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Abstract

Near Infrared Spectroscopy (NIRS) uses optical radiation of the waveband between approximately 700

and 1000 nm to measure concentrations of light absorbing chromophores, such as, oxy-haemoglobin

(HbO2) and deoxy-haemoglobin (Hb).The objective of this thesis was to investigate and further develop

the capabilities of broadband CW near infrared spectroscopy by capitalizing on the continuity of the

optical properties of tissue as functions of the NIR wavelength. The thesis consists of four parts. The

Introduction section covers relevant aspects of theory and mathematical concepts. Journal Manuscript

part contains two projects: one is the research paper on the optimal algorithm of quantitation of the

cerebral haemodynamic response in fNIRS. The second research article is on independent component

analysis of functional near infrared spectroscopy data. For the first time, broadband NIR data were

analyzed using individual wavelengths as the different input channels to separate the data into temporal

independent components. The fourth part is allocated for the overall conclusion of the entire thesis.
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Research Objectives

The procedure of quantitation of blood chromophore concentrations by means of near infrared light is

called Near Infrared Spectroscopy. Near infrared spectroscopy (NIRS) utilizes electromagnetic waves in

the range of 650 to 1000nm to monitor physiological changes in the state of biological tissues. The optical

properties of tissue chromophores within this range makes NIR especially suitable for clinical application

as a standalone or in conjunction with other imaging modalities. The NIR research of monitoring of brain

activity is motivated by its high potential. It is easier to manage and less costly alternative to imaging

modalities such as functional magnetic resonance imaging (fMRI) and positron emission tomography

(PET). Moreover, in addition to high biochemical specificity, the NIR method provides information

about physiological parameters not available to other modalities, such as oxygenation information. Also,

NIRS has higher temporal resolution, in the order of milliseconds, compared to fMRI and PET [1]. This

allows measuring fast oscillatory physiological functions [2]. Furthermore, NIR equipment is relatively

less restraining compared to fMRI or PET and generally safer than PET as it does not rely on ionizing

radiation. Some types of NIR equipment, usually for continuous wave (CW) signals, have advantage

of being portable, and even telemetric [3], [4], [5]. Lastly, real time measurements without removing

subjects from their in-patient units, therefore not interfering with intensive care, as it is practiced in

clinical neonatology is one of the promising areas of NRIS research [6]. Given these assets, the research

into NIR based brain assessment have been growing via studies on brain dysfunction [7], education and

training [8], and cognitive work load assessment [9].

The goal of these studies was to extend the capabilities of broadband CW near infrared spectroscopy

by capitalizing on the continuity of the optical properties of tissue as functions of the NIR wavelength.

The investigation included two parts: first, theory of light propagation in tissue applied to in-vivo

broadband NIR data was used to quantify cerebral haemodynamic changes by employing four different

mathematical formulations;

Second, in order to investigate whether ICA applied to the broadband NIR data can be used as an

efficient tool of functional data analysis, a separation of the optical data into statistically independent

temporal components was performed using FastICA and the spectrosocopic analysis of the independent

components was performed.

Since in both studies one of the goals was to remove physiological noise from functional cerebral

signals, fMRI was used as a gold standard measure of the deoxyhemoglobin concentration changes.

My hypotheses were that:

1) the time courses of oxy-haemoglobin and deoxy-haemoglobin concentrations can be more accurately

recovered based on the continuity of the optical properties as functions of the wavelength than using

isolated wavelengths of light.

2) correlation of cerebral hemodynamic signals acquired during breath hold task was improved when

the ∆oxyHb(t) and ∆deoxyHb(t) changes are obtained using spectral derivative algorithms

3) ICA can recover mixed temporal components which would contain additional information about

dynamic changes of the NIR chromophore concentrations.

The method consisted of several steps outlined in the Figure 1.1.

1



Figure 1: Schematic diagram of thesis organization

First, haemodynamic theory approach was implemented to the optical data collected simultaneously

with BOLD fMRI. The second, FastICA statistical method was used to separate temporal components.

Identified temporal components were correlated at each voxel with BOLD MRI signal. Spatial mapping

of the temporal components based on the correlation coefficients were coded in colours. Further, several

linear models were fitted into spectral components of the optical data. Statistical significance of the

models was assessed.
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Chapter 1

Introduction

1.1 NIR Imaging and Spectroscopy Systems

Three types of NIR imaging and spectroscopy systems have been in development for use in research on

brain [3], [10]. The simplest of these three is a continuous wave (CW) system CW-type instruments are

able to assess regional cerebral blood flow by measuring light attenuation through the cortical tissue and

calculating their hemodynamic responses, i.e. changes in hemoglobin concentration and oxygenation,

using the attenuated signal [11]. However, with this type of measurements, it is impossible to gauge

the absolute concentration changes since the real path length of travelled light is unknown and cannot

be measured or guessed. Therefore, CW-type instruments rely on simplified assumptions about the

nature of the media being probed and the changes occurring inside the sampling volume. Only relative

concentration changes from some baseline measurement can be assessed. The advantage of using a CW-

type instrument is that they are inexpensive, and portable. An example of CW-type system used in our

lab is pictured in Figure 1.2. As can be seen from the figure the entire system is quite compact. The

probe itself is flexible, thus relatively comfortable to wear and consists of a semicircular array of light

sources and a USB spectrometer.

In order to quantify absolute values of chromophore concentrations, the absorptive and scattering

components of the light attenuation should be separated. This may be achieved with the aid of time-

resolved or frequency domain methods. Time-resolved spectroscopy (TRS) was first pioneered by Delpy

et. al. [12], Patterson et. al. [13] and Chance et al. [14], [15].TRS instruments use a picosecond

pulsed laser and time-correlated photon counting detectors designed to measure the time evolution of

the light intensity [4].Using the time profile of light intensity, it is possible to recover both absorption

and scattering coefficients of the probed media [16]. A major drawback of TRS instruments is that they

are expensive and not quite portable.

Frequency domain method was first suggested by Gratton et. al. in [17]. Frequency domain approach

uses radio frequency intensity modulated sources (100 MHz and higher). In addition to the DC compo-

nent of the optical signal frequency domain systems can measure phase and modulation amplitude which

3



1.2. NEAR INFRARED LIGHT IN TISSUE CHAPTER 1. INTRODUCTION

Figure 1.1: An example of CW-type system: 1. PC Station for recording data; 2. CCD Spectrometer
(QE 65 000); 3. White light source; 4. Probe attached to the forehead of a volunteer.

can all be related back to the absorptive and scattering properties of the medium. Frequency domain

method is mathematically related to TRS via Fourier transform [18]. However, frequency domain sys-

tems have an advantage of being a relatively inexpensive alternative to TRS systems. The disadvantage

of frequency domain systems is that they can only provide information at a finite number of modulation

frequencies.

1.2 Near Infrared Light in Tissue

F. F. Jobsis pioneered work in NIRS and demonstrated that the state of cortical tissue can be monitored

noninvasively [19] by shining near infrared light through the skull. Some of the first demonstrations of

brain activity monitoring were performed by Chance et. al. [14], Cope, Villringer et. al. [20]. Light

is absorbed differently by various layers of the head such as skin, skull and brain. Some part of the

input light exits the head after following the so-called ”banana” pattern due to scattering effect of the

tissue (Figure 1.3). This backscattered photons, detected at various distances from the source, carry

information about functional state of the brain.

When the absorption spectrum of light is analyzed, it is seen that the main signal comes from blood

chromophores such as oxygenated and deoxygenated haemoglobin (HbO2 and Hb, respectively), water,

and, possibly, cytochrome [21]. Lipid is considered to be relatively transparent to NIR light. Therefore,

changes in the amplitude of backscattered light can be interpreted as changes in blood chromophore

concentrations. Blood chromophore information can be used to estimate cerebral blood volume (CBV)

4
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Figure 1.2: The banana-shaped light path through a tissue sample. From [18]

and tissue oxygen saturation, which are indications of haemodynamic activity [18]. Physiology of this

response can be described mathematically by means of haemodynamic theory.

When near infrared light is shone into the tissue, injected photons follow various paths inside the

head. It is due to the fact that biological tissue is a highly scattering heterogeneous medium comprised of

many scatterers of various sizes and indices of refraction, causing the electromagnetic wave to refract at

each interface at many different angles [12]. The scattering property of tissue is wavelengths dependent.

It is represented by the scattering coefficient (µs(mm
−1)), and thought of as a probability of a photon

scattering per unit length [22]. The inverse of scattering coefficient is termed as the mean free path of

photons, and it is measured in units of lengths. Besides the size of the scaterers, the angle of reflection

is dependent on the wavelength of the source, and the initial direction of the injected ray [23]. This

parameter is called the anisotropy factor of scattering, g.

Figure 1.3: Propagation of electromagnetic wave in biological tissue. When light rays enter biological
tissue, they divide into infinitely many new beams due to the scattering. When electromagnetic waves
are scattered it changes the direction of propagation of the wave. From Healthwise, Inc.

5
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Another wavelength dependent property of a living tissue is absorption [20]. Absorption coefficient

(µa(mm−1)) is defined as the linear attenuation rate of irradiance per unit of length [22]. Tissues can

be differentiated by the way they interact with light according to their specific absorption, scattering

and anisotropic properties [12].

Modelling light transport in tissue allows quantitation of optical measurements. The fundamental

equation which describes propagation of light in highly scattering media is the radiative transfer equation

(RTE) [24]. The number of photons per unit volume, φ(r, ŝ, t) travelling from point r in direction ŝ at

time t is equal to the sum of all the mechanisms which increase it minus those effects which reduce it

[24].

(
1

c

∂

∂t
+ ŝ.∇+ µa(r) + µs(r)

)
φ(r, ŝ, t) = µs(r)

∫
sn−1

Θ(ŝ, ŝ′)φ(r, ŝ, t)dŝ′ + q(r, ŝ, t) (1.1)

In (1.1), Θ(ŝ, ŝ′) is the scatter phase function, which gives the probability of a photon scattering from

direction ŝ to ŝ′, and q(r, ŝ, t) is the light source at r at time t travelling in direction ŝ [24].

For modelling propagation of light through the turbid media, the diffusion approximation to the

radiative transfer equation is acceptable because the source-detector separation distances are much

greater than the mean free path of light particles [12]. This approximation is based on the assumption

that all the particles will be scattered isotropically, and therefore, all the energy will be distributed

equally [25]. This means that every time a wave changes its direction of propagation due to scattering, it

may take off in a new direction with a uniform probability. The diffusion approximation of the transport

equation is represented by the diffusion equation [26]:

cµaU(r, t) +
∂U(r, t)

∂t
− cD∆U(r, t) = Q(r, t) (1.2)

where U(r, t) represents the photon density, i.e. the volume energy of light, in units of J/cm3,

D = (3µa+3µs′)
−1 is the diffusion coefficient in units of cm2/s and µs′ represents the reduced scattering

coefficient µs′ = µs(1− g). The purpose of µs′ , is to describe the diffusion of electromagnetic waves as

a series of random step sizes of 1/µs′(cm), where each step involves isotropic scattering [22]. Q(r, t) is

the source term. The main assumption of the diffusion approximation is that the scattering is dominant

over the absorption, i.e. µs′ � µa [27]. This condition is generally true for tissue types such as skin and

cerebral matter, and not true for tissue for which this approximation does not hold such as cerebrospinal

fluid, eye lenses and nails. Hence, the diffusion approximation can be employed in many biomedical

applications at NIR wavelengths [27].

1.2.1 Haemodynamic Response and Modified Beer-Lambert Law (MBLL)

The most widely used model of calculating haemodynamic response to stimuli is based on the Beer-

Lambert law [28]. It describes a linear relationship between absorbance, A, of light in a medium and
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the concentration of the chromophore, C. This relationship is given by Equation (1.3)

A = log
I

I0
= ε(λ)CL (1.3)

where I = I0expε(λ)CL is the spectral fluence of the transmitted light,I0 is the fluence of the incident

light, C is the concentration of the chromophore and L is the path length. Delpy et. al. were the first

to introduce the modified Beer-Lambert law [12], [29], [30]. Modified Beer-Lambert law (MBLL) relies

on the assumption that the medium is homogeneous and has the property of constant scattering [31].

For non-scattering media, following the classical Beer-Lambert law, L is equal to the distance between

source and detector, denoted as d. For scattering media Equation (1.3) can be rewritten as

A = ε(λ)C · d ·DPF (λ) +G(λ) = ε(λ)C· < L > +G(λ) (1.4)

where G is the contribution of the attenuated light due to scattering and DPF =< L > /d is called

the differential path length factor, and < L > is the mean path length of the detected photons [28]. The

differential path length factor describes the increase in path length due to tissue scattering. If the value of

wavelength dependent G is not known, it is not possible to assess the absolute value of A, but DPF and

G can be assumed to be constant. This allows for assessment of changes in chromophore concentration.

