MEAP,
MODIFIED EAP PROTOCOL FOR WLAN
AUTHENTICATION

By
Xiaoying Guo

Bachelor of Computer Science
China University of Geosciences, Wuhan, China, 1997

A thesis
Presented to Ryerson University
In partial fulfillment of the
Requirements for the degree of
Master of Applied Science
In the Program of
Computer Networks

Toronto, Ontario, Canada, 2006

©Xiaoying Guo 2006

PROPERTY GF
RYERSON UNIVERSITY LIBRARY

UMI Number: EC53494

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

kN

UMI Microform EC53494
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

N 5

Author’s Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals
for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

Abstract
Xiaoying Guo,
MEAP, Modified EAP protocol for WLAN authentication
M.A.Sc, Computer Networks, Ryerson University, 2006

Wireless networking is becoming increasingly popular. However, the use of
Wireless Local Area Networks (WLAN) also creates many security issues that do not
exist in a wired world. WLAN connection no longer requires cable. Instead, data packets
are sent on the air and are available to anyone with the ability to intercept and decode
them. Traditional physical security measures like firewalls and security guards are less

efficient in this new domain.

The IEEE has organized the 802.11i Task Group to address 802.11 security. To
solve the user authentication probiem, it adopted 802.1x standard. The standard relies on
Extensible Authentication Protocol (EAP) to provide the authentication function.

.However, after the basic EAP authentication process, the Access Point (AP) still needs to
be authenticated by the client. In order to implement mutual authentication, Protected
EAP (PEAP), EAP-Transport Layer Security (TLS), EAP-Tunneled TLS (TTLS) or other
variants of EAP are developed. But some still weak in the authentication procedure. In
this thesis, a new authentication mechanism called Modified EAP (MEAP) is proposed.
MEAP is based on PEAP. MEAP adds a TLS layer on top of EAP, and then uses the
resulting TLS session as a tunnel to protect the later Simple Password-authenticated
Exponential Key Exchange (SPEKE), which is a strong password method. MEAP can

provide mutual authentication to satisfy strong authentication requirement in WLAN.

ifi

Acknowledgements

First and foremost I would like to sincerely thank my advisor Dr. Chul Kim for all the
guidance and help he took in the progress of my study.

I am extremely grateful to Dr. Bobby Ma for his valuable suggestions and advise during
this thesis. I am also thankful to the thesis examiners.

Many thanks to those people I love. Thanks for all their love, affection and blessings
without which I would not have gotten this far in my life.

iv

Table of Content

AUTHOR’S DECLARATION II
ABSTRACT III
ACKNOWLEDGEMENTS IV
TABLE OF CONTENT \Y%
LIST OF ABBREVIATIONS VIII
LIST OF TABLES X
LIST OF FIGURES XI
CHAPTER 1. INTRODUCTION 1
1.1 WIRELESS SECURITY REQUIREMENTSc.vvureecrerereremsnsnssssssesessssssssssesssesssssssssssssss 1

L 1.] AULRCRIIICALIONc..eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeenaeseaessaeeeesssseeasessssesssessaesssssnees 1

L. 1.2 ENCEYDEION.c..ooueeeeeeereeeeceieessssassssessesssssssssssssssasseessesssessesssessasssessesssessesssenne 1
1.1.3 DAIA TNICQFILY c...eeeeeeeereecreeereeeeeeereeeseesseessesssessssessssssaesssesssesssesssessssesssasessassnsens 2

1.2 WEP-BASED SECURITY ..cccvveeerrrrerssrvreessssssesesssreesssssssssssssesessssssssssssssssssssssesssssassssssses 2

1. 2.0 WEP'S WEARNESS...oeeeeeeeeeeeeeeeeeeeeeeeeeereeseesssessesssssssssssessssssssssesssssssssssssssssssssssssses 3
1.2.2 WEP'S Replacementcucecueeereueesireeeeieeeeeteseeetessesstessesstesssssssssssssesssssssees 4

1.3 THE POPULAR ATTACKS AGAINST CURRENT WLAN....ccttttttrecceiereeeeerrernneeeseeeessnsnnees 5
1.4 THE DIFFERENT LINKS INVOLVEDcittuteeierreveceereesencecsrsssssesssssssossessssssssssasssosssssssnass 7
1.4.1 Link between the Client and the ACCESS POINLoc.eeeevevvveevevesirnveeereressseeeens 8
1.4.2 Authentication link between Client and Authentication Server through AP...... 8
1.4.3 Link between Access Point and Authentication SErver..............ueeeeeeeeevvveenenns 9

1.5 MY CONTRIBUTIONoovetreerueeesrreeessrssesssssssessssssnesssssssssssssssassssssssssssssssssssssnnsssssssnses 10
CHAPTER 2. THE CURRENT EAPAUTHENTICATION PROTOCOLS.............. 11
2.1 802.1X ueveeereeeesseeeessessssessssssssessssssesssssssssssssssessssessssssssssnsesssssssssssssssssssssssssssassssassssses 12

2.1.1 TRYEE @NLILIES TN 802.1X..ueeueeeeeeseeererseeessesessressessseesseesssssssssssassssssssssssassasessases 13

2.1.2 802.1X IS POFt DASEUouoeeeeeveeeeeeeeeeesieeetseeeeterestesesessesseseseeseesessessassasases 14
2.1.3 The procedure of 802.1% QUIRERIICLIONoooooeoessoeooeeeseoesseseeseeeeseosenee 15
22EAP-TLS ..ottt setsse e s et e e st se st ssesasnssasnes 17
2.2.1 TLS OVEIVIEW.......cucueueueereereeeieseetreeesesessesaessesessassassessssssasaessassansassessssnes 18
2.2.2 PKI and Digital CertifiCatesccevevmrvenerieiesenesrssisresessesssesessssssassessssenens 18
2.2.3 TLS AULRENLICALION PIOCESSceueneeeeurereeereeeenreuenssenesesesssssssssssssssssssesssssssaes 19
2.2.4 EAP-TLS AUthentiCALION PrOCESSccouvueeueueceinesineneaereaieaeesesessssesssesens 20
23 EAP-TTLS ... eetetecetttsessesessssesesesesesttesssssesesesesssssssssssnssssssssnssesssssssnsssane 22
CHAPTER 3. THE MEAP METHOD 24
3.1 THE PROBLEMS IN EAP PROTOCOLSc.covermerisriesnernssinrisnssinssessssessesssssssesscssesssssesees 24
B2PEAP ..ttt ettt et st st a e e st s s et 26
3.2.1 PEAP AuthentiCAtion PrOCESS..........ccuuceueeeereeuereeeeneeinsenescseenesscssessessesassassenees 26
3.2.2 Common PEAP Authentication WeakNess.................ceveeeevveeerecrereeresuesneseesenes 27
3.3 THE SPEKE USED IN MEAPcciiiiinintrineneeeeetneseeeseeesessssesesessssssssssseseses 28
3.4 THE PROCEDURE OF MEAP ..ot iiirecceeccreecteecreeeeeeeecsraeessaesessnsesssseessssessssesses 32
CHAPTER 4. MEAP IMPLEMENTATION 36
4.1 REMOTE AUTHENTICATION DIAL-IN USER SERVICE (RADIUS)......couvvevrrrcrernenee. 36
4.2 THE MAIN STRUCTURE OF MEARPccuiiitiirriicrinnctencneecnneensnneeesnesesneesssseesssnesens 39
4.2.1 The EAP DACKELScceoeeeeerirereneenrenrenseseesnessessessessessessessessassassassasssssssssensons 40
4.3 THE STRUCTURE OF MEAP MODULESccccirtierreeecreeersreessseeesssessssseessanesssnesssssscssnns 41
4.3.1 The structure of the complete RADIUS Modules..................ouuuueeeeeeennennnn.. 41
4.3.2 The structure of EAP MOAUIES...........o.cceoveeeeveneeueeeeeeereereeereceeeeseeeessessesennens 43
4.3.3 The structure of MEAP module................uuueceeeueeueeeeceeieeeeeeeeeeeseeeeeeesseseenens 46
4.3.4 The structure of SPEKE MOdule...............ccuecueoueeeeeeeieeieeeeeeeeeeeeseseessssens 48
4.3.5 The coding description of SPEKE module...............oueceveereveeveererereererernsnenne 49

CHAPTER 5. MEAP TESTING RESULTS 53

5.1 THE SETUP OF RUNNING ENVIRONMENTc.ververerserensesesesseresesesosessesessensonsossossesessen 53
5.1.1 The installation of FreeRADIUS.............cooucveeevenenesesernssesesssesessssssesesssssesesens 53
5.1.2 Change the RADIUS config file to support MEAP...............ceeeeeereereeerennne 53

5.2 THE PROCEDURE OF THE TESTING OF MEAP ...ttt eseessresneens 55

5.3 TEST 1: THE SUCCESSFUL AUTHENTICATIONc.cevrueueuerememenencessssssseesesssenaasassesesanees 56

5.3 TEST 2: THE FAILED AUTHENTICATION-WRONG SHARED SECRETc.evurururerrssenenens 66

5.4 TEST 3: THE FAILED AUTHENTICATION: WRONG USER’S PASSWORD.......ccveveveruereenens 69

CHAPTER 6. CONCLUSION AND FUTURE WORK 73
REFERENCES 77
APPENDIX . 79

1. THE INSTALL OF MIRACL LIBRARYcceerveeeueerrueeceresecseeesssessssssssssasesssasesssassssansss 79

2. THE IMPLEMENTATION OF MEAP METHODccccueerueeerueeererecersseeceesesssesessasessssesens 79
2.1 AP SPEKE.M ...ttt sttt a s 79
2.2FIM_@AD_SPERE.C.....ceeeeeeeeeeeeteee ettt et 81
2.3 €AD SPORE.C ...t see e saesae s e ettt saeerenns 88
2.4 SPERECIIENL.C.......eeeeeeeeeveereeeeereeeeereteete e et sste s e st e sae s s e sse st essassasssesseesnesssessesanes 95

3. THE OUTPUT FROM RADIUS SERVERcccerruirrirrursrensuesuessuessnssnessessuessnessessuesssenns 143
3.1. The successful QUIRENIICALION:ccueereereeereesreeriereeeiereeereeseesseseeesesesesssesnes 143
3.2. The failed wrong shared secret QUIRENLICALIONceueeueereerereeeeeneeeieeennennees 148
3.3. The failed wrong password QUIRENLICALIONeueeeeeuveueseenuecreneeriinesaennes 150

vii

AES
AP

CA
CHAP
CCMP
DoS
EAP
EAPOL
IAS

MAC
MDS5
MIC
MITM
MSCHAP
MSK
NAI
NAS
NIC
PEAP
PKI
PPP
RADIUS

RC4 PRNG

RLM

List of Abbreviations

Advanced Encryption Standard
Access Point

Certification Authority

Challenge Handshake Authentication Protocol
Counter Mode CBC-MAC Protocol
Denial of Service

Extensible Authentication Protocol
EAP Over LAN

Internet Authentication Service
Initialization Vector

Media Access Control
Message-Digest algorithm
Message Integrity Check
Man-In-The-Middle

Microsdft Challenge Handshake Authentication Protocol

Master Session Key
Network Access Identifier
Network Access Server
Network Interface Cards
Protected EAP

Public Key Infrastructure
Point-to-Point Protocol

Remote Authentication Dial-In User Service

Ron’s Code 4 Pseudo Random Number Generator

RADIUS Load Module

viii

SPEKE
SSL
TKIP

TLS
TLV

Simple Password-authenticated Exponential Key Exchange
Secure Socket Layer

Temporal Key Integrity Protocol

Transport Layer Security

Type-Length-Value

Tunneled Transport Layer Security

User Datagram Protocol

Wired Equivalent Privacy

Wireless Local Area Network

Wi-Fi Protected Access

ix

List of Tables

TABLE 6.1 THE COMPARISON OF EAP METHODS

List of Figures

FIGURE 2.1 802.1X LAYERS [24]...cveeererererereerensereesessesessesssessesasesesesessessesessessessssassassans 12
FIGURE 2.2 THE THREE ENTITIES IN 802.1X. ...ucevteereesrerrerreessenseessessassaessesasssesasssesssssssassees 14
FIGURE 2.3 THE PORTS IN 802.1X [3]...uteeteereeerreeneereeessesssessseessesssesssesssasssssssasssassssesssanes 15
FIGURE 2.4 802.1X AND EAP MESSAGE FLOW [7]. cveveetrenrerenrenesesreensensesessesessessesesessessens 16
FIGURE 2.5 A SIMPLE PKI FLOW ...t te e seeseesaeseessesaesaesaesaennesaesessnansnnnns 19
FIGURE 2.6 THE FLOW OF DIGITAL SIGNATUREcc0eceeteuessesseresuerersessssessessssessesassessssassassens 19
FIGURE 2.7 EAP-TLS PROTOCOL EXCHANGE [9] ..c.veeueereererurrnenuenuecrereesressessessessessessessesssenes 21
FIGURE 3.1 EAP LAYERScoueviiuetreteteteeseentesestesessessesessessssessssessesessessesessensensssesssnsenssans 24
FIGURE 3.3-1 THE MESSAGE FLOW OF MEAP PHASE]cccoceeuirieerrenieenenentneseseetsnenens 33
FIGURE 3.3-2 THE MESSAGE FLOW OF MEAP PHASE 2.......coccvvtrvterenenereeeesesseessessessssssones 34
FIGURE 4.2 EAP PACKET FORMAT [4]...ucvieeteierenteenretesessseesesessessesessestesessessensenesesessosens 40
FIGURE 4.3 EAP REQUEST AND EAP RESPONSE PACKET FORMAT [4]cocevurveruerueruescrnennene 41
FIGURE 5.1 THE FIRST PACKET CAPTURED BY ETHEREALceersteeruirrnerenienecsnessneecaeessnenes 58
FIGURE 5.2 THE SECOND PACKET CAPTURED BY ETHEREALccccevvreeuenenncrueirecsnencssessenens 60
FIGURE 5.3 THE THIRD PACKET CAPTURED BY ETHEREALcccceetreveruenereeeesessnesissecsscssenes 62
FIGURE 5.4 THE FOURTH PACKET CAPTURED BY ETHEREALcc.cocevrerenrenrcnrencneinncsnessnnns 63
FIGURE 5.5 THE FIFTH PACKET CAPTURED BY ETHEREAL.......cccceueeuerueneeruesucsuessessessecnessenns 65
FIGURE 5.6 THE LAST PACKET CAPTURED BY ETHEREAL.......ccccovuinerrunnrinresnnisneisnecsanesannnns 66
FIGURE 5.7 WRONG SHARED SECRET FLOW.....ccveeteeueruenreseeruessessessessessessessossessessessesssessassanas 67

FIGURE 5.8 THE PACKETS CAPTURED BY ETHEREAL WHEN SHARED SECRET IS NOT MATCH 68
FIGURE 5.9 MESSAGE FLOW WHEN RADIUS RECEIVED A WRONG PASSWORDccccccouveee. 69

FIGURE 5.10 THE PACKETS CAPTURED BY ETHEREAL WHEN PASSWORD IS NOT MATCH....... 72

xi

Chapter 1. Introduction

IEEE standard 802.11 is a series of specifications for Wireless Local Area Networks
(WLAN). The goal of 802.11 is to define an Ethernet-like communication channel using

radio waves instead of cables.

1.1 Wireless security requirements

As the growing of WLAN, it provides the users with a significant mobility advantages.
However, WLAN also present some serious security challenges. In general, the

challenges can be classified into three areas: authentication, encryption, and data

integrity.

1.1.1 Authentication

With wireless networks, there is no physical access to the network infrastructure. There is
an access point, and a client can associate with the access point without the knowledge of
its location. For this reason, users need to ensure that they are connecting to legitimate
access points that are part of the organization’s network, not “rogue” access points. Thus,
not only the user has to be authenticated by the network, but the network also needs to be

authenticated by the user. This is called mutual authentication [28].

1.1.2 Encryption

Wireless networks are much easier to be tapped because physical access to the network
does not require physical access to the equipment since transmissions are broadcasted
over radio waves. Frames can be easily intercepted in transit by using wireless network

analysis softwares. All the communication between the access points and the stations

need to be encrypted.

1.1.3 Data integrity

Since a third party can intercept the data, there is a risk of malicious modification of the
data. The receiver would have no way of knowing whether the data received is the
original data sent or whether the data has really been sent by the specified sender. So, a

mechanism to ensure integrity is necessary.

1.2 WEP-Based Security

Wireless transmissions are easier to intercept than transmissions over wired networks.
The 802.11 standard currently specifies the Wired Equivalent Privacy (WEP) security
protocol to provide encrypted communication between the client and an Access Point
(AP). WEP employs a symmetric key encryption algorithm based on Ron’s Code 4
Pseudo Random Number Generator - RC4 PRNG (NOTE: RC4 is a stream cipher where
a seed is used as input to the RC4 PRNG which produces an output bit string that is
XORed with the plaintext to produce the cipher-text)[1].

Under WEP, all clients and APs on a wireless network typically use the same key to
encrypt and decrypt data. The key resides in the client’s computer and in each AP on the
network. The 802.11 standard does not specify a key-management protocol, so all WEP
keys on a network usually must be managed manually unless they are used in conjunction
with a separate key-management protocol. For example, 802.1X (discussed later in this
thesis) provides WEP key management. Support for WEP is standard on most current
802.11 cards and APs. WEP specifies the use of a 40-bit encryption key and there are also
implementations of 104-bit keys. The encryption key is concatenated with a 24-bit
Initialization Vector (IV), resulting in a 64- or 128-bit key. This key is input into a

pseudorandom number generator. The resulting sequence is used to encrypt the data to be

transmitted. WEP keys can be entered in alphanumeric text or hexadecimal form.

1.2.1 WEP's Weakness

WEP's initial goal was to provide a level of security that conformed to the difficulty of
tapping Ethernet network traffic. In the case of wired Ethernet, you would need a
physical access to a network to sniff packets and intercept data. WEP's minimal security
should have met at lcast that level of protection. Unfortunately, WEP could not meet such
security requirements because of flaws in the conception and implementation of the

protocol.

Several articles appeared in 2001[25] [26] to address the weaknesses of the WEP. Initially,
cracking WEP required some expertise. But widely available, simple-to-use software now
makes it a snap for even a casual cracker to extract a WEP key from a home or business
network. Home users with less-busy Wi-Fi networks are less likely to be cracked both for
reasons of intent--someone might not bother--and time. The fewer the packets, the longer

it takes to crack a network and gain access to the traffic passing over it.

The vulnerability of WEP can be summarized as the following [1][20]:

e WEP key recovery: WEP uses the same WEP key and a different IV to encrypt
data. An IV is used to alter the key stream. The IV is a numeric value that is
concatenated to the base key before the key stream is generated. Every time the
IV changes, so does the key stream. Because the IV has only a limited range (0,
2%, the same IVs may be used over and over again. By picking the repeating IVs
out, an attacker can easily crack the WEP key.

e Unauthorized decryption and the violation of data integrity: Once the WEP key is

revealed, the attacker can transform the cipher text into its original form. Based

3

on the understanding of the algorithm, a hacker may use the cracked WEP key to
modify the cipher text and forward the changed message to the receiver.

e One-way authentication: WEP only provides a method for the clients to
authenticate AP, not a mutual authentication. As a result, it is possible for an

attacker to reroute the data to the AP through an unauthorized path.

Corporations relying on 802.1X network authentication systems that can automatically
swap WEP keys after just a certain number of packets may still have security problems.
Because more recently discovered methods of cracking WEP keys reduce the threshold
for data interception down below the number of packets sent before the authentication

system changes the key.

1.2.2 WEP's Replacement

The IEEE task group that was responsible for security, 802.11i, developed a compromise
solution that looked backwards to fix WEP and forwards to replace it without losing
compatibility [13]. The backward compatible solution is called Temporal Key Integrity
Protocol (TKIP).

TKIP has the following features:
¢ Create a longer, better IV of 48 bits than WEP;
e Increase randomness;
e Use a master key from which other keys are derived;

e Mix keys and IVs in such a way that each packet has its own unique key.

The 802.11i [2] also fixes the packet integrity by using a more advanced method of
detecting tampering, and putting this information in the encrypted part of the frame

instead of sending it in the clear text form.

The forward-looking part of 802.11i adds AES-CCMP (Advanced Encryption Standard -
Counter Mode CBC-MAC Protocol) for an essentially impregnable hiding of data that
supports longer and a cryptographically more secure stream of data than TKIP. AES is
quite widely used and has been adopted by the US government. The specific AES type
included in 802.11i, CCMP, is the same length as TKIP keys: 128 bits. However, its
underlying algorithm is much stronger. Most Wi-Fi chips released in late 2002 and

beyond include the necessary support for AES.

The TKIP and AES focus more on the encryption part of WLAN. To ensure the correct
authentication, 802.1x is proposed. In the implemented form of 802.11i specification
includes the support for the 802.1X and Extensible Authentication Protocol (EAP)
protocols. 802.1X is a way of defining roles so that a client can connect to the access
point and has a limited access -- a client can only talk to the access point, but cannot see
the rest of the network until the access point queries the client and relays its messages
back and forth to an authentication server, which then confirms the client's identity. EAP
is the protocol used to carry the authentication information. 802.1x and EAP will be

discussed in detail in Chapter 2.

