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Abstract

Neil Joshi

OPTIMAL GENERATIVE AND DISCRIMINATIVE ACOUSTIC MODEL TRAIN-

ING FOR SPEECH RECOGNITION

Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University

Toronto, ON, Canada

2009

The focus of this dissertation is to derive and demonstrate effective stochastic

models for the speech recognition problem. Acoustic modeling for speech recog-

nition typically involves representing the speech process within stochastic models.

Modeling this high frequency time series effectively is a fundamental problem.

This dissertation devises an objective function that relates the true speech dis-

tribution to its estimate. It is shown that through optimizing this function the

speech process time series can be modeled without loss of information.

The thesis proposes two such models that are developed to optimize the de-

vised objective function. The first an acoustic model formulated for the speech

with noise problem. The second a discriminately trained model consisting of op-

timal discriminant ML estimators.

The first, a combination of recognizers that through a simple system fusion,

combines multiple speech processes at the decision level. This is a stochastic

modeling method devised to combine a parameterized spectral missing data, MD,

theory based and a cepstral based speech process using a coupled hidden variable

topology. In using a fused coupled hidden Markov model, HMM, topology, an

optimal acoustic model is proposed that is inherently more robust than single pro-
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cess models under noisy conditions. The theoretical capability of this model is

tested under both stationary and non stationary noise conditions. Under these test

conditions the fused model has greater recognition accuracies than those of single

process models.

The second, formulated with a methodology that segments the acoustic space

appropriately for discriminately trained models that optimize the devised objec-

tive function. This acoustic space is modeled with discriminant ML estimators

formed with optimal decision boundaries using the large margin, support vector

machine, SVM, learning method. These discriminately trained models maximize

the entropy of the observation space and thereby are capable to model the speech

process without loss. This is demonstrated experimentally with frame level clas-

sification error rates that are ∼≤ 3%.
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Chapter 1

Introduction

science is built up of facts, as a house is built of stones; but an

accumulation of facts is no more a science than a heap of stones is a

house. — Henri Poincare (1905)

Great advances have been made in speech recognition research over the past

few decades. From its early incarnation in the 1950’s, when the discovery was

made using statistical classification methods for speech patterns it seemed very

likely that the speech recognition problem would be solved in its entirety within a

short period of time thereafter. This obviously was not to be. The high variability

of speech, the different dialects, tones, and accents of the spoken language and the

interfering noise from the environment have prevented this realization.

In the 1950s various researchers tried to exploit the fundamental ideals of

acoustic-phonetics. The initial effort in 1952 by members of Bell-Labs[26] (Davis,

Biddulph and Balashek) resulted in a system for isolated digit recognition relying

on measuring spectral resonances during the vowel region of each digit. This work

spurred numerous research efforts based mostly on the use of filter analyzers for

the measurement of the spectral information for pattern isolation and recognition.

Japanese researchers made great advances in the 1960s with hardware based fil-

ter bank spectral analyzers for phoneme and vowel recognition. This decade also

saw the development of the first methods to address the nonuniformity of time

scales in speech events[50][51][61]. The decade to follow, the 1970s, witnessed

several advances in speech recognition research. Namely, the development and

demonstration of reproducible and viable isolated word recognition techniques

using pattern recognition and dynamic programming methods. This decade also
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saw the rise of great research houses for speech recognition research such as those

at IBM and Bell Labs.

With isolated word recognition techniques established, the 1980s saw these

techniques extended to tackle the problem of continuous connected word recog-

nition. This decade coincided with a shift of research focus from template based

to stochastic models. Hidden Markov models, HMMs, were introduced to the

speech community in this decade and this method was rapidly adopted[31][58] by

the speech community. Of notable mention, this decade also gave rise to the rein-

troduction of neural networks, NNs, to the speech recognition problem[49][74].

Though NNs were first investigated in the 1950s, it was deemed too problematic

to use at that time. Large continuous speech recognition systems and databases

that were developed by DARPA, CMU, BBN, Lincoln Labs, SRI, MIT and Bell

Labs became widely available for the research community. This availability and

the advancements made in research seeded the necessary conditions for the rapid

progress that was seen in speech recognition research in the following decades.

Researchers made great advances in robust speech recognition research dur-

ing the 1990s. Robust, in the sense of speech recognition under noisy conditions.

The foundations for noise adverse and speaker independent speech recognition

were established during this period. Such works included RASTA[40], HMM

decomposition[71], maximum likelihood linear regression[32], Parallel Model

Combination[33] and Missing Data[19], MD, techniques. Furthermore, the avail-

ability of new standardized noise corrupt speech corpora, such as the Noisex 92

and Aurora corpuses aided in the proliferation of this research topic. Great ad-

vances were made throughout the 1980s in computing resources. Subsequently,

the acceleration of this technology in the 90s together with the enormous advances

in computer networking led to tremendous progress in the decade to come in

speech and language research which had, at this time, become to be known as

Human Language Technology, HLT. This decade saw the introduction of audio

visual speech recognition as well as, due to the increasing connectedness and

globalization of the world, the advancement of machine translation and multilin-

gual speech recognition. The increased popularity and services offered on the

World Wide Web, WWW, spurred interest into the research of HLT for the index-

ing of information and information retrieval that included part of speech tagging,

noun phrase, NP, deciphering of text and speech.

Building on the advances over the past few decades with stochastic speech

recognition, researchers focused on strengthening the models through the use of

discriminative techniques and combining classifiers. The 2000s also saw the rise

of statistical learning theory applied to speech recognition and HLT due in part to

2



Figure 1.1: Trivial Speech Recognition Network

the commoditization of computing resources and the availability of computation

power that would permit its realization in this decade.

The speech process is highly variable and non stationary in nature. Due to

this, the speech phenomenon, as outlined in the previous passage, is predomi-

nately researched as a stochastic process. Under this premise the objective is to

determine the best word sequence, W = {W1,W2, . . . ,Wn}, given a set of obser-

vations, O = {O1,O2, . . . ,On},

argmax
W

P(W|O) (1.1)

where, W : wi ∈ W , O : oi ∈ O and wi : i ∈ I and oi are indexed elements

of W and O respectively. With this structure a trellis is formed containing word

nodes and edges as depicted in Figure 1.1. The observations that correspond to

each node represent the probabilities of the network and Equation 1.1 is satisfied

by minimizing the cost or equivalently by maximizing the likelihood, ML, of the

negative log probabilities. In this naive, construct the edges represent the proba-

bilities of a given node in relation to an observation, or rather, for a specific edge,

the posterior probability of a word, W , given an observation, O, and stochastic

model, θ ,

P(W |O,θ) (1.2)

These posteriors can be determined using differing methodologies. The predom-

inate, conventional, technique is through the Bayesian view for determining pos-
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teriors where,

P(W |O,θ) =
P(O|W,θ)P(W,θ)

P(O|θ)P(θ)
(1.3)

=
P(O|W,θ)P(W |θ)

P(O|θ)

=
P(O|W,θ)P(W)

P(O)

bases the posterior on the likelihood, the leftmost numerator factor, and priors,

P(W) and P(O). This likelihood or generative model determines the most proba-

ble word model combination that may have generated any given observation. The

optimal discriminative model, in contrast, attempts to optimize the problem to

determine an, x∗, such that,

x∗ = min
x

f (xi,xj 6=i) (1.4)

∀i

In this case, x ≡ O, where W is inferred from x ∀Wi, Wi ∈ W . Methods that

satisfy Equation 1.4 are referred to as discriminative techniques and they include

information theoretic[2], least squares[43] approaches as well as non parametric

solutions[49].

The stochastic models of the speech process that form the network of Figure 1.1

creates the decision boundaries that ultimately permit the determination of a word

sequence from a set of observations. These models are commonly formed ei-

ther through generative methods involving density estimation or by discriminative

techniques. To construct these stochastic models and to evaluate Equation 1.1, the

observations that make up the speech process are transformed into a parameter-

ized form or feature vectors, a format suitable for this pattern recognition task.

Within this process the signal is sampled at a frequency greater than the Nyquist

frequency and commonly passed though a bank of filter banks so as to expose the

critical signal attributes that can be used to characterize the signal. As is described

in[43][77], and is depicted in Figure 1.2 to complement the discussion, the contin-

uous time signal is discretized with a sampling rate of, fs, together with a sliding

window of duration tw and a parameterization period of, tr. A common feature

representation is the Mel log frequency, MF, or cepstral coefficient, MFCC, fea-

ture. In this case each sample that represents tr of the signal is passed through

4



Figure 1.2: Parameterization of speech signal

filter banks that represents the spectrum. The log representation of the spectrum

is then transformed back to the time domain to provide what may be referred to

as the spectrum of the log spectrum. In other words, as the initial transformation

provides the spectrum of the signal in the frequency domain, the inverse transfor-

mation of the log signal can be considered as the spectrum of this signal in the

time domain. Each parameterized sample results in a feature vector or rather a

speech frame.

As is described in the following subsection, the focus of this dissertation is

in devising effective stochastic acoustic models for the speech recognition prob-

lem. These probabilistic models are devised with techniques that minimize the

distance, or error, between the true speech stochastic model, θ , and its estimate.

Therefore, it implies that the models presented within this thesis are optimal and

are referred to as such.

5



1.1 Research focus

The nature of the body of work, and focus of this dissertation is in direct connota-

tion to the derivation and the demonstration of optimal1 stochastic models for the

speech recognition problem. This entails both, the examination of the problem of

speech in noise, Equation 1.1, and the use of a discriminative method for describ-

ing Equation 1.2. This closely follows the direction of current speech recognition

research, as discussed previously in this chapter, with regards to addressing ro-

bust speech recognition and the investigation of non parametric, discriminative

techniques for modeling the problem.

The motivation of this thesis is to effectively model the speech process for

speech recognition. Here, optimal stochastic models are devised and developed.

This is done first by defining, through information theoretic concepts, an expres-

sion that can represent the true speech, or observation, stochastic process. As is

detailed in Chapter 2, an expression is formulated that represents the process in

terms of a hidden variable stochastic model. It is shown that in maximizing this

hidden variable expression, the stochastic model is capable of representing the

observation process, or rather, the speech process without loss2. The expression,

Equation 2.16,

H(On |O(n−1)) ≥ H(On |Un)

expresses the entropy of the true observation speech process in terms of n random

variables, rvs O, the term on the left of the inequality, and its estimate in terms of

hidden variable topology rvs O and U . This describes the true speech observation

at time, n, On given its previous n-1 realizations, O(n−1), in relation to its estimate

at time n, or the ML estimator. This objective function together with the manner

from which it is arrived from provide the basis for this dissertation.

Specifically this thesis investigates,

1. speech in noise: the development of an optimal coupled stochastic model

to combine two separate streams of features for robust speech recognition

under adverse noise conditions. This work extends the missing data[19],

MD, methodology to accommodate multiple sets or streams of observation

features.

1optimal in the sense of minimizing the distance, or error, between the true speech stochastic

model, θ , and its estimate
2Thoughout this thesis, in describing so-called lossless modeling, it is referred to in this sense
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Speech recognition under noisy conditions is an open research problem.

Though noise robust techniques such as cepstral mean normalization, CMN[1]

and RASTA[40] have been successfully applied to the problem, the benefits

of those approaches are usually realized under stationary noise conditions.

In general, approaches to enhance speech recognition under noisy condi-

tions can either attempt to remove/suppress the noise perturbations or to

accommodate them within an adapted recognizer stochastic model. The

later approach, as the HMM decomposition[71], the Parallel model combi-

nation, PMC[33] and similar techniques[7] have demonstrated significant

results under non stationary conditions. Accommodating a noisy signal by

adapting the stochastic model is promising, though these methods do re-

quire apriori knowledge of the noisy condition to be effective.

The missing data approach[20], in contrast, has been demonstrated to be

effective for robust speech recognition under all noisy conditions. Here,

speech recognition is performed using only the speech bearing, or reliable

components of a noisy signal. As is presented in Section 3.4, a problem,

arguably a very significant drawback, with missing data techniques is that

it generally requires spectral based features[20][13][37][42][59]. Unlike

past efforts to resolve this, the presented body of work devises an optimal

coupled stochastic model to permit the use of cepstral based features within

the missing data framework.

A novel optimal coupled model methodology is devised to combine classi-

fiers, or separate streams of features within the missing data framework. In

using information theoretic concepts to assess the dynamics or relationship

between rvs in a hidden variable structure, potential coupled topologies[11][63][55]

can be compared to determine the most appropriate structure to model the

speech process. It is shown that in minimizing the objective function, Equation 3.32,

KL
(

p
(

O(1), O(2), . . . , O(g)

)

‖ p
(

Ô(1), Ô(2), . . . , Ô(g)

))

=

−
∫

. . .
∫

p
(

O(1), O(2), . . . , O(g)

)

ln

(

p
(

Ô(1), Ô(2), . . . , Ô(g)

)

p
(

O(1), O(2), . . . , O(g)

)

)

dO(1)dO(2) . . .dO(g)

an optimal stochastic model3 can be devised to represent the speech process.

Moreover, the resultant coupled probabilistic space representing missing

3see Equation 3.32, or Kullback-Leibler, KL, distance[48] with random variables O, where

O(i) represents the observations i of g time series and Ô its estimate.
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data and cepstral processes is capable of increasing the information content,

or capacity[22] of the acoustic model. This is shown both theoretically and

experimentally. Theoretically it is shown that the expected performance of

combined coupled acoustic model should be greater than that of a spectral

feature missing data model as well as a cepstral based model. Results from

a series of recognition experiments under both stationary and non stationary

noise conditions are empirically in agreement with the theoretical capability

of the combined models.

2. optimal ML estimators: the formulation of speech stochastic model poste-

riors with discriminative learning methods. In furthering the thesis topic of

devising acoustic models to model the speech process, the expression devel-

oped in Chapter 2, Equation 2.16, is refined using discriminative classifica-

tion techniques. Specifically the large margin, or support vector machine[68],

discriminative method. Acoustic modeling using discriminative learning

methods presents a manner that may be more suitable to represent the speech

process than traditional density estimation modeling methods. Such tech-

niques adverts the ill posed problem that density estimation methods are

to solve. As is shown in detail Section 4.1, the hidden variable stochastic

model is capable of representing the speech observation process. Through

segmenting the acoustic space in the manner that is described in that section

(Section 4.1), the hidden variable construct can be represented in a way that

is suitable for discriminative training methods. Here the observation pro-

cess is shown to be able to be expressed in terms of maximum likelihood,

ML, estimators. Presented in this work is a methodology to formulate and

model optimal discriminant ML estimators to model the speech process.

There have been several research efforts that have used discriminatively

trained acoustic models. Most notably, neural network based methods[10][64][41].

Though these pioneering works have addressed modeling speech with NN

classifiers they have been hindered by limitations that may due to the dis-

criminative training method used. Such limitations include controlling the

complexity, or generalization capability, of the model whilst maintaining a

low classification error rate. Many differing discriminative learning meth-

ods can be applied to model the speech process with ML estimators. How-

ever, it will be reasoned4, that large margin methods can overcome some of

the perceived drawbacks that confront many of them.

4Section 4.2
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This work presents a novel methodology to model the speech process using

ML estimators that are discriminatively trained using the large margin tech-

nique. Unlike other support vector variants[34], that have researched sup-

port vector machine speech recognizers, this work formulates and defines a

large margin method that is capable of representing the speech process with-

out loss. Moreover, this is realized, unlike past efforts to discriminatively

train acoustic models for speech, by forming models at the speech frame

level. The devised optimal acoustic models are not only capable of repre-

senting the speech process without loss, but are also shown to maximize the

entropy of the observation distribution. This is demonstrated experimentally

with speech frame classification error rates ∼≤ 3%.

1.2 Research Contributions

Problem :

To devise and develop effective stochastic models for modeling the speech pro-

cess.

Dissertation Contributions :

• Development of objective function relating true observation distribution to

an estimate in terms of the directly observable measurements and latent

hidden variables. Chapter 2.

• Formulation and development of an optimal stochastic model for the speech

with noise problem. Proposal of a combination of recognizers that through

a simple system fusion, combines multiple speech processes at the decision

level. This is a novel stochastic method devised to combine a parameter-

ized spectral missing data, MD, theory based and a cepstral based speech

process using a coupled hidden variable topology. In using a fused coupled

hidden Markov model, HMM, topology, an optimal stochastic model is pro-

posed that is inherently more robust than single process models under noisy

conditions. Chapter 3.

• A novel analysis and comparison of the capabilities of coupled hidden vari-

able topologies to model the speech process. Chapter 3.

• Through the maximization of the devised objective function, Equation 2.16,

it is shown that the resultant optimal combined acoustic space contains

9



greater information content of the true observation distribution. Thus is

capable of improved recognition accuracies. Chapter 3.

• Segmentation of the speech acoustic space in a manner that can represent the

speech process effectively and can be modeled with discriminative learning

methods. Chapter 4.

• Devising an optimal discriminant ML estimator to model the speech obser-

vation distribution. Chapter 4.

1.3 Organization of thesis

The organization of this thesis is as follows. Chapter 2 and its subsections pro-

vides substantial background in support of this dissertation. It comprises of in-

troducing and describing speech stochastic acoustic models. Within this chapter

the mapping of the speech recognition problem to that of Equation 1.2 is given

as well as an in depth discussion of representing the speech problem in terms of

Equation 1.3, generative, and Equation 1.4, discriminative methodologies. This

encompasses both the derivation of the parameters of the models and methods to

determine the minimum cost, Equation 1.1, of the speech network topology with

the resultant models. Chapters 3 and 4 together describe the main methodologies

of the thesis topic. Speech with noise is an open research topic.

Chapter 3 proposes a methodology based on missing data theory to perform ef-

fective noise robust speech recognition through combining classifiers. Under this

premise the described methodology fuses two speech processes, two streams of

features, at the pattern recognition stage. The combination of the two processes is

presented as coupled time series problem and within the chapter the optimal fused

model is proposed and demonstrated to be an effective method for determining

the statistical properties of each stochastic model of the network. The resultant

models are demonstrated through a series of experiments to achieve higher recog-

nition accuracies than those of conventional and MD based recognizers under both

stationary and non stationary noise conditions.