This is generally considered a plausible assumption when measuring hemodynamics, since changes in

oxygenation and concentration of hemoglobin affect the absorption coefficient more significantly than

the scattering coefficient [31]. The Equation (1.4) can then be rewritten as

∆A = At −At0 = ε(λ) ·∆C · d ·DPF (λ) (1.5)

where At is the absorbance at some time t after the change in concentration of chromophores and At0

is the initial absorbance. Each chromophore has specific extinction spectrum in the near-infrared range,

which allows for measurements of concentration changes in several chromophores simultaneously by

taking optical measurements at multiple wavelengths (broadband spectroscopy). The main chromophores

in the optical window of 600 to 900nm, are oxy- and deoxy-haemoglobin (HbO2 and HB respectively),

water, lipids, and cytochrome-c-oxidase (Figure 1.5).

These are the main chromophores of interest in NIR spectroscopy of the brain because during stim-

ulations the greatest absolute changes occur in the concentrations of HbO2 and Hb. [10], [32]. Some

studies also report changes in cytochrome-oxidase redox, however, many researchers question the de-

tectability of changes in cytochrome-oxidase redox [33], [34], [32]. Uludag et. al. argued that concurrent

detection of changes in cytochrome-oxidase redox state with those of hemoglobin concentration and ox-

idation might be severely affected by the cross-talk error where the magnitude of the error for the redox

state of cytochrome-c-oxidase may be in the order of those detected experimentally [35].

Oxy- and deoxy-haemoglobin concentrations are of particular interest because they are related to the

regional cerebral blood flow (rCBF). A focal change in rCBF indicates an activation state [31]. Using

N wavelengths of light one can solve N simultaneous linear equations for each of the N chromophore

concentration changes, in particular assuming changes in chromophore concentrations other than HbO2

7
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Figure 1.4: Graphs of the absorption spectra for HbO2, Hb (optical density (OD) per cm per micromole),
water (OD per cm), cytochrome-c-oxidase, and reduced cytochrome-c-oxidase (OD per cm per millimole).

and Hb small. To separate the contributions from HbO2 and Hb, Equation (1.5) can be expressed as

∆A(λ) = (εHbO2
(λ)∆[HbO2]) + εHb(λ)∆[Hb]) ·DPF (λ) · d (1.6)

where ∆[HbO2] is the change in HbO2 concentration and ∆[Hb] is the change in Hb concentra-

tion. Given Equation (1.6), and assuming that the extinction spectra for each chromophores ε(λ) are

known, concentration changes can be obtained by solving the two simultaneous equations at two distinct

wavelengths. The generalization to more than two wavelength is discussed in [36].

However, the simplifying assumptions of homogeneous medium and homogeneous change in partial

volume are inadequate for most biological media. The banana shape of the volume of interrogation

[37], [38], Figure 1.3, is inaccurate because it is affected by cerebrospinal fluid (CBF) [39] and the pial

cerebral vessels on the surface of the brain [40]. This raises the question of the layered contribution to

the path of light that is not accounted for under the MBLL assumptions. Under the assumptions of

MBLL, magnitudes of concentration changes are underestimated because the activated volume might be

smaller than the sampling volume, (the partial volume effect) [35].

Furthermore, the wavelength dependence of optical tissue properties means that this partial volume

effect is wavelength dependent. The accuracy of the measured local haemodynamic change depends on

the knowledge of the partial path length within the partial volume, which is unknown. As a result,

change in one chromophore concentration may mimic the effect of another, giving rise to crosstalk errors

[41]. In the MBLL model, wavelength dependence is ignored by using a constant mean path length

independent of wavelength. Calculating the concentration changes of chromophores using measured

absorbance changes at different wavelengths will give rise to distortions in the extinction spectra. Thus,
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accounting for the effect of layers is necessary. There has been some progress in layered modeling based

on continuous wave broadband methods [42].

1.2.2 Diffuse Optical Tomography

Instead of MBLL, a diffuse optical tomographic(DOT) method for photon propagation in the brain was

suggested [10]. The DOT is based on the diffusion. The general form of the diffusion equation is [18]

D(r)∇2Φ(r, t) + υµaΦ(r, t) +
∂Φ(r, t)

∂t
= υS(r, t) (1.7)

where Φ(r, t) is the photon fluence at position r and time t, S(r, t) is the source, D = υ/(3µs′) is the

diffusion coefficient, µs′ is the reduced scattering coefficient, µa = ε(λ) · C is the absorption coefficient

and υ is the speed of light through the medium. Equation (1.7) accurately models photon propagation

under the assumption that scattering dominates a medium. The goal in DOT is to reconstruct the 3-D

distribution of absorption and scattering coefficients of the medium given boundary data. There are

many analytical and numeric techniques to solve Equation (1.7) for different geometry of the medium

and with various boundary conditions.

1.3 Neurovascular Coupling and Sources of Physiological Noise

Acknowledging the distinction between tissue oxygenation and blood oxygenation, it is necessary to

understand what can be monitored by NIRS. Tissue oxygenation refers to the amount of oxygen stored

directly in the tissue - this cannot be monitored by NIRS. Blood oxygenation refers to oxygen saturation

of the blood (oxygen transport) - this can be monitored by NIRS. These are two competing mechanisms

because their time courses overlap [43]. The mechanism of the hemodynamic response following a neural

activation is: a) a fast early regional increase in deoxyHb without a concomitant decrease in oxyHb;

b) followed by a slow increase in oxyHb with a concomitant decrease in deoxyHb due to increased CBF

in a wider region of the brain; c) higher intensity of stimulation results in a bigger response [43].

Temporal NIR signals measured on a healthy adult human cortex are generally expected to contain

four frequency bands centered around 0.8Hz, 0.2Hz, 0.1Hz and 0.03Hz [44]; [45]; [32]. A classic

example of the power spectral density (PSD) of the post stimulus signal is shown in Figure 1.6. The

haemodynamic response following neural activation is embedded in the 0.1Hz - 0.03Hz band. The

0.8Hz and 0.2Hz bands correspond to heart rate and respiration respectively [46]. The 0.03Hz band,

known as B − waves, is assumed to reflect the periodic variations generated by the brains vasomotor

tone mechanisms [47]. The 0.1Hz band (V − signal, Mayer waves or M −waves) has the greatest effect

on event-related optical signal (EROS) [48]. Vasomotion, i.e. the rhythmic dilation and contraction of

the precapillary sphincters in the cortical capillary beds is suspected to be the origin of the V signals.

It is affected by hypercapnia and rate of respiration [32].
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Figure 1.5: Spectral signature of the measured optical signal following a stimulus. From .

1.4 Physiological Interpretation of NIR and BOLD Signals

The haemodynamic response over an activated area of the brain can be described by a decrease in Hb

along with a simultaneous increase in HbO2 [31]. The amplitude of the increase in HbO2 is approximately

two to three times that of the decrease in Hb. Recording Hb response has an added benefit that it can

be compared with fMRI blood oxygenation level dependent (BOLD) response as increase in the BOLD

contrast is highly correlated with a decrease in Hb. Both NIR and fMRI have the same mechanism of

activation.

A generalized model of NIR and BOLD signals can be conceptualized as follows: during functional

stimulation, greater demand for oxygenation occurs, and the rate of oxygen consumption in a stimulated

area increases. In response to this, the rate of cerebral blood flow (CBF) and cerebral blood volume

(CBV) in the activated site increases due to vasodilation of previously constricted capillaries. As the

local blood volume increases, the oxygen extraction rate drops due to the higher velocity of blood flow,

leading to capillary and venous blood become more oxygenated (Figure 1.7).

1.5 Functional Magnetic Resonance Imaging

1.5.1 Physics and Physiology of the BOLD Contrast Mechanism

Functional Magnetic Resonance Imaging (fMRI) comprises a number of MRI techniques that investigate

the functionality of cerebral activity. According to the properties to which the MRI signals are sensitive,

these techniques can be generally categorized into susceptibility based, flow-based, or perfusion-based

[49], [50], [51]. The most widely used is a susceptibility-based method fMRI study [52].

As normal brain energy production depends on oxidative metabolism, there is great local demand
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Figure 1.6: Illustration of mechanism of NIR and BOLD. From .

for delivery of oxygen with increased neuronal activity. To meet this increased metabolic consumption,

neuronal activation is accompanied by increased local blood flow. This leads to an increase in the

oxy − Hb concentration, and a decrease in deoxy − Hb concentration. Hemoglobin makes up nearly

15g per 100cm3 of normal blood [53]. The healthy red cell looks like a flattened disk, ∼ 6µm wide and

1 − 2µm thick, accounting for about 40% of the blood volume. The iron molecule in the heme group

of deoxyhaemoglobin is paramagnetic, but the molecule becomes diamagnetic as oxyhemoglobin, heme

with a bound oxygen molecule [54].

For the first time, Ogawa and Lee observed that blood vessel appeared darker, and the contrast of fMR

images varied with blood-oxygen-level-dependence (BOLD) [55]. They attributed the signal increase to

a magnetic susceptibility effect associated with the paramagnetic deoxyhaemoglobin in red cells because

the magnetic susceptibility (χ) of more oxygenated blood is closer to that of the surrounding vascular

tissue. This magnetic susceptibility associated with the oxygenation level and volume of cerebral blood

shortens value of T2∗, providing the endogenous contrast agent for imaging in the brain [56], [57]. Typical

values of the dimensionless χ for water −9.0, soft tissue −9.5, bone −9.0, fat −7.5, and air +0.4 (in parts

per million under the SI unit system) [58]. Echo-planar imaging (EPI) is a frequent choice for BOLD

fMRI studies due to its short acquisition time and its inherent sensitivity to magnetic susceptibility as

compared to a spin-echo sequence (Figure1.8) [55], [51], [59]. The time course of the human BOLD

response to a brief stimulus, the temporal impulse response function, is often called the hemodynamic

response function (HRF). There is heterogeneity in the HRF across cortex of an individual observer,

between observers, and possibly across different sensory, motor, and cognitive tasks [60], [61], [62], [63].

Besides the above physiochemical and haemodynamic reasons, cerebral blood volume (CBV) and

cerebral blood flow (CBF) also affect the BOLD signal because of their direct effects on the intensity

of the MRI signal [64]. CBV refers to the fraction of tissue occupied by blood (typically 3%). CBF is

defined as the volumetric flow rate of blood within a given amount of tissue, which has a unit of milliliter

per gram per second. The effect of CBF on the MRI signal may be different depending on its velocity. At
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Figure 1.7: The biophysical basis of fMRI. (A) Because deoxyhaemoglobin is paramagnetic, the presence
of this endogenous MRI contrast agent inside cerebral capillaries generates local magnetic field gradients
that extend into cerebral tissue. The local gradients enhance dephasing of water protons in the tissue,
which can be detected by decreased signals in T2SE - and T2GE - weighted images. (B) During
activation, the amount of deoxyhaemoglobin is decreased in comparison with the resting condition;
this difference between the stimulation-induced susceptibility difference of blood can be observed as
changes in T2∗ by GE sequence. (C) At any given static magnetic field strength, the intravascular and
extravascular weightings in BOLD data depend on the transverse relaxation times of water in blood (T2
intra; gray) and tissue (T2 extra; black). From [55].

low velocity, where the transient time of blood within a voxel is comparable to the repetition time (TR),

CBF increase the MRI signal because the perfusion of fresh blood reduces the effective longitudinal

relaxation time constant T1, which is also termed an inflow effect. On the other hand, at high velocity,

where the transient time is comparable to TE/SE, CBF decreases the MRI signal because the exiting

magnetized blood reduces the effective transverse relaxation time constant T2∗. For a BOLD fMRI

study at 3T , in a case where the voxel size is 5×5×5mm3, TE = 25ms, and TR = 2000ms, the velocity

of blood flow is characterized as high for approximately 5mm/25ms = 200mm/s, and low for about

5mm/2000ms = 2.5mm/s [64]. While such a high velocity only occurs in very large arteries, the low

velocity is close to the typical flow rate inside the capillary bed. Therefore, in reality the inflow effect

dominates. It should be noted that if TR is much longer than T1, approximately 800− 1100ms for gray

and white matter at 3T , the inflow effect is negligible. Furthermore, blood flow results in phase shifts in
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the MRI signal [59]. This will reduce the intensity of the MRI signal if the phase shift within a voxel is

inhomogeneous. Knowing that the size of blood vessels ranges from millimeters (such as the network of

veins on the surface of the brain) to micrometers (typical capillary size is 6− 10µm), it is almost certain

that some voxels within the field-of-view (FOV) are highly inhomogeneous [64].

