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Abstract 

This study is aimed at developing a novel computational framework that seamlessly incorporates the 

feedback forcing model and adaptive mesh refinement (AMR) techniques in the 

immersed-boundary (IB) lattice Boltzmann method (LBM) approach, so that challenging problems, 

including the interactions between flowing fluids and moving objects, can be numerically 

investigated. Owing to the feedback forcing based IB model, the advantages, such as simple 

mechanics principle, explicit interpolations, and inherent satisfaction of no-slip boundary condition 

for solid surfaces, are fully exhibited. Additionally, the "bubble" function is employed in the local 

mesh refinement process, so that the solution of second- order accuracy at newly generated nodes 

can be obtained only by the spatial interpolation but no temporal interpolation. Focusing on both 

steady and unsteady flows around a single cylinder and bi-cylinders, a number of test cases 

performed in this study have demonstrated the usefulness and effectiveness of the present AMR 

IB-LBM approach. 

 



 iv 

Acknowledgements 

 

I am very grateful to Dr. Jun Cao for giving me the opportunity to work on this exciting project and 

for his constant encouragement and valuable guidance during this study. 

 

This work is financially supported by Dr. Cao's Discovery Grant awarded by the National Science 

and Engineering Research Council (NSERC) of Canada. 



 v 

 

Table of Contents 

Author’s declaration .............................................................................................................................. ii 

Abstract ................................................................................................................................................. iii 

Acknowledgements .............................................................................................................................. iv 

List of Tables ....................................................................................................................................... viii 

List of Figures ....................................................................................................................................... ix 

Nomenclature ....................................................................................................................................... xii 

Greek Symbols..................................................................................................................................... xv 

Subscripts/Superscripts ....................................................................................................................... xvi 

Chapter 1.Introduction ........................................................................................................................... 1 

1.1. Background ........................................................................................................................... 1 

1.1.1. On lattice-Boltzmann method (LBM) .............................................................................. 2 

1.1.2. On immersed boundary (IB) method ................................................................................ 5 

1.1.3. On local mesh refinement method .................................................................................... 8 

1.2. Thesis objective and significance........................................................................................ 10 

1.3. Thesis organization ............................................................................................................. 13 



 vi 

Chapter 2.Two-Dimensional Lattice-Boltzmann Model ..................................................................... 14 

2.1. Two-Dimensional Nine-Velocity (D2Q9) Model ............................................................... 14 

2.2. Single-Relaxation-Time Lattice-Boltzmann Equation ....................................................... 15 

2.3. Multiple-Relaxation-Time LBE .......................................................................................... 17 

2.4. Boundary Condition ............................................................................................................ 20 

2.4.1. Straight boundary ............................................................................................................ 20 

2.4.2. Curved boundary ............................................................................................................. 23 

Chapter 3.Mesh Refinement Methods ................................................................................................. 29 

3.1. Multi-level local mesh refinement method ......................................................................... 29 

3.2. Bubble function for local mesh refinement used in lattice-Boltzmann method ................. 33 

3.3. Adaptive mesh refinement (AMR) technique ..................................................................... 39 

Chapter 4.Numerical Experiments ...................................................................................................... 42 

4.1. Introduction ......................................................................................................................... 42 

4.2. Flow over a single cylinder at Re=40 ................................................................................. 46 

4.2.1. Steady flow over a stationary cylinder ............................................................................ 46 

4.2.2. Steady flow over a moving cylinder ............................................................................... 51 

4.3. Flow over a single cylinder at Re=100 ............................................................................... 53 

4.3.1. Unsteady flow over a stationary cylinder ....................................................................... 53 

4.3.2. Unsteady flow over a moving cylinder ........................................................................... 56 



 vii 

4.4. Flow over two stationary vertically aligned and gapped cylinders ..................................... 58 

4.4.1. Re=40,  g* = 1............................................................................................................... 59 

4.4.2. Re=70,  g* = 0.5............................................................................................................ 61 

4.4.3. Re=100,  g* = 0.2, 0.7, 1.5, 3 ........................................................................................ 63 

4.5. Flow over two moving cylinders ........................................................................................ 69 

4.6. Local mesh refinement sensitivity ...................................................................................... 73 

4.6.1. Stationary cylinder (Re=40) with different horizontal refinement zones ....................... 73 

4.6.2. Stationary cylinder (Re=40) with adaptive mesh refinement ......................................... 78 

4.6.3. Moving cylinder (Re=100) with different vertical refinement zones ............................. 81 

4.6.4. Moving cylinder (Re=100) with adaptive mesh refinement ........................................... 83 

4.6.5. Computation cost and accuracy comparison between different meshing techniques .... 85 

Chapter 5.Concluding and Outlooking Remarks................................................................................. 89 

5.1. Conclusions ......................................................................................................................... 89 

5.2. Recommendations ............................................................................................................... 90 

References ............................................................................................................................................ 91 

 

 

 



 viii 

 

List of Tables 

 

Table 4.1 Comparison of drag coefficient and length of recirculation zone at Re=40 ................ 50 

Table 4.2 Comparisons of time-averaged drag coefficient and Strouhal number at Re=100 ..... 56 

Table 4.3 Six cases using different zones of finest grid resolution for Re=40 ............................ 75 

Table 4.4 Comparison of drag coefficient and recirculation length for Re=40 ........................... 75 

Table 4.5 Comparison of drag coefficients and length of recirculation zone at Re=40 .............. 80 

Table 4.6 Comparison of drag coefficient for Re=100 ................................................................ 83 

Table 4.7 Comparison of drag coefficients and Strouhal number for Re=100 ............................ 85 

Table 4.8 Statistics for Re=40 ...................................................................................................... 87 

Table 4.9 Statistics for Re=100 .................................................................................................... 88 

 



 ix 

List of Figures 

 

Figure 2.1 D2Q9 model on a square lattice ................................................................................. 15 

Figure 2.2 Bounce-back scheme .................................................................................................. 21 

Figure 2.3 Non-equilibrium extrapolation scheme ...................................................................... 23 

Figure 2.4 Schematic of immersed boundary method ................................................................. 24 

Figure 3.1 Structure of two-level mesh of different lattice spacings ........................................... 30 

Figure 3.2 Schematic of an overlay region .................................................................................. 34 

Figure 3.3 Numbering for neighboring nodes ............................................................................. 36 

Figure 3.4 Numbering example for (a) neighboring cells and (b) and neighboring nodes ......... 40 

Figure 3.5 Schematic for bubble function interpolation used in AMR ....................................... 41 

Figure 4.1 Computational domain, setup of zones for multi-level local mesh refinements, and 

cylinder location .................................................................................................................. 45 

Figure 4.2 Close-up view of the location of the cylinder and the mesh refinement transition ... 45 

Figure 4.3 Streamline pattern around cylinder at Re=40 ............................................................. 47 

Figure 4.4 Pressure around cylinder at Re=40 ............................................................................ 47 

Figure 4.5 Velocity magnitude around cylinder (left) and its close-up near the stagnation point 

(right) at Re=40 ................................................................................................................... 48 

Figure 4.6 Vorticity around cylinder at Re=40 ............................................................................ 48 

Figure 4.7 Pressure distribution on surface of cylinder at Re=40 ............................................... 50 



 x 

Figure 4.8 Streamline pattern around a moving cylinder at Re=40 ............................................ 52 

Figure 4.9 Pressure distribution on surface of a moving cylinder at Re=40 ............................... 52 

Figure 4.10 Streamline pattern around cylinder at Re=100......................................................... 54 

Figure 4.11 Velocity magnitude around cylinder at Re=100 ....................................................... 54 

Figure 4.12 Vorticity around cylinder at Re=100 ........................................................................ 55 

Figure 4.13 Evolution of drag and lift coefficients at Re = 100 .................................................. 55 

Figure 4.14 Two instantaneous distributions of vorticity around a moving cylinder at Re=100 57 

Figure 4.15 Evolution of drag and lift coefficients at Re = 100 in the case of moving cylinder 57 

Figure 4.16 Schematic of two vertically aligned cylinders ......................................................... 59 

Figure 4.17 Instantaneous streamline and vorticity contours at Re=40, 1g   .......................... 60 

Figure 4.18 Evolution of drag and lift coefficients for two cylinders at Re=40, 1g  ............ 61 

Figure 4.19 Instantaneous streamline and vorticity contours at Re=70, 0.5g   ..................... 62 

Figure 4.20 Evolution of drag and lift coefficients for two cylinders at Re=70, 0.5g   .......... 63 

Figure 4.21 Instantaneous streamline and vorticity contours at Re=100, 0.2g   .................... 65 

Figure 4.22 Evolution of drag and lift coefficients for two cylinders at Re=100, 0.2g   ........ 66 

Figure 4.23  Instantaneous streamline and vorticity contours at Re=100, 0.7g   ................. 66 

Figure 4.24 Evolution of drag and lift coefficients for two cylinders at Re=100, 0.7g   ........ 67 

Figure 4.25 Instantaneous streamline and vorticity contours at Re=100, 1.5g   ................... 67 

Figure 4.26 Evolution of drag and lift coefficients for two cylinders at Re=100, 1.5g   ........ 68 

Figure 4.27 Instantaneous streamline and vorticity contours at Re=100, 3g   ...................... 68 



 xi 

Figure 4.28 Evolution of drag and lift coefficients for two cylinders at Re=100, 3g   ........... 69 

Figure 4.29 Computational domain for two cylinders moving with towards each other ............ 71 

Figure 4.30 Vorticity contour when two cylinders are the closest ............................................... 71 

Figure 4.31 Vorticity contour when two cylinders are distanced at 60 ....................................... 71 

Figure 4.32 Evolution of drag coefficient for the upper cylinder ................................................ 72 

Figure 4.33 Evolution of lift coefficient for the upper cylinder .................................................. 72 

Figure 4.34  Streamline patterns around cylinder at Re=40 in six cases ................................... 76 

Figure 4.35 Pressure contours at Re=40 in six cases ................................................................... 77 

Figure 4.36 AMR mesh at Re=40 ................................................................................................ 79 

Figure 4.37 AMR results of streamlines and pressure distribution ............................................. 79 

Figure 4.38 Comparison of pressure coefficient ......................................................................... 80 

Figure 4.39 Zone of finest grid resolution in the four cases of a moving cylinder for Re=100 .. 81 

Figure 4.40 Vorticity contours at Re=100 in four cases .............................................................. 82 

Figure 4.41 Final adaptive mesh for Re=100 .............................................................................. 84 

Figure 4.42 Vorticity contours on final adaptive mesh for Re = 100 .......................................... 85 

 



 xii 

Nomenclature 

 

a    Free coefficient used in the “bubble” function 

b    Free coefficient used in the “bubble” function 

dC
  Drag coefficient 

lC
  Lift coefficient 

pC
  Pressure coefficient 

c    Lattice speed 

D    Diameter of cylinder 

e    Particle velocities 

e    Energy 

e1  Particle velocity component in the x direction used in the “bubble” function 

e2  Particle velocity component in the y direction used in the “bubble” function 

F   Boundary force density 

DF
   Drag component of the aerodynamic force 

LF
  Lift force of the aerodynamic force 

f    Force density acting on the fluid 

f    Particle distribution function 

qf   Vortex shedding frequency 

f    Space of distribution functions used in MRT 



 xiii 

 

g   Gap width between two cylinders 

j    Mass flux used in MRT 

k    Spring coefficient 

  m  Moment space of distribution functions used in MRT 

  M  Transformation matrix used in MRT 

n   Boolean variables 

p   Pressure 

p   Stress tensor used in MRT 

q    Energy flux 

Re  Reynolds number 

S      Relaxation matrix 

s    Lagrangian parametric coordinates 

s    Relaxation rate 

St   Strouhal number 

t    Instantaneous time                              

U   Free stream velocity 

u   Fluid velocity 

V    Macroscopic velocity used in conventional IBM 

w    Weighting factor 



 xiv 

X   Position vector expressed using the Lagrangian coordinate system 

x    Eulerian x-coordinate  

y   Eulerian y-coordinate  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xv 

 

Greek Symbols 

 

   Negative free constant used in feedback forcing method  

    Negative free constant used in feedback forcing method 

    Kinematic viscosity   

   Boundary curve  


  

Flow field  

    Relaxation time  

δ   Dirac delta function   

   Density 

    Criterion in AMR method 

   Bulk viscosity  

    Particle velocity  

   Displacement used in Hook’s Law 

Δx  Grid space in the x-direction  

Δy  Grid space in the y-direction 

x   Lattice size 

 t   Time step 

π   Moment   



 xvi 

Subscripts/Superscripts 

 

()  Post-collision state 

()a  Number of directions of velocities at each node   

()neq  Non-equilibrium state  

()ij  Point with coordinate ( , )i j   

() j

i  j th time step for a Lagragian point i   

()boundary  Boundary point  

() fluid  Fluid point 

()    Far field 

()c   Coarse mesh 

() f   Fine mesh 

()s  Sound speed 

()x  x-direction 

()xx  Diagonal component used for MRT parameters 

()xy  Off-diagonal component used for MRT parameters 

() y         y-direction  

()eq  Equilibrium state 

()object
 Object 

 



Chapter 1 - Introduction 

 1 

Chapter 1. Introduction 

1.1. Background  

 As an important branch of the physics subject, fluid dynamics studies the fluid flow 

behaviors that take place in many aspects of the real world. Although tremendous efforts on the 

theoretical, computational, and experimental fronts of this subject have been made for a long history 

towards more and better understanding of fluid dynamics, great challenges still remain in this 

research area. In the study of computational fluid dynamics (CFD), despite fast development of 

digital computer technologies, numerical solutions with high accuracy are difficult to achieve for 

many engineering problems, which particularly requires the conventional numerical methods to be 

enhanced by novel computational strategies.  

