
TOWARDS AN AUTOMATED
SOFT PROOFING SYSTEM USING

HIGH DYNAMIC RANGE
IMAGING AND ARTIFICIAL

NEURAL NETWORKS

by

Nawar Fdhal, B.A.Sc, B.Eng.

A thesis
presented to Ryerson University

in partial fulfillment of the
requirement for the degree of
Master of Applied Science

in the Program of
Electrical and Computer Engineering

Toronto, Ontario, Canada, April 2011

c⃝ Nawar Fdhal, April 2011



Author’s Declaration

I hereby declare that I am the sole author of this thesis.
I authorize Ryerson University to lend this thesis to other institutions or individuals for the
purpose of scholarly research only.

Signature

I further authorize Ryerson University to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose
of scholarly research only.

Signature

ii



Borrowers’ Page

Ryerson University requires the signatures of all persons using or photocopying this thesis.
Please sign below, and give address and date.

iii



Abstract

Towards an Automated Soft Proofing System using High Dynamic Range
Imaging and Artificial Neural Networks

Nawar Fdhal

Master of Applied Science, Electrical and Computer Engineering

Ryerson University, Toronto, Ontario, Canada, 2011

In this thesis, an adaptive mechanism for controlling the illumination is combined with a

closed loop technique and the use of High Dynamic range (HDR) to generate a black box

model that can simulate the hard proof of a given digital image. An adaptive Artificial

Neural Network (ANN) was used to create the black box model, using the camera as a

measuring device. The non-uniformity of the illumination in the viewing booth is typically a

barrier in creating such a black box model since color appearance varies with location in the

viewing booth. This issue was addressed in this thesis by compensating for viewing booth

illumination using an inexpensive camera and a Liquid Crystal Display (LCD) projector.

HDR was found to give a favourable representation that is more indicative of the image

perceived by the operator, and was used as the basis for mapping the original image to the

soft proof. A proof of concept was also developed to highlight the utility of the LCD projector

based approach in providing a more broad range of varying intensity color illuminants (thus

environments) under which a proof may be not only viewed, but modeled through the closed

loop process. In this sense, a system has been developed to generate and provide custom

soft proofs that can extend the functionality of the standard viewing booth. The proposed

technique will open the doors to new automated systems that can be very beneficial to the

printing industry.
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Chapter 1

Introduction

SOFT proofing is a viewing tool where the user has the ability to view how an image

printed by the press will physically look based on a prediction formulated on a well

calibrated monitor. A more general definition is that a proof should simulate the appearance

of the final print before the actual print job goes to press. An example of a typical soft

proofing system is shown in Fig. 1.1.

In this thesis, techniques are developed to enhance and simplify the process of achieving

a soft proof prediction of a hard proof generated off the printing press. The techniques move

away from traditional offline International Color Consortium (ICC) profile construction and

physical modeling. High Dynamic Range (HDR) acquired images that more naturally reflect

the visual sense as perceived by the human observer are incorporated into a closed loop

acquisitioning and modeling process that compensates for non-uniformity in illumination,

improve color prediction and shows potential new directions in soft proofing applications.

1.1 Motivation

Proofing is a simulation of the printing press. In general, a proof is needed in order to

establish the quality of color reproduction realizable on any given substrate by an individual

press. Press operators then rely on these proofs in order to make fine tuned adjustments

to ink combinations in order to achieve a desired output. Proofs are also essential for

communicating with the customer in order to have some agreement on the quality of the

1
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Figure 1.1: Soft proofing example shows hard copy print (right) and the predicted printed version
on the monitor (left).

reproduction for a given job. There are mainly two kinds of proofing, hard copy proofing

which has been known for quite a long time and the more recent soft proofing technology.

It goes without saying that the hard copy proof of the press is very important in saving

time and cost since it is possible to simulate the printing press prior to the start of the

actual printing process. In other words, it is important to check the quality of the final

printed image (product) before printing, since the printing process is expensive to set up

and time-consuming because it takes time to place inks, papers, and get the press to provide

the desired output [1]. Consequently, proofing is an essential process because it offers the

full power to control the prepress work and offers the opportunity to ensure that the job

will be performed as desired. Hard copy proofing is typically done by a proofer (most likely

a digital inkjet printer) that simulates the press and has the ability to reproduce all the

colors of the press [2]. There are many shortcomings with hard copy proofing systems. For

instance, they may not deliver consistency from one proof to another, they may involve

tedious, trial by error corrections and adjustments, may incur much waste in material and,

most importantly, there is no automated method of tracking revisions and checking who has

looked at the proofs and when. More shortcomings are listed in [3].

These shortcomings were considered as disadvantages for this type of proofing system.
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Moreover, industry experts have noticed differences between proofs generated from different

vendors. For that reason, in 2007, a survey was conducted to evaluate the confidence of

hard proofs. 14 Canadian companies produced hard proof with each proof purported to

be SWOP 1 certified. The resulting hard proofs were shown to have dramatic differences

between them as it can be seen from the uncorrected scanned proofs in Fig. 1.2. Although

all proofs were SWOP certified and were produced from the same PDF file [3], appearance

in skin tones and highlights are far from consistent.

These hard copy proofs are usually viewed under standard lighting conditions such as

D50 using a specially designed viewing booth with variable intensity. Since the proof is a

representation of how the final printed job is intended to look, the proof is the reference that

the press operators strive to match [4, 2].

The usefulness of hard-copy proofing technology has been known for a long time. How-

ever, hard copy proofing systems need expensive equipment as well as the cost of paper

and ink involved. In addition, hard-copy proofing is associated with a high cost of courier

services needed to distribute the proof to all parties involved in the graphic arts workflow.

Such parties include publishers, advertisers, agencies, editors, artists, and the printers, and

all need to discuss the content of the proof and evaluate from remote locations which may

not provide efficient viewing environments. Therefore, in today’s technology, many printing

companies along with their customers have decided to exchange/view proofs electronically

using calibrated computer displays. This has led to the use of the newly developed soft

proofing technology: sometimes called remote or virtual proofing [1]

Soft proofing is a new method of visualizing how the printed image will look before

printing, using a calibrated monitor. This method saves a lot of time and money compared

to hard copy proofing. Also, changes to color/content can be made easily without reprinting

the proof again. In order for this method to work, a good viewing conditions such as

standard lighting and surrounding [4] are required as described in ISO 12646 2. This ISO

1Specifications for Web Offset Publications which help to reduce tolerances via its specifications for
graphic arts

2Graphic technology Displays for color proofing - Characteristics and viewing conditions
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Figure 1.2: Untouched scans of hard proofs from different SWOP certified printers [3].
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was developed in order to give recommendations regarding the viewing conditions and help

the user achieve an accurate and reliable match between soft proofs and hard copy printed

images. Soft proofing also allows different people to compare the same color at different

monitors when viewed in standard viewing conditions unlike the hard copy proofs [2]. In

addition, soft proofing in Photoshop enables the user to view the soft proof with different

printers and paper type such as newspaper vs. glossy paper to choose the options that give

the desired output.

1.2 Problem Statement and Thesis Contributions

This thesis aims to enhance soft proofing technology and find solutions for issues with new

soft proofing systems that the industry strives for. Despite the advancements in soft proofing

technology, it still lacks many aspects such as automation and accuracy. Therefore, the

objective of this thesis is to propose new methods that can potentially simplify and create

more accurate prediction models that can help to make soft proofing technology more widely

acceptable.

Specifically, this thesis focuses on creating a black box model that can simulate the

appearance of the printed hard copy image of a given digital image on the monitor. The

model demonstrates robustness by first creating a uniform lighting condition in the viewing

booth using an inexpensive camera and a Liquid Crystal Display (LCD) projector. The

proposed method is also computationally efficient.

This thesis addresses some problems in the current soft proofing technology and some

current issues in the printing industry. The main contributions achieved in this thesis are

summarized as follows:

• Problem 1: Color space transformation is usually done using a well established color

management implementation which exists in the form of ICC 3 profiles. In ICC-based

systems, device characterization information is stored in single and multi-dimensional

LookUp Table (LUT) within profile files, such that an input profile provides a mapping

3http://www.color.org
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between input RGB and CIELAB, and an output profile provides a mapping between

CIELAB and output RGB/CMYK values. Thus, the accuracy of color transformation

from the input image to the displayed image and then to the printed image depends

in part on the quality of the characterization.

Contribution: The proposed method in this thesis employs an Artificial Neural Net-

work (ANN) model based on Levenberg-Marquardt (LM) back propagation training

algorithm to implement a color transformation between two color spaces (eg.RGB to

CIELAB). This method was compared with a standard ICC profile and the results

with the developed algorithm were extremely accurate.

• Problem 2: To be able to match two colors and/or judge if two colors have the

same appearance, the illumination applied to both colors should be the same because

slight changes in illumination result in changes in the perceived color. This can include

changes in luminance level (dark to bright) as well as the changes in the chrominance of

the illumination. Luminance changes are very common in everyday life: for instance,

a bright sunny day versus a dark overcast day where objects tend to appear very

bright and colorful on sunny day and somewhat subdued on an overcast day [5]. For

example, if someone wants to compare two images, the two images have to be viewed

in identical viewing conditions where light intensity is the same across the viewing

field. In other words, the light should be as uniform as possible at least on the viewed

image. Therefore, it is important to control the intensity and its uniformity because

changing the intensity of the light changes the perceived color. For that reason, when

generating a soft proof, the user often needs to fine tune the intensity in the viewing

booth until a good subjective match occurs between the monitor and the booth. One

flaw however is that these expensive viewing booths do not provide uniform lighting

conditions as it can be seen from Fig 1.3. Achieving a workable environment in which

to view soft proofs is therefore currently not automated, and consistent results within

the viewing booth are rarely possible without manual tweaking. Even in the case of

hard proofing, there is a need for uniform lighting conditions in the viewing booth so
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Figure 1.3: Viewing booth by GTI for soft proofing4.

that all colors of the image are perceived in the same manner.

Contribution: Automatic and accurate estimation of the scene’s illumination from

digital images is still an undetermined problem [6]. Moreover, research for improving

Color Management Systems (CMSs) continues in many fields within the printed media

industry [7]. As there are still many issues to resolve, especially with illumination, a

primary goal in this thesis was to establish a system for achieving uniform lighting in

the viewing booth that can be used to illuminate the printed image in a uniform manner

both for viewing and modeling purposes. The novel approach of using an LCD projector

is introduced to create an ideal viewing condition for this purpose. Projector uniformity

was investigated and compensated using spatial information from a white image that

the projector displays. This was found to provide better results than depending on

the green channel used projection blending applications [8, 9]. Furthermore, existing

viewing booths do not provide the flexibility of viewing the image under illumination

with different colors and levels. Therefore, the projector was used to create a wide

range of different colors of uniform illuminations with varying intensities. The LCD

projector was also used to compensate the non-uniform lighting in the viewing booth.

4GTI Graphic Technology, Inc is a leading manufacture in viewing booth systems,http://www.gtilite.com
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This led to a uniform illumination inside the viewing booth and represents work that

has not been done before for this type of application. The utility of the proposed

method is that it enables equally illuminated areas for accurate color investigation, a

step that is crucial to the future of soft proofing systems.

• Problem 3: Creating a successful soft proof requires a viewing booth with variable

intensity levels so that it can be varied to achieve the same appearance on the moni-

tor. Some off-the-shelf products like Photoshop perform a very basic soft proofing in

that limited modeling of a standard substrate combined with measurements collected

using dedicated measuring apparatus is performed. However, these approaches are

rarely correct. The user has to manipulate settings in Photoshop while changing the

intensity of the light source in the viewing booth until a subjectively close match is

achieved against a calibrated monitor. This process is extremely tedious. Moreover, it

is not an automated method and does not provide consistent results from time to time.

Plus, different people adjust the proof differently. An automated method is needed

to get more repeatable results. The current models of soft proofing systems depend

greatly on ICC profile modeling which is based on LUT’s built from hard colorimetric

measurements. This introduces some discontinuities in colors and other interpolation

errors. Moreover, current soft proofing systems do not take into consideration varying

intensities of illumination.

Contribution: In this thesis, an adaptive mechanism for controlling the illumination

is combined with a closed loop technique and the use of HDR to capture the true

reproducible color gamut of the printed image in the viewing booth. This was used

to generate a black box model that can simulate the hard proof of an arbitrary given

digital image. Adaptive techniques such as ANN were used to create the black box

model, using the camera as a measuring device.
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1.3 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 discusses relevant literature pertain-

ing to importance of color management and ICC profiles, calibrating digital imaging devices,

soft proofing techniques and overview about projectors as potential light source. Modeling

the color transformations via ANN versus the current methods that were implemented and

tested are explained in Chapter 3. Chapter 4 discusses the importance of using HDR to

create an accurate and reliable color reproduction of the printed image on the monitor along

with some experimental results. In Chapter 4, ANN was used to create a model but it was

found that the viewing booth is not uniform. Therefore, in Chapter 5 a new method is pro-

posed to compensate the viewing booth lighting to create a uniform hybrid viewing booth to

capture images and be able to create an accurate model. Finally, in Chapter 6, a conclusion

of this thesis was made including the contributions and the importance of this work as well

as some suggestions for future work.



Chapter 2

Background Theory and Related
Work

THIS chapter explores some of the background theory behind the digital imaging work-

flow, the establishment of CMSs and their importance in soft proofing, and explains

the use of projector as a potential light source.

2.1 The Importance of Color Management

Color management techniques are very important in controlling the image workflow so as to

ensure a best match between the original image design and the reproduction copy. Indeed, the

image workflow is typically controlled by managing color transformations between different

imaging devices. In this way, the range of colors available in the original image will be kept

visually matched as much as possible throughout the digital imaging workflow [2].

2.1.1 Color Workflow Control

There are two ways of controlling colors in color management workflow, the closed-loop color

control which is considered as the old way of controlling color control workflow and the new

well known way which is open-loop color control. Both methods are explained below:

10
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Figure 2.1: Closed-loop color control system.

Closed-Loop Color Control

In this kind of color control system, all imaging devices in the control loop have to be

manufactured by the same vendor. This means scanners, printers, software, and monitors

all are installed and sold by the same vendor [2]. An example of such a system is shown

in Fig. 2.1 which shows that every imaging device in the system is connected to all other

devices through T which refers to device-device color transformation which will make this

scheme very complex.

This kind of color control system is sometimes called device dependent color transfor-

mation because unique color transformation happens between every pair of devices in the

system. The process involves the direct conversion from one device color space to another

device color space.This kind was in use in 1970’s and 1980’s and has many disadvantages in

terms of its complexity. For instance, suppose having N devices in the color management

workflow, this will require N2 device-device color transformations to characterize all possible

interconnections. Adding a new device to the existing workflow will require N new color

transformations.