The involvement of multiple factors and uneven temporal behavior has greatly complicated the

interpretation of the physiological mechanisms of BOLD signal. For example, the increment of cerebral

metabolism rate of oxygen (CMRO2) occurs almost instantly following the onset of the functional

stimulation, which results in a change in the blood oxygenation level dictated by the dynamics of

oxygen diffusion within plasma and across the blood-tissue barrier. In response to such a higher demand

for oxygen, CBF rate increases [51]. This will in turn affect the CBV of tissue as well as the blood

oxygenation level. The percentage of relative changes of CMRO2, CBF, and CBV are also different, and

the typical range of the BOLD signal is only about 0.5 − 5.0%. Thus, it appears that it is difficult to

study cerebral activity quantitatively using BOLD fMRI without a precise physiological model for the

BOLD signal [60].

1.5.2 Brain Research Using BOLD fMRI

One of widely used activation paradigms in fMRI is the so-called block paradigm, which consists of

alternated periods of activation (or task A) and rest (or task B). Each block is of equal duration,

typically in the range 20 − 30s. After an fMRI experiment has been designed and carried out, the

resulting data must be passed through various analysis.

In a typical fMRI session a low-resolution functional volume is acquired every few seconds. Because

the images are taken using an MR pulse sequence which is sensitive to changes in the local blood

oxygenation level, parts of the images taken during stimulation should show increased intensity, compared

with those taken during rest. The parts of these images which show increased intensity should correspond

to the brain areas which are activated by the stimulation. The goal of fMRI analysis is to detect, in a

robust, sensitive, and valid way, those parts of the brain which show increased intensity at the points in

time that stimulation was applied. A single volume is made up of elements called voxels. An example

time-series from a single voxel is shown in Figure 1.9.

1.5.3 Preparing fMRI Data for Statistical Analysis

Before conducting a statistical analysis, a 4D data set is pre-processed to maximize the signal-to-noise

ratio (SNR). The signal-to-noise ratio is a measure of how big the signal of interest is, compared with

the noise level. The signal of interest, in this case, is the change in image intensity which arises as a

result of application of stimulation. A raw MR signal is obtained by digitizing the demodulated RF

signal that is detected by the receiver coil [65]. The raw data that is thus generated does not resemble

a real image, but instead is k − space data, that is, a spatial frequency transformation of real-space.

Additional reconstruction steps are also often necessary in order to correct for various artifacts in the

data, or to otherwise improve the quality of the resulting image:
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Figure 1.8: Image intensity versus time (in scans). The aim of fMRI analysis is to identify voxels in
which the signal of interest is significantly greater than the noise.

Functional volumes are normally formed one slice at a time; the capture of these slices is spread out

in time over the few seconds that the total volume capture takes. A problem with this is that later fMRI

analysis assumes that all slices were captured at the same time. However, because different points in

the volume were scanned at slightly different times, the model fitting is not optimal. The fitting will be

improved if each voxels time series is adjusted so that it really does appear as if all voxels were scanned

at the same time. This adjusting of time series is normally referred to as slice timing correction, and

is achieved by phase shifting the time series of values at each voxel. Phase shifting means sliding the

1D time plot forwards or backwards; because the correction is small, a very small amount of sliding is

required [65].

If a subject moves their head during an fMRI session, the position of the brain within the functional

images will vary over time. This means that any particular voxels time series does not refer to the same

point in the brain [65].

The next stage of fMRI analysis is the spatial filtering (blurring) of each volume. There are two

reasons for applying spatial filtering as a pre-processing step; first, blurring can increase signal-to-noise

ratio in the data, and second, certain later statistical steps, in order to be valid, may require the

functional images to be spatially smooth [65]. The main point of spatial filtering of the fMRI data is

to reduce the noise level whilst retaining the underlying signal. It is obvious why noise is reduced; the

blurring function is effectively a local averaging, so the noise values in the local neighbourhood will tend

to cancel each other out. In order for the underlying signal to not be reduced along with the noise, it is

required that the extent of the blurring is not larger than the size of the activated region; if very small

activation regions are expected then spatial filtering should not be carried out. The secondary reason for

spatial filtering is that certain statistical theory which may be used in later processing requires the data

to be spatially smooth for the assumptions underlying the statistical theory to be valid [66]. However,

the amount of smoothing required for this is generally quite small (a 4mm width blurring function is

generally adequate).

Temporal filtering, instead of working on each (spatial) volume separately works on each voxels time
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series separately [65]. Because most basic statistical analyses also operate directly on voxel time series, it

makes sense to carry out this step after all the previously described pre-processing stages, as each voxels

time series should then be optimally conditioned. The main point of temporal filtering is to remove

unwanted components of a time series, without, of course, damaging the signal of interest. Temporal

filtering will normally attempt to remove components in the time series which are more slowly varying

than this 60s periodic signal (high-pass filtering or drift removal) and also remove components which

are more quickly varying (low-pass filtering, or noise reduction).

1.5.4 Statistical Analysis of Activation Images

Statistical analysis is concerned with making inference about underlying patterns in data that often

contain a large amount of random error. This is certainly the case with fMRI data, where the effect of a

stimulus may be as little as 1% of the BOLD signal [65]. After the pre-processing steps, statistical analysis

is carried out to determine which voxels are activated by the stimulation. This can be simple correlation

analysis or more advanced modelling of the expected hemodynamic response to the stimulation. The

main output from this step is a statistical map which indicates those points in the image where the brain

has activated in response to the stimulus.

It is most common to analyze each voxels time series independently, for example, univariate analysis

such as standard general linear model (GLM) analysis [65]. However, there are also multivariate methods

[67] which process all the data together. General linear modelling sets up a model and fits it to the data

[68]. If the model is derived from the timing of the stimulation that was applied to the subject in the

MRI scanner, then a good fit between the model and the data means that the data was probably caused

by the stimulation.

An example of linear modelling is y(t) = β∗x(t) + c+ e(t), where y(t) is the data, and is a 1D vector

of intensity values, one for each time point, i.e. is a function of time [65]. x(t) is the model, and is also a

1D vector with one value for each time point. In the case of a square-wave block design, x(t) is a series

of 1s and 0s - for example, 000001111100000 etc. β is the parameter estimate for x(t), i.e. the value

that the square wave (of height 1) must be multiplied by to fit the square wave component in the data.

For fMRI experiments, the GLM is often formulated in matrix notation. Thus all of the parameters are

grouped together into a vector β, and all of the model time-courses are grouped together into a matrix

x, often referred to as the design matrix. c is a constant, and in this example, would correspond to the

baseline (rest) intensity value in the data. e is the error in the model fitting.

Thus the model fitting involves adjusting the baseline level and the height of the square wave, to best

fit the data; the error term accounts for the residual error between the fitted model and the data. In

order to improve the fit of the model to the data, the stimulus function (which has a square waveform) is

convolved with the hemodynamic response function [69]. This process mimics the effect that the brains

neuro-physiology has on the input function (the stimulation) because the brains hemodynamic response

is a delayed and blurred version of the input time-series.

When the model is fit separately to the data at each voxel, there will be found an estimate of

the goodness of fit, of each column in the model, to that voxels time-course. To convert a parameter
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estimate (PE, i.e. the estimated β value) into a statistics, its value is compared with the uncertainty in

its estimation (resulting in a t value; t = PE / standard error (PE)) [65]. If the PE is low relative to its

estimated uncertainty, the fit is not significant and vice versa. Thus t is a good measure of whether the

estimate of the PE value is significantly different from zero, i.e. whether there is believable activation.

To convert a t value into a P (probability) or Z statistic requires standard statistical transformations;

however, t, P , and Z all contain the same information - they describe how significantly the data is

related to a particular part of the model [70]. The next step is to threshold this, in order to decide, at

a given level of significance, which parts of the brain were activated.

The simplest method of thresholding is to select a significance (p) threshold and apply this to every

voxel in the statistic map. A problem with this is that there are many tests being carried out, because

there are so many voxels in the brain. If 20000 voxels are tested for at a significance of p < 0.01 then it

is expected that 200 will activate by chance, even if no stimulation is applied. This multiple-comparison

problem means that it is not valid to accept all activations reported by this method of thresholding; a

correction is necessary to reduce the number of false positives [70]. Typically a Bonferroni correction is

used, where the significance level at each voxel is divided by the number of voxels; this corrects for the

number of comparisons being made. However, this results in very stringent thresholding (i.e. in the case

given above, the resulting p threshold is 0.01/20000 = 0.0000005). Thus instead of assigning a p - value

to each voxel, clusters of voxels are created on the basis of an initial thresholding, and then each cluster

is assigned a p - value, which may or may not pass the final significance test.

1.5.5 Multimodality Imaging with Optical Methods

NIRS has a number of important advantages for neurophysiological investigations [47]. This technology

is sensitive, and cost effective. Detectors based on small high performance CCDs are cheap, yet offer

high temporal resolution and information density and compatible with (and complementary to) MRI. It

provides a different and rather more specific measure of the hemodynamic processes that drive fMRI,

including blood oxygenation.

The complementary strengths and weaknesses of available functional neuroimaging techniques have

driven efforts by a number of investigators to combine multiple imaging modalities. One of the most

basic requirements for multimodality imaging is that it allows to define the spatial relationships between

the measures. Since MRI is used to define the anatomy, the general strategy is to define the coordinate

system of other measurements relative to the coordinate system of the MR volume imaging. The first step

in multi-modality co-registration is to define the location of the sensor array relative to these anatomical

landmarks. Integrated visualization based on multiple co-registered data sets is a useful application of

multimodality imaging, allowing clinicians to appreciate the relationship between neuroanatomy and

functional architecture. The same capabilities are essential for most other applications of integrated

computational modeling.

A number of simultaneous comparative NIRS and fMRI studies have been conducted [71], [72], [16],

[73],[74], [75]. These studies have addressed the problems of localization of detected signal and sensitivity

of optical measurements to brain tissue. Some studies have shown a high temporal negative correlation
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between BOLD and Hb responses [71]. Others confirm that the main aspect determining the time

course of the BOLD signal in the human motor cortex during stimulation is due to the change in HB

concentration and not the changes in regional CBV [76]. The rise in cerebral blood oxygenation is

attributed to an increase in the regional CBF velocity, which occurs without a significant swelling of the

blood vessels. The same group observed that the change in BOLD signal follows changes in rCBF with

a time delay approximately equal to the ratio of the baseline values of the rCBV and rCBF [76].

The studies also show a good spatial collocation between BOLD and hemodynamic responses [77].

However, it is also observed that correlation between BOLD and Hb responses can be highly variable

between subjects. Their study found that correlation between BOLD and HbO2 were higher than

between BOLD and Hb. This may be due to higher sensitivity of the optical measurement to changes

in HbO2.

1.6 Statistical Methods

1.6.1 Independent Component Analysis (ICA)

An unresolved problem in functional NIRS is the separation of functional signals from the contaminations

by systemic and local physiological fluctuations. This problem was approached by using various signal

processing methods, including the blind signal separation techniques [78].

Let us denote n recorded NIR signals x1(t), . . . , xn(t), where t is time. Under the assumption of

small underlying changes each of these signals can be expressed as a weighted sum of the underlying

components of brain haemodynamic activity s1(t), . . . , sn(t):

x1(t) = a1,1s1,1 + . . .+ a1,ks1,k

... (1.8)

xn(t) = an,1, sn,1 + . . .+ an,ksn,k

where a1,1 and ai,j are some time-independent parameters. If we knew the parameters aij, we

could solve the system of linear equations (1.8) for s1(t) . . . sn(t). A blind signal separation technique

called Independent Component Analysis (ICA) estimates aij based on the assumption of the statistical

independence of source signals s1(t) . . . sn(t).

1.6.2 Definition of ICA and fundamental properties of independence

The variables s1 and s2 are said to be independent if information on the value of s1 does not give any

information on the value of s2, and vice versa [79]. Mathematically, independence can be defined by the

probability densities. Let us denote by p(s1, s2) the joint probability density function (PDF) of s1 and

s2. Let us further denote by p1(s1) the PDF of s1 when it is considered alone: p1(s1) =
∫
p(s1, s2)ds2
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and similarly p2(s2) for s2. Then we define that s1 and s2 are independent if and only if the joint PDF

is factorizable in the following way: p(s1, s2) = p1(s1)p2(s2)

This definition extends naturally for any number n of random variables, in which case the joint

density must be a product of n terms. The definition can be used to derive a most important prop-

erty of independent random variables. Given PDFs of two functions, h1 and h2, we always have

E{h1(s1)h2(s2)} = E{h1(s1)}E{h2(s2)}
To rigorously define ICA [80]; [81], one can use a statistical latent variables model. Assume that we

observe n linear mixtures x1, . . . , xn of n independent components

xj = aj,1s1 + aj,2s2 + . . .+ aj,nsn; for all js. (1.9)

We can assume that both the mixture variables and the independent components have zero mean:

If this is not true, then the observable variables xi can always be centered by subtracting the sample

mean, which makes the model zero-mean.