1.3 The popular attacks against current WLAN
There are many related attacks such as free-loading, accidental threats, rogue WLANS
and eavesdropping [16]. This thesis addressed the security related to MITM, session

hijack, and spoofing.

e Man-In-The-Middle
A Man-In-The-Middle (MITM) attack [17] is when an attacker tricks a client into

believing that he is the entity that the client wants to connect to, in this case an access

point. The attacker then takes the authentication information it receives from the
client and logs on to a genuine AP and establishes himself as the man in the middle.
The attacker can then eavesdrop on the traffic or simply hijack the session. This
attack has been a problem especially in tunneled EAP methods such as
EAP-Transport Layer Security (TLS), EAP-Tunneled TLS (TTLS) and
EAP-Protected EAP (PEAP) [4]. In order for this attack to be successful, the
authentication process needs to be one-sided, i.e. only the client is authenticated and
not the AP. In order for eavesdropping to work, the authentication needs to be simple
enough so that the attacker can decode and install the session key. Only mutual and

robust authentication can prevent these types of attacks.

e Session Hijack

This type of attack is used by the attacker to gain control of a legitimate user's
session and use it as its own [10]. It is often used in conjunction with MITM and an
attack scenario using a challenge-response protocol can be illustrated as follows: An
attacker connects to an AP and receives a challenge. The attacker then poses as an AP
to get a client to connect to it. When a client connects to the attacker, it gets the same
challenge as that of the attacker. The client encrypts it, and then sends it back to the
attacker. The attacker then forwards the response to the genuine AP and is allowed to
log on. As a final act, the attacker sends a logoff-message to the client that has no
reason to suspect foul play. The necessary conditions that could be used to prevent this

attack are the same as MITM.

¢ Spoofing
Spoofing is when an attacker fakes the origin of a packet in order to achieve
something. It can also assume a different identity by switching to a different medium

access control (MAC) address. If an AP only uses MAC association as authentication

method this is a very trivial way to gain access to the network. MAC association
means that the AP has a list over the MAC addresses that are allowed; packets sent
from others are just thrown away. This technique is often used to facilitate other
attacks, for instance MITM, where the attacker uses spoofing to impersonate an AP to

lure clients to connect to it.

The spoofing itself is hard to stop, as there exists no network-level method of
ascertaining that an entity actually is who he says he is. But spoofing on its own is
rarely a major problem: it has to be combined with some other kind of attack in order

to be really damaging.

e Denial of Service

Denial of Service (DoS) is exactly what it sounds like: it is about denying
someone access to a service. It can be as easy as setting up a jamming beacon to
disrupt the AP's signals to deny them access to the network. There are basically two
kinds of DoS attacks: the ones that exploit flaws in the protocols and the ones that use
brute force to overwhelm the resource. There is no universal method for this category
of attacks. Tools designed to cope with them most often analyze traffic and then act
on anomalous events. But it is hard since some attacks are very subtle and
problematic to detect. Having a robust system that is deployed correctly using proven

security protocols goes a long way against mitigating the DoS threat.

1.4 The Different Links Involved

This section indicates the different links in the authentication system. It will look at the
protocols that are responsible for transport over the links and what level of security they

provide. The mutual authentication will cover all of the listed links.

1.4.1 Link between the Client and the Access Point

This link is the first to be initiated before authentication takes place. It is a very tricky
link to protect. Without the exchanging encryption keys in this link, there looks like can

be no protection.

The protocol used on this link is EAPOL (EAP Over LAN), which has no built-in
security measures except for the EAPOL-Key frame type. EAPOL-Key frames are used
to transport keying information to the client after authentication. They use RC4 for
encryption. They are also used with slight modifications (see the 802.11i standard for
details) to protect the traffic during the four-way handshake in 802.11i. Earlier, in
connection with WEP, it was mentioned that RC4 has documented the WEP’s weaknesses.
In this case, however, the key is of adequate length (the EAPOL-Key Encryption Key)

and the amount of information is so small that the risk of exposure is negligible.

The possible attacks on this link are mainly DoS attacks. One potential attack is for an
attacker to spoof the MAC address of any client trying to log on to the AP and then send a
EAPOL-Logoff message. The AP will then immediately shut down the connection,
shutting the client out. If this is done continuously, then the attacker will have the AP

entirely to himself.

1.4.2 Authentication link between Client and Authentication Server through AP

This link is the second one (from the client's perspective) to be established and it only
exists during authentication. The protocol used for this link is EAP, but the actual traffic
is encapsulated within other protocols during transport. From the client to the AP, traffic
is encapsulated in EAPOL packets. From the AP to the Authentication Server, traffic is

embedded into the Remote Authentication Dial-In User Service (RADIUS) packets.

There are no native security mechanisms in the EAP protocol. Such mechanisms are left
entirely to the implemented different authentication schemes. There is an RFC draft
detailing security requirements for EAP methods [11], according to which an EAP
method must support the following criteria:

e Session keys must be generated, rather than transported.

o The effective key strength must be no less than 128 bits.

e It must support mutual authentication.

o The EAP peer and server must share the same state at all times during the

authentication process.
e It must be resistant to dictionary attacks.
e It must have protection against MITM attacks.

¢ Cipher suite negotiation must be protected.

1.4.3 Link between Access Point and Authentication Server

As RADIUS is the de facto a standard for authentication servers, the protocol for this link
is RADIUS. This protocol specifies that each Access-Request packet should contain a
nonce, called Request Authenticator, ensuring replay protection. This Request
Authenticator is then calculated into a Message Integrity Check (MIC), called Response
Authenticator, used to ensure integrity for the Access-Accept and Access-Challenge
messages. To ensure confidentiality, a Keyed Hash (MDS5) is used as a stream cipher to
encrypt the password field. The shared RADIUS secret is used as key. There are also
extensions to the protocol defined in RFC 2869 [12]. Security wise, there are a few
additions, most notably a MIC for all messages. The RFC also elaborates a little more on
the security issues and discusses possible attacks. For instance, if the MIC is not used the

protocol is vulnerable to session hijacking, MITM and other attacks [12].

1.5 My contribution

802.11i is targeted solely for physical to link layer security. The upper layer mechanisms
are needed for creating authorized and encrypted communication between the client and
the actual server to be used. EAP is used as the authentication protocol. EAP separates the
message exchange from the process of authentication by providing an independent
exchange layer. Because of this property, EAP can be easily extended to support the other
security features. For this, different variations of the EAP are proposed. But each EAP

protocol has its own limitations.

EAP-TLS is a well-known protocol adopted by many WLAN users. But it needs digital
certificates on both server and client side, which makes it complicated in large-scale
enterprise. A more popular approach is PEAP. PEAP is a two-stage authentication
method. The first stage establishes a TLS session to the server and allows the client to
authenticate the server using the server’s digital certificate. The second stage requires a
second EAP method tunneled inside the PEAP session to authenticate the client to the
RADIUS sever. This allows PEAP to use a variety of client authentication methods.
MS-CHAPv2 has been the most popular approach but it has its limitation that only
supports windows operation system. To support PEAP in other platform, Simple

Password-authenticated Exponential Key Exchange (SPEKE) is adopted in this thesis.

The rest of the thesis is organized as follows. In chapter 2, we focus on the current
authentication protocols. Here the details of the EAP authentication progress are
discussed. In chapter 3, the MEAP protocol is proposed along with two parts: PEAP and
SPEKE. In chapter 4, we present the MEAP implementation procedures. In chapter 5,
three testing scenarios and the expected results are described. Finally, in the last chapter 6,

the conclusion and further work are discussed.

10

Chapter 2. The current EAP authentication

protocols

As we introduced in the previous chapter, WEP security features proved to be insufficient

to protect wireless LAN communication. To address the security issues of the original

IEEE 802.11 standard, the following additional technologies are used:

The 802.1x standard: This protocol is used to do the authentication in WLAN.
IEEE 802.1X provides per-user identification and authentication, extended
authentication methods, and encryption key management that can provide

dynamic, per-station or per-session key determination and rekeying.

The Wi-Fi Protected Access (WPA): This is used after the 802.1x standard. It is an
interim standard adopted by the Wi-Fi Alliance to provide more secure encryption
and data integrity while the IEEE 802.11i standard was being ratified. WPA
supports authentication through 802.1x (known as WPA Enterprise) or with a
preshared key (known as WPA Personal), a new encryption algorithm known as
the Temporal Key Integrity Protocol (TKIP), and a new integrity algorithm known
as Michael. WPA is a subset of the 802.11i specification. WPA2 is a product
certification available through the Wi-Fi Alliance that certifies wireless equipment
as being compatible with the 802.11i standard. The goal of WPA2 certification is
to support the additional mandatory security features of the 802.11i standard that
are not already included for products that support WPA. Like WPA, WPA2 offers

both Enterprise and Personal modes of operation.

Because the focus of this thesis is on the authentication part of WLAN, we will

emphasize on authentication protocols in the next chapters.

11

2.1 802.1x

Authentication is the act of ascertaining that a client actually is who it claims to be. If a
client passes this test of admission, it is authenticated and is allowed access to the
protected resource. To implement this process, a set of tools has been developed. In this

section, the authentication mechanism of 802.1x can be found in [3].

IEEE 802.1x is a specification for port-based authentication for wired networks [9]. It has
been extended for use in wireless networks. It provides user-based authentication, access
control and key transport. 802.1x is designed to be flexible and extensible. It relies on
EAP for authentication, which was originally designed for Point-to-Point Protocol (PPP),
but was reused in 802.1x. EAP is extensible; hence it can use any authentication

mechanism.

Figure 2.1 shows the 802.1x layers.

:

LEAP EAP-TLS PEAP
assword Authentication PKI Authentication Hybrid Authentication

A Application Layer
v | .
[802.1x] 802.1x Layer

A A

v v
{802.11 WLAN J [802.3 Ethernet }

Link Layer

Figure 2.1 802.1x Layers [24]

12

2.1.1 Three entities in 802.1x

802.1x uses three types of entities: the Supplicant, the Authenticator and the

Authentication Server.

The Supplicant: An entity at one end of a point-to-point LAN segment that is
being authenticated by an authenticator attached to the other end of that link. A

supplicant entity requests a network access.

The Authenticator: An entity at one end of a point-to-point LAN segment that
facilitates authentication of the entity attached to the other end of that link. An
authenticator entity relays 802.1X frames of a client (supplicant) to an
authentication server and after the authentication server approves the client’s
authentication, the authenticator provides network connectivity to the supplicant.

The access point may also serves as the Authenticator.

An Authentication server: an entity that provides authentication service to an
authenticator. This service determines from the credentials provided by the
supplicant, whether the supplicant is authorized to access the network services
provided by the authenticator. An authentication server entity authenticates,
authorizes and provides accounting service for clients in the WLAN structure.
Typically, the authentication server is a RADIUS server, which is coupled to the

wired network authentication.

The three entities are described in Figure 2.2

13

Supplicant Access Point
Authentication Server

The supplicant: Resides on the WLAN client
The authenticator: Resides on the access point
The authentication server: Resides on the RADIUS server

Figure 2.2 The three entities in 802.1X.

2.1.2 802.1x is port based

The standard IEEE 802.1x defines a port-based network access control. 802.1x is
designed to collect authentication information from supplicant, and grant or deny access
based on this information. A port is any kind of controlled access (router, switch, modem
line for dial-up, etc). Because 802.1x was not initially designed for wireless networks, to
adapt this concept to 802.11, we need to define what is a port in this context. The IEEE
community defines a virtual port as an association between a supplicant (station) and an

access point. The access control is performed at the MAC level.

A port can be considered as a logical connection between the supplicant and the
authenticator. An authenticator supports both the controlled port, which provides network
services after the client passes the authentication, and the uncontrolled port, which relays
EAP frames between the supplicant and the authentication server. A supplicant first
communicates via the uncontrolled port to authenticate. Then, if it is successfully
authenticated, the authenticator shifts the supplicant’s port from the uncontrolled to

controlled state enabling its use of the network services.

14

Figure 2.3 shows the port based 802.1x.

Authentication System Authentication System

(unauthorized) (authorized)

Controlled Port Uncontrolled Port Controlled Port Uncontrolled Port

A

WLAN

Figure 2.3 The ports in 802.1X [3]

2.1.3 The procedure of 802.1x authentication

When a client device attempts to connect with an access point, the access point responds
by enabling a port for passing only EAP traffic from the client to an authentication server
(typically a RADIUS server) located on the wired side of the access point. The access
point blocks all other traffic, such as HTTP, DHCP, and POP3 packets, until the
authentication server can verify the client's identity. Once authenticated, the access point
allows other types of traffic on the client's port. In general, the protocol of
communication between the client and the access point is EAP over LAN (EAPOL) and
the communication protocol between the access point and the authentication server is

EAP over RADIUS.

EAP is essentially a transport protocol [4]. Its main advantage is that it provides an

authentication framework and can be used by a variety of different authentication types

15

known as EAP methods. It is designed to allow authentication methods to be deployed
with no changes to the access point. EAP is used to pass the authentication information
between the supplicant and the authentication server. The choice of authentication type is
defined by the EAP type. The software supporting the EAP type resides on the
authentication server and within the operating system of the client. The access point can
be seen as a bridge between the supplicant and the authentication server. One of the goals
of EAP is to enable the development of new authentication methods without modifying
the access point. One of the key points of 802.1X is that the authenticator can be simple
and dumb---all of the brains are in the supplicant and the authentication server. This
makes 802.1X ideal for wireless access points, which typically have little memory and
processing power. Since the authentication mechanism is independent of the access point,

we can specify any EAP method without updating access points [8].

Figure 2.4 shows us details information about the message flow.

irel ired
802.1x Clients wireess Authenticator <—r » Authentication
Server
Association-Request >
< Association-Response 8T02-1 1
802.1x
EAPOL-Start .
»| Access EAPOL
P EAP-Request/Identity blocked
EAP-Response/ldentity
EAP-Request
EAPOL-Response/Credentials N|
n
n
® EAP-Success
P EAPOL-Key Access Allowed
Four-way
handshake

Figure 2.4 802.1x and EAP message flow [7].

16

There are four message types in EAP protocol: Request, Respond, Success, Failure. EAP
can encapsulate multiple authentication methods, such as TLS, TTLS and MDS5. The
Authentication Server uses the Success or Failure fnessage to notify the AP whether the

client authentication was successful or not.

The whole message flow is briefly described as follows: The authenticator sends an
EAP-Request/Identity packet to the supplicant once it has associated with the access point.
The Request-Identity and Response-Identity messages precede other request and response
messages. After that, the EAP begins to encapsulate other authentication protocols. If the
EAP authentication succeeds, the authentication server and supplicant generate a
common secret key called Master Session Key (MSK), this key is bind with the MAC

address of the supplicant.

Deployments of the IEEE 802.11 wireless LANs today are based on EAP, and use several
EAP methods, including EAP-TLS [RFC2716][19], EAP-TTLS, PEAP and EAP-SIM.
These methods support authentication credentials that include digital certificates,

user-names and passwords, secure tokens, and SIM secrets.

2.2 EAP-TLS

EAP-TLS, EAP Transport Layer Security (TLS) [19], is a Microsoft-supported EAP
authentication algorithm based on the TLS protocol (RFC2246)[18]. TLS is the current
version of Secure Socket Layer (SSL) used in most Web browsers for secure Web
application transactions. TLS has proved to be a secure authentication scheme and is now
available as an 802.1X EAP authentication type. EAP-TLS is supported in the Microsoft

XP platform, and suppose is planned for legacy Microsoft operating systems as well.

17

2.2.1 TLS Overview

EAP-TLS is based on SSL v3.0. To better understand EAP-TLS operation, and our
modified protocol is also based on TLS, this section focuses on the theory part of TLS.
TLS is designed to provide secure authentication and encryption for a TCP/IP connection.
To provide this functionality, TLS comprises three protocols [9]:

e The handshake protocol: The handshake protocol negotiates the parameters for
the TLS session. The TLS client and server negotiate the protocol version,
encryption algorithms, authenticate each another, and derive encryption keys.

o The record protocol: The record protocol facilitates encrypted exchanges between
the TLS client and the server. The negotiated encryption scheme and encryption
keys are used to provide a secure tunnel for application data between the TLS
endpoints.

e The alert protocol: The alert protocol is the mechanism used to notify the TLS

client or server of errors as well as session termination.

TLS authentication is generally split into two methods: server-side authentication and
client-side authentication. Server-side authentication uses a public key infrastructure
(PKI), namely PKI certificates. For TLS authentication, client-side authentication can

also use PKI certificates, but this is optional. But for EAP-TLS, it uses both server-side

and client-side certificates.

2.2.2 PKI and Digital Certificates

PKI encryption is based on asymmetric encryption keys. A PKI user has two keys: a
public key and a private key. Any data encrypted with the public key can be decrypted
only with the private key, and vice versa. For example: Bob gives Alice his public key.
Alice then sends Bob an e-mail encrypted with his public key. For Bob to read the

message, he has to decrypt the message with his private key. Because Bob is the only

18

person with access to his private key, this is the only person that can decrypt the message.

The procedure is showed in Figure 2.5.

Decrypted
Encrypted JPE
Email with gm:,n with -
Bob’s Public P2vaie Ke Bob is the
Alice send Key , Bob y > °“|3é (t)l?e can
email to Bob read the
email
Figure 2.5 A simple PKI flow

Digital certificates are data structures distributed by a certificate authority that join a
public key to a user. The digital signature is derived by combining the certificate version,
serial number, issuer, user, user’s public key, and validity period and running the values
through a keyed hash function. The certificate authority keys the hash with its own

private key. The procedure is showed in Figure 2.6.

Version Number

Serial Number

Issuer

User

User’s Public Key Hash
Validity Period

Digital Signature

Certificate Authority’s Private Key

Figure 2.6 The flow of Digital Signature

2.2.3 TLS Authentication Process

The TLS process begins with the handshake process:
1. The TLS client connects to a server and makes an authentication request;

2. The server sends its digital certificate to the client;

19

3. The client verifies the certificate’s validity and digital signature;
4. The server requests the client-side authentication;

5. The client sends its digital certificate to the server;

6. The server verifies the certificate’s validity and digital signature;
7. The encryption and message integrity schemes are negotiated;

8. Application data is sent over the encrypted tunnel via the record protocol.

2.2.4 EAP-TLS Authentication Process

EAP-TLS supports mutual authentication and dynamic keying. The server gives a
certificate to the client and the client validates it. Once the client is confident of the

server’s identity, it sends its certificate to the server.

The EAP-TLS authentication process is illustrated as Figure 2.7:

20

Client < wireless Authenticator <+— 1 > Autl;e:ﬁ:?tion
Association-Request >
., Association-Response 8{2-1 1
EAPOL-Start > Access l
EAP-Request/Identity blocked

A

EAP-Response/ldentity

EAP-Request/TLS/Start

EAP-Response/TLS/ClientHello

EAP- request/TLS/Se
CertificateRequest, S¢

rverHelloDone

erHello,Certificate, [ServerKeyExchangg].

EAP- response/TLS/Certificate, [Cli
CertificateVerify, ChangeCipherSp¢

bntKeyExchange],
c, Finished

!

EAP-Request/TLS/ChangeCipherSpec, Finished

A

EAP-Response/TLS

EAP/ Success

)

A

Figure 2.7 EAP-TLS protocol exchange [9]

Access Allowed

Wireless Client gets associated with the AP.

Client and
Server validate
Each other's
Certificate

Encrypted
Exchange

AP does not permit the Client to send any data at this point and the AP sends an

Authentication request.

The Client will then respond with an EAP- Response Identity with user identity

credentials back to the Authentic

ation Server.

The Authentication Server such as RADIUS responds back to the Client with an

EAP-TLS Start Packet.

The EAP-TLS conversation starts at this point.

The Client sends an EAP-Response back to the Authentication Server which

contains a Client_hello handshake message, a cipher that is set for NULL (and

that will remain this value until change cipher_spec are negotiated), and TLS

21

version number.

6. The Authentication Server will present its certificate to the Client as well as
request a valid one from the Client. The Authentication Server responds with an
EAP-Request packet that contains the following: TLS server_hello, handshake
message, server certificate, server_key_exchange, certificate request and
server_hello_done.

7. The Client responds with an EAP-Response message that contains the following:
Client Certificate, Client_key_exchange, certificate_verify change_cipher spec
and TLS finished Message.

8. After the Client authenticates successfully, the EAP server will respond with an
EAP-Request that contains the change cipher spec and finished handshake
message. The finished handshake message contains the authentication response
with the hashed key from the server. Upon receiving this, the Client will verify the
hash in order to authenticate the EAP server. A new encryption key is dynamically
derived from the master key (The key derived between the EAP client and EAP
server during the EAP authentication process i.e. during the TLS handshake).

9. At this point the EAP-TLS protocol enables the port and the wireless Client can

access the network.

2.3 EAP-TTLS
Proposed by Funk and Certicom, EAP- Tunneled TLS is an extension of EAP-TLS and

provides the benefits of strong encryption without the complexity of mutual certificates
on both the client and authentication server. Like TLS, EAP-TTLS supports mutual

authentication, and it only requires the authentication server to be validated to the client

through a certificate exchange [8].

22

EAP-TTLS allows the client to authenticate to the authentication server by using
usernames and passwords and only requires a certificate for the authentication servers.
EAP-TTLS simplifies roll out and maintenance and retains strong security and
authentication. A TLS tunnel can be used to protect EAP messages and existing user
credential services such as Active Directory, RADIUS, and LDAP can be reused for

802.1X authentication.

EAP-TTLS provides a sequence of attributes that are included in the message. By
including a RADIUS EAP-Message attribute in the payload, EAP-TTLS can be made to
provide the same functionality as Protected EAP (PEAP) (will discuss in next charter). If,
however, a RADIUS password or Challenge Handshake Authentication Protocol (CHAP)
password attribute is encapsulated, TTLS can protect the legacy authentication
mechanisms of RADIUS. When the TTLS server forwards RADIUS messages to the
home server, it encapsulates the attributes by EAP-TTLS and inserts them directly into

the forwarded message.

Because this method is similar to PEAP, it is gradually being replaced by PEAP.