Open-Loop Color Control

In this kind of color control system, all the imaging devices are connected to a one station

which is called the ”central connecting space”. Any device communicating with another

device should first be connected into the central connecting space. This principle is analogous

to that used in airports. For example, if someone needs to travel from one place to another,
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Figure 2.2: Open-loop color control system.

it is not always a direct fight and passing through a transit station is a must. In other words,

there are no direct connections between all airports in this world [2]. An example of this

system is shown in Fig. 2.2 in which T for each device refers to the transformation from

device color space to standard color space or vice versa.

Comparing to the closed loop system, this system is much better in terms of complexity.

Therefore, this kind of color control system is sometimes called device independent color

transformation because every color transformation has to happen through to some standard

color space. Device independent color spaces such as XYZ or L*a*b* serve this purpose. For

instance, you can add devices very easily and adding one device will require only one color

transformation compared with N color transformations in the closed loop system. For N

devices, it requires only N color transformations compared with N2 color transformations.

The advantages of using this type of system are increased flexibility in adding and removing

imaging devices from different brands and the whole system does not have to be supplied

and installed by any vendor [2, 10], rather they provide only a transformation to the device

independent space.

2.2 ICC Color Management

As mentioned previously, color management techniques are important in perceiving accuracy

and quality from scanning, manipulating, and printing the image. Consider the situation

when we have a hardcopy image, scan the image, and then print it out via any desktop color

printer. By comparing the original hardcopy image with the printed one, are they an exact
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Figure 2.3: Three scanners from different brands used to measure the same patch [2].

match? The answer is no even if they look similar because if the colors in both images are

measured by colorimeter, they will have some deviation in the measured values. For that

reason, color management techniques are important to convert the color from one space to

another. To be specific, each device has its own characteristics even the same device from

different manufacture has different behavior.

Consider the situation in Fig 2.3, the same red patch was scanned by three different

scanners: HP scanner, Heidelberg scanner, and UMAX scanner. The resulting RGB values of

the three scanners are quite different and will cause a big problem during the communication

between different imaging devices. For instance, sending these RGB values to a printer will

result in three printed patches that have variations in their red which will not match the

original red patch as well. Moreover, different printers have different characteristics [2, 11].

Furthermore, every imaging device has it own characteristic which means the response of

the device to the color is different from device to device. In fact, even the response of the
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same device is expected to change over time. It is very clear from the previous example that

RGB color space is a device dependent color space. Therefore, a mechanism that can convert

this RGB device dependent color space to a device independent color space such as XYZ or

L*a*b* is used so that when converting RGB values of each scanner to L*a*b, the results

should be the same. This step is done by using the device ICC profile that will convert RGB

to L*a*b*. This will be revisited in more detail of device dependent color in the next section.

Currently, solutions for this problem is provided by the CMS which is responsible for the

color transformations between imaging devices in the workflow by handling conversions from

device dependent to device independent color space and vice versa using ICC profiles [12].

2.2.1 ICC Profiles

History of ICC Profiles

In 1993, the ICC was formed by the eight biggest companies in printing and imaging industry

in order to build the standardization of the new CMS. This organization creates new protocols

for color management techniques which helped software vendors, equipment manufactures,

and equipment users to communicate very easily with one another while ensuring as much

as possible color information could remain perceptually unaltered across various stages of

the workflow. This framework was called ICC-color management.

This led to the creation of ICC profiles which are used to convert color from the device

color space to the Profile Connection Space (PCS) and vice versa. This made transferring

images very easy. The idea being that by embedding the ICC profile within the image

no matter what the operation system was, the image appearance would not undergo any

appreciable change. Similarly, having an ICC profile for one printer means that this printer

could be used on any computer with any operation system, and accurate color reproduction

could be achieved [13, 2]. This made for incredible flexibility in color management for users

and vendors.
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Details of ICC Profiles

ICC profiles have all the necessary data for a specific device such as a scanner, printer,

or monitor. This file contains more detailed information about the color transformation

between the device color space (RGB in the case of a scanner or monitor and CMYK for

printers) and the PCS which is usually a L*a*b* or XYZ color space. This information is

stored in LUTs in order to create the Color Management Module (CMM) that is used to

convert color data from one space to another. It also has more information than the tables

for color conversion such as the type of the profile (output or input profile), reference white

point, and the time when the profile was created [14].

The file size of a profile could vary from 4K to 4MB or may be bigger and their extension

is either .icc or .icm. They can be found for example in the windows operating system.

Moreover, there are some programs that are used to examine a profile. These programs are

called ICC Profile Inspectors in which viewing the content of an ICC profile is possible. By

using these programs to look inside the profile, it is very easy to see the header and the

tags of the profile. The header has the information about the manufacture and the type of

the device, while the tags have all the important data and information for color conversion.

There are two kinds of profiles, output profiles that convert from PCS to device color space

and input profiles that convert from device color space to PCS. However, nowadays, most of

the profiles are bidirectional [2, 14].

2.2.2 How to Obtain an ICC Profile

The importance of ICC profiles in color management was addressed in section 2.2. Now

the question is how can these ICC profiles be obtained for each imaging device? The more

accurate way that is used in imaging and printing industry is to obtain custom ICC profiles

through exhaustive measurements. Before explaining how to obtain a custom ICC profile

using profile making software, different ways of how to get ICC profiles are first outlined:

• Generic profile: This is a simple method in which the provided ICC profile by the

manufacture will be used [2]. For example, every computer has its own ICC monitor
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profile that is supplied by the vendor. However, it is recommended to make your own

profile because the monitor efficiency will likely change over time.

• Process profile: It is possible to consider the device you have to be operating ac-

cording to some conditions by using known standard ICC profiles such as sRGB, but

this is not recommended due to the lack of knowledge of individual device specifica-

tions [2, 15].

• Custom profile: This method can be done by the user in order to make an ICC

profile for each device. The requirements are measuring instruments, a color test chart

and profiling making software. This is one of the best ways to obtain an accurate ICC

profile [2].

To be able to have accurate color management workflow, custom profiles have to be used

in order to ensure all the factors are taken into consideration when the profile was made.

Therefore, the created custom profile is valid only if the same conditions can be reproduced

as those used at the time when the profile was made. These conditions could be the type

of paper, inks, room temperature, and humidity. For instance, if an ICC profile was made

for a printer by using Matte paper, then this profile is valid only for this kind of paper. If

different kind of paper was used such as glossy or semi-gloss, then that profile is not valid

and a new profile has to be made for the new paper used in printing in order to accurate

and faithful modeling of the printer and how inks respond to the new type of paper [16].

In order to make a custom profile for any imaging device such as monitor, scanner or a

printer, three essential things are needed which are described in the following points:

• Measuring Instrument: There are different instruments used to measure color

patches of a printout and on the monitor such as X-Rite530, Eye One Pro (i1 Pro),

or i1iO from X-Rite 1. These instruments mainly use light source converted to D50

applied to a small patch of color and measure the reflectance properties of the patch.

From this, L*a*b* values can be computed by using standard observer color matching

1http://www.xrite.com; X-Rite is the global leader in color science and technology.
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Figure 2.4: Measuring instrument i1 with automated table iO, together called i1iO2

functions [2, 11]. These instruments are expensive and can range anywhere between

$USD 1000 up to $USD 10,000. In this thesis work, i1iO was used which comprises of

one i1 Pro that is mounted in a robotics arm on an automated Scanning Table for fast

and accurate measurements. i1iO is shown in Fig. 2.4.

• Test Chart: It is a chart that contains a wide range of colors that are uniformly

distributed in equally spaced patches. Each imaging device has a specific test that is

used to measure its response. Measuring these test charts will give a device response

which can be used to create an ICC profile. [17, 2].

• Profile Making Software: This software will build required ICC profiles based on

the measurement of the test chart. There are several software packages from different

vendors such as ProfileMaker Pro 5.0.8 or EyeOne Match3 [18]. Each have some

differences in the quality of the ICC profiles generated. The quality of the ICC profiles

will depend on the chosen test chart plus the measuring instrument [18, 2].

Lastly, to make a printer profile, one test chart has to be chosen from many available standard

test charts. A test chart is a chart that has many patches of different colors. This test chart

has known CMYK values for each patch. By printing this test chart and measuring the

2http://www.crispdigital.co.uk/products/xrite/i1io.html
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device independent color space such as L*a*b* with the i1iO, an ICC profile can be made

by using the known values of CMYK and its corresponding measured values of L*a*b* in

the profile maker software. The profile maker software uses CMYK and L*a*b* data to

construct the LUT [19].

2.3 Calibration of Imaging Devices

Device calibration means bringing the device to a known characteristic color response for

which the relationship between device-dependent color space and device-independent will be

recorded in a custom ICC profile. This is done for every device in the digital imaging chain

to maintain an accurate color transformation throughout the digital workflow.

2.3.1 Calibrating a Monitor

The monitor is a very important device in the imaging chain since it lets us view the digital

image and make adjustments of the colors before the printing process begins. If the monitor

does not provide accurate colors then what we see is not reliable. One important use of an

accurately profiled (calibrated) monitor is the soft proofing in which the screen is used to

view the printed image before actually printing it. This process save lots of time and cost.

Profiling a monitor means creating a custom ICC profile for the monitor [2]. To profile a

monitor, a profile maker software and measuring instrument are needed in order to measure

the colors and create an ICC profile. The monitor used in this thesis was LaCie 526 3 which

comes with special software together with measuring instrument called Blue eye pro as shown

in 2.5.

Once the monitor is calibrated that means the new ICC is built and automatically made

as the default monitor ICC profile. In other words, this ICC profile contains new Tone

Reproducion Curves (TRC) for the monitor stored as a look up table.

3http://www.lacie.com/ca/index.htm
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Figure 2.5: LaCie 526 monitor with blue eye measuring instrument during calibration process.

2.3.2 Calibrating a Printer

Calibrating a printer is important step in order to know the response of the printer. Printers

mainly include three categories: desktop printer, proofers, and printing press. Creating an

ICC profile for almost every printer is the same, and requires printing a test chart, measuring

the printed test chart, and feeding the measured values to the profile making software to

create the custom ICC profile [20]. The printer used in this thesis is an Epson stylus photo

1400 inkjet RGB printer shown in Fig. 2.6. In this case, creating an ICC profile for this printer

means building the relationship between RGB values sent to the printer and the resulting

L*a*b* values when measured. The chosen test chart is TC9.18 shown in Fig. 3.1. This test

chart contains values of RGB from (0,0,0) to (255,255,255) uniformly sampled so that it can

accurately measure the printer response. It is very important to print the test chart without

any color management because the goal is to record the natural printer behavior, and then

compensate accordingly. After printing the test chart with the known RGB values, this chart

has to be measured in order to obtain the resulting (device independent) L*a*b* values [21].

In order to reduce the error introduced by the measuring instrument, it is recommended to

measure the printed chart a few times and take the average. In this case, the chart was
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Figure 2.6: Epson stylus photo 1400 inkjet RGB printer.

measured three times and averaged to get accurate L*a*b* values. By now, RGB values

verses L*a*b* values are known which will be used by the profile maker software to create

the ICC profile [2].

2.3.3 Calibrating a the Camera

High quality cameras are available almost everywhere today at low cost, allowing cameras to

play an important role in the digital imaging workflow. It is becoming very important to have

a truthful control of camera colors by having an accurate ICC profile. This ensures colors

are accurately represented in the source image to be later used in the workflow [22]. There

are different test charts designed for camera calibration. It is often necessary to consider

which test chart is most appropriate for a given camera. For instance, the IT8 chart may

not be the best choice to profile the camera if the intended purpose to use the camera to

take pictures of everyday objects [17]. The test chart has known L*a*b* values that will

be captured to generate RGB values by the camera which will used to generate mapping

between RGB and L*a*b* to create the ICC profile. Therefore, the most important thing in

calibrating a camera is to consider the lighting conditions during the process of creating a

custom ICC profile. Perfect conditions relate to an environment in which there is no change

in the illumination during the capture process of the test chart [11]. There are also white,



21

Figure 2.7: GretagMacbeth DC test chart for camera calibration4.

gray, and black patches around the test chart and in the center as shown in Fig. 2.7 used to

determine the uniformity of the illumination.

Furthermore, digital cameras produce images in two ways:

• Processed: This is what most consumer digital cameras are capable of doing in which

the captured image is processed by the internal software in order to produce pleasing

results. The camera will also assigns a standard ICC profile such sRGB to the image

to be displayed in order to produce meaningful results.

• Unprocessed: This is the exact data from the sensor without being modified by the

camera software (ie. the raw image). In this case, a custom ICC profile has to be made

in order to apply it to the image to produce meaningful results. This option is not

available in every camera. Professional photographers often use this option to get the

best out of their cameras.

2.4 Soft Proofing Systems

Soft proofing is used to verify the print jobs on the monitor. Despite the successful devel-

opment and use of the current soft proofing systems, they often still fail to deliver a result

that can compare to hard copy proofing. This is primarily due to changes in appearance

4http://www.dpnow.com/695d.html
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due to different illumination intensities and levels [23]. In work published in [24], visual

experiments were done to simplify the across-media color appearance reproduction between

a Cathode Ray Tube (CRT) display of a soft copy and a hard copy NCS color atlas in a

D50 viewing booth. Psychophysical experiments by nine observers were carried out in order

to visually match the soft copy with hard copy. Each observer was asked to match the two

samples in different viewing condition at the same time by using a black splitting board

between the display and the viewing booth. Each observer then used the left eye to view

the hard copy while using his/her right eye to view the samples on the display. The soft

copy color patches were made in Photoshop, and the nine observers were asked to adjust

RGB sliders until it matched to hard copy NCS chips. In total 488 samples were used by

nine observers for two runs which led to a total of 8784 samples. 8460 used to training and

324 used for testing. The total samples were divided into four parts: each being trained

with back propagation neural network to get a good generalization. The main concept of

this study was to model hard copy samples on a CRT display by observers. Therefore, this

method depends on the human to match colors and there is no automation in the process.

The main objective of the soft proofing system is to be able to reproduce printed color

images on the display faithfully in order that displayed color images are visually matched

(perceptually) to the same image on the printed media. A recent patent ”Correction tech-

niques for soft proofing” explained in [25], outlines new techniques to enhance current soft

proofing techniques. Referring to the white point correction algorithm as in Fig. 2.8, a white

point correction is implemented by placing a white surface (paper) in a viewing booth with

a D50 light source. Then, a white patch is created using Photoshop on the display that has

same L*a*b* as the white paper. Then, this white patch does not match the white in the

booth so the user has to visually adjust it until an acceptable visual match occurs between

the white display and white paper in the viewing booth.