Let us denote by x the random vector whose elements are the mixtures x1, . . . , xn, and likewise by

s the random vector with elements s1, . . . , sn. Let us denote by A the matrix with elements ai,j . Here,

bold lower case letters indicate vectors and bold upper-case letters denote matrices. All vectors are

column vectors; thus xT , or the transpose of x, is a row vector. Using this vectormatrix notation, the

above mixing model is written as

x = As (1.10)

Sometimes we need the columns of matrix A; denoting them by aj the model can also be written as

x =
∑

aisi (1.11)

The statistical model in Equation (1.10) is called independent component analysis, or ICA model.

The ICA model is a generative model, which means that it describes how the observed data are generated

by a process of mixing the components si. Also the mixing matrix is assumed to be unknown. All we

observe is the random vector x, and we must estimate both A and s using it. There are several general

assumptions. The starting point for ICA is the very simple assumption that the components si are

statistically independent and have non-Gaussian distributions . We do not assume these distributions

known. For the simplicity, we also assume that the mixing matrix is square. After estimating A, we can

compute its inverse, say W , and obtain the independent components as:

s = Wx (1.12)

1.6.3 Uncorrelated variables are only partly independent

A weaker form of independence is uncorrelatedness. Two random variables s1 and s2 are said to be

uncorrelated, if their covariance is zero: E{s1s2} − E{s1}E{s2} = 0. If the variables are independent,

they are uncorrelated but uncorrelatedness does not imply independence.
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1.6.4 Why Gaussian variables are forbidden

The fundamental restriction in ICA is that the independent components must be non-Gaussian for ICA

to be possible. The non-gaussian distribution of two variables x1 and x2 contains information on the

directions of the columns of the mixing matrix A: the colums of the mixing matrix could for example

be located along the edges of the joint density of the variables (Figure 1.10, top view) [78].

Figure 1.9: Examples of non-gaussian and gaussian distributions of two variables x1 and x2. From [78].

If x1 and x2 are Gaussian, uncorrelated, and of unit variance. Their joint density is completely

symmetric. This probability density does not contain any information on the directions of the columns

of the mixing matrix A. This is why A cannot be estimated. If just one of the independent components

is Gaussian, the ICA model can still be estimated [78], [82].

1.6.5 Principles of ICA estimation

”Non-Gaussian is independent” [78]. The key to evaluation of independent component analysis is max-

imization of the non-Gaussianity of the variables. To estimate independent components, one should

consider a linear combination of the xi in Equation (1.12), where w is one of the rows of the inverse of

A, a vector that maximizes the non-Gaussianity of wTx. In practice, an algorithm would compute the

direction in which the absolute value of the kurtosis of s = wTx is growing most strongly based on the

available sample x(1), . . . , x(n), and use a gradient method or one of their extensions for finding a new

vector w [78]. The landscape of nongaussianity could be searched in the n - dimensional space of the

recorded signal. This space would have 2n local maxima, two for each IC. To find several independent

components, all these local maxima should be found. This task is simplified by the requirement that the
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different independent components are uncorrelated. We can always constrain the search to the space

that gives estimates uncorrelated with the previous ones. This corresponds to orthogonalization in a

suitably transformed (i.e. whitened) space.

A quantitative measure of estimation of non-Gaussianity of a random variable could be implemented

by kurtosis or negentropy. Kurtosis is calculated as the fourth - order cumulant kurt(s) = E[s4]3(E[s2])2,

and it is zero for a Gaussian random variable. For most non-Gaussian random variables, kurtosis is non-

zero, and it can be either positive or negative. Random variables that have a negative kurtosis are called

sub-Gaussian, and those with positive kurtosis are called super-Gaussian. Huber (1985) showed that

kurtosis is very sensitive to outliers and therefore not a robust measure of nongaussianity [82]. Thus,

other measures of non-Gaussianity might be better than kurtosis in some situations. Negentropy that

has properties that are opposite to those of kurtosis [78].

A second efficient measure of non-Gaussianity is given by negentropy, which is based on entropy. The

differential entropy H of a random vector s with density f(s) is defined as [83]; [84]:

H(s) = −
∫
f(s)logf(s)ds (1.13)

A fundamental result of information theory is that a Gaussian variable has the largest entropy

among all random variables of equal variance. This means that entropy could be used as a measure

of non-Gaussianity because the Gaussian distribution is the most random or the least structured of

all distributions. Entropy is small for distributions that are clearly concentrated on certain values,

i.e. when the variable is clearly clustered, or has a PDF that is very spiky. To obtain a measure of

non-Gaussianity that is zero for a Gaussian variable and always non-negative, one often uses a slightly

modified version of the definition of differential entropy, called negentropy. Negentropy J is defined as

follows: J(s) = H(sgauss) − H(s), where sgauss is a Gaussian random variable of the same covariance

matrix as s. A covariance matrix is a matrix whose element in the i, j position is the covariance between

the ith and jth elements of a random variable [85]. Each element of the vector is a scalar random

variable, either with a finite number of observed empirical values or with a finite or infinite number of

potential values specified by a theoretical joint probability distribution of all the random variables. The

entropy is largest for gaussian variables among all random variables of equal variance and could therefore

be used as a measure for nongaussianity.

Another approach for ICA estimation can be based on the minimization of mutual information. It

leads to the same principle of finding most non-Gaussian directions, i.e., finding new vectors w. In this

approach, the independent components of a random vector x are calculated as an inverse transforma-

tion as in Equation (1.12), where the matrix W is determined so that the mutual information of the

transformed components is minimized [78]. Another alternative of minimization of mutual information

is the maximum likelihood estimation [78].
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1.6.6 Preprocessing for ICA

Before applying an ICA algorithm, it is usually necessary to perform a preprocessing of the data which

includes data centering and whitening. Centering x, means subtracting its mean vector m = E{x} so as

to make x a zero-mean variable.

Whitening means that before the application of the ICA algorithm (and after centering), the observed

vector x can be transformed so that we obtain a new vector x̃ whose components are uncorrelated and

their covariance matrix of x̃ is the identity matrix: Ex̃x̃T = I. The whitening transformation is always

possible using the eigenvalue decomposition (EVD) of the covariance matrix ExxT = EDET ; where E

is the orthogonal matrix of eigenvectors of ExxT and D is the diagonal matrix of its eigenvalues [78].

Whitening can now be done by x̃ = ED−1/2ETx, where the matrix D−1/2 is computed by a simple

component wise operation.

Whitening transforms the mixing matrix into a new one, Ã. The utility of whitening results in the

fact that the new mixing matrix Ã is orthogonal. Whitening reduces the number of parameters to be

estimated. Instead of having to estimate the n2 parameters that are the elements of the original matrix

A, we only need to estimate the new, orthogonal mixing matrix Ã. An orthogonal matrix contains

n(n− 1)/2 degrees of freedom. Thus one can say that whitening solves half of the problem of ICA.

1.6.7 FastICA algorithm

FastICA is a popular Matlab code implementing an ICA algorithm with data preprocessing. It was

developed by [78].

The FastICA is based on the approximate calculation of negentropy for finding a maximum of the

non-Gaussianity of wTx, [86]; [87].

The basic form of the FastICA algorithm is as follows:

1. Choose an initial (e.g. random) weight vector w

2. Let w+ = Exg(wTx)− E(g′(wTx)w, where g is a non-quadratic function defined in [78]

3. Let w = w+/ ‖ w+ ‖
4. If not converged, go back to 2

Note that convergence means that the old and new values of w point in the same direction, i.e. their

dot-product is(almost) equal to 1. It is not necessary that the vector converges to a single point, since

w and −w define the same direction [78]. This is because the independent components can be defined

only up to a multiplicative sign.

1.6.8 Properties of the FastICA algorithm

The FastICA algorithm and the underlying contrast functions have a number of desirable properties

when compared with existing methods for ICA [78].

1. The convergence is cubic (or at least quadratic), under the assumption of the ICA data model. This

is in contrast to ordinary ICA algorithms based on (stochastic) gradient descent methods, where the
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convergence is only linear. This means a very fast convergence, as has been confirmed by simulations

and experiments on real data.

2. Contrary to gradient-based algorithms, there are no step size parameters to choose. This means that

the algorithm is easy to use.

3. The algorithm finds directly independent components of(practically) any non-Gaussian distribution

using any non-linearity g. This is in contrast to many algorithms, where some estimate of the probability

distribution function has to be first available, and the non-linearity must be chosen accordingly.

4. The performance of the method can be optimized by choosing a suitable non-linearity g. In particular,

one can obtain algorithms that are robust and/or of minimum variance.

5. The independent components can be estimated one by one, which is roughly equivalent to doing

projection pursuit. This is useful in exploratory data analysis, and decreases the computational load of

the method in cases where only some of the independent components need to be estimated.

6. The FastICA has most of the advantages of neural algorithms: it is parallel, distributed, computa-

tionally simple, and requires little memory space. Stochastic gradient methods seem to be preferable

only if fast adaptivity in a changing environment is required.

A Matlab implementation of the FastICA algorithm is available on the World Wide Web free of charge

[88].

1.6.9 Applications of ICA

ICA has been applied to a number of different problems, especially in the field of neuroimaging. A brief

overview of some of the research using ICA demonstrates the range of applicability of ICA implemented

as either spatial (sICA) or temporal ICA (tICA). Of the many ICA applications, removal of blood flow

artifacts in functional optical data [89], optical imaging of neurons [90], [91], and extracting task-related

activation components from OT and fMRI data are some of the popular uses of this statistical approach

[92], [93], [94].

Functional NIRS is sensitive to changes in detector-skin coupling associated with experimental pro-

cedure and extracerebral interference from the outer layers of the brain. Hence, signals recorded from

the head are often contaminated with systemic noise and motion artifacts. ICA is one of the statistical

methods used to address these issues. For example, Kohno [89] and Virtanen [95] were able to separate

physiological interference and coupling artifacts from NIRS data by applying IC analysis to different

channel configurations. In these studies, number of components were estimated based on the number of

channels embedded in the probe. To our knowledge, there where no studies were ICA was performed on

a single source-detector configuration.

Also, ICA can be used as an alternative to hypothesis driven approach to identify regions of activation,

as in the case of fMRI studies, or to extract time courses of the original optical signal, in case of fNIRS

studies. With ICA, such functional activation can be identified without a priori knowledge of expected

hemodynamic responses [96], [97]. Limitation of these studies is that the choice of number of components

is limited by the number of source-detector channels, and manufactured NIRS equipment, at least at the

moment, operates at limited number of wavelengths. Therefore, method proposed in the second part of
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the manuscript has a true novelty in processing NIR data.

1.7 General Linear Model (GLM)

Multiple regression analysis is a method for inference in the setting of linear relationships between a

single response variable {yi, xi1, . . . , xip}i = 1 of n statistical units and multiple explanatory variables

(p) [98]. A linear regression model assumes that the relationship between the dependent variable yi and

the p - vector of regressors is linear.

Let us denote the explanatory variables as x1, x2, . . . , xp. Then the statistical model for multiple

linear regression is:

Yi = β0 + β1xi1 + β2xi2 + + βpxip+ εi (1.14)

for i = 1, 2, . . . , n. The parameters of the model are β0, β1, β2, . . . , βp. One can write these n equations

in a vector form as Y = Xβ + ε, where

y =


y1

y2

...

yn

 , X =


x′1

x′2
...

x′n

 =


x1,1 · · · x1,p

x2,1 · · · x2,p

...
. . .

...

xn,1 · · · xn,p

 , β =


β1

β2

...

βp

 , ε =


ε1

ε2
...

εn


The subpopulation means describe the FIT part of the statistical model. The RESIDUAL part rep-

resents the variation of observations about the means. Estimation of the multiple regression parameters

is based on the principle of least squares. Let b0, b1, b2, . . . , bp denote the estimators of the parameters

β0, β1, β2, . . . , βp. For the ith observation, the predicted response is

Ŷi = b0 + b1xi1 + b2xi2 + . . .+ bpxip (1.15)

The method of least squares chooses the values of the bs that make the sum of the squares of the residuals

as small as possible.