23

Chapter 3. The MEAP method

MEAP is based on PEAP added with SPEKE to ensure the high level authentication. As
we know, after typically EAP authentication process, the authentication process leaves
two considerations: First, the AP still needs to be authenticated by the client. Second, we
still need derive keys to encrypt the traffic. In this thesis, we define MEAP to satisfy
mutual authentication and also try to provide simultaneous authentication like EAP-TLS.
Also, because MEAP is based on PEAP, MEAP only requires server-side certificates, thus,

MEAP is more scalable for large scaled networks.

Figure 3.1 shows the protocol layers for communication between the supplicant and the

MEAP
Application Layer

v

[EAP J EAP Layer

4\ A
\ v

MACL
[802.11 WLANJ {802.3 Ethernet‘] ayer

authenticator.

Figure 3.1 EAP Layers

3.1 The problems in EAP protocols

The Wi-Fi Alliance now offers testing for five EAP types for WPA/WPA2 certification:
EAP-TLS (part of the original WPA test suite, although formally required, just de facto),
EAP-TTLS/Microsoft CHAPv2 (MSCHAP) (common TTLS method), PEAPVO0

24

/EAP-MSCHAPvV2 (Microsoft's version), PEAPvI/EAP-GTC (Cisco's version), and
EAP-SIM (of wide interest to cell operators for Wi-Fi cell authentication convergence)

[21].

All of these EAP methods still have certain amounts of risk in part because of the
potential for authentication information to be wormed out of less secure systems, and
then broken through brute force offline. William A. Arbaugh [27] maintains a list of

currently well-known problems; it is a constantly updated site.

EAP is not a secure protocol: it sends its messages in the clear. A method of creating an
encrypted EAP session using TLS appeared, and was shipped by Microsoft and others as
EAP-TLS, but it requires an installation of client certificate on every computer that wants
to connect. It also leaves some useful information in the clear, although it is seemingly

impossible to exploit that information.

EAP-TLS offers mutual authentication, however, in which the client and authentication

server can verify each other's identity before the start of the transaction.

Two fixes to the EAP-TLS’s problem appeared in the form of EAP-TTLS and PEAP. Both
methods first start a TLS session using a server-side certificate, and then pass user

authentication using an inner method for the actual user credentials.

PEAP's success appears to be a given as time continues to pass and more companies give
up legacy authentication in favor of EAP methods which would be fully supported under
PEAP, and as third parties continue to support the encrypted standard. The currently most
common used inner method of PEAP is MSCHAP. Microsoft has shipped PEAP updates to
Windows XP and 2000 [11].

25

But PEAP plus MSCHAP limited PEAP to only running on Windows-based Operation
System, if users want to using other Operation system, PEAP can’t work properly, and
may need the vendor to develop new firmware to support it. So PEAP plus SPEKE is

developed in this thesis.

3.2 PEAP

Protected EAP is a draft EAP authentication type that is designed to allow hybrid
authentication [5]. PEAP employs server-side PKI authentication. For client-side
authentication, PEAP can use any other EAP authentication type. Because PEAP
establishes a secure tunnel via server-side authentication, non-mutually authenticating
EAP types can be used for client-side authentication, such as EAP generic token card

(GTC) for one-time passwords (OTP), and EAP MD5 for password based authentication.

PEAP is based on server-side EAP-TLS, and it addresses the manageability and
scalability shortcomings of EAP-TLS. Organizations can avoid the issues associated with
installing digital certificates on every client machine as required by EAP-TLS and select

the method of client authentication that best suits them.

3.2.1 PEAP Authentication Process

PEAP protocol has two phases. The first phase is to establish a secure tunnel using the
EAP-TLS with server authentication. The second phase implements the client

authentication based on EAP methods, the exchange of other PEAP-specific capabilities

through the secure transport established during phase 1.

PEAP authentication begins in the same way as EAP-TLS:

26

5.
6.

The client sends an EAP Start message to the access point;

The access point replies with an EAP Request Identity message;

The client sends its Network Access Identifier (NAI), which is its username, to
the access point in an EAP Response message;

The access point forwards the NAI to the RADIUS server encapsulated in a
RADIUS Access Request message;

The RADIUS server will respond to the client with its digital certificate;

The client will validate the RADIUS server’s digital certificate;

From this point on, the authentication process diverges from EAP-TLS;

7.
8.
9.

The client and server negotiate and create an encrypted tunnel;

This tunnel provides a secure data path for client authentication;

Using the TLS Record protocol, a new EAP authentication is initiated by the
RADIUS server;

10. The exchange will include the transactions specific to the EAP type used for client

authentication;

11. The RADIUS server sends the access point a RADIUS ACCEPT message,

- including the client’s WEP key, indicating successful authentication.

3.2.2 Common PEAP Authentication weakness

The current common PEAP are always using Microsoft PEAP, which supports client

authentication by only MSCHAP Version 2. Microsoft PEAP limits user databases to

those that support MSCHAP Version 2, such as Windows NT Domains and Active

Directory [22].

Also, to use Microsoft’s PEAP, users must purchase individual certificates from a

third-party Certification Authority (CA) to install on their Internet Authentication Service

27

(IAS), and a certificate must be installed in the user’s local computer certificate store. For
wireless clients to validate the IAS certificate chain properly, the root CA certificate must

be installed on each wireless client.

Windows XP, however, includes the root certificates of many third-party CAs. If the IAS
server certificates correspond to an included root CA certificate, no additional wirelss
client configuration is required. If users purchase IAS server certificates for which
Windows XP does not include a corresponding root CA certificate, they must install the

root CA certificate on each wireless client.

The install procedure of Microsoft’s PEAP is more likely with the installation of
EAP-TLS, which also need install client certification on client. The benefit of PEAP is
wasted, or more likely to say, denied in this certificate installation process. In response to

the inconvenience of Microsoft PEAP method, SPEKE is chosen in this thesis.

3.3 The SPEKE used in MEAP

The SPEKE relies on exponentiation involving large random numbers modulo a large
prime number. The exponentiation operator can be considered a one-way function due to
the difficulty of calculating discreet logarithms (the inverse of exponentiation). Each
party — the user station and the authenticator — will work from its knowledge of the user’s
password p to calculate a common master session key K. To do this, each party generates
a large random number. The user station generates the value a, and the authenticator
generates the value b. Each party only knows one value; no one ever knows both. The

password p, which is known to both the user and the authenticator, is small and easy to

remember [6].

Initially, the AS and the client share the values:

28

m= large prime number

: user’s password
p A

Let define the following terms used in MEAP:
a: a large random value generated by the Client
b: a large random value generated by the Authenticator
| : the concatenation operator

K: Master session key, is independently calculated by each party

In the discussion below, we consider two parties, the client and the authenticator. In
wireless networks, the authenticator is the AP. In practice, however, there is often a third
party — a backend authentication server that the AP consults. In this case, it is the
authentication server that actually plays the role of authenticator in the discussion below
with the AP acting in a pass-through role. A RADIUS server is using as authentication

server and AP is omitted in this thesis.

The following figure 3.2 describes the flow of SPEKE:

29

Clients Authenticator

EAP-Identity Request

<

EAP-Identity Response

Find client’s password pw
Request {m, B} Create large random number b
B=pw?®modm

Create large random number a
A =pwZmodm

K=B2mod m K=Abmodm

Pl'OOfAK =h (aAnI A I K) Response {A, ProofAK} TestAK =h (uAnl A ‘ K)
Proofyc=h (“B"|B | K)
If Test,k = Proofy, ,
then send Proofy,

else fail
Request {Proofy,}
Test;, =h (“B"|B|K) -
If Testgy = Proofy, ,
then success and return empty
else fail
Response {}
success

Figure 3.2 the flow of SPEKE [6]
The authenticator kicks off the EAP conversation by sending an EAP-Identity Request to

the user station. The client replies with the user’s identity.

When the authenticator receives the client’s EAP-Identity Response, it looks up the user
in its access repository and retrieves the client’s password p. Next, the authenticator
creates a large random number b and calculates

B =p*® mod m
Where B is an intermediate value and m is a large prime number used as the modulus.

The authenticator sends m and B to the user station in an EAP-SPEKE Request message.

After receive the request, the client creates another large random number “g” and
calculates

30

A=p®modm
Next the client calculates
K=B"mod m
where X is the user station’s calculation of the master session key and B is the value
received from the authenticator. Finally client calculates
Proofax =h (“A” | A | K)
where Proofyx is the proof that 4 knows X, h is a secure, one-way hash function, “A” is

the ASCII string containing a capital A.

The client now sends an EAP response to the Authenticator containing A and Proofak.
When the authenticator receives the response to its first EAP-SPEKE Request, it
calculates
K=A"mod m

where K is the authenticator’s calculation of the master session key and A4 is the value
received from the user. Next the authenticator calculates

Testak =h (“A” |A | K)
and

Proofgk =h (“B” | B | K)
Now the authenticator compares Testak to the value Proofak received from the client. If
they are not equal, the authenticator signals failure. If they are equal, the authenticator

sends a second EAP-SPEKE Request to the user station.

When the user station receives the second EAP-SPEKE Request, it calculates

Testgk =h (“B” | B | K)
from values received or calculated earlier. The user station compares Testgk to the value
Proofgk received from the authenticator. If they are not equal, the user station aborts the

attempted session. If they are equal, the user station returns an empty EAP-SPEKE

31

Response to the authenticator to signal that it is satisfied with the authentication.

When the authenticator receives the empty response, it returns an EAP Success message to

the user station as a final signal that the authentication succeeded.

The session key K is independently calculated by each party. This works due to the
associative property of exponentiation. It is computationally infeasible for an attacker to
work backward from the values 4 or B to calculate p due to the difficulty of calculating
discrete logarithms, the inverse function to exponentiation. Note also that if p is
compromised, an attacker listening in on an authentication between the user and the
authenticator is still unable to calculate K. To calculate K he would need to know the
values of both a and b which are very large random numbers. Neither can the attacker
work backward from Proofyx or Proofpx to calculate K because h is a one-way hash
function. This inability to calculate K even if p is known is what gives SPEKE the

property of forward secrecy defined.
The master session key X itself is not used as a WEP or TKIP key to encrypt the wireless

data session being established. Those keys are derived from K using a key derivation

function.

3.4 The procedure of MEAP

The message flow is shown on figure 3.3-1 and 3.3-2.

32

wireless . wired , Authentication

Clients < > Authenticator <«
Server
Step 1 < : Issue Certificates
Establish Connection (wireless) Secure Channell
Step 2 < > | < >
Identity Request
Step 3 - Identity Response 5 |
P EAP-TLS Start 4 Pha
h Client Hello
Step 4 { Server Hello (Certificate, ServerKeyExchange, Certificate Request)
Stan & Denve MSK (Certificate, ClientKeyExchange, CertificateVerify, ChangeClpherSpeg
ep
P Derive MSK, ChangeCipherSpec
Step 6{ h EAP Success)h
Figure 3.3-1 The message flow of MEAP phasel
Step 1

Similar to EAP-TLS, the EAP server requires a certificate; the client/peer certificate is

optional.

Step 2

The client/peer must establish a connection to the authenticator—in this case, a wireless
connection. An important requirement is the secure channel between the authenticator
and the EAP server. This is vital because the specification does not indicate how this is

established, but it requires one.

Step 3
The identity request-response is the basic EAP sequence, which is sent in the clear. In
PEAP, this is used for administrative purposes, such as which server to select, and

possibly for other initial context setup. The identity, which is sent in the clear, should not

33

be used for any other purposes. Any identity exchange should happen in phase 2 after the
secure tunnel is established—for example, tunneling the identity request-response using
the EAP-TLV. EAP-TLV is a payload with standard Type-Length-Value (TLV) objects.

The identity response is sent to the EAP server, which in turn starts the process with the

EAP-TLS start message.

Steps 4, 5, and 6

These steps are typical EAP-TLS exchanges. Usually the client certificate is not

exchanged. The successful completion of the EAP-TLS ends phase 1, and phase 2

leverages the secure tunnel created by phase 1.

From step 7, the phase 2 began.

irel . Lo
Clients < T Authenticator <« » Authentication
Server
P EAP-Request/EAP-TLV[EAP-Payload-TLV[EAP-Request/Identity]]
Step 7{ h Tunneled Identity Response * Phase 2
] IEAP-RequestIEAP-TLV[EAP-Payload-1 LV[EAP-Request/Identity-Type=SPEKE]]
h Tunneled Response for EAP T}pe SPEKE
P Tunneled SPEKE Req.{m,B}
Step 8 4 h Tunneled SPEKE Resp.{A, Proof,}
P Tunneled SPEKE Req.{Proofg,}
uh Tunneled SPEKE Resp.{} J
EAP-Request/EAP-TLV[ReSULT-T{V[CrytoBinding...]]
stepo f <
Result-TLV Response
Step 10 <«—Derive CSK (Compound Session Ke}) Derive CSK "
CSK

Step 11 { EAP Success

< EAP Success
Step 12 Exchange Data Using Key Based on the|Derived CSK

Figure 3.3-2 The message flow of MEAP phase 2

34

Step 7
This is the beginning of phase 2. The EAP-TLV mechanism can be used to tunnel the

normal EAP identity exchange.

Step 8

In this step, the EAP server authenticates the client using any of the EAP mechanisms:
EAP-MDS5, EAP-CHAP, EAP-SIM, and so on. Typically, is using MSCHAPv2. But
MSCHAPV2 is only support windows operation system, so SPEKE is used in here. The
exchange is fully protected by the TLS tunnel, and the EAP-TLV choreography allows a
graceful mechanism to affect the EAP mechanisms. This is the heart of the PEAP
method—the server with a certificate, the establishment of the tunnel by TLS, and the use

of the EAP methods available in the organization's infrastructure.

Step 9

This is the final stage of crypto binding and so on between the client and the EAP server.

Step 10

In this step, the client and the server derive the required keys.

Step 11
This is where the authenticator receives the keys and the result of the authentication

process.

Step 12
Now the client and AP can exchange information using the keys that are derived from the

PEAP mechanism.

35

Chapter 4. MEAP Implementation

We implement the MEAP by add SPEKE part on FreeRADIUS by C and running it on
Linux Redhat 9.0. The implementation shows that the client and authenticator can

authenticate each other.

4.1 Remote Authentication Dial-in User Service (RADIUS)

To implement MEAP, the RADIUS server should be first introduced. The main server
side code is based on RADIUS. The clearly understand of RADIUS will help us

understand the whole procedure.

The RADIUS protocol is based on a client/server model. A network access server (NAS),
which in WLAN is the wireless Access Point, operates as a client of RADIUS. It is
responsible for passing user’s information to a designated RADIUS server and then
acting on the response that is returned. In this testing, I set the NAS’s address to 127.0.0.1,

which supposes the RADIUS server and AP existing on one PC.

All RADIUS messages are sent as User Datagram Protocol (UDP) messages. Only one
RADIUS message is included in the UDP payload of a RADIUS packet.

A RADIUS packet (Figure 4.1) consists of a RADIUS header and RADIUS attributes.
Each RADIUS attribute specifies a piece of information about the connection attempt. For
example, there are RADIUS attributes for the user name, the user password, the type of
service requested by the user, and the IP address of the NAS (access point). RADIUS

attributes are used to convey information between RADIUS Clients (access point) and

RADIUS servers.

36

0 1 2 3

Code Identifier Length (Total
Length of
Packet)
Authenticator
Attributes

FIGURE 4.1 RADIUS PACKET FORMAT

Code (1 Byte), identifies the type of RADIUS packet.
1: Access-Request
2: Access-Accept
3: Access-Reject
4: Accounting-Request
5: Accounting-Response
11: Access-Challenge
12: Status-Server (experimental)
13: Status-Client (experimental)
255: Reserved

Identifier: This helps in matching requests and replies. The RADIUS server can detect a
duplicate request if it has the same Client source IP address and source UDP port and

identifier.

Length: This value indicates the total length of the packet. The ideal length of the packet
should be between 20 to 4096.

Authenticator: This can represent a Request or a Response. The Request Authenticator

37

value is a 2-byte random number with a unique and unpredictable value. The Response

Authenticator is a response challenge with a combination of Code + ID + Length +

RequestAuth + Attributes + Secret.

Then Let’s take a look at RADIUS packet type [29][30].

Access-Request: Sent by a RADIUS Client to request authentication and
authorization for a network access connection attempt. It determines whether a
user is allowed access to a specific NAS, and any other specific service.
Access-Accept: Sent by a RADIUS server in response to an Access-Request
message when all conditions are met. The message informs the RADIUS Client
that the connection attempt is authenticated and authorized and it contains the list
of configuration values for the user.

Access-Reject: Sent by a RADIUS server in response to an Access-Request
message if any condition is not met. This message informs the RADIUS Client
that the connection attempt is rejected. A RADIUS server sends this message if
either the credentials are not authentic or the connection attempt is not authorized.
Access-Challenge: Sent by a RADIUS server in response to an Access-Request
message if all conditions are met and RADIUS server wishes to issue a challenge
to which the user must respond. The Client in response resubmits its original
Access-Request with a new request ID, response (encrypted), and including the
Attribute from the Access-challenge.

Accounting-Request: Sent by a RADIUS Client to specify accounting information
for a connection that was accepted.

Accounting-Response: Sent by the RADIUS server in response to the
Accounting-Request message. This message acknowledges the successful receipt

and processing of the Accounting-Request message.

38

So how does RADIUS server work with EAP protocol? The RADIUS server encapsulates
the.EAP packets within a standard RADIUS packet using the EAP-Message attribute, and
then transmits them back and forth between the RADIUS Client and the RADIUS server
[12]. The access point then becomes only a pass-through device relaying EAP
authentication messages from the wireless Client device to the RADIUS server and vice
versa without having to process the packets. In this way, every new EAP type that is
introduced need not be installed at each access point but only at the RADIUS server end.
The access point would then behave the same way for each EAP type thus making it

extremely flexible.

The RADIUS Client (access point) must however support the negotiation of EAP as an
authentication protocol and the passing of EAP messages to a RADIUS server. When a
connection attempt is made, the end user negotiates the use of EAP with the access point.
When the user sends an EAP message to the access point, the access point encapsulates
the EAP message as a RADIUS message and sends it to its configured RADIUS server.
The RADIUS server processes the EAP message and sends a RADIUS-formatted EAP
message back to the access point. The access point finally forwards the EAP message to

the end user.

4.2 The main structure of MEAP

MEAP in fact is the combination of PEAP and SPEKE. But how can these two different
authentication protocols work together? Here we should also know two main features of

EAP.

The first feature is that, EAP separates the message exchange from the process of

authentication by providing an independent exchange layer. Because of this property,

39

EAP can be easily extended to support the other security features.

The other feature is orthogonal extensibility, meaning that the authentication processes
can extend the functionality by adopting a newer mechanism without necessarily

effecting a corresponding change in the EAP layer.

Based on this feature, PEAP can work together with SPEKE.

4.2.1 The EAP packets

The format of EAP packets is illustrated in Figure4.2 [4]. All EAP packet headers begin
with four octets header. First eight bits indicate the code of the message. The next eight
bits are the Identifier that helps in matching Responses with Requests. The rest 16 bits
describe the Length of the EAP packet in octets including the header. This is also the
format of the EAP-Success and the EAP-Failure messages, which have no data to be

carried [28].

0 1 2 4

Length (Total
Length of Packet)

Figure 4.2 EAP packet format [4]

Code (1bytes)
1 Request
2: Response
3: Success

4: Failure

40

If the code = 1 or 2, then EAP-Request and EAP-Response message is define in Figure
4.2. After the common EAP header, there is a 1 bytes value Type, which defines the type
of the Request or the Response. Normally the Type of the Response is the same as the
Type of the Request it is replying. The Type-Data field carries the actual payload of the
Request of the Response and its length and contents depend on the Type of the particular

message.
0 1 2 4
Length (Total Length
Code | Identifier of Packet)
Type Type-Data «-.

Figure 4.3 EAP Request and EAP Response packet format [4]

All the EAP implementation should base on the EAP packet format. In this program,
eapcommon.c defines the common code to clients and server. Here I add the eap_type =

speke in it to let server knew that EAP type = speke.

4.3 The structure of MEAP modules

4.3.1 The structure of the complete RADIUS Modules

FreeRADIUS is an authentication server. The server performs the functionalities of

receiving a RADIUS request, processing the request, and responding to the request.

The FreeRADIUS code is organized in a modular format. It handles all RLM (RADIUS
Load Module) requests through a module interface. All modules are present in the local

sub-directory “src/modules/” of the installed main source code directory.

FreeRADIUS implements EAP as a module. All EAP-Types are organized as

41

sub-directories in “src/modules/rim_eap/types/” directory and are handled in their

respective sub modules. Each EAP-Type contains a block of code that knows how to deal

with a particular kind of authentication mechanism. Thus RLMs first processes a request

of the particular authentication type say EAP in “src/modules/rlm_eap/eap.c”. This file

would contain the basic EAP and generalized interfaces to all the EAP-Types. From here

based on the EAP type specified, further authentication is performed via the

“rlm_eap_XXX” module where XXX is an EAP_Type name defined in the module
section of the RADIUSd.conf file.

The used RADIUS source code directory is shown as figure 4.4.

radius

We

created

]

doc

(

libltdl

raddb

the

1

main

[

lib

test

include

folder

[

rlm_ldap

rim_sql

modules<

rlm_eap<

rlm_mschap

named

\

\ rlm_digest

1
1
1
]
1]
'
1
H

rlm_eap.c

types

eap.h

eap.c

]
'
1
1
1
1
1]
1
]
'
H

FIGURE 4.4 FREERADIUS CODE STRUCTURE

rlm_eap_speke

|

\

—

rlm_eap_ttls

rl_ea _peap

rlm_eap_speke

rlm_eap_tls

under the folder

FreeRADIUS-1.1.2/src/modules/rim_eap/types. All the SPEKE part codes are stored and

42

execute from here.