After visually documenting the white point, the RGB on the display has to be visually

adjusted to a achieve a good match between the display and the hard copy in viewing booth

with D50 light source. This process can be done incrementally for RGB until an acceptable
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Figure 2.8: The algorithm for correcting the white point(left) and the algorithm for correcting
the chromatic colors(right) [25].
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visual match is achieved. This process is shown in the algorithm shown in Fig. 2.8. It is

argued that these corrections can be applied to any digital image to obtain a soft proof.

For more details about this work refer to the patent in [25]. The problem in practice is

that the viewing booth is not uniform which makes the white paper look different in the

booth. Moreover, the booth has different intensities at different locations which affects the

white point as well as RGB colors. This method also depends on the human to adjust

colors; therefore, is not automated and we believe, will not deliver consistency in the color

reproduction.

In addition to these approaches, there are some available proprietary soft proofing tools

such as those built into Photoshop [2], however, soft proofing lacks the feeling/appearance

of an actual printed image. Moreover, a tool to predict what the image will look like under

different lighting conditions with different intensities is a very important step for soft proof-

ing [26]. An LCD projector is considered in this thesis in order to create a uniform light in a

viewing booth as well as for possible use in simulating different controlled illuminations. In

the next section, a brief overview is given about projector technologies they might be used

as a potential light source.

2.5 Projection System as a Potential Illuminant

Color consistency depends heavily on the illumination under which the product is viewed.

This includes changes in luminance level (brightest to darkest) or changes in chrominance [5].

Achieving consistent lighting booth (uniformly lit viewing booth) is strongly recommended

in order to provide robust evaluation when colors are viewed. As such, Projector-based

Illumination Techniques are investigated in this thesis as a possible solution.

Digital media projectors can be classified as large digital displays which provide high

resolution images. Conversely, projectors have been used as two-dimensional display devices

just like CRT monitors or LCD panels, more typical within larger scale versions of monitors.

Projectors, with the aid of a camera can be used for more powerful and valuable applications

such as 3-Dimensional (3D) scanning and modeling [27]. While such tasks involve the inter-
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pretation of depth and structure based on illumination variations, it is also true that any

surface or object can change its appearance by controlling the illumination [28]. Accurate

control of the surface’s illumination can be accomplished using the current projection display

technology which will allow for pixelwise control of the color of the surface. Consequently,

digital media projectors were considered to provide a uniform light by controlling the pixels

of the projector as measured through a camera.

2.5.1 Overview on Projectors

Media Projectors are widely used as big screens to display vibrant presentations slides and

movies for large groups of people with fast moving images that has brilliant colors for enter-

tainment as well as for education purposes and conferences. Recently, the size and the cost

of the digital media projectors have been decreasing rapidly which allow their use in many

valuable applications. Projection display technology has significantly grown and highly de-

veloped in the past few years and became very dominant in displaying images with high

spatial resolution and dynamic range. These developments in the projection display technol-

ogy made significant impact in today’s complex display systems [28]. Projectors have been

used in many applications but not in the printing industry.

2.5.2 Types of Projector Display Technology

Digital media projectors can be classified according to the technology they use internally.

The two primary types are: LCD and Digital Light Processing (DLP) projectors.

Liquid Crystal Display (LCD) Projectors

When the LCD technology is used in projectors, it is called 3 LCD because the main source

of light source is an ultra bright lamp that emits a white light which is split into three beams

of red, green, and blue using multiple dichroic mirrors. These mirrors transmit and reflect

specific wavelength generating a narrow band spectrum with peaks at red, green, and blue

as shown in Fig. 2.9. Each band is then passed to individual LCD panels (three in total)

which contain numerous liquid crystals through which the light will travel. The light will
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Figure 2.9: LCD technology based projector5

be modulated by these crystals according to the required intensity for each pixel. The light

from each LCD panel is combined by a prism and reflected towards the lens in order to focus

the image. The details are shown in Fig. 2.9. Since the light is being passed through an

LCD, it is considered a ”transmissive” technology [29, 11].

Digital Light Processing (DLP) Projectors

This technology is based on Digital Micromirror Device (DMD) which is hundreds of thou-

sands of tiny mirrors to reflect light [30]. These microscopic mirrors are controlled indi-

vidually and can tilt ±10 degrees in order to change the direction of the light. The other

difference is that the red, green, and blue light is generated using a color wheel that spins

fast to allow the right color to be passed to the DMD at the right time, where it is reflected

onto the screen through the lens (Fig. 2.10). Therefore, it is a ”reflective” technology. Im-

ages can be generated by titling the mirrors away or toward the light source in a very fast

manner. The resulting intensity depends on the frequency of turning the mirror on and

off. For instance, when the mirror is turned on more than off, it produce higher intensity

and vice versa. When a desired color is needed at specific pixel, then the responsible mir-

5www.trueprojection.com/LCDproj.php
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Figure 2.10: DLP technology based projector6.

rors will only reflect a specific combination of RGB to get the request color in a very fast

manner [31, 29, 11].

Liquid Crystal on Silicon (LCoS) Projectors

LCOS technology is related to the LCD technology. It uses reflective LCOS modulators

instead of the transmissive LCD panels. LCOS is an LCD light modulator but fabricated on

silicon. The modulation of the light is achieved using the liquid crystals which are sandwiched

between a glass layer and a silicon layer, as opposed to the two glass layers used in an LCD

panel. The silicon layer is coated with a reflective metal which acts like a mirror. These

liquid crystals turns on and off using an electronic control circuit embedded into the silicon

layer. This technology allows closer liquid crystals which allows higher resolution at the final

projected image. Some of these projectors use one chip with sequentially flashed color of red,

green, and blue instead of using color wheel. But higher end projectors uses three panels of

LCOS and dichroic mirrors to generate red, green, and blue in a same way as in the LCD

projectors. [29, 11].

6http://www.pctechguide.com/projectors/dlp-projectors
7http://electronics.howstuffworks.com/lcos2.htm
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Figure 2.11: LCOS technology based projector7.

2.5.3 Choice of Projector Technology for Compensating the View-
ing Booth

Section 2.5.2 briefly discussed the types of projector display technology. One of most impor-

tant advantage of LCOS is the minimum spaced pixels which provide a smoother image and

higher resolution. The other thing is that 3LCD and three chip LCOS provide red, green,

and blue colors simultaneously unlike the DLP which provide colors sequentially, one color

at time, in high speed using the color wheel.

DLP projectors tend to provide rainbow artifacts (visible color separation artifacts) be-

cause of the color wheel. For instance, taking an image of the display using a camera requires

synchronization between the camera and the projector in terms of sampling. For that reason,

the exposure time of the camera should be synchronized with the projector. For example, if

the projector color wheel is operating at 60 Hz, then the camera should use an exposure of

(1/60) seconds in order to capture an accurate image without rainbow artifacts. One issue

is that taking images with different exposure values will result in incorrect images as it can

be seen in Fig. 2.12 in which three images of a full displayed white image were taken using a

DLP projector. Images were captured using the same Canon camera with an exposure value
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Figure 2.12: Images taken of screen while the DLP projector is displaying full white image with
camera settings: ISO=100, Apreture=5.6, and Shutter Speed=1/200

of (1/200) second, ISO of 100, and aperture set to 5.6.

For that reason, using HDR techniques are not possible with DLP projectors because of

the color wheel plus it does not provide a good lighting source as the colors are sequentially

displayed one after another which is not how a normal lighting source behaves [32]. It was

also noticeable that taking images with different exposures other than (1/60) seconds will

result in different colors at different times because it depends on the color wheel. Since, the

goal is to use HDR imaging techniques for creating an even illumination using the projector,

it is not possible to use a DLP projector. In addition, the DLP projector has obvious artifacts

that result in shades of red, green, and blue on the screen when a white color is displayed;

therefore, it cannot be used as a good light source to compensate the viewing booth.

On the other hand, since neither LCD projectors nor LCOS projectors have a color

wheel, the rainbow artifacts are not present and are ideal light source to be used for the

work done in this thesis. A research review was done in [33], it was concluded that the

largest △E calculated based on Eq 3.1 were 10.17 and 21.71 for LCD and DLP respectively.

Therefore, LCD projectors are better in providing superior results by better color uniformity.

Therefore, an LCD projector based lighting system is used in this thesis as a stable light

source to compensate and thereby create a uniform illumination on the paper displayed in

the viewing booth.

One more thing to mention is that linearizing the camera requires a series of different

exposure images in order to calculate the Camera Response Curve (CRC). In this case, when

an LCD projector is used, it is possible to calculate the CRC based on the LCD projector

with all other light in the room turned off which provides more stable and reasonable results
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in terms of luminous measurements acquired using HDR techniques. Once the camera is

linearized using this condition, it should give slightly better results when it is used to measure

luminosity under similarly lit environments.

2.5.4 Color Variations in a Projector

There are mainly two kinds of color non-uniformity in the projector display technology:

• Intra-Projector Variation: Color variation of the displayed image by one projector,

a condition more noticeable with flat images than with complicated images [9]. It has

been shown that the variation in luminosity is greater than the chrominance which is

almost spatially constant within a single projector due to the lens [34]. Moreover, in

some projectors, luminance can differ anywhere from 40% to 80% from the center to

the edge of the displayed image [35, 36].

• Inter-Projector Variation: Color variation of the displayed image from one pro-

jector compared to another projector. Also, it can be thought of as the color vari-

ation between different projectors within the same manufacture and same projector

model. There is some variation in the luminosity and chrominance; however, luminos-

ity radically varies across different projectors even within same model and technology

type [35, 9].

The Human Visual System (HVS) is more sensitive to change in luminance than chromi-

nance [11, 37, 38, 39]. The reason behind this is that the number of the rods (cells sensitive

to light and dark) in the human eye outnumber the cones (cells sensitive to more specific

color wavelength). They are also more sensitive than the cones which makes the human eye

much more sensitive to luminance than to chrominance. This fact has been used as an ad-

vantage in designing the analog color television standards plus in digital image compression

algorithms such as JPEG [40]. Luminance uniformity of the image displayed by a projector

must be made as uniform as possible to deliver a good quality image especially for creating

a viewing booth with even and uniform lighting conditions. In a tiled display which consist
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of a set of projectors with the same model from the same manufacture, spatial variation

in luminosity is very noticeable and has been addressed to create more seamless projector

outputs for overlap when merging tiled displays [37]. Perceptually, photometric variation

issues are mainly due to a luminance variation which is the most significant contributor to

the color variation in the projector display [34].

2.5.5 Intensity Transfer Function of the Projector

It has been known that the display devices such as CRT and LCD monitors have a non-linear

response for the output luminosity of the RGB channels [11]. This is also true for digital

media projectors which means that the relationship of the input for each RGB channel is not

linear with output luminance. This non-linear response is known as the Intensity Transfer

Function (ITF). It is important to know this response so that a desired luminosity can be

related to an RGB input. It is also shown that the ITF is not the same from one pixel

to another, yet their shape is the same. Since it is desired that an RGB output delivers

consistent luminosity regardless of location, ITF should be normalized to be the same across

every pixel (spatially invariant). After normalizing, a single non-linearity correction look up

table is needed for each channel. In total, there will be three different look up tables, one

per channel (red, green, and blue) [34].

In [34], a precision spectroradiometer (Photo Research PR 715) was used for point mea-

surements in order to accurately measure the ITF. For measuring the spatial luminosity

variation of the whole display, a high-resolution digital camera is usually used. Nowadays,

DSLR cameras are available for quite reasonable price and can be used with different ex-

posures (by varying the shutter speed) to measure different levels of luminosities accurately

and faithfully [36, 34].

An inexpensive camera was used in this thesis (Canon Rebel t1i 500D DSLR) and its

nonlinearity was recovered using the HDR imaging method explained by Debevec and Malik

in [41]. After finding the nonlinearity of the camera which is known as the CRC, its inverse

is used to linearize the RGB image in order to calculate the luminance using RGB to YUV
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linear transformation as in equation 2.1 [11].

Y = 0.299R + 0.587G+ 0.114B (2.1)

where R, G and B are Linearized RGB from the camera



Chapter 3

Printer Modeling Using an Artificial
Neural Network

IN this chapter, the feasibility of using an ANN to learn and model mappings between

color spaces is established. Specifically, transformations in digital color imaging from

RGB to CIELAB are compared between conventional ICC profiles and a newly developed

ANN model. The accuracy of the transformations are computed in terms of △E and a

comparison is made between the ICC profile and the ANN model implemented in MATLAB.

The transformations are used to characterize and test the color response of an Epson 4800

inkjet printer. A number of data preprocessing techniques are also described which helped

in creating a clean data set for modeling the accurate response of the printer. The results

demonstrate a back propagation ANN model based on LM with accuracy of 0.28 △E for

non-training set data.

3.1 Color Imaging Device Characterization

Most practical CMSs adjust image values by transforming device-dependent pixel values

(RGB and CMYK) into, and out of, a central, device-independent CIELAB color space [2].

A devices color response is measured and modeled, this data is then used to determine a

transform relationship that is incorporated into the conversion of pixel data from RGB to

CIELAB and/or from CIELAB to CMYK which depends on the imaging device wether

a CMYK printer, RGB monitor, or RGB printer. A well established color management

33
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implementation exists in the form of the ICC color profiles. In ICC-based systems, device

characterization information is stored in single and multi-dimensional LUTs within profile

files, such that an input profile provides a mapping between input RGB and CIELAB, and

an output profile provides a mapping between CIELAB and output RGB/CMYK values [42].

The accuracy of color from input to the displayed image, to the printed image, depends in

part on the quality of the characterization.

There are a number of ways to define the characterization and transform relationship be-

tween device-dependent values and CIELAB. Typically, a test chart of equi-spaced RGB/CMYK

values is printed or displayed, and the resultant CIELAB values are measured using a col-

orimeter or spectrophotometer. This physical data is then used to model the response of the

system. It is possible to use data fitting processes that range from a simple linear matrix

approximation to higher order polynomial regression [20] or Newton-Raphson iterative tech-

niques [43]. Researchers have described parametric dye modeling that uses Neugebauer-type

mathematical models to predict the color produced when different amounts of dye colorant

are present [44]. It is possible to use an empirical approach to construct a LUT [17] and the

literature also describes attempts to use both LUTs and curves to expand data in certain

areas [45]. In general, devices such as additive color, computer monitors can be character-

ized by a linear expression (the phosphor matrix), combined with a nonlinear expression (the

gamma curve), while more complex subtractive color systems, such as print devices require

fitting techniques that can adequately model a non-linear color response.