∑
(yi − b0 − bixi1 − b2xi2 − . . .− bpxip)2 (1.16)

The significance test for the multiple regression is the ANOVA F - test which tests the hypothesis that

all of the regression coefficients, with the exception of the intercept, are 0. The degrees if freedom for the

model are df = p to reflect the fact that there are p explanatory variables. The sum of squares represent

the sources if variation. The sum of squares and the degrees of freedom add: SST = SSM + SSE,

DFT = DFM +DFE

The estimate of the variance σ2 for the model is given by MSE. The ratio MSM/MSE is an F -

statistics for testing the null hypothesis against the alternative hypothesis

H0 : β1 = β2 = . . . = βp = 0

Ha : at least one of the βj is not 0
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The null hypothesis is that none of explanatory variables are predictors of the response variable when

used in the form expressed by the multiple regression equation. The alternative hypothesis states that

at least one of them is linearly related to the response. This does not mean that each predictor is

statistically significant. The significance tests for individual regression coefficients assess the significance

of each predictor variable assuming that all other parameters are included in the regression equation.

Squared multiple correlation coefficient, R2 = SSM/SST , is the proportion of variation of the

response variable y that is explained by the explanatory variables x1, x2, . . . , xp in a multiple linear

regression. The multiple regression model does not require any of the variables distributions to be

normal. Only the deviations of the responses y from their means are assumed to be normal.

Chapter 2 presents a journal manuscript of two parts: first, optimal quantitation of the cerebral

haemodymanic response in fNIRS is presented; second, independent component analysis applied to con-

comitant functional near infrared spectroscopy and fMRI data is discussed. The final Chapter presents

conclusions and future work ideas.
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Optimal quantitation of the cerebral hemodynamic
response in functional near-infrared spectroscopy

Irina Schelkanova and Vladislav Toronov*

Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada

*toronov@ryerson.ca

Abstract: We have compared cerebral hemodynamic changes measured by near-infrared spectroscopy

(NIRS) with simultaneously acquired BOLD fMRI signals during breath hold challenge in humans. The

oxy- and deoxyhemoglobin concentration changes were obtained from the same broadband NIRS data

using four different quantitation methods. One method used only two wavelengths (690 nm and 830

nm), and three other methods used broadband data with different spectral fitting algorithms. We found

that the broadband techniques employing spectral derivatives were significantly superior to the multi-

wavelength methods in terms of the correlation with the BOLD signals. In two cases out of six we found

that the time courses of the deoxyhemoglobin changes produced by the two-wavelength method were

qualitatively inconsistent with the BOLD fMRI signals.

2.1 Introduction

In recent years many research groups began to use home-made or commercially available NIRS monitors

in basic research on brain function and cognition [99], [100], [101], [102] and for clinical monitoring

of the brain during and after cardiac surgery [103]. Most of these monitors have limited numbers

of wavelengths. Monitors from NIRO family (Hamamatsu Photonics, Hamamatsu, Japan) use four

wavelengths, while many, such as INVOS (Somanetics, Troy, MI) and ISS oximeters (ISS, Champaign,

IL) use only two wavelengths of light. Such a multi-wavelength design based on non-dispersive light

detectors, such as photomultipliers, was dictated by the availability and costs of the detectors in 1990.

However the emergence of new generations of low-cost portable CCD spectrometers now allows for

relatively inexpensive multichannel designs with broadband spectral resolution. Other options to achieve

broadband spectral sensitivity are provided by acousto-optical [104] or liquid crystal tunable filters [105].

The goal of this study is to re-evaluate the capabilities of the broadband NIRS approach for cerebral

perfusion monitoring in comparison with the multi-wavelength approach. We use a simple broad-band

setup to measure cerebral responses to breatholding challenge in adult humans and compare our results

with the simultaneously acquired blood oxygen level dependent (BOLD) functional MRI signals, which

are indicative of the cerebral deoxyhemoglobin concentration changes ∆Hb. Using different spectral

analysis techniques we show that the best correlation between the BOLD fMRI and NIRS time courses

occurs when ∆Hb is obtained using an algorithm based on the spectral derivative fit of the attenuation.

The water and the deoxyhemoglobin spectral second derivative features were used in the past to quan-

tify the chromophore concentration changes in human forearm [106] and the absolute deoxyhemoglobin

concentration in the neonatal brain [107]. In both [106] and [107] the spectral derivative features were
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only used to estimate the photon differential pathlengths. In this study we used spectral derivatives in

a different fashion, namely we use them to calculate the chromophore concentration changes by fitting

the first and the second spectral derivatives of the attenuation.

2.2 Materials and methods

2.2.1 NIRS

Near-infrared light was generated by a stabilized fan-cooled AvaLight-HAL Tungsten Halogen Light

Source (Avantes Inc., Broomfield, CO) with an adjustable focusing connector to maximize light coupling

with the source fiber. The source fibre bundle was made of 30 Thorlabs broadband silica 400mm core

diameter fibers. On the probe side the source fibers were arranged circularly around the location of

the detector bundle at a radius of 25mm. Light was collected using a 3mm diameter fiber optic bundle

(Sunoptic Technologies, FL). The length of all fibres was 6m so that the source and the detector could

be set outside of the MRI scanner room. The detector bundle was connected to a QE65000 cooled

spectrometer (Ocean Optics, Dunedin, FL), which had a spectral range between 650 and 1100nm. The

spectrometer output was digitized using the Spectral Suite software (Ocean Optics, Dunedin, FL).

The optical probe was positioned on the left side of the forehead near the hairline. Vitamin E capsules

were attached to the probe for the visualization on MR images. A proper positioning against the frontal

lobe avoiding sinuses was ensured using anatomical MRI. Spectra were acquired at the sampling rate of

one spectrum per second. This sampling rate was selected to ensure that the instrumental noise does

not affect physiological data.

2.2.2 MRI

Imaging was performed at Sunnybrook Health Sciences Centre using the Achieva 3.0T scanner with

SENSE-Head-8 coil. In order to assess the position of the optical probe the T2−weighted, two-dimensional,

turbo spin echo (T2W TSE; repetition time/echo time 3000/80ms, 1 mm slice thickness, no gap, 22cm

field of view, ∼ 0.43 × 0.43 × 1.00mm voxel size, 5.25 −min acquisition time) anatomical images were

acquired. Functional images were taken during 360 seconds by EPI technique with T2 ∗ −weighted

protocol (FE EPI sequence, TR = 1000ms, TE = 35ms, flip angle = 90deg). The in-plane resolution

was 1.72× 1.72mm2 (FoV = 22cm at 128× 128 pixel2), and 15 axial slices, each 4 mm thick.

2.2.3 Subjects and protocol

Breath holding was used because it generates blood CO2 which increases BOLD signal as CO2 acts

as a cerebral vasodilator [108]. Vasodilation causes increased cerebral blood flow which washes the

deoxyhemoglobin out of the cerebral capillary bed thus increasing both the cerebral blood volume and

oxygenation [109]. Six young healthy adult females (19− 29 years old) were placed into the scanner and

audibly cued to perform a breath hold at the end of expiration with voluntary resumption of breathing

after holding about 15-20 seconds. The exercise was repeated five times with 1 minute intervals. Research
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has been performed according to Sunnybrook Guidelines applicable to MRI studies on healthy volunteers

and to Ryerson University 2008-003-01 Research Ethics protocol.

2.2.4 Modeling

We assumed that changes in the normalized attenuation (∆A) of near-infrared light in scattering tissue

were governed by the Modified Beer Lambert Law:

∆A(λ, t) =
1

DP (λ)
ln

(
I0(λ)

It(λ)

)
= εHbO2(λ)∆HbO2(t) + εHb(λ)∆Hb(t) (2.1)

where DP (λ) is the differential pathlength factor (DPF),I0(λ)is the average intensity, It(λ)is the

instantaneous intensity, εHbO2and εHbare the oxy- and deoxy-hemoglobin extinction coefficients, respec-

tively, and ∆HbO2and ∆Hbare the instantaneous hemoglobin concentration deviations from their average

levels. We used the DPF dependence on the wavelength measured in [110] at normal fraction of inspired

oxygen.

We used four different methods based on Eq. 1 to recover ∆HbO2(t)and ∆Hb(t)from our spectral

data.

1. For two isolated wavelengths Eq.(2.1) reduces to a set of two linear equations with constant coef-

ficients. We solved this system of equations for the wavelengths of 690nm and 830nm which are

used in many bi-wavelength instruments. To reduce the noise the data were averaged within 5 nm

wavebands centered at either 690 or 830nm, respectively.

2. For the quasi-continuum of wavelengths between 690nm and 900nm we found instantaneous

∆HbO2and ∆Hbusing the general linear model (GLM) fit (glmfit function of MATLAB) of the

instantaneous absorbance ∆A(λ, t).

3. To find ∆HbO2and ∆Hbwe also used the same GLM fit with the first spectral derivative of the

instantaneous absorbance ∂∆A(λ,t)
∂λ .

4. We used the GLM fit of the second spectral derivative of the instantaneous absorbance∂
2∆A(λ,t)
∂λ2 to

obtain ∆Hb only, since the second derivative of the oxy-hemoglobin extinction εHbO2(λ)is almost

zero compared to that forεHb(λ).

The time series of the oxy- and deoxyhemoglobin changes obtained using the above four methods will

be further referred to as the type 1− 4 signals and the correlations of those with BOLD will be referred

to as type the 1 − 4 correlations. We will also use the notations ∆1−4
Hb

to denote the deoxyhemoglobin

signals obtained by Methods 1− 4.

In all methods using broadband data (2 − 4) the parameters of glmfit were the same. Namely, the

normal error distribution was assumed and the constant offset was set off. We found that the inclusion

of the optional constant offset always produced unrealistically small ∆2
Hb

(t) changes (less than 0.01mM).

Without using the offset in glmfit all ∆Hb(t) amplitudes were always within 0.5− 1mM . In Methods 3

and 4 the spectra were smoothed using smooth function with a 3nm span in order to reduce the effect
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of the spectral noise. This size of the span produced ∆3,4
Hb

(t)and∆2,3
HbO2

(t) of similar amplitudes to those

of ∆1,2
Hb

(t)and∆1,2
HbO2

(t).

2.2.5 Noise analysis

In order to test how ∆Hb signals produced by different methods were affected by the instrumental noise

we have performed the power spectrum analysis of the noise and physiological signals. The instrumental

noise was acquired on a tissue-like phantom (ISS, Champaign, IL) using the same instrumentation and

acquisition settings as those used for the physiological acquisitions. Due to the optical properties of the

phantom the spectral intensity values of the phantom signal were in the same range of values as the for

the in-vivo signals. Figure 2.1(a) compares the power spectra of all four types of ∆Hbobtained from the

phantom data. Although a much smaller number of photons contributed to the type 1 signal than to

other signals, from Figure 2.1(a) one can see that the noise influence was strongest for the type 3 and

4 signals. This was both due to the relatively low sampling frequency and due to the higher spectral

noise in the first and second order spectral derivatives of the absorbance spectra than in the absorbance

itself. However, as Figure 2.1(b) shows, during the in-vivo measurements the instrumental noise was

insignificant compared to the physiological signals. Figure 2.1(b) compares the temporal power spectra

of the raw data acquired on the phantom and in-vivo. The plotted power spectral densities correspond

to the frequency of the breath holding repetitions (0.017Hz) as functions of the wavelength. In order

to quantitatively compare the signal and the noise power spectra both spectra were normalized to the

corresponding time-averaged spectral intensities. From Figure 2.1(b) one can see that in the range

between 690 and 900 nm the signal to noise ratio was much greater than one. In particular, it was close

to four near 690 nm and close to 60 near 800 nm. This confirms that none of the four types of derived

hemodynamic responses were significantly affected by the instrumental noise.

2.2.6 Comparison between NIRS and BOLD MRI

Although a number of studies (see for example [73]) have revealed that BOLD signal most closely

corresponds to the negative of ∆Hb(t), we compared BOLD signals both with the changes in the deoxy-

hemoglobin and oxyhemoglobin concentrations obtained by the above four methods. For this we used the

correlation analysis tools implemented in AFNI software [111]. Before applying the correlation analysis

the fMRI data sets were preprocessed to correct for motion artifacts and slice timing differences and to

remove non-brain regions. Then both fMRI and NIRS time series were filtered using the digital filter

with the pass band between 0.01 and 0.02 Hz corresponding to the breath hold repetition frequency.

The Butterworth filter was designed using the MATLAB signal processing tool and applied to the data

time series using the filtfilt function to prevent temporal shifts of filtered signals. Then the correlation

coefficients between -∆Hb(t), ∆HbO2(t) and the voxel BOLD signals were computed for voxels within the

volume of the brain interrogated by the optical channel. Each such a volume of interrogation included

approximately 1000 fMRI voxels. Following the approach used in [112] and [113] we determined the

volume of interrogation for each measurement using the voxel photon-hitting density Pn defined by Eq.
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Figure 2.1: (a) Temporal power spectra of noise for all four types of∆Hb. Numbers 1 through 4 in
the legend correspond to the type of the signal. The bar shows the spectral band of the signal due to
repeated breath holdings. (b) Normalized power spectral densities of noise (acquired on the phantom)
and cross-subject average signal (acquired on a subject during breath hold exercise) at 0.017Hz.