From the viewpoint of fluid motion description, existing CFD methods can be divided into 

three categories: macroscopic method, microscopic method, and mesoscopic method. The 

conventional methods, such as finite-difference method (FDM), finite-volume method (FVM), 

finite-element method (FEM), and spectral method, belong to the macroscopic category as they all 

assume the fluid as a continuum. The motion of the fluid satisfies the momentum and energy 

conservations, and is governed by Euler equations or Navier-Stokes equations. When using a 

macroscopic method to deal with fluid dynamics problems, the governing equations are discretized 

into algebraic equations, which are to be numerically solved to obtain discrete solutions on the 



Chapter 1 - Introduction 

 2 

computational domain.  

Different from the macroscopic methods, the microscopic and mesoscopic methods no longer 

assume the fluid as continuum. In the microscopic method, fluid is considered as consisting of a 

large number of discrete molecules, and their thermal property and movement in the system 

manifest as the irregular heat motion of molecules. Thus, the microscopic method relies on the 

simulation of movement for every molecule, resulting in the macroscopic rules based on statistic 

average method. Due to numerous molecules in fluids, computation and data storage appear 

inevitably huge, which becomes unaffordable by the present computational devices despite existing 

tremendous improvement in information technology.   

Fluid particles in the mesoscopic method are viewed larger than the molecules, but much 

smaller than the macroscopic scale. Based on the fact that the characteristics of the flowing fluid 

cannot be affected by a single particle, an evolution mechanism is proposed in the mesoscopic 

approach that fully satisfies the physical laws, and the quantities describing the fluid flow can be 

calculated under the guidance of the pre-set mechanism and, thus, inherently conform to the 

physical laws. Obviously, the mesoscopic method inherits the nuggets of both macroscopic and 

microscopic methods, such as using less assumptions and neglecting the movement details of each 

single particle.  

1.1.1. On lattice-Boltzmann method (LBM) 

As examples, the lattice gas automata (LGA) [1], direct simulation Monte Carlo (DSMC) 
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method [2-3], and lattice-Boltzmann method (LBM) are routinely employed mesoscopic methods. 

As aforementioned, unlike conventional numerical schemes through discretization of macroscopic 

continuum equations, the mesoscopic approach views a group of fluid molecules as a fictitious 

"fluid particle" and restrains such fluid particles into the framework of simplified mesoscopic kinetic 

models, which constitutes an evolution mechanism for each fluid particle in a fluid flow field. 

Consequently, the averaged properties, which are the macroscopic quantities used for describing the 

fluid flow, can still inherently satisfy the desired macroscopic equations.  

LBM was originated from LGA. The LGA approach provides a simplified micro-world in 

which space, time, and particle velocities are all discrete. A set of Boolean variables 

( , )( 1,..., )in x t i b  describing the particle evolution is defined, where b is the number of possible 

velocity directions of the particle at each node. However, the LGA model contains some 

shortcomings such as non-Galilean invariance, inherent statistical noise, and exponential 

complexity.  

McNamara and Zanetti [4] proposed the earliest model of LBM with the explicit intention of 

circumventing the statistical noise problem arising in LGA. They merely replaced the Boolean 

occupation numbers in with the corresponding lump-averaged local particle distribution function, 

and replaced the LGA evolution equation with the lattice-Boltzmann equation. In their model, the 

form of collision operator was still considered to be exponential complexity. Then, Higuera and 

Jimenez derived a simplified model [5] to linearize the collision operator by introducing the 

equilibrium distribution function and collision matrix. The merit of this model includes the 
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prevention of the statistical noise and the reduction of the complexity of the collision operator; 

however, other drawbacks in LGA remains uncorrected since Fermi-Dirac equilibrium distribution 

function was still employed in this simplified model.  

In order to further improve LBM, a remarkable innovation was made by Chen et al [6] and 

Qian et al [7] that replaced the Fermi-Dirac distribution function by the Maxwell-Boltzmann 

distribution function, making the computation significantly efficient. This model is now usually 

referred to as the Single Relaxation Time (SRT) or Lattice Bhatnagar-Gross-Krook (LBGK) model. 

Another key point of SRT is the replacement of the collision matrix in LBM by a parameter named 

relaxation time, enabling more transport coefficients to play roles in the model. Although SRT has 

completely overcome the drawbacks incurred by LGA, other issues associated with SRT remain to 

be resolved. For instance, this model may lead to numerical instability when the relaxation time is 

close to 0.5. To overcome this shortcoming, d’Humeriers revised SRT to an enhanced version that 

allows for a number of adjustable parameters and, thus, is often referred to as Multiple Relaxation 

Time (MRT) model [8]. 

In practice, when using LBM to study the dynamics of fictitious fluid particles, the density 

distribution function is sought. The macroscopic variables, such as the pressure, velocity, and 

momentum, are calculated through their distribution functions. Compared to those conventional 

numerical methods, LBM is relatively new, but noticeably advantageous in terms of simplicity for 

implementation, parallelizability for algorithmic development, and robustness for applications. With 

these advantages, LBM has been successfully applied in a variety of complex fluid systems, such as 
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hydrodynamics [9], flow through porous media [10], multiphase fluid flow [11][12], simulation of 

fluid turbulence [13], particle-fluid suspension flows [14], nano- and micro- scale fluid flow [15], 

heat transfer problems [16-17], etc. LBM simulations have covered the isothermal incompressible 

flow, inviscid compressible flow, as well as viscous compressible flow with some representative 

examples found in [18]. In the LBM family, distinguished from SRT, the MRT model exhibits a 

remarkably improved numerical stability while maintaining the simplicity and computational 

efficiency of SRT. Recent MRT applications [19] have demonstrated this approach is particularly 

pertinent in simulating flows at elevated Reynolds numbers or with solution multiplicity. 

Nowadays, LBM is still under further development since more enhanced capabilities of this 

mesoscopic approach are expected for the purpose of simulation of more challenging fluid flow 

scenarios.   

1.1.2. On immersed boundary (IB) method  

Relevant to a large number of industrial and daily life applications, such as blood flow 

through heart valves, insect hovering, and fish locomotion, the interaction between fluid and moving 

objects has become an attractive research subject. In computer simulations of these interaction 

problems, numerical approaches are classified into two major categories: boundary conforming 

methods and non-boundary conforming methods.  

In the boundary conforming methods, boundary points have to coincide with the grid nodes, 

so the physical boundary condition can be directly implemented. The Arbitrary Lagrangian Eulerian 
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(ALE) approach [20, 21] is the most popular boundary conforming method, which has been applied 

in connection with the finite difference, finite volume, and finite element schemes. Owing to the 

retained conformity of regenerated mesh to the solid boundary, ALE can usually yield high-order 

accuracy. However, in the case of moving boundary problems, especially when complex geometry 

possibly along with its irregular deformation are present, grid reconstruction procedure has to be 

unceasingly utilized, which is technically challenging and computationally time-consuming. When 

applying a non-boundary conforming method, the effect of the solid boundary to the fluid is taken 

into consideration by proper treatment to the variables at the Cartesian grid nodes that are located in 

the vicinity of the moving boundary, so that the governing equations can still be routinely solved on 

the fixed Cartesian mesh without the need of mesh regeneration. Compared to the boundary 

conforming methods, the non-boundary conforming methods remove the tedious mesh regeneration 

step.  

The non-boundary conforming methods can be further classified into Cartesian grid methods 

and immersed boundary methods. In the Cartesian grid methods [22, 23], a grid cell around the 

body is considered broken by the cutting of the immersed boundary, causing great inconvenience in 

numerical treatment if the involved portion of the immersed boundary is an irregular curve.  

Unlike the Cartesian grid method, the immersed boundary (IB) method, which was proposed 

by Peskin [24, 25], introduces an additional "restoring" force in the vicinity of the immersed object 

in order to account for the effect of the solid boundary, and then this additional force will be 

distributed to the Cartesian mesh as a special body force. Clearly, the IB approach allows for a fixed 
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mesh no matter how the immersed body moves or deforms and, thus, can be viewed as the simplest 

non-boundary conforming method.   

The IB method was originally developed for modeling the interaction between incompressible 

viscous fluid and moving boundaries immersed in the fluid, and then it was also extended to 

investigate problems arising from solid mechanics problems [26]. Along the IB development path, 

the formulation of restoring force has always been revised towards its better conformity to the 

physical nature of original scenario. As forerunner of IB approach, Peskin [24] applied a penalty 

method to ensure the restoring force to obey Hook’s law. More recently, Fadlun et al. [27] proposed 

a direct forcing method in which the restoring force at points of an immersed boundary was derived 

directly from the momentum equations. 

In 2002, the IB approach was incorporated in LBM the first time by Feng et al [28, 29], and 

this conjunctive numerical strategy was abbreviated to IB-LBM. Within the past decade, many 

IB-LBM applications have been made by the CFD community for investigations of fluid flow 

problems associated with complex geometries and various moving boundaries. For instance, Niu et 

al [30] proposed a modified IB-LBM to compute boundary force with the aid of momentum 

exchange mechanism. Although this method appears explicit and offers a straightforward way for 

computation, flow penetration through moving boundary may arise in the simulation result, which 

distinctly distorts the physical flow behavior. Further investigation revealed that the restoring force 

pre-calculated from the momentum exchange mechanism is unable to secure the accuracy of 

velocity distribution near the   boundary. Then, Wu et al. [31] presented an implicit scheme named 
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velocity-correction method, in which the restoring force is no longer pre-calculated and keeps 

updating to constantly ensure the satisfaction of non-slip condition. Owing to this improvement, 

numerical flow penetration through boundary can be eliminated [32]. More recently, Dash et al. [33] 

derived a flexible forcing scheme for IB-LBM that also features satisfying the non-slip condition for 

moving solid boundary. However, the velocity-correction and flexible forcing methods are both 

implicit schemes, which inevitably consume tremendous computational resources and usually lead 

to a painful simulation process for fluid flow problems with a high degree of sophistication, such as 

complex and deforming geometries.  