3.2 Artificial Neural Networks for Printer Modeling

Artificial Neural Networks can be used to approximate the non-linear relationship between

device-dependent and device independent data sets [46, 47]. A recent paper uses a Gener-

alized Regression Neural Network (GRNN) in order to model the transformation between

CMYK and CIELAB [48]. In another ANN approach, Resilient Back Propagation (RBP)

was used to train a system using 56 patches [49]. Generally, RBP is not recommended for

function approximation problems. Despite this, the approach showed some potential for
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forming accurate transformations. This research relates to the use of an ANN to identify

faster and more robust color conversion methods.

The method proposed in this chapter is based on LM back propagation training algorithm

which has a high computer memory requirement, but accelerated convergence. The accu-

racy of the LM back propagation artificial intelligence model implemented via MATLAB is

compared with a standard ICC output profile made with X-Rite ProfileMaker 5.0.8 (a com-

mercial ICC profiling software application 1) [50]. The accuracy of the transform relationship

between RGB and CIELAB is studied for an Epson 4800 inkjet printer, addressed in RGB

mode using a ColorBurst RIP. This chapter describes the use of the LM algorithm and pro-

poses a process to filter and pre-sort the data, which is important for removing non-unique

solutions, speeding up the training process and increasing the accuracy of the algorithm.

3.3 Experimental Procedure

The proposed setup seeks to establish a transform between RGB instructions and measured

CIELAB response for an Epson inkjet printer. The Epson 4800 is a 7-color printer (CMYK

+ light cyan + light magenta + light black), but was treated as an RGB device to avoid

the complexity of the redundancy introduced by the black (K) channel. Training data

was obtained by printing an RGB test target called TC9.18 [51]. This target was chosen

because the CIELAB measurement data could be used to create an ICC profile and the

same data could be used to train the MATLAB implemented neural network algorithm. A

fair comparison between the two processes could then be undertaken, as the same training

data was presented to each system. The test target was printed, allowed to dry, and then

measured using an X-Rite i1iO spectrophotometer as shown in Fig. 2.4

1http://www.xrite.com/home.aspx
2TC9.18 is one of the many test charts included in the X-Rite ProfileMaker 5.0.8
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Figure 3.1: Test chart TC9.18.2

3.3.1 Generating an ICC Profile

A conventional ICC output profile was made using X-Rite ProfileMaker 5.0.8 [50]. In the

user GUI, the operator requested an output profile of large size, this increases the nodes

in the LUT from 25 to 33. The larger number of cube nodes increases the file size of the

profile but provides better accuracy during interpolation. Training (measurement) data was

presented to ProfileMaker that uses a proprietary internal fitting procedure to model the

device response and then populate a color LUT tag and save an ICC profile on disk. In

creating the training data it is necessary to consider the number of patches used. For a

non-linear device (e.g. a printer), a large number of patch samples allows the algorithms to

create a better transform relationship and thus color conversions with better quality. The

trade-off is between quality and chart size, as the larger number of patches necessitate a

larger target which takes up more space on the printer and will take longer to measure. The

difference in the characterization due to a smaller target was also studied by making an ICC

output profile from a 360 patch target and comparing that to a 936 patch target made on

the same device, Fig. 3.2.

The 3-dimensional L*a*b* gamut visualization shows limitations where sparse data re-



37

Figure 3.2: Gamut of the ICC profile made and viewed in 3-dimensional L*a*b* color space, a
small color target creates a jagged color gamut (left), while more data points creates a smoother
characterization (right).

sults in a non-smooth response. In the subsequent experiment, the larger target with 936

patches was used.

3.3.2 Data Preprocessing

The TC9.18 test target which is shown in Fig. 3.1 contains 936 patches, but these are not

unique R, G, B combinations. In test targets it is normal to include a duplication of certain

important colors, such as the white point RGB of (255, 255, 255) and/or a neutral gray

(128, 128, 128). In some targets there are extra pixel values near skin tones in order that the

training data contain adequate information in these colors as they are important for making

visually pleasing images.

The TC9.18 test chart has a number of patches with the same RGB value such as (255,

255, 255), in practice their measured L*a*b* values will be slightly different for each patch,

due to measuring instrument variability and printer deviation. This will affect the training
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process as there are different L*a*b* values for the same RGB value. In this experiment, a

filtering process was developed that checks for the same RGB patches in the data set and

then averages the corresponding L*a*b* values so that each RGB pixel value has a unique

L*a*b* solution.

There is another aspect that also requires preprocessing of the data. When a target is

printed, there may be pixel values that are outside the color gamut of the printer, these

colors will be mapped to the outer extent of the printer gamut. This creates a situation

where differing RGB pixel values create essentially the same measured L*a*b* value. This

effect will happen at the very light and very dark ends of the color scales. Once again this

leads to non-unique solutions in the training data set. A second filter was therefore developed

that sought to reduce the effect that gamut clipping has on the data set. The use of the

two filters creates unique training data and improves the accuracy of the ANN model. The

effect of the two filtering processes was to reduce the 936 patches to 909 filtered data points.

Another aspect of preprocessing to improve the quality of the raw data is manipulation of

the RGB target values in order to create equi-spacing of the measured data points in L*a*b*

color space. While this is considered beneficial this type of filtering was beyond the scope of

the project at this time.

In the last step before using the data for training, it was necessary to map or scale the data

to a suitable range. The activation function chosen for each hidden node was tansig. As such,

within the range of [+3,-3], the hidden nodes exhibit sufficient sensitivity and nonlinearity to

allow the network to efficiently model the non-linear nature of the overall transfer function.

Beyond such a range, hidden nodes would easily become saturated, leading to less stable,

prolonged convergence. In general, RGB pixel values are in the range of [0, 255], L ranges

from 0 to 100, and a and b have a scale from -128 to +127. Each channel of the input and

the output was normalized to have a mean of zero and standard deviation of 1.0 [52]. The

normalized data was then necessarily mapped to a range of [+2.5,-2.5] to comply with the

hidden node configuration.
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3.3.3 Training Process using LM Back Propagation Model

A robust back propagation, LM neural network solution [52] was considered to model the

response of the inkjet printer. The network model has 3 inputs (RGB) and 3 outputs

(L*a*b*). The total number of layers was chosen to be 3. There were two layers for input

and output. The number of nodes in the hidden layer was chosen to be 360 as it gave a good

balance between speed and accuracy.

The total number of weights in the network had to be limited because the LM back

propagation training algorithm only works with several hundreds of weights. The transfer

functions for all the hidden nodes were chosen as tansig and the purlin for the output layer.

The function was called trainlm, and it works best when training networks with several

hundreds of weights and is recommended for function approximation problems especially

when accuracy of the training is an issue.

3.4 Results and Discussion

An ICC profile was compared to the back propagation algorithm. To automate the processing

of data, the LUT structures of the ICC profile were imported into MATLAB using iccread.

The MATLAB command makecform was used to create a concatenated LUT structure akin

to the function of the CMM [14] and the other command applyecform was also used to do

color transformations in MATLAB.

In order to confirm that MATLAB was processing the ICC profile contents correctly, the

result was compared with the use of the same profile in Adobe Photoshop. The use of the

ICC profile structure within MATLAB was compared to a standalone mode where the profile

was used in Adobe Photoshop CS3 with the Adobe CMM. In Table 3.1 shows a comparison

between MATLAB R2007b and Adobe Photoshop CS3 when converting specific RGB to

L*a*b* values. The △E was also computed as colorimetric difference measure as in Eq. 3.1

where L*, a* and b* are CIELAB coordinates [53]. There is good correlation between an

ICC profile being used within MATLAB or in Adobe Photoshop CS3. The rendering intent
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Table 3.1: Experiment to confirm that an ICC profile used within MATLAB or Photoshop pro-
duces equivalent results.

RGB pixel value CIELAB
via ICC profile
in MATLABR
2007b

CIELAB
via ICC pro-
file in Photo-
shop CS3

△E

0,0,0 5.88,-1,0 6,-1,0 0.12

128,128,128 65.49,0,1 66,0,1 0.51

255,255,255 95.29,0,1 95,0,1 0.29

0,0,255 42.35,3,-54 42,3,-54 0.35

was used in both cases was Absolute Colorimetric.

∆E =

√
(L1 − L2)

2 + (a1 − a2)
2 + (b1 − b2)

2 (3.1)

where L*, a* and b* are CIELAB

We now consider the results of preprocessing the data using the two preprocessing filters

and then training the network. The TC9.18 test target with 936 patches was printed and

measured. The data was used to make an ICC profile using the process described earlier.

Next the measurement data was filtered and then used to train the back propagation LM

neural network. The effect of the two filtering processes reduced the 936 patches to 909

patches. The 909 patches form the training data set. In general a more useful test of

accuracy is when non-training set data is used to estimate the accuracy of the transform. A

different, proprietary target, called TC2.83 with 360 patches was printed and measured, this

became the non-training or testing data set. Before using the testing set, patch values were

compared to the training set, to ensure that the testing set is indeed unique, any identical

patch values were removed, this process reduced the testing set from 360 to 256 unique patch

values.

The 256 RGB pixel values were processed via the ICC profile and also via the ANN

model and in each case the predicted L*a*b* value was noted. The efficiency of each process

was estimated by comparing the predicted L*a*b* values with the values measured from

the testing color target. The mean and maximum △E error for the ICC profile was 0.46
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Table 3.2: Sample data points were processed via an ICC profile and also by the ANN Model.

RGB Value Measured
CIELAB
using i1iO

CIELAB via
ICC profile in
MATLAB

△E CIELAB via
ANN Model
in MATLAB

△E

0,0,51 11.46,-0.8,-21.47 11.76,0,-21 0.73 11.45,-0.68,-21.4 0.13

0,255,127 79.35,-30.9,19.26 79.6,-31,20 0.78 79.42,30.99,19.50 0.27

15,15,0 8.22,-1.54,1.39 9.01,-2,2 1.1 8.7,-2.08,1.39 0.73

112,94,94 53.41, 10.44,5.38 53.72, 10,5 0.66 53.57,10.51,5.73 0.4

(3.64) and for the ANN model the mean and maximum △E error was 0.28 (2.29), when

computed for 256 color patches. Some individual results are also shown in Table 3.2. A

comparison was made with other researchers who also used a back propagation algorithm to

train their network for a RGB printer [49]. In that research, the average △E for 14 (testing)

color patches was 2.35 when converting from RGB to L*a*b*. In other research, a GRNN

model was used to model the transformation between CMYK and L*a*b using the ECI2002

printer target [48]. The accuracy of the GRNN process for 171 (testing) patches was a △E

of 1.82. In general, for a conventional ICC-based LUT, generated with commercial software,

the accuracy of an output profile for a CMYK device is around 2.0-4.0 △E [18]. These results

provide a ball-park figure for the expected accuracy of any transform relationship and show

that the algorithm developed in this project is extremely accurate.

The research produced a valuable comparison between a standard ICC profile and the

ANN approach. Experimentation and variables were examined to determine the most suit-

able neural network solution that produced the lowest fit error. It is important to note that

an ICC profile is a quantized LUT that may suffer interpolation inaccuracies, while the ANN

model that can naturally generalize, in essence acting as a continuous mapping. For run-

time applications it is often necessary to use a quantized LUT and accept the lower quality;

however interpolation is then needed as a final stage. In a feedforward state, the trained

ANN model is fast and can function using a small memory footprint, without the need for

interpolation. Some major areas of this investigation are ongoing. Since the forward, i.e. the

device to L*a*b* transform was considered here only. An extension to this work might be
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to consider the reverse transform, from L*a*b* to device. Another aspect that also needs to

be examined in the future is extension of the model to include CMYK to L*a*b* character-

izations, i.e. the situation of mapping a CMYK (4-channel) input to a L*a*b* (3-channel)

output. To conclude, the LUT required complex 3D interpolations but in ANN model this

is not the case. Finally, the work achieved in this chapter was published in [53].



Chapter 4

Modeling The Printer Output In The
Viewing Booth With HDR

IN this chapter, a soft proofing system was established with the help of the HDR imaging

techniques. Since it was noticed in Chapter 3 that ANN is very powerful in modeling

color space conversions, this method was used as a ground truth in modeling the soft proofing

system for which there is one input (the digital image) and one output (the HDR image which

represents the soft proofed version of the digital image). It was also shown that taking an

HDR image of the printed image in the viewing booth gives a better detailed soft proof

compared to Photoshop as it was investigated by industry color expert, Angus Pady 1. More

details on why HDR was taken into consideration are discussed in section 4.1.

4.1 Investigation of HDR Imaging

It is widely known that the printing industry did not follow the fast advancements of the

digital imaging devices such cameras and monitors. As such, it has been always a challenge

to produce a printout that looks like the digital version on the screen because the dynamic

range of the printers is much smaller than the gamut of the monitor. The dynamic range

refers to the ability of the imaging device to capture or reproduce colors. For instance,

imagine taking an image with a camera (even high quality camera) then displaying the

1Angus Pady is a Color Management Connoisseur,G7 Certified, GRACoL Certified Master Consultant,
ONYX Profiling Expert, Certified EFI ColorProof RIP Color Consultant, and Reseller of all color manage-
ment products

43
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image on the monitor of your laptop and one might wonder wether the displayed image on

the monitor is the same real scene observed with one’s eyes. It can not be exactly the same

as the real scene because the scene has a much wider gamut range of colors compared to

the limited gamut of the camera and the monitor. In addition, when it comes to printing

devices, their dynamic range is even smaller compared to a camera or a monitor. Therefore,

theoretically, to capture a printed image which has a smaller dynamic range compared to

a camera and a monitor, one Low Dynamic Range (LDR) shot from the camera should be

enough to capture the full range of the printed colors and there is no need to use HDR [54].

4.1.1 Normal Imaging Techniques

Since an ”Automated” Soft Proofing System is the ultimate goal of this thesis, a camera

(Canon Rebel t1i 500D DSLR) was used to capture the printed image in the viewing booth

and reproduce it on the calibrated monitor so that it looks exactly like the hard copy dis-

played in the viewing booth. After calibrating the printer, the test target TC9.18 was printed

using the customized ICC profile and displayed in the viewing booth with moderate intensity

level of the D50 light in the viewing booth.

In order to make sure that the camera settings were chosen accurately, another test

image which has more complex patterns of colors with highlight and shadows needed to be

printed and displayed. The image that was employed for this purpose was designed by the

color specialist Angus Pady and it is shown in Fig. 4.1. The use of this image helped in

determining the correct camera settings to capture the right colors with all the highlight

and shadow information so that colors are reproduced as accurate as possible. The accurate

reproduction of the printed image is important towards getting the relationship between the

original image and the printed image.