(2.1) in [112]. Only voxels with Pn >0.1 max (Pn) were included into the interrogation volume. The

average correlation coefficients and the average BOLD signals were computed using the equation

X̄ =
∑
v

xn ·Wn (2.2)

where Wn =Pn/ΣPn, where xn was the voxel correlation or BOLD intensity and X̄ was the corresponding

volume average quantity. For the analysis of the statistical significance of the average correlation the
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Table 2.1: Volume-averaged correlation coefficients for all subjects: three types of ∆HbO2(t) and four
types of –∆Hb(t). The corresponding confidence intervals were all close to ±0.01

Subject type 1 type 2 type 3 type 4

HHb HbO2 HHb HbO2 HHb HbO2 HHb
1 0.22 0.75 -0.43 0.78 0.72 0.77 0.56
2 0.38 0.67 0.41 0.70 0.52 0.71 0.47
3 0.51 0.72 0.64 0.74 0.67 0.81 0.53
4 -0.03 0.56 0.29 0.61 0.41 0.59 0.34
5 0.59 0.61 -0.14 0.65 0.68 0.63 0.59
6 0.07 0.68 0.43 0.71 0.52 0.59 0.49
Group 0.29 0.67 0.20 0.70 0.59 0.68 0.45

t-test was applied to the Wn -weighted voxel correlations.

2.3 Results

Figure 2.2(a) shows the time courses of -∆Hb(t) (negative of deoxyhemoglobin concentration change)

for one of six subjects. Numbers 1 through 4 in the legend correspond to four different methods to

obtain∆Hb(t). Figure 2.2(b) shows the BOLD signal averaged over the volume near the optical probe

(see Figure 2.3). In Fig. 2.2(a) one can see that although all curves showed similar amplitudes of

changes and a certain degree of synchronicity with the exercise, their time courses were visibly different.

While green and blue curves in Figure 2.2(a) were well in phase with the BOLD signal shown in Figure

2.2(b) (the correlation values were 0.72 and 0.56, respectively, see Table 1), the red curve was anti-

correlated with BOLD (correlation value of -0.43), and the black curve was not well-correlated with

BOLD (correlation value of 0.23). However, all three ∆HbO2(t) shown in Fig. 2 (c) were well correlated

with the average BOLD signal (correlations of 0.75 and higher for this subject). We did not observe

significant differences in the amplitudes of neither ∆HbO2(t)nor ∆Hb(t) obtained by different methods.

Figure 2.3 shows one slice of the functional image obtained by correlating −∆3
Hb(t)with the voxel

BOLD signals. The voxels shown by colors were within the volume interrogated by the light channel. Red

color corresponded to high positive correlation, and blue color corresponded to high negative correlation.

One can see that although most of voxels showed positive correlation between BOLD and −∆3
Hb(t), some

voxels showed negative correlations.

2.4 Discussion

We have computed cerebral oxy- and deoxyhemoglobin responses to breath hold challenge from the

same broadband near-infrared data using four different methods. The first method used only two wave-

lengths, and three other methods used broadband data with different spectral fitting algorithms. The
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Figure 2.2: (a)Time courses of −∆Hb(t) for one of six subjects. Numbers 1 through 4 in the legend
correspond to four different methods to obtain ∆Hb(t). The vertical lines show the beginning of each
breath hold. (b) Volume - average BOLD signal (c) Time courses of ∆HbO2(t) for the same measurement.

∆HbO2(t)signals were always well synchronized with the BOLD signal. Unlike ∆HbO2(t), in some cases

the behaviors of −∆1
Hb

(t) and −∆2
Hb

(t)were qualitatively different from the time courses of the volume-

average BOLD signals and of −∆3
Hb

(t) and −∆4
Hb

(t). The latter were always consistent with the time

course of the average BOLD signals. At a group average level all four methods were qualitatively con-

sistent with BOLD in terms of the sign of the correlation. However, the group average correlations for

−∆3
Hb

(t) and −∆4
Hb

(t) were higher than for −∆1
Hb

(t) and −∆2
Hb

(t), and the corresponding confidence

intervals did not overlap. One should emphasize that methods 3 and 4 were essentially broadband ones

as they used spectral derivatives of the absorbance changes.

The methods that used the spectral derivatives were more prone to temporal instrumental noise

because the fitting procedures converted the spectral noise into the temporal one. However the same

methods produced -∆Hb(t) signals that were better correlated with the BOLD signals than two other

methods. The highest group correlation was obtained using the first spectral derivative and the worst
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Figure 2.3: BOLD-NIRS Correlation map. Red color corresponds to high positive correlation, and blue
color corresponds to high negative correlation. The arrows show the positions of the light source and
detector.

correlation was produced by the direct spectral absorbance fit (Method 2). Both Methods 2 and 3

used the same mathematical fitting algorithm, i.e. the GLM fit, but were applied either to the ab-

sorbance change (Method 2) or to the spectral derivative of it (Methods 3). The reason for such a

contrast behavior of these two similar methods should was twofold. The first part of the reason was

physiological and consisted in the opposite directions of changes in the oxy- and deoxyhenoglobin con-

centrations due to the washout effect [109]. The increases in the oxyhemoglobin concentration caused

the entire absorbance spectrum to increase but with greater effect in the longer wavelength half of the

used spectral band (wavelengths greater than 800 nm). The decreases in the deoxyhemoglobin con-

centration cased the opposite effect on the absorbance but mostly in the short-wavelength part of the

spectrum (wavelengths from 700 to 800 nm). Since the concentration of the deoxyhemoglobin in the

brain was much lower than the concentration of the oxyhemoglobin, the relative changes in the former

were also much smaller than in the latter. Therefore the overall rise of the absorption across the spectral

band 700-900 nm was much stronger than the differences between the short- and the long-wavelength

halves of the band. These differences in the effects of the oxy- and deoxyhemoglobin changes on the

absorbance spectrum could result in a poor quantitation of ∆Hb(t)by Methods 1 and 2 in the cases

when signal distortions due to physiological or motion artifacts occurred. These distortions did not

affect significantly ∆HbO2(t)because of the larger amplitude of ∆HbO2(t)changes. However, the effect of

∆Hb(t)and∆HbO2(t) on the spectral derivatives of the absorbance was better balanced than that on the
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absorbance itself because the differentiation eliminated the homogeneous changes across the spectrum

and magnified the effect of the deoxyhemoglobin concentration changes due to the strong feature in the

first- and second-order differential extinction spectra of deoxihemoglobin near 760 nm (see Figure 6 in

[106]).

The second differential extinction spectrum of the deoxyhemoglobin had even stronger feature near

760 nm than the first differential spectrum and therefore in terms of ∆Hb(t) Method 4 theoretically

could provide even better result than Method 3. However, since the second differential also magnified

the spectral noise, the Method 3 provided the best performance. The two-wavelength Method 1 worked

slightly better than the broadband Method 2 because the algorithm differences. The algorithm of Method

1 was based not on the fitting of the absorbance changes spectrum but rather on the solution of the

linear system of equations for the absorption changes at 690 nm and 830 nm. At these two wavelengths

the difference between the extinction spectra of HHb and HbO2 were high and in particular at the 690

nm the HbO2 extinction was minimal so that the effect of HbO2 changes at 690 nm was much smaller

than the effect of HHb changes. However, both Method 3 and 4 outperformed Method 1 in terms of

∆Hb(t) quantitation.

In [95] the principal and the independent component analyses (PCA and ICA, respectively) were used

to clean the distorted hemodynamic signals measured by a two-wavelength system at 30 mm source-

detector separations during breath holding. Both PCA and ICA produced better signals in cases of slight

distortions, i.e. when typical exercise-synchronized increases in ∆HbO2(t) and decreases in ∆Hb(t) were

noticeable in non-cleaned data. However, these methods would not improve the behavior of “bad” signals

such as the red curve in Figure 2.2, a in our case unless more channels with different source-detector

separations were used. Nevertheless, if the underlying reasons for a bad performance of Methods 1 and

2 were the data artifacts such as the hemodynamic fluctuations in the scalp, there is a chance that the

cerebral signals acquired using two-wavelength methods can be cleaned if the distortions were isolated,

for example by applying advanced signal processing techniques to the data acquired at short and long

source-detector distances. On the other hand, our results show that our broadband Method 3 at least

provides a single-channel alternative to PCA and ICA which require multi-channel measurements.

2.5 Conclusions and future work

We have compared cerebral hemodynamic signals obtained using near-infrared spectroscopy (NIRS)

with simultaneously acquired BOLD fMRI signals during breatholding challenge. The oxy- and de-

oxyhemoglobin concentration changes were obtained from the same broadband NIRS data using four

different quantitation methods. One method used only two wavelengths, and three other methods used

broadband data with different spectral fitting algorithms. We have found that broadband techniques us-

ing spectral derivative algorithms were superior over the multi-wavelength methods in studies of cerebral

hemodynamic responses to stimuli in humans.

In our future work we plan to apply the independent and principal component analyses to the

broadband data acquired at multiple source-detector distances such that the contribution of the scalp
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can be separated from the cerebral signals. This should clarify whether the advanced signal processing

techniques applied to the multi-distance data will be sufficient to resolve the problems of the two-

wavelength method or the broadband approach is required to ensure the correct measurement of cerebral

deoxyhemoglobin changes.
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Abstract:
Although near infrared spectroscopy (NIRS) is now widely used both in emerging clinical techniques

and in cognitive neuroscience [114], the development of the apparatuses and signal processing methods

for these applications is still a hot research topic. One of the main issues of functional NIRS is the

separation of functional signals from the contaminations by systemic and local physiological fluctuations.

Various signal processing methods, including independent component analysis (ICA) [78], were applied

to the data acquired at the same wavelength and at multiple sites on the human or animal heads [115]

during functional activation. These signal processing procedures resulted in a number of independent

components that could be attributed to functional activation but their physiological meaning remains

unknown. Moreover, the best physiological specificity is provided by broadband NIRS [77]. A comparison

with functional magnetic resonance imaging (fMRI) allows determining the spatial origin of fNIRS

signals [77]. In this study, we applied ICA to broadband NIRS data to distill the components which

might correspond to the breath hold activation paradigm and to correlate their time courses with the

simultaneously acquired fMRI signals. Although the original signals were quite diverse, we found very few

different components. The components correlated highly with fMRI BOLD signal at different locations

in the brain.

2.6 Introduction

Although near infrared spectroscopy (NIRS) is now [21]widely used both in emerging clinical techniques

and in cognitive neuroscience[114], the development of the apparatuses and signal processing methods

for these applications is still a hot research topic. The main unresolved problem in functional NIRS is

the separation of functional signals from the contaminations by systemic and local physiological fluc-

tuations. This problem was approached by using various signal processing methods, including blind

signal separation techniques[116]. In particular, principal component analysis (PCA) and independent

component analysis (ICA)[78] were applied to the data acquired at the same wavelength and at multiple

locations on the human or animal heads [115] during functional activation. These signal processing

procedures resulted in a number of principal or independent components that could be attributed to

functional activity but their physiological meaning remained unknown. On the other hand, the best

physiological specificity is provided by broadband NIRS [77]. Also, a comparison with functional mag-

netic resonance imaging (fMRI) allows determining the spatial origin of fNIRS signals [77]. In this study
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we applied PCA and ICA to broadband NIRS data to distill the components correlating with the breath

hold activation paradigm and compared them with the simultaneously acquired fMRI signals. Breath

holding was used because it generates blood carbon dioxide (CO2) which increases the blood-oxygen-

level-dependent (BOLD) signal as CO2 acts as a cerebral vasodilator. Vasodilation causes increased

cerebral blood flow which washes deoxyhaemoglobin out of the cerebral capillary bed thus increasing

both the cerebral blood volume and oxygenation. Although the original signals were quite diverse, we

found very few different components which corresponded to fMRI signals at different locations in the

brain and to different physiological chromophores.

Figure 2.4: Schematic diagram of data analysis
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2.7 Method

2.7.1 Participants and Experimental Paradigm

Optical data was obtained in two separate sessions from 8 healthy adult participants (V1-V8; 1 male, 7

females; 19 - 29 years old), all of whom were right-handed. All participants gave informed consent before

participation and the experiment has been performed according to Sunnybrook Guidelines applicable

to MRI studies on healthy volunteers and to Ryerson University 2008-003-01 Research Ethics protocol.