1.1.3. On local mesh refinement method  

Conventionally, structured Cartesian meshes with uniform square cells have been routinely 

employed in standard two dimensional LBM applications [18]. Obviously, uniform mesh is mostly 

an inappropriate option since homogeneous flow or uniformly transited flow are nowadays of very 

little interest to numerical investigation. On the contrary, intricate flow problems associated with 

various complexities, such as irregular geometry, multiple phases, evolves with rapidly varying fluid 

properties in some sensitive zones of a computational domain, demanding non-uniform meshes for 

more effective and economical computations. This poses challenges to LBM as the traditional 

version of LBM was formulated on uniform Cartesian mesh only. If persistently employing the 

traditional LBM in the simulation of complex flows, a higher grid resolution in critical regions is 

mandatory to ensure the accuracy of LBM solution, and such an elevated node density has to be 



Chapter 1 - Introduction 

 9 

maintained uniformly over the entire computational domain despite the pointlessness of finer grid 

for the zones of little sensitivity; as a result, the computation process using a uniform grid with a 

higher resolution, which can also be viewed as an aimlessly refined mesh, must be undesirably 

time-consuming.  

To dislodge the reliance of LBM on uniform Cartesian mesh, conjunction techniques were 

sought to make LBM executable on a non-uniform mesh to LBM. A variety of interpolation 

schemes have been derived so that, as of today, unstructured mesh [34], multi-block grid [35], along 

with multigrid [36] and meshless [37] techniques are all incorporated in the LBM framework. On 

the other hand, local mesh refinement techniques have proven efficient in reducing the 

computational expense without sacrificing the numerical solution accuracy. In particular, more 

attractive is the adaptive mesh refinement (AMR) strategy that dynamically optimizes the grid 

resolution levels over the entire computational domain based on the current numerical solution. The 

AMR concept was first proposed by Berger et al. [38] for structured grids in 1984 and, then, the 

AMR techniques grew up fast owing to its great benefits [9]. However, the incorporation of mesh 

refinement techniques in LBM appeared in publication only about ten years ago and, at its 

beginning stage, the local mesh refinement in LBM was perform in a non-adaptive fashion [39], 

[40]. Very recently, have a few examples been found with AMR in LBM. Crouse et al. [41] 

employed a quadtree-based data structure for AMR to be coupled with LBM. P. Neumann et al. [42] 

demonstrated an AMR-LBM version based on octree data structure. Other similar examples include 

the AMR-LBM studies reported by Tolke et al. [11] and Z. Yu [12]. All these cited pieces of 
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AMR-LBM work used the tree-type data structure to manage a hierarchy of grids at different 

resolution levels. Another type of AMR-LBM algorithm is found in [43] that coupled AMR with 

finite-difference lattice Boltzmann method (FDLBM) in order not to rely on the tree-type data 

structure in the code.  

The key difficulty for using non-uniform meshes in LBM is that the LBM solution 

interpolation in response to the grid non-uniformity resulting from local mesh refinement and 

un-refinement has to be manipulated with great care to ensure the physical conservation laws. 

Particularly, the accuracy of interpolation may become worse in the AMR case, since AMR can 

result in very steep and irregular transition between different levels of grid resolution on an 

adaptively generated mesh.   

1.2. Thesis objective and significance 

As aforementioned, the conjunctive IB-LBM approach has been proposed by the LBM 

researchers, but most existing IB-LBM schemes, such as the velocity-correction method [31, 32], do 

not have an explicit formulation to straightforwardly account for the effect of the restoring force 

arising from the IB approach. The weakness of implicit scheme based IB-LBM manifests mainly in 

excessive computational expenses. In addition, when employing an implicit scheme to eventually 

compute the velocity affected by the moving boundary, a matrix inversion process is required, and 

this matrix inversion may turn out to be a singular problem in case strongly irregularly-shaped 

moving boundary is present.  
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Fortunately, a novel IB model, which is based upon the feedback forcing and embedded in a 

finite difference flavored Navier–Stokes solver, was presented by Huang at al. [44] for studying the 

interaction between the flowing fluid and moving objects immersed in the fluid. This model exhibits 

an explicit scheme for obtaining the restoring force term directly from the feedback law, requesting 

no matrix inversion and, thus, tremendously simplifying the entire solution procedure. Additionally, 

this feedback law based IB scheme essentially precludes, owing to the feedback law, the fluid flow 

from penetrating the boundary of a moving solid object immersed in the fluid, leading to strict 

satisfaction of the non-slip boundary condition. Compared other IB-LBM models, this feedback law 

based IB-LBM framework looks distinctive for numerical investigation of fluid-solid interaction, 

featuring simple principle, easy implementation, and full parallelizability. Also, in order to render 

computation more efficient, it looks very promising for embedding local mesh refinement 

techniques in this new IB-LBM framework, but as of today this incorporation is nowhere to find yet. 

In terms of incorporation of mesh refinement algorithm in LBM, relevant progress was 

reviewed in the previous section. The most challenging issue in this regard is the complexity of 

solution interpolation at new nodes generated by local mesh refinement when a LBM mesh 

manifests strong non-uniformity in grid resolution. Unlike the conventional numerical methods such 

as the finite element, finite difference, and finite volume approaches, LBM is not a macroscopic 

method, and it requires, for each new grid node, the interpolation scheme to bear higher accuracy so 

that the LBM solution, which eventually appears in an averaged form, can keep the accuracy to a 

satisfactory degree. Also, the physical conservation laws should be constantly taken into 
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consideration whenever the LBM solution interpolation takes place. To ensure the LBM solution 

accuracy in the course of local mesh refinements, many existing interpolation formulations appear 

in the implicit manner. For example, the multi-block version of LBM [35] uses both the time and 

spatial interpolations in the interface between the coarse and fine grid zones, and the interpolations 

have to employ the solutions corresponding to more than one time step, which turns out to be an 

implicit interpolation method. The implicit interpolation requests extra data storage and consumes 

an undesirably great amount of computation time, which adversely affects the LBM solution 

efficiency.  

A new interpolation strategy of delight was proposed by Geier [45] for LBM mesh refinement, 

which relies on a "bubble" function that eliminates the need of time interpolation and, thus, results in 

an explicit scheme. Moreover, the "bubble" formulation guarantees second-order numerical 

precision. Hence, the "bubble" function based interpolation technique renders the coupling of local 

mesh refinements and LBM free of worry about worsened numerical solution accuracy or 

significantly increased computational cost. The "bubble" function coupled with local mesh 

refinement method has been successfully applied in LBM and, very hopefully, it can also greatly 

benefit the adaptive mesh refinement (AMR) version of LBM as well as the AMR-LBM with 

immersed boundary (IB) approach incorporated. 

The goal of this thesis is to derive a new numerical framework that incorporates both the 

immersed boundary (IB) model and the "bubble" function based local mesh refinement algorithm 

into the lattice Boltzmann method (LBM). This new LBM model featuring incorporation of more 
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innovative numerical strategies, i.e., both IB and AMR, should be able to globally reduce the 

simulation cost in terms of data storage and computation time while maintaining the solution 

accuracy on a satisfactory level. The AMR-IB-LBM model presented in this study may render the 

LBM approach more efficient in simulating complex fluid flow problems arising from engineering 

applications.  

1.3. Thesis organization 

After this introduction chapter which describes the background, motivation, objective, and 

significance of this study, the rest of this thesis is organized as follows: Chapter 2 explains in detail 

the LBM and IB approaches, and the necessary modifications required for the present study; then, 

Chapter 3 will describe the multi-level local mesh refinement techniques in both imposed and AMR 

versions; a number of benchmark cases will be tested in Chapter 4, and the validity of the present 

AMR-IB-LBM model can be demonstrated through detailed comparisons against available relevant 

numerical results previously obtained by others; finally, concluding remarks about the 

AMR-IB-LBM model are made in Chapter 5 with possible extensions outlined there as well.  
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Chapter 2. Two-Dimensional Lattice-Boltzmann Model 

2.1. Two-Dimensional Nine-Velocity (D2Q9) Model 

The Lattice-Boltzmann method (LBM) assumes fluid to be divided into a large amount of 

discrete particles which is viewed as a mesoscopic method. These particles are settled in fixed nodes 

and are allowed to move from one node to another based on the given discrete velocity. So the 

fundamental task of LBM is to determine the movement track or discrete velocity of all fluid 

particles. In the present study, the discrete velocities in the two-dimension nine-velocity (D2Q9) 

model [46] are defined as: 

     

    

0 0

cos 1 / 2 ,sin 1 / 2 1,2,3,4

2 cos 9 / 2 / 2 ,sin 9 / 2 / 2 5,6,7,8

T

a

T

a

e c a a a

c a a a

 

 

 



          

         

  (2.1) 

where 
ae and c  stand for the velocity of a fluid particle and the lattice speed respectively. The 

lattice speed /c x t   takes 1, where x  is the lattice size ( x y  in the case of 

two-dimensional square lattice) and  t  is the time step. As illustrated in Figure 2.1, the D2Q9 

model means the square lattice occupies a unit area, the fluid particle at the central node owns eight 

nearest neighboring nodes and accordingly forms eight paths. The interpretation of (2.1) is that, 

along a path, a particle can move from the central node to only one of its nearest neighboring nodes 

within one time step.  
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Figure 2.1 D2Q9 model on a square lattice 

2.2. Single-Relaxation-Time Lattice-Boltzmann Equation 

The Boltzmann equation with the single relaxation time (SRT) approximation reads: 

 ( )1
( )eqf

f f f
t





    


  (2.2) 

where   is the particle velocity, f  is the particle distribution function,  is the single relaxation 

time, and ( )eqf is the equilibrium distribution function. The lattice-Boltzmann equation (LBE) can 

be derived by temporal and spatial discretizations of Eqn.(2.2), leading to the following LBM model 

[9]: 

         
1

, , , ,eq

a a a a af x e t t t f x t f x t f x t


        (2.3) 

which is the single-relaxation-time (SRT) LBE, and also referred to as LBGK model as it involves 

the Bhatnagar-Gross-Krook relaxation term. In Eqn.(2.3), ( , )af x t  is the distribution function at 

( ,x t ),  ,eq

af x t  is the corresponding equilibrium distribution function, which can be obtained by: 

  
 

2 22

2 4
, 1

2

a seq a
a a

s s

e u c ue u
f x t w

c c


  
   

  

  (2.4) 
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where 
aw is the weighting factor given by 

 

4 9, 0

1 9, 1,3,5,7

1 36, 2,4,6,8

a

a

w a

a

 
 

  
  

  (2.5) 

and 
1

3 3
 s

c
c  represents the sound speed in this model, 

ae  is defined by Eqn.(2.1). The 

macroscopic density,  , velocity, u , and pressure, p , are defined in terms of distribution 

function as follows: 

   a

a

f   (2.6) 

 a a

a

u e f    (2.7) 

 2 sp c   (2.8) 

and the relaxation time, , is related to the kinematic viscosity,  , as follows: 

 
2( 1/ 2)c    s t   (2.9) 

which implies the relaxation time  has to be greater than 0.5 to guarantee the positivity of 

viscosity. In practice, for a given Reynolds number, the characteristic velocity for the LBE system, 

and an appropriately chosen lattice size, the kinematic viscosity,  , can be calculated, and then the 

relaxation time,  , can be determined. 

According to the LBGK model, the particle distribution functions should be updated by 

splitting each time increment step into two steps, one is called collision process and the other is for 

streaming. The collision step occurs when the particles are moving toward the same node, and the 

interaction between the particles will result in the change of the particle distribution function and the 

direction of velocity according to the scattering rule. Then the particle can be considered to stream 
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to the nearest neighbor node based on its discrete velocities shown in Eqn.(2.1). 

The two LGBK steps are computed as follows: 

(Ⅰ) collision step:  

         
1

, eq

a a a af x t f x ,t f x ,t f x ,t


      (2.10) 

(Ⅱ) streaming step:  

    , ,a a af x t t f x e t t       (2.11) 

where the " + " symbol on 
af denotes the distribution function in its post-collision state. 