The used camera can operate in a RAW mode in which a RAW image is captured. In

this mode, the custom ICC profile should be assigned to the images in order to display the

correct colors of the captured RAW image. However, when shooting images in the JPEG

format, the camera uses the sRGB profile to display the correct image. In other words, the
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Figure 4.1: Color checker test chart.

internal software of the camera will automatically apply this standard ICC profile (sRGB) to

the captured image. Adobe98 is another standard RGB profile in the camera and sometimes

it is used to get a wider gamut since its gamut is bigger than the sRGB profile.

The ISO setting in the camera represents the gain, therefore, the ISO is kept as low

as possible (100) so that the noise will not get amplified in the captured image. For a

given viewing lighting condition in the booth with the Color Check being displayed, the

camera recommends a shutter speed of 1/30 second, aperture of 4.0 and an ISO of 100.

The camera can get the right shutter speed based on the built-in photometer that measures

the light in the actual scene and sets the correct exposure. Two captured JPEG images

were displayed in Photoshop, one used the sRGB profile and the other used the Adobe98

profile. The displayed images were compared to the hard copy image in the viewing booth

and the overall appearance was not quite similar to the hard copy. For instance, there was

a little change in some colors and the most noticeable difference was in the highlights and

shadow areas which were not visible compared to the hard copy. However, the Adobe98

JPEG captured more colors without compressing them so that colors looked closer to the
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real scene compared to the sRGB captured image. This is expected because Adobe98 has a

bigger gamut than sRGB.

A custom ICC profile was created for the camera as it was explained in section 2.3.3. The

process of generating a good custom ICC profile required 4-5 hours of work most of which

was to get a uniform lighting. A completely even illumination was not possible to achieve

but the generated custom ICC profile was tested by a set of pictures (outdoor and indoor

scenes) and it was acceptable. That is the general tedious process for generating custom

ICC profiles for photographers. This ICC profile was used in Capture One software which

allows RAW images to be taken and processed using the custom ICC profile and saves the

results as TIFF images. The resulting image is shown in Fig. 4.2.

The generic Canon EOS 500D ICC profile (this profile is ready from the manufacture for

general use) was also used when a raw image was taken using Capture One software. The

same camera settings were employed so that a comparison can be made. The resulting image

did not show a good representation of the original print (the image was yellowish) as shown

in Fig. 4.3. Therefore, the custom profile performs better than the generic ICC profile but

the image still needs to be manipulated and adjusted manually in Photoshop in order to give

a good (close) match compared to the original prints in the viewing booth.

None of the previous images in Fig. 4.2 and in Fig. 4.3 show a good representation of the

printed image in the booth. There are problems in the highlight and dark areas. Changing

the camera settings such as ISO, shutter speed, and aperture priority did not improve the

results. It was noticed that when the shutter speed is reduced (more light passing through

the camera lens), some details of highlight areas were missing because these area are now

over-exposed, while other details of dark areas looked closer to the printed image as it can

be seen from Fig. 4.4.

It can be concluded that increasing the shutter speed from the chosen value by the

camera, which is 1/30 sec, will allow more light to come in through the camera lens. This

results in over-exposed highlight details which will not be captured well but the details of

dark areas (such as hair) will be captured. On the other hand, decreasing the shutter speed
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Figure 4.2: Raw image of the color checker in the viewing booth taken in Capture One software
and processed using custom ICC profile made for the camera. Camera settings were IS0=100,
Sh=1/30sec and AP=4.0

Figure 4.3: Raw image of the color checker in the viewing booth taken in Capture One software
and processed using the Generic ICC profile. Camera settings were IS0=100, Sh=1/30sec and
AP=4.0
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Figure 4.4: Raw image of the color checker in the viewing booth taken in Capture One software
and processed using custom ICC profile made for the camera. Camera settings were IS0=200,
Sh=1/10sec and AP=4.0

will make the highlight details clearly visible but the dark areas will be darker and its details

will be missed. Changing ISO, shutter speed, and aperture priority did not produce a good

representation on the calibrated monitor compared to the hard copy prints as shown in the

previous images taken with different ISO and shutter speed.

Based on the above simple experiment, getting a good match between the captured image

in Photoshop and the original printed image can be achieved by selecting the best of the

above images and manipulating the image in Photoshop such as changing gamma, exposure,

brightness, contrast and some other settings related to color levels, shadows, and highlights

until a good match is achieved. This process is time consuming, not consistent and requires

professionals. Therefore, the main goal of this thesis is to produce a consistent and automated

soft proof with a simple click of a mouse, negating the need for tedious measurments, and

matching the viewing booth intensity to the monitor. Specifically, HDR was considered in

order to accurately capture colors and more importantly the highlights and shadows as it is

explained in the following section.
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4.1.2 HDR Imaging Techniques

From the experiments and discussion in section 4.1.1, it was found that using neither custom

ICC profile nor LDR give accurate reproduction of the hard copy contrary to recommenda-

tions made in [54]. HDR imaging techniques were considered to provide images with true

colors that represent the original scene because HDR captures the details of both highlights

and dark areas and combines them into a single image. Intuitively, taking an HDR image

should improve the soft proofing system because details can be shown with greater dynamic

range which means colors should appear more indicative of the original scene.

The HDR image was made from LOW resolution JPEG images which performed better

in terms of complexity and appearance. There is no need to make a custom ICC profile

for this purpose. 15 exposures (with 1/3 f-stop between each exposure) were taken using

the camera’s normal JPEG format in order to reduce the noise in the printed image and

avoid amplifying the noise in the digital version of the printed image. These 15 images were

merged into single HDR image using Photoshop. The resulted HDR image from sRGB mode

is shown in Fig. 4.5 and the resulted HDR image from Adobe98 mode is shown in Fig. 4.14.

On a calibrated monitor, it was seen that HDR images with Adobe98 profile gave better

results (colors are very close to the printed image) compared to the sRGB profile. Therefore,

it was found that an HDR image made from JPEG low resolution images is much closer to

the original prints than the calibrated RAW image.

4.2 Experimental Setup

It was shown in section 4.1 that the HDR capture of the printed image in the viewing booth

gave an accurate image reproduction on the calibrated monitor. When the HDR image was

compared with an image generated by the soft proofing tool in Photoshop, it was noticeable

that HDR gave accurate reproduction in terms of colors and details. Since the image on

the monitor showed a good representation of the printed image in the viewing booth, it was

possible to build a model that can learn the relationship between the original digital image
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Figure 4.5: HDR image of the color checker using sRGB.

Figure 4.6: HDR image of the color checker using Adobe98.
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Figure 4.7: Test chart TC9.18 in the viewing booth.

and the new digital version of the printed image. This model can be applied to any image to

predict its hard copy appearance before printing which is the basis for a new soft proofing

tool proposed in this thesis. Furthermore, this approach can be extended across multiple

intensity levels as will be explained in detail in chapter 5, thereby enabling soft proofs to

potentially model variation due to changing illuminant. The test chart TC9.18 shown in

Fig. 3.1 was printed using the calibrated RGB printer. The printed test chart was allowed

to dry for 10 minutes and it was placed in the middle of the viewing booth where the light

is as even as possible as shown in Fig. 4.7. 15 automated exposures were taken and merged

in Photoshop in order to create the HDR image in the same way as described in section 4.1.

4.2.1 Image Registration

In order to build a mapping between the original test chart (RGB values before printing) and

the HDR image of the printed image (RGB of the printed version), the HDR image of the

printed version has to be registered to the original image. An algorithm was written in order

to remove the borders of the test chart and extract only the internal color patches which

are required for building an accurate mapping. The test chart after cutting the borders is

shown in Fig 4.8.
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Figure 4.8: The original test chart TC9.18 without borders.

The next step is to register the image in Fig. 4.8 to the image of printed version of the test

chart in the viewing booth. The registration algorithm was implemented in MATLAB. The

main idea is to find the cross correlation between the two overlaid images and manipulate

how they are overlaid until a correlation is maximized. In other words, the two images being

well aligned resulted in maximum correlation. A Gaussian smoothing filter with a window

size of 3x3 was used to smooth the images and resulted in better registration. The whole

image registration process was done in two steps as explained below:

• Step One: The two images were converted to gray scale images and a square was cut

from the middle of the original image. This small image was correlated with the printed

version in order to determine the maximum correlation. The printed image was resized

with different ratios and the corresponding maximum correlation was calculated. The

resizing ratio with the highest correlation was chosen to lead to more accurately aligned

images.

• Step Two: In this step, the resized printed image was slightly rotated a few angles

clockwise and counter clockwise. The rotation angle that generated the maximum

correlation was chosen.

After determining the size and angle that generate the maximum correlation, the printed im-
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age was correlated with original image to get the maximum correlation in order to accurately

register the two images.

4.2.2 Data Preprocessing

After the registration, the mapping between the two images should be modeled in order to

be able to predict the printed version of any digital image before actually printing it. In

order to create an accurate model, clean data should be used. The original test chart has 936

patches, however, after removing similar patches and making the data unique, there was 911

unique RGB patches as shown in Fig. 5.25. Each unique RGB value corresponds to many

RGB values in the printed image. Therefore, these values were filtered by an algorithm that

takes all the printed RGB values that belong to one RGB value in the original test chart

and filters them to a smaller set of values. This was done for each unique RGB value as it

is described in the following steps:

• A mean value is calculated from all the values that corresponds to one RGB value in

the original test chart.

• The distance between every RGB value and the mean is calculated.

• Data is then sorted based on the measured distance in the previous step.

• The median RGB values were chosen along with ± 5% of the population which means

5% above the median value and 5% below the median value.

The explained filtering process resulted in an overall data size of 2983 points which means

that for each original RGB value, there are few printed RGB values and the goal of the ANN

is to learn the mapping in a manner similar to that presented in chapter 3. The printed

RGB values are shown in Fig. 5.26.

4.2.3 Training

The 2983 samples were divided into training, validation, and testing samples during the

training process. Since the data was sorted, the validation samples were 299 samples indexed
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Figure 4.9: The original RGB of test chart TC9.18 shows 911 unique values.

Figure 4.10: The printed RGB of Test chart TC9.18.
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Figure 4.11: The RGB values of the printed target with the predicted RGB by ANN.

at 1, 11, 21, 31, .....2981 and the testing samples were 299 samples indexed at 2, 12, 22,

32,......2982. 20% of the overall data was used for testing and validation and 80% was

used for training. The number of nodes in the hidden layer was chosen to be 360 after a

few trails with different structures. This structure provided a good mapping with a Mean

Squared Error (MSE) on the test data of 4.8 with training time of 135 seconds in 15 epochs.

However, a more complicated network of 600 nodes was trained and resulted in an MSE

of RGB on testing data set of 4.5 with training time of 533 seconds. Comparing the two

network structures indicates that the smaller network is better, given its faster training time

and implementation when an image is applied. Also, an MSE of 4.8 for the smaller network

is quite good and it is not much higher than the MSE of 4.5 of the bigger network 4.5. The

predicted values of the printed RGB values are plotted versus the targeted values and shown

in Fig. 4.11
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Figure 4.12: Original Lena image before printing (Left) and the predicted image of the printed
version of it (Right).

4.3 Results and Discussion

In the previous section, the modeling of the original RGB values of the original image (digital

image before printing) with the HDR image of the printed image viewed in the viewing booth

was explained. This model was created since it was shown that the HDR image of the printed

image in the viewing booth is a good reproduction of the image in the viewing booth. The

modeling was done using the TC9.18 chart shown in Fig. 3.1 to create an accurate mapping

that can be used as a black box with any future image for which the printed version needs to

be predicted on the calibrated monitor before actually printing the image. Fig. 4.12 shows

the original Lena image and the predicted printed version of Lena image. However, the colors

of the predicted image are not the same as the printed image or Photoshop results. In order

to check the results accurately, the image should be displayed on a calibrated monitor aimed

for soft proofing purposes.

The color checker image shown in Fig. 4.1 was used in order to predict its appearance

when it is printed, as it can be seen in Fig. 4.13. It was shown in sections 4.1.1 and 4.1.2 that

HDR imaging techniques can produce accurate and faithful results on the calibrated monitor.

However, when the prediction model that was created using ANN as it was described in

section 4.2 was used, the results were not as accurate as was expected. It can be seen in
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Figure 4.13: Original color checker image before printing (Left) and the predicted image of the
printed version of it (Right).

Fig. 4.13, the predicted image does not provide a reasonable appearance compared to the

image in Fig. 4.14 which is the HDR captured image of the printed image of the original

color checker image. Therefore, the predicted image did not meet the requirement and it did

not give the same appearance as the HDR captured image.

The main reason that the implemented model did not meet the requirement was that the

lighting on the test chart in the viewing booth was not uniformly distributed on the chart

which makes each patch of the test chart have a specific color value depending on how much

light was illuminating each patch. This issue introduced a serious problem in modeling the

original RGB shown in Fig. 5.25 with the printed RGB shown in Fig. 5.26. For example,

when a plain white paper was displayed in the viewing booth, it was very clear that the

lighting in the viewing booth was not uniform. Moreover, when an image was taken of this

plain white paper, it was very obvious that the white paper did not look uniform and pixels

have different values as can be seen from the gray scale image shown in Fig. 4.15.

To have a better understanding of the overall uniformity issue, a simple measure of

variability was calculated, the standard deviation, for the pixel values of the white image

after cropping it to a smaller image of the white paper which includes the Region Of Interest

(ROI). The Std value for the cropped image was calculated to be 12.04 on gray scaled image

which means that 68.2% of the data (pixels) are within ±12.04 from the mean value of 165.
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Figure 4.14: HDR image of the color checker using Adobe98.

X: 679 Y: 490
Index: 134
RGB: 0.588, 0.588, 0.588

X: 1496 Y: 990
Index: 177
RGB: 0.776, 0.776, 0.776

X: 2332 Y: 1518
Index: 152
RGB: 0.671, 0.671, 0.671

Figure 4.15: Gray scale image of the viewing booth showing intensity values at arbitrary different
locations on the white paper.
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Figure 4.16: The luminosity of the viewing booth.

This cannot be considered a uniformly illuminated white paper especially when the minimum

and maximum pixel values were found to be 125 and 186 respectively. The luminosity was

also calculated after linearizing the camera as it is shown in Fig. 4.16 in which the non-

uniformity of the luminosity in the viewing booth can be noticeably seen.