The data sets used in this study were the same data described in[117]. Participants were placed into the

scanner and audibly cued to perform a breath hold at the end of expiration with voluntary resumption

of breathing after holding for about 15-20 seconds. The exercise was repeated five times with 40-second

rest intervals.

2.7.2 Data Acquisition

Near-infrared light was generated by a stabilized fan-cooled AvaLight-HAL Tungsten Halogen Light

Source (Avantes Inc., Broomfield, CO) with an adjustable focusing connector to maximize light coupling

with the source fiber. The source fibre bundle was made of 30 Thorlabs broadband silica 400 µm core

diameter fibers. On the probe side the source fibers were arranged circularly around the location of the

detector bundle at a radius of 25 mm. Light was collected using a 3-mm diameter fiber optic bundle

(Sunoptic Technologies, FL). The length of all fibers was 6 m so that the source and the detector could

be set outside of the MRI scanner room. The detector bundle was connected to a QEB65000 cooled

spectrometer (Ocean Optics, Dunedin, FL), which had 1044 wavelength channels in a spectral range

between 650 and 1100 nm. The spectrometer output was digitized using the Spectral Suite software

(Ocean Optics, Dunedin, FL).

The optical probe was positioned on the left side of the forehead near the hairline. A Vitamin E

capsule was attached to the probe for visualization on MR images. A proper positioning against the

frontal lobe avoiding sinuses was ensured using anatomical MRI. Spectra were acquired at the sampling

rate of one spectrum per second. This sampling rate was selected to ensure that the instrumental noise

would not affect physiological data and to match the acquisition rate of the MR scanner.

MR imaging was performed at Sunnybrook Health Sciences Centre using the Achieva 3.0 T scan-

ner with SENSE-Head-8 coil. In order to assess the position of the optical probe, T2-weighted, two-

dimensional, turbo spin echo (T2W TSE; repetition time/echo time 3000/80 ms, 1-mm slice thickness, no

gap, 22-cm field of view, 0.43 x 0.43 x 1.00 mm voxel size, 5.25-min acquisition time) anatomical images

were acquired. Functional images were taken during 360 seconds by EPI technique with T2*-weighted

protocol (FE-EPI sequence, TR = 1000 ms, TE = 35 ms, flip angle = 90 deg). The in-plane resolution

was 1.72 x 1.72 mm2 (FoV = 22 cm at 128 x 128 pixels), and 15 axial slices, each 4 mm thick.
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2.7.3 Signal Processing

Near Infrared Data Processing. Independent Component Analysis (ICA) Algorithm and

General Linear Model (GLM)

As a preprocessing step, the NIRS data were detrended using poldetrendM MATLAB function (MATLAB

Mathworks, Inc). Then we used the FastICA algorithm[78] [118] to separate optical signals on 970 NIRS

spectral channels (650-1000 nm) on the time structure of data (temporal ICA) (Figure 2.5). Identified

temporal components were smoothed using smooth MATLAB function with 10 temporal points in order

to reduce the effect of the noise.

In a NIR signal matrix rotation, A, the mixing matrix, represents mixed spectra of the temporal

components (Figure 2.5). Selected spectra were smoothed over a span of 10 nm. For the quasi-continuum

of wavelengths between 650 nm and 850 nm we used the general linear model (GLM) fit (glmfit function

of MATLAB) to identify composition of the spectra. The time courses of selected spectral components

of A weighting matrix were compared with fMRI signals using a correlation analysis tool implemented

in AFNI software[119]. Colour coded spatial mapping of the components was done using AFNI software

(Figure 2.9).

fMRI (BOLD) Preprocessing

The fMRI data sets were preprocessed to correct for motion artifacts, slice timing differences, remove

non-brain regions and perform functional registration to the anatomical images. Then both fMRI and

NIRS time series were filtered using the digital filter with the pass band between 0.01 and 0.04 Hz.

2.8 Results

Optical data of all participants were separated into three temporal independent components. Figure 2.5

(A) shows the output of the FastICA algorithm for a representative NIR data of volunteer 3 (V3). For

all data sets, it was observed that the choice of three components was the optimal one, as very similar

time series were evident: two time courses which followed the expected haemodynamic responses but in

different directions, and an apparent noise. The number of independent components was chosen based

on an iterative approach, and the fact that three components contained above 70 percent of information

available in the data.

One of the resulting outputs of the ICA is the A mixing matrix. For the NIR data, this matrix

contains spectral information of the temporal components. We observed two stable spectra (Figure 2.5

(B)), which can be a consequence of the breath hold exercise. The same spectral features were found

in all data sets. As we observed repeated shapes, the two spectral components were selected for further

analysis. Figure 2.6 and Figure 2.7 are plots of the selected components for the first four subjects. Based

on the distinct forms of the components, the components were assigned IC1 (blue line) and IC2 (red

line) codes.

As we were interested in investigating the relationship between temporal courses of NIR data and
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Figure 2.5: (A) NIR data separated into three temporal independent components for a subject S3. (B) A
mixing matrix for the corresponding temporal components. Arrows link the corresponding time-spectrum
connection.

Figure 2.6: Spectral component (IC1) of the A mixing matrix for the first four volunteers (V1 - V4)

fMRI signal, temporal components of the selected forms were correlated with BOLD time course. Al-

though NIR light interrogates only a fraction of the brain volume, the selected time courses were cor-
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Figure 2.7: Spectral component (IC2) of the A weighting matrix for the first four volunteers (V1 - V4)

related to each voxel of the brain. Table 2.2 summarizes the ranges of correlation coefficients for each

subject of the study for both temporal components. In seven out of eight correlated data sets, the com-

ponents were non-overlapping, which is marked by the letter N next to the numbering of the participants.

After comparing spatial distributions of correlation coefficients for each of the components, we found

that by setting an appropriate threshold, separation of the components into unique spatial regions is

possible (Figure 2.8).

Five slices in Figure 2.9 correspond to the maximum depth which near infrared light can penetrate in

the adult head. Blue coloured mask indicates the regions of correlation coefficients of IC1 below negative

0.60. Red coloured mask contains the information for the IC2 above the threshold of positive 0.45. The

direction of the temporal components is estimated relative to BOLD.

Next, we wanted to identify the physiological composition of the spectral components. Five chro-

mophores visible through the optical window were linearly combined into eight models and fitted in the

IC1 (Figure 2.10) and IC2 (Figure 2.11). Absorption coefficients for all chromophores were extracted

from [120].

Eight models:

DHB only deoxyhaemoglobin ;

HB oxy- and deoxy haemoglobin

HBW - oxy- and deoxy haemoglobin and water

HBWC - oxy- and deoxy haemoglobin , water, and cytochrome oxidase
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Table 2.2: For all participants (V1 - V8). For IC1 and IC2 ranges of correlation coefficients. Capital letter
N indicates that for that subject the two components have non-overlapping distributions of correlation
coefficients

Subjects IC Correlation Co-
efficients Range

Subjects IC Correlation Co-
efficients Range

V1/N 1 -0.9192 - 0.8301 V5/N 1 -0.6339 - 0.6291
2 -0.6977 - 0.7107 2 -0.7667 - 7615

V2/O 1 -0.7738 - 0.7255 V6/N 1 -0.9153 - 0.8437
2 -0.754 - 0.7444 2 -0.8588 - 0.6717

V3/N 1 -0.8097 - 0.7285 V7/N 1 -0.7397 - 0.7569
2 -0.5409 - 0.6091 2 -0.5216 - 0.5738

V4/N 1 -0.8173 - 0.7964 V8/N 1 -0.9226 - 0.8858
2 -0.82 - 0.8316 2 -0.8428 - 0.8696

Figure 2.8: Exemplary images of correlation coefficient distributions for subjects V3 and V4. Top
panel: two spectral components shown above its respective unique spatial distributions of correlation
coefficients. Correlation coefficients (CC) displayed are above the threshold of the absolute value of 0.45

HBC - oxy- and deoxy haemoglobin , and cytochrome oxidase

HBWR - oxy- and deoxy haemoglobin , water, and reduced cytochrome oxidase

HBR - oxy- and deoxy haemoglobin , and reduced cytochrome oxidase

Full Model - oxy- and deoxy haemoglobin , water, cytochrome oxidase, and reduced cytochrome oxidase

We conducted linear regression analysis to determine and to compare statistical significance of the

models. The correlation coefficients (R and R2) of the nine models fitted into IC1 and IC2 reduced

spectra are displayed in Figures 2.10 and Fugure 2.11.
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Figure 2.9: Colour coded spatial mapping of the temporal components for S1. The colour indicates
direction of the signal relative to BOLD.

2.9 Discussion

In each of the eight volunteers, the FastICA algorithm produced temporal components corresponding

to the expected haemodynamic response for the breath hold challenge. The advantage of ICA over the

conventional haemodynamic theory driven approach is that it can be used to investigate haemodynamic

responses even if the response is not known. NIR data is a composition and superposition of many

physiological signals, precise formulation of which is challenging. For example, Figure 2A shows three

temporal components extracted from the optical data. It is apparent that although the first and the third

signals both follow the expected time course of the breath hold exercise, the signals have different time

courses, and physiological origin of these particular responses is not known. The middle panel signal was

treated as noise. However, the ICA technique separates signals based on statistical independence and

thus physiological importance of the signals cannot be determined from components alone. To search

for explanation of the observed components we looked at the spectral information contained in the A
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Figure 2.10: Nine combinations of various chromophores ”visible” in near infrared region were fitted in
the spectral component one (IC1). Correlation coefficient and the square of the CC are displayed on the
graph.

mixing matrix. It was observed that across all the subjects there were always present two distinct shape

spectra, as those plotted in Figure 2.5 (B) in red and blue. Figures 2.6 and 2.7 show the same spectral

components plotted for the first four volunteers. To confirm that the shape of the spectrum (IC2) is a

result of the experimental exercise, we tried to separate baseline data recorded during the same session,

into independent components. Mixing matrix of those data contained spectral form of IC1 but not IC2.

We can speculate, based on fit coefficients and comparison of known spectra of oxy- and deoxy-

haemoglobin with specrtal components of IC1 and IC2, that IC1 is mainly oxyhaemoglobin, whereas

IC2 has both oxyhaemoglobin and deoxyhaemoglibin in approxiamtely equal parts.

Once the temporal components, and their counterpart spectral components, were identified, we fur-

ther looked at the relationships between BOLD and optical data. Temporal components were correlated

44



CHAPTER 2. JOURNAL MANUSCRIPTS 2.9. DISCUSSION

Figure 2.11: Fitting of the models into the spectral component of IC2. Correlation coefficients and R2

are displayed on the graph.

with BOLD to observe spatial distribution of high correlation coefficients. We found that there were

significant regions of the brain (for 7 out of 8 volunteers), where high correlation coefficients for the two

components did not overlap spatially. Figure 2.8 shows an example of unique distributions of tempo-

ral correlates of the spectral components in the top panel. Although the locations were different, we

could not conclude that the same unique locations were occupied by the components in all volunteers.

In [77], we published volume averaged correlation coefficients for four types of methods of recovering

relative haemoglobin concentrations. Comparing those correlation coefficients with the values obtained

from correlating time courses of unknown mixtures with BOLD signal, it appears that the correlation

coefficients are higher. Figure 2.9 shows correlation coefficients converted into maps of spatial distribu-

tions superimposed on the anatomical images. Selection of the threshold to separate the components

was performed based on the visual examination of the strength of signal for each participant separately.
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Once physiological processes behind the components are understood, such mapping would allow tracing

of the anatomical origin of the signal.

Taking the other direction in Figure 2.4, shown by the red arrow path, led us to investigate the

origin of the spectral mixtures. We assumed that chromophores visible in the near infrared region are

known and their absorption spectra can be used to model the spectra. Nine models were fitted into the

components (Figure 2.10 for IC1 and Figure 2.11 for IC2). As practically all the models were statistically

significant, we evaluated the value of the model by the square of the correlation. For the IC1, three

models produced similar correlation coefficients which may mean that they contain similar information.

For the IC2, two models had the highest value of R2.

Only the interval from 650 to 850 nm was fitted because only that part of the spectrum could be

explained by the linear relationships. In Figure 2.12, we tried to fit a model into the entire range of

wavelength, and it is obvious that the model does not describe the data that well as compared to the

partial spectral fitting. One postulation would be that as wavelengths become longer the scattering

increases. To minimize the residual, the differential path length factor (DPF) should be incorporated

into modeling of the haemodynamic response. Thus, for future work, we intend to model a non-linear

response using DPF available from literature.

Figure 2.12: Fitting of the mixing coefficients for the full spectrum (650 - 1000 nm) for IC1 (left) and
IC2 (right).