Chapter 4 is devoted to establishing a methodology to satisfy Equation 1.4 us-

ing support vector machines, SVMs, for speech recognition. This entails describ-

ing the problem in a manner that is appropriate for applying discriminative tech-

niques while maintaining compatibility with well established recognition mod-

eling techniques. Within this description, an approach is proposed to map the

10



acoustic space to a format that can be used to train the vector machine classifiers.

With a method to train the classifiers established, the chapter proceeds to describe

the derivation of speech stochastic model posterior probabilities from the con-

structed classifiers. The exceptional effectiveness of the method is furthermore

demonstrated with experiments with a speech corpus. Chapter 5 concludes the

thesis with a general discussion of the presented methodologies and offers insight

into further directions that the current research could take.

1.4 Guide to the reader

This dissertation is on the topic of effectively modeling the speech process. It

proposes two acoustic models that are capable of modeling this process effectively

for the speech recognition problem.

Dissertation in five minutes

For the casual reader: Each chapter of this dissertation contains a section that

identifies significant findings and summaries its content. These sections, read in

their entirety, can provide the reader a good grasp of the proposed acoustic models.

This “dissertation in five minutes” is found in the following sections: Section 2.3

(p.28), Section 3.8 (p.63), Section 4.5 (p.109).

For the eager reader

Chapter 2 is required reading. This chapter provides substantial background in

support of this dissertation. Each of the subsequent chapters are self contained and

may be read on its own. The proposed acoustic models are presented in this dis-

sertation within 4 books. Chapter 3 contains the first two and Chapter 4 the final

two. The first book of each chapter contains the methodologies for the proposed

models. The second of the two, the supporting experiments for the formulated

acoustic models.

Chapter 3 proposes an acoustic model for the speech with noise problem. A

noise robust optimal acoustic model is formulated as a simple system fusion of two

speech processes. The proposed model is demonstrated to be capable of higher

recognition accuracies than single process models under both stationary and non

stationary noise conditions.

11



Chapter 4 presents the proposed discriminant ML estimators. Though seg-

menting the acoustic space in a manner that captures the acoustic space of speech

process, optimal discriminant ML estimators are formed. The resultant acoustic

models are shown to be not only capable of effectively capturing the observation

process, but also maximize the entropy of the observation distribution.

12



1.5 Commonly used notation and symbols

Throughout this dissertation the following symbols are commonly used and can

be taken as such unless it is otherwise specified.

O random variable representing an observation or input

U random variable representing a [hidden] state

y output variable

x input variable

b bias or result variable

Z random variable representing an observation or input

I identity matrix

Σ covariance matrix

R real number space

I integer number space

θ variable representing a stochastic model

Or random variable representing observation reliable, speech bearing components

Ou random variable representing observation unreliable, or noise, components

(g) variable in brackets representing random process g, g ∈ I

: such that

⇐⇒ if and only if

=⇒ implies

⊢ infers

⊥ statistical independence

⊥⊥ conditional independence

≡ equivalence

Furthermore, the mathematical notation used throughout this dissertation follows

that with sets and or spaces defined between braces or brackets. An array of

elements or a vector is defined with bold font variables. Generally vectors and

matrices are presented with column vector notation unless it is otherwise specified.

Therefore, a column vector of, n, real number elements, can be defined as x =
[x1,x2,x3, . . . ,xn]

T , where T is the transpose, or x ∈Rn. Similarly, a row vector of

these elements within this space is expressed as xT .

13



Commonly found in this dissertation are lowercase and uppercase bold font

variables that represent vectors and matrices respectively. Though for the most

part each, xi, of x is a scalar, it may also represent, at times, a multivariate in

an effort to preserve a common form for clarity. Another vector notation used in

this thesis is, X (n), that is equivalent to, x, with elements, xi : i ∈ 1 . . .n. Such

a notation permits clarity in the derivation and assessment of optimal5 stochastic

acoustic models to model the speech process.

The focus of this dissertation is to devise and develop effective stochastic prob-

abilistic models to represent speech. As such, a majority of the variables used in

this thesis are random variables, or rvs. Speech itself is often considered as a ran-

dom process composed of random variables O. The notation used to denote distri-

butions is generally a tilde preceding a variable representing the distribution. One

such example is the Gaussian or normal distribution, ∼ N (x |µ,σ) = 1√
2σ

e
(x−µ)2

σ2 ,

where x is a rv and µ, σ 2 the distribution mean and variance respectively.

Subscripts in this thesis are generally used to specify distinct incarnations of

a random process or variable. As such, for a set of, g, g ∈ I , random processes,

O(i) represents the ith random process. For a vector, x, the ith element of the

vector is represented as xi. Similarly for a column vector of n rvs, O(n), On is

the nth such element. Probability distributions, or densities, may be represented

in terms of parameters that define the distribution. Subscripts may be used to

denote specific components of the distribution and to specify the rv its distribution

represents. For a Gaussian mixture distribution containing, k, components that

represents the distribution of a multivariate rv Or for model, θi, i∈ {1 . . .h}, this is

expressed as, ∑k
l=1 πr l θi

N(Or |µr l θi
, Σr l θi

). Where πrlθi
is the lth mixture weight,

and µr l θi
, Σr l θi

are the mean and covariance respectively for the lth mixture.

Some of the devised stochastic models in this thesis are illustrated in dia-

grams for clarity. Such illustrations represent probabilistic spaces and describe

the statistical relationship between random variables, rvs. The following con-

vention is used throughout this thesis. Illustrated in Figure 1.3 is a probabilistic

space P(U1,U2) = P(U1)P(U2|U1) for two rvs, U1 and U2. Similarly, Figure 1.4

describes the probabilistic space P(U1,O1). The relationship between the rvs is

described within the connections (arrows) between them. This is described in full

in Chapter 2. Unless it is otherwise noted, in illustrations such as these, a circle,

or node, that proceeds another node connected with a red arrow indicates the rela-

5optimal in the sense of minimizing the information loss of a model; in other words, minimiz-

ing the distance between the true probabilistic distribution and its estimate
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Figure 1.3: Illustration of probabilistic space containing rvs U

Figure 1.4: Illustration of probabilistic space containing rvs U and O

tionship between rvs Ui, i ∈ I and Ui+1. Similarly, a node that proceeds another

node connected with a blue arrow indicates the relationship between rvs U and O.

In this case the node at the arrowhead of the connection is a rv O and U the node

at the tail.
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Chapter 2

Acoustic Modeling

This chapter provides substantial background in support of this dissertation. Stochas-

tic modeling of the speech process is fundamental to the speech recognition prob-

lem. This chapter describes stochastic modeling of the speech process in terms of

both generative, Equation 1.3, and discriminative, Equation 1.4 methodologies.

Through information theoretic concepts, expressions are devised that can be used

to analyze the effectiveness of stochastic models to model the speech process.

Hidden variable stochastic models are introduced, namely the hidden Markov

model, that consist of modeling speech in terms of directly observable variables,

O, and latent, hidden, variables, U . Using the concepts and expressions presented

near the beginning of this chapter, the capability of the hidden variable topology

to represent the speech process is evaluated. In doing so, an objective function is

developed that serves as a main motivation for this thesis.

Parameter training of these hidden variable models with the common expec-

tation maximization, EM, is also detailed prior to introducing the stochastic mod-

eling problem as a discriminative learning problem. Here, several discriminative

based methods are described including Bayesian based techniques and methods

that attempt to determine optimal decision boundaries that distinguish between

distinct patterns, or classes of speech.

Together, the fundamental models presented, the concepts introduced and the

objective function formulated provide the background and insight for the models

formulated in this thesis.

The speech process is characteristically highly non stationary in nature. In

order to effectively model this signal, the signal is transformed to a piecewise
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short term spectral representation, the parameterization of speech as described in

Figure 1.2, such that each sample, i, of the n observations, O(n), can be classified

as stationary.

Subsequently, each observation sample, i, forms the observation vector,

O(n) = [O1,O2,O3, . . . ,On]
T (2.1)

using column vector notation. Each sample, Oi, as well, is a multivariate so it

consists of m coefficients accumulated while parameterizing the speech signal1.

As such each likewise component, j, of each sample, i, can be grouped together

to form vectors,

Z(n)
j

= [O1 j,O2 j,Oi j, . . . ,On j]
T (2.2)

j ∈ {1 . . .m}

Insight into the relationship between the signals’ observation measurements can

be gained from expressing the parameterized signal in this form. Here, each Z
(n)
j is

a vector of random variables that represents successive measurements for a single

parameter, or dimension, of the signal.

When evaluating the relationship between distributions, elements of informa-

tion theoretic[22] concepts can provide a useful framework to assess the stochastic

traits and interconnections. Just as the inner product of two vectors portrays the

projection of one to another, or in other words, determines the minimum dis-

tance, the information theoretic concept of mutual information, the Kullback-

Leibler, KL, distance between joint and independent distributions, I(), measures

the similarity between probabilistic distributions. The former satisfies the Cauchy-

Schwartz inequality, the later does not. Thus,

KL(p(a)p(b) ‖ p(a,b)) = (2.3)

I(a,b) = −
∫∫

p(a,b) ln

(

p(a)p(b)

p(a,b)

)

dadb

is a measure of similarity between rvs a and b with distributions P(a) and P(b)

respectively and a joint space of P(a,b).

As such, in examining each measurement, of Z
(n)
j , as a rv, and using the con-

cept of mutual information to analyze the relationship between each and every rv,

1In other words, Oi ∈ Rm.
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i, of Z(n)
j

, Equation 2.3 can subsequently be rewritten as2,

I(Z ji,Zlk) = −
∫∫

p(Z ji,Zlk) ln

(

p(Z ji)p(Z
lk)

p(Z ji,Zlk)

)

dZ jidZ
lk (2.4)

∀ j

i,k ∈ {1 . . .n}
l ∈ {1 . . .m}

In assessing the measure of similarity between distributions, the resultant KL dis-

tances derived from the above equation are,

I(Z ji,Zlk) =







0 , if p
(

Z ji,Zlk

)

= p(Z ji)p(Z
lk)

> 0 , if p
(

Z ji,Zlk

)

6= p(Z ji)p(Z
lk)

H(Z ji) , if i == k and j == l

(2.5)

where, H(Z ji) is the entropy of Z ji. Evident from the relational results of Equation 2.5

is the degree of correlation between two distributions. A non zero result repre-

sents the degree of correlation within the two. Implied from Equation 2.5 is the

self similar information, indicative of degree of similarity of a distribution when

it is compared with itself, that serves as the upper bound. The lower bound of

this expression represents the independence of two distributions that results from

the orthogonality of the distance measure when KL = 0. Equation 2.5 may be

rewritten in an alternative form such as,

I(·, ·) =











H1,1 I1,2 · · · I1,n

I1,2 H2,2 · · · I2,n
...

...
. . .

...

I1,n I2,n · · · Hn,n











(2.6)

I(·, ·) = I(Z ji,Zlk),

j == l,

∀i,∀ j,∀k

2Given Z(n)
j

, the ith element of the column vector is Z j i, thus the mutual information between

each i over all j is I(Z
j i,Zl k), j, l ∈ {1 . . .m}, i,k ∈ {1 . . .n}.
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and,

I(·, ·)≃ 0 (2.7)

I(·, ·) = I(Z ji,Zlk),

j 6= l,

⇐⇒ P(Z ji) ⊥ P(Z
lk),

∀i,∀ j,∀k

that lends itself to further interpretation. The above nxn matrix indicates that

the maximum measure occurs on the diagonal and subsequently the off-diagonal

elements decrease the measure the further from the diagonal. The zero case, for

this non-negative measure occurs when the distributions contain no interconnected

information and are thus statistically independent.

Extending the basic relation of this distance measure to the context of acous-

tic modeling, one can state that given the observation vectors, Equation 2.2, each

component represents a measurement of the speech signal taken at successive in-

stances in time and that the correlation between these measurements can be inter-

preted with the KL divergence. Furthermore, with respect to this time series, any

given model, in order to represent the true characteristics of the signal, must take

into account Equation 2.6 and Equation 2.7 to accurately model the signal. This

infers that each self similar measurement maximizes the distance, Z·,· = H(Z·,·),
and the correlation of each successive measurement thereafter is proportional to

the mutual information, and hence decreases over time. Moreover, in order for the

relation of Equation 2.7 to hold, the parameterization of the speech signal should

be such that each realization is independent within each speech frame. If each

parameter within a measurement is not independent an effective acoustic model

should encode this mutual information to prevent information loss.

2.1 Hidden variable acoustic models

The inference of words or sub word units such as phonemes[53] from the speech

signal can be modeled as a sequential process that, in the discrete case, is geo-

metrically distributed. Given this characteristic, the inference process possesses

a Markovian property that in turn implies that the future state of the system is

only dependent on the immediate past. In other words, the state, U , of the system,

at time, t + 1, is dependent on what is currently transpiring, t, and is condition-

ally independent from all past events for all time instances T < t. Formally, this
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Figure 2.1: 1st order Markov chain stochastic graph

construct forms a Markov chain consisting of h states,

U1 −→U2 −→U3 . . .−→Uh (2.8)

The above equation describes a first order left to right topology that is depicted in

Figure 2.1. Inherent within this structure is the conditional independence that ex-

ists between nonconnected states. This can be visualized graphically3 with nodes

of the graph representing each state of the Markov chain and edges reflecting the

stochastic conditional relationship that flows from left to right. In essence, a node

that succeeds another node that shares no common edge is conditionally indepen-

dent to that other node. This visual relationship can be expressed in terms of the

relation, U(.) ⊥⊥U(.) |U(.), as in the case of U3
4,

P(U1,U2,U3) = P(U3|U2)P(U2|U1)P(U1) (2.9)

⇐⇒ P(U3 ⊥⊥U1 |U2)

Under this premise, the inference of words, sub word units, W , is modeled as a

sequential process, more specifically a Markov chain. This inference with respect

to the observations process, O(n), forms a hidden Markov model, HMM[58][8]. In

this manner, W , is a hidden variable inferred from the directly observable, O(n).

Hence, the term hidden variable model. As such, Equation 1.2, P(W |O,θ), is sat-

isfied by its generative equivalent, the likelihood of Equation 1.3, ≈ P(O |W,θ),
and it is represented by Figure 2.2, where W ∈ {U1,U2, . . . ,Uh}. The obser-

vation distribution, P(O), is, under this construct, now factorized over multi-

3note: Stochastic topologies may be depicted graphically in this dissertation; Its purpose is to

describe, visually, the relationships inherent between rvs within a given topology. Each stochastic

relationship between rvs can equivalently be expressed in terms of compound probabilities[30]
4recall that P(c|ab) = P(a,b,c)

P(a,b)
= P(a|b,c)P(c|b)P(b)

P(a|b)P(b)
= P(c|b) i f f P(c ⊥⊥ a |b), this is likewise the

case with rvs Ui.
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Figure 2.2: Hidden Markov model with hidden variable U and observations

O

ple stages, U (h); Ui ∈ {U1,U2, . . . ,Uh}, or states, furthermore this implies that

P(Oi ⊥⊥ O j |Ui), j 6= i over all time steps or stages i and j where i, j ∈ I , and

P(Oi ⊥⊥U j |Ui), j 6= i, ∀i j. The resultant general form for the joint distribution,

given O(n) and U (n) is,

P(U (n),O(n)) = P(On O(n−1)U (n)) (2.10)

= ψ(n)

= P(On|O(n−1)U (n))P(O(n−1)|U (n))P(U (n))

= P(On|O(n−1)UnU (n−1))P(O(n−1)|UnU (n−1))P(Un|U (n−1))P(U (n−1))

= P(On|Un)P(O(n−1)|U (n−1))P(Un|U (n−1))P(U (n−1))

= P(On|Un)P(Un|Un−1)P(On−1 O(n−2)U (n−1))

= P(On|Un)P(Un|Un−1)ψ(n−1)

= π0

n

∏
n=2

P(Un|Un−1)
n

∏
n=1

P(On|Un)

The left most product factor of the final expression, represents the transitional

probabilities, the probability of the state of the system in Un given that it is in

Un−1. Similarly π0 represents the steady-state initial state probabilities and the

final product factor, is indicative of the emission probabilities, or rather the prob-
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ability of a given state Un generating observation On.

Assessing hidden variable model capabilities

The techniques described and developed earlier in the chapter are useful in as-

sessing the “goodness of fit”, or appropriateness, of HMM acoustic models ap-

plied to the problem of speech recognition. Information loss may result from an

acoustic model that cannot properly encode the sequential, or transient, aspect

of the speech signal. The sequential element, in this instance, arrives from the

successive measurements taken with respect to time. The correlation, or KL di-

vergence between these measurements, O(n), and further defined as, Z
(n)
j , that is

represented by Equation 2.6, is a measure that can be used to assess the capabil-

ity of the model to capture transient information within the signal. The HMM is

inherently sequential due to the underlying Markov chain that represents the infer-

ence of words through a succession of states. This structure can be represented by

mutual information for multiple rvs through the chain rule[22] as is evident from

the following relation. As in Figure 2.1, consider three rvs that form a Markov

chain, Ui, Ui+1 and Ui+2 respectively, Ui −→Ui+1 −→Ui+2,

I (UiUi+1Ui+2) (2.11)

= I (UiUi+2) + I (UiUi+1|Ui+2)

= I (UiUi+1) + I (UiUi+2|Ui+1)

⇐⇒ Ui+2 ⊥⊥Ui |Ui+1

=⇒ I (UiUi+1) ≥ I (UiUi+2)

The inequality of Equation 2.11 describing the mutual information for all rvs that

form a Markov chain satisfies the relation derived for the KL divergence for suc-

cessive measurements of a time series. This relation is inferred from the mutual

information of the chain which states that the measure decreases with each suc-

cessive measurement. This is true of the upper triangle off-diagonal elements of

Equation 2.6. Thus the hidden variable chain underlying the HMM is capable of

encoding the transient relationship within the speech signal.