As it was mentioned before, the viewing booth is not uniform as seen by the camera

and the eyes as well. In addition, the non-uniformity of the viewing booth luminosity is

mainly due to the type of light source used and it is not possible to make it uniform since

it can not be altered or its intensity be changed on a location basis. It is also worthwhile to

mention that the camera introduces some kind of non-uniformity due to the lens as well as

introducing some noise [11]. The noise was significantly reduced by taking the average of five

images of the exact same scene with the camera fixed on the tripod. For those reasons, it is

applicable to say that the created model was not accurate due to illumination issues of the

viewing booth which made the color appearance dependent on the specific lighting condition

on each patch color. For instance, a green patch has an RGB value of (52,123,65) at one

position in the viewing booth while the same green patch displayed in different position in the

viewing booth has an RGB values of (61,141,70). Therefore, creating a model to represent
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the original RGB values with the printed RGB values of the HDR image will not be valid

because each color patch will be modeled based on the amount of illumination at this patch.

Consequently, it was hypothesized that uniformly distributed illumination would be the key

to successful modeling. To conclude, a projector based lighting was introduced in order to

create a uniform lighting condition in order to capture the test chart accurately and having

the color patches independent of their location as it will be described in the next chapter.



Chapter 5

Improved Modeling By Viewing
Booth Light Compensation

IT was discussed earlier in chapter 4 that it is possible to use HDR to reproduce an

accurate image on the calibrated monitor to represent the printed image in the viewing

booth. Building the model using ANN techniques was also implemented in order to apply

it for other images and predict the printed version on the monitor. As discussed in section

4.3, the lighting in the viewing booth was not uniform which led to inaccurate representation

of the colors and so did not provide meaningful and reliable results. Therefore, the goal of

this chapter is to find an alterative and effective technique in order to compensate for the

nonuniform illumination in the viewing booth, in order to ensure that color values measured

from a test chart are independent of their location in the viewing booth.

5.1 Projector Calibration and Registration

As explained in section 2.5.1 that LCD projector is suitable for the intended purpose in this

thesis. In this section methods for calculating the camera’s nonlinearity curves, projector’s

ITF, projector-camera registration, and compensating for the projector’s uniformity are

explained in this section.

61



62
5.1.1 Experimental Setup

The goal is to achieve the same photometric response for the whole projected area of the

display. This is called photometric uniformity [55]. To get more accurate results, the ambient

light affects were reduced by taking the measurement in a black painted wall room with all

lights turned off.

Since MATLAB was used as an interface platform, finding a method of connecting the

camera and the projector to the PC and to be controlled via MATLAB was an essential initial

step towards achieving a uniform lighting in the viewing booth. The Canon camera that was

used in thesis can be fully controlled via a software called DSLR Remote Pro for Windows

by connecting the camera to the computer using a USB port. By using this software, all the

functionality of the camera including ISO setting, exposure values, aperture settings plus

all the available setting on the camera can be controlled via the software interface. This

software was purchased and downloaded from Breeze Systems 1. A tripod was used to fix

the camera in order to have consistent images without any movement in addition to remotely

controlling the camera. It was also necessary to be able to control the camera via MATLAB.

For that purpose,the DSLR Remote Pro software includes an interface library which can be

used from other applications.

Vignetting effect is mainly caused by the camera’s lens limitations which can be com-

pensated by setting the camera to operate at a low aperture setting. The camera’s non-

uniformity can be neglected at narrow aperture setting below F8. The lower the aperture,

the smaller the area of the lens is and this leads to a more uniform image since only a small

area of the lens is used. [56].

The projector used in this thesis was NEC VT670 3LCD projector. This projector had

to be controlled via MATLAB while having the ability to control the images being sent to it.

The projector was connected via VGA cable to the computer. In order to be able to work in

a closed loop system while controlling the projector and the camera, the computer was set

to extended mode so that the extended image could be sent to the projector. By displaying

1http://www.breezesys.com/DSLRRemotePro/index.htm
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Figure 5.1: The full setup of the system which includes: LCD projector, camera, and laptop.

a figure in MATLAB and sending it to the projector, some edges of the MATLAB figure

were displayed by the projector. In this case, it was not possible to control every single pixel

of the image sent to the projector when a full white image was displayed on the projector.

Therefore, a MATLAB code that uses JAVA was employed to have the full image content

displayed by the projector with no edges. Hence, it is required to send an image with the

exact same size as the projector image (1024 by 768). Thereby, a full controllable system

of the camera and the projector via MATLAB was obtained. The full setup is shown in

Fig. 5.1. Finally, the projector was set at a height of 30 cm with a distance of 160 cm from

the screen and the camera was at distance of 170 cm from screen with a height of 45 cm.

With this setting, the center of the camera lens lay on the center of the projected image.

5.1.2 Finding the Camera Response Curve

As explained in section 2.5.5, it was important to linearize the camera by finding the CRC in

order to truthfully measure the luminance of a scene using only the digital camera. Debevec

and Malik explained in [41] how to recover HDR radiance maps from images taken with
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Figure 5.2: Image acquisition pipeline that relate the real radiance from the scene to pixel values
for both film and digital cameras. This relationship is unknown and nonlinear because of the
exposure, development, scanning, digitization, and re-mapping [41].

normal camera using images of the same scene with different exposures. For more details,

check the link 2.

The algorithm described in [41, 11, 54] calculates the mapping from scene radiance L

to pixel values Z with a set of differently exposed images Fig 5.2. The more images with

varying exposures that are taken, the better the mapping is in terms of noise sensitivity.

This algorithm was used in order to linearize the camera in a LUT that is used to linearize

any RGB values read by the camera which is used to calculate the luminance.

It is very important to have a static scene to capture more than one image with varying

exposures in order to obtain an accurate result for computing CRC. In this case, CRC was

computed from a set of exposures starting at 10 second to 1/6 second in 1/3 f-stops which

led to a total of 19 differently exposed images. The neutral exposure is 1.3 seconds which

is what the camera gives when aperture is set to 29 using the camera’s built in photometer;

thus, nine under exposed and nine over exposed images were taken which led to 19 images in

total as shown in Fig. 5.3. 19 exposures was used to cover wider dynamic range to accurately

calculate the CRC.

The camera ISO was set to 100 and the camera aperture was set to 29 with all images in

order to minimize any distortion due to lens non-uniformity. These images were taken while

the projector was displaying a full white image (i.e. R,G,B=255,255,255). Since the white

image contains the full amount of RGB, the CRC should represent the cameras’ non-linearity

function which is used as a look up table to linearize the RGB and compute the luminosity.

2http://ict.debevec.org/ debevec/Research/HDR/
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Figure 5.3: 19 Differently exposed images starting from 10 second on the top left im-
age(Overexposed) to the 1.3 second on the second row left image (Neutral exposure) and 1/6
second on the bottom right(Underexposed).

These CRCs can be seen in Fig. 5.4 and Fig. 5.5.

5.1.3 Calculating the Intensity Transfer Function of the Projector

Research work by [57] showed that it is possible to use the HDR method proposed by

Debevec and Malik [41] to compute the projector’s ITF without the need for an expensive

spectraradiometer to accurately measure the ITF.

In [58], a photometer was used to measure the per channel non-linear luminance response
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Figure 5.4: Recovered CRC for the Canon Rebel t1i 500D DSLR camera with three response
curves (red, green, and blue channels). Pixel values Z are plotted with logarithmic exposure X.
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Figure 5.5: The CRC for red, green, and blue plotted on the same axes.

at the center with varying input since the projector’s ITF does not vary spatially on a

normalized scale. As it was described in section 2.5.5, the linearized LUT of the camera was

used to measure luminance accurately. The ITF for each channel was measured using HDR

techniques for each channel with the following steps:

1. In order to cover the full range of RGB, 52 images were created from 0 to 255 in steps

of 5.

2. For each intensity level image, the luminance was computed based on the camera lin-

earity LUT and using HDR to compute the luminance for each level from 19 differently

exposed images.

3. The maximum luminance was located and window size of 20 by 20 pixels located at

the image centre was created where the maximum luminance could be sampled.

4. Since the luminance response is spatially invariant, the luminance values inside the

window were averaged in order to obtain more accurate response and reduce the noise

introduced by the image captured in addition to noise reduction done by HDR.
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Figure 5.6: The resulted ITF for RGB channels of the NEC VT670 3LCD projector.

5. From the above steps, 52 luminance values were obtained for each RGB input from 0

to 255 in step of 5. These values were smoothed in order to provide a reasonable curve.

The smoothing function used in this step was local regression which uses weighted

linear least squares and a 2nd degree polynomial model. This function also assigns

lower weight to outliers in the regression.

6. The resulted response was then normalized between 0 and 1.

After the above steps were done for the three channels, the resulted ITF’s for each RGB

channel was obtained (shown in Fig. 5.6).

5.1.4 Camera - Projector Registration

To be able to analyze the uniformity of the projector and to compensate it using the cam-

era, there has to be a good method of registering RGB values sent to the projector and

the captured pixels. The advantage of using a projector is that specific patterns can be

send to the projector and recognized by the camera, thus registration can be more readily

achieved [59, 60, 61]. Capturing the image displayed by the camera resulted in the image
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Figure 5.7: Checkerboard image sent to the projector.

shown in Fig 5.8 (input image). The goal of this step is to have an accurate geometric

registration that maps the input image to the base image. By selecting four pairs of pixels

such that each pair corresponds the same feature or landmark in the base and input images,

a spatial transformation can be formed using these pairs in order to bring the input image

into alignment with the base image. By using cross correlation for the aligned image and

the base image, it was possible to cut the aligned image so that it is registered with the base

image. This process is also called Camera-Projector Geometric Calibration [57]. Once it is

done on the checkerboard image, this registration is valid and can be used later since both

the camera and the projector are not moved.

The size of the image sent to the projector is 768x1024 and the captured image size is

3168x4752. This resolution of the camera was used in order to capture more information.

The captured image was then resized by a factor of 0.25 yielding to 792x1188. After getting

the spatial transformation, the images were aligned to give the maximum correlation. The

maximum correlation obtained was 95%. The resulted final image is shown in Fig 5.9.

The beauty of using the checkerboard image is that it is easy to select feature points.

Also, a plain image was not used since it does not allow using cross correlation because it

is not possible to correlate constant image with the captured image. This registration was

used as ground truth setting for the plain images captured later.
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Figure 5.8: Checkerboard image captured by the camera.

Figure 5.9: The registered captured image of the checkerboard image originally sent to the pro-
jector.
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Figure 5.10: The luminance measured using HDR when the projector displays a full white image.

5.1.5 Calculating the Luminosity surface of the Projector

As described in 5.1.4, once the registration parameters were found, the same registration

setting was used for any captured image. When the projector is projecting a full image of

green, the resulting image was captured and registered in order to determine the projector

display surface.

Checking the white image uniformity

A full white image was sent to projector and captured by the camera using HDR techniques

in order to calculate the luminance values of the full white display on the screen. The

resulting luminance is thus registered.

It can be seen from Fig. 5.10 that the luminance of the projector is not uniform. This type

of non-uniformity is called Intra-Projector Variation (explained in section 2.5.4). Whilst, the

non-uniformity could be from the screen itself and from the camera; however, it is mainly

caused by the projector. Compensating for this non-uniformity is the goal at this stage.

When the maximum luminance is normalized to 1, the minimum luminance is 0.21 which

means that there is a drop in the luminance of more than 80%. The standard deviation was

found to be 0.14 and the mean is 0.57.
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5.1.6 Achieving Photometric Uniformity

To make the luminance uniform and achieve photometric uniformity, we adopted a method

from the literature that was originally designed to create seamless blending in multi-projection

based tiled displays [35].

The general method of correcting the luminance is to calculate the Luminance Attenua-

tion Map (LAM). The LAM is generated by dividing the minimum luminance (Lmin) by the

non-uniform luminance (luminance surface). The LAM is acting like a dimmer in the bright

region to bring the luminance down to Lmin and the maximum LAM of 1 will be on the edges

so that photometric uniformity is achieved [35, 9]. Once the LAM is generated then it was

processed through the projectors’ ITF to calculate the right RGB values needed to create a

uniform image luminance. This method was used to produce plain images of white while 50

pixels were ignored from around the edges in order to get a good luminance response and

not to lose too much of the projector’s luminance ability. The LAM was calculated based on

the luminance of the green channel since the green channel has more luminance compared

to the red and blue channels. The calculated LAM was then applied to other channels using

ITF to find the required RGB values in a similar manner applied in [9, 35].

The luminance of the green channel was calculated using the camera based on HDR

techniques as explained above. The camera gives an exposure of 2.5 second at an aperture

of 29. Therefore, this exposure was used as the base neutral exposure along with 9 over

exposed images and 9 under exposed images yielding to a total of 19 images. The standard

deviation of the generated even white image after cutting 100 pixels from its edges after

registration was 0.02 (mean=0.92).

Calculating LAM based on full white image was also tested to get more accurate LAM

and have the black offset issue compensated automatically. The resulted standard deviation

in this case was 0.016 (mean=0.93) which is better than before. To conclude, using the green

channel as base for other channels reduced the standard deviation by 85.8%; however, using

the white image as a base to compensate reduced the standard deviation by 89.8%. Hence,

the white performed slightly better because using the green channel is accompanied by some
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Table 5.1: The results of making white uniform using green channel and a full white.

Case Max Min Mean Std

Before 0.8 0.48 0.65 0.065

After using Green 0.77 0.71 0.74 0.0092

After using White 0.76 0.72 0.74 0.0066

Figure 5.11: The gray scaled image when projector displays full white before making it uniform
(Left) and after making it uniform (Right).

leakage from the other two channels (red and blue). On the other hand, using the full white

ensures that all RGB guns are turned on and the luminance measure is based on that.

Since RGB uniformity is the ultimate goal once a uniform luminance is achieved (even

RGB values across the illuminated area), an RGB comparison were made and summarized

below in table 5.1.

The results in table 5.1 were calculated based on images for non-uniform white, uniform

white made based only on Green channel, and uniform white made based on full RGB

channels (projector displays a full white). For each case, five images were taken and averaged

to reduce the camera noise. Each image was then transferred to gray scale, registered and

100 pixels were cut from around the edge to ensure a valid comparison. The images were

then normalized by dividing them to 255 to ensure a maximum intensity of 1. For each case,

maximum, minimum, mean, and standard deviation were computed as shown in the table

above.

To conclude, a uniform white surface was accurately obtained with a standard deviation

of 0.016 which is a very low RGB variability across the white image. A recent work by

Majumder [9, 35, 8] measured multi display projection system consistency by taking images
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when different images are being displayed and with some plain images. However, they did

not measure the variability as was done in this thesis. In addition, they measured using

one image of one exposure, however, in this thesis HDR techniques were used to measure

the resulting uniformity over a range of exposures, and faithfully compared it to find the

resulting improvements. Unlike the approach taken in [35], it was found that the projectors’

non-uniformity was mainly due non-uniformity in all three RGB channels together, not the

individual chrominance channel. Moreover, it was demonstrated that making the luminance

uniform will lead to uniform RGB image as it can be seen from Fig. 5.11.