The whole program uses the main module EAP, and sub-module PEAP and EAP_TLS.
Another sub-module SPEKE is created. Here, the orthogonal extensibility feature of EAP

is used.

4.3.2 The structure of EAP modules

The rlm_eap module deals with EAP authentication mechanisms and the virtual interface
to interact with all the EAP-Types. One of the most important function, authenticate() is
used among all sub modules.
int authenticate(void **type_arg, EAP_HANDLER *handler) This uses specific
EAP-Type authentication mechanism to authenticate the user. During
authentication, many EAP-Requests and EAP-Response take place for each
authentication. Hence authenticate() function may be called many times.

EAP_HANDLER contains the complete state information required.

4.3.2.1 eap.h
First, let’s take a look at eap.h, which define all the important functions that used in all
sub modules.
e EAP_DS contains all the received/sending information, where
response = Received EAP packet

request = Sending EAP packet
typedef struct eap_ds {
EAP_PACKET *response;

EAP_PACKET *request;

43

int set_request_id;

} EAP DS;

EAP_HANDLER is the interface for any EAP-Type. Each handler contains
information for one specific EAP-Type. This way we don't need to change any

interfaces in future.

typedef struct _eap_handler {
struct _eap handler *next;
uint8 t statefEAP_STATE LEN];
uint32 t src_ipaddr;
unsigned int eap_id;
unsigned int eap_type;
time_t | timestamp;
REQUEST *request;
char *identity; /* User name from EAP-Identity */
EAP_DS *prev_eapds;
EAP DS *eap_ds;

void *opaque;

void (*free_opaque)(void *opaque);
int status;

int stage;

} EAP_HANDLER;

where ,
eap_id = copy of the eap packet we sent to the

next = pointer to next

state = state attribute from the reply we sent

state_len = length of data in the state attribute.

src_ipaddr = Client which sent us the RADIUS request containing this EAP
conversation.

eap_id = copy of EAP id we sent to the Client.

timestamp = timestamp when this handler was last used.

identity = Identity, as obtained, from EAP-Identity response.

request = RADIUS request data structure

prev_eapds = Previous EAP request, for which eap_ds contains the response.
eap_ds = Current EAP response.

opaque = EAP-Type holds some data that corresponds to the current
EAP-request/response

free_opaque = To release memory held by opaque, when this handler is timedout
& needs to be deleted. It is the responsibility of the specific EAP-TYPE to avoid
any memory leaks in opaque. Hence this pointer should be provided by the
EAP-Type if opaque is not NULL

status = finished/onhold/..

eap_type_t, define the Interface to call EAP sub modules:

- typedef struct eap_type_t {
const char *name;
int (*attach)(CONF_SECTION *conf, void **type data);
int (*initiate)(void *type_data, EAP_ HANDLER *handler);
int (*authorize)(void *type_data, EAP_ HANDLER *handler);
int (*authenticate)(void *type data, EAP_HANDLER *handler);
int (*detach)(void *type data);

} EAP_TYPE;

45

4.3.2.2 eap_type.h
The EAP packet structure is define in eap_type.h
* Eaptype_t define EAP-Type specific data:
typedef struct eaptype_t {
unsigned char type;
unsigned int length;
unsigned char *data;
} eaptype t;
e eap_packet define the structure to hold EAP data:
typedef struct eap_packet {
unsigned char code;
unsigned char id;
unsigned int length;
eaptype_t type; //EAP-Type specific Data
unsigned char ~ *packet;
} EAP_PACKET;
where length = code + id + length + type + type.data
=1 + 1+ 2 + 1 + X(bytes)

4.3.3 The structure of MEAP module

The implementation of MEAP module is not easy. Because PEAP, EAP-TLS, SPEKE
sub-modules are all called for the authentication. PEAP and EAP-TLS are already
implemented by FreeRADIUS, so I will emphasize on SPEKE part. But go through the
PEAP part is still useful to understand the MEAP module.

46

First, PEAP module should be defined. The module instance is created by adding the
module name inside the modules{} block in the RADIUSd.conf file. The instance
definition as placed in the RADIUSd.conf file and the corresponding structure as defined
in the header file of the module is as follows:

RADIUSd.conf -- FreeRADIUS server configuration file.

modules {

For all EAP related authentications

eap {
default_eap_type = peap
peap {
default_eap_type = speke
}...
3.
}

The rlm_eap_peap module, as described in the rlm_eap module section, deals with the
standard attach, detach, and authenticate interfaces. It is to be noted that unlike in the
rlm_eap and rlm_eap_tls modules, the rlm_eap_peap module would not have an initiate()
interface. This is because PEAP is a protocol on top of TLS, so before initiating the PEAP
we have to initialize the TLS session and hence the main EAP module should be taking
care of calling the eaptls_initiate(). In other words, eap_tls module should also be called.
Thus the final rlm_eap_peap module instantiate structure looks like this:
/* rlm_eap_peap.c - Contains interfaces called from the main module EAP */

EAP_TYPE rlm_eap_peap = {

"eap_peap", /* module_name */
eappeap_attach, /* attach */
NULL, /* No peap initialization interface*/

47

NULL, /* No need for authorization interface*/
eappeap_authenticate, /* authentication */

eappeap_detach /* detach */

4.3.4 The structure of SPEKE module

At first, the structure of SPEKE module has to be created.

There are three main files used in SPEKE module.

e Eap_speke.h: The header file of SPEKE submodule.

e Eap speke.c: EAP SPEKE functionality. This program provide the basic SPEKE

function, the encryption is implement here. SHA-160 is choosing as the hash

method.

e RIm_eap_speke.c: Handles that are called from EAP. This program contains the

main authentication steps.

Under this module, the client-side program eapclient.c is also stored here. It is not

mandated to store here, but just a location for this file. Spekeclient.c: EAP specific

RADIUS packet debug tool. This program is modified based on the radeapclient.c that

provide by FreeRADIUS. It sends arbitrary RADIUS packets to a RADIUS server, and

then shows the reply. It can be used to monitor the exchange of the message flow

between server and client.

48

4.3.5 The coding description of SPEKE module

In this section, the details of every program are described.

4.3.5.1 eap_speke.c

eap_speke.c defines the eap-SPEKE main functionality. As I described in Chapter3,
SPEKE is more mathematic related, another MIRACL library is chosen to implement
SPEKE.

One most important feature of SPEKE is using hash function to encrypt the user’s
information. Here the MIRACL library is used to do the hash and other mathematic related
functions in SPEKE.

MIRACL is a big number library, which implements all of the primitives necessary to
design Big Number Cryptography into the real-world application. It is primarily a tool for
cryptographic system implementers. MIRACL allows work directly and efficiently with
the big numbers that are the building blocks of number-theoretic cryptography. MIRACL
now provides more support for conventional cryptography. The latest version implements
the new AES, Modes of Operation, and the new hashing standards
SHA-160/256/384/512.

The Version 5.00 is chosen because of its support for very constrained environments.

The main functions of eap_speke.c are described as following:

1) At first we should define a prime number. Please note, not a random selected

number can be the prime number, so we use the genprime() function in MICACL

49

to generate a real prime number.

2) hash(), is to hash the character string to 160-bit big number.

3) mkstring(), is concatenated the characters to a string.

4) SPEKE_HANDLER is to allocate a new SPEKE_HANDLER
{ SPEKE HANDLER *rp

a. rp->prime # that’s the large random prime number
b. rp->random # random number value

c. rp->intermediate # own proof value

d. rp->peer #peer’s proof value

e. rp->key #K, master seesion key

5) speke proof(), is to caculate Proof value.
Proofak =h (“A” | A | K),
Testax = h (“A” | A | K),
Proofgx =h (“B” | B | K)

The above value is calculated by this function

6) speke big2tlv (), this function is change the big number to ASCII type. It is to
avoid the error in the calculation of big numbers.

4.3.5.2 rIm_eap_speke.c
This program is the main authentication part, and runs at server side.

The main are described as following:

50

1) speke_initiate (), is the function after receive peer’s eap indentity.
{
Allocate a SPEKE HANDLER,
SPEKE_HANDLER* speke = eapspeke_alloc()

Compose the speke packet from the data structure, and prepare to send to the
peer.

Len = speke_big2tlv ()
Copy the len to EAP message
memcpy()
Set EAP message’s content and length, and set the coding mode to request.
Wait the peer’s response
stage = AUTHENTICATE
state = PW_SPEKE WAITA

}

2) speke_authenticate (), the authentication process

{After received the peer’s packet, using eapspeke_decode to decode the peer’s
message.

If state = PW_SPEKE_WAITA
{

Compare the proof value to the value in the cache

if {not match, return 0}
Set the state to PW_SPEKE_WAITRESULT to wait the result
Copy ProofBK to eap message, and send it to the peer
}
}
4.3.5.3 eapclient.c

This program is to simulate the client. PEAP part is omit here, because it’s already

implemented by many vendors. I added SPEKE part to simulate a client.

51

1) Int main ()

{Initiate the lib for big number calculation;
Set the state to PW_SPEKE WAITB
Read the req.txt

Call sendreve _eap ()

}

2) respond_eap speke ()
{After received the peer’s packets, decode it first, and then define the state
if state = PW_SPEKE_WAITB

{compose A and proofAK, and prepare to send to the peer

}
else state = PW_SPEKE RESULT

{
if Testgk = Proofpk, then send resp{} to the peer

else failed

}

52

Chapter S. MEAP testing results

In this chapter, the successful authentication and the failed authentications are described.
Ethereal software (www.ethereal.com) is used to capture the packet.
5.1 The setup of running environment

5.1.1 The installation of FreeRADIUS

Download the latest FreeRADIUS version from www.freeRADIUS.org, then unzip to

current directory [23].
tar —xzvf freeRADIUS-1.1.2
./configure
make
make install

5.1.2 Change the RADIUS config file to support MEAP

All the configuration files of RADIUS are stored at /usr/local/etc/raddb. Several changes
will be made to make the RADIUS work.

1. Clients.conf is the file to set AP’s IP address and the secret share between
RADIUS server and AP. In our testing, AP is located at the local machine, so the
127.0.0.1 is set.

Edit clients.conf file.
#cd /usr/local/etc/raddb
#vi clients.conf

client 127.0.0.1 {

53

secret = testing € The secret share between RADIUS server and

shortname = localhost

2. Users is the file to store the user’s name and password. We define a user named
“testuser” and password is “testing”.
Edit users
#cd /usr/local/etc/users
#vi users (Add the user’s password as testing)

testuser User-Password == "testing"

3. Eap.conf'is the file to set which EAP protocol that the RADIUS server should use.
EAP modules will use the value of this file to decide which sub modules should
be called.

Edit eap.conf

#cd /usr/local/etc/users

#vi eap.conf

eap {
default_eap_type = peap
peap{
default_eap_type = speke
}

After the above settings, the RADIUS server now ready for MEAP authentication.

54

5.2 The procedure of the testing of MEAP

The whole procedures of the testing begin with the executed of spekeclient.c, which is

located under the folder “freeRADIUS-1.1.2/src/modules/rlm_eap/types/rim_eap_speke”.

1. Start RADIUS server in debugging mode.
radiusd -X

2. Run spekeclient.c program
/spekeclient —X 127.0.0.1 auth testing testing < req.txt
It calls the sendrecv_eap function and then calls respong_eap_speke to process

speke messages.

3. To do the testing, we define a txt file named req.txt to give the initial value of
MEAP.
User-Name = "testuser"
NAS-IP-Address = 127.0.0.1 €The address of AP, here I suppose AP and
RADIUS on the same computer
EAP-Code = Response €EAP type is Response, means client received the
server’s reply and will begin the authentication

EAP-Id = 210 € The first value of EAP message

4. After RADIUS server receives the request from client, it calls the files under
/ust/local/raddb to decide the client mode and EAP types. Three files are called,
which are eap.conf, users, client.conf.

In users, the user’s password is stored here. RADIUS server will check it with
the password that client provided.

In client.conf, the secret between RADIUS and AP is stored here.

S5

In eap.conf, the EAP module and EAP sub-module is defined here.
When server finds the EAP type is PEAP-SPEKE, it goes to
freeRADIUS-1.1.2/src/modules/rim_eap/types/rim_eap_speke/ to do the next

steps.

5. The main module of EAP needs to know every sub-module under it. Because
SPEKE 1is a new defined sub-module EAP module, SPEKE have to be added in

€apcommon.c

6. rlm_eap_speke.c is called to do the main authentication progress, and it calls

functions in eap_speke.c to help.

7. If the client provided the right information, the expected result can be print out by
the program. But due to the limited time, the client can only support to print out

the exchanged messages in SPEKE, the PEAP part is omitted.

5.3 Test 1: The successful authentication

This test shows the successful authentication between the client and server.

Under /src/modules/rim_eap/types/rim_eap_speke, run the spekeclient.c with the right
parameters. The first testing is the secret share between RADIUS and AP, the second

testing is the client’s password. On the mean time, using Ethereal to capture the packets

from lo interface.

[root@localhost rim_eap_speke]# ./spekeclient -X 127.0.0.1 auth testing testing

<req.txt

56

Here let’s separate the client side output, and the captured packet by message flow. The
client side output shows the EAPOL packet. The Ethereal captured packet shows the

RADIUS packet.

1). As indicated by arrow in Figure 5.1, from the Ethereal captured packet 211, we can
sec that the server received the EAP identity response (code=2, EAP-ID = 210) from

client. Then server set the code in RADIUS to 1, mean’s it received a request from server.

The output from client side:
+++> About to send encoded packet:

User-Name = "testuser"

NAS-IP-Address = 127.0.0.1

EAP-Code = Response

EAP-Id =210

EAP-Type-Identity = "testuser"

NAS-Port =0
Received response ID 68, code 11, length = 166

EAP-Message =
0x01d3006c1801343130
303030303030303030303030303030313933000233333230393531383930373131333636383837
38313137363233393830303233383135353331343736353238383530363200
Message-Authenticator = 0x44dec493881e8b44ee6b6913c1814812

State = Ox4fladcec177739997719e97bce382421

The packet captured by Ethereal is shown as figure 6.1:

57

2 01_success - Ethereal

‘§§*nﬁnxusyaccass:challan t113«(1u-21
AN RADIUSTACCRS ST ReqUesT (L) (1d=218, 50

: challenge (1) (1d«218,
RADIUSIACCESS: equest (15 (1d=219,%

RADIUSACC!SS—ACCQQ!(Z) (1:1-21? .

= Frame 211 (117 bytes on w1re. 117 bytes captured)

& Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), DSt: 00:00:00_00:00:00 (00:00:00:00:00:00)
= Internet Protocol, Src: 127.0.0.1 (127.0.0.1), Ost: 127.0.0.1 (127.0.0.1)
= User Datagram Protoco], Src Port: 32770 (32770), Dst port: radius (1812)
= Radius Protocol

Code: Access-Request (1) ‘

Packet identifier: Oxd9 (217)

Length: 75

Authenticator: SE883F46030B10C72314691CO7AF749E
3 Attribute value Pairs

@ AVP: 1=10 t=User-Name(l): testuser

@ AVP: 1=6 t=NAS-IP-Address(4): 127.0.0.1

@ AVP: 1«6 t=NAS-POrt(5): 0

2 AVP: 1=15 t=EAP-Message(79) Last Segment[1]

EAP fragment

3 eExtensible Authentication protocol
code: Response (2)
1d: 210
Length: 13
Type: Identity [RFC3748] (1)
Identity (8 bytes): testuser
B AVP: 1=18 t=Message-Authenticator(80): D3SEED63602313F202A9ECIC72DDB275

L R s A

', A 2305 A B O s IS8T S TR, RN 8 TR S s DS T S R SIS N B T
000 00 00 00 00 Q0 00 00 00 00 OO 00 00 0B 00 45 00 ..vevvve eonone E. -
010 00 67 00 00 40 00 40 11 3¢ 84 7f 00 00 01 7f 00 .Q..8.8. <...u.n. '
020 00 01 80 02 07 14 00 53 Sb ¢b 01 d9 00 4b 5e 88 S {....KA. K
030 3f 46 03 Ob 10 ¢7 23 14 69 1c 07 af 74 9e 01 O0a 7F....¢#. 1...T... .
0040 74 65 73 74 75 73 65 72 04 06 7f 00 00 01 05 06 testuser . . hd

RSB RTROY

Frame (117 bytes) |Raassembled EAP (13 bites) | 71+ ,
|Fle: t\bmmmsadmwm\omop\mmfnmmmm |P: 300 D; ale.

Bow||HODAS L EEOG Q" Ml@—égﬂﬁumgﬂmmm | DR BOREEE i

Figure 5.1 The first packet captured by Ethereal

2). Then, the server created the large random number b, and calculated B. From the
Ethereal captured packet 212 that highlighted as indicated, we can see that the server set
the packet code to 11. Then sent the challenge type packet (EAP-Id = 211) that

encapsulated the {m, B} to client in EAP packet’s attribute.
Client received the request, and in EAP type, set the type to Request.

The output from client side:

PROPERTY OF
58 RYERSON UNIVERSITY LIBRARY

<+++ EAP decoded packet:

EAP-Meséagc =
0x01d3006¢1801343130
303030303030303030303030303030303030313933000233333336373936373037303131
363732313231333033353133333938353439353333393931383732393333303638333730
00 Message-Authenticator = 0xa2535f728d182{36015842a356cd6034

State = 0x5045db9b095ddc9fbdal 79£7625d5€73

EAP-1d =211

EAP-Code = Request

Attr-1304 =
0x01343130
303030303030303030303030303139330002333333363739363730373031313637323132
3133303335313333393835343935333339393138373239333330363833373000

The packet captured by Ethereal is shown as figure 5.2:

59

210 20'__089271 127.0.0.1 127.0.0.1 TCP 35556 > 631 (ACK] Seq=310 Ack=297 sdn-32767 Len-o TSVal409766 °
21 2374 526197127 020 LT T FOTOTIINIT mum&s‘r«mummm LT TS) e R T R Y

213,23 694988‘127‘0,&.)
$2147230699762;:127. 0.0, 1050 S0I071Y 3 DTS
15:23,8126363127,0. 0;10% N : : “Request
mvzz*msnuznn.a.nn 122,020 ST £ c-mm&tu-nw

3

3 Frame 212 (208 bytes on vdre, 208 bytes captured)
3 Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
5 Internet Protoco1 Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
3 User Datagram Protoco1, src Port;: radius (1812), Dst Port: 32770 (32770)
3 Radius Protocol
Ccode: Access-challenge (11)
Packet identifier: Oxd9 (217)
Length: 166
Authenticator: CB2EC371EF6D65D823A900923A50F618
B3 Attribute value Pairs
B AVP: 1=110 t=EAP-Message(79) Last Segment (1]
EAP fragment
B Extensible Authentication Protocol
code: Request (1)
Id: 211
Length: 108
Type: EAP-3Com wireless [voung] (24)
Type-Data (103 bytes) value: 01343130...
@ AVP: 1«18 te=Message-Authenticator(80): A2535F7280182F36015842A356CD6034
@ AvP: 1«18 t=State(24): 5045DB9BOISDDCOFBDAL79F7625DSET3

000 00 00 00 00 00 00 00 00 Q0 00 00 00 08 00 45 00
010 00 c2 00 00 40 00 40 11 3¢ 29 7f 00 00 01 7f 00
020 00 01 07 14 80 02 00 ae b6 83 0b d9 00 a6 cb 2e
030 ¢3 71 ef 6d 65 d8 23 a9 0d 92 3a 5d f6 1lb 4f 6e
01 d3 00 6¢c 18 01 34 31 30 30 30 30 30 30 30

Figure 5.2 The second packet captured by Ethereal

3). On the client side, it created large random number a, and calculated 4, K, Proofyx,and

sent packet (EAP-Id = 211){A, Proofak} to server.

From the Ethereal captured packet 212, we can see that the server received the packet. It

set the RADIUS packet type to request.

The output from client
+++> About to send encoded packet:
User-Name = "testuser"

NAS-IP-Address = 127.0.0.1

EAP-Code = Response

EAP-1d =211

NAS-Port=0

Message-Authenticator = 0x00000000000000000000000000000000

Attr-1304 =
0x0233383036353835363531313330343834373335393332383837313631333532333235
303539323737323036373930343735000316a0de1f4e8d7e48f219cbdd04d83090f6342da
572

State = 0x5045db9b095ddc9fbdal 79f7625d5€73
Received response ID 218, code 11, length = 85

EAP-Message =
0x01d4001b18031665f401d17ed89e4640068fe9d8e9edacd9359cac

Message-Authenticator = 0x29a39d87c6d1dee5a661ae86df1def27

State = Oxc81a43acSafela4767d97d8a118c7507

The packet captured by Ethereal is shown as figure 5.3:

61

Z2 01 _success - Ethereal

“TCP aC q
] R v vt T s o1 '@Mmmxmmmtmzrwummnmwm
3*420:*127;0.0‘1 mmwnr.o.m;m‘?&m RADIUS Actess=challenge(i1): (1da3i7:5:10166)

w:?i‘a‘l“i’m

3 Frame 213 (200 bytes on wire. 200 bytes captured)
g Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
3 Internet Protoco’l src: 127.0.0.1 (227.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
3 user Datagram pratoco‘l Sre Port: 32770 (32770), Ost Port: radius (1812)
3 rRadius Protocol
Code: Access-Request (1)
packet 1dentifier: Oxda (218)
Length: 158
Authenticator: 9141AB1204C1C7757A700253BEAL6CAF
8 Attribute value Pairs
E AVP: 1=10 t=User-Name(l): testuser
E AVP: 1=6 t=NAS-IP-Address(4): 127.0.0.1
@ AVP: 1=6 t=NAS-POrt(5): 0
E AVP: 1=18 tsMessage-Authenticator(80): B9B82E11DEC137DFSC46DDF4FAFQGEA4
B AVP: 1=18 t=State(24): 504 5D0B9B09SDDCOFBDAL79F7625DSE73
B AVP: 1=80 t=EAP-Message(79) Last Segment (1]
EAP fragment
B extensible Authentication pProtocol
code: Response (2)
1d: 211
Length: 78
Type: EAP-3Com wireless [voung] (24)
Type-Data (73 bytes) value: 023338303635383536353131333034383437333539333238...