 

2.3. Multiple-Relaxation-Time LBE 

As implied in Eqn.(2.9), the closer the relaxation time is to 0.5, the less the numerical 

instability; once the relaxation time reaches 0.5 or when it is less than 0.5, the LBGK model may 

break down. To overcome this bottleneck situation in LBGK, a Multiple-Relaxation-Time (MRT) 

model was proposed in [47], leading to the following revised form of the governing equation: 

        1, , , ,eq

ax e t t t x t x t x t         M S m mf f   (2.12) 

where the moment space m is arranged in the following order: 
0m  is the fluid density, 

1m e is the energy, 
2m  is related to the energy square, 3,5 ,x ym j are two components of the 

momentum ( , ) ( , )T T

x y x yj j j u u  , 4,6 ,x ym q are related to energy flux, 7,8 ,xx xym p are 

components of the symmetric and traceless strain rate tensor. Totally, the moment space m is 

related to the distribution function by the following 9×9 transformation matrix M :  
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 

Mf   (2.13) 

Note the row vectors in the above 9×9 equation are mutually orthogonal, i.e., 
TMM is a 

diagonal matrix; thus,  
1

T


MM can be easily obtained. It is convenient to compute the matrix 

using: 

  T T
-1

-1M = M MM   (2.14) 

and 
eqm groups the corresponding equilibrium values as follows: 

 

2

2

2 2

1

2 3

1 3

x

eq
x

y

y

x y

x y

u

u

u

u

u

u

u u

u u



 
 
  
 
 
 
 
 
 
 
 

 
 
 

m   (2.15) 

The relaxation matrix S is a diagonal matrix: 

 0 1 8( , , , ) (0, , ,0, ,0, , , )e q qdiag s s s diag s s s s s s   S   (2.16) 

where 
0 3 5s s s  can be set at 0 to reduce the computational cost because of the mass and 
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momentum conservation during the collision process. The remaining relaxation parameters are set 

as follows: 

 ( )[ ],eq

ee e s e e      (2.17) 

 ( )[ ],eqs         (2.18) 

 
( )[ ],eq

x x q x xq q s q q      (2.19) 

 
( )[ ],eq

y y q y yq q s q q      (2.20) 

 ( )[ ],eq

xx xx xx xxp p s p p

      (2.21) 

 
( )[ ],eq

xy xy xy xyp p s p p

      (2.22) 

where the variables with superscript are post-collision values. The relaxation rates s and 
es  are 

related to the kinematic viscosity and bulk viscosity : 

 2 1 1
( )

2

  s tc
s

  (2.23) 

 2 1 1
( )

2
  s t

e

c
s

  (2.24) 

The relaxation rates
es , qs , s  can be adjusted within the interval of  0, 2 . Note when 

1/e qs s s     , MRT LBE will restore to LBGK model. 

Similar to the LBGK model, the MRT evolution process includes two steps, namely collision 

and stream. The collision step is executed in the momentum space, and the stream step is executed 

in the velocity space, which can be respectively described by: 

        1, , , ,eqx t x t x t x t      m m M S m m   (2.25) 

and 
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      1, , ,ax e t t t x t x t        M mf f   (2.26) 

where  ,x tf  and  ,x tm  respectively denote the density distribution function and the 

moment space after the collision step. 

2.4. Boundary Condition 

The standard LBM solution procedure, which has been described in the precedent section, is 

no longer executable for nodes located at boundaries. On the other hand, the values of the 

distribution function at those boundary nodes are involved in the streaming step of the LBM 

computation. Therefore, the distribution function at nodes on the boundary must be determined in a 

fashion that is consistent with the LBM model. Technically, the boundary condition treatments have 

to be made differently for straight and curved boundaries in the LBM framework to ensure the 

numerical accuracy, stability, and efficiency. 

2.4.1. Straight boundary  

There are two mechanisms for setting up the boundary condition for a straight boundary, 

namely bounce-back scheme and non-equilibrium extrapolation scheme.   

2.4.1.1. Bounce-back scheme 

For the stationary no-slip boundary [48], bounce-back scheme is the most common method. 

As shown in Figure 2.2, node ( ,1)i  is located on a straight boundary represented by a solid line, 
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and the bounce-back mechanism used in LBM signifies the distribution function 
8f  streams from 

node ( 1,2)i   to ( ,1)i  and returns in the same path without going through the collision step, 

resulting in: 

 
6 8( ,1) ( 1,2)f i f i    (2.27) 

Similarly, other distribution functions at the node ( ,1)i can be obtained as follows: 

 
2 4( ,1) ( 1,2)f i f i    (2.28) 

 
5 7( ,1) ( 1,2)f i f i    (2.29) 

       

Figure 2.2 Bounce-back scheme 

This bounce-back boundary scheme has been widely used owing to its simple principle and 

easy implementation. However, this scheme is unable to render highly accurate solution due to its 

first-order accuracy. 

2.4.1.2. Non-equilibrium extrapolation scheme 

For the purpose of accuracy improvement, Guo et al [49] presented a non-equilibrium 

extrapolation scheme, which features second-order accuracy in both time and space and enhanced 

numerical stability.  

The basic idea of the non-equilibrium extrapolation scheme is to decompose the distribution 
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function at the boundary node into its equilibrium and non-equilibrium parts, and numerically treat 

these two parts in different ways before re-combining them to obtain the values of distribution 

function at there. That is, at boundary nodes, the equilibrium part is approximated using Eqn.(2.4) 

and the boundary condition if points at the boundary are involved in this approximation, and the 

non-equilibrium part is obtained using the first-order extrapolation of the non-equilibrium part of the 

distribution function at the neighboring fluid node. As depicted in Figure 2.3, a particle
bx is located 

at a boundary node, and the sides above and below the boundary are fluid and solid, respectively. 

The unknown distribution functions are 
2 5 6, ,f f f  , and all the macroscopic density and velocity at 

along the streaming nodes ( 2,5,6)f b ax x e t a  = are known. To determine the unknown 

distribution function on the boundary point, the distribution function of particle
bx is divided to two 

parts: 

      , , , , 2,5,6eq neq

a b a b a bf x t f x t f x t a     (2.30) 

where  ,eq

a bf x t and  ,neq

a bf x t  represent the equilibrium and non-equilibrium parts of the 

function, respectively. For the equilibrium part, as the macroscopic density at the
 
node represented 

by 
bx  is unknown, the missing information would be replaced by the value at node fx . Therefore, 

the solid boundary density is replaced by the fluid density at fx  near the boundary node 
bx  in the 

calculation of equilibrium distribution function part.  
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Figure 2.3 Non-equilibrium extrapolation scheme 

For the non-equilibrium part, the function is approximately replaced by the non-equilibrium 

function at node fx : 

        , , , , , 2,5,6neq neq eq

a b a f a f a ff x t f x t f x t f x t a      (2.31) 

From the above, the distribution function at the boundary node can be obtained, 

        , , , , , 2,5,6eq eq

a b a b a f a ff x t f x t f x t f x t a    
 

  (2.32) 

If the collision step is taken into consideration, the distribution function after the collision can 

be expressed as: 

        
1

, , (1 ) , , , 2,5,6eq eq

a b a b a f a ff x t f x t f x t f x t a


      
 

  (2.33) 

 

2.4.2. Curved boundary  

The boundary of an object immersed in a flowing fluid is not necessarily a straight line. Since 

the immersed objects are allowed to move as well, the immersed boundary (IB) method is adopted 
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in this study. In the IB approach, the flow field is represented by a set of Eulerian points, which are 

in fact the fixed Cartesian mesh points in the LBM frame，and the boundary of curved object, which 

is immersed in the fluid field, is represented by a set of Lagrangian points. These two sets of points 

in the IB-LBM framework are illustrated in Figure 2.4. The fundamental idea of IB is that the effect 

of the fluid to the object boundary is modeled by a restoring force that should be additionally placed 

in the governing equations. 

 

Figure 2.4 Schematic of immersed boundary method 

 

2.4.2.1. Conventional immersed boundary approach 

The governing equations of the conventional IBM for an incompressible viscous fluid flow 

can be written as [28] 

 ( ) f
u

u u p u
t

 


     


  (2.34) 

 0u    (2.35) 

 f ( , ) ( , ) ( ( , ))x t F s t x X s t ds


    (2.36) 
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( , )

( ( , ), ) ( , ) ( ( , ))
X s t

u X s t t u x t x X s t dx
t





  

    (2.37) 

where x ,u and f are the Eulerian coordinates, fluid velocity, and force density acting on the fluid, 

s represents the Lagrangian parametric coordinates,  and p stand for the fluid density and fluid 

pressure, respectively, X and F are the Lagrangian coordinates and boundary force density, and 

( ( , ))x X s t   is the Dirac delta function. Eqn.(2.34) and Eqn.(2.35) are the Navier-Stokes 

Equations with external force. Eqn.(2.36) and Eqn.(2.37) show the interaction between the 

immersed object and the fluid flow by distributing the boundary force, which acts at the Lagrangian 

points, to the Eulerian points, and interpolating the velocity, which takes place at the Eulerian points, 

to the Lagrangian points as well. From the above equations, the key step is to calculate the boundary 

force density, F , which is also referred to as "restoring force". 

   Conventionally, the restoring force F is obtained by using Hooke’s law as follows:  

 ( , ) ( )fluid boundaryF s t k k V t V t          (2.38) 

where fluidV is the fluid velocity at the boundary point, boundaryV is the boundary velocity of the 

immersed object, k is the spring coefficient, and   the displacement between the object point 

and the coordinate reference point. This method has proven unnecessarily satisfying the non-slip 

boundary condition. Indeed, it is only approximately satisfied. This drawback can cause the flow 

penetration from the fluid field to the solid body, calling for more improvement in the IB 

methodology [30-33]. 
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2.4.2.2. Feedback forcing immersed boundary based Lattice-Boltzmann method 

To be invoked in the LBM framework, Eqn.(2.34) and Eqn.(2.35) can be replaced by LBE 

with an additional forcing term proposed by Guo et al [50]: 

         
1

, , , ,eq

a a a a a af x e t t t f x t f x t f x t F t


           (2.39) 

                  
2 4

1
1 f

2

a a
a a a

s s

e u e u
F w e

c c

   
     
   

             (2.40) 

 
1

f
2

a a

a

u e f t      (2.41) 

where f is the density of the force acting on the fluid due to solid boundary, and F
 
is the 

transformed version of f that can be used in the LBE framework.  

For an incompressible viscous flow field  , the immersed object boundary is denoted by , 

x and , ( 1, 2..., )l

BX l m stand for Eulerian coordinates and Lagrangian coordinates, respectively. 

Based on Eqn.(2.37), the velocity at Lagrangian points can be discretized as 

      
,

, ,l l l

B B ij ij B

i j

U X t u x t D x X x y      (2.42) 

  ,Bx X s t  is approximated by a continuous kernel distribution: 

         , l l l

B ij ij B ij B ij Bx X s t D x X x X y Y          (2.43) 

where (r) is a continuous function for all real r with respect to the mesh width. Numerical value 

for (r) is proposed by Peskin [24] as  

  

1
1 cos , 2

4 2

0, 2

r
r

r

r





   
         




  (2.44) 

Similarly, Eqn.(2.45) is derived by Eqn.(2.36), the distribution of the Lagrangian force to the nearby 
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Eulerian points can be expressed as 

                     f ( , ) ( , )l l

ij B B ij ij B l

l

x t F X t D x X s                 (2.45) 

where 
ls  is the arc length of the boundary element. The interaction force per unit volume 

between the fluid and the immersed object can be calculated by the feedback law [44] 

    
1

, 1,2,...,
n j n

n j n

i B i B i
i i

j

F U U t U U i m 


           
   

   (2.46) 

where 
j

iU is the velocity of the immersed object expressed as  1j j j

i i iU X X t   , j  denotes 

the j th time step and i represents the Lagragian point surround the object boundary  (apparently, 

for a stationary object, 0j

iU  ), BU is the velocity of the boundary point, which has been 

calculated using the IB model,  and are negative free constants having dimensions of 
3 2ML T 

 

and 
3 1ML T 

, respectively. According to [44],  and are stable for moderate values and are both 

insensitive to their exact values, and the stability interval is [-100, -1] for both. 