The HMM model factorizes the true observation distribution over multiple

stages. Each factorized observation distribution is linked through the hidden vari-

able process. The ability of this model to represent the true observation distri-

bution, P(O(n)) ≃ ψ(n), of Equation 2.10 can be analyzed through relationships
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derived from the mutual information between the observations, O, and hidden

states, U , over n. Using the relationship demonstrated in Equation 2.11, it can be

reasoned that for Om, On, and Un,

I(Om ,Un ,On), m < n (2.12)

= I(Om ,On) + I(Om ,Un|On)

= I(Om ,Un) + I(Om ,On|Un)

=⇒ I(Om ,Un) ≥ I(Om ,On)

This infers that the hidden states of the HMM can capture and represent the infor-

mation contained in Om, m < n, ∀m and so ψ(n−m) is capable of representing the

observation distribution, or factorized content for the successive stage n−m +1.

This becomes further evident when expressing Equation 2.12, with m = n−1, as

a vector of rvs,

I(O(n−1), U (n)) ≥ I(On,O
(n−1)) (2.13)

Similarly,

I(On, U (n)) ≥ I(On,O
(n−1)) (2.14)

Furthermore, the equivalence of the HMM process, ψ(n) to P(O(n)) can be ex-

pressed in terms of the entropy of the system through the following reasoning:

Since, the entropy of a vector of, n, independent and identically distributed,

iid, rvs is defined as5,

H(X (n)) =
n

∑
i=1

H(Xi |Xi−1, . . . , X1)

where, i, is the ith element of the column vector. This may be expressed in terms

5[22]
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of a vector of rvs that represent the observation process such as,

H(O(n)) =
n

∑
i=1

H(Oi |Oi−1, . . . , O1) (2.15)

=
n−1

∑
i=1

H(Oi |Oi−1, . . . , O1) + H(On |O(n−1))

= H(O(n−1)) + H(On |O(n−1))

By definition, the mutual information between two rvs, X and Y is6,

I(X ,Y ) = H(X)−H(X |Y )

As such, using the above definition of mutual information expressed in terms of

entropy, together with Equation 2.15, Equation 2.14 may be written as,

I(On, U (n)) ≥ I(On,O
(n−1)) (2.16)

=⇒ H(On) − H(On |U (n)) ≥ H(O(n−1)) − H(O(n−1) |On)

=⇒ H(O(n)) ≥ H(O(n−1)) + H(On |U (n))

⊢ H(On |O(n−1)) ≥ H(On |Un)

The significance of the relation of Equation 2.16 is in that it demonstrates that

the HMM topology can represent the true observation distribution given sufficient

hidden states and accurate generative, emission distributions. Moreover, the ex-

pression on the right of the final inequality, H(On |Un)
7, represents the expected

value of the log likelihood of the emission probability. Thus the maximum like-

lihood of ψ(n) can potentially fully represent the inference of words from the

speech process without loss.

Parameter training

The HMM model is established, with relations Equation 2.16 and Equation 2.11,

to be capable of modeling the speech process effectively given that the topology

consists of an adequate number of states and accurate emission probabilities. The

parameters for this generative model are determined efficiently through an iter-

6[22]
7In other words, the expected value of the log of the ML estimator.
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ative process that is the weighted ML, or expectation maximization[28], EM, of

ψ(n) of Equation 2.10 with h states,

EM(θ) = argmax ∑
h

ln(π)ξ + ∑
n

∑
n

∑
h

ln(A)ξ + ∑
n

∑
n

∑
h

ln(B)γ (2.17)

where, A and B are matrix expressions of the transitional and emission probabili-

ties respectively and γ and ξ are the posteriors of P(Un |O(n)) and P(UnUn−1 |O(n))
respectively. The latter two parameters can be expressed, through Bayesian infer-

ence, as,

γ =
P(O(n)Un)

P(O(n))
=

P(O(m)Un)P(O(n−m) |Un)

P(O(n))
(2.18)

ξ =
P(O(n)UnUn−1)

P(O(n))
=

P(O(m) O(n−m)UnUn−1)

P(O(n))
,

n,m ∈ I , m < n

where, the denominators for both variables may be taken as a normalization factor.

The numerator term in the right most expression for γ may further be expressed

as, γ =
α(Un)β (Un)

P(O(n))
, in terms of two recursive elements, α(Un), β (Un), where,

α(Un) = P(Om O(m−1)Un) (2.19)

= P(O(m−1) |OmUn)P(Om |Un)P(Un)

= P(O(m−1)Un)P(Om |Un)

= P(Om |Un) ∑
n−1

P(O(m−1)Un−1Un)

= P(Om |Un) ∑
n−1

P(Un |O(m−1)Un−1)P(Om−1 O(m−2)Un−1)

= P(Om |Un) ∑
n−1

P(Un |Un−1)α(Un−1)
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and,

β (Un) = P(O(n−m)Un) (2.20)

= P(On−m O(n−m+1) |Un)

= P(On−m |Un) ∑
n+1

P(O(n−m+1) |UnUn+1)P(Un+1 |Un)

= P(On−m |Un) ∑
n+1

P(Un+1 |Un)β (Un+1)

Furthermore, the second of the two parameters of the weighted ML, ξ , can be

expressed in terms of α and β to complete the models’ parameter learning process

as in,

ξ = P(Un O(m) O(n−m)Un−1) (2.21)

= P(Om O(m−1) O(n−m)UnUn−1)

= P(Om |Un)P(O(m−1) |Un−1)P(O(n−m) |Un)P(Un |Un−1)P(Un−1)

= P(Om |Un)P(Un |Un−1)P(O(m−1)Un−1)P(O(n−m) |Un)

= P(Om |Un)P(Un |Un−1)α(Un−1)β (Un)

2.2 Discriminative acoustic models

Discriminative techniques can be applied to the acoustic model problem in many

differing manners. As described in Equation 1.4, x∗ = minx f (xi,xj 6=i), discrimi-

native techniques can be used to determine the posterior, Equation 1.2, P(W |O,θ),
by optimizing, or differentiating between all possible classes, x. In other words,

given a set of models, Θ = {θ1,θ2, . . . ,θn}, find the model,θi, that the word is

associated with in relation to all other models, θ j, j 6= i, j ∈ {1 . . .n}.

The optimal differentiation between classes of data can be conducted using

both Bayesian inference techniques and through optimizing the distance between

classes. One such example of the Bayesian approach includes expressing the pos-

terior as

P(θ |O) =
P(O |θi)

∑ j P(O |θ j)P(θ j)
(2.22)

Which can easily be shown to be equivalent to Bayes’ rule[35] applied to the
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term on the left with the term on the right written in terms of marginals. Here,

the posterior is expressed in a generative form. Specifically this is in terms of a

given model, θi, generating the observation. Another Bayesian method that can be

used to optimally discriminate between classes is to determine the minimum KL

divergence between a given model generating an observation and all other classes,

KL
(

P(O |θi) ‖ ∑ j P(O |θ j)P(θ j)
)

.

Optimizing the distance, or minimizing the distance between classes to deter-

mine the posterior can be performed using a variety of techniques. These models,

in contrast to the Bayesian methods, are non generative models. A basic quadratic

form of this method is determining the cross sectional plane at the minimum of a

surface. As in,

x∗ = min
x

1

2
xTAx + xTb (2.23)

The solution to this form of quadratic programming problem is a linear solution of

the form Ax + b, where x, b ∈ Rm and A is a matrix with, m, columns a ∈ Rm.

Logit regression is another common form for minimizing the distance between

classes. With a set of observations, O = {O1,O2, . . . ,On}, and vectors x : x ∈ O

representing input samples belonging to a given class. Here, the ever familiar

regression expression, together with coefficient matrices A with m columns, a ∈
Rn, weights, W : w ∈ Rm,

x∗ =
(

ATWTWA
)−1

ATWTWb (2.24)

and outputs b : b ∈ Rm, can be used to determine the optimal distance.

Typically, these techniques model the speech process with acoustic models

that discriminate between classes of data. In other words, they classify words

from the speech signal. The primary intent of these approaches is to reduce or

minimize the classification error rate in distinguishing one word from another.

Though minimizing the error results in effective classifiers, the resultant mod-

els may not fully describe a time varying signal. Earlier in this chapter it was

shown, Section 2.1, that a hidden variable topology is effective for acoustic mod-

eling. Through capturing the transient behavior of the speech signal within its

hidden states and expressing the observation distribution with ML estimators, this

stochastic representation is capable of modeling the speech process without loss.

As is described in Chapter 4, this dissertation presents a methodology that de-

scribes the speech process with discriminatively trained acoustic models. More
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formally, it poses the speech modeling problem as that of modeling ML estimators

with discriminative learning methods. It is shown that in segmenting the acoustic

space to one that lends itself to these discriminative methods and by modeling

ML estimators with large margin techniques, the resultant models maximize the

entropy of the observation distribution.

2.3 Findings and Summary

Problem :

To devise and develop effective stochastic models for modeling the speech pro-

cess.

Dissertation Contributions :

• Development of objective function relating true observation distribution to

an estimate in terms of the directly observable measurements and latent

hidden variables.

• Formulation and development of an optimal stochastic model for the speech

with noise problem. Proposal of a combination of recognizers that through

a simple system fusion, combines multiple speech processes at the decision

level. This is a novel stochastic method devised to combine a parameter-

ized spectral missing data, MD, theory based and a cepstral based speech

process using a coupled hidden variable topology. In using a fused coupled

hidden Markov model, HMM, topology, an optimal stochastic model is pro-

posed that is inherently more robust than single process models under noisy

conditions.

• A novel analysis and comparison of the capabilities of coupled hidden vari-

able topologies to model the speech process.

• Through the maximization of the devised objective function, Equation 2.16,

it is shown that the resultant optimal combined acoustic space contains

greater information content of the true observation distribution. Thus is

capable of improved recognition accuracies.
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• Segmentation of the speech acoustic space in a manner that can represent the

speech process effectively and can be modeled with discriminative learning

methods.

• Devising an optimal discriminant ML estimator to model the speech obser-

vation distribution.

The main focus of this thesis is to devise and develop effective stochastic prob-

abilistic models for speech recognition. This chapter described stochastic model-

ing of the speech process. Within it the hidden variable topology was described

and fundamental discriminative learning concepts were introduced. The capabil-

ity of a hidden variable topology to model the speech process was analyzed. A

significant objective function, Equation 2.16, was devised as a result of this anal-

ysis.

This expression, Equation 2.16, describes the observation distribution of the

speech process, P(O), in terms of directly observable observations and latent hid-

den variables, O and U respectively. Its expresses the entropy of the true observa-

tion speech process in terms of n random variables, rvs O, the term on the left of

this inequality,

H(On |O(n−1)) ≥ H(On |Un)

and its estimate in terms of hidden variable topology rvs O and U . This describes

the true speech observation at time, n, On given its previous n-1 realizations,

O(n−1), in relation to its estimate at time, n, or the ML estimator. In maximizing

the objective function on the right of this inequality, the observation distribution

can be represented by the ML estimator without loss. Put another way, just as the

entropy of a rv, that takes on a specific number of states each with a given prob-

ability, can be defined to be the minimum number of bits necessary to recover a

message. Here the term on the right of the inequality can represent the capabil-

ity of the ML estimator to represent the observation distribution. As the entropy

of this term increases, its information content that represents the observation dis-

tribution increases. As it approaches its upper limit, the amount of information

loss decreases. Thus in maximizing the objective function, the hidden variable

topology is capable of encoding the observation distribution of the speech process

without loss.

The fundamental models presented, the concepts introduced and the objective

function formulated provide the basis for the models formulated in this thesis.

Specifically, acoustic models devised to effectively model the speech process. Ef-
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fective models are devised for both, the speech with noise problem through com-

bining classifiers and for discriminatively trained acoustic models. The models

formulated and developed in this thesis apply the objective function of Equation 2.16

to increase the information content of the speech process in the resultant models.

Therefore, the models experience increased recognition accuracy performance for

speech recognition.

1. speech in noise: Using the concepts introduced in this chapter, Chapter 3

proposes an effective stochastic acoustic model for the speech with noise

problem. Here, through increasing the information content of acoustic mod-

els by combining classifiers and exploiting complementarity[15] informa-

tion, effective stochastic models can be formulated. Using an optimal8 cou-

pled hidden variable topology, two streams of parameterized speech signals

are fused at the decision level. This approach together with missing data,

MD, techniques can provide acoustic models that have improved robust-

ness under both stationary and non stationary noise conditions without any

apriori knowledge of the noise disturbance. It is shown that the fusion of

classifiers strengthens the structure of the acoustic model by satisfying the

objective function devised in this chapter, and that it enhances the inference

of words under noisy conditions.

2. optimal ML estimators: Chapter 4 proposes a methodology for discrimina-

tively trained acoustic models. Whereas the proposed model of Chapter 3

maximizes the devised objective function, Equation 2.16, and thereby in-

creases the acoustic content with a coupled topology. Here, an estimator

is devised using large margin discriminative classification techniques that

optimize this objective function. It is shown that the resultant models are

not only capable of minimizing the information loss, but also maximize the

entropy of the observation distribution.

8optimal in the sense of minimizing the error between the true observation distribution of the

speech process and its estimate.
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Chapter 3

Speech with Noise: Combination of

Recognizers
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Book I

Combination of Recognizers
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Figure 3.1: Speech with additive noise

Speech with noise is an open research problem. This chapter develops and

demonstrates a methodology proposal to enhance speech recognition under ad-

verse conditions. As was described in the previous chapters, this entails mapping

the speech recognition problem to that of a stochastic time series problem with an

input signal, Ô. In this case, Ô is a combination of a clean signal, O, with additive

noise, n. Through the use of missing data, MD, techniques[20] the time series

problem becomes that of deciphering an incomplete input signal. These tech-

niques exploit the inherent redundancy of speech[60] to achieve robust speech

recognition even under non stationary noise conditions. Combining classifiers

can provide a method to improve the probabilistic acoustic content accuracy of

acoustic models. This approach together with MD techniques can provide acous-

tic models that have improved robustness under both stationary and non stationary

noise conditions. Under this premise, the methodology proposes a combination of

recognizers that fuses two streams of parameterized speech signals at the decision

level to both, strengthen the structure of the acoustic model, as in Equation 2.16,

and to enhance the inference of words from, Ô, Equation 1.1. Specifically, a fused

coupled time series model that forms an optimal acoustic model to model the

speech process. Furthermore, this combination of classifiers method addresses a

known problem common to typical MD methods[20][13][37][42][59] as it pro-

vides an effective method to incorporate cepstral features in the MD process.

3.1 Speech with Noise

The speech with noise problem, can be described as, Ô(t) = O(t)+n(t), Figure 3.1.

As was implied in the introduction, the past few decades have seen great advances

in speech recognition under adverse conditions. Techniques such as cepstral mean

normalization[1] and RASTA[40] have been successfully applied to improve the

robustness of speech recognition under some noise conditions. Cepstral mean nor-

malization, CMN, for instance, subtracts the mean of the signal so as to remove

the glottal effect[53] on the input signal, thus, with an input, O(n), where, n, are
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the number of samples.

Ô(n) = O(n) − 1

n

n

∑
i=1

Oi, Ô
(n) ≡ o : o ∈ O = {Ô1, Ô2, . . .Ôn} (3.1)

The demonstrated improvements, though, are usually limited to predictable

and controlled environments. Moreover, the benefits of such methods are gen-

erally witnessed when the underlying noise condition can be classified as sta-

tionary. These accommodating conditions, unfortunately, are often not present.

To enhance speech recognition under these non stationary noise conditions, ap-

proaches have been developed that may be viewed to be either signal processing

front end based, or model based approaches. The former generally consists of

processing the input signal, Ô, to suppress, n, or to heighten the signal attributes

of O. Such examples include noise masking[46] and blind deconvolution[66] ap-

proaches. The latter of the two, the model based approaches, adapt the clean

speech, O, stochastic model of the recognizer, Equation 2.10, P
(

U (n),O(n)
)

, to

be a model of Ô.

One such example of the model based approaches is the HMM decomposition[71]

method. In this method an adapted model is forged by combining the clean speech,

O, model with a stochastic model of, n. In terms of ψ of Equation 2.10, where,

ψ = P
(

U (n) O(n)
)

the resultant joint space can be defined to be ψd . Let the joint

space of these two combined models, (1) and (2), that are combined using an op-

erator, ⊗, be ψd(n−m,q− r). The following relation expresses this in terms of

model the clean speech model, (O), at time step, or stage, n−m and the noise

model, (n) in some stage q− r. Its resultant joint space in this case is,

ψd(n−m,q− r) = ψ(O)(n−m) ⊗ ψ(n)(q− r) (3.2)

∵ log(Ô) = log(O + n) ≈ max(O,n), O ⊥ n,

ψO(n−m) ⊗ ψn(q− r) =

P(Un−m |Un−m−1)P(Uq−r |Uq−r−1)
[

ψn−m−1 P(Oq−r |Uq−r) + ψq−r−1 P(Om−n |Um−n)
]

where, ψn−m−1 and ψq−r−1 are the marginals. The expression for the combined,

Ô probabilistic space, Equation 3.2 is based on the log(Ô) max operator on the

joint expression function, f (O,n), the second line of the expression. The loga-
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rithmic representation describes the separation of f (.) and hence the model based

decomposition of Ô. Due to the combined joint distribution space of both speech

and noise, this technique is effective for robust speech recognition under both

stationary and nonstationary noise conditions. It is hindered, though, by its as-

sumption of log based, or spectral parameterization representation of the speech

signal. On the other hand, another model based compensation method, the Par-

allel Model Combination[33], PMC, method, does not require this assumption.

This model adapts the parameters of the acoustic models to represent the distri-

bution of Ô = O + n, or in other words, the joint distribution of f (O,n). Should

the parameters of the model be based on non spectral parameterizations of the

signal, each model is transformed to the log spectral domain. Like the HMM de-

composition method, PMC models the speech acoustic space with hidden vari-

able stochastic models. The emission densities, or generative ML estimators,

P(O(n) |U (n),θi), ∀i , i ∈ I , i ∈ {1 . . .h}, in terms of the model, θ , of state i of

h can be expressed as a normal (Gaussian) distribution. Such a distribution is de-

fined by its first two moments, the mean µ and the variance σ 2. The multivariate

form of these emission densities can take the form of,

P(O(n) |U (n),θi) = N(O(n) |µ(n)
θi

;Σ
(n)
θi

) (3.3)

where Σ is the covariance. The PMC model adaptation method determines the

speech noise distribution parameters for each, i of h. In this case the compos-

ite signal is composed of clean speech, O, and noise, n, thus PMC models a

combination of models, (1), and (2), for clean speech and noise respectively.