5.2 Viewing booth lighting

Large scale displays and projection systems are becoming more prevalent and integrated

within our daily physical environments. The brightness, contrast, dimensions, and afford-

ability of these displays is increasing, allowing them to be incorporated into immersive display

environments that surround the user [62].

In the report of understanding the technical specification of color viewing stations [63],

the author discussed the color consistency (printed or product) when viewed in the viewing

booth. The report concluded that the light uniformity in the viewing booth determines

the truthfulness of color appearance and any deviation from this uniformity will cause a

distortion in the color appearance to the viewer. Therefore, in this section, the projector is

being used as a uniform lighting source for the viewing booth.

5.2.1 Experimental setup

A new experimental setup was created in order to be able to use the same LCD projector as

a light source to illuminate the viewing booth while using the camera as a measuring device

as it can be seen from Fig. 5.12.
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Figure 5.12: The experimental setup of the hybrid system.

5.2.2 Camera - Projector Registration in the Viewing Booth

The goal in this section is to use the projector to create uniform lighting on the white paper,

to be able to measure the printed test chart on the same type of paper accurately. The

same registration method that was used in section 5.1.4 is adopted here but with a slight

change. The area of interest on the viewing booth is much smaller than the actual size of

the projected image. For that reason, the image of the checkerboard sent to the projector

was modified to fit within the ROI in the booth. The image was sent to the projector and

the captured image of the booth is shown in Fig 5.13.

It can be seen from Fig 5.13 that the checkerboard image displayed on the viewing booth

is the ROI that is needed to be illuminated uniformly. The normalized cross correlation of

ROI was found to be 97%. After registration, any plain image can be accurately registered

using the same registration settings as long as the projector, the camera and the viewing

booth are in the same location where the registration was performed.
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Figure 5.13: The image sent to the projector for registration (Left) and the captured image of
the booth with checkerboard image (Right).

Figure 5.14: The white image sent to the projector (Left) and the captured image of the booth
when ROI is white (Right).

5.2.3 Uniform Viewing Booth Based on an LCD Projector

All the work in this section was performed while the viewing booth is turned off. A plain

matte paper was placed in the viewing booth and the same paper was also used in the

printer. Thus, having uniform lighting on the paper ensures uniform measure of the printed

colors.

Checking The Projector Uniformity

A plain white image was sent to the projector in the ROI as it is shown on the left side of

Fig 5.14 whereas the right image of Fig 5.14 shows the captured white image on the booth

which was used to calculate the luminance.

The luminance of the captured image was computed using the camera and normalized by

dividing the luminance surface by the maximum luminance to make the maximum luminance

1. The standard deviation was found to be 0.02 with a maximum and minimum luminance

of 1 and 0.8 respectively after cutting 10 pixels from the edges of the registered image. The
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Figure 5.15: The RGB images sent to the projector to determine the LAM.

standard deviation of the RGB image was 2.2. The reason for the low variation in projector

lighting in the booth is a small of area of the image is now being used for the ROI.

Improving the Projector Uniformity in the Viewing Booth

Making the projector uniform is needed to provide accurate color capture from the printed

image in the viewing booth. The same methodology of making the projector uniform that was

explained in section 5.1.6 was applied to make the ROI uniform. The LAM was calculated

based on the white image which means the projector displayed full white in the ROI of the

viewing booth as shown in Fig. 5.14. Once the image was captured and registered, 10 pixels

were removed from edges to ensure not to include edge pixels which might cause some errors

and to reduce any registration errors. The LAM was then passed through ITF for the three

RGB channels of the projector to find the corrected values of the RGB needed to be sent to

the projector to make the luminance of the ROI as even as possible. Another method was to

use the LAM calculated based on the green channel by sending the green image and using it

for red and blue channels since the luminance behavior is almost the same for all channels.

The green image sent to the projector can be seen in the middle image of Fig. 5.15. The

other way is to calculate the LAM based on RGB channels individually by sending each of

the images in Fig. 5.15. These images were sent to projector and their luminance surfaces

were calculated using HDR techniques. The built in photometer in the camera was used to

determine the right exposure for each image with ISO of 100 and aperture was set to 29 to

achieve neglectable camera non-uniformity.

For each image, 15 exposures were taken, 7 over exposed and 7 under exposed with one

neutral exposure (Fig 5.15). The neutral exposures were found to be 2.5, 1.6, and 2 for red,
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Table 5.2: The results of making a white image in the booth uniform using green channel, RGB
channels, and full white.

Case Min Max Mean Std

Original 0.81 1 0.93 0.028

After Using Green 0.89 1 0.95 0.015

After Using RGB 0.89 1 0.94 0.01

After Using White 0.89 1 0.96 0.009

green, and blue channels respectively. Table 5.2 summarizes the results of each method.

It can be seen from table 5.2, using the white surface to find the LAM and compensate

for luminance using the white surface led to better results. Using the green channel only

reduced the standard deviation by 46% whereas using the white surface reduced the standard

deviation by 68% compared to 64% using the three channels. It can be concluded that using

the white surface as a base to calculate the LAM and compensate for the luminance leads to

better results similarly as in section 5.1.6. The reason is that, when using a single channel

such as Green, the other two channels are not completely off. There is some light leakage

which affects the luminance measurement. Using all three channels together gives a brighter

image with all RGB channels on. The measured luminance represents more accurate results

in this case, and compensates for the black offset as well. The small difference between using

the white which made improvements of 68% and using the three channels separately 64% has

the added advantage of taking one third of the time and led to a bit more accurate results.

Moreover, compensating for the luminance leads to uniform RGB measurement from the

camera. Next, it was required to check the RGB uniformity by measuring the RGB from

the camera using the white before and after compensation.

For each case, 5 images were taken and averaged in order to minimize the camera’s noise

sensitivity . Then, the image was registered and 20 pixels were cut from the edges since the

compensated image was based on the original minus 10 pixels to compare both cases. Each

image was then converted to gray scale and divide by 255 to normalize it. The calculated

standard deviation as well as the maximum and minimum values are summarized in table 5.3

It can be seen from table 5.3 that the standard deviation was reduced by 65% (2.2 to
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Table 5.3: The results of making white in the booth uniform in RGB camera space.

Case Min Max Mean Std Std Norm

Before 147 162 157 2.2 0.008

After 143 150 147 0.78 0.003

0.78 or 0.008 to 0.003 on a normalized scale). In color modeling, this result makes a quite

enormous amount of difference when RGB patches are captured by the camera and used by

the ANN to create a reliable model to map between desired and reproduction color spaces.

Determining the Viewing Booth Uniformity

While having the viewing booth light on and the projector light off, it was important to check

the uniformity of the light in the viewing booth for the same area used in the projector (ROI).

The intensity of the viewing booth was set to half and the same matte paper was used in

the same position as before in order to compare the results with uniform light projector.

An image was captured using the camera in order to determine the average RGB values

when using the viewing booth light with matte paper and the projector turned off. The

camera settings were 0.4 second shutter speed with aperture of 29 and ISO equal to 100 which

are the same as before, in order to be comparable. Five images were taken and averaged to

reduce noise from the camera. Thus, registration was implemented on the averaged image

in the same method as the projector so that the same area of the paper was compared.

The standard deviation was found to be 0.03 on gray scaled image and divided by 255. In

other words, on 255 scale, this standard deviation was found to be 8 with a mean of 177 (a

maximum of 186 and minimum of 143). This means that 64.2% of the data are within 177±8

which is an enormous difference between RGB values. Consequently, the viewing booth did

not produce reliable results numerically nor visually in some cases.

The luminance was also measured using HDR techniques for the same ROI so that it

can be compared with the projector and the same paper in the same position. The resulted

measured luminance can be seen in Fig. 5.16 and it is very obvious that the color is not

uniform.
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Figure 5.16: The luminance channel of the viewing booth Measured by the camera before com-
pensation.

The luminance surface was normalized by dividing it by the maximum luminance so that

minimum and maximum luminance are 0.55 and 1 respectively while the standard deviation

was calculated and found to be 0.09. The next goal is to compensate the viewing booth light

to make it even using the projector as it is described in section 5.2.4.

5.2.4 Methodology of Creating a Uniform Viewing Booth

As it was shown in section 5.2.3, the projector was made uniform in the booth on the white

paper and it performs very well in terms of color consistency within its own ROI. However,

the goal in this section is to use a hybrid system which uses the viewing booth light as the

main light source and only some of the projector’s light to compensate for uneven areas

where there is lack of viewing booth light to make it even. This hybrid system does not exist

in the printing and imaging industry and it is very useful since it makes it easier and more

robust to investigate colors. This unique work has been done by the following steps:

• Step One: The viewing booth was turned ON while having the projector display full

black. The reason is that the projector emits some light when displaying black (this

is called black offset). This black offset needed to be taken into consideration while

compensating for the light in the viewing booth.
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Figure 5.17: The luminance of the viewing booth with projector displaying black (Left) and the
LAM needed for the compensation (Right).

• Step Two: The registration has been done before as in section 5.2.2. Then, the lumi-

nance of the ROI in the booth was accurately measured when the booth is displaying

full black. The luminance was measured by the camera using HDR techniques by tak-

ing a total of 19 exposures with 0.4 second as the neutral exposure. The luminance was

normalized by dividing it by its maximum luminance so that the maximum luminance

will be equal to 1 after cutting 10 pixels around the edges. The luminance surface is

shown in Fig 5.17.

• Step Three: In this step, the goal is to keep the areas of luminance equal to 1

unchanged by sending black pixels to that area and sending more light to the area that

has luminance less than 1 to compensate for it. Therefore, the LAM is calculated by

subtracting 1 from the luminance surface. The resulted LAM is shown in Fig. 5.17

• Step Four: The LAM is then used by the projectors’ ITF to find the right RGB

values needed for the projector to compensate the viewing booth light as it can be

seen in Fig. 5.18. The LAM has minimum value of 0 (where the light has a maximum

luminance of 1) and maximum value of 0.49 (where the lowest luminance occurs).

Unlike, when only the projector was used, the LAM had a maximum values of 1. In

this case, it is dependent on the viewing booth.

• Step Five: The resulted image from the previous step is applied to fit within the

ROI using the registration settings as it can be seen from Fig. 5.18 and sent to the

projector to enhance the booth uniformity.
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Figure 5.18: The image sent to the projector to improve the uniformity of the viewing booth.

Table 5.4: The results of using the projector to enhance the viewing booth.

Case Min Max Mean Std

Before 0.56 0.73 0.67 0.04

After 0.66 0.73 0.71 0.01

Results

The uniformity was compared before and after the compensation by measuring the luminance

of the ROI after cutting 20 pixels from around the edges. The standard deviation of the

measured luminance was reduced from 0.09 to 0.04 which means a 55% improvement.

To compare the RGB captured by the camera before and after the compensation, 5

images were taken using shutter speed of 0.4 along with ISO equal to 100 and aperture set

to 29 to reduce the affect from the camera lens as much as possible. These images were

averaged to reduce the camera noise sensitivity and were also registered to fit within ROI.

After the registration, 20 pixels were cut from the edges and images were converted to gray

scaled image and divided by 255 for normalization purposes. The results of before and after

the compensation are summarized in Table 5.4. It can be seen from the results in table 5.4

that the standard deviation was reduced from 0.032 to 0.01, which means an improvement

by 75% which is very important when it comes to capture the colors printed on paper in

order to produce reliable results.
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The above judgements were all based on white paper in the viewing booth to determine

its uniformity. On the other hand, it is very important to determine how reliable the new

hybrid system is when printed color images are viewed in the viewing booth. The TC9.18

chart shown in Fig. 3.1 was chosen because it contains a wide range of RGB colors. This test

chart was printed using the same matte paper via the printer ICC profile that is made for this

type of paper. The test chart was attached at the viewing booth in two positions. Pos1 on

the left and Pos2 on the right. For each position, there is two cases: without compensation

(Booth Only) and with compensation (Booth and Projector). Therefore, in total, there are

four different cases as shown in Fig. 5.19. For each case of Fig. 5.19, 5 images were taken and

averaged to reduce the camera noise. Then, each image was registered in order to extract

the test chart image accurately. The MSE was calculated between case#1 and case#3 and

it was found to be 26.34 in the RGB space. This MSE was also calculated between case#2

and case#4 and found to be 5.23 which is the compensated case. This means that using

the projector to compensate for the viewing booth reduced the MSE within the ROI field of

view by 80%. This is a very important achievement when it comes to measuring/capturing

color as well as visual judgment of colors.

To make the projector more like a natural light source rather than a digital display,

the projector lens was purposely defocused so that the projected light on the paper is very

smooth and actual pixels are not visible anymore. In this case, the pixels of the projected

plain white image were not noticeable anymore because all the pixels were blended compared

to the focused lens where it is clearly visible to see the pixels on the paper. The standard

deviation in this case was found to be 0.003 which unchanged from the focused case. However,

defocusing the projector had visually a big impact on how the printed image appears in the

viewing booth under different lighting conditions. Subsequently, we were able to create a

uniform light source with a very wide variety of colors using the implemented GUI. This can

be used to simulate more variety of the viewing conditions in generating soft proofs.
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Figure 5.19: The four cases of evaluating the uniformity performance of the hybrid system.
Case#1:Pos1 with booth only (upper left), Case#2: Pos2 with booth only (upper right), Case#3:
Pos1 with booth and projector to compensate (bottom left), and Case#4: Pos2 with booth and
projector to compensate (bottom right).
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5.3 Soft Proofing Using Hybrid Viewing Booth

As it was shown in previous experiments, different printed colors appear differently depending

on their location in the viewing booth because of the non-uniform nature of the illumination

in the viewing booth. A method of compensating for this issue was introduced and tested.

Preliminary results appear very robust as described in section 5.2.4.

In this experiment, the same type of paper used to create the model before the compen-

sation in section 4.2 is used to create the model using the hybrid viewing booth. This paper

is ultra premium photo paper made for fast drying, soft gloss to provide vivid lifelike images

and is ideally made for photographs. This paper gives some reflections in some areas when it

is printed and viewed in the viewing booth. Moreover, adding light from the projector adds

more reflections. However, it was investigated by our eyes that the reflections are visible

from different viewing angles and are less visible from angles of around 45 degrees. As a

result, the camera position was changed so that the camera is looking at the viewing booth

in a 45 degree as it can be seen from Fig. 5.20. The uniformity of hybrid system did not

get affected with this type of paper while the camera was in 45 degree as it was shown in

Fig. 5.12.