   The solution process of this feedback IB based LBM framework can be summarized as 

follows: 

1) Set initial values and set the force density f 0 as the initial condition; 

2) Use Eqn.(2.39) to get the distribution function at time 
nt t  (initially f 0 ), then 

compute the macroscopic variables, such as density, pressure and velocity using Eqn.(2.6)- 

Eqn.(2.8); 

3) Obtain the force density using Eqn.(2.42) and Eqn.(2.46); 

4) Interpolate the Lagrangian force term into Eulerian coordinate which is exerted on fluid by 
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the immersed boundary; 

5) Compute the equilibrium distribution function using Eqn.(2.4); 

6) Repeat Step 2) to Step 5) until convergence is reached. 
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Chapter 3. Mesh Refinement Methods 

Structured Cartesian meshes with uniform square cells have been routinely employed in 

standard two dimensional LBM applications, which may cause low efficiency and time-consuming 

in the simulation of complex flows. This occurs, for example, when there is a mandatory for a high 

resolution in critical regions. When employed traditional LBM, an elevated node density has to be 

maintained uniformly over the entire computational domain including the zones of little sensitivity. 

To overcome the drawback of traditional LBM, mesh refinement is introduced to incorporate into 

LBM. 

 

3.1. Multi-level local mesh refinement method 

To illustrate the main idea of this local refinement method, a two-level mesh system consisting 

of a coarse level and a fine level mesh [35] is depicted in Figure 3.1. The ratio of the lattice space 

between the coarse-fine mesh is defined as: 

 c

f

x
m

x
   (3.1) 

where the subscript c and f stand for the coarse mesh and the fine mesh respectively. 
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Figure 3.1 Structure of two-level mesh of different lattice spacings 

The viscosity of the fluid in a given lattice size
x  is defined as:  

 (2 1) / 6xc      (3.2) 

In order to keep a consistent viscosity in the entire flow field, the relation between relaxation time, 

c  on the coarse mesh and f on the fine mesh, which can be derived from (3.2), should satisfy the 

following equation: 

 
1 1

2 2
f cm 

 
   

 
   (3.3) 

Then density and velocity must be continuous across the interface between coarse-fine mesh, so 

based on Eqn.(2.4),  

 , ,f

eq eq

a c af f   (3.4) 

should be guaranteed. 
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To maintain continuity in deviatoric stresses,  

 , ,f

1 1
(1 ) (1 )

2 2

neq neq

a c a

c f

f f
 

     (3.5) 

Combining Eqns.(2.10), (3.4) and (3.5), the transform of distribution function between 

two-mesh can be derived: 

 
 

 , , , ,c

1

1

feq eq

a f a c a c a

c

f f f f
m






  


  (3.6) 

  ,c ,f ,f ,f

1

1

eq eqc
a a a a

f

f f m f f





  


  (3.7) 

The procedure for the multi-level LBM can be summarized as follows: 
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3.2. Bubble function for local mesh refinement used in lattice-Boltzmann method  

Bubble function interpolation method is proposed as a second-order accuracy approach for 

the mesh refinement [45]. Since the bubble function is obtained by the second-order variables 
xxk 、

yyk 、 xyk  from moment space, MRT model should be employed when incorporating this method 

into LBM.  

The main idea for this interpolation method is allowing for a small overlapping region. As 

shown in Figure 3.2, two more coarse mesh units exist in coarse-fine overlapping region. With this 

strategy, temporal interpolation can be eliminated. In the fine-to-coarse overlapping unit, the 

moments for the single coarse node in the middle of the four fine nodes is updated with interpolated 

momentum values from the four fine nodes, which are taken from the bubble function. Also, in the 

coarse-to-fine overlapping unit, the moments for the fine nodes are obtained from the coarse 

neighboring nodes using bubble function by bilinear interpolation. One time step on the coarse mesh 

corresponding to two time steps on the fine mesh. The schematic of the overlay region is depicted in 

Figure 3.2. 
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Figure 3.2 Schematic of an overlay region 

In moment space, density and momentum ( , )x y  can be calculated by Eqns.(2.6)-(2.7), 

and other six moments
xyk ,

xx yyk k ,
xx yyk k ,

xxyk ,
xyyk ,

xxyyk are defined as: 

    1 2 ,(m,n 0,1,2)m n

nm

a x a y ax y
a

k e u e u f      (3.8) 

where 1ae and 2ae are the velocity components for the respective particles. Four non-dimensional 

nodes consist of one square grid, and the four nodes are numbered as (0, 0), (1, 0), (0, 1), (1, 1), 

respectively. The aim is to find a momentum interpolation function based on the four nodes, which 

can not only satisfy the second-order accuracy, but also require no information of other nodes far 

away. Therefore, bubble function is put forward. Two of the moments in the pre-collision step are of 

great importance: 
xxk  and xx yyk k . They are related to the shear stress and partial derivative of 

momentum. 

 
2

ys x
xy

xy

c
k

w x y

  
   

  
  (3.9) 
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22 ys x

xx yy

xx

c
k k

w x y

  
    

  
  (3.10) 

where 1xy xxw w   . The two coefficients are the relaxation rate of second-order momentum 

used to adjust shear viscosity. And four second-order partial derivative at the center point can be 

easily derived based on Eqns.(3.9) and (3.10): 

 

22 2

2

xy ys x

xy

k c

x w x x y

    
        

  (3.11) 

 

22 2

2

xy ys x

xy

k c

y w x y y

    
        

  (3.12) 

 
  22 2

2

2xx yy ys x

xx

k k c

x w x x y

   
        

  (3.13) 

 
  22 2

2

2xx yy ys x

xx

k k c

y w x y y

   
        

  (3.14) 

Then second-order accuracy finite difference of 
xxk  and xx yyk k can be obtained by central 

difference scheme between the diagonally neighboring nodes (Figure 3.3): 

 

   1,1 0,0

xy xy xy xyk k k k

x y l

  
 

 
  (3.15) 

 

   1,0 0,1

xy xy xy xyk k k k

x y l

  
 

 
  (3.16) 

 
     

 
 

 1,1 0,0

xx yy xx yy xx yy xx yyk k k k k k k k

x y l

      
 

 
  (3.17) 

 
     

 
 

 1,0 0,1

xx yy xx yy xx yy xx yyk k k k k k k k

x y l

      
 

 
  (3.18) 
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Figure 3.3 Numbering for neighboring nodes 

where 1l  denotes the distance between two neighboring nodes, and the subscript stands for the 

coordinate of the node mentioned above. Together with the above equations, quadratic bubble 

function can be solved as follows: 

   2 2

0,x x xx xy y yyx y a a x a x a xy a y a y         (3.19) 

   2 2

0,y x xx xy y yyx y b b x b x b xy b y b y         (3.20) 

The coefficients are: 

 
 0,0

0 xa    (3.21) 

 
            0,0 0,1 1,0 1,1 0,0 1,0

10.5 2 2x y y y y x xa m                 (3.22) 

 
            0,0 0,1 1,0 1,1 0,0 0,1

40.5 2 2y y y y y x xa m                 (3.23) 

 
        0,0 0,1 1,0 1,1

10.5xx y y y ya m            (3.24) 

 
       0,0 0,1 1,0 1,1

xy x x x xa          (3.25) 

 
        0,0 0,1 1,0 1,1

40.5yy y y y ya m            (3.26) 

 
 0,0

0 yb    (3.27) 

 
            0,0 1,0 0,0 0,1 1,0 1,1

30.5 2 2x y y x x x xb m                 (3.28) 



 Chapter 3 Mesh Refinement Method 

 37 

 
            0,0 0,1 0,0 0,1 1,0 1,1

20.5 2 2y y y x x x xb m                  (3.29) 

 
        0,0 0,1 1,0 1,1

30.5xx x x x xb m              (3.30) 

        0,0 0,1 1,0 1,1

xy y y y yb          (3.31) 

 
        0,0 0,1 1,0 1,1

20.5yy x x x xb m             (3.32) 

In order to express more clearly in each coefficient next, a few auxiliary variables are defined: 

  
 

 
 

 
 

 
  1,0 1,1 0,1 0,0

1 24

xx
xx yy xx yy xx yy xx yy

s

w
m k k k k k k k k

c
           (3.33) 

  
 

 
 

 
 

 
  0,1 1,1 1,0 0,0

2 24

xx
xx yy xx yy xx yy xx yy

s

w
m k k k k k k k k

c
           (3.34) 

 
        1,0 1,1 0,1 0,0

3 22

xy

xy xy xy xy

s

w
m k k k k

c
       (3.35) 

 
        0,1 1,1 1,0 0,0

4 22

xy

xy xy xy xy

s

w
m k k k k

c
       (3.36) 

Then density  and distribution function f  can be obtained by bilinear interpolation. Velocity 

x
xu




 and

y

yu



 . The procedure for the bubble function interpolation method can be depicted 

as follows: 
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3.3. Adaptive mesh refinement (AMR) technique 

Different from the imposed local mesh refinement strategy described in Section 3.1, the 

adaptive mesh refinement (AMR) algorithm is more complex since it involves an unstructured data 

storage process. A number of lists of interrelated data corresponding to different levels of the 

adaptive mesh are constructed in the in-house CFD code. 

The dynamic refinement and coarsening of grid cells is controlled by monitoring parameters 

which estimate the error for a quantity of interest. For LBM, several error estimators were discussed 

in the literature. Among these methods, Crouse et al. [41] proposed to use the divergence of the 

velocity. Here depending on different situations, the gradient of velocity or vorticity is used as the 

criterion to guide the AMR process. Detailed information about the criterion will be shown in 

Chapter 4. 

When incorporating AMR into IB-LBM, the bubble function is also employed for the solution 

interpolation purpose. Considering the data structure in AMR in-house code, each mesh cell is 

defined as the structure variable, which consists of 4 pointers in 4 nodes, 8 neighboring elements 

(Figure 3.4 (a)) and the pointer corresponding to both the next level and last level of the cell. For the 

node structure variable, the relative coordinates, macroscopic variables, the pointer of 9 neighboring 

nodes (Figure 3.4 (b)) should all be included.  
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                     (a)                             (b) 

Figure 3.4 Numbering example for (a) neighboring cells and (b) and neighboring nodes  

After initializing the flow field, a uniform Cartesian mesh, named level 0 underlying mesh is 

generated, with defined node and cell structure variables. Then each cell should be determined to be 

refined or not using the criterion mentioned above. For these cells that need to be refined, a new 

mesh cell with half meshsize will be inserted into the origin one, which defined as level 1 (Figure 

3.5 (a)). Then an index relation between different levels is generated. With the new formed cell and 

its corresponding neighbors, a new level of mesh, which possesses a higher resolution can be 

generated (Figure 3.5 (b)). Using the same strategy, mesh numbering from level 0 to level 4 is 

formed at the initialize step ahead of calculate step. 
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        (a)                         (b) 

 

Figure 3.5 Schematic for bubble function interpolation used in AMR
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Chapter 4. Numerical Experiments 

4.1. Introduction 

To verify the validity and accuracy of the present IB-LBM approach, a series of 

incompressible viscous flows past a cylinder or bi-cylinders are chosen as numerical experiments. 

The cylinder(s) may remain at rest, or keep in motion to make scenarios of moving objects in the 

flowing fluid. Such selected problems have been studied extensively and are considered as the 

benchmark cases when justifying new approaches. A large number of results including numerical, 

theoretical, and experimental studies are available in literature, and some will serve as references for 

comparison purpose in this chapter, as seen in subsequent sections.  

Incompressible viscous flows around a cylinder are usually differentiated using Reynolds 

number, which is defined as: 

 Re
U D


   (4.1) 

where U
is the free stream velocity in the case of a stationary cylinder, or the relative velocity of 

the free stream to the moving cylinder, D is the diameter of the cylinder, and  is the kinematic 

viscosity of the fluid. For this type of flow, the drag force, 
DF , arises from two sources: the shear 

stress and the pressure distribution along the body [51]. Since the cross section of a cylinder remains 

in circular shape, which is symmetric about center, the angle of attack for the incoming flow is 
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conveniently always set at zero, and the drag force can be calculated using: 

 
D xF f dv


    (4.2) 

where 
xf stands for the x-component of the force density. Then, the drag coefficient is then defined 

as: 

 
2

2 D
d

F
C

U D 

   (4.3) 

and the lift coefficient can be defined as: 

 
2

2 L
l

F
C

U D 

   (4.4) 

where 
LF is the lift force obtained by:  

 
L yF f dv


    (4.5) 

in which yf represents the y-component of the force density. The pressure coefficient, pC , is 

calculated by:  

 
 

2

2 B

p

p p
C

U






   (4.6) 

where 
Bp  and p

are the pressure on the boundary of cylinder and far-field pressure, respectively. 