More specifically, for each acoustic model that represents the signal,Ô, namely,

N(O
(n)
(1)

|µ(n)
θi

;Σ
(n)
θi

) and N(O
(n)
(2)

|µ(n)
θ j

;Σ
(n)
θ j

), ∀i, j, the PMC method determines from

the statistics of the underlying model distribution the parameters for the combined

joint space. The emission ML estimators, typically, due to the nature of speech and

its inherent variability, as well as due to the multimodal distribution requirement

of modeling n, are represented by a sum of Gaussians, or rather a k mixture distri-

bution. The sum of Gaussians in this sense is with regard to the frequency domain

and not the time domain. As such each observation distribution, Equation 3.3, for
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each corresponding model can be expressed as,

P(O(n) |U (n),θi) =
k

∑
l=1

πl θi
N(O(n) |µ(n)

l θi
;Σ

(n)
l θi

) (3.4)

k

∑
l=1

πl = 1

where, πl,θ is the lth mixture weight for model, θ . Thus the PMC method de-

vises a method to infer the model parameters for the joint space of f (O, n),

P(Ô(n) |U (n),θi) = ∑k
l=1 πl θi

N(Ô(n) |µ(n)
l θi

;Σ
(n)
l θi

) from those of P(O(n) |U (n),θi)

and P(n(n) |U (n),θ j). Though both of the model based compensation methods are

effective for noise robust speech recognition for both stationary and nonstationary

adverse conditions, they require, due to the determination of the joint space of

f (O, n) in the log spectral domain, apriori knowledge of, n, the potential inter-

fering noise source.

In contrast to the described model based methods, the MD approach to ro-

bust speech recognition is not reliant on apriori knowledge of the underlying

acoustic conditions. Thus it is a promising method for achieving noise resilient

speech recognition. The foundations of MD theory Automatic Speech Recogni-

tion, ASR, are based on the premise that recognition should only be conducted

with the speech bearing components of the signal, Or, where Or ∈ Ô −N and

Ô = {Ô1, Ô2, . . . , Ôn}, N = {n1,n2, . . . ,nn}. As such, in this speech recognition

process, a speech signal that is composed of both speech and noise, Ô = f (O,n),
is segregated prior to the pattern recognition and inference of words from the sig-

nal stage. The potential of MD ASR can be inferred from the near perfect recogni-

tion accuracies that have been reported when the signal is properly segregated[4].

The subsequent subsections of this chapter introduce the promising MD the-

ory ASR methods. Each base realization of MD theory is presented and described

from the proposed segregation techniques to the manner that each realization de-

codes the speech speech signal. The case for the use of cepstral based features

with the MD framework is subsequently made. This leads to the proposed combi-

nation of classifiers, or combination of recognizers methodology to achieve noise

robust speech recognition with MD theory.
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3.2 Missing Data Theory

The missing data approach to speech recognition advocates that robust ASR can

be achieved by using only the speech bearing components of a composite signal

that consists of both speech and noise. Referring to Figure 3.1 this segregation of

the signal may be represented in terms of, n, parameterized samples as in,

Ô(n) = f (O,n)(n) : O ∈ O , n ∈ N , (3.5)

O
(n)
r : Or ∈ Ô − N ,

O
(n)
u : Ou ∈ Ô ∩ N ,

Ô = {Ô1, Ô2, . . . , Ôn}, O = {O1,O2, . . . ,On}, N = {n1,n2, . . . ,nn}

where Ô = f (O,n) represents the composite signal with Or and Ou the speech and

noise bearing components of the signal respectively. How is it possible to perform

pattern matching and infer words from the resultant, Or, incomplete signal repre-

sentation? This has been explained through the understanding that a speech signal

is highly redundant[60]. This very redundancy forms the main idea behind MD

ASR. The theory itself is derived from how humans are believed to perceive and

process speech[12]. The human auditory system, under this premise, segments or

groups auditory signals based on the originating auditory source to form distinct

auditory objects. Thus, an auditory signal that is a mixture of speech and noise,

f (O,n), is segregated into separate auditory streams with speech perception and

understanding conducted using solely the speech, Or, auditory object. The resul-

tant segregation of the signal leaves gaps in the speech signal where, Ô ∩ N ,

and thus the noise has completely occluded the original speech signal, implying

that the clean speech signal component cannot be recovered, or Oi 6= Ôi and that

Ôi ∈ N . This incomplete speech signal is accommodated by the human audi-

tory system by utilizing the inherent redundancy of the speech signal in a process

known as the continuity illusion. This very process forms the basis of MD the-

ory and from this premise the theory constructs a framework to mimic the human

auditory system.

The segregation of an auditory signal into speech, or rather reliable compo-

nents, Or, and noise unreliable components, Ou, for the purpose of MD ASR

can be conducted in many different manners[14][27]. The more sophisticated

manner, and the one that holds the most promise, is based on computational audi-

tory scene analysis, CASA, techniques[73][62]. Here, the process follows that of
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Figure 3.2: CASA groupings with spectral representation of the utterance

“oh oh 5 9”; regions marked from left to right: frequency proximity,

harmonicity, and onset times

what some consider analogous to image scene analysis techniques[52] whereby

primitive groupings are formed with the aid of auditory cues such as frequency

proximity, spatial location and harmonics. Such a grouping may be formed by

examining the frequency location and the continuity of the signal from a time fre-

quency representation of the auditory signal as depicted in Figure 3.2. Another

method commonly employed in MD ASR is the segregation of auditory signals

through signal processing techniques. Such methods decompose the signal into

Or and Ou through estimating the noise content in the signal. One such method is

the decomposition based on a noise floor estimate derived from the signal. With

the use of such an estimate, all signal components that possess energy content

greater than those of the estimate,
∣

∣Ô( f )
∣

∣

2
> |n( f )|2 can be deemed to be reliable

while those below are classified as unreliable.

The log spectral representation is commonly used in MD theory ASR due to

its effectiveness for segregating the auditory signal. Its suitability is especially ev-

ident for CASA techniques as implied from Figure 3.2. The resultant segregation

of an auditory signal takes form in an MD mask[14]. In the log spectral domain,

this mask typically takes a binary form, as in Figure 3.3c, with frequency bands

that are isolated as noise assigned one value and bands that are deemed to be reli-

able the other. This mask in relation to the log spectrum of an utterance is depicted

in 3.3a and 3.3b. Of particular note is the application of so called soft MD masks

to the MD ASR problem that has sometimes led to greater recognition accuracies

than those of their binary counterparts[4]. In this case each frequency coefficient

within a spectrum representation is assigned a probabilistic value corresponding
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(a) Spectral representation of the utterance “oh oh 5 9”

(b) Spectrum overlayed with binary missing data mask (shadowed)

(c) Binary missing data mask

Figure 3.3: Spectral utterance and binary MD mask
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to the degree of confidence that each band is speech.

3.3 Missing Data Theory: Pattern Recognition

MD theory predominately presents pattern recognition, or the inference of words,

W , from a speech signal, O, as in P(W |O,θ) with hidden variable stochastic mod-

els, θ . More specifically, each emission distribution of the recognizers’ acoustic

models is a Gaussian density that generally takes the form of Equation 3.4 and

thus constitutes continuous density, or CDHMMs.

MD pattern recognition through data imputation applies MD techniques for

speech with noise decomposition though, in this case, infers speech from a recon-

structed signal such that as in Equation 1.1, argmaxW P(W | f (Or,Ôu)). Here,

Ôu is an estimate of the speech signal where Ôi ∈ N . This reconstructed signal

can then be used with any standard ASR. This implies compatibility with cepstral

based speech recognizers and well established speech enhancement techniques

that can be used with that standard feature. A common realization of data imputa-

tion can be forged in the following manner. Given the joint density for the model,

θ of the hidden state, i,

p(Ô(n) |U (n) θi) = p(O
(n)
u O

(n)
r |U (n) θi) (3.6)

= p(O
(n)
u |U (n) O

(n)
r θi) p(O

(n)
r |U (n)θi)

since, this emission density is typically modeled as a Gaussian mixture, in case

this with, l, such mixtures and weights, π ,

p(O(n) |U (n) θi) =
k

∑
l=1

πl θi
N(O(n) |µ(n)

l θi
;Σ

(n)
l θi

) (3.7)

then, Equation 3.6, may be expressed as,

p(O
(n)
u |U (n) O

(n)
r θi) =

p(O
(n)
u O

(n)
r |U (n) θi)

∑k
l=1 πl θi

N(O
(n)
r |µ(n)

r l θi
;Σ

(n)
r l θi

)
(3.8)
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where the numerator of Equation 3.8 can be expressed as,

p(O
(n)
u O

(n)
r |U (n) θi) = p(O

(n)
u |U (n) θi) p(O

(n)
r |U (n) θi) (3.9)

⇐⇒ p(O
(n)
u O

(n)
r |U (n) θi) = N(O |µ, Σ); Σ = Iσ 2

so the expected value of Ou, or rather its estimate, Ôu, is

Ô
(n)
u =

∑k
l=1 πl θi

N(O
(n)
r |µ(n)

r l θi
;Σ

(n)
r l θi

)µul θi

∑k
l=1 πl θi

N(O
(n)
r |µ(n)

r l θi
;Σ

(n)
r l θi

)
(3.10)

which renders use of the mean, µul θi
as the estimate of every component of

Ô ∈ N . This relation is true given that Σ = Iσ 2 can hold as a parameter of

the emission distribution.

MD pattern recognition through, marginalization, is another method that can

be used to infer words from speech. This approach, in contrast to data imputation,

does not attempt to recover a clean signal from Ô, but rather conducts inference on

an incomplete representation, Ô − n. Such a method is in line with how humans

are believed to perceive and process speech; recognition based upon an incomplete

signal representation. Like data imputation, the MD process by marginalization,

segregates the signal prior to pattern recognition, though unlike the imputation

process, it modifies the acoustic models to be representative of only the speech

bearing components of the signal. This can formulated in the case of acoustic

models formed with Gaussian mixture densities as follows. Given,

p(Ô(n) |U (n) θi) =
k

∑
l=1

πl θi
N(O(n) |µ(n)

l θi
, Σ

(n)
l θi

) (3.11)

where, p(Ô(n) |U (n) θi) may be expressed as,

p(O
(n)
u O

(n)
r |U (n) θi) = p(O

(n)
u |U (n) θi) p(O

(n)
r |U (n) θi) (3.12)

⇐⇒ p(O
(n)
u O

(n)
r |U (n) θi) = N(O |µ, Σ); Σ = Iσ 2
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Figure 3.4: MD data imputation pattern recognition

Figure 3.5: MD marginalization pattern recognition

Under this premise the acoustic density may be expressed as,

∫

p(Ô(n) |U (n) θi)dOu = p(O
(n)
r |U (n) θi)

∫

p(O
(n)
u |U (n) θi)dOu (3.13)

=
k

∑
l=1

πr l θi
N(O

(n)
r |µ(n)

r l θi
, Σ

(n)
r l θi

)

to account for only the reliable components of the signal. The expression of

Equation 3.13 formulates the marginal pattern recognition problem to that of a

marginalized Gaussian density CDHMM problem.

Pattern recognition with MD theory, in summary, primarily advocates the de-

composition or segregation of the speech noise mixture prior to inferring words

from the signal. In the case of data imputation, Figure 3.4, this involves deter-

mining estimates for elements of the signal that are deemed to be corrupt. The

marginalization approach, on the other hand, as is depicted in Figure 3.5, con-

ducts inference on elements of a segregated signal that are deemed to have origi-

nated from the speech auditory source. It is with this approach that the benefit of

robust ASR with MD techniques is advocated. This pattern recognition method

is associated with greater recognition accuracies[60][20] than those of some data

imputation methods. This implies that a promising inference method may be pur-

sued by applying the method that humans are believed to perceive and process
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speech.

3.4 Missing Data Theory: The Case for Cepstral

Features

Parameterization of speech, as depicted in Figure 1.2, for MD theory based ASR

commonly takes the form of a spectral representation through processing the sig-

nal through a bank of filters. These resultant parameterized speech feature vec-

tors permit the identification and isolation of reliable speech components, Or,

from the signal speech noise mixture, Ô. Though the parameterized bandpass

representation is suitable for speech noise decomposition, it does not lend well

to typical HMM based ASR. This can be attributed to the ML estimators of

Equation 2.16, P(O|U), that generally take the form of Gaussian densities, ∼
∑k

l=1 πl θi
N(O(n) |µ(n)

l θi
;Σ

(n)
l θi

), Σ = Iσ 2.

A common approach to the density estimation problem is to maximize the

likelihood of P(O(n) |θi) over all, n, observations, O to determine the parameters

of the underlying model, θi : i ∈ {1 . . .h}. Furthermore, given that the estimated

density is ∼ N(µ; Σ), Σ = Iσ 2 implies that for,

O(n) = [O1,O2,O3, . . . ,On]
T

a vector of M multivariates due to parameterization, rewritten in terms of the M

column vectors, j, each consisting of a dimension, n,

Z
(n)
j = [O1 j,O2 j,O3 j, . . . ,On j]

T

as in Equation 2.2, the KL divergence, or,

I(Z jiZlk) = 0

the mutual information between parameterized coefficient in each speech frame is

zero and thus independent in accordance with the first condition of Equation 2.5,

I
(

Z jiZlk

)

. This condition is frequently assumed to hold for much of pattern

recognition with MD. Unfortunately, the information content captured in each

frequency band tends to not be independent across frames. This is true of most

parameterized time varying signals and therefor the condition seldom truly holds.

Whereas acoustic models forged from spectral parameterized representations may
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incur loss of information due to such an assumption, cepstral based features have

the potential to provide statistically independent dimensions. In this case, since

each frame is derived from, ∼ DCT−1
(

logDCT(O(n))
)

, the spectrum of the log

spectrum, it ensures that each coefficient within the frame is independent with

respect to each other, thus satisfying the relation of Equation 2.7, I (·, ·). This at-

tribute of cepstral based features has prompted wide use of the feature for HMM

based ASR. Though cepstral features are well suited for ASR, they do not lend

themselves well for segregating the signal due to its feature vector representation.

During the cepstral transformation process, corrupted components of the signal,

Ou, are smeared globally as a result of DCT−1. Direct application of MD tech-

niques in this case, where regions of uncertainty have been isolated and masked,

results in pattern recognition with an estimation of Or that is severely degraded.

The recognition performance from this resultant signal is inferior to that of recog-

nition with Ô itself. The identification of localized uncertainties within a speech

frame is crucial in MD theory and so the very characteristic that allows MFCC

features to be well suited for HMM based ASR hinders their adoption in MD

techniques.

The attractiveness of cepstral based features has spurred many efforts to see

their use within the MD framework. The majority of these efforts have addressed

the use of such features with acoustic models consisting of Gaussian mixture emis-

sion densities. This can be expressed in terms of, k mixtures for a given hidden

state model, θi : i ∈ {1, . . . ,h} as,

k

∑
l=1

πl θi
N(O(n) |µ(n)

l θi
;Σ

(N)
l θi

)

which is equivalent to the quadratic[29],

(

O(n) − µ
(n)
l θi

)T
WT W

(

O(n) − µ
(n)
l θi

)

, WT W = Σ−1, (3.14)

O(n) : Oi ∈ R
m, W : w ∈ R

m

for each mixture, l, of the density. The cepstral distance weight method[42], for

instance, formulates the use of cepstral features with MD problem as an optimiza-

tion problem in line with that of the Equation 2.23, 1
2
xT Ax + xT b. In this case,

the distance to be minimized is between that of O and Ô, and not between classes

as discussed in Section 2.2. Here this is equivalent an approximation of the maxi-

44



mum likelihood of Equation 2.16, H (On |Un). As such given,

Ô(t) = O(t) + n(t),

the MD pattern recognition marginalized acoustic model with mask weights, M,

expressed in terms of Equation 3.14,

(

Ô(n) − µ
(n)
l θi

)T
MT WT WM

(

Ô(n) − µ
(n)
l θi

)

, WT W = Σ−1, (3.15)

M : m ∈ R
m, Σ−1 : σ ∈ R

m

the linear transformation of Ô to the cepstral domain with a the cepstral transfor-

mation matrix, C,

y = CÔ, (3.16)

and Equation 3.15 expressed in terms of the cepstral domain,

(

Ô(n) − µ
(n)
l θi

)T
CMT CT WT WCMCT

(

Ô(n) − µ
(n)
l θi

)

, WT W = Σ−1, (3.17)

C : c ∈ R
n M : m ∈ R

m, Σ−1 : σ ∈ R
m

the maximum likelihood of O can be approximated as,

O(n) ≈ min
Ô

1

2

(

Ô(n) − µ
(n)
l θi

)T
CMT CT WT WCMCT

(

Ô(n) − µ
(n)
l θi

)

+ b,

(3.18)

b ∈ R
m

With this method, as expressed in Equation 3.18, the marginalization MD pattern

recognition process is realized with a cepstral parameterization representation by

applying the MD mask in the log spectral domain prior to inference in the cep-

stral domain. The application of the mask and the marginalization process in the

spectral domain is, in this method, considered to form cepstral distance weights in

the cepstral domain. These weights are expected to decompose the signal, in other

words, determine O from the speech mixture of Ô. Though the ML approximation

of Equation 3.18 was determined to be successful for ASR with localized noise

adverse conditions, the performance of the method for other cases was reported

as disappointing.
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There have also been proposals to see cepstral features used within the MD

data imputation pattern recognition process. Of particular note is the state im-

putation method[36] that infers clean speech from corrupted regions within the

cepstral parameterized representation by establishing bounds on the energy of the

signal. More specifically, given the emission density of Equation 3.14, with ob-

servations, Ô, and the cepstral transformation, Equation 3.16, together with,

log(Ô) = log(O + n) ≈ max(O,n), O ⊥ n, (3.19)

n ≤ Ô,

the emission density rewritten in terms of the individual signal components, Or

and Ou,

(

CO
(n)
r + CO

(n)
u − µ

(n)
l θi

)T
WT W

(

CO
(n)
r + CO

(n)
u − µ

(n)
l θi

)

, (3.20)

and taken into account, Ô − O = Ou, then

O(N) ≈
(

CO
(N)
u

)T
WT W

(

C Ô(N) − µ
(N)
l θi

)

(3.21)

formulates a least squares problem to infer O from Ô. The approximation of

Equation 3.19 is stated to improve recognition accuracies over both those of MD

marginalization and data imputation pattern recognition processes. Unfortunately,

the method was found to be feasible only for static features and was ill suited for

dynamic cepstral features such as velocity and acceleration. Feature reconstruc-

tion methods as [59] first segregate the speech signal into reliable and unreliable

components in the spectral domain. Aposterior distributions are then used to de-

termine clean speech estimates for the corrupted coefficients in the signal Ô. The

use of MD techniques with standard recognizers is stated to be amongst the ben-

efits of these maximum aposterior, MAP, methods. These techniques, though,

generally did not achieve the same level of recognition accuracies as that of the

MD marginalization method.