J0000 00 00 00 00 00 00 00 00 00 00 00 00 08B 00 45 00 ..evevee esssssks
j0010 00 ba 00 00 40 00 40 11 3c 31 7f 00 00 01 7f 00 eeed0.8. Aeeense
0020 00 01 80 02 07 14 00 a6 03 9d 01 da 00 9e 91 41 sessssss sesnsssA
0030 ab 12 04 €1 ¢7 75 7a 70 02 53 be a1l 6¢ 4f 01 02uU2p .S

0040 74 65 73 74 75 73 65 72 04 0B 7f 00 00 01 05 06 _testuser .
3 St asRay w

Figure 5.3 The third packet captured by Ethereal

4). From the Ethereal captured packet 214, we can see that on server side, it created K,

Testak, and compared the value of Testak and the received Proofsx. Because the value is

equal, it sent packet (EAP-Id = 211){Proofgk} to client.

Client received the packet, and then changed the type to request.

The output from client:
<+++ EAP decoded packet:
EAP-Message =

62

0x01d4001b18031665f401d17ed89e4640068fe9d8eIedac99359cac
MessageQAuthenticator = 0x29a39d87c6d1dee5a661ae86df1def27
State = Oxc81a43ac5afe1a4767d97d8a118c7507
EAP-1d =212
EAP-Code = Request
Attr-1304 = 0x031665f401d17ed89¢4640068fe9d8e9edac99359cac

speke success

The packet captured by Ethereal is shown as figure 5.4:

210 20. 089271 127.0.0.1 127.0.0.1 ACK] Seq=310 Ack
'ﬁ3§211123“ ’127?020frﬁ::3?“’”§327”ﬂ o zuswﬁtces¢=aaquhstC1J'c1d- ¥ S LT 4D M kimsancns
; P W icimeing ’1127”0.01%%%1“5% =challenge (1) 1(1d=217,71=166) 227571
CUETERIRG127 000 umm’%ﬁs RADIUS ‘Access equest (1') 1 d-ZIB.‘:',’{l-lSB)Z U

fss;z*s :17 .0
T a6 23im3577. 227 0l

d Frame 214 (127 bytes on wire, 127 bytes capturedj‘
3 Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
M Internet Protocol, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
@ User Datagram Protocol, Src Port: radius (1812), Dst Port: 32770 (32770)
 Radius Protocol
Code: Access-challenge (11)
Packet {dentifier: Oxda (218)
Length: 85
Authenticator: CC2B61CDBOECEFBD56444B2A751F6D61
= Attribute value Pairs
B AVP: 1=29 teEAP-Message(79) Last Segment[1]
EAP fragment
@ Extensible Authentication protocol
code: Request (1)
1d: 212
Length: 27
Type: EAP-3Com wireless [voung] (24)
Type-Data (22 bytes) value: 031665F401D17£089E4640068FEQDBEIEDACIII SICAC
@ AVP: 1e18 t=Message-Authenticator(80): 29A39087C6DLDEESAG661AES6DF1DEF27
@ AVP: 1=18 teState(24): C81A43ACSAFE1A4767D097D8A118C7507

5356 60 00 00 00 G0 G0 00 00 00 00 GO 00 08 00 435 00
0010 00 71 00 00 40 00 40 11 3¢ 7a 7f 00 00 01 7f 00
020 00 01 07 14 80 02 00 Sd 46 13 Ob da 00 55 cc 2b
030 61 cd 80 ec ef bd 56 44 4b 2a 75 1f 6d 61 4f 1d
0040 01 A4 00 1b 18 03 16 65 F4 01 di 7e d8 Se 46 40 . Fo -

;ﬁm(mm) Reassomblad EAP (27 bytes)

Figure 5.4 The fourth packet captured by Ethereal

5). Client sent an empty response message to the server. From the Ethereal captured

63

packet 215, we can see that the server received the packet, and then set the packet type to

response.

The output from the client:
+++> About to send encoded packet:
User-Name = "testuser"
NAS-IP-Address = 127.0.0.1
EAP-Code = Response
EAP-Id =212
NAS-Port=0
Message-Authenticator = 0x00000000000000000000000000000000
State = Oxc81a43ac5afe1a4767d97d8a118c7507
Attr-1304 = 0x040303
Received response ID 219, code 2, length = 54
EAP-Message = 0x03d40004
Message-Authenticator = 0x54afe11fcb0f5fd309c004c7b3b53c44

User-Name = "testuser"

The packet captured by Ethereal is shown as figure 5.5:

B

TcP
T RADIUSTACKES $=Request CLY7(1d<2L7) ST) ST
i RADIUS Access-challenge (1) (1d=217; 56) =
Z mws,ﬁccess*-nequest) 2(10=218, %1
ces chaneme(:u)'“&id- 18,7

T Frame 213 (130 bytes on w‘lre, 130 bytes captured)
% Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00.00:00:00 (00:00:00:00:00:00)
1 Internet Pratoco1 sr¢: 127,0.0.1 (127.0.0.1), bst: 127.0.0.1 (127.0.0.1)
B User Datagram Protoccn. src Port: 32770 (32770), Dst Port: radius (1812)
13 Radius Protocol
code: Access-Request (1)
packet identifier: Oxdb (219)
Length: 88
Authenticator: 6FEF1D6F7D1619CCOFDC878467ES5DAIF
0 Attribute value Pairs
M AVP: 1=10 t=User-Name(l): testuser
M AVP: 1=6 t=NAS-IP-Address(4): 127.0.0.1
® AVP: 1=6 teNaS-POrt($): 0
AVP: J«18 t=Message-Authenticator(80): 132875B8A4114AF8B228EF7CBI614AF63
@ AVP: 118 te=State(24): CBLAA3ACSAFELA4767D97D8A118C7507
3 AVP: 110 t=EAP-Message(79) Last Segment([1]
eap fragment
£ extensible Authentication Protocol
Code: Response (2)
1d: 212
Length: 8
Type: EAP-3Com wireless [voung] (24)
Type-Data (3 bytes) value: 040303

000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00 ..veeves eoveee E.
0010 00 74 00 00 40 00 40 11 3¢ 77 7f 00 00 01 7f 00 .T..0.0. <W......
0020 00 01 80 02 07 14 00 60 92 76 01 db 00 58 6f ef ...eeeu oVes.XO.
0030 1d 6f 7d 16 19 cc Of dc 87 84 67 eS5 da 9f 01 0a [2 oo
0040 74 65 73 74 75 73 65 72 04 06 7f 00 00 O 05 06 testuser . .

Figure 5.5 The fifth packet captured by Ethereal

6). After receive the empty EAP request packet, the server sent the success message to

client to indicate the successfully authentication. We can see it from the Ethereal captured

packet 216.

The client received the success packet. Then this is the end of the successful

authentication

The output from client
EAP-Message = 0x03d40004
Message-Authenticator = 0x54afel1fcb0f5fd309c004c7b3b53c44

65

User-Name = "testuser"
EAP-Id =212
EAP-Code = Success

The packet captured by Ethereal is shown as figure 5.6:

01_success - Ethereal

210 20.089271 127.0.0.1 TCP 35556 > 631 [N:K] Seg.

2111237452619112770TD01 R nILLRADIUS TACCRS SSRequesT T T (1d=21 .‘..1-7:)::gs’ heN SrRE Sy TN

21272324842057127:0:00 0L RADIUSEACCESS-CD)l]en (11)'(1d521

Ly et $0,0.1¢ “W&MDIUS'Access-BeQUest

Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
E User Datagram Protocol, src Port: radius (1812), Dst Port: 32770 (32770)
= Radius protocol
Code: Access-Accept (2)
packet identifier: oxdb (219)
Length: 54
Authenticator: 602052539586A21937DF718569848665
3 Attribute value Pairs
B AVP: 1=6 t=EAP-Message(79) Last Segment[1]
EAP fragment
B Extensible Authentication Protocol
Code: success (3)
Id: 212
Length: 4
B AVP: 1=18 t=Message-Authenticator(80): S4AFEL1FCBOFSFD309C004C783B53C44
@ AVP: 1=10 t=User-Name(l): testuser

000 00 00 00 00 00 00 00 00 00 00 00 00 08 00 45 00 c.ovevee voeree E.
010 00 52 00 00 40 00 40 11 3¢ 99 7f 00 00 01 7f 00 .R..0.0. <.......
020 00 01 07 14 80 02 00 3e 20 ¢8 02 db 00 36 6d 20>6m
030 52 53 95 86 a2 19 37 df 71 b5 69 84 86 65 4f 06 RsS....7. g.1..e0.
040 03 d4 00 04 50 12 54 af el 1f cb Of 5f d3 09 cOP.T. B

Figure 5.6 The last packet captured by Ethereal

5.3 Test 2: The failed authentication-wrong shared secret

Under /src/modules/rlm_eap/types/rim_eap_speke, we run the spekeclient with one

wrong parameter. The first testing is the correct secret share between RADIUS and AP.

This time I changed it to “test”, to see the procedures of authentication.

66

7)15“4 P

Uﬂ

According to the design of testing, it simulates the procedures after shared secret matched.
That means, if the shared secret is not match, the authentication will not begin. Figure 5.7

shows the flow when RADIUS server receive the wrong shared secret

Wrong shared secret

Discard
request

Validate
client
response

Receive
request

Right shared secret

Check User
database to find
user identity

Figure 5.7 Wrong shared secret flow

Now from the client output, we can see it doesn’t received server’s response.

[root@localhost rim_eap_speke]# ./spekeclient -X 127.0.0.1 auth test testing

<req.txt

The output from client shows it didn’t received packet from server.
+++> About to send encoded packet:

User-Name = "testuser"

NAS-IP-Address = 127.0.0.1

EAP-Code = Response

EAP-Id =210

EAP-Type-Identity = "testuser"

67

NAS-Port=0

radclient: no response from server

Form the Ethereal packet, we can only see one (the other one is same) request from client,

and then because it is a wrong shared secret, RADIUS server drop the packet.

The packet captured by Ethereal is shown as figure 5.8:

TOTTTTreY

TEP 35674 > 631 [MK] Seq-309 Ack-252 w1n-32767 Len=0 TSV-146840(

T YTy TTrT T

251 25.063424 127.0.0.1 127.0.0.1
252 25.063515 127.0.0.1 127.0.0.1 TCP [Tcp segment of a reassembled POU]
253 25 063574 .0.0.1 35674 > 631 [ACK] seq=309 Ack=295 win=32767 Len=0 TSV-146840(;
PAL PR N PO & TS B N I R S e R S NS ISR
0.0 35674 > 631 [ACK] seq=309 Ack-296 wﬂn-32767 Len-o TSV-146840(
T lltﬂﬁ?ih!ﬂi ; =

263 30. 060933 127.0. 0 1 127 0 0 1 TCP 35675 > 631 [N:K] saq-l ACk=1 wine32767 Len-o TSV=1468900 Tsl
264 30,060073 127.0.0.1 _ 127.0.0.1 TP _[TCP segment of 3 reassembledPOU] .=l
4]

& User Datagram Protocol, Src Port: 32770 (32770), Dst Port: rad1us (1812)
5 Radius Protocol

Code: Access-Request (1)

Packet identifier: 0x25 (37)

Length: 75

Authenticator: C26CEABC7CD43FA11C3A96ADA1ELAS3S
B8 Attribute value Pairs

& AVP: 1=10 t=User-Name(l): testuser

B AVP: 1=6 t=NAS-IP-Address(4): 127.0.0.1

E AVP: 1=6 t=NAS-Port(5): O

B AVP: 1=15 t=EAP-Message(79) Last Segment[1] 4

EAP fragment K
8 extensible Authentication Protocol

—b ;

Length: 13
Type: Identity [RFC3748] (1)

Identity (8 bytes): testuser
B AVP: 1=18 t=Message-Authenticator(80): 3E64367B5BBA74746A5F2A6890569EAS

m 00 0d O1 74 65 73 74 75 73 65 72 “N...tes tuser

Frame (117 bytes)’ mmwmmﬂ]
Kd(eap.id); 1 byte 51" ‘

e[@

Figure 5.8 The packets captured by Ethereal when shared secret is not match

68

5.4 Test 3: The failed authentication: wrong user’s password

Under /src/modules/rlm_eap/types/rim_eap_speke, we run the spekeclient.c with one
wrong parameter. The second testing is the correct user’s password. This time we

changed it to “test”, to see the procedures of authentication.

Figure 5.9 shows the flow when RADIUS server receive the wrong password.

Clients Authenticator

1. EAP-Identity Request

Find client's password p

2. Challenge {m, B} Create large random number b
B=p?® modm
Create large random number a
A=p®modm
K =B*mod m 3R tIA. Proof K=A>modm
Proof, = h (“A"| A|K) - Request {A, Proof} Testy =h (“A"A|K)

Proofgc =h (“B"| B |K)
Test, not equal to Proof, ,
then fail

4. Reject

Figure 5.9 Message flow when RADIUS received a wrong password

The whole procedure is described as following:
‘1) Client send packet (EAP-ID = 210) to server, in RADIUS request type packet.
2) Server found the right password p from the database and send {m, B} in
Challenge type packet to client (EAP-ID = 211).

69

3) Client received this packet and create the large random number a, and calculate A
by a and it’s own password (the wrong one), then send response to server
(EAP-ID =211). In RADIUS packet, it’s a request type massage.

4) On server side, because Testak not equal to Proofa, the authentication failed. It

sent the packet (EAP-ID = 211) to client to show authentication failed.

The output from client side:

+++> About to send encoded packet: 21

User-Name = "testuser"

NAS-IP-Address = 127.0.0.1

EAP-Code = Response

EAP-Id =210

EAP-Type-Identity = "testuser"

NAS-Port=0
Received response ID 122, code 11, length = 166

EAP-Message =
0x01d3006¢1801343130
303030303030303030303030303030303030313933000233323839333831383631353935
353438393230383532363537333834363135323337363834323432353435303232323136

00 Message-Authenticator = 0xb5ddfb6fe9fcda3 1a356db620da3 f0e5
~ State = 0xalbf1630c1a6b9d028d666d68576dd61
<+++ EAP decoded packet: 22
EAP-Message =

0x01d3006¢1801343130
303030303030303030303030303030303030313933000233323839333831383631353935
353438393230383532363537333834363135323337363834323432353435303232323136
00 Message-Authenticator = 0xb5ddfb6fe9fcda3 1a356db620da3f0e5

70

State = 0xalbf1630c1a6b9d028d666d68576dd61
EAP-Id =211
EAP-Code = Request

Attr-1304 =
0x01343130

303030303030303030303030303139330002333238393338313836313539353534383932
3038353236353733383436313532333736383432343235343530323232313600

+++> About to send encoded packet: >3

User-Name = "testuser"”

NAS-IP-Address = 127.0.0.1

EAP-Code = Response

EAP-1d =211

NAS-Port =0

Message-Authenticat.or = 0x00000000000000000000000000000000

Attr-1304 =
0x0233363836373639373930323538383334343331393834363430313633323631343433
303433373938323235313839353830000316234ba65aa3d0bc50adbc883d1bca7c18c207d
98b

State = 0xalbf1630c1a6b9d028d666d68576dd61
Received response ID 123, code 3, length = 44

EAP-Message = 0x04d30004

Message-Authenticator = 0x6837bb3bb5222223{851f7e4643b0c2f
<+++ EAP decoded packet: >4

EAP-Message = 0x04d30004

Message-Authenticator = 0x6837bb3bb5222223{851{7€4643b0c2f

EAP-Id =211

71

EAP-Code = Failure

The packet captured by Ethereal is shown as figure 5.10:

5 ST RADIUS, samm
RADIUSACCQ:S—Requtst

& - oy —~y 2VISYRS WO ACKRL"
127. o 0.1 TCP 35752 > 631 Agxi Seqel Ack=l Win=32767 Len=0 TSVal507487 TSi |

m Frame 253 (117 bytes on wﬂre, 117 bytes captured)
& Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), DSt: 00:00:00_00:00:00 (00:00:00:00:00:00)
@ Internet Protoco1 Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
@ User Datagram Protoco], src Port: 32770 (32770), Dst Port: radius (1812)
& Radius Protocol
Code: Access-Request (1)
Packet identifier: Ox7a (122)
Length: 75
Authenticator: 8E8D0D89752COF3052426C1SCO0FCC47
3 Attribute value Pairs
H AVP: 1=10 t=User-Name(l): testuser
AVP: T=6 t=NAS-IP-Address(4): 127.0.0.1
AVP: 1=6 t=NAS-Port(5): 0
AVP: 1=15 t=EAP-Message(79) Last Segment([1]
EAP fragment
3 Extensible Authentication Protocol
Code: Response (2)
1d: 210
Length: 13
Type: Identity [RFC3748] (1)
Identity (8 bytes): testuser
& AVP: 1=18 t=Message-Authenticator(80): F099F1429405400EFE2E2FDOA3D2FI19

mam

000000 00 00 00 00 00 00 00 00 GO 00 00 08 00 45 00

0010 00 67 00 00 40 00 40 11 3c 84 7f 00 00 01 7f 00

0020 00 01 80 02 07 14 00 53 bf ee 01 7a 00 4b 8e 8d
1

o b VA €V 4N £~ AE N 4T A1 Aa

N
xuqng«w

Fwne(lﬂbytas)lkeassatﬂedw(labytes)l
|Fie: "C: wmmmsmmwe«mmfwmmmw w

Bom [8% 4 Y CHEEOB T w_m_@_lg_mmmum@

[Bat80WMAE. 7oA

Figure 5.10 The packets captured by Ethereal when password is not match

72

Chapter 6. Conclusion and Future work

This thesis compares the popular authentication protocols in WLAN. Selection of an
authentication method is the key decision in securing a wireless LAN deployment. The
authentication method drives the choice of authentication server, which in turn drives the

choice of client software.

MEAP combines PEAP and SPEKE to provide convenient authentication over different
platforms. The common PEAP combines with EAP-MSCHAPvV2 that limited PEAP to
windows based operation system. MEAP maintains the simplicity with the required level
of security. The user is authenticated to the network using ordinary username and
password credentials, which are secure against an interception by enclosing them in the
TLS security wrapper. MEAP requires only server-side certificates, uses TLS for the
secure tunnel, and extends the EAP-TLS beyond the finished message exchange to add

SPEKE authentication mechanism.

For the security consideration, MEAP are able to against MITM and Spoof attacks.

e To against MITM: A man-in-the-middle [15] attack can spoof the client to
authenticate to it instead of the real EAP server, and forward the authentication to
the real server over a protected tunnel. Since the attacker has access to the keys
derived from the tunnel, it can gain access to the network. MEAP can prevent this
attack by using the keys generated by the inner EAP method in the crypto-binding
exchange. Since all sequence negotiations and exchanges are protected by TLS

channel, MEAP is immune to snooping and MITM attacks with the use of

73

Crypto-Binding TLV. If the Crypto-Binding TLV failed validation, the

authentication failed, and stopped the subsequent procedures.

¢ To against spoofing: As we introduced in Chapterl, MAC address spoofing is
another kind of attacking in WLAN. The MAC address is a hardware address that
uniquely identifies each node of a network. An attacker wishing to disrupt a
wireless network can present himself as an authorized client by using an altered
MAC address. As nearly all wireless Network Interface Cards (NIC) permit
changing their MAC address to an arbitrary value through vendor-supplied drivers,
open-source drivers or various application programming frameworks. An attacker
using these tools can launch denial of service attacks, bypass access control
mechanisms, or falsely advertise services to wireless clients. MEAP requires the
use of user authentication like user name and password before accessing the
network. So assume the attacker could associate with the AP as it has a valid
user’s MAC address, thus it pass the first line of defense, MAC address filtering.
The attacker still was prompted for the user credentials. This stage could not be
by-passed and the attacker could not access the network. If the attacker only know
user’s MAC address, he cannot gain access to the WLAN that make use of

MEAP.

The following table gives a general comparison of EAP methods that are described in this

thesis.

74

EAP-TLS EAP-TTLS | PEAP SPEKE MEAP
Supported Linux, Mac | Linux, Mac | Windows XP | None Linux, Mac
client OS, Windows | OS, Windows OS, Windows
platforms 95/98/ME, 95/98/ME, 95/98/ME,
NT/2000/XP NT/2000/XP NT/2000/XP
Basic Establish TLS | Two phase: Two phase: Rely on | Two phase:
protocol session and | 1. Establish | 1. Establish | exponentiation | 1. Establish
structure validate TLS between | TLS between | involving large | TLS between
certificates on | slient and | client and | random client and
both client and | TTLS server | PEAP server | numbers PEAP server
server 2. Exchange | 2. Run | modulo a large | 2. Run SPEKE
attribute-value | MSCHAP prime number | exchange over
pairs between | exchange over TLS tunnel
client and | TLS tunnel
server
Protection of | No Yes; protected | Yes; protected | No Yes; protected
user identity by TLS by TLS by TLS
exchange
Certification | Both on | Only server | Only server | none Only server
Authority server/client side side side
Flexible Most difficult | Medium Medium Easy Same as PEAP
level to
install

Table 6.1 The comparison of EAP methods

75

This thesis implemented MEAP with FreeRADIUS. Here different processes on Linux
simulate the client, authenticator and authentication server, which is not practical for the
real WLAN environment. An idea-testing environment is to set these three parties

(client, authenticator, authentication server) separately. That can make the

implementation more reliable.

