

problem(2-D, buoyancy, fixed, nonlinear) 

pressure( mixed= 1.0e-8, disc) 

execution(newjob) 

solution(segr=2000,velconv=0.001,normal=40,ncgc=1e-6,scgc=1e-6) 

option( stress-divergence) 

relax 

0.12 0.12 0.12 0.0 0.01 0.6 

density( set= 1, constant=$re) 

specificheat( set= 1, constant=$pr) 

viscosity( set= 1, constant= 1) 

conductivity( set= 1, constant= 1) 

conductivity(set=2, constant= 1.43) 

permeability( acoef, constant= 1 , x=$da, y=$da, porosi ty=$por) 

gravity( magnitude= 1) 

htransfer( constant=$biot, temperature, reftemp=O) 

renumber(profile) 

entity(name="porous", porous, maperm=1, mscond=2) 

entity(name="fluid", fluid) 

entity(name="freec", convection, attach=" fluid") 
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entity(name="interface", plot, attach="porous") 

end 

create(FISOL V) 

B.2 Thermo-solutal convection 

Title 

Buoyancy Convection with mass diffusion in Fluid/Porous Laterally Heated Cavity 

/lateral heating Diffusion case 

fimesh(2-d, imax=5, jmax=5) 

expt 

/1 2 3 4 5 

/1 0 15 0 29 

1 0 121 0 241 

expJ 

112345 

/1 0 15 0 57 

1 0 41 0 81 

I 

/physical dimension of the problem 

/the aspect ratio is varied here from 1 to 6 for different cases 

$ar=1 

$ar1=$ar/2 

/the thickness of the liquid and porous layer is varied here 
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$d1=0.5 

$d2=0.5 

$1=$d1+$d2 

I 

point 

In ij k x y z 

1 5 1 1 $ar 0 0 

2 5 3 1 $ar $d2 0 

3 55 1 $ar $1 0 

4 3 1 1 $ar1 0 0 

5 3 3 1 $ar1 $d2 0 

6 3 5 1 $ar 1 $1 0 

7 1 1 1 0. 0. 0 

8 1 3 1 0. $d2 0 

9 1 5 1 0. $1 0 

line 

11 st Plane 

2 1 

54 

87 

2 3 5.5 4 

56 5.5 4 

8 9 5.5 4 
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4 1 5.5 4 

52 5.5 4 

6 3 5.5 4 

4 7 5.5 4 

58 5.5 4 

6 9 5.5 4 

surface 

1 8 

29 

elements(boundary ,edge,nodes=3 ,entity=" free") 

39 

elements( continuum,quad,nodes=9 ,entity="porous ") 

72 

elements( continuum,quad,nodes=9,entity="fluid") 

83 

elements(boundary,edge,nodes=3,entity="interface") 

82 

elements(boundary,edge,nodes=3,entity="freec") 

39 

bcnode( coordinate) 

33 

99 

/define a temperature of 1 for the right vertical wall and 0 for left wall 
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bcnode( temperature, constant) 

1 3 1 

790 

bcnode( uy ,constant) 

390 

1 7 0 

bcnode( surface,constant) 

390 

bcnode( ux, constant) 

1 2 0 

780 

bcnode( velocity ,constant) 

230 

890 

390 

I 

I 

/Physical parameters 

I 

/the physical parameters can be varied depending on the case studied 

/Common physical parameters 

$da=1e-5 

$por=0.39 
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$biot=l.O 

$trl =(1 +($d2/$d1 ))/\3 

I 

/Physical parameters for 10% isopropanol-90% water 

I 

$pr1=10.85 

$ra1 =1.036e4 

$ra21 =9.36e5 

$sc1=1620.69 

$rei =($trl *$ral/$prl )A0.5 

$betac 1 =$ra21 /$ra 1 

$diffl =1.0/(($rel)*($scl)) 

I 

/Physical parameters for 50% isopropanol-50% water 

I 

$pr4=49.165 

$ra4=1.33e4 

$ra24=8. 62e5 

$sc4=23216.667 

$re4=($trl *$ra4/$pr4)A0.5 

$betac4=$ra24/$ra4 

$diff4= l.O/(($re4)*($sc4)) 

I 
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end 

fiprep 

problem( nonlinear, 2-D, buoyancy,buoyancy= 1 ,fixed, transient) 

timeint(back,dt=O.OOOOO 1 ,nofix=5,nsteps= 1 OOO,tend=800,species= 1) 

pressure( mixed= 1.0e-8, disc) 

execution(newjob) 

solution(segr=2000,velconv=0.000001,normal=40) 

option( stress-divergence) 

relax 

0.12 0.12 0.12 0.0 0.01 0.6 

density(set=1,constant=$re1,TYP2,temperature,species=1) 

density( set=4 ,constant=$re4, TYP2, temperature,species= 1) 

specificheat( set= 1 ,constant=$pr 1) 

specificheat( set=4 ,constant=$pr4) 

viscosity( set= 1 ,constant= 1) 

viscosity( set=4,constant= 1) 

conductivity( set= 1, constant= 1) 

conductivity(set=3, constant= 1.43) 

conductivity( set=4 ,constant= 1) 

permeability( acoef, constant= 1, x=$da, y=$da, porosity=$por) 

volumexpansion(set= 1 ,constant= 1 ,temperature) 

volumexpansion( set=2,constant=$betac 1 ,species= 1) 

volumexpansion( set=4 ,constant= 1, temperature) 

97 



vo lumexpansi on( set= 5 ,constant=$betac4 ,species= 1) 

gravity( magnitude= 1) 

diffusivity( set=2,constant=$diffl ,species= 1) 

diffusivity(set=5,constant=$diff4,species= 1) 

htransfer( constant=$biot, temperature,reftemp=O) 

renumber(profile) 

icnode( species= 1 ,constant=O .1 ,entity="fluid ") 

icnode(species= 1 ,constant=0.5,entity="porous") 

entity(name="porous" ,porous, property=" 4" ,mdiff=5 ,species= 1 ,mexp=5 ,maperm= 1 ,mscond=3) 

entity(name="fluid", fluid, property=" 1 ", mdiff=2,species= 1 ,mexp=2) 

entity( name=" free", surface) 

entity(name="freec", convection, attach="fluid") 

entity(name="interface", plot, attach="porous") 

end 

create(FISOL V) 
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APPENDIXC 

Physical Properties 

Table 1 The physical properties of water-isopropanol for two different compositions 

90% water -1 0% 50% water-50% 

Physical Properties Symbol isopropanol (mass isopropanol (mass 

fraction) fraction) 

Viscosity[ m2 Is] v 1.41£-06 4.18£-06 

Thermal diffusivity [m:z/s] a or o.r 1.30£-07 8.50£-08 

Diffusion coefficient 

[m2/s] 
DMor o.c 8.70E-10 1.80£-10 

Thermodiffusion 

coefficient [m2/s.K] 
Dr -9.222£-12 9.81£-13 

Density [kg/mj] p 984 905 

Soret coefficient [1/K] Sr -1.06£-02 5.45£-03 

Thermal expansion [1/K] fJr 3.10£-04 7.70E-04 

Solutal expansion fJc 0.14 -0.25 

Length [m] L 0.01 0.01 

Concentration of water Co 0.90 0.50 

Pr via 10.846 49.165 

A Gr/g 1559.278 440.906 

Sc v/D 1620.690 23216.667 

Tvisc [s] L2/v 70.922 23.929 

Tth [s] L21 o. 769.23 1176.47 

TD [s] L21DM 11.49e4 55.56e4 

Thermal 
k 0.522 0.2866 

conductivity[W /m.K] 
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