Posing the MD cepstral domain pattern recognition problem as that of mod-

eling interacting stochastic processes has many advantages. Amongst those is an

acoustic model that provides a richer characterization of the speech process. This

implies an acoustic model that lessens the loss of the speech signal’s information

content as is discussed in Chapter 2. In other words, modeling the problem as that

of a combining spectral and cepstral parameterized representations of the signal
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at the pattern recognition, or decision level, stage, results in a joint space that in-

creases the speech content, or rather, the entropy of the system in accordance with

Equation 2.16, H
(

On|O(n−1)
)

.

3.5 Modeling Interacting Processes

Acoustic models that model interacting processes can use any one of a number

of topologies. As a first attempt, a model of these, g, interrelated processes may

be forged by considering the Cartesian product of each process. Such a model

is formed with a parameterized representation, X (n) = [X1,X2,X3, ...,Xn]
T . Each

element of this column vector, Xi, is a multivariate of degree m = ∑
g
i=1 Mi, where

Mi are the number of parameterized components of each process i of g. The

nature of the correlation between each Mi from each observation measurement

should be considered with this form since any variation between the multiple

processes could be reflected in the resultant acoustic model as noise[11]. More-

over, the resulting Cartesian product feature space may suffer from the curse of

dimensionality[9]. These problems may be avoided by properly smoothing the

feature space. One such approach that can be considered is to reduce the cor-

relations found between the interacting processes to a set of linear combinations

that approximate the relationship between each process. These combinations can

be realized by finding the projection, P, of the product space that minimizes the

distance between the relationship between processes and those of the measure-

ments. The solution to this problem may be formulated as that of Equation 2.24

such that1,

x∗ =
(

AT A
)−1

AT b (3.22)

= Pb,

A : a ∈ R
n, b ∈ R

n, P : p ∈ R
m

1Recall that the coefficient matrix, A, represents the coefficients of X (n) = [X1,X2,X3, . . . ,Xn]
T
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where, P may be obtained through the spectral theorem. Therefore, this projection

can be rewritten in terms of orthogonal matrices, U and V so,

P = A−1 (3.23)

A = UΣVT ,

UT U = I, VT V = I,

U : u ∈ R
n, Σ : σ ∈ R

m, U : u ∈ R
m

where, Σ = Iσ and σ =
√

λ . Though this method can be effective to reduce the

feature space, its effectiveness to determine independent dimensions relies upon

sufficient samples to make available the underlying correlations in the processes.

Furthermore, removing the variations that potentially exist within each parame-

terized sample can incur loss of information that may prevent effective modeling

the of speech process. This may become evident with resultant acoustic mod-

els that are difficult to train, suffer from overfitting and have reduced recognition

accuracies.

Through decision level modeling the interacting processes are combined within

the model. As opposed to altering the feature space to approximate the rela-

tionship between multiple processes, decision level modeling infers the intercon-

nected attributes of all process within the modeling stage. Given this technique,

models prescribing to this methodology may not be subject to feature dimensional

issues and can be demonstrated to effectively capture the speech process within

the resultant acoustic models. The potential effectiveness of such models can be

inferred from the development of acoustic models as described in Chapter 2 from

which it can be reasoned that stochastic time series can capture the speech pro-

cess without loss. Furthermore, the use of decision level modeling in the form of

stochastic coupled time series is capable of supporting both the MD marginaliza-

tion pattern recognition method of Section 3.3 and standard cepstral HMM ASR.

Such coupled time series may be realized in any number of topologies based on

the connections made between each process. The subject of the proceeding sec-

tion is to examine the capability of each such topology to model the combined

process. This novel analysis, using the statistical analysis methods established in

Chapter 2, may reveal an appropriate coupled acoustic model to capture both the

MD and cepstral ASR processes.
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3.6 Coupled Stochastic Time Series

The modeling of multiple stochastic processes can be realized in a coupled time

series topology. The resultant model infers the statistical dependencies between

multiple time series with interconnections that exhibit these dependencies and are

captured within the marginal probabilities of the model. In other words, given the

standard HMM topology of Chapter 2 with observations, O, and hidden states, U

and initial state probabilities, π0,

P(U (n),O(n)) = P(On O(n−1)U (n))

= ψ(n)

= π0

n

∏
n=2

P(Un|Un−1)
n

∏
n=1

P(On|Un),

depicted in Figure 3.6, the statistical dependencies should be realized through

each factorized stage, n, and captured in the resultant joint space, ψ(n). This can

be achieved through careful connections made between each of the, g, processes,

or time series in Figure 3.7. The coupled models[11][6][63][47], that are formed

through connections either between hidden states, observations or both, attempt

to describe the combined processes. The potential for such a combined model to

represent the statistical attributes for all processes can be examined through ana-

lyzing the mutual information relationship between observations, O, and hidden

states, U for a given factor stage, n.

One such combined coupled model is the coupled HMM model[11]. This time

series topology, Figure 3.8, models the dependencies between multiple, g, HMM

chains with cross transitional connections in an effort to capture the temporal, or

transient, qualities between the multiple stochastic processes. Thus connections

are made between the hidden states of one model with hidden states from the

previous stage of the other time series. In other words, for a given, U , node of the

model representing stage, m, the following relationship holds for time series (1),
in terms of the (g) time series,

P(U
(n−m)
(1) |U (n−m−1)

(1) U
(n−m−1)
(2) ,U

(n−m−1)
(3) , . . . U

(n−m−1)
(g) ) (3.24)

or in general for any given time series, h, and node, m, within the combined model
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Figure 3.6: HMM topology

(1) 

(2) 

(g) 

Figure 3.7: Multiple, g, stochastic time series
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(1) 

(2) 

Figure 3.8: Coupled HMM

representing all (g) time series2,

P(Um(h)
|Um−o( f )

), (3.25)

∀h, f , h, f ∈ I , 1 . . . g, ∀o, o ∈ I , 1 . . . m−1

Um−o(.)
∈ {Um−o(1)

, . . . Um−o(g)
}

The capability of this model to capture the temporal characteristics of the com-

bined stochastic process can be analyzed by, for simplicity, considering the cou-

pling of two time series. Through the use of the information theoretic concept of

mutual information, the relationship between the nodes of the model for a given

2
∵ for example as in Equation 3.24, P(U

(n−m−1)
(1)

) = P(Un−m−1(1)
U

(n−m−2)
(1)

)

= P(Un−m−1(1)
Un−m−2(1)

,U
(n−m−3)
(1) ), etc.
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factor stage m may be represented in the form of the chain3,

Um(1)
−→Um−1(2)

−→Um(2)
(3.26)

The hidden states of model (1) and (2) in this stage can be written in terms of

Equation 2.11 as,

I
(

Um(1)
Um−1(2)

Um(2)

)

(3.27)

= I
(

Um(1)
Um−1(2)

)

+ I
(

Um(1)
Um(2)

|Um−1(2)

)

= I
(

Um(1)
Um(2)

)

+ I
(

Um(1)
Um−1(2)

|Um(2)

)

=⇒ I
(

Um(1)
Um−1(2)

)

≥ I
(

Um(1)
Um(2)

)

Furthermore,

I
(

Um−1(1)
Um(2)

)

≥ I
(

Um(1)
Um(2)

)

(3.28)

Equation 3.27 together with Equation 3.28 imply that the cross connections, Um−1(2)
−→Um(1)

and Um−1(1)
−→Um(2)

respectively contain greater or at least an equal amount of

the temporal information than that of the hidden variables Um(1)
and Um(2)

com-

bined. Therefore, should the expression of Equation 3.26 hold, the transient be-

havior of all stochastic processes can be captured by the resultant joint space of

this topology.

More elaborate HMM topologies, such as that of the mixed memory[63] HMM,

Figure 3.9, and its variants, strengthen the coupling between the multiple chains

by linking together not only the hidden variables, but those of the observations as

well. More specifically, to further enhance the model, at each given stage of the

model, connections are made between the hidden variables of one time series to

the observations of the others. In other words, for a given, O, node of the model

3
∵ P(Um(2)

⊥⊥Um(1)
|Um−1(2)

) or,

P
(

Um(1)
Um−1(2)

Um(2)

)

=

P
(

Um−1(2)

)

P
(

Um(1)
|Um−1(2)

)

P
(

Um(2)
|Um(1)

)

≡

P
(

Um(1)

)

P
(

Um−1(2)
|Um(1)

)

P
(

Um(2)
|Um−1(2)

)

,

which is by definition, Um(1)
−→Um−1(2)

−→Um(2)
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(1) 

(2) 

Figure 3.9: Mixed memory HMM

representing stage, m, each node is represented as,

P(Om(h)
|Uo( f )

), (3.29)

∀h, f , h, f ∈ I , 1 . . . g, ∀o, o ∈ I , 1 . . . m

Um(.)
∈ [Um(1)

, . . . Um(g)
]

in addition to satisfying Equation 3.25 for each node U . Modeling interacting

stochastic processes in this manner is capable of describing complex interdepen-

dent systems. The interconnections between hidden variables and observations
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can be described in terms of the KL divergence as,

I
(

Om(1)
Um(2)

Om(2)

)

(3.30)

= I
(

Om(1)
Om(2)

)

+ I
(

Om(1)
Um(2)

|Om(2)

)

= I
(

Om(1)
Um(2)

)

+ I
(

Om(1)
Om(2)

|Um(2)

)

=⇒ I
(

Om(1)
Um(2)

)

≥ I
(

Om(1)
Om(2)

)

Similarly,

I
(

Om(2)
Um(1)

)

≥ I
(

Om(1)
Om(2)

)

(3.31)

Which implies, that the joint space of Ω =
{

O(1), O(2), . . . ,O(g)

}

can be cap-

tured within the connections between the hidden variables and observations for

each stage of the model. Thus Equation 3.27, Equation 3.28, Equation 3.30 and

Equation 3.31 indicate that a model such as the mixed memory HMM, can within

its topology, encode both the transient and the factorized observation space of all

stochastic processes within it without loss of information. Direct inference of this

model, though, unfortunately cannot be realized due to the number of required

parameters which in most cases makes it computationally intractable.

The fused HMM model[55] on the other hand attempts to describe a coupled

HMM topology that possesses the characteristics of the prior two models, but with

optimized connections between each time series. As proposed in [55], the model

forms connections in accordance with minimizing the KL divergence between

the combined joint space of all processes, (g), P
(

O(1), O(2), . . . , O(g)

)

and its

estimate, P
(

Ô(1), Ô(2), . . . , Ô(g)

)

. Therefore,

KL
(

p
(

O(1), O(2), . . . , O(g)

)

‖ p
(

Ô(1), Ô(2), . . . , Ô(g)

))

= (3.32)

−
∫

. . .

∫

p
(

O(1), O(2), . . . , O(g)

)

ln

(

p
(

Ô(1), Ô(2), . . . , Ô(g)

)

p
(

O(1), O(2), . . . , O(g)

)

)

dO(1)dO(2) . . .dO(g)

Rewritten in terms of I
(

O(1), O(2), . . . , O(g)

)

and I
(

Ô(1), Ô(2), . . . , Ô(g)

)

it can be
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shown that this distance is equivalent to,

KL
(

p
(

O(1), O(2), . . . , O(g)

)

‖ p
(

Ô(1), Ô(2), . . . , Ô(g)

))

= (3.33)

I
(

O(1), O(2), . . . , O(g)

)

− I
(

Ô(1), Ô(2), . . . , Ô(g)

)

Thus, so as to minimize this distance, the second term of Equation 3.33 must be

maximized.

The optimal connections between time series of the topology Figure 3.7 can

be readily seen, from Equation 3.30 and Equation 3.31, for two such time series,

and can be further extended to the factorization of the observation and hidden state

space over n as,

I
(

O
(n)
(1)Un(2)

)

≥ I
(

O
(n)
(1) O

(n)
(2)

)

(3.34)

and,

I
(

O
(n)
(2)Un(1)

)

≥ I
(

O
(n)
(1) O

(n)
(2)

)

(3.35)

Therefore, the optimal coupled HMM for the observation space P(O) is found

through minimizing the KL distance and takes the form of Figure 3.10. Furthermore,

the transient, or temporal, behavior of all stochastic models are captured within

this construct. Just as the coupled HMM model, Equation 3.25, is forged with

cross connections between U , and is shown to capture this aspect of the time se-

ries within Equation 3.27 and Equation 3.28, the fused HMM can also be reasoned

to possess this capability. In this case, connections between stochastic processes

in the form of time series are made, for a given stage, m, between the observable

variable of one and hidden state of all other time series. This relationship can be
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Figure 3.10: Fused HMM

described as,

I
(

f (O)m−1(1)
Um−1(2)

Um(2)

)

(3.36)

= I
(

Um−1(1)
Um−1(2)

Um(2)

)

= I
(

Um−1(1)
Um−1(2)

)

+ I
(

Um−1(1)
Um(2)

|Um−1(2)

)

= I
(

Um−1(1)Um(2)

)

+ I
(

Um−1(1)
Um−1(2)

|Um(2)

)

=⇒ I
(

Um−1(1)
Um−1(2)

)

≥ I
(

Um−1(1)
Um(2)

)

I
(

Om−1(1)
, Um−1(2)

)

≥ I
(

f (O)m−1(1)
, Um−1(2)

)

so,

=⇒ I
(

Om−1(1)
Um−1(2)

)

≥ I
(

Um−1(1)
Um(2)

)

Equation 3.36 implies that the temporal information of the stochastic processes

that is propagated from one time series to another in, Um−1(1)
−→Um(2)

, is, with
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connections between the observation and hidden variables, capable of containing

at least this within, Um−1(1)
−→Um−1(2)

. This can also be true of the cross connec-

tion, Um−1(2)
−→Um(1)

. Moreover, a coupled HMM topology with connections in

each stage of the model, m, between those of the observations of one with the hid-

den states of all others, renders the expression Equation 3.26 not necessarily true.

Therefore, in this case, the final expressions of Equation 3.27 and Equation 3.28

may not hold. Thus the cross connection links within this coupled topology may

add unnecessary complexities to the resultant joint model. Both in terms of form-

ing the joint space and in inferring the temporal statistical dependencies within

the stochastic processes. Within the fused topology, as implied in Equation 3.36,

the temporal dependencies may be encoded within the model without loss.

The fused HMM model is capable of representing the factorized observa-

tion space of multiple stochastic processes. In addition to accurately represent-

ing the joint space of the processes, the topology also accommodates encoding

the transient properties of the time series making it appropriate, as it satisfies

Equation 2.11 and subsequently Equation 2.5, to model the speech process. This

model lends itself to pose the MD cepstral domain pattern recognition problem

as that of modeling interacting stochastic processes. Within this combination of

spectral based MD and cepstral based stochastic processes the proceeding subsec-

tion describes the resultant model as one that is capable of providing an effective

robust ASR pattern recognition method.

3.7 Combination of Recognizers

Presented within this section is an approach to strengthen, or rather enhance, ro-

bust speech recognition through combining classifiers. This encompasses the use

of both, MD techniques with marginalization, for the separation of the speech

noise signal,Ô and thereafter pattern recognition with Or, and cepstral based ASR

techniques. Existing methods attempt to incorporate cepstral based features into

the MD theory by first transforming the cepstral stochastic process into the spec-

tral domain for speech noise decomposition and then subsequently perform pat-

tern recognition in the cepstral domain. As opposed to those conventional meth-

ods, the cepstral MD ASR problem is proposed as that of combining, or fusing,

interacting processes. Under this pretense, separate auditory stochastic processes

are combined to enhance the representation of the originating auditory signal.

Decision level modeling provides the opportunity to combine both spectral and

cepstral parameterized signals at the pattern recognition stage. Furthermore, the
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Figure 3.11: Combination of recognizers pattern recognition

decision level modeling of coupled stochastic time series lends itself to combining

MD marginalization pattern recognition with cepstral HMM classification. This

combination of recognizers serves to combine ASR with MD theory with cepstral

based parameterizations. Implied within its construct is a combined model that

utilizes both speech noise separation, pattern recognition with Or and the bene-

fits of cepstral based features. Central to the premise of the combined model is

noise robust ASR without apriori knowledge of n under both stationary and non

stationary noise conditions.

The general architecture of the combined model is that of Figure 3.11. This

combination of recognizers model performs speech recognition with two separate

auditory streams of the same originating auditory source. The first, Ô
(n)
(s)

, is the

spectral, (s), parameterized signal that forms the top stream of Figure 3.11. The

second, or bottom stream of the figure, is, Ô
(n)
(c)

, a cepstral, (c), based representa-

tion of the signal Ô. The spectral stream, Ô
(n)
(s)

, is segregated or rather the signal

is decomposed to satisfy Equation 3.5 with the resultant O
(n)
r and O

(n)
u formulated

through the use of the MD mask of Section 3.2. The second of the two auditory

streams, Ô
(n)
(c)

, can be further processed with any standard cepstral based noise

compensation scheme such as Equation 3.1 or used as is during inference with the

combined model.