2.10 Conclusions

ICA have been extensively used to map haemodynamic response without prior knowledge of its time

course. We applied FastICA method on the optical data collected from a breath hold experiment, and

observed that there are two components which are associated with the increased CO2 in blood. Correla-

tion of time courses of those components with BOLD, produced ranges of CC, which were converted into

spatial maps superimposed on the anatomical images. On the other hand, reduced spectral components
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extracted from the mixing matrix were fitted into several models. It appears that DPF plays a role in

goodness of the fitted models.
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3.1 Discussion

In the first part of the thesis, cerebral response to breath hold experiment using broadband near-infrared

set-up was recorded, and relative changes of HbO2 and Hb were recovered using four different methods.

The first method was based on two-wavelengths approach, as commercially manufactured NIR equipment

is still largely driven by the limited number of spectral channels. The other three methods were based on

different spectral fitting algorithms. Knowing the tissue differential pathlength factor (DPF), measured

changes in optical attenuation were converted to the concentrations of Hb and HbO2 in micromoles per

litre. Recovered time courses of HbO2 and Hb were compared to simultaneously acquired fMRI BOLD

signal. The temporal course of ∆HbO2(t) were always well correlated with the BOLD signal. However,

temporal behaviour of −∆Hb quantified using method 1 and 2 were qualitatively different from the time

courses of the volume-average BOLD signals and from that of −∆3
Hb(t) and −∆4

Hb(t). The temporal

signals obtained with method 3 and 4 were always consistent with the average time course of the BOLD

signals. One should emphasize that methods 3 and 4 are essentially broadband ones as they used spectral

derivatives of the absorbance changes over the range of approximately 258 wavelengths.

fMRI BOLD technique is routinely used to validate NIRS measurements in studies of cerebral hemo-

dynamic responses to stimuli in humans. Thus, obtained temporal courses of optical signal were corre-

lated with BOLD signal to determine which method would produce the highest correlation coefficients

(CC). The highest group average of CC was obtained using first spectral derivative (Method 3) and the

worst correlation was produced by the direct spectral absorbance fit (Method 2). Both Methods use

GLM fitting algorithm but it was applied either to the absorbance change (Method 2) or to the spectral

derivative of it (Methods 3). Difference in behavior of HbO2 and Hb can be explained by the fact

that during functional activation changes in the oxy- and deoxyhenoglobin concentrations take opposite

directions due to the washout effect [109]. The increases in the HbO2 concentration caused the entire

absorbance spectrum to increase but this has a great effect in the longer wavelength, which is the half of

our spectral band (wavelengths > 800 nm). The decreases in the Hb concentration caused the opposite

effect but preferentially in the short-wavelength part of the spectrum (wavelengths 700 - 800 nm).

Since the concentration of Hb in the brain is much smaller than that of HbO2, relative changes

in the former were also relatively small. The overall rise of the absorption across the spectral band

(700 - 900 nm) was much stronger than the differences between the short- and the long-wavelength

halves of the band. These differences in the effects of the oxy- and deoxyhemoglobin changes on the

absorbance spectrum could result in a poor quantitation of −∆Hb(t) by Methods 1 and 2 in the cases

when signal distortions due to physiological or motion artifacts occurred. These distortions did not

affect significantly ∆HbO2(t) because of the larger amplitude of oxyhaemoglobin changes. However, the

effect of −∆Hb(t) and ∆HbO2(t) on the spectral derivatives of the absorbance was better balanced than

that on the absorbance itself because the differentiation eliminated the homogeneous changes across

the spectrum and magnified the effect of the deoxyhemoglobin concentration changes due to the strong

feature in the first- and second-order differential extinction spectra of deoxyhaemoglobin near 760 nm

(see Figure 6 in [106].

The second differential extinction spectrum of the deoxyhemoglobin had even stronger feature near
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760 nm than the first differential spectrum and, therefore, in terms of −∆Hb(t) Method 4 could theo-

retically provide even better result than Method 3. However, since the second differential also magnified

the spectral noise, the Method 3 provided the best correlation with BOLD. The two-wavelength Method

1 worked slightly better than the broadband Method 2 because the algorithm differences. The algorithm

of Method 1 was based not on the fitting of the absorbance changes spectrum but rather on the solution

of the linear system of equations for the absorption changes at 690 nm and 830 nm. At these two

wavelengths the difference between the extinction spectra of Hb and HbO2 were high and in particular

at the 690 nm the HbO2 extinction was minimal so that the effect of ∆HbO2 changes at 690 nm was

much smaller than the effect of Hb changes. However, both Method 3 and 4 outperformed Method 1 in

terms of ∆Hb(t) quantitation.

In [95], the principal and the independent component analyses (PCA and ICA, respectively) were

tested to remove the distorted haemodynamic signals measured by a two-wavelength system at 30 mm

source-detector separations during breath holding. Both PCA and ICA produced better signals in cases

of slight distortions, i.e. when typical exercise-synchronized increases in ∆HbO2(t) and decreases in

∆Hb(t) were noticeable in non-cleaned data. Although these methods would not improve the behavior of

off-phase signals such as the red curve (Method 2) in Figure 2(a), PCA and/or ICA could still be applied

to the broadband data acquired at multiple source-detector distances to separate the contribution of the

scalp from the cerebral signals. This should clarify whether the advanced signal processing techniques

applied to the multi-distance data will be sufficient to resolve the problems of the two-wavelength method

or the broadband approach is required to ensure the correct measurement of cerebral deoxyhemoglobin

changes. On the other hand, our results show that our broadband Method 3 at least provides a single-

channel alternative to PCA and ICA which require multi-channel measurements.

The second part of the thesis presents the results of a blind source separation method applied to

the broadband data acquired at a single source-detector distance. ICA has been extensively used to

map haemodynamic response without prior knowledge of its time course. The aim of this analysis was

to determine if a statistical technique, applied to NIR data, has a potential to provide an additional

information.

According to the schematic diagram (Figure 2.4, the right side), one part of the analysis had a

purpose of correlating independent temporal components extracted from the NIR data with simulta-

neously acquired fMRI BOLD signal. Two temporal independent components (tICs) were identified in

the optical data of each subject. Choice of the number of components is discussed below. Correlation

of the temporal components with the respective fMRI BOLD signals at each voxel, produced the range

of correlation coefficients for each component. Spatial distributions of the voxels with high correlation

coefficients for each component (IC1 and IC2) were mapped on the MR anatomical images of the brain

and compared to identify co-locations. It was observed that the spatial distribution of the voxels, in

which independent components had high correlation with BOLD (r = ±0.45), appeared to non-overlap

for seven out of eight subjects. The voxels with the CCs above the threshold were selected and converted

into spatial maps for the co-registration of the regions of high correlation between ICs and BOLD. Al-

though the clusters of high correlation were non-overlapping practically for all participants, no specific

consistent pattern was determined. It remains to be seen whether tracing of those components contains
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any physiologically meaningful information.

Left side of the 2.4 diagram displays spectral analysis of the temporal components IC1 and IC2

discussed above. One dimensional FastICA method was implemented to the same optical data sets

collected from a breath hold experiment described in Part I of this thesis. For the first time, broadband

NIR spectrum was analyzed using individual wavelengths as the discrete input channels to separate

the data into independent temporal components with ICA. Spectral information of the temporal ICs

contained in the A mixing matrix was utilized for the modeling physiological composition of the optical

data collected during breath hold experiment (Figure 2.4, on the left).

One of the specificities of ICA is that the choice of the number of independent components (ICs)

is decided based on either hypothesized number of signals available in the data, or dictated by the

highest eigenvalues of the eigenvectors estimated during the pre-processing with principal component

analysis. Although the NIRS data were processed to extract temporal components, selection of the

number of the temporal ICs was performed through iteration and visual assessment of the spectral

shapes on the A mixing matrix plot for each subject (Figure 2.5). Driven by the same beath hold cycle,

the time evolution of chromophores concentration changes is expected to overlap. Therefore, visual

determination of the independence of two time courses is practically impossible. Since, the mixing

matrix contains unique spectral shapes of the respective temporal components, by routinely observing

its plot, selection of temporal components was established as two original time evolutions of unknown

combinations of chromophores. The same two visually distinct spectral shapes in A mixing matrices

were evident for all subjects (n = 16) (Figures 2.6 and 2.7). However, whether the two components were

the result of the functional activation such as breath hold exercise or a property of the resting state

was determined through the comparison of experimental results with the baseline condition obtained on

the same subject prior just before the procedure. Presence of the IC1 and not IC2 indicated that the

spectral component two is induced by the changes in the functional state.

Spectral components extracted with FastICA do not represent individual time series of pure chro-

mophores concentration changes such as HbO2 and Hb. It was hypothesized that each component is

an interplay of the two major chromophores changes at different moments of the functional activation.

Identifying the origin of the components via fitting of various models into the spectral part of the tICs

was the goal of general linear modelling (GLM). On one hand, spectral analysis of the components had a

point of evaluating what would be the best linear model to describe the shape of the components. This

was achieved based on the comparison of R2 for the models discussed previously. On the other hand,

assessment of the fit coefficients for each chromophore would provide an idea of their individual contri-

bution, and hence, give an indication of the correspondence of the spectral component to a physiological

state.

Since, attenuation dominates in the first half of the NIR spectrum (650 to 850 nm), eight linear

combination of extinction coefficients of various chromophores were fitted only into that part of the

spectral components. Figures 2.10 and 2.11 demonstrate that for this range of wavelenths linear fit of

the data worked very well. However, in the region of longer wavelengths, the water absorption dominates

and the mean free path of photons in biological tissue also increases. Figure 2.12 show that fitting a linear

model of attenuation coefficients did not describe optical data fully. Hence, including scattering factor,
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differential pathlength factor, in to the model would certainly improve the goodness of the fit. Also,

inclusion of other chromophore such as water, or a low concentration chromophore such as cytochrome-

c-oxidase appears to improve the overall fitting. Whether cytochrome itself significantly contributes to

the fitting remains to be statistically determined. However, with some degree of certainty, it can be

ascertained that fitting of water attenuation spectrum into the model was crucial for obtaining high

values of R2.

Numerical evaluation of the contribution of individual chromophore to a model was assessed based on

the values of regression coefficients. For each participant, the ratio of the values of regression coefficients

for spectral IC1 and IC2 remained constant, i.e. for IC1, contribution by the oxyhaemoglobin was above

80 per cent; for IC2, contribution by oxy- and deoxyhemoglobin was approximately equal. In the context

of the breath hold experiment, it was hypothesized that the spectral component 1 represents the change

in the blood volume, whereas the spectral component 2 might correspond to the washout effect.

To our best knowledge, there were no reports of usage of the A mixing matrix for the purposes of

selection of number of independent components, and/or evaluation of the spectral features of the NIRS

data. Thus, analysis of NIR signal presented in this thesis has its novelty and might have a potential to

provide new insights into the physiological mechanisms of the brain haemodynamics.

3.2 Conclusions

Broadband NIRS is not just ”much more wavelengths” but rather a qualitatively different modality which

enables implementation of various signal processing techniques that can only be achieved with continuous

spectrum of wavelengths. In support of that correlation analysis of NIRS and BOLD time series revealed

that broadband NIRS techniques using spectral derivative algorithms, especially first derivative of the

absorbance spectrum, had higher correlation coefficients as compared to the multi-wavelength methods.

Also, application of ICA to broadband NIRS data can provide temporal and spectral information of

the available independent components using a single source detector configuration probe. Linear fitting

of spectral components of the A mixing matrix has its merits in terms of revealing spectral composition

and functional state of underlying physiological processes. In the context of breath hold experiment, it

can be described as follows: CO2 causes vasodilation and consequent increase in cerebral blood flow,

which, in turn, causes washing out of deoxyhaemoglobin from the capillary bed.

3.3 Future Work

In future work, to address issues of extracerebral interference, application of the independent and prin-

cipal component analyses to the broadband data acquired at multiple source-detector distances might

be implemented. This should evaluate whether the advanced signal processing techniques applied to

the multi-distance data will be sufficient to resolve the problems of the two-wavelength method or the

broadband approach is required to ensure the correct measurement of cerebral deoxyhemoglobin changes.

Correlational analysis of temporal independent components with BOLD signal could assist in map-
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ping functional activation to the anatomical origin of the signal. That part of the work was not pursued

in this thesis but deserves further investigation. Furthermore, evaluation of the ICA analysis of broad-

band NIRS in response to neuronal activation such as motor task or visual stimulation can be undertaken

to observe how the nature of the spectral components depends on the functional stimulation and the

origin of a stimulus. Development of broadband NIR signal processing methods can reveal new informa-

tion about the functional state of the brain and help clinicians in monitoring of cerebral haemodynamic

response.
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