A new test chart has been customized based on the TC9.18 but the black and white

strips that isolated between the color patches were removed so that it does not introduce

some errors for the mapping between the digital image and printed version. It was also

made with slightly bigger patches in order to get bigger printed area of each color for more

accurate measure of each color patch. This customized test chart is shown in Fig. 5.21.

5.3.1 HDR for Modeling

The customized test chart was designed to provide a good modeling between the original

and predicted image of the printed image. This was printed using the Epson stylus photo

1400 with the custom ICC profile that was made, as explained in section 2.3.2. The printed

image was placed in the hybrid viewing booth which provides a uniform lighting condition in

order to accurately capture the printed test chart. The goal here is to use HDR to capture
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Figure 5.20: The set up of the capturing the color test chart with the camera at 45 degrees looking
at the viewing booth with the LCD projector to compensate for light.

Figure 5.21: The customized test chart.
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Figure 5.22: 15 differently exposed images of the customized test chart starting from the overex-
posed image with shutter speed of 1/4 second (Left Top) to the underexposed image with a shutter
speed of 1/100 second (Bottom right).

the true/real colors and build a model that can predict the appearance of the printed image

before printing it. It has been shown in chapter 4 that HDR provides more realistic images

and reliable color reproduction of the captured scene.

The camera used was Canon EOS Rebel T1i which came with EF-S 18-55mm IS lens.

The HDR image was generated by taking 15 (1/3 f-stop between each exposure) exposures

while setting the aperture to 8 to reduce the spatial variation of the lens , ISO to 100 and

the camera’s neutral exposure of 1/20 seconds as shown in Fig. 5.22. These 15 exposures

were merged into a single HDR image using Photoshop. The resulted image was processed

using exposure and gamma setting (the recommended settings by Photoshop) in Photoshop

and saved as a TIFF image in order to be acquired by the MATLAB code. Different number

of exposures were also experimented and it provided a good HDR reproduction without a

noticeable difference. Therefore, 15 exposures were taken in order to reduce the camera

sensitivity noise by taking more image to get more accurate results.
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The color management was taken into consideration in MATLAB in order to be able

to display the HDR correctly in the same appearance as Photoshop. That was achieved in

MATLAB by processing the image using the monitor ICC profile that was made as explained

in 2.3.1. In order to establish the data for training, the captured image needed to be registered

to the original digital image. This was achieved using the same registration techniques as

in section 5.1.4, but by using the captured image as input image and the original digital

test chart as the base image to establish the registration in which 95% cross correlation was

achieved. The registered image can be seen in Fig. 5.23.

After the registration, a mapping can be established between the HDR captured image

in Fig. 5.23 and the original digital image shown in Fig. 5.21. To establish such a mapping,

same preprocessing that was used in section 4.2.2 was employed in this experiment which

resulted in 6531 RGB samples.

To clarify the use of HDR verses LDR for the captured image, an LDR image was

captured by the camera using the neutral setting which are aperture of 8, ISO of 100 and

an exposure set to 1/20 seconds. The same registration as in the HDR case was used here

and the resulted LDR registered image of the customized test chart can be seen in Fig. 5.24.

Preprocessing was done on the registered image in order to obtain accurate data for training

the ANN model. Therefore, two models were created using ANN, one built based on the

HDR data and the other one built based on the LDR data. A comparison between the two

cases is shown to support the reasoning behind using HDR over LDR. Training the HDR

model is explained in the next section.

5.3.2 Training process for the HDR based model

The original digital RGB was shown in Fig. 5.25 and the new RGB of the captured HDR

image based of the printed image is shown in Fig. 5.27. The goal is to train the ANN model

based on the original RGB as an input and HDR RGB of the printed image as an output for

the ANN model. The same methodology and network structure as in section 4.2.3 was used

to train the ANN in this section but based on the new HDR data from the previous section.
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Figure 5.23: The captured HDR image of the customized test chart after registration.

Figure 5.24: The captured LDR image of the customized test chart after registration.
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Figure 5.25: The original RGB of test chart TC9.18.

The training data samples were 6531 samples for only 911 unique samples of the original

digital RGB. 80% of the data was used for training the ANN which is 5224 samples and 20%

was used for both validation and testing which means 653 samples for each. It required a

short training time of 132 seconds which led to MSE on the testing data equals to 0.008 with

a maximum error of 0.05 on the normalized data (which means 2 and 12 on the 255 RGB

scale).

A correlation measure between the ANN prediction and the actual target was calculated

by performing linear regression. This linear regression and correlation measure was plotted

in Fig. 5.28 for training, validation, and testing for all data. The correlation measure was

more than 99.9% which is a very good generalization of the model. Fig. 5.29 shows the target

versus the ANN prediction for 653 samples of the testing data. The printed test chart when

measured by the instrument will results in the gamut shown in Fig. 5.30 which is uniformly

compressed and very similar to the prediction by the ANN model based on HDR imaging

techniques.
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Figure 5.26: The printed RGB of Test Chart TC9.18 (viewing booth only).

Figure 5.27: The printed RGB of test chart TC9.18 (hybrid viewing booth).
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Figure 5.28: The correlation measure of target vs. predicted by the ANN for training, validation,
testing, and all data set.
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Figure 5.29: The printed RGB of test chart predicted by the ANN.

Figure 5.30: The printed RGB of Test Chart TC9.18 (measured by i1iO)



93
5.4 Results and Discussion

After the ANN was trained, it was tested with the Lena image that was used before. Fig. 5.31

shows the original digital image and its printed version predicted by the ANN model. The

judgement has to be made in reality by visually looking at the hard copy printed image

and compare it to the predicted image on the calibrated monitor. It was concluded that

the predicted image in this case provided more realistic results and similar appearance to

the hard copy printed image compare to the prediction by the model that was explained

in section 4.3. The reason is that this model was built based on HDR image capturing

techniques with the printed test chart being viewed in the hybrid viewing booth which

provides a uniform lighting. The hybrid viewing booth made a big difference in the resulting

model.

The colorchecker image was also tested as it can be seen from Fig. 5.32 which shows both

the original digital image and its printed version predicted by the ANN model. This model

provided reliable results that are better than the model explained in section 4.3 as the image

appearance very different from the hard copy printed image.

It can be concluded that the main reason of the achieved accurate and reliable model

is the uniformity of the Hybrid viewing booth which provided a consistent environment for

colors to be captured trustworthy. The predicted image of the printed colorcheker image

was also compared visually with the hard copy printed image and it was noticed that the

model provided good prediction but is not perfect. For instance, when the predicted version

of the proposed system is compared with original printed image in the viewing booth, it is

very noticeable that the purple sweater has a more closer appearance to what is looks like in

viewing booth. However, when the predicted printed version in Photoshop is compared to

it does not give a true color. The reason is that the model was built based on the test chart

which contains only 911 unique color samples. Therefore, as future work, more color patches

should be included with a bigger test chart in order to build a better model. The beauty of

this work is that when more color patches are included, the process should not be affected

because the model only requires an HDR of the test chart. Therefore, adding more color
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Figure 5.31: The original digital Lena image (top) and the prediction of the printed version of
the Lena image by the ANN model (bottom).
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Figure 5.32: The original digital colorchecker image (top) and the prediction of the printed version
of the colorchecker image by the ANN model(bottom).
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patches will not be an issue unlike the case with printer profiling in which more color patches

require more time to measure the patches. These results were compared to Photoshop and

it was noticed that with some colors, this model provides better color appearance compared

to the hard copy printed image, because Photoshop predicts the colors based on the custom

ICC profile of the printer. As it was mentioned earlier, to make an ICC profile, someone

needs to measure color patches of a printed test chart which is very time consuming. An ICC

profile uses LUT to predict colors which has some interpolation error issues. The printed

media has a smaller gamut than the display media. For this reason, the RGB values shown

in Fig. 5.25 will undergo gamut compression during the printing process. However, the

gamut compression in the hybrid viewing booth shown in Fig. 5.27 is uniformly compressed

as compared with the printed RGB in normal viewing booth shown in Fig. 5.26. This non-

uniform compression in the normal viewing booth is likely to be the major factor in the color

distortion discussed in chapter 4. It is clear from these figures that the uniformly lit booth

overcomes this problem.



Chapter 6

Conclusions and Future Work

THE focus of this thesis was to create an automated soft proofing system that delivers

better robustness and color consistency compared to existing systems. In attempting

to automate soft proofing process, the uniformity of current viewing booths and how to

compensate using LCD projectors was investigated.

6.1 Conclusions

The conclusions and contributions of this thesis are summarized as follows:

• A novel method that compensates for the non-uniform illumination in the viewing

booth was achieved by using an LCD projector. This led to uniform viewing booth

conditions which makes it easier for soft proofing purposes, as the uniformity of the

viewing was an issue in getting accurate soft proofs. It was also found that HDR

capture of the printed image will give an accurate perceptual representation of what

the printed image will look like in the viewing booth on a calibrated monitor. Thus,

having an accurate uniform viewing booth was combined with a closed loop technique

and the use of (HDR) imaging to generate a black box model that can simulate the

printed appearance of a given digital image. Adaptive techniques such as ANN were

used to create the black box model, using the camera as a measuring device.

• It was found that a DLP projector can not work for this application. Instead, the older

97
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LCD projector was deemed more appropriate as a controllable light source. In order

to blend its pixels to make it act more like a light source, the projector was purposely

defocused. Defocused projectors were tested and resulted in a smoothed appearance

when a printed image was viewed. The uniformity was tested after defocusing the

projector and it was still uniform.

• It was concluded that creating the LAM for projector based on the spatial intensity

of the white surface provides better uniformity compared with using green channel to

create the LAM. The reason is that using all the RGB channels to create the white will

reduce the artifacts coming from black offset when only one channel is used because

one can not guarantee that the remaining two channels will not emit any light. So

leakage will exist there. It was also found that using HDR to measure and create the

LAM will lead to more accurate uniformity.

• To the best of our knowledge, we are the first to use HDR to capture and represent the

printed image which led to representations that appear more in sync with the human

visual system for better reproduction compared with LDR.

• A new method based on ANN to learn and model mappings between RGB and L*a*b*

was established and compared with conventional ICC profiles. The results demonstrate

a back propagation LM neural network algorithm with higher accuracy for non-training

data set compared to the custom ICC profile.

• Using the LCD projector will make it possible to recover the CRC for the camera under

the same conditions where the luminance will be measured using HDR. This allows to

more accurate results since the CRC recovery was made under the same conditions.

To conclude, one amazing thing about soft proofing is the use of a monitor which has a

bigger gamut that sometime can simulate colors more than an inkjek proofer, plus with the

use of the HDR techniques will make the hard copy look like the reality in more accurate

and automated way. All the work in the literature is about multi projection display and
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we are the first to implement viewing booth compensation using HDR. We also calculated

LAM based on the luminosity of the white surface which led to more accurate reproduction.

The reason is that using the white surface will reduce the noise caused by black offset. To

the best of our knowledge, we are the first to put forward a new robust and efficient method

that can well resolve the issue of uneven illumination in the viewing booth and achieve a

consistent luminance intensity when print is viewed in the viewing booth.

6.2 Future Work

There are many potential directions for future work that can come out of this thesis. Some

of these aspects are summarized in the following points:

6.2.1 Towards custom illuminants for proofing

It was also found that having a viewing booth with different light sources other than D50

is also useful. Therefore, the projector was used to uniformly create any illumination using

a GUI with RGB sliders. It was possible to create any color of light with variable intensity

using this GUI. A GUI was created to allow the user to select any color with the RGB sliders.

This GUI first displays the color before compensation, and when a key is pressed, the uniform

version of the selected color will appear. As a result, by using this GUI, it was possible to

create a uniform light source with a very wide range of color choices. This algorithm can be

used to view and/or simulate any printed image in order to see the effect of using different

lighting conditions on the appearance of the image. The user can specify bluish, reddish,

or yellowish light and get a uniform light source of any color using this type of the viewing

booth. An example of different lighting conditions using this technology is shown in Fig. 6.1.

The utility of such a function could be used in simulating and generating special lighting

conditions representation of the clients need (eg. viewing a menu at a nightclub).
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Figure 6.1: The example of projector based evenly illuminated viewing booths from right to left
are bluish, reddish, and yellowish lights.

6.2.2 Embedding Intensity changes within the proof

Soft proofing is used to verify the print jobs on the monitor. Despite the successful devel-

opment and use of current soft proofing systems, they still fail to deliver the same degree

of utility as a hard copy proofing, especially since they lack the appearance of different il-

lumination intensities and levels [23]. In demonstrating through this thesis that the HDR

capture of the image will give an accurate reproduction on the calibrated monitor then it

would be very useful to create a soft proofing system that simulates the appearance of the

printed image with varying intensity level to act like a virtual viewing booth. It is also

possible to simulate the appearance of the printed image under a wide range of illuminations

using the LCD projector to uniformly create different illuminations. Such a tool should be

particularly useful in the printing industry. For instance, it would very useful to view the

appearance of the advertisement banners in a sunny day versus cloudy day.

6.2.3 Other Extensions and Practical Improvements

• A viewing booth based projector can be made mobile in which using the projector

as a light source that can be automatically adjusted using a camera according to the

viewing conditions. The uniform light source could then be projected on the printed

image to see how job would appear.

• Since the HDR image can not be directly displayed on the monitor, then HDR image

was processed in Photoshop using tone compression techniques called exposure and

gamma. However, there exists another tone compression that is based on human vision
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system such as iCAM06 which tends to provide even better perceptual reproduction [64,

65]. Using such techniques will improve the soft proofing model proposed in this thesis.

• Since it was possible to accurately obtain uniform light, and supplement this by using

an inexpensive camera, the system can be treated as scanner that can easily generate

HDR images. In other words, it can be used as an HDR scanner. Moreover, this system

can be also used to capture images accurately with different illuminations by using the

implemented GUI. This functionality is not available in scanners.

• To increase the luminosity of the projector, this can be done by blending two projectors

to achieve more luminosity.

• In future, using LCOS projection technology will make the system it even better be-

cause smoother and higher resolution and more pixels are available to blend in the

viewing booth.

• As mentioned in section 2.3.3, the uniformity of light source is an essential element

for camera calibration. Therefore, the implemented robust photometric calibration

method could be used in camera calibration since calibrating the camera itself re-

quires uniform illumination. Typically, this process is done manually with multiple

light sources, and can take hours to get adequate uniformity across the field of view.

Automated calibration with a uniform source can eliminate the tedium of a manual

approach. A potential application could be calibrating the camera using the imple-

mented GUI for various illumination conditions which will create different ICC profiles

for each lighting condition.
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