The pattern recognition stage of this combination of recognizers, uses both

O
(n)
r and O

(n)
(c)

in inferring words from the combined joint space, Ω = {O(s) O(c)}.
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Figure 3.12: Combination of recognizers acoustic model

This fused decision level model is in the form of a coupled stochastic time series

fused HMM that is depicted in Figure 3.12. The fused model not only serves to

provide simple decision level combination, or rather fusion, but also optimally

represents the joint sample space of, Ω = {O(s) O(c)}. Optimal in the sense of

minimizing the distance, or error, between the true probabilistic space and its

estimate.

The effectiveness of the combined acoustic model to capture the speech pro-

cess can be implied from the relations derived for the fused HMM model, Equation 3.34

and Equation 3.35. From these two expressions it can be easily shown that,

H
(

O
(n)
(1)

|O(n)
(2)

)

≥ H
(

O
(n)
(1)

|U (n)
(2)

)

(3.37)

similarly,

H
(

O
(n)
(1)

|O(n)
(2)

)

≥ H
(

O
(n)
(2)

|U (n)
(1)

)

(3.38)

that follows that of Equation 2.16, a significant expression of Chapter 2. Thus the
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expectation of the log likelihood of the observations within this acoustic model,

or rather, the ML, can capture and represent the speech process, O. Furthermore,

the statistical dependencies within the stochastic processes are inferred directly

within the topology of this model.

The training of this combined model follows that of standard hidden variable

models as described in Section 2.1. The inference of words from the combined

model can be described in terms of its joint space. The combined model is a hid-

den variable stochastic model that within it models two time varying time series.

As such, as is described in Section 2.1, the joint space of the hidden variable topol-

ogy, P(U,O), can be expressed in terms of the product of the probabilities of each

node, or stage, of the model. With a model of one stage, this joint space would

be P(U,O) = P(U)P(O |U). In general for a given stage, m, the joint expres-

sion, as is described in Equation 2.10 of Section 2.1, can be expressed in terms of

ψ (m). Similarly, the joint space of two series, (1) and (2), that is represented by

the fused topology of Figure 3.10, can be described as P
(

O(1),O(2),U(1),U(2)

)

4.

With the joint space of two stochastic time series,

P
(

O
(n)
(1)

O
(n)
(2)

U
(n)
(1)

U
(n)
(2)

)

= ψ(n) (3.39)

Define υ as the marginal [30] for a given stage, m of n so that,

υ(m) = ∑
ψ(i) i6= m

ψ(m) (3.40)

The probability of a given stage, m, can then be expressed in terms of this υ as in,

P
(

Om(1)
Om(2)

Um(1)
Um(2)

)

=
m

∏
i=2

υ(i)
n

∏
i=m+1

υ(i) (3.41)

Similar to how the marginals for each stage were defined in terms of υ , Equation 3.40,

let φ be defined as the maximum value of U and O for a given stage, m, as in,

φ(m) = max
OU,∀ψ(i) i 6=m

ψ(m) (3.42)

4Using the calculus of statistical inference. Of course, as skeptics we may adopt a frequencist

view. Though, as in [23], it can be shown that even with this skeptical view the axioms of proba-

bility still hold. As such, the supporting background and models proposed in this dissertation are

presented in terms of statistical inference.
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As such, the maximum O and U over the joint space for all n stages can be written

as,

ln
(

(P
(

O
(n)
(1)

O
(n)
(2)

U
(n)
(1)

U
(n)
(2)

))

=
n

∑
i=2

ln(φ(i)) (3.43)

The inference of words from these models comes directly from determining

the best path through a network of fused HMMs. On an individual HMM ba-

sis, this is forged from determining the best path, or most likely nodes that have

generated the data. Using Equation 3.42, the maximum value or probability of a

given node to have generated the data is inferred. Similarly, the maximum over

the entire joint space for a given fused HMM model is expressed in Equation 3.43.

Together, these two expressions permit determining the most probable path with

each most probable node expressed in terms of the maximum values obtained for

joint space, Equation 3.43, and the corresponding n− 1, stages, that led to the

result of n.

Specifically, each i of n, can be within any of the h states of the model. The

intermediate,i, maximizations, maxOU , between any two consecutive i− 1 and i

that satisfy maxOU P
(

Oi(1)
Oi(2)

Ui(1)
Ui(2)

)

, dictate the state and best (maximal)

path. Thus ensuring a global maximized path[72] for the joint space.

The resultant combination of recognizers, COR, is capable of describing the

joint space of both spectral and cepstral based time series and in doing so, con-

ducts the inference of words from the combined joint space of cepstral and spec-

tral based acoustic models. The benefits of this inference process is twofold. The

first, is that the complementarity[15] information that may exist between the two

process is inherent within the model. The statistical dependencies between the

two time series are directly inferred within the pattern recognition stage due to the

topology. The second is the theoretical recognition potential of this joint space. As

is displayed in Table 3.1, the joint space of the model may provide robust speech

recognition that exceeds recognition performance over those of cepstral based and

MD theory ASR alone. This may be evident from considering that the signal, un-

der this pretense, is that of Figure 3.1, Ô(t) = O(t) + n(t), and the strength of the

inference, or P
(

W | Ôθ
)

which is ≈ P
(

Ô |W θ
)

in the Bayesian sense, depends

on how close Ô is to that of which the model, θ , represents, O. Under clean con-

ditions, the cepstral signal, Ô, is equivalent to the reliable components, Or of the

signal as defined in Equation 3.5. In Section 3.4 it was implied that typical HMM

based acoustic models, θ , forged from cepstral based features, O(c), are capable of
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Table 3.1: COR theoretical recognition capacities

ASR Configuration Capacity

Conventional, Clean, Ô

Spectral process, Ô(s), MD H
(

Ô(s)

)

= H
(

Or(s)

)

Cepstral process, Ô(c) H
(

Ô(c)

)

= H
(

Or(c)

)

H
(

Ô(c)

)

≥ H
(

Ô(s)

)

Fusion,COR, Ô = O + n

Cepstral+MD H
(

Ô(c) Or(s)

)

≥ H
(

Or(c)

)

modeling the speech process more effectively than those from spectral parameteri-

zations, O(s). Thus should the cepstral and spectral based models be derived in this

manner, then the cepstral based recognition performance, or the correct inference

from that of Equation 1.3, should be greater than that of the spectral model. In

other words, the second column of Table 3.1, for clean speech conditions, should

hold. Furthermore, under adverse noise conditions, the joint capacity of the fused

model to model the speech process should exceed that of the cepstral based model

alone. Capacity in the sense of a given model contains increased information or

true speech acoustic content. In other words, for speech recognition, it is more ca-

pable to decipher the signal. In this configuration, the acoustic space of the model

includes both cepstral and spectral based models. The spectral process, of the two

processes, performs pattern recognition with only Or of Ô as depicted in the top

portion of Figure 3.11. The cepstral process on the other hand, is more apt to cap-

ture the speech process and implies H
(

O(c)

)

≥ H
(

O(s)

)

. With the parameters of

the models, θ determined from clean speech, or Or, it can be reasoned that the

joint space, more specifically, the acoustic space of the COR, is more capable of

correct inference from Ô than the cepstral model alone. This behavior attributed

to the exploitation of complementarity information between the two processes that

is inherent within the topology of the COR acoustic space and is encompassed in

the final relation of the second column of Table 3.1.
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3.8 Findings and Summary

Problem :

To devise and develop effective stochastic models for modeling the speech pro-

cess.

Dissertation Contributions :

• Development of objective function relating true observation distribution to

an estimate in terms of the directly observable measurements and latent

hidden variables.

• Formulation and development of an optimal stochastic model for the speech

with noise problem. Proposal of a combination of recognizers that through

a simple system fusion, combines multiple speech processes at the decision

level. This is a novel stochastic method devised to combine a parameter-

ized spectral missing data, MD, theory based and a cepstral based speech

process using a coupled hidden variable topology. In using a fused coupled

hidden Markov model, HMM, topology, an optimal stochastic model is pro-

posed that is inherently more robust than single process models under noisy

conditions.

• A novel analysis and comparison of the capabilities of coupled hidden vari-

able topologies to model the speech process.

• Through the maximization of the devised objective function, Equation 2.16,

it is shown that the resultant optimal combined acoustic space contains

greater information content of the true observation distribution. Thus is

capable of improved recognition accuracies.

• Segmentation of the speech acoustic space in a manner that can represent the

speech process effectively and can be modeled with discriminative learning

methods.

• Devising an optimal discriminant ML estimator to model the speech obser-

vation distribution.

Combining classifiers can provide a method to improve the probabilistic acous-

tic content of acoustic models. As was detailed in Chapter 2, hidden variable

stochastic models are capable of modeling the speech process without loss. These
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concepts motivate this chapters’ proposed methodology on devising an effective

acoustic model for the speech with noise problem.

In modeling a combined parameterized spectral MD theory based and a cep-

stral based speech process at the decision level, the resultant acoustic model is

capable of robust speech recognition under noisy conditions. MD theory[20]

based automatic speech recognition, ASR, is suitable for noise robust speech

recognition since it has been demonstrated to be successful under both stationary

and non stationary noise conditions without any apriori knowledge of the noise

disturbance[4]. A known drawback to this method is the type of features that

is commonly used to represent the parameterized speech signal. Spectral based

features are typically used due to its ease of use with this method. For acous-

tic modeling though, spectral based features are not as suitable as cepstral based

features. Pattern recognition with MD techniques is commonly done with mul-

tivariate Gaussian mixture models, ∼ ∑k
l=1 πl θi

N(O(n) |µ(n)
l θi

;Σ
(n)
l θi

), where πl θi
is

the mixture weight of the k mixtures for model θ , O(n) a vector of n rvs that repre-

sent the speech process, and Σ the covariance of the normal distribution. As such,

they are commonly modeled with the assumption that, Σ = Iσ 2. In other words,

that the components within a parameterized sample are independent to each other

such that the mutual information,

I(Z jiZlk) = 0, j 6= l,

where Z ji and Z
lk are rvs that represent the ith and kth component in the jth and

lth dimensional space of the speech samples. The information content captured

in each frequency band of the spectral representation, though, tends to not be

independent across speech frames. Thus to effectively model the speech process,

alternate features such as cepstral based features have been proposed for noise

robust MD ASR.

As is detailed in Section 3.4 there have been many research efforts to use cep-

stral based features[42][59][36] with MD theory. Unlike these previous efforts.

the proposed methodology of Chapter 3 introduces these features into MD ASR

through a simple system fusion. This is a novel stochastic method that is devised

to combine a parameterized spectral MD and cepstral based speech process at the

decision level. Through modeling the speech processes with a coupled hidden

variable topology, an optimal stochastic model is formulated to increase the true

speech information content of the resultant model.

• The proposed acoustic model is optimal,
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As was described in Section 3.7 the proposed combination of recognizers

fuses multiple speech observation processes at the decision level. This is

realized with a fused coupled HMM model. Such a model may be ex-

pressed in terms of the Kullback-Leibler, KL, divergence (Equation 2.3)

between the true joint observation distribution and its estimate. Rewritten

from, Equation 3.32 of Section 3.6, this is,

KL
(

p
(

O(1), O(2), . . . , O(g)

)

‖ p
(

Ô(1), Ô(2), . . . , Ô(g)

))

, g ∈ I

where, O(i) is a rv that describes the observations of speech process (i) and

similarly, Ô(i) is a rv that describes an estimate of the processes. Since

this divergence distance measure satisfies Jensen’s inequality, it is a convex

function. Its minimum is a global minimum and it is therefore fully defined.

As is detailed in Section 3.6, the proposed acoustic model minimizes the

KL divergence between the true observation distribution and its estimate.

Thus it is the optimal model in this sense5.

• The proposed model is capable of effectively modeling multiple stochas-

tic processes,

The capability of hidden variable topologies to model multiple interacting

processes is analysed in Section 3.6. From this analysis it is shown that

both the transient or temporal characteristics of multiple observation pro-

cesses and its joint distribution can be encoded within the coupled fused

hidden variable topology. A comparison with other coupled hidden variable

topologies, namely the coupled HMM[11] and the mixed memory[63] mod-

els is made. It is shown that the fused HMM model is capable of encoding

multiple stochastic processes with fewer connections between the distinct

time series processes than the others.

The capability of the proposed acoustic model to encode the spectral and

cepstral parameterized speech processes is described in the following in-

equalities of Section 3.6,

I
(

O
(n)
(1)Un(2)

)

≥ I
(

O
(n)
(1) O

(n)
(2)

)

5proof:[22]
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and,

I
(

O
(n)
(2)

Un(1)

)

≥ I
(

O
(n)
(1)

O
(n)
(2)

)

where, O
(n)
(i) is a vector of n rvs that represent the observations of the stochas-

tic time series (i), U
(n)
(i)

the respective latent variables of the generative

topology and Un(i)
the latent variable at time, or stage n. Here, i, can be

considered to be (1) or (2) representing a spectral and a cepstral process re-

spectively or vice versa. The expressions on the left of the two inequalities

state that the mutual information, I(), between the observations of one pro-

cess and the latent variable at n of the other is greater than that between the

observations of both processes. As is described in Section 3.6, this implies

that the temporal aspect of both processes is encoded within the proposed

combined acoustic model.

Furthermore, it is shown that the statistical dependencies between the two

time series, (1) and (2), the spectral and cepstral processes respectively or

vice versa, are captured within the fused acoustic model. The two entropic,

H(), inequalities below,

H
(

O
(n)
(1) |O

(n)
(2)

)

≥ H
(

O
(n)
(1) |U

(n)
(2)

)

and,

H
(

O
(n)
(1) |O

(n)
(2)

)

≥ H
(

O
(n)
(2) |U

(n)
(1)

)

are devised from the objective function of Equation 2.16, and thus imply

that the maximum of the expected value of the log likelihood of the ob-

servations within this fused model, can represent the speech process. Thus

together, both sets of inequalities indicate that the proposed acoustic model

is capable of capturing and representing the speech process.

• The proposed model increases the accuracy, or information content of

the true speech process in the resultant models for the speech with noise

problem,

The proposed acoustic model is a simple system fusion of a marginalized

(Section 3.3) spectral MD observation process, O(s), and a cepstral based,

O(c), process at the pattern recognition level. This combined model can be
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reasoned to an effective speech with noise acoustic model since it contains

a greater amount of true speech information content than single process

models.

The speech and noise observation parameterized process, Ô, can be con-

sidered as composed of both clean speech, Or, and noise, Ou. Thus under

clean speech, no noise, recognition conditions, Ô = Or. The spectral based

MD process performs pattern recognition, Section 3.3, using solely Or of Ô.

Inference from Ô can therefore be expressed as inference from Ô = Or(s)
.

Inference from the cepstral based process, on the other hand, uses the entire

observation, Ô, or Ô(c).

As is described in, Section 3.4, spectral based speech representations are

not as effective as cepstral based parameterizations for acoustic modeling.

Thus the amount of true speech observation content contained in spectral

based models is less than cepstral based acoustic models. Let H(O), the

entropy, H(), of the true speech process, O, represent the minimum amount

of information content necessary to have been encoded in the acoustic mod-

els for inference without loss. The capacity, or the amount of true speech

acoustic content encoded in each of the spectral and cepstral models may be

expressed as, H(O(s)) and H(O(c)) respectively. Under this premise it im-

plies that the following is true, H(O) ≥ H(O(c)) ≥ H(O(s)). Which may be

rewritten in terms of observation process, Ô as, H(Ô(c)) ≥ H(Ô(s)). Thus,

under clean conditions cepstral based models, theoretically, can be expected

to experience greater recognition accuracies than spectral based models due

to their greater capacity.

Under noisy conditions it is shown that the proposed fused acoustic model

is capable of improved speech recognition accuracies. As the cepstral based

process conducts inference from the Ô(c) while the spectral on solely Ô =
Or(s)

. The joint model then, under noisy conditions, can be reasoned to con-

tain a greater amount of information content than that of a clean speech cep-

stral process, Or(c)
, and this may be expressed as, H

(

Ô(c) Or(s)

)

≥ H
(

Or(c)

)

,

Table 3.1. This relation is directly related to the combined acoustic model

inherently capturing and encoding the statistical dependencies between the

cepstral and spectral process.
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Book II

Experiments
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The appropriateness of the combination of recognizers, in this form, for ro-

bust speech recognition is determined from a series of experiments. The follow-

ing three sections describe these experiments. The immediately following section

describes the format of the experiments devised to validate the proposed method-

ology and to compare the behavior of the model to its theoretical potential. Exper-

iments and results under stationary noise conditions precedes a concluding section

containing experimental results of ASR with COR under non stationary noise con-

ditions.

3.9 Combination of Recognizers: Experiments

Setup

Experiments were conducted to evaluate the potential of the combination of rec-

ognizers approach to missing data automatic speech recognition. The Grid[18]

corpus was used for all experiments. The selection of this particular corpus was

due to the simple, phonetically balanced structure of its utterances and the appro-

priateness of the corpus for ASR under noisy conditions. This corpus contains

34000 utterances with each made up of 6 words in the order:

$verb=bin|lay|place|set

$color=blue|green|red|white

$prep=at|by|in|with

$letter=a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|x|y|z

$number=zero|one|two|three|four|five|six|seven|eight|nine

$coda=again|now|please|soon

($verb sp $color sp $prep sp $letter sp $number sp $coda)

Three sets of CDHMM Gaussian word level models were created with this vocab-

ulary of 51 words, each of which possessed diagonal covariance representations

using log spectral, cepstral and cepstral mean normalized features respectively.

Each of the corresponding word level HMMs was composed of two phonemes

per state in accordance to the mapping of words to phonemes defined in the CMU

dictionary6. The number of states per word and the dictionary used for training

purposes is listed in Table 3.2. In addition, each state of the word models consisted

of 32 mixtures per state in an effort to compensate for modeling the speech pro-

6www. speech. cs. cmu. edu/cgi-bin/cmudict
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Table 3.2: HMM States per Word in Experiments Recognizer Vocabulary

Number of States per Word Grid Dictionary Word

4 at, by, in a-v, x-z, one, two, three, eight

6 bin, lay, place, set, blue, green, read,

white, with, four, five, six, nine, now,

please, soon

8 again, zero

10 seven

cess with spectral based diagonal covariance Gaussian HMMs[60], Section 3.4.