Similar to Eqn.(2.42) that has been described in Section 2.4.2.2, 
Bp

 
can be obtained by the 

following interpolation in the flow field: 

    
,

, l

B ij ij B

i j

p p x t D x X x y      (4.7) 

In all present test cases, the fluid density is set at 1.0   and the free stream velocity is 

0.1U  , unless otherwise specified. The diameter of the cylinder is 5. The computational domain 
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occupies a 512256 rectangular domain, with its horizontal central line located on the x-axis and 

starting at the origin of the Cartesian coordinate system.  

For each case, as a result of pre-implemented local mesh refinements, four levels of mesh in 

different grid resolutions are used in the simulations, and the cell unit in each level 

is 1,0.5,0.25,0.125x y    , respectively. The zone covered by each level of mesh is specified by 

using the minimum and maximum x- and y- coordinates, denoted by ,nL nRx x , ,nL nUy y , (n = 1,2,3,4), 

as shown in Figure 4.1. Unless otherwise notified, four levels of mesh occupy four nested zones 

respectively defined by [0, 512] [-128, 128], [39, 295] [-64, 64], [59, 187] [-32, 32] and [63, 

127] [-16, 16], with coordinates rounded to their integer parts if necessary.  

In order to accurately capture the flow characteristics around the cylinder, the center of the 

cylinder is always placed at (80, 0), which is at the middle of the width of the entire computational 

zone with the cylinder fully located in the finest mesh zone, as seen in Figure 4.1 and Figure 4.2. 

The cylinder surface is described by 60 evenly distributed Lagrangian points. The LBM 

computation is restrained with the given free stream at uniform velocity at the left border, while at 

other borders of the rectangular domain, the equilibrium distribution function is employed as the 

boundary condition.  
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Figure 4.1 Computational domain, setup of zones for multi-level local mesh refinements, and cylinder 

location  

 

 

Figure 4.2 Close-up view of the location of the cylinder and the mesh refinement transition  
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4.2. Flow over a single cylinder at Re=40 

4.2.1. Steady flow over a stationary cylinder 

The incompressible viscous flow over a stationary cylinder at Re=40 is a classic benchmark 

case. A priori, this flow features symmetry about the central horizontal line passing through the 

center of cylinder, which is confirmed again by the present IB-LBM simulations results as shown in 

Figure 4.3-Figure 4.6 for the distributions of streamline, pressure, horizontal and vertical velocity 

components, as well as vorticity, respectively. In particular, Figure 4.3 also clearly demonstrates a 

pair of symmetric recirculating eddies behind the cylinder, while there is no indication of flow 

penetration across the boundary of the immersed object, confirming the success of incorporation of 

the IB approach in the LBM framework. Another important remark can be made on the satisfaction 

of the no-slip boundary condition on the surface of the cylinder in the present IB-LBM model, since 

Figure 4.5 (b) illustrates the velocity strictly remains zero at the solid boundary.  
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Figure 4.3 Streamline pattern around cylinder at Re=40 

 

 

Figure 4.4 Pressure around cylinder at Re=40 
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              (a)                                          (b) 

Figure 4.5 Velocity magnitude around cylinder (left) and its close-up near the stagnation point (right) at 

Re=40 

 

Figure 4.6 Vorticity around cylinder at Re=40 
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     A quantitative comparison can also be made using the pressure coefficient on the surface of 

cylinder, pC , the drag coefficient,
dC , and the length of recirculation zone, L (scaled by the 

diameter of cylinder). Figure 4.7 depicts both the present pressure coefficient distribution result on 

the entire surface of the cylinder and a reference result [31], which obviously agree with each other. 

The curve is strictly symmetric about the position corresponding to the 180o angle, at which the 

stagnation point is formed and the maximum pC takes place. At the angles of 90o and 270o, which 

are respectively the highest and lowest points of the cylinder, the negative pressure reaches its 

extreme value as the maximum velocity arises locally. Echoing the symmetry exhibited in Figure 

4.3 - Figure 4.6, the pC distribution remains symmetric about the 180o angle, which represents the 

horizontal diameter of the cylinder. Table 4.1 groups the drag coefficient and recirculation zone 

length data obtained using the IB-LBM model and those reported by other literature, indicating the 

present study can produce reliable numerical results since they satisfactorily match with other 

reported data.   
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Figure 4.7 Pressure distribution on surface of cylinder at Re=40 

 

Table 4.1 Comparison of drag coefficient and length of recirculation zone at Re=40 

References Drag coefficient 
dC  Length of recirculation zone L 

Fornberg[52] 1.498 2.25 

    Shukla et al.[53] 1.550 2.34 

Niu et al.[30] 1.589 2.26 

Wu et al.[31] 1.554 2.30 

Present 1.493 2.36 
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4.2.2. Steady flow over a moving cylinder 

The precedent test case can be modified such that the free stream velocity keeps 0.095U   

while the cylinder itself also moves towards the incoming constantly at 0.005objectU   , starting 

from the position from (100, 0). This modification generates a horizontal translating velocity for the 

cylinder, which creates a scenario of moving boundary and provides a new test case for verifying the 

effectiveness of the present IB-LBM model in dealing with a flow associated with an immersed 

moving obstacle. However, compared to the first test case with a stationary cylinder, the 

modification made here is not expected to alter the flow pattern, since the incoming flow velocity 

relative to the moving cylinder evidently remains 0.1. Hence, in this modified case, Reynolds 

number keeps Re=40. 

Unsurprisingly, in this moving boundary case, despite the translation of the cylinder, the flow 

behavior around the cylinder looks identical and steady if observed from the moving cylinder itself. 

A representative plot, Figure 4.8, is made using the stream function values obtained using the 

present model, and exhibits no difference from the streamline distribution in the stationary cylinder 

case as illustrated in Figure 4.3. Further examination can be performed using the pressure coefficient 

along the entire surface of the cylinder, leading to a quantitative comparison against other available 

relevant data as depicted in Figure 4.9. A high degree of agreement is found again, which reveals the 

capability of the IB-LBM approach for simulation of flow problems with obstacle moving in the 

fluid and, moreover, confirms the Galilean invariance of the present method that holds independent 
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of whether the immersed obstacle is in motion or at rest.  

 

Figure 4.8 Streamline pattern around a moving cylinder at Re=40 

 

 

Figure 4.9 Pressure distribution on surface of a moving cylinder at Re=40 

 



Chapter 4 Numerical Experiments 

 53 

4.3. Flow over a single cylinder at Re=100 

4.3.1. Unsteady flow over a stationary cylinder 

For simulating the unsteady flow at an elevated Reynolds number Re=100, the computational 

domain and the location of the cylinder in the flow field is the same as the first case above. Figure 

4.10-Figure 4.12 illustrate the instantaneous streamlines, velocity and vorticity contours in the 

vicinity of the cylinder, respectively. Karman vortex street has been obviously revealed in Figure 

4.12. As seen from the vorticity contours in Figure 4.12, the vortex is shedding at a constant 

frequency. Here, the Strouhal number is employed to examine the dimensionless frequency when 

the vortices are shed from the body: 

 
qf D

St
U

   (4.8) 

with qf representing the vortex shedding frequency. This frequency can be acquired by a look into 

the time evolution of the drag and lift coefficients depicted in Figure 4.13. The oscillation of the two 

coefficients looks periodic, which demonstrates the flow field varies periodically when the vortices 

are shed from the cylinder. Table 4.2 compares the time-averaged drag coefficient, dC , and 

Strouhal number,  St , of this unsteady flow case obtained using the present model to those 

obtained elsewhere, which shows that the present results are within the range of values reported by 

the references. 



Chapter 4 Numerical Experiments 

 54 

    

Figure 4.10 Streamline pattern around cylinder at Re=100 

 

Figure 4.11 Velocity magnitude around cylinder at Re=100 
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Figure 4.12 Vorticity around cylinder at Re=100 

 

 

Figure 4.13 Evolution of drag and lift coefficients at Re = 100 
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Table 4.2 Comparisons of time-averaged drag coefficient and Strouhal number at Re=100 

References Drag Coefficient dC  Strouhal number  St  

Wu et al.[31] 1.364 0.163 

Saiki et al.[54] 1.26 0.171 

Sui et al.[32] 1.438 0.166 

Russell et al.[22] 1.43 0.175 

Present 1.242 0.167 

 

4.3.2. Unsteady flow over a moving cylinder 

Similar to the strategy used in Section 4.2 for the selection of test cases at Re=40, in the case 

of Re=100 here, the free incoming stream moves at 0.095U   while the cylinder itself is allowed 

to be horizontally migrating from (100, 0) with a constant velocity 0.005objectU  
 
in the opposite 

direction to the free stream, and all other conditions remain unchanged. The effect of the 

modification made now is that the obstacle is in motion in lieu of at rest, while the Reynolds number 

Re=100 is maintained as the velocity of the incoming flow is still 0.1 with respect to the cylinder. 

Hence, the local flow pattern observed at a watching station adhered to the cylinder is expected to be 

identical to what was obtained in Section 4.3.1.  Figure 4.14 contains two different instantaneous 

view of the vorticity contours, illustrating both the motion of the cylinder itself and the evolution of 

the Karman vortex street; moreover, as anticipated, the right part of Figure 4.14 looks identical to 
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Figure 4.12 where the cylinder was set stationary. Figure 4.15 shows the time evolution of drag and 

lift coefficients, indicating the vortex shedding frequency remains constant value. A careful 

comparison between Figure 4.15 and Figure 4.13 for the Re=100 cases of moving and stationary 

cylinders, respectively, reveals that the two cases share the same vortex shedding frequency. 

 

Figure 4.14 Two instantaneous distributions of vorticity around a moving cylinder at Re=100   

 

Figure 4.15 Evolution of drag and lift coefficients at Re = 100 in the case of moving cylinder 
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4.4. Flow over two stationary vertically aligned and gapped cylinders  

The IB-LBM model coupled with the multi-level mesh refinement algorithm has been 

successfully applied in simulating both steady and unsteady flows over a single cylinder in both 

stationary and moving cases in Sections 4.2 and 4.3. Now, the effectiveness of the present approach 

is tested using more challenging cases with flow scenarios enriched by two obstructing cylinders, 

which are stationary and vertically aligned and gapped in this section. Hence, not only are such 

flows characterized by Reynolds number as previously defined by Eqn.(4.9), but also by the vertical 

gap depth, g, (see Figure 4.16 ), as this parameter plays an important role in the interaction between 

the two cylinders. In practice, the non-dimensional gap space with respect to the cylinder diameter, 

D, i.e., g g D  , is employed to differentiate the cases in this type of flows. The influence of Re 

and g  on such flows has been investigated by Kang [55]. It was found from previous references 

that, when 5g  , there is almost no mutual interference between the two vertically aligned 

cylinders, and the two vortices arise behind the two cylinders separately with no merging indication. 

Therefore, this study mainly looks into the more sensitive range of 0.2 3g   on anticipation of 

distinctive variation of flow patterns with altered gap spaces.   
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Figure 4.16 Schematic of two vertically aligned cylinders 

4.4.1. Re=40,  g* = 1 

Recall that the test case provided in Section 4.2.1 has shown the flow is strictly symmetric 

when a single stationary cylinder is immersed in a fluid that flows with Re=40, and the resulting 

flow pattern features two fully large symmetric eddies that forms a recirculation zone behind the 

single cylinder, as seen in Figure 4.3. Extended from that case, the obstacles now become two 

vertically aligned cylinders with a gap of 1g  . The details to be explored for this new flow 

phenomena are whether the local recirculation zone behind each of the two cylinders remains 

symmetric and, furthermore, whether the two local recirculation zones also appear symmetric with 

each other. 