The management packets, such as de-authentication, disassociation, EAP-Success,
EAPOL-Start, or EAPOL-Logoff could be generated to evaluate some types of attacks.
Tools for generating arbitrary management packets also could be created by revising or
writing the source code of the FreeRADIUS. This thesis gives a simple evaluation about
MITM attack, but as of this writing, no publicly available tools implements this MITM

attacks on EAP protocols.

76

References
[1] Jesse Walker, “802.11 Security Series, Part I: The Wired Equivalent Privacy”, Intel, pp. 2-3

[2] 802.11i/D10.0, “Draft Amendment to STANDARD for Telecommunications and Information Exchange
Between Systems — LAN/MAN Specific Requirements”, IEEE Standard, April 2004

[3] 802.1x, “DRAFT Standard for Local and Metropolitan Area Networks—Port-Based Network Access
Control (Revision)”, IEEE P802.1X-REV/D11, July 22, 2004, pp. 17-29

[4] B. AbobaL, “Extensible Authentication Protocol (EAP)” RFC 3748, June 2004, pp. 22

[5] Ashwin Palekar, “Protected EAP Protocol (PEAP) Version 2, Internet-draft, PPPEXT Working Group,
June 2004, pp.11, 68-83

[6] Interlink Networks, Inc. “EAP Methods for Wireless Authentication”. April 2, 2003, pp. 7-14

[7] Kwang-Hyun Baek, Sean W.Smith, David Kotz. “A Survey of WPA and 802.11i RSN Authentication
Protocols”. Technial Report TR2004-524, November 2004, pp. 3-4

[8] Philip Kwan, “802.1x Authentication & Extensible Authentication Protocol (EAP)”, White paper, May
2003, pp. 7

[9] Cisco Systems, Inc. “A comprehensive Review of 802.11 Wireless LAN Security and the Cisco
Wireless Security Suite”, White paper, pp. 31-36

[10] Colonel Donald J.Welch, “A Survey of 802.11a Wireless Security Threats and Security Mechanisms”,
Technical report, ITOC-TR-2003-101, 2003, pp. 11

[11] Microsoft, “Choosing a Strategy for Wireless LAN Security”, white paper, pp. 7-9
[12] C. Rigney, W. Willats, “RADIUS Extensions”, RFC2869, June 2000, pp. 11, 21-38

[13] Cisco System, *“Authentication with 802.1x and EAP Across Congested WAN Links”, Application note,
pp-3

[14] Srivaths Ravi, Securing Wireless Data: System Architecture Challenge

[15] Tomi Hanninen, “Wi-Fi Security”, a paper from university of Helsinki, pp. 3

77

[16] AirDefense, “Wireless LAN Security — What Hackers Know That You Don't”, White paper, 2003,
pp-2-3

[17] Donald Welch, “Wireless Security Threat Taxonomy”, 2003 IEEE Workshop, June 2003, pp. 79-80
[18] T. Dierks, “The TLS Protocol Version 1.0 *, RFC2246, January 1999, pp. 3
[19] B. Aboba, “PPP EAP TLS Authentication Protocol”, RFC2716, October 1999, pp. 2

[20] Stanley Wong, “The evolution of wireless security in 802.11 networks: WEP, WPA and 802.11
standards”, GSEC Practical v1.4b, May20, 2003, pp. 1-2

[21] Nancy R. Mead, “Wireless Security’s Future”, IEEE Security & Privacy, 2003, pp. 68-72

[22] Cisco System, “Cisco Response to Dictionary Attacks on Cisco LEAP”, Product bulletin, No. 2331,
pPp- 5

[23] Ken Roser, “HOWTO: EAP/TLS Setup for FreeRADIUS and Windows XP Supplicant”, April 2002,
pp- S5

[24] Arunesh Mishra, “An Initial Security Analysis of the IEEE 802.1X Standard”, CS-TR-4328
UMIACS-TR-2002-10, Feb 2002, pp. 3

[25] Scott Fluhrer, “Weakness in the Key Scheduling Algorithm of RC4”, pp. 4

[26] William A. Arbaugh, “Your 802.11 Wireless Network has No Clothes”, a paper from University of
Maryland, March 2001, pp. 10

[27] Wireless LAN Security FAQ
URL: http://www.drizzle.com/~aboba/[EEE/

[28] Michel Getraide, “Security and authentication for 802.11 wireless networks”, a thesis from University

of New Orleans, May 2004, pp.27-30

[29] Amleset Kelati, “Application of IEEE 802.1X in HiperLAN type2”, a thesis from Chalmers University
of Technology, July 2001, pp33-34

[30] Rigney, C. et. al. “Remote Authentication Dial In User Service (RADIUS)”. IETF RFC 2865, June,
2000, pp.4

78

Appendix

1. The install of MIRACL library

1. Unzip the MIRACL.ZIP file using the utility unzip, into an empty directory
unzip -j -aa -L miracl.zip
The -j ignores the directory structure inside MIRACL.ZIP. The -aa converts all

text files to Unix format, and -L ensures that all filenames are lower-case.

2. Perform a tailored build of the MIRACL library by opening an X-Term, and

typing

bash linux

2.The implementation of MEAP method

2.1 eap_speke.h

#ifndef EAP_SPEKE H
#define_EAP_SPEKE H

#include "eap.h"

#include "miracl.h"

79

#define PW_SPEKE PRIME

#define PW_SPEKE_INTERMEDIATE

#define PW_SPEKE_PROOF
#define PW_SPEKE_RESULT

#define PW_SPEKE SUCCESS
#define PW_SPEKE FAILURE
#define PW_SPEKE_QUERY
#define PW_SPEKE WAITB
#define PW_SPEKE WAITA
#define PW_SPEKE_WAITPROOF

" #define PW_SPEKE_WAITRESULT

/¥
ook
* EAP - SPEKE
*/

/* eap packet structure */
typedef struct speke_handler {
big prime;
big random;
big intermediate;
big peer;

big key;

char proof[20];

o

o

80

int state;

} SPEKE_HANDLER;

/* function declarations here */

SPEKE HANDLER *eapspeke_alloc(void);
void eapspeke_free(SPEKE_HANDLER **packet_ptr);

void speke_init(char* pwd, SPEKE_HANDLER* speke);
int speke_proof(char** id, SPEKE_HANDLER* speke, char* proof, char* test);

int speke_big2tlv(unsigned char type, big num, unsigned char* buf, int size);

/lint eapspeke_compose(EAP_DS *auth, SPEKE _PACKET *packet);
int eapspeke_decode(EAP_DS *auth, SPEKE_HANDLER *packet);

int eapspeke_decodebuf(unsigned char* data, int len, SPEKE_HANDLER *packet);

#endif /*_EAP_SPEKE_H*/

2.2 rim_eap_speke.c

/*
* rlm_eap_speke.c Handles that are called from eap

*

*/

#include "autoconf.h"

81

#include <stdio.h>

#include <stdlib.h>

#include "eap_speke.h"

#include <rad_assert.h>

miracl *mip = NULL;

static int speke_attach(CONF_SECTION *cs, void **instance)
{
#ifndef MR_NOFULLWIDTH
mip = mirsys(100,10);
#else

mip = mirsys(100,10);

#endif
irand(time(NULL));
return 0;

}

/*

* Initiate the EAP-speke session by sending a challenge to the peer.
*/
static int speke_initiate(void *type_data, EAP_HANDLER *handler)

{

82

unsigned char packet[1024];
unsigned char* ptr = packet;
char pwd[256];

int len=0;

VALUE_PAIR *password;

EAP_DS *eap_ds = handler->eap_ds;

password = pairfind(handler->request->config_items, PW_PASSWORD);
if (password == NULL || password->length >= 256) {
radlog(L_INFO, "rlm_eap_speke: User-Password is required for
authentication");

return O;

SPEKE_HANDLER* speke = eapspeke_alloc();
if (speke=NULL) {
radlog(L_ERR, "rlm_eap_speke: out of memory");

return 0;

memcpy(pwd, password->strvalue, password->length);

pwd[password->length] = 0;

speke_init(pwd, speke);

/*

83

speke

* Keep track of the challenge.
*/
handler->opaque = speke;

handler->free_opaque = free;

%
* Compose the speke packet out of the data structure,
* and free it.
*/

len = speke_big2tlv(PW_SPEKE_PRIME, speke->prime, ptr, 256);

len +=speke big2tlv(PW_SPEKE INTERMEDIATE, speke->intermediate, ptr + len,

256);

eap_ds->request->type.type = PW_EAP_SPEKE;

eap_ds->request->type.data = malloc(len);

if (eap_ds->request->type.data == NULL) {
radlog(L_ERR, "rlm_eap_speke: out of memory");

return 0;

ptr = eap_ds->request->type.data;

memcpy(ptr, packet, len);

/* Just the Challenge length */

eap_ds->request->type.length = len;

eap_ds->request->code = PW_EAP_REQUEST;

84

/*

*

*/

/*

* We don't need to authorize the user at this point.

* We also don't need to keep the challenge, as it's

* stored in 'handler->eap_ds', which will be given back
* to us...

*/

handler->stage = AUTHENTICATE;

speke->state = PW_SPEKE WAITA;

return 1;

Authenticate a previously sent challenge.

static int speke_authenticate(void *arg, EAP_HANDLER *handler)

{

char test[20];

char proof[20];

char* id[] = {"A", "B"};

unsigned char* ptr;

SPEKE_HANDLER* speke = (SPEKE_HANDLER*)handler->opaque;
EAP_DS *eap_ds = handler->eap_ds;

rad_assert(eap_ds->response->type.type == PW_EAP_SPEKE);

85

rad_assert(handler->request != NULL);

rad_assert(handler->stage = AUTHENTICATE);

eapspeke_decode(eap_ds, speke);

if(speke->state == PW_SPEKE_WAITA)

{

speke_proof(id, speke, proof, test);
if(memcmp(test, speke->proof, 20) !=0)
{
radlog(L_ERR, "rlm_eap_speke: wrong proof");

return 0;

speke->state = PW_SPEKE_WAITRESULT;

eap_ds->request->type.type = PW_EAP_SPEKE;

eap_ds->request->type.data = malloc(22);

if (eap_ds->request->type.data == NULL) {
radlog(L_ERR, "rlm_eap_speke: out of memory");

return O;

}

ptr = eap_ds->request->type.data;

ptr[0] = PW_SPEKE PROOF;
ptr[1] = 22;

memcpy(ptr + 2, proof, 20);

86

eap_ds->request->type.length = 22;
eap_ds->request->code = PW_EAP_REQUEST;

else

eap_ds->request->type.length = 0;
eap_ds->request->code = speke->state;

radlog(L_ERR, "rlm_eap_speke: state : %d", speke->state);

/*
* Compose the speke packet out of the data structure,
* and free it.

*/

return 1;

/¥
* The module name should be the only globally exported symbol.
* That is, everything else should be 'static'.
*/

EAP_TYPE rlm_eap_speke = {

"eap_speke",
speke_attach, /* attach */
speke_initiate, /* Start the initial request */

87

NULL, /* authorization */
speke_authenticate, /* authentication */

NULL /* detach ¥/

2.3 eap_speke.c

/*
* eap_speke.c EAP SPEKE functionality.

*

*/

#include <stdio.h>
#include <stdlib.h>

#include "eap.h"

#include "eap_speke.h"

/* large bit prime p for which (p-1)/2 is also prime */
char *primetext = "1000193";

// Hash function
void hash(char *id, char* hash)
{ // hash character string to 160-bit big number

sha sh;

88

shs_init(&sh);
while (*id!=0) shs_process(&sh,*id++);
shs_hash(&sh, hash);

int mkstring(char* id, big b1, big b2, char* buf, int len)
{

int pos = snprintf(buf, len, "%s", id);

pos += cotstr(bl, buf + pos);

pos += cotstr(b2, buf + pos);

return pos;

void print_hex(unsigned char* hex, int len)
{
inti=0;

for(i=0;i<len; i++)

{
printf("%02X", hex[i]);
}
}
/*
* Allocate a new SPEKE_HANDLER
*/

SPEKE_HANDLER *eapspeke_alloc(void)

89

SPEKE_ HANDLER *mp;

if ((rp = malloc(sizeof(SPEKE_HANDLER))) == NULL) {
radlog(L_ERR, "rlm_eap_speke: out of memory");
return NULL;

rp->prime = mirvar(0);
rp->random = mirvar(0);
rp->intermediate = mirvar(0);
rp->peer = mirvar(0);
rp->key = mirvar(0);

rp->state = 0;

cinstr(rp->prime, primetext);

return rp;
}
¥
* Free SPEKE_HANDLER
*/
void eapspeke_free(SPEKE_HANDLER **packet _ptr)
{

if(*packet_ptr != NULL)
{

90

free(*packet_ptr);
*packet_ptr=NULL;

void speke_init(char* pwd, SPEKE_HANDLER* speke)

{

"

/"

char hpwd[20];
big bpwd;
big num2;

big b2rand;

bpwd = mirvar(0);

num2 = mirvar(0);

b2rand = mirvar(0);

convert(2, num2);

hash(pwd, hpwd);
bytes_to_big(20, hpwd, bpwd);

bigbits(160, speke->random);

multiply(speke->random, num2, speke->random);

powmod(bpwd, speke->random, speke->prime, speke->intermediate);

91

int speke_proof{char** id, SPEKE_HANDLER* speke, char* proof, char* test)
{
char buf[4096];

powmod(speke->peer, speke->random, speke->prime, speke->key);

if(mkstring(id[0], speke->intermediate, speke->key, buf, 4096) >= 4096)

{
radlog(L_ERR, "buf overflow\n");

return 1;

}
hash(buf, proof);

if(mkstring(id[1], speke->peer, speke->key, buf, 4096) >= 4096)

{
radlog(L_ERR, "buf overflow\n");

return 1;

}
hash(buf; test);

return 0;

int speke_big2tlv(unsigned char type, big num, unsigned char* buf, int size)

{
int len;

rad_assert(size >= 253);

92

*buf = type;
len = cotstr(num, (char*)(buf + 2));
/' len=big_to_bytes(253, num, (char*)(buf + 2), FALSE);

len +=3;
buf[1] = len;
return len;
}
/*
int eapspeke_compose(EAP_DS *auth, SPEKE_PACKET *packet)
{
}
*/

int eapspeke_decode(EAP_DS *auth, SPEKE_HANDLER *packet)
{

int len = auth->response->type.length;

unsigned char* data = auth->response->type.data;

return eapspeke_decodebuf(data, len, packet);

int eapspeke_decodebuf(unsigned char* data, int len, SPEKE_HANDLER* packet)

{
while(len >= 3)

93

1

/I

if(*data==PW_SPEKE_PRIME)

{
cinstr(packet->prime, (char*)(data + 2));
bytes_to_big(data[1] - 2, (char*)(data + 2), packet->prime);
}
else if(*data ==PW_SPEKE RESULT)
{
packet->state = data[2];
}
else if(*data = PW_SPEKE_PROOF)
{
memcpy(packet->proof, data + 2, 20);
}

else if(*data == PW_SPEKE_INTERMEDIATE)
{
cinstr(packet->peer, (char*)(data + 2));

bytes_to_big(data[1] - 2, (char*)(data + 2), packet->peer);

len -= data[1];

data += data[1];

return 0;

94

2.4 spekeclient.c

/*
* radeapclient.c EAP specific RADIUS packet debug tool. (Modified based on the

* program provided by freeRADIUS)

*
* Version: $1d: radeapclient.c,v 1.7.4.5 2006/05/19 14:22:23 nbk Exp $
*

*

*This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*
*
* Copyright 2000 The FreeRADIUS server project
* Copyright 2000 Miquel van Smoorenburg <miquels@cistron.nl>
* Copyright 2000 Alan DeKok <aland@ox.org>
*
static const char rcsid[] = "$Id: radeapclient.c,v 1.7.4.5 2006/05/19 14:22:23 nbk Exp $";

#include "autoconf.h"

95

#include <stdio.h>

#include <stdlib.h>

#if HAVE_UNISTD_H
include <unistd.h>

#endif

#include <string.h>
#include <ctype.h>
#include <netdb.h>

#include <sys/socket.h>

#if HAVE_NETINET_IN_H
include <netinet/in.h>

#endif

#if HAVE_SYS_SELECT_H
include <sys/select.h>

#endif

#f HAVE_GETOPT_H
include <getopt.h>

#endif

#include "conf.h"
#include "radpaths.h"

#include "missing.h"

96

#include "../../include/md5.h"

#include "eap_types.h"
#include "eap_sim.h"

#include "eap_speke.h"

miracl *mip;

static SPEKE_HANDLER* speke;

extern int shal _data_problems;

static int retries = 10;

static float timeout = 3;

static const char *secret = NULL;
static char *spekepw = NULL;

static int do_output = 1;

static int do_summary = 0;

static int filedone = 0;

static int totalapp = 0;

static int totaldeny = 0;

static char filesecret[256];

const char *RADIUS_dir = RADDBDIR;
const char *progname = "radeapclient";

/* Irad_randctx randctx; */

radlog_dest_t radlog_dest = RADLOG_STDERR;

97

const char *radlog_dir=NULL;
int debug_flag = 0;
struct main_config_t mainconfig;

char password[256];

struct eapsim_keys eapsim_mk;

static void NEVER_RETURNS usage(void)
{
fprintf(stderr, "Usage: radeapclient [options] server[:port] <command> <secret>

<password>\n");

fprintf(stderr, " <command> One of auth, acct, status, or disconnect.\n");
fprintf(stderr, " -c count Send each packet 'count' times.\n");

fprintf(stderr, " -d raddb Set dictionary directory.\n");

fprintf(stderr, " -f file Read packets from file, not stdin.\n");

fprintf(stderr, " -rretries If timeout, retry sending the packet 'retries' times.\n");
fprintf(stderr, " -t timeout Wait 'timeout' seconds before retrying (may be a floating

point number).\n");

fprintf(stderr, " -iid Set request id to 'id. Values may be 0..255\n");
fprintf(stderr, " -S file read secret from file, not command line.\n");
fprintf(stderr, " -q Do not print anything out.\n");

fprintf(stderr, " -s Print out summary information of auth results.\n");
fprintf(stderr, " -v Show program version information.\n");
fprintf(stderr, " -x Debugging mode.\n");

exit(1);

98

int radlog(int v, const char *msg, ...)

{

va_list ap;

intr;

r = lvl; /* shut up compiler */

va_start(ap, msg);

r = viprintf(stderr, msg, ap);

va_end(ap);

fputc(\n', stderr);

returnr;

int log_debug(const char *msg, ...)

{

va_list ap;

intr;

va_start(ap, msg);
r = viprintf(stderr, msg, ap);
va_end(ap);

fputc(\n', stderr);

99

returnr;

static int getport(const char *name)

{
struct servent *svp;
svp = getservbyname (name, "udp");
if (!svp) {
return 0;
}
return ntohs(svp->s_port);
}

static int send_packet(RADIUS_PACKET *req, RADIUS_PACKET **rep)
{

int i;

struct timeval tv;

for (i = 0; i < retries; i++) {

fd_set rdfdesc;

rad_send(req, NULL, secret);

/* And wait for reply, timing out as necessary */

FD_ZERO(&rdfdesc);

100

FD_SET(req->sockfd, &rdfdesc);

tv.tv_sec = (int)timeout;

tv.tv_usec = 1000000 * (timeout - (int) timeout);

/* Something's wrong if we don't get exactly one fd. */
if (select(req->sockfd + 1, &rdfdesc, NULL, NULL, &tv) !=1) {

continue;

*rep = rad_recv(req->sockfd);
if (*rep '=NULL) {
/*
* If we get a response from a machine
* which we did NOT send a request to,
* then complain.
*/
if (((*rep)->src_ipaddr != req->dst_ipaddr) ||
((*rep)->src_port !=req->dst_port)) {
char src[64], dst[64];

ip_ntoa(src, (*rep)->src_ipaddr);
ip_ntoa(dst, req->dst_ipaddr);
fprintf(stderr, "radclient: ERROR: Sent request to host %s port
%d, got response from host %s port %d\n!",
dst, req->dst_port,

sre, (*rep)->src_port);

101

exit(1);
}
break;
} else { /* NULL: couldn't receive the packet */
librad_perror("radclient:");

exit(1);

/* No response or no data read (?) */
if (i == retries) {
fprintf(stderr, "radclient: no response from server\n");

exit(1);

/*
* FIXME: Discard the packet & listen for another.

*
* Hmm... we should really be using eapol_test, which does
* a lot more than radeapclient.

*/

if (rad_verify(*rep, req, secret) !=0) {
librad_perror("rad_verify");

exit(1);

if (rad_decode(*rep, req, secret) != 0) {

102

librad_perror("'rad_decode");

exit(1);

/* libRADIUS debug already prints out the value pairs for us */
if (!librad_debug && do_output) {
printf("Received response ID %d, code %d, length = %d\n",
(*rep)->id, (*rep)->code, (*rep)->data_len);
vp_printlist(stdout, (*rep)->vps);

}
if((*rep)->code == PW_AUTHENTICATION_ACK) {

totalapp+t;
} else {
totaldeny++;

return 0;

static void cleanresp(RADIUS_PACKET *resp)

{
VALUE_PAIR *vpnext, *vp, **last;

/*
* maybe should just copy things we care about, or keep

* a copy of the original input and start from there again? -

103

*/
pairdelete(&resp->vps, PW_EAP_MESSAGE);
pairdelete(&resp->vps, ATTRIBUTE_EAP_BASE+PW_EAP_IDENTITY);

last = &resp->vps;
for(vp = *last; vp != NULL; vp = vpnext)
{

vpnext = vp->next;

if((vp->attribute > ATTRIBUTE_EAP_BASE &&
vp->attribute <= ATTRIBUTE_EAP_BASE+256) ||
(vp->attribute > ATTRIBUTE_EAP_SIM_BASE &&

vp->attribute <= ATTRIBUTE_EAP_SIM_BASE+256))

*last = vpnext;
pairbasicfree(vp);
} else {

last = &vp->next;

/*
* we got an EAP-Request/Sim/Start message in a legal state.