The parameterized log spectral features, ratemaps, used in the experiments were

obtained from the signal processed through a bank of gammatone filters linearly

spaced from 50 to 3850Hz in ERB-rate[53]. The envelope of the output of each of

these gammatone filters was smoothed with an 8ms time constant and was sam-

pled at a frame rate of 10ms. The cepstral parameterization of the signal consisted

of 39 dimensions including energy, delta and acceleration coefficients. Both the

stationary noise experiments Section 3.10, and non stationary noise experiments

Section 3.11 used the configurations described above, though differed in the man-

ner the corpus was split for training and testing and is described in Table 3.3 and

Table 3.4. In the case of training the stationary noise experiment models, half of

the grid corpus was used, consisting of 500 unique sentence utterances generated

from 34 different speakers. As for the non stationary ASR experiments, again,

half of the corpus was used for training each of the three acoustic models, but in

this instance, the training set consisted of 1000 unique utterances from 17 differ-

ent speakers. All of these aforementioned acoustic models were constructed using

the HTK toolkit[77].

Using the acoustic models formed from the 3 different sets of features, speech

recognizers were set up to analyze the recognition performance of the spectral,

cepstral and the fused, combination of recognizer models. Four configurations

of the combination of recognizers models were constructed for these evaluations.

The first two, a fusion of a ratemap based model with and without MD and an

MFCC based model, the others the combination of ratemap with and without MD

and normalized, CMN, features. The MD mask used for the spectral stream of

features was a binary mask forged from a noise floor estimate extracted from the

first few frames of each test utterance. The test utterances used in the experiments

70



Table 3.3: Experiments Corpus Training Sets

Stationary Noise Experiments Non Stationary Noise Experiments

Utterances

per spkr

No. spkrs Utterances

per spkr

No. spkrs

500 34 1000 17

Table 3.4: Experiments Corpus Test Sets

Stationary Noise Experiments Non Stationary Noise Experiments

No. Utterances No. spkrs No. Utterances No. spkrs

300 34 560 17

came from a subset of the corpus that was not used in the training sets. Specifi-

cally, for the stationary noise experiments, 300 utterances were used that consisted

of sentences generated from 34 different speakers. For the non stationary exper-

iments, the size of the test set was 560. This set was composed of 40 utterances

generated from 14 different speakers. In this case the utterances from speakers

in the test set differed from those used in the training set. A total of 8 different

configurations of the recognizers, see below, were used in the experiments. All of

the aforementioned ASRs were constructed using a custom implementation of the

CTK toolkit[3].

i. spectral, ratemap features, rate32

ii. cepstral features, MFCC

iii. cepstral features with normalization, CMN

iv. ratemap using missing data techniques, MD

v. COR, MFCC+rate32

vi. COR, CMN+rate32
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vii. COR, MFCC+MD

viii. COR,CMN+MD

Several test sets were devised to ascertain the performance of the proposed fusion

of features with the combination of recognizers approach to MD theory ASR.

These test sets consisted of the test corpus subjected to adverse noise conditions

of varying SNRs. The stationary noise tests sets consisted of the test utterances

subject to stationary noise at 6dB and 0dB. These test sets were derived from

the test corpus prepared for the 2006 speech separation challenge[21]. As for

the non stationary noise experiments, two types of non stationary noise distur-

bances, from the Noisex[70] database, were added to the test corpus. The first, the

Destroyer Operations Room noise source, the second noise generated from the

Factory Noise I source. The latter was chosen as it was a good example of highly

non-stationary noise as it contains general machine hums with spontaneous ham-

mer blows. These noise perturbations were added to the test corpus, using the Fant

software tool7, to form three separate sets each representative of SNRs at 18dB,

12dB and 6dB.

3.10 Combination of Recognizers: Stationary Noise

Experiments

Outlined in this section are the results from experiments conducted to support the

methodology of the combination of recognizers, COR, for robust speech recogni-

tion under stationary noise conditions. The objective of this section is to demon-

strate that the premise in using the fusion of cepstral based and spectral based

stochastic processes at the decision level, or rather in modeling the joint space

of both processes, a method for robust speech recognition is satisfied. Using the

experimental setup described in Section 3.9, for stationary noise conditions, the

baseline, clean speech, recognition accuracies for recognizer configurations, i thru

iii and v thru vi of Section 3.9 are detailed in Table 3.5. The recognition accura-

cies listed in this table, and in all subsequent results, represent the percentage of

correct words recognized over each utterance in the test corpus. These baseline

results are indicative of each models’ ability to infer words from the test set un-

der no noise conditions. It may be inferred from these results that each model’s

capacity to model the speech process corresponds to its theoretical performance

7http://dnt.kr.hs-niederrhein.de/download.html
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Table 3.5: Stationary Noise: Baseline Recognizer Results, Clean Data

ASR Configuration Recognition Ac-

curacy %

Conventional

Spectral Features, rate32 96.6

MFCC Features 98.0

CMN 95.6

Fusion,Combination of Recognizers

MFCC+rate32 97.8

CMN+rate32 97.8

described with the relations of Table 3.1. Here, it is implied that the MFCC, or,

cepstral based model follows that of what was stated in Section 3.4 and is capable

of more accurately modeling the speech process than the spectral based models.

Hence, satisfying H
(

Ô(c)

)

≥ H
(

Ô(s)

)

, thus the results of this baseline are to be

expected. Furthermore, the fused, COR, baseline results indicate that, under clean

speech conditions, the model capacity is approximately the same if not greater

than the more capable of the two stochastic processes to model the signal. Thus

the characteristics of this joint space follows that H
(

Ô(c) Or(s)

)

≥ H
(

Or(c)

)

with

H
(

Ô(c)

)

= H
(

Or(c)

)

.

For the stationary test conditions, the recognition results were generated with

the recognizer in configurations ii thru iv and vii thru viii of Section 3.9 and test

sets respective of SNR 6dB and 0dB conditions. These results are reflected in

Table 3.6. The results of the fused model under stationary conditions indicate that

the combination of spectral based MD and cepstral based stochastic processes is

capable of providing an effective robust ASR pattern recognition method. Over

both test conditions, 6dB and 0dB, the COR method experiences greater recogni-

tion accuracies than those of the conventional MD and cepstral based ASR alone.

The joint space forged through this fusion of features at the decision layer appears

to provide an acoustic space that is better apt to capture and represent O and for the

inference of W from Ô. Moreover the results of Table 3.6 are in line with the ex-

pected behavior of the joint space, Table 3.1, namely, H
(

Ô(c) Or(s)

)

≥ H
(

Or(c)

)

.

In an effort to further analyze the behavior of the joint space acoustic model
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Table 3.6: Recognizer Results With Test Corpus + Stationary Noise

ASR Configuration Recognition Accuracy %

Conventional SNR

6dB

SNR

0dB

Spectral Features, MD 76.4 69.8

MFCC Features 78.2 64.9

CMN 69.4 62.1

Fusion,Combination of Recognizers

MFCC+MD 82.4 71.3

CMN+MD 82.7 72.2

Table 3.7: Stationary Noise 6dB SNR: Recognizer Configuration Rankings

Over Entire Test Set, Relative To All Experimented Configurations

ASR Configu-

ration

#utterances

Top Ranked

%Top

Ranked

#utterances

Bottom

Ranked

%Bottom

Ranked

Missing Data 90 30.0 57 19.0

COR,

MFCC+MD

180 60.0 17 5.67

COR,

CMN+MD

170 56.67 8 2.67

relative to those of MD spectral based models, the recognition accuracies gener-

ated by those recognizers for each utterance were ranked and compared in Table 3.7,

and Table 3.8. Implied from these ranking results is the capacity of the fused

model to represent the speech process more accurately than that of typical MD

theory models. Within the rankings, the top ranked category represents the to-

tal number of utterances, 300 in total, that a particular recognizer configuration

achieves the highest relative accuracy. Similarly, the number of bottom ranked

utterances indicates the number of utterances that a particular recognizer had the
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Table 3.8: Stationary Noise 0dB SNR: Recognizer Configuration Rankings

Over Entire Test Set, Relative To All Experimented Configurations

ASR Configu-

ration

#utterances

Top Ranked

%Top

Ranked

#utterances

Bottom

Ranked

%Bottom

Ranked

Missing Data 126 42.0 49 16.33

COR,

MFCC+MD

135 45.0 28 9.33

COR,

CMN+MD

158 52.67 33 11

Figure 3.13: Stationary noise recognizer configuration rankings
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lowest recognition score relative to the other recognizer configurations. From

Table 3.7 and Table 3.8, and depicted graphically in Figure 3.13, it appears that

the COR model consistently achieves higher recognition accuracies than the MD

model. As is expected with this combined model, the relative performance be-

tween the fused, MFCC+MD and CMN+MD models and the spectral MD model

is not constant over SNRs. This is expected as the fused acoustic model is formed

from a probabilistic space that represents the spectral and cepstral parameteriza-

tion of the speech process. Thus, the performance of the fused model is pro-

portional to the capability of each stream (MD spectral and cepstral) to contain

and infer the true speech signal. As the SNR decreases, the true speech content

of the cepstral stream deteriorates. The capability of correct speech inference

from the spectral, MD, stream however, decreases less rapidly as the SNR de-

creases(see Table 3.6). The inference capability of true speech from the fused

model will therefore not maintain a constant margin of performance gain over

the single MD model for differing noise conditions. But, as a result of more ac-

curately representing the speech process than cepstral and spectral models, it is

capable of greater recognition performance. Interpreting the rankings from the

bottom ranked category further implies this. The rankings depict that the joint

space is more capable of the correct inference of W from Ô, or rather in terms of

MD theory Equation 3.5, inferring W from Or than the conventional MD process.

Essentially, the COR model will perform at least the same if not better than the

uncoupled process.

3.11 Combination of Recognizers: Non Stationary

Noise Experiments

To further investigate the potential of the proposed methodology for noise robust

ASR, experiments were conducted under non stationary noise conditions as out-

lined in Section 3.9. As outlined in that section, from recognizer configurations

i thru iii and v thru vi, recognition results were generated using the clean speech

test set to form baseline results for each recognizer. The tabulated results from

this test condition are listed in Table 3.9. As discussed in the previous section,

Section 3.10, these clean speech recognition results tend to coincide with the ex-

pected comparative behavior of cepstral, spectral and joint models described in

Table 3.1.

For the non-stationary test conditions, the recognition results were generated

with the recognizer in configurations ii thru iv and vii thru viii, (Section 3.9), and
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Table 3.9: Non Stationary Noise: BaseLine Recognizer Results, Clean Data

ASR Configuration Recognition Ac-

curacy %

Conventional

Spectral Features, rate32 94.64

MFCC Features 95.15

CMN 81.49

Fusion,Combination of Recognizers

MFCC+rate32 94.04

CMN+rate32 95.22

Table 3.10: Recognizer Results With Test Corpus + Destroyer Operations

Room Noise

ASR Configuration Recognition Accuracy %

Conventional SNR

18dB

SNR

12dB

SNR

6dB

Spectral Features, MD 76.68 73.51 67.63

MFCC Features 82.79 74.52 65.12

CMN 67.07 62.64 60.31

Fusion,Combination of Recognizers

MFCC+MD 83.86 77.22 68.36

CMN+MD 87.96 81.88 74.17

test sets representative of SNR 18dB, 12dB and 6dB conditions. Table 3.10 and

Table 3.11 reflect the recognition results over all recognizer configurations for the

destroyer additive noise source and the factory conditions respectively.

Over all tested non-stationary noise conditions for both the additive destroyer

and factory sources, as well as for all tested SNRs, the COR experiences greater

recognition accuracies than those of all other tested recognizer configurations.

These results also exhibit typical characteristics of cepstral and spectral based
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Table 3.11: Recognizer Results With Test Corpus + Factory Noise

ASR Configuration Recognition Accuracy %

Conventional SNR

18dB

SNR

12dB

SNR

6dB

Spectral Features, MD 76.5 73.3 67.4

MFCC Features 83.7 73.9 64.7

CMN 66.0 61.6 60.3

Fusion,Combination of Recognizers

MFCC+MD 84.5 76.7 67.5

CMN+MD 88.6 81.8 73.5

models. In particular the relationship between recognition with conventional cep-

stral based ASR and the MD pattern recognition process with marginalization(Section 3.3.

As is evident in the recognition performance of those two recognizers, ratemap +

MD and MFCC, as the SNR decreases, the recognition accuracies of the MD

model gradually increases relative to that of the cepstral model. This behavior

may be explained by considering each respective acoustic models’ ability to infer

W as the SNR of Ô decreases. As the adverse condition worsens, Ô differs to

a greater degree with that of which the model, θ , represents, O. The MD based

model bases recognition on the decomposed signal, namely Or whereas the cep-

stral model infers directly from Ô. Thus the cepstral based ASR experiences a

decline in recognition accuracies as the SNR decreases while the magnitude of

the decline is less for the MD based system.

The COR configuration, MFCC+MD, results from both tested additive noise

conditions exhibits greater recognition accuracies than those of the conventional

ASRs. The benefit of the fused process for recognition performance is to a lesser

extent under the 6dB condition though under all test conditions the relation be-

tween the capacity of the fused model to that of the typical models still holds,H
(

Ô(c) Or(s)

)

≥

H
(

Or(c)

)

(Table 3.1). Though the normalized model, CMN, exhibits a degraded

characteristic under clean conditions[67], when it is combined in a COR con-

figuration, the resultant joint space is capable of effective speech recognition in

all tested conditions. The joint space, as a result of coupling a normalized cep-

stral and a spectral process, may be effective in its inferences due to the inherent
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Table 3.12: Destroyer Noise 18dB SNR: Recognizer Configuration Rank-

ings Over Entire Test Set, Relative To All Experimented Configura-

tions

ASR Configu-

ration

#utterances

Top Ranked

%Top

Ranked

#utterances

Bottom

Ranked

%Bottom

Ranked

Missing Data 97 17.32 169 30.8

COR,

MFCC+MD

217 38.75 56 10

COR,

CMN+MD

389 69.46 28 5

attributes of each of its components. The cepstral based process, Ô(c), in this in-

stance, is normalized, Equation 3.1, to match the acoustics of the model, while the

spectral based process, Ô(s) is segregated resulting in Or for pattern recognition.

The combination of these two features within the fused construct may reduce the

discrepancy between Ô and that of which the model, θ , represents, O. The fused

effect of combining noise features has also been observed in other works such

as[40].

To further analyse the effectiveness of the COR configurations over those of

the other recognizers, the performance of the MD recognizer and the COR recog-

nizers were ranked for each additive noise source and SNR condition. Out of the

560 utterance test corpus, the percentage that a particular ASR configuration has

the highest recognition accuracy in relation to all others as well as the lowest for

each noise source and all SNRs are given in Tables 3.12 thru 3.17. These tables

that reflect the relative effectiveness of each recognizer configuration, for the each

of the test conditions, further illustrate the effectiveness of the combination of rec-

ognizers for robust speech recognition. Over all tested configurations, the COR

method, generally outperforms the MD recognizer as evident in the greater per-

centage of top ranked utterances for the COR configurations over that of the sin-

gle model recognizer. Another observation to be taken from the tabulated results

is that the COR method does not appear to degrade recognition performance as

this is inferred from the COR possessing the lowest percentage of bottom ranked

utterances. These attributes of the COR configuration is especially evident in
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Table 3.13: Factory Noise 18dB SNR:Recognizer Configuration Rankings

Over Entire Test Set, Relative To All Experimented Configurations

ASR Configu-

ration

#utterances

Top Ranked

%Top

Ranked

#utterances

Bottom

Ranked

%Bottom

Ranked

Missing Data 109 19.64 161 29.01

COR,

MFCC+MD

230 41.44 30 5.41

COR,

CMN+MD

390 70.27 16 2.88

Figure 3.14 for the destroyer noise test condition. From this figure, the spectral,

MD, model consistently has a higher number of bottom ranked utterances than the

COR models. This together with the top rank tallies imply that the fused model is

more resilient than the spectral model alone. This discrepancy may be attributed

to the strength of the fused models’s capacity to model the speech process and the

inherent exploitation of the inferred statistical dependencies between the cepstral

and spectral stochastic processes. Another observation, from the both the tabu-

lated and the graphical rankings, is that in comparing the two fused models, the

recognition performance of the normalized model declines less rapidly than that

of the non normalized combined model. This implies that the normalization of the

cepstral process may add to the resiliency of the joint space to noise perturbations.