Using the IB-LBM model, Figure 4.17 unveils the flow behavior in this bi-cylinder case.     

It can be observed that the fluid is now allowed to flow across the gap area between the two 

obstructing cylinders and, thus, serves to pushes a bit away the two local recirculation zones, which 

are respectively generated behind the two cylinders. This pushing action turns each local 

recirculation zone to a deformed shape, which is now no longer symmetric. However, from the 
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global view of the flow pattern, the two local recirculation zones remain symmetric. There are two 

conjunctive reasons leading to this globally symmetric flow. One reason is that the Reynolds 

number in this case reaches 40 only, which is not elevated at all. The other factor is that the gap is 

relatively large ( 1g  ) as the gap itself is comparable to the characteristic length of this flow, 

which is the diameter of the cylinder, yielding enough gap flow space so that the upper and lower 

parts of the flow have little occasion of mutual intervention. In consistency with the global 

symmetry exhibited in Figure 4.17, Figure 4.18 reveals that the drag and lift coefficients of the two 

cylinders remain nearly unchanged with time. All the present IB-LBM results of the flow around 

two vertically aligned cylinders at 1g  and Re=40 confirms the so called "steady weak flow 

pattern", as discovered in [55].  

 

Figure 4.17 Instantaneous streamline and vorticity contours at Re=40, 1g   
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Figure 4.18 Evolution of drag and lift coefficients for two cylinders at Re=40, 1g   

 

4.4.2.  Re=70,  g* = 0.5 

Based on the analysis performed for the flow over two vertically aligned and gaped cylinders 

with Re=40 and 1g   in the precedent section, here the Reynolds number is increased to Re=70 

while the gap is decreased to 0.5g  , so that an unsteady and asymmetric flow pattern can be 

anticipated. Effectively, due to the two altered parameters, the streamlines and vorticity contours 

obtained by the present numerical method no longer look symmetric, as demonstrated in Figure 4.19. 

On the other hand, Figure 4.20 shows the time evolution of the drag coefficients for the two 

cylinders are no longer flat, indicating the flow now becomes unsteady; moreover, unlike the case of 
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Re=40 and 1g   where the drags on the upper and lower cylinders are the same with each other 

(see Figure 4.18), now the drag coefficient of the lower cylinder is remarkably higher than that of 

the upper one (see Figure 4.20) as iteration time elapses. This suggests that the flow pattern is 

deflected to the side of higher drag coefficient cylinder, i.e., the lower cylinder, such that the eddy 

behind the lower cylinder is larger than the other eddy, as seen in Figure 4.19. The flow deflection 

phenomenon observed in the present study echoes the so called "deflected wake pattern", as 

described in [55]. 

 

 

Figure 4.19 Instantaneous streamline and vorticity contours at Re=70, 0.5g   
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Figure 4.20 Evolution of drag and lift coefficients for two cylinders at Re=70, 0.5g   

4.4.3. Re=100,  g* = 0.2, 0.7, 1.5, 3 

For the Reynolds number of Re=100, the flow is influenced heavily by the gap depth of the 

two cylinders. A series of test cases with 0.2g  , 0.7, 1.5, and 3 have been investigated in [55], 

and the resulting flow patterns are referred to as "single bluff-body pattern", "flip-flopping pattern", 

"in-phase-synchronized pattern" and "anti-phase- synchronized wake pattern", respectively. In this 

IB-LBM study, these four representative cases are re-simulated to examine the capability of the 

present method. 

When both cylinders are placed very close with each other, e.g., 0.2g  , the flow within 

the gap becomes too weak to affect the flow pattern in the whole domain. The flow behaves as if a 
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single bluff-body with a characteristic length of twice as long as the diameter of a single cylinder. A 

street of vortices shed behind of the side-by-side cylinders, and the flow pattern becomes periodic as 

depicted in Figure 4.21 and Figure 4.22. Thus, the structure of this flow is named "single bluff-body 

wake pattern". 

After further increasing the gap spacing to 0.7g  , the flow is no longer periodic but 

appears unsteady (see Figure 4.23). Both drug and lift coefficients undergo irregular changes as 

observed in Figure 4.24. Previous investigation [55] has shown that the flow between the two 

cylinders deflects to the side of higher-frequency cylinder, and this cylinder sustains a higher drag 

coefficient than the other. Moreover, both cylinders take irregular turns in experiencing the higher 

frequency, which indicates that the two wakes randomly flip-flop behind the cylinders. Thus, the 

flow structure is called "flip-flopping wake pattern".  

In the case of 1.5g  , the two wakes finally become synchronized (see Figure 4.25 and 

Figure 4.26). The lift coefficients for both cylinders are in phase, however the drag coefficients are 

out of phase. Therefore, the flow structure is named "in-phase-synchronized wake pattern". The 

vortices shedding at both cylinders are in nearly the same phase with vortices tending to merge on a 

pair-by-pair basis. 

At 3g  , the flow becomes periodic once more, and the two single-cylinder wakes also 

become synchronized but in a different way compared with 1.5g   case. According to the drag 

and force coefficients depicted in Figure 4.28, the drag coefficients for the two cylinders are almost 

the same but the lift coefficients appear in anti-phase. Thus, the flow structure is called 
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"anti-phase-synchronized wake pattern". Besides, the streamline shown in Figure 4.27 demonstrates 

that the upper and lower cylinders possess a good symmetry in the case of 3g  . 

Using the IB-LBM approach, four different flow patterns are all precisely observed, and the 

details of the present results, including the streamline, vorticity contour, drag and lift coefficients, 

agree in a satisfactory manner with those reported by [55]. This justifies once more the validity and 

reliability of the IB-LBM model developed in this study. 

 

Figure 4.21 Instantaneous streamline and vorticity contours at Re=100, 0.2g   
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Figure 4.22 Evolution of drag and lift coefficients for two cylinders at Re=100, 0.2g   

 

Figure 4.23  Instantaneous streamline and vorticity contours at Re=100, 0.7g   
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Figure 4.24 Evolution of drag and lift coefficients for two cylinders at Re=100, 0.7g   

 

 

 

Figure 4.25 Instantaneous streamline and vorticity contours at Re=100, 1.5g   
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Figure 4.26 Evolution of drag and lift coefficients for two cylinders at Re=100, 1.5g   

 

 

Figure 4.27 Instantaneous streamline and vorticity contours at Re=100, 3g   
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Figure 4.28 Evolution of drag and lift coefficients for two cylinders at Re=100, 3g   

 

4.5. Flow over two moving cylinders  

Unlike the test cases in the precedent section where two cylinders keep stationary, this section 

examines the flow associated with two moving cylinders that are immersed in the flowing fluid, so 

as to demonstrate the effectiveness of the present IB-LBM model for flow simulation in the case of 

multiple moving objects immersed in the fluid.  

As sketched in Figure 4.29, the two cylinders with an identical diameter of 5 are away from 

each other at a horizontal distance of 60 at the starting time point, and the vertical distance between 

the centers of the two is fixed at 7.5, which is three times of the radius of the two cylinders. Both 
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cylinders are allowed only for horizontal motion with the same speed, U=0.025, but opposite 

direction. The two cylinders are both using the highest grid resolution, which covers a sufficiently 

long zone to accommodate the motion of the two cylinders.   

Figure 4.30 shows the vorticity contour when the two cylinders are the closest to each other, 

and Figure 4.31 plots the vorticity contour when the horizon distance between the two cylinders 

turns to 60 again after they move apart. The evolution of drag and lift coefficients of the upper 

cylinder is shown in Figure 4.32 and Figure 4.33, respectively. Figure 4.32 shows that the drag force 

tends to slightly increase when the two cylinders are moving closer to each other, then steeply 

decreases as they pass in close proximity, but steeply bounces back when the continuous motion 

renders them apart from each other, and at the end reaches its original level. The restoration trend 

also arises in Figure 4.33 for the lift force. The variation of aerodynamic forces with the motion in 

this case is compared to the results obtained in [39] with the same observation duration employed 

for both numerical experiments, and satisfactory agreement is achieved in this quantitative 

comparison. 

 



Chapter 4 Numerical Experiments 

 71 

 

Figure 4.29 Computational domain for two cylinders moving with towards each other 

 

Figure 4.30 Vorticity contour when two cylinders are the closest  

 

Figure 4.31 Vorticity contour when two cylinders are distanced at 60 
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Figure 4.32 Evolution of drag coefficient for the upper cylinder  

 

Figure 4.33 Evolution of lift coefficient for the upper cylinder  
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4.6. Local mesh refinement sensitivity 

When dealing with flow around immersed object problems using local mesh refinement 

algorithms, it is critical to control the position of the immersed solid object relative to the refined 

zone. If the immersed object is too close to the boundary of refined region, the computation 

accuracy may be affected by the interpolation error arising from the interface strip between the 

refined zone and its neighborhood where the mesh is not refined. On the other hand, if the boundary 

of refined region is too far away from the object, the computing efficiency will be definitely reduced 

due to the unnecessarily large mesh size. To assess the sensitivity of local mesh refinement to the 

numerical solution accuracy, a series of tests with differently chosen refinement zones will be 

performed corresponding to the two cases of a stationary cylinder immersed in a fluid flowing at 

Re= 40 and 100, respectively, as previously investigated in Sections 4.2.1 and 4.3.1 using the 

IB-LBM model 

4.6.1. Stationary cylinder (Re=40) with different horizontal refinement zones 

Using different lengths for the finest mesh zone located behind a cylinder immersed in a 

flowing fluid at Re=40, a series of tests is performed to examine the sensitivity of local mesh 

refinement to the IB-LBM solution accuracy. As shown in Table 4.3, the finest grid resolution zone 

are deployed with varying length but the width of the zone is locked at a reasonable value, since in 

this case the length of the recirculation zone is of numerical investigation, and has been detected to 

be approximately to x = 110 according to Section 4.2.1 of this study.  
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The streamlines around the cylinder for all six differently refined meshes are grouped in Figure 

4.34, behind each of which the rectangle frame represents the highest resolution zone. Although the 

streamlines in Figure 4.34 are not apparently distinguished from each other, a more careful 

examination on the drag coefficient and recirculation zone length can identify the sensitivity of local 

mesh refinement in this case, as shown in Table 4.4. When the boundary of the finest grid region is 

close to the immersed object, for example, in case 4, 5, 6, the pair of symmetric recirculation 

bubbles behind the stationary cylinder penetrate the interface of the finest and second finest grid 

zones, as seen in the (d), (e), and (f) parts of Figure 4.34; thus, different grid resolutions employed 

on the cites of identical physical sensitivity, which results in some numerical errors. Therefore, the 

drag coefficients and recirculation lengths detected in Case 4, 5, 6 more noticeably deviate from the 

baseline Case 3. On the other hand, when the refinement zone enlarges to be beyond the 

recirculation zone, the drag coefficient and recirculation length remain almost unchanged, but the 

computation has to take more time as a result of increased mesh size. This series of tests reveals that 

a pertinently refined mesh is a key to the optimized balance between the solution accuracy and cost. 
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Table 4.3 Six cases using different zones of finest grid resolution for Re=40 

Case Zone with finest grid resolution Refinement category 

Case1 [63, 158] [-16, 16] excessive refinement 

Case2 [63, 127] [-16, 16] excessive refinement 

Case3 [63, 109.5] [-16, 16] proper refinement 

Case4 [63, 107] [-16, 16] insufficient refinement 

Case5 [63, 104.5] [-16, 16] insufficient refinement 

Case6 [63, 102] [-16, 16] insufficient refinement 

 

Table 4.4 Comparison of drag coefficient and recirculation length for Re=40   

Case 
 

Drag coefficient dC  Length of detected recirculation zone L 

Case1  1.46732 2.398 

Case2  1.46738 2.398 

Case3  1.46804 2.397 

Case4  1.46815 2.394 

Case5  1.46887 2.390 

Case6  1.47128 2.382 
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(a) Case 1                            (b) Case 2 

        
   (c) Case 3                            (d) Case 4 

          

                  (e) Case 5        (f) Case 6 

 

Figure 4.34  Streamline patterns around cylinder at Re=40 in six cases 
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   (a) Case 1                          (b) Case 2 

 
   (c) Case 3                         (d) Case 4 

 

                     (e) Case 5        (f) Case 6 

Figure 4.35 Pressure contours at Re=40 in six cases 
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4.6.2. Stationary cylinder (Re=40) with adaptive mesh refinement 

In this section, AMR technique is coupled with the IB-LBM model to simulate once more the 

case of Re=40. According to the results of the same case in the previous sections, the variation of the 

velocity in the re-circulation region is found the strongest, the criterion,  , used to guide the mesh 

adaptation for this case is defined using the gradients of the velocity:  

 2 2 2 2( ) ( ) ( ) ( )
u u v v

x y x y


   
   

   
  (4.10) 

where u  and v  are the velocity components in the x- and y-directions, respectively. Local mesh 

refinement takes place wherever average  .  