*

* pick a supported version, put it into the reply, and insert a nonce.

*/

104

static int process_eap_start(RADIUS_PACKET *req,
RADIUS_PACKET *rep)

VALUE_PAIR *vp, *newvp;
VALUE_PAIR *anyidreq_vp, *fullauthidreq vp, *permanentidreq_vp;
uint16_t *versions, selectedversion;

unsigned int i,versioncount;

/* form new response clear of any EAP stuff */

cleanresp(rep);
if((vp = pairfind(req->vps,
ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_VERSION_LIST)) ==NULL) {

fprintf(stderr, "illegal start message has no VERSION_LIST\n");

return 0;

versions = (uint16_t *)vp->strvalue;

/* verify that the attribute length is big enough for a length field */

if(vp->length < 4)
{
fprintf(stderr, "start message has illegal VERSION_LIST. Too short: %d\n",
vp->length);
return 0;
}

105

versioncount = ntohs(versions[0])/2;
/* verify that the attribute length is big enough for the given number

* of versions present.

*/
if((unsigned)vp->length <= (versioncount*2 + 2))
{

fprintf(stderr, "start message is too short. Claimed %d versions does not fit in %d
bytes\n", versioncount, vp->length);

return 0;

/*

* record the versionlist for the MK calculation.

*/
eapsim_mk.versionlistlen = versioncount*2;
memcpy(eapsim_mk.versionlist, (unsigned char *)(versions+1),

eapsim_mk.versionlistlen);

/* walk the version list, and pick the one we support, which
* at present, is 1, EAP_SIM_VERSION.
*/
selectedversion=0;
for(i=0; i < versioncount; i++)
{
if(ntohs(versions[i+1]) == EAP_SIM_VERSION)

{
selectedversion=EAP_SIM_VERSION;

106

break;

}
}
if(selectedversion == 0)
{

fprintf(stderr, "eap-sim start message. No compatible version found. We need
%d\n", EAP_SIM_VERSION);
for(i=0; i < versioncount; i++)
{
fprintf(stderr, "\tfound version %d\n",

ntohs(versions[i+1]));

/*
* now make sure that we have only FULLAUTH_ID_REQ.
* I think that it actually might not matter - we can answer in
* anyway we like, but it is illegal to have more than one
* present.
*/
anyidreq_vp = pairfind(req->vps,
ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_ANY_ID REQ);
fullauthidreq_vp = pairfind(req->vps,
ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_FULLAUTH_ID_REQ);
permanentidreq_vp = pairfind(req->vps,
ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_PERMANENT ID_REQ);

107

if(fullauthidreq_vp ==NULL ||
anyidreq_vp !=NULL ||
permanentidreq_vp !=NULL) {
fprintf(stderr, "start message has %sanyidreq, %sfullauthid and %spermanentid.
Illegal combination.\n",

(anyidreq_ vp!'=NULL?"a":"no"),
(fullauthidreq_vp !=NULL?"a":"no "),
(permanentidreq_vp !=NULL ?"a":"no ")),

return 0;

/* okay, we have just any_id_req there, so fill in response */

/* mark the subtype as being EAP-SIM/Response/Start */
newvp = paircreate(ATTRIBUTE_EAP_SIM_SUBTYPE, PW_TYPE_INTEGER);
newvp->lvalue = eapsim_start;

pairreplace(&(rep->vps), newvp);

/* insert selected version into response. */

newvp
paircreate(ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_SELECTED_VERSION,

PW_TYPE_OCTETS),
versions = (uint16_t *)newvp->strvalue;
versions[0] = htons(selectedversion);
newvp->length = 2;

pairreplace(&(rep->vps), newvp);

108

/* record the selected version */

memcpy(eapsim_mk.versionselect, (unsigned char *)versions, 2);

vp = newvp = NULL;

uint32_t nonce[4];
/*
* insert a nonce_mt that we make up.
*/
newvp
paircreate(ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_NONCE_MT,
PW_TYPE_OCTETS);
newvp->strvalue[0]=0;
newvp->strvalue[1]=0;

newvp->length=18; /* 16 bytes of nonce + padding */

nonce[0]=Irad_rand();
nonce[1]=lrad_rand();
nonce[2]=lIrad_rand();
nonce[3]=lIrad_rand();
memcpy(&newvp->strvalue[2], nonce, 16);

pairreplace(&(rep->vps), newvp);

/* also keep a copy of the nonce! */

memcpy(eapsim_mk.nonce_mt, nonce, 16);

109

uint16_t *pidlen, idlen;

/*
* insert the identity here.
*/
vp = pairfind(rep->vps, PW_USER_NAME);

if(vp ==NULL)

{
fprintf(stderr, "eap-sim: We need to have a User-Name attribute!\n");
return 0;

}

newvp

paircreate(ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_IDENTITY,
PW_TYPE_OCTETS);
idlen = strlen((char*)vp->strvalue);
pidlen = (uint16_t *)newvp->strvalue;
*pidlen = htons(idlen);

newvp->length = idlen + 2;

memcpy(&newvp->strvalue[2], vp->strvalue, idlen);

pairreplace(&(rep->vps), newvp);

/* record it */
memcpy(eapsim_mk.identity, vp->strvalue, idlen);

eapsim_mk.identitylen = idlen;

110

return 1;

/*
* we got an EAP-Request/Sim/Challenge message in a legal state.
*
* use the RAND challenge to produce the SRES result, and then
* use that to generate a new MAC.
*
* for the moment, we ignore the RANDs, then just plug in the SRES

* values.

*
*/
static int process_eap_challenge(RADIUS_PACKET *req,

RADIUS_PACKET *rep)

VALUE_PAIR *newvp;
VALUE_PAIR *mac, *randvp;
VALUE_PAIR *sresl,*sres2,*sres3;
VALUE_PAIR *Kcl, *Kc2, *Kc3;

uint8_t calcmac[20];

/* look for the AT_MAC and the challenge data */
mac = pairfind(req->vps, ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_MAC);,
randvp= pairfind(req->vps, ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_RAND);

111

if(mac == NULL || rand == NULL) {
fprintf(stderr, "radeapclient: challenge message needs to contain RAND and
MAC\");

return 0;

/*
* compare RAND with randX, to verify this is the right response
* to this challenge.
*/
{
VALUE_PAIR *randcfgvp[3];

unsigned char *randcfg[3];

randcfg[0] = &randvp->strvalue[2];
randcfg[1] = &randvp->strvalue[2+EAPSIM_RAND_SIZE];
randcfg[2] = &randvp->strvalue[2+EAPSIM_RAND_SIZE*2];

randcfgvp[0] = pairfind(rep->vps, ATTRIBUTE_EAP_SIM_RANDI);
randcfgvp[1] = pairfind(rep->vps, ATTRIBUTE_EAP_SIM_RAND2);
randcfgvp[2] = pairfind(rep->vps, ATTRIBUTE_EAP_SIM_RAND3);

if(randcfgvp[0] == NULL ||
randcfgvp[1] == NULL ||
randcfgvp[2] == NULL) {
fprintf(stderr, "radeapclient: needs to have randl, 2 and 3 set.\n");

return 0;

112

ifimememp(randcfg[0], randcfgvp[0]->strvalue, EAPSIM_RAND_SIZE)!=0 ||
memcmp(randcfg[1], randcfgvp[1]->strvalue, EAPSIM_RAND_SIZE)!=0 ||
memcmp(randcfg[2], randcfgvp[2]->strvalue, EAPSIM_RAND_SIZE)!=0) {

int mum,i,j;

fprintf(stderr, "radeapclient: one of rand 1,2,3 didn't match\n");
for(rmum = 0; rmum < 3; mum++) {
fprintf(stderr, "received rand %d: ", mum);
=0;
for (i=0; i < EAPSIM_RAND_SIZE; i++) {
if=4) {
printf("_");
i=0;
}

i+

b

fprintf(stderr, "%02x", randcfg[rmum][i]);
}

fprintf(stderr, "\nconfigured rand %d: ", rnum);
=0;
for (i=0; i < EAPSIM_RAND_SIZE; i++) {
ifG=4) {
printf("_");

J=0;

113

it

fprintf(stderr, "%02x", randcfgvp[mum]->strvalue[i]);

}
fprintf(stderr, "\n");
}
return 0;
}
}
"

* now dig up the sres values from the response packet,

* which were put there when we read things in.

*

* Really, they should be calculated from the RAND!

*

*/
sres] = pairfind(rep->vps, ATTRIBUTE_EAP_SIM_SRESI);
sres2 = pairfind(rep->vps, ATTRIBUTE_EAP_SIM_SRES2);

sres3 = pairfind(rep->vps, ATTRIBUTE_EAP_SIM_SRES3);

if(sres] = NULL ||
sres2 = NULL ||
sres3 == NULL) {

fprintf(stderr, "radeapclient: needs to have sresl, 2 and 3 set.\n");

return O;

114

memcpy(eapsim_mk.sres[0], sres1->strvalue, sizeof(eapsim_mk.sres[0]));
memcpy(eapsim_mk.sres[1], sres2->strvalue, sizeof(eapsim_mk.sres[1]));

memcpy(eapsim_mk.sres[2], sres3->strvalue, sizeof(eapsim_mk.sres[2]));

Kcl = pairfind(rep->vps, ATTRIBUTE_EAP_SIM_KC1);
Kc2 = pairfind(rep->vps, ATTRIBUTE_EAP_SIM_KC2);

Kc3 = pairfind(rep->vps, ATTRIBUTE_EAP_SIM_KC3);

if(Kel == NULL ||
Kc2==NULL ||
Ke3 == NULL) {

fprintf(stderr, "radeapclient: needs to have Kcl, 2 and 3 set.\n");

return 0;

}
memcpy(eapsim_mk.Kc[0], Kc1->strvalue, sizeof(eapsim_mk.Kc[0]));
memcpy(eapsim_mk.Kc[1], Kc2->strvalue, sizeof(eapsim_mk.Kc[1]));

memcpy(eapsim_mk.Kc[2], Kc3->strvalue, sizeof(eapsim_mk.Kc[2]));

/* all set, calculate keys */

eapsim_calculate_keys(&eapsim_mk);

if(debug_flag) {

eapsim_dump_mk(&eapsim_mk);

/* verify the MAC, now that we have all the keys. */

if(eapsim_checkmac(req->vps, eapsim_mk.K_aut,

115

eapsim_mk.nonce_mt, sizeof{eapsim_mk.nonce_mt),
calcmac)) {
printf("MAC check succeed\n");
} else {
int 1, j;
J=0;
printf("calculated MAC (");

for (i=0; 1 <20; i++) {

if(==4) {
printf("_");
=0;

}

it

printf("%02x", calcmacl[i]);

}

printf(" did not match\n");

return 0;

/* form new response clear of any EAP stuff */

cleanresp(rep);

/* mark the subtype as being EAP-SIM/Response/Start */
newvp = paircreate(ATTRIBUTE_EAP_SIM_SUBTYPE, PW_TYPE_INTEGER);

newvp->lvalue = eapsim_challenge;

pairreplace(&(rep->vps), newvp);

116

/*
* fill the SIM_MAC with a field that will in fact get appended
* to the packet before the MAC is calculated
*/
newvp = paircreate(ATTRIBUTE_EAP_SIM_BASE+PW_EAP_SIM_MAC,
PW_TYPE_OCTETS);
memcpy(newvp->strvalue+tEAPSIM_SRES_SIZE*0, sres1->strvalue,
EAPSIM_SRES_SIZE);
memcpy(newvp->strvalue+tEAPSIM_SRES_SIZE*1, sres2->strvalue,
EAPSIM_SRES_SIZE);
memcpy(newvp->strvalue+tEAPSIM_SRES_SIZE*2, sres3->strvalue,
EAPSIM_SRES_SIZE);
newvp->length = EAPSIM_SRES_SIZE*3;

pairreplace(&(rep->vps), newvp);

newvp = paircreate(ATTRIBUTE_EAP_SIM_KEY, PW_TYPE_OCTETS);
memcpy(newvp->strvalue, eapsim_mk.K_aut, EAPSIM_AUTH_SIZE);
newvp->length = EAPSIM_AUTH_SIZE;

pairreplace(&(rep->vps), newvp);

return 1;

/*
* this code runs the EAP-SIM client state machine.

* the *request* is from the server.

117

* the *reponse* is to the server.

*
*/
static int respond_eap_sim(RADIUS_PACKET *req,

RADIUS_PACKET *resp)

enum eapsim_clientstates state, newstate;
enum eapsim_subtype subtype;
VALUE_PAIR *vp, *statevp, *radstate, *eapid;

char statenamebuf[32], subtypenamebuf[32];

if ((radstate = paircopy2(req->vps, PW_STATE)) == NULL)

{

return 0;

if ((eapid = paircopy2(req->vps, ATTRIBUTE_EAP_ID)) == NULL)

{

return 0;

/* first, dig up the state from the request packet, setting

* qutselves to be in EAP-SIM-Start state if there is none.

*/

if((statevp = pairfind(resp->vps, ATTRIBUTE_EAP_SIM_STATE)) == NULL)

{

118

/* must be initial request */
statevp = paircreate(ATTRIBUTE_EAP_SIM_STATE, PW_TYPE_INTEGER);
statevp->lvalue = eapsim_client_init;
pairreplace(&(resp->vps), statevp);
}

state = statevp->lvalue;

/*
* map the attributes, and authenticate them.
*/

unmap_eapsim_types(req);

printf("<+++ EAP-sim decoded packet:\n");

vp_printlist(stdout, req->vps);

if((vp = pairfind(req->vps, ATTRIBUTE_EAP_SIM_SUBTYPE)) == NULL)
{

return 0;

}
subtype = vp->lvalue;

/*
* look for the appropriate state, and process incoming message
*/

switch(state) {

case eapsim_client_init:

switch(subtype) {

119

case eapsim_start:

newstate = process_eap_start(req, resp);

break;

case eapsim_challenge:
case eapsim_notification:
case eapsim_reauth:
default:
fprintf(stderr, "radeapclient: sim in state %s message %s is illegal. Reply
dropped.\n",
sim_state2name(state, statenamebuf, sizeof(statenamebuf)),
sim_subtype2name(subtype, subtypenamebuf,
sizeof(subtypenamebuf)));
/* invalid state, drop message */
return 0;

}
break;

case eapsim_client_start:
switch(subtype) {
case eapsim_start:
/* NOT SURE ABOUT THIS ONE, retransmit, I guess */
newstate = process_eap_start(req, resp);

break;

case eapsim_challenge:

newstate = process_eap_challenge(req, resp);

120

break;

default:
| fprintf(stderr, "radeapclient: sim in state %s message %s is illegal. Reply
dropped.\n",
sim_state2name(state, statenamebuf, sizeof(statenamebuf)),
sim_subtype2name(subtype, subtypenamebuf,
sizeof(subtypenamebuf)));
/* invalid state, drop message */

return 0;

break;

default:
fprintf(stderr, "radeapclient: sim in illegal state %s\n",
sim_state2name(state, statenamebuf, sizeof(statenamebuf)));

return 0;

/* copy the eap state object in */

pairreplace(&(resp->vps), eapid);

/* update stete info, and send new packet */

map_eapsim_types(resp);

/* copy the RADIUS state object in */

121

pairreplace(&(resp->vps), radstate);

statevp->lvalue = newstate;

return 1;

static int respond_eap_speke(RADIUS_PACKET *req,

I

RADIUS_PACKET *rep)

VALUE_PAIR *vp, *id, *state;
unsigned char identifier;

char response[16];

char proof[20];
char test[20];

char* proofid[] = {"B", "A"};

cleanresp(rep);

if ((state = paircopy2(req->vps, PW_STATE)) == NULL)

{

fprintf(stderr, "radeapclient: no state attribute found\n");

return O;

if ((id = paircopy2(req->vps, ATTRIBUTE_EAP_ID)) =NULL)

{

122

fprintf(stderr, "radeapclient: no EAP-ID attribute found\n");
return 0;
}

identifier = id->lvalue;

if ((vp = pairfind(req->vps, ATTRIBUTE_EAP_BASE+PW_EAP_SPEKE)) == NULL)
{
fprintf(stderr, "radeapclient: no EAP-MDS attribute found\n");

return O;

eapspeke_decodebuf(vp->strvalue, vp->length, speke);

vp = paircreate(ATTRIBUTE_EAP_BASE+PW_EAP SPEKE, PW TYPE OCTETS);

if(speke->state == PW_SPEKE_WAITB)
{

speke_init(spekepw, speke);

speke_proof{proofid, speke, proof, test);

vp->length = speke_big2tlv(PW_SPEKE INTERMEDIATE, speke->intermediate,
vp->strvalue, 253);

vp->strvalue[vp->length] = PW_SPEKE_PROOF;

vp->strvalue[vp->length + 1] = 22;

memcpy(vp->strvalue + vp->length + 2, proof, 20);

vp->length +=22;

speke->state = PW_SPEKE_WAITPROOF;
}
else if(speke->state == PW_SPEKE_WAITPROOF)
{

vp->length = 3;

vp->strvalue[0] = PW_SPEKE RESULT;

vp->strvalue[l] = 3;

speke_proof(proofid, speke, proof, test);
if(memcmp(speke->proof, test, 20) == 0)
{

vp->strvalue[2] = PW_EAP_SUCCESS;

printf("'speke success\n");

}
else
{
vp->strvalue[2] = PW_EAP_FAILURE;
printf("'speke failed\n");
}
}
else
{
return 0;
}

pairreplace(&(rep->vps), vp);

124

pairreplace(&(rep->vps), id);

/* copy the state object in */

pairreplace(&(rep->vps), state);

return 1;

static int respond_eap_mdS(RADIUS_PACKET *req,
RADIUS_PACKET *rep)

VALUE_PAIR *vp, *id, *state;
int valuesize, namesize;
unsigned char identifier;
unsigned char *value;
unsigned char *name;
MDS5_CTX context;

char response[16];

cleanresp(rep);

if ((state = paircopy2(req->vps, PW_STATE)) == NULL)

{

fprintf(stderr, "radeapclient: no state attribute found\n");

return O;

125

if ((id = paircopy2(req->vps, ATTRIBUTE_EAP_ID)) ==NULL)

{
fprintf(stderr, "radeapclient: no EAP-ID attribute found\n");
return 0;

}

identifier = id->lvalue;

if ((vp = pairfind(req->vps, ATTRIBUTE_EAP_BASE+PW_EAP_MDS5)) == NULL)
{
fprintf(stderr, "radeapclient: no EAP-MDS attribute found\n");

return 0;

/* got the details of the MDS5 challenge */
valuesize = vp->strvalue[0];

value = &vp->strvalue[1];

name = &vp->strvalue[valuesize+1];

namesize = vp->length - (valuesize + 1);

/* sanitize items */
if(valuesize > vp->length)

{
fprintf(stderr, "radeapclient: mdS valuesize if too big (%d > %d)\n",

valuesize, vp->length);

return 0;

126

/I
"

/

/* now do the CHAP operation ourself, rather than build the
* buffer. We could also call rad_chap_encode, but it wants
* a CHAP-Challenge, which we don't want to bother with.
*/

librad_MDSInit(&context);

librad_MDSUpdate(&context, &identifier, 1);

librad_MDS5Update(&context, password, strlen(password));

librad_MD5Update(&context, value, valuesize); .

librad_MD5Final(response, &context);

vp = paircreate(ATTRIBUTE_EAP_BASE+PW_EAP MDS, PW_TYPE OCTETS);
vp->strvalue[0]=16;

memcpy(&vp->strvalue[1], response, 16);

vp->length = 17;

pairreplace(&(rep->vps). vp);

pairreplace(&(rep->vps), id);

/* copy the state object in */

pairreplace(&(rep->vps), state);

return 1;

127

static int sendrecv_eap(RADIUS_PACKET *rep)

{

RADIUS_PACKET *req =NULL;

VALUE_PAIR *vp, *vpnext;

int tried_eap_md5 = 0;

/*

* Keep a copy of the the User-Password attribute.
*/

if ((vp = pairfind(rep->vps, ATTRIBUTE_EAP_MD5_PASSWORD)) != NULL) {
strNcpy(password, (char *)vp->strvalue, sizeof(vp->strvalue));

} else if ((vp = pairfind(rep->vps, PW_PASSWORD)) != NULL) {
strNcpy(password, (char *)vp->strvalue, sizeof(vp->strvalue));
/*

* Otherwise keep a copy of the CHAP-Password attribute.
*/

} else if ((vp = pairfind(rep->vps, PW_CHAP_PASSWORD)) != NULL) {
strNcpy(password, (char *)vp->strvalue, sizeof(vp->strvalue));

} else {
*password = "\0';

}

again:
rep->id++;

printf("\n+++> About to send encoded packet:\n");

128

vp_printlist(stdout, rep->vps);

/*
* if there are EAP types, encode them into an EAP-Message
*
*/

map_eap_types(rep);

/*
* Fix up Digest-Attributes issues
*/
for (vp = rep->vps; vp != NULL; vp = vp->next) {
switch (vp->attribute) {
default:

break;

case PW_DIGEST_REALM: .