Figure 4.36 shows the final adaptively refined mesh, in which the local refinement is no 

longer restrained in rectangular zones. The finest grid resolution appear in the proximity of the 

cylinder as well as in the recirculation zone. The resulting pressure distribution (in colored 

background) and streamline pattern (in black lines) are both shown in Figure 4.37. Both figures 

generally feature symmetric distribution, confirming the nature of symmetry in this low Reynolds 

number flow. The drag coefficient and length of recirculation zone are grouped in Table 4.5 with 

comparison between the results of AMR, non-AMR, and other available references. Overall, the 

drag coefficient and recirculation zone length obtained by the AMR-IB-LBM approach are both 

closer to the references than the results produced by the IB-LBM model with the aid of imposed 

local mesh refinements. At the end, Figure 4.38 groups the pressure coefficient results obtained by 

the IB-LBM model coupled with AMR and imposed local mesh refinement technique, respectively, 
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and their agreement looks remarkable. 

 

Figure 4.36 AMR mesh at Re=40  

 

Figure 4.37 AMR results of streamlines and pressure distribution  
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        Table 4.5 Comparison of drag coefficients and length of recirculation zone at Re=40 

References Drag coefficient 
dC  

Length of detected 

recirculation zone L 

Fornberg[52] 1.498 2.25 

Shukla et al.[53] 1.550 2.34 

Niu et al.[30] 1.589 2.26 

Wu et al.[31] 1.554 2.30 

Imposed mesh refinement 

(Sec.4.2.1)                                 
1.493 2.36 

   AMR 1.556 2.30 

 

Figure 4.38 Comparison of pressure coefficient 
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4.6.3. Moving cylinder (Re=100) with different vertical refinement zones 

After a detailed study of the case of Re=40 using different horizontal refinement zones in 

Section 4.6.1, the sensitivity of local mesh refinement to the IB-LBM solution accuracy is examined 

here using different vertical refinement zones for the case of Re=100 with a  moving cylinder. As 

in Section 4.3.2, the free stream flows at 0.095U  , while the cylinder moves toward the free 

stream at 0.005objectU  
 
starting from (100, 0). Figure 4.39 illustrates the four refined meshes be 

tested in this section, which employ the finest grid resolution for a fixed-length zone, [63, 127], with 

different widths, 32, 24, 16, and 8, denoted by Cases 1, 2, 3, and 4, respectively. Note that the first 

case here is the same as the test performed in Section 4.3.2 in both mesh refinement setup and 

motion scenario; hence, Case 1 can be considered as the baseline case.  

 

Figure 4.39 Zone of finest grid resolution in the four cases of a moving cylinder for Re=100 
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                  (a) Case 1          (b) Case 2 

 

                  (c) Case 3        (d) Case 4 

Figure 4.40 Vorticity contours at Re=100 in four cases 

Figure 4.40(a) to Figure 4.40(d) show the vorticity contours in the four cases corresponding to 

an identical time point, and reveal some slight difference between each other. As a more quantitative 

comparison, Table 4.6 groups, for the four sets of drag coefficient results obtained using the present 

IB-LBM model. The drag coefficient decreases slightly when the width of the finest level grid 
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changes from 32 to 16; however, when the width is gradually close to the cylinder, for example, in 

Case 4, the change of the drag coefficient becomes more obvious. Hence, the width of the finest 

refinement region plays an important role in ensuring the numerical solution accuracy in this case 

with Karman vortex street. It is thus strongly recommended that the finest grid resolution should 

apply to a region that can securely cover the entire obstacle with sufficient surrounding marginal 

area.  

Table 4.6 Comparison of drag coefficient for Re=100   

Case Range of drag coefficient 
dC  

Case1 1.26288-1.28787 

Case2 1.26393-1.28853 

Case3 1.26591-1.28946 

Case4 1.25288-1.27131 

 

4.6.4. Moving cylinder (Re=100) with adaptive mesh refinement 

As extension of the precedent section, the moving cylinder case for Re=100 is now tested 

again using the strategy of coupling the IB-LBM model with AMR techniques, so that its 

effectiveness for unsteady flow simulation can be assessed. Since the vortex shedding take place in 

this case, the magnitude of the vorticity is employed as the AMR criterion:  

                           

22

x y

 


   
    

    
                        (4.11) 

where   is the nodewise vorticity. If average  at a node, its neighboring cells will be locally 



Chapter 4 Numerical Experiments 

 84 

refined.  

Figure 4.41 and Figure 4.42 shows the final adaptive mesh and the corresponding vorticity 

contours, respectively. As predicted, for the area behind the moving cylinder, the closer to the 

obstacle, the larger vorticity, and the denser mesh. A detailed comparison of the drag coefficient and 

Strouhal number results are grouped in Table 4.7. In general, the AMR results look closer to those 

obtained elsewhere than the imposed mesh refinement method can do. This indicates the AMR in 

conjunction with the IB-LBM model is capable of achieving better accuracy even when simulating 

unsteady flows. 

  

 

Figure 4.41 Final adaptive mesh for Re=100   
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Figure 4.42 Vorticity contours on final adaptive mesh for Re = 100 

Table 4.7 Comparison of drag coefficients and Strouhal number for Re=100 

References Drag Coefficient 
dC  Strouhal number St  

Wu et al.[31] 1.364 0.163 

Saiki et al.[54] 1.26 0.171 

Sui et al.[32] 1.438 0.166 

Russell et al.[22] 1.43 0.175 

Imposed mesh refinement 

(Sec. 4.3.1) 
1.242 0.167 

AMR     1.310   0.172 

 

4.6.5. Computation cost and accuracy comparison between different meshing 

techniques 

To further demonstrate the advantage of mesh refinement methods, detailed statistics are 

grouped into Table 4.8 and Table 4.9 for the cylinder flow cases at Re=40 and 100, respectively. 
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Note that this study used Intel Core i5-3337U CPU for all test cases and, in both tables, the drag 

coefficient is selected as index of accuracy while the numbers of nodes, cells, computation time 

units are counted as representation of computation expenses.  

Unfolding from an identical course mesh with 1x y    , three different meshing 

techniques for both cases are compared, namely, imposed multi-level local mesh refinement, 

adaptive mesh refinement (AMR), and uniformly refined mesh with 1 8x y   
 
everywhere. In 

a relative sense, the IB-LBM result on the uniformly refined mesh may be assumed with the best 

accuracy, as it has the finest grid covering the entire computational domain, preventing numerical 

interpolation error from taking place due to the transition of grid resolution. However, uniform 

refinement can also be considered as aimless refinement, which leads to exponential increase in 

mesh size and, in turn, fairly significant increase in computational cost.  

For example, in the steady flow case of Re=40 (see Table 4.8), the uniformly refined mesh 

requires 14554 time units for the computation, which is nearly 3 times more time than the 

computation time consumed by using the imposed multi-level local mesh refinement method. In this 

sense, the imposed local mesh refinement option is advantageous over the uniform refinement 

option. However, if comparing the imposed local mesh refinement method to AMR, the latter looks 

much more preferable, since AMR can reduce the mesh size by nearly half if compared to the mesh 

size using imposed refinement and, accordingly, the AMR computation time is only half of the time 

spent with the imposed mesh refinement method. In terms of solution accuracy, the two different 

mesh refinement methods leads to the two resulting drag coefficient at two different sides of the 
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baseline value on the uniformly refined mesh. A more careful comparison reveals that the AMR 

result is closed to the baseline value than the imposed mesh refinement can do. Overall, AMR looks 

more recommendable in the case of steady flow simulation.  

Table 4.8 Statistics for Re=40 

 Uniform 

course mesh 

Imposed 

refinement 
AMR 

Uniform 

refinement 

Drag coefficient 
1.710 1.493 1.556 1.538 

Number of nodes 
131072 524288 314594 8388608 

Number of cells 
130305 521220 308320 8339520 

Number of 

computation time 

units 

261 4767 2340 14554 

 

Likewise, the comparison shown in Table 4.9 for the unsteady flow of Re=100, which 

employs the same initial mesh as in the Re=40 case, delivers practically the same conclusion as 

Table 4.8 have done. The better outcome achieved in this unsteady flow case is that the multi-level 

locally refined mesh needs only one-sixteenth of the nodes occupied by the  uniformly refined 

mesh, and takes about one third of the computation time required by the uniformly refined mesh. As 

well, AMR even outperforms the multi-level local mesh refinement in its imposed version in terms 

of mesh size and computation time reductions, remaining in the advantageous position in the case 

of unsteady flow simulation. 
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Table 4.9 Statistics for Re=100 

 Uniform 

coarse mesh 

Imposed 

refinement 
AMR 

Uniform 

refinement 

Drag coefficient 
1.455 1.275 1.310 1.280 

Number of nodes 
131072 524288 470077 8388608 

Number of cells 
130505 521220 462694 8339520 

Number of 

computation time 

units 

261 4804 3712 14681 
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Chapter 5. Concluding and Outlooking Remarks 

5.1. Conclusions 

This study has developed a novel numerical framework that incorporates both the feedback 

forcing based immersed boundary (IB) model and the "bubble" function based mesh refinement 

algorithm into the lattice Boltzmann method (LBM).  

To the author's knowledge, no IB-LBM model has been found, prior to this study, that can 

successfully get the feedback forcing approach and the "bubble" function in a conjunctive use. 

The present hybrid approach is capable of simulating an extended class of incompressible 

fluid flow problems, including the challenging ones associated with moving obstacles immersed in a 

flowing fluid. To justify the present AMR-IB-LBM approach, a series of test cases are numerically 

investigated, including flows over a stationary or moving cylinder at Re=40 and 100, two stationary 

gapped cylinders, and two cylinders moving towards each other. Numerical results obtained in this 

study are discussed in detail and compared with other available data reported in literature.  

The satisfactory agreement between the present results and those obtained elsewhere, as well 

as the demonstrated improvement of numerical solution accuracy and reduction of computation time 

owing to the AMR techniques embedded in the present model makes this AMR-IB-LBM approach 

look promising for its further applications to practical problems of more engineering interests. 
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5.2. Recommendations 

The following future developments are expected to greatly enhance the capabilities of the 

present AMR-IB-LBM framework:  

(a) The current criterion is of physical type, and requests some adjustment of definition when 

test case changes from one to another, e.g., from the Re=40 case in Section 4.6.2 to the Re=100 case 

in Section 4.6.4, even if the governing mathematical model itself remains unchanged. Therefore, 

unlike the physical criteria that turn out to be on ad hoc basis for each new application, a new type 

of criterion is expected that should provide more generality for AMR implementation.   

(b) The present hybrid model has been applied to two-dimensional flow simulations in this 

study. Since engineering problems sometimes are difficult to be reduced from the real 

three-dimensional nature to a two-dimensional stylization, enhancing the current AMR-IB- LBM 

approach with three dimensionality will certainly render the model more anticipated functionalities.  

(c) Application of LBM to simulations of complex flow problems associated with 

sophisticated geometries inevitably leads to a large-size computation. This calls for high 

performance computation technology so as to get the computation of real-world flow problems 

significantly accelerated. Therefore, of high priority is some extensive work to enable the present 

hybrid model to run with the aid of MPI or GPU technology. 
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