case PW_DIGEST_NONCE:

case PW_DIGEST METHOD:

case PW_DIGEST_URI:

case PW_DIGEST_QOP:

case PW_DIGEST_ALGORITHM:
case PW_DIGEST_BODY_DIGEST:
case PW_DIGEST_CNONCE:

case PW_DIGEST_NONCE_COUNT:
case PW_DIGEST_USER_NAME:

/* overlapping! */

129

memmove(&vp->strvalue[2], &vp->strvaluef0], vp->length);
vp->strvalue[0] = vp->attribute - PW_DIGEST REALM + 1;
vp->length +=2;

vp->strvalue[1] = vp->length;

vp->attribute = PW_DIGEST_ATTRIBUTES;

break;
}
}
/*
* If we've already sent a packet, free up the old
* one, and ensure that the next packet has a unique
* ID and authentication vector.
*/

if (rep->data) {
free(rep->data);

rep->data = NULL;

librad_md5_calc(rep->vector, rep->vector,

sizeof(rep->vector));

if (*password !="0") {
if ((vp = pairfind(rep->vps, PW_PASSWORD)) != NULL) {
strNcpy((char *)vp->strvalue, password, strlen(password) + 1);

vp->length = strlen(password);

130

} else if (vp = pairfind(rep->vps, PW_CHAP_PASSWORD)) != NULL) {
strNcpy((char *)vp->strvalue, password, strlen(password) + 1);

vp->length = strlen(password);

rad_chap_encode(rep, (char *) vp->strvalue, rep->id, vp);
vp->length=17;

}
} /* there WAS a password */

/* send the response, wait for the next request */

send_packet(rep, &req);

/* okay got back the packet, go and decode the EAP-Message. */

unmap_eap_types(req);

printf("<+++ EAP decoded packet:\n");

vp_printlist(stdout, req->vps);

/* now look for the code type. */
for (vp = req->vps; vp != NULL; vp = vpnext) {

vpnext = vp->next;

switch (vp->attribute) {
default:
break;

case ATTRIBUTE_EAP BASE+PW_EAP_MDS5:

131

if(respond_eap_md5(req, rep) && tried_eap_md5 < 3)

{
tried_eap_md5++;
goto again;

}

break;

case ATTRIBUTE_EAP BASE+PW_EAP_SIM:
if(respond_eap_sim(req, rep))

{

goto again;

}
break;

case ATTRIBUTE_EAP_BASE+PW_EAP_SPEKE:

if(respond_eap_speke(req, rep))

{
goto again;
}
break;
}
}
return 1;

132

int main(int arge, char **argv)
{
RADIUS_PACKET *req;
char *p;
intc;
int port = 0;
char *filename = NULL,;
FILE *fp;
int count = 1;

int id;

id = ((int)getpid() & 0xff);
librad_debug = 0;

radlog_dest = RADLOG_STDERR;

while ((c = getopt(argc, argv, "c:d:f:hi:gst:r:S:xXv")) != EOF)
{
switch(c) {
case 'c"

if (tisdigit((int) *optarg))

usage();

count = atoi(optarg);

break;
case 'd"

RADIUS_dir = optarg;

133

break;

case 'f:
filename = optarg;
break;

case'q":
do_output = 0;
break;

case 'x":

debug_flag+t;

librad_debug++;

break;
case X"
#fO0
shal_data_problems = 1; /* for debugging only */
#endif
break;
case '
if (lisdigit((int) *optarg))
usage();
retries = atoi(optarg);
break;
case 'i"

if (tisdigit((int) *optarg))

134

usage();
id = atoi(optarg);
if (id<0) | (id> ?55)) {
usage();
}
break;
case's"
do_summary = 1;
break;
case 't
if (lisdigit((int) *optarg))
usage();
timeout = atof(optarg);
break;
case 'v"
printf("radclient: $Id: radeapclient.c,v 1.7.4.5 2006/05/19 14:22:23 nbk
Exp$builton" _DATE "at"__ TIME__ "\n");
exit(0);
break;
case 'S":
fp = fopen(optarg, "r");
if (!fp) {
fprintf{stderr, "radclient: Error opening %s: %s\n",
optarg, strerror(ermo));
exit(1);
}
if (fgets(filesecret, sizeof(filesecret), fp) == NULL) {

135

fprintf{stderr, "radclient: Error reading %s: %s\n",
optarg, strerror{errno));
exit(1);
b
fclose(fp);

/* truncate newline */
p = filesecret + strlen(filesecret) - 1;
while ((p >= filesecret) &&
(*p<"" {
*p="0";

=P

if (strlen(filesecret) < 2) {
fprintf(stderr, "radclient: Secret in %s is too short\n", optarg);
exit(1);

}

secret = filesecret;
break;

case 'h":

default:

usage();

break;

}
argc = (optind - 1);

136

argv += (optind - 1);

if ((arge <4) ||
((secret = NULL) && (arge < 5))) {

usage();

if (dict_init(RADIUS_dir, RADIUS_DICTIONARY) < 0) {
librad_perror("radclient");

return 1;

if ((req = rad_alloc(1)) ==NULL) {
librad_perror("radclient");

exit(1);

#fO0

FILE *randinit;

if((randinit = fopen("/dev/urandom", "r")) = NULL)
{
perror("/dev/urandom");
} else {
fread(randctx.randrsl, 256, 1, randinit);
fclose(randinit);

137

}
Irad_randinit(&randctx, 1);
#endif

req->id =id;

J*

* Strip port from hostname if needed.

*/
if ((p = strchr(argv[1], :")) = NULL) {
*p++=0;
port = atoi(p);
}
J*
* See what kind of request we want to send.
*/

if (stremp(argv[2], "auth") == 0) {
if (port == 0) port = getport("RADIUS");
if (port == 0) port = PW_AUTH_UDP_PORT;
req->code = PW_AUTHENTICATION_REQUEST;

} else if (stremp(argv(2], "acet") == 0) {
if (port == 0) port = getport("radacct");
if (port == 0) port = PW_ACCT_UDP_PORT;
req->code = PW_ACCOUNTING_REQUEST;

138

do_summary = 0;

} else if (stremp(argv[2], "status") = 0) {
if (port == 0) port = getport("RADIUS");
if (port == 0) port = PW_AUTH_UDP_PORT;

req->code = PW_STATUS_SERVER;

} else if (stremp(argv([2], "disconnect”) == 0) {
if (port == 0) port = PW_POD_UDP_PORT;
req->code = PW_DISCONNECT_REQUEST;

} else if (isdigit((int) argv[2][0])) {
if (port = 0) port = getport("RADIUS");
if (port == 0) port = PW_AUTH_UDP_PORT;

req->code = atoi(argv[2]);

} else {
usage();
}
/*
* Ensure that the configuration is initialized.
*/

memset(&mainconfig, 0, sizeoﬁmamconﬁg));

/*
* Resolve hostname.

*/

139

req->dst_port = port;
req->dst_ipaddr = ip_getaddr(argv[1]);
if (req->dst_ipaddr == INADDR_NONE) {
fprintf(stderr, "radclient: Failed to find IP address for host %s\n", argv[1]);

exit(1);

/*
* Add the secret.
*/
if (argv[3]) secret = argv[3];

if(argv[4]) spekepw = argv[4];

/¥
* Read valuepairs.
* Maybe read them, from stdin, if there's no
* filename, or if the filename is '-'.
*/

if (filename && (stremp(filename, "-") !=0)) {
fp = fopen(filename, "r'");

if (!fp) {

fprintf(stderr, "radclient: Error opening %s: %s\n",
filename, strerror(errno));

exit(1);

} else {

140

fp = stdin;

#ifndef MR_NOFULLWIDTH

mip = mirsys(100,0);
#else

mip = mirsys(100,MAXBASE);
#endif

/*
big bpwd;
big num2;
bpwd = mirvar(0);
num2 = mirvar(0);

cinstr(num2,
"99");

nxprime(num2, bpwd);

cotnum(bpwd, stdout);
cotnum(num2, stdout);

*/

irand(time(NULL));
speke = eapspeke_alloc();
speke->state = PW_SPEKE WAITB;

141

* SPEKE_HANDLER* speke2 = eapspeke_alloc();

speke_init("testing", speke);

speke_init("testing", speke2);

powmod(speke->intermediate, speke2->random, speke2->prime, speke2->key);

printf("Ka:");

cotnum(speke->key, stdout);

printf("Kb:");

cotnum(speke2->key, stdout);
*/

/I return 0;

/¥
* Send request.
*/
if ((req->sockfd = socket(AF_INET, SOCK_DGRAM, 0))<0) {
perror("radclient: socket: ");

exit(1);

while(!filedone) {

if(req->vps) pairfree(&req->vps);

if ((req->vps = readvp2(fp, &filedone, "radeapclient:"))
=NULL) {

142

break;

sendrecv_eap(req);

if(do_summary) {
printf("\n\t Total approved auths: %d\n", totalapp);
printf("\t Total denied auths: %d\n", totaldeny);

}

return 0;

3.The output from RADIUS server

3.1. The successful authentication:

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=217, length=75

User-Name = "testuser”

NAS-IP-Address = 127.0.0.1

NAS-Port=0

EAP-Message = 0x02d2000d017465737475736572

Message-Authenticator = 0xd35eed63602313f202a%c1c72ddb275

Processing the authorize section of RADIUSd.conf

modcall: entering group authorize for request 14

modcall[authorize]: module "preprocess" returns ok for request 14

143

modcall[authorize]: module "chap" returns noop for request 14
modcall[authorize]: module "mschap" returns noop for request 14
rlm_realm: No '@' in User-Name = "testuser", looking up realm NULL
rlm_realm: No such realm "NULL"
modcall[authorize]: module "suffix" returns noop for request 14
rlm_eap: EAP packet type response id 210 length 13
rlm_eap: No EAP Start, assuming it's an on-going EAP conversation
modcall[authorize]: module "eap" returns updated for request 14
users: Matched entry testuser at line 80
modcall[authorize]: module "files" returns ok for request 14
modcall: leaving group authorize (returns updated) for request 14
rad_check_password: Found Auth-Type EAP
auth: type "EAP"
Processing the authenticate section of RADIUSd.conf
modcall: entering group authenticate for request 14
rlm_eap: EAP Identity
rlm_eap: processing type speke
modcall[authenticate]: module "eap" returns handled for request 14
modcall: leaving group authenticate (returns handled) for request 14
Sending Access-Challenge of id 217 to 127.0.0.1 port 32770

EAP-Message =
0x01d3006c1801343 130

303030303030303030303030303030303030313933000233333336373936373037303131
363732313231333033353133333938353439353333393931383732393333303638333730
00 Message-Authenticator = 0x00000000000000000000000000000000

State = 0x5045db9b095ddc9fbdal 79f7625d5€73

Finished request 14

Going to the next request
--- Walking the entire request list ---
Waking up in 6 seconds...
rad_recv: Access-Request packet from host 127.0.0.1:32770, id=218, length=158
User-Name = "testuser"”
NAS-IP-Address = 127.0.0.1
NAS-Port=0
Message-Authenticator = 0xb9b82e11decl137df5c46ddf4faf96ead
State = 0x5045db9b095ddc9fbdal 79f7625d5e73
EAP-Message =
0x02d3004e18023338303635383536353131333034383437333539333238383731363133
3532333235303539323737323036373930343735000316a0de1f4e8d7e48f219cbdd04d83
090f6342da572
Processing the authorize section of RADIUSd.conf
modcall: entering group authorize for request 15
modcall[authorize]: module "preprocess" returns ok for request 15
modcall[authorize]: module "chap" returns noop for request 15
modcall[authorize]: module "mschap" returns noop for request 15
rlm_realm: No '@’ in User-Name = "testuser", looking up realm NULL
rlm_realm: No such realm "NULL"
modcall[authorize]: module "suffix" returns noop for request 15
rlm_eap: EAP packet type response id 211 length 78
rlm_eap: No EAP Start, assuming it's an on-going EAP conversation
modcall[authorize]: module "eap" returns updated for request 15
users: Matched entry testuser at line 80
modcall[authorize]: module "files" returns ok for request 15

modcall: leaving group authorize (returns updated) for request 15

145

rad_check password: Found Auth-Type EAP
auth: type "EAP"
Processing the authenticate section of RADIUSd.conf
modcall: entering group authenticate for request 15
rlm_eap: Request found, released from the list
rlm_eap: EAP/speke
rlm_eap: processing type speke
modcall[authenticate]: module "eap" returns handled for request 15
modcall: leaving group authenticate (returns handled) for request 15
Sending Access-Challenge of id 218 to 127.0.0.1 port 32770
EAP-Message
0x01d4001b18031665f401d17ed89e4640068fe9d8e9edac99359cac
Message-Authenticator = 0x00000000000000000000000000000000
State = Oxc81a43ac5afela4767d97d8al18c7507
Finished request 15
Going to the next request
Waking up in 6 seconds...
rad_recv: Access-Request packet from host 127.0.0.1:32770, id=219, length=88
User-Name = "testuser"
NAS-IP-Address = 127.0.0.1
NAS-Port =0
Message-Authenticator = 0x132b75ba4114af8b228ef7cb9614af63
State = 0xc81a43ac5afela4767d97d8a118c7507
EAP-Message = 0x02d4000818040303
Processing the authorize section of RADIUSd.conf
modcall: entering group authorize for request 16

modcall[authorize]: module "preprocess" returns ok for request 16

146

modcall[authorize]: module "chap" returns noop for request 16
modcall[authorize]: module "mschap" returns noop for request 16
rlm_realm: No '@' in User-Name = "testuser", looking up realm NULL
rlm_realm: No such realm "NULL"
modcall[authorize]: module "suffix" returns noop for request 16
rlm_eap: EAP packet type response id 212 length 8
rlm_eap: No EAP Start, assuming it's an on-going EAP conversation
modcall[authorize]: module "eap" returns updated for request 16
users: Matched entry testuser at line 80
modcall[authorize]: module "files" returns ok for request 16
modcall: leaving group authorize (returns updated) for request 16
rad_check_password: Found Auth-Type EAP
auth: type "EAP"
Processing the authenticate section of RADIUSd.conf
modcall: entering group authenticate for request 16
rim_eap: Request found, released from the list
rlm_eap: EAP/speke
rlm_eap: processing type speke
rlm_eap_speke: state : 3
rlm_eap: Freeing handler
modcall[authenticate]: module "eap" returns ok for request 16
modcall: leaving group authenticate (returns ok) for request 16
Sending Access-Accept of id 219 to 127.0.0.1 port 32770
EAP-Message = 0x03d40004
Message-Authenticator = 0x00000000000000000000000000000000
User-Name = "testuser"

Finished request 16

147

Going to the next request

Waking up in 6 seconds...

--- Walking the entire request list ---

Cleaning up request 14 ID 217 with timestamp 4451806
Cleaning up request 15 ID 218 with timestamp 4451806
Cleaning up request 16 ID 219 with timestamp 4451806

Nothing to do. Sleeping until we see a request.

3.2. The failed wrong shared secret authentication

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75

Received packet from 127.0.0.1 with invalid Message-Authenticator! ~ (Shared secret is
incorrect.) Dropping packet without response.

Finished request 17

Going to the next request

--- Walking the entire request list ---

Waking up in 6 seconds...

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75
Discarding duplicate request from client localhost:32770 - ID: 37

--- Walking the entire request list ---

Waking up in 3 seconds...

--- Walking the entire request list ---

Cleaning up request 17 ID 37 with timestamp 44f51a3e

Nothing to do. Sleeping until we see a request.

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75

Received packet from 127.0.0.1 with invalid Message-Authenticator! (Shared secret is

incorrect.) Dropping packet without response.

148

Finished request 18

Going to the next request

--- Walking the entire request list ---

Waking up in 6 seconds...

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75
Discarding duplicate request from client localhost:32770 - ID: 37

--- Walking the entire request list ---

Waking up in 3 seconds...

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75
Discarding duplicate request from client localhost:32770 - ID: 37

--- Walking the entire request list ---

Cleaning up request 18 ID 37 with timestamp 44f51a44

Nothing to do. Sleeping until we see a request.

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75
Received packet from 127.0.0.1 with invalid Message-Authenticator! (Shared secret is
incorrect.) Dropping packet without response.

Finished request 19

Going to the next request

--- Walking the entire request list ---

Waking up in 6 seconds...

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75
Discarding duplicate request from client localhost:32770 - ID: 37

--- Walking the entire request list ---

Waking up in 3 seconds...

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75
Discarding duplicate request from client localhost:32770 - ID: 37

--- Walking the entire request list --- '

149

Cleaning up request 19 ID 37 with timestamp 44f51a4d

Nothing to do. Sleeping until we see a request.

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75
Received packet from 127.0.0.1 with invalid Message-Authenticator! (Shared secret is
incorrect.) Dropping packet without response.

Finished request 20

Going to the next request

--- Walking the entire request list ---

Waking up in 6 seconds...

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=37, length=75
Discarding duplicate request from client localhost:32770 - ID: 37

--- Walking the entire request list ---

Waking up in 3 seconds...

--- Walking the entire request list ---

Cleaning up request 20 ID 37 with timestamp 44f51a56

Nothing to do. Sleeping until we see a request.

3.3. The failed wrong password authentication

rad_recv: Access-Request packet from host 127.0.0.1:32770, id=122, length=75
User-Name = "testuser"
NAS-IP-Address = 127.0.0.1
NAS-Port =0
EAP-Message = 0x02d2000d017465737475736572
Message-Authenticator = 0xf099f1429405400efe2¢e2fd0a3d2{919

Processing the authorize section of RADIUSd.conf

150

modcall: entering group authorize for request 21
modcall[authorize]: module "preprocess” returns ok for request 21
modcall[authorize]: module "chap" returns noop for request 21
modcall[authorize]: module "mschap" returns noop for request 21
rlm_realm: No '@' in User-Name = "testuser", looking up realm NULL
rlm_realm: No such realm "NULL"
modcall[authorize]: module "suffix" returns noop for request 21
rim_eap: EAP packet type response id 210 length 13
rlm_eap: No EAP Start, assuming it's an on-going EAP conversation
modcall[authorize]: module "eap" returns updated for request 21
users: Matched entry testuser at line 80
modcall[authorize]: module "files" returns ok for request 21
modcall: leaving group authorize (returns updated) for request 21
rad_check_password: Found Auth-Type EAP
auth: type "EAP"
Processing the authenticate section of RADIUSd.conf
modcall: entering group authenticate for request 21
rim_eap: EAP Identity
rlm_eap: processing type speke
modcall[authenticate]: module "eap" returns handled for request 21
modcall: leaving group authenticate (returns handled) for request 21
Sending Access-Challenge of id 122 to 127.0.0.1 port 32770
EAP-Message =
0x01d3006c1801343130
303030303030303030303030303030303030313933000233323839333831383631353935
353438393230383532363537333834363135323337363834323432353435303232323136
00 Message-Authenticator = 0x00000000000000000000000000000000

151

State = Oxalbf1630c1a6b9d028d666d68576dd61
Finished request 21
Going to the next request
--- Walking the entire request list ---
Waking up in 6 seconds...
rad_recv: Access-Request packet from host 127.0.0.1:32770, id=123, length=158
User-Name = "testuser"
NAS-IP-Address = 127.0.0.1
NAS-Port=0
Message-Authenticator = 0xa431c1dd9bafadel {910fdd94ecca809
State = 0xa1bf1630c1a6b9d028d666d68576dd61
EAP-Message =
0x02d3004¢18023336383637363937393032353838333434333139383436343031363332
36313434333034333739383232353138393538300003 16234ba652a3d0bc50adbe883d1b
ca7c18c207d98b
Processing the authorize section of RADIUSd.conf
modcall: entering group authorize for request 22
modcall[authorize]: module "preprocess” returns ok for request 22
modcall[authorize]: module "chap" returns noop for request 22
modcall[authorize]: module "mschap” returns noop for request 22
rlm_realm: No '@’ in User-Name = "testuser", looking up realm NULL
rlm_realm: No such realm "NULL"
modcall[authorize]: module "suffix" returns noop for request 22
rlm_eap: EAP packet type response id 211 length 78
rlm_eap: No EAP Start, assuming it's an on-going EAP conversation
modcall[authorize]: module "eap" returns updated for request 22

users: Matched entry testuser at line 80

152

modcall[authorize]: module "files" returns ok for request 22
modcall: leaving group authorize (returns updated) for request 22
rad_check_password: Found Auth-Type EAP
auth: type "EAP"
Processing the authenticate section of RADIUSd.conf
modcall: entering group authenticate for request 22
rim_eap: Request found, released from the list
rim_eap: EAP/speke
rlm_eap: processing type speke
rlm_eap_speke: wrong proof
rlm_eap: Handler failed in EAP/speke
rlm_eap: Failed in EAP select
modcall[authenticate]: module "eap" returns invalid for request 22
modcall: leaving group authenticate (returns invalid) for request 22
auth: Failed to validate the user.
Delaying request 22 for 1 seconds
Finished request 22
Going to the next request
Waking up in 6 seconds...
rad_recv: Access-Request packet from host 127.0.0.1:32770, id=123, length=158
Sending Access-Reject of id 123 to 127.0.0.1 port 32770
EAP-Message = 0x04d30004
Message-Authenticator = 0x00000000000000000000000000000000
--- Walking the entire request list ---
Waking up in 3 seconds...
--- Walking the entire request list ---
Cleaning up request 21 ID 122 with timestamp 44f51bcf

153

Cleaning up request 22 ID 123 with timestamp 44f51bcf

Nothing to do. Sleeping until we see a request.

154

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153
	00154
	00155
	00156
	00157
	00158
	00159
	00160
	00161
	00162
	00163
	00164
	00165
	00166
	00167
	00168