The joint space, as a result of decision level fusion of spectral and cepstral

stochastic processes appears capable of achieving noise robust ASR for non sta-

tionary adverse conditions. This acoustic modeling technique, both theoretically

and experimentally implies that within its strength to model and represent the

speech process and its method of inferring words from a noise corrupted signal

lies an effective methodology for ASR. Unlike HMM decomposition, and PMC

acoustic model based noise robust techniques that model both speech and noise,

the COR methodology is based on, though certainly not confined to, speech mod-

els. Here a noise robust pattern recognition method is devised from a coupled

model of MD and cepstral stochastic processes. Where the statistical dependen-

cies between the speech segregated MD process and the cepstral process are prop-
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Table 3.14: Destroyer Noise 12dB SNR: Recognizer Configuration Rank-

ings Over Entire Test Set, Relative To All Experimented Configura-

tions

ASR

Configuration

#utterances

Top Ranked

%Top

Ranked

#utterances

Bottom

Ranked

%Bottom

Ranked

Missing Data 124 22.14 146 26.07

COR,

MFCC+MD

199 35.54 60 10.71

COR,

CMN+MD

359 64.11 41 7.32

Table 3.15: Factory Noise 12dB SNR: Recognizer Configuration Rankings

Over Entire Test Set, Relative To All Experimented Configurations

ASR

Configuration

#utterances

Top Rated

%Top

Ranked

#utterances

Bottom

Ranked

%Bottom

Ranked

Missing Data 142 25.59 139 25.05

COR,

MFCC+MD

193 34.77 60 10.81

COR,

CMN+MD

383 69.01 29 5.23
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Figure 3.14: Destroyer noise recognizer configuration rankings

Table 3.16: Destroyer Noise 6dB SNR: Recognizer Configuration Rankings

Over Entire Test Set, Relative To All Experimented Configurations

ASR

Configuration

#utterances

Top Rated

%Top

Ranked

#utterances

Bottom

Ranked

%Bottom

Ranked

Missing Data 188 33.57 168 30

COR,

MFCC+MD

176 31.43 112 20

COR,

CMN+MD

375 66.96 64 11.43
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Table 3.17: Factory Noise 6dB SNR: Recognizer Configuration Rankings

Over Entire Test Set, Relative To All Experimented Configurations

ASR

Configuration

#utterances

Top Rated

%Top

Ranked

#utterances

Bottom

Ranked

%Bottom

Ranked

Missing Data 189 34.05 181 32.61

COR,

MFCC+MD

161 29.01 138 24.86

COR,

CMN+MD

368 66.31 54 9.73

agated throughout the pattern recognition topology. That together permit noise

robust ASR without apriori knowledge of the noise source. Within the MD frame-

work, there exists another promising technique for robust recognition, the segment

fragment decoder[5]. Whereas this fragment decoder finds the best hypothesis

word sequence and segregation of noise from speech, the COR method finds the

best word sequence from an expanded Viterbi search space within the fused de-

coder. Akin to the SFD that demonstrated significant increased recognition under

non stationary noise conditions, the COR technique appears to signify the same

traits.
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In so far as a scientific statement speaks about reality, it must be

falsifiable; and in so far as it is not falsifiable, it does not speak about

reality. — Sir Karl Popper

The central premise of this chapter follows that of the previous in devising op-

timal1 stochastic acoustic models. Here, unlike with a coupled topology described

previously, the observation distribution of the speech process is modeled using dis-

criminative classifier methods. Through optimizing the ML estimator, the relation,

first presented in Chapter 2, H (On |Un) is described. Whereas the previous chap-

ter described maximizing this relation, or rather, increasing the speech acoustic

content of the model through a coupled topology. Here an optimal ML estimator

is devised using large margin discriminative classification techniques.

The parameterization of the speech process can be taken as a set of measure-

ments of the speech signal that form a continuous time series. Modeling the

stochastic characteristics of this time series can be considered to be paramount

to effectively infer words from speech signal. This inference of words, can be

realized from a set of models that describe the acoustic space. An acoustic space

that is segmented to represent each possible word or sub word unit that can be

expected to be inferred from the speech signal. The segmentation of the speech

process should take a form that ensures speech process may be represented within

it without loss of information content. Or at least, such as to minimize the loss.

This chapter establishes a methodology to model the speech recognition problem

as that of inference from stochastic models formed with discriminant functions.

Encompassed within this is the mapping of the acoustic space to one that is ca-

pable of encoding the speech process and is, furthermore, appropriate to form

discriminant decision rules, or boundaries.

Within this chapter, the methodology is developed through a series of sections.

An appropriate segmentation of the acoustic space for discriminative classification

techniques is first analyzed in terms of satisfying the necessary conditions to ef-

fectively model the speech process. Amongst the findings from the analysis is

a likelihood estimator that can describe the input signal. The resultant acous-

tic space permits the mapping of the inference problem to one that can not only

lend itself to strong classification techniques but also unhindered from loss of in-

formation content. This serves as the motivation for the presented methodology.

To devise discriminatively trained acoustic models that are capable of modeling

1Here, optimal is in the sense of minimizing the distance between the probabilistic distribution

of the speech process and its estimate
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the speech process. The speech inference problem is subsequently described in

terms of posteriors and as such in a form suitable for discriminatively trained

stochastic models. Such models may take on one of several approaches. Several

of these are described including those that form decision boundaries with linear

combinations[43], density estimations[38] and neural networks[64], NNs. The

large margin approach, support vector machine[68], is then reasoned to be most

suitable for this speech inference problem and to optimize the likelihood estima-

tor.

This chapter is organized as follows.

• Acoustic space: How to segment the acoustic space so that it can be ef-

fectively modeled using discriminative training methods? The speech pro-

cess is presented as sequential measurements of the speech signal that form

a continuous time series. Using the analysis techniques developed and de-

scribed in Chapter 2, specifically Section 2.2, a segmentation of the acoustic

space is determined that not only is capable of modeling the speech process

without loss but also lends itself to modeling with discriminative trained

acoustic models. Specifically, these acoustic models are based upon repre-

senting the speech observation process with ML estimators. It is further-

more shown, that the capability of modeling the acoustic space accurately

is a function of both the number these estimators and the accuracy of the

estimators to model the process. The former of the two can be expressed

in terms of the latter. Thus, by formulating the ML estimators in a man-

ner for which discriminative techniques may be applied the speech process

can be modeled effectively. Moreover, in using discriminative techniques,

optimal2 discriminatively trained classifiers may be formulated to produce

optimal ML estimators.

• Discriminative Techniques: There are a number of discriminative train-

ing methods that may be used to model the speech process. Which of

these methods may be well suited for this problem? Several discriminative

techniques are described in terms of its construction and its capability of

modeling the speech process. Each of these methods are assessed on how

they construct the decision function that separates data. How to train the

model. And how to control the complexity of the model. It is shown that

2Optimal in the sense of minimizing the error between the true observation distribution and its

estimate
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the large margin discriminative method may be better suited than the others

to model the speech process with the proposed ML estimators.

• Discriminative Speech Modeling: Past and Present: There have been sev-

eral research efforts to model speech with discriminatively trained acous-

tic models. How does the proposed methodology differ from those? This

proposed methodology differs from other discriminative acoustic model-

ing approaches as it is primarily devised to effectively model the speech

process. Effective in the sense that the acoustic model is capable of model-

ing the speech observation distribution without loss of acoustic information

content. Previously established approaches that have used discriminatively

trained acoustic models have experienced problems that have hindered this

realization. Some of these setbacks have been noted in this section. Set-

backs such as the inability to effectively classify speech at the frame level.

As well as not effectively modeling the transient behavior of the speech

signal. This methodology shows that by using large margin discrimina-

tive training methods to maximize the objective function of Equation 2.16,

H
(

O(n)|U (n)
)

, optimal ML estimators can be formulated. These optimal

stochastic models, moreover, are shown to effectively model the speech pro-

cess.

• SVM Discriminant ML Estimator: How to construct these so called opti-

mal ML estimators using the large margin discriminative method? Just

how effective are these models? This section formulates modeling the

speech process with discriminatively trained ML estimators using the large

margin training method. Here the acoustic space is mapped in terms of ML

estimators so to maximize the speech content in the resultant model. Large

margin discriminatively trained models are formulated to model these esti-

mators. It is shown that the resultant models are not only optimal, but also

maximize the entropy of the observation distribution. Thus, theoretically,

they are capable of modeling the speech process without loss.

• Large Margin Discriminant ML Estimator: Experimental Results: Are the

empirical results consistent with the theoretical expectations? The pro-

posed methodology was tested experimentally. Large margin based acoustic

models are trained and tested with the Grid speech corpus[18]. The results

from the experiments indicate that the optimal stochastic models can effec-

tively model speech.
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4.1 Acoustic Space

A possible segmentation of the acoustic space, or rather, a segmented representa-

tion of the information content of the speech signal, that is suitable to model the

speech process may be found in the following manner. Consider the signal in a

parameterized format with observations, O(n), as in Figure 1.2 and Equation 2.1,

O(n) = [O1,O2,O3, . . . ,On]
T

where,

Oi ∈ R
m

As such, each measurement, Oi, in this form can represent a speech frame. The

relative information content between each measurement can be examined through

information theoretic concepts when the parameterized representation is rewritten

as in Equation 2.2,

Z
(n)
j = [O1 j,O2 j,O3 j, . . . ,On j]

T

where, j ∈ {1 . . .m}. The KL divergence distance measure may be used for this

purpose. Examining each of these, rvs, Z ji, with respect to each other in the form

of KL
(

p
(

Z ji

)

p
(

Z
lk

)

‖ p
(

Z
lk Z ji

))

reveals the correlation, or transient behavior,

between each multivariate measurement. With this form the relative information

content, I
(

Z ji,Zlk

)

, of the signal can be expressed by Equation 2.5 and equiva-

lently, Equation 2.6 and Equation 2.7.

The temporal behavior, or transient aspect, of the signal, or time series, may be

modeled as a Markovian process. As described in Chapter 2, a first order Markov

chain formed with, h, rvs, U , U1 → U2 → U3 · · · → Uh, Figure 2.1, is a common

incarnation of this process. It can be shown, through information theoretical con-

cepts, that this model is capable of encoding the temporal aspect of the signal,

I
(

Z ji, Z
lk

)

, without loss. This is implied from Equation 2.11,

I (UiUi+1) ≥ I (UiUi+2)

where the term on the left of the inequality represents the mutual information

between rv, Ui, and the successive (i+1) rv of the chain and the term on the right

the relationship between a given rv at instance, i, and one two time steps ahead.

Furthermore, through factorizing the observation distribution, P(O), over n stages,
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as is the case with a hidden variable, HMM, stochastic model, Equation 2.10, the

true observation distribution can be represented within this Markovian topology

as can be reasoned from Equation 2.16,

H(On |O(n−1)) ≥ H(On |Un) (4.1)

The term of the left of this expression represents the entropy of the true obser-

vation distribution and the term on the right, the corresponding entropy of the

distribution as modeled with the hidden variable model with observations, O, and

a latent variables, U . Thus, Equation 2.11 together with Equation 2.16 imply that

the hidden variable topology is capable of modeling the speech process without

loss. More specifically, given the parameterized measurements, O(n), the true dis-

tribution of the signal, P(O), can be realized from the hidden variable topology

through maximizing the ML estimator, or rather, maximizing the expected value

of the log likelihood. As such, a possible acoustic space segmentation that is suit-

able for modeling, one used within this methodology, is through factorizing the

acoustic space over multiple discrete hidden variable states, U .

This acoustic space segmentation realized in the hidden variable topology ef-

fectively models the speech process as evident from its representation of the ob-

servation space and the transient qualities of the time series. Though this form of

acoustic model is capable of capturing the speech process, to ensure it encodes

the signal without loss, both the observation space must be well defined and there

should be a sufficient number of hidden states.

The number of states, U , that may be necessary for this purpose can be ex-

pressed in the following manner. The entropy rate can be defined as the rate of

growth of entropy[22],

H (χ) = lim
n→∞

H (X1 X2 X3 . . . Xn) (4.2)

with, n, rvs, X. So with mU hidden variables and n realizations, the entropy rate,

is,

H (ϕ) = ln(mU) (4.3)

This expression implies that H (U1U2 . . . Un), or rather, H
(

U (n)
)

converges to

the entropy rate and that H
(

U (n)
)

≥ H (ϕ). Similarly, this entropy rate can be
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expressed in terms of the observation distribution, P(O), such that,

H (ϕ) = ln(mU ) ≥ KL
(

p(On) p
(

O(n−1)
)

‖ p
(

On O(n−1)
))

(4.4)

where the term on the right of the inequality is the KL divergence between the

joint distribution of an observation at instance, n, and all previous observation

realizations and the product of the two. Equation 4.4 may be represented in terms

of entropies and in turn with respect to the entropy rate of O, H (ϑ), as in,

ln(mU) ≥ H (On) − H
(

On |O(n−1)
)

(4.5)

=⇒ mU ≥ 2KL(p(On) p(O(n−1))‖p(O(n)))

or,

I
(

OnU (n)
)

≥ I
(

On O(n−1)
)

=⇒ mU ≥ 2H(ϑ )

which both can be implied from the relation described in Equation 4.1. The given

expressions of the entropy rate of the hidden variables, U , in terms of the KL

distance measure and the entropy rate of O, describe the number of hidden states

necessary to encode the speech process without loss. Within the expression of

this bound is the relationship between the number of hidden states and the ob-

servation distributions. With respect to a generative stochastic process, this dis-

tribution is evaluated as the likelihood, or in other words, the HMM emission

densities, P(O |U). Therefore, the capability of the stochastic model to represent

the speech process depends on both the accuracy of the densities and the segmen-

tation of the acoustic space. Essentially, the ML estimator3 on the right hand side

of Equation 4.1.

The HMM topology[58][8] is defined with rvs U and O. Moreover, its capa-

bility of encoding the signal is dependent upon both the ML estimator, f (O |U),
and the number of hidden states that is also dependent upon the former. Model-

ing this ML estimator is traditionally done using generative techniques whereby

the likelihood of a hidden state, U , having generated a given observation, Oi, is

estimated. In this case parametric densities are commonly used. As opposed to

3Recall that the objective function, Equation 2.16, represents a relation between the true ob-

servation and its estimate. This estimate, expressed as H(O|U), is the expected value of the log

likelihood. Thus in terms of rvs O and U , it represents the ML estimator.
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estimating the likelihood from a parametric density, the inference may be done

using discriminative techniques. These methods estimate decision functions, or

decision boundaries that separate the data. More specifically, the separation is

formed with decision boundaries that segregate the data, or observations, into dis-

tinct classes, k. The decision boundary itself defines the outcome, y, of a given

observation, x, belonging to one class, ki, or another, k j 6=i. In other words, given a

joint space, f (x,y), the decision boundaries determine f (y = k |x). Or in terms of

probabilistic measures, P(y = k |x). In this form, each outcome is formed from

a decision that considers and accounts for a given observation belonging to each

possible class within the joint space. This is in contrast to the density estimation

method whereby the resultant decision is a confidence, or a likelihood measure of

an observation event occurring given the models’ sample space. Put another way,

discriminative methods may be construed as estimating the posterior, P(U |O),
whilst generative inference is forged from P(O |U). Furthermore, presenting the

ML estimator problem as that of its posterior form opens the maximization prob-

lem, H (O |U), to the use of powerful discriminative classifiers to determine it

from. And so to model the speech process without loss within an HMM topology.

The maximization of the emission densities, in accordance with Equation 4.1, can

now be evaluated using a variety of optimization techniques that may provide a

better estimate of H (O |U) than having the problem limited to conventional ML

methods.

Therefore, in modeling the speech process in this manner, the problem may be

cast as one that lends itself to discriminative techniques and is capable, through

maximizing the ML estimator, to encode the speech process without loss. As such

the acoustic space is mapped to that consisting of transitional elements from time

step or stage, i−1 to i, f (Ui |Ui−1) , i∈I , and posteriors, f (U |O) =
f (O |U) f (U)

f (O) .

With each state, Uk, k ∈ I , 1 . . .h, represented by a discriminative classifier.

These resultant discriminative models, through optimization techniques[76][45][29],

maximize the expected value of the log likelihood of the hidden variable, y, gen-

erating an observation, x. And in doing so, maximize the entropy of the system.

A number of different approaches may be considered when the problem of

determining the ML estimators, or rather the modeling of the observation dis-

tribution, is posed as a discriminant analysis problem. The proceeding section

provides a comparison of such methods and offers insight as to why the large

margin[69] discriminant analysis approach is suitable for this task.
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4.2 Discriminative Techniques

Describing or modeling the behavior of a times series, or in particular, the ob-

servation space of the speech signal can be done using discriminative techniques.

Here, the problem is approached as that of separating the data into likewise com-

ponents or classes sharing, or describing, some particular aspect or pattern in the

signal. Likewise, inferring patterns from these resultant classes, or models, is now

a pattern recognition classification problem where the inference is the outcome of

which class the pattern is the closest to.

In terms of modeling the ML estimator, f (x |y), in terms of rvs x,y, the ex-

pression can be written in a posterior form,

f (y |x) =
f (x |y) f (y)

f (x)
(4.6)

where, f (y), is the classifiers’ priors and f (x) is a normalization factor. Both are

defined by the training input space.

The modeling of these posteriors can be done in many differing manners,

though the underlying motivation to describe the data in terms of decision bound-

aries is common to all. Given the parameterized signal x,

x = [x1, x2, . . . xm] (4.7)

a common approach to separate the data is to form decision boundaries with a

linear combination of all components of the signal. Such a decision boundary

may be expressed as,

m

∑
i=1

xi ai (4.8)

In general over multiple input observations, x = [x1, . . . , xn], xi ∈ Rm, the deci-

sion boundary forms a hyperplane Figure 4.1.

Ax = b (4.9)

The decision boundaries formed in this manner define the outcome, y, or rather

the inference of an event from a given sample space. In other words, given the

input space, f (x) and its outcome, f (y), that together form the joint space, f (x, y),
the decision boundaries realize the outcome of an event, xi, i ∈ I , from f (x, y).
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Figure 4.1: Linear combination decision boundary: Generalized hyperplane,

Ax = b

In terms of a two class discriminant problem, f (y) ∈ {−1, 1} and is positive

when f (y |xi) = xi. The values that y take on are indicative of the outcome of a

particular input x. In general for a k class problem, the indicator response, y, to

the input x may be expressed as,

f (y) =

{

1 , y = k |x
−1 , y 6= k |x (4.10)

These indicator responses, together with the inputs form the joint space, f (x,y)
from which the decision functions or boundaries are determined. This process is

illustrated in Figure 4.2. Therefore each input, x, is mapped to an response, y,

that is indicative of which class, x, belongs to. From the resultant joint space,

f (x,y) = f (x) f (y |x) , decision functions may be considered to be an estimate of

ŷ = f (y |x). Furthermore, in terms of specific classes, k, this may be expressed

as f (y = k |x).
The loss function, L(), or loss functional[69], expresses the relationship be-

tween the indicator response for a given, x, and the estimate formed from the

decision function, ŷ. As such, the decision boundary problem, may be expressed
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Figure 4.2: Decision functions: Given the input space, f (x), and the corre-

sponding indicator response, f (y), decision functions are formed from

the joint space f (x,y)

in the following,

L = (y − ŷ) (4.11)

= ( f (x) − f (x̂))

In this form, it can then be considered to be a minimizing the loss optimization

problem. Through this relation the posterior form of the ML estimator can be

described in terms of determining the optimal decision functions that satisfy min-

imizing the loss function. This interpretation of the ML estimator lends itself to

numerous loss functional representations such as the L2 distance measure,

L = ( f (x) − f (x̂))2
(4.12)

and the L1 distance measure,

L = (| f (x) − f (x̂)|) (4.13)

Each with its own merits and drawbacks. For instance it may be argued that the

L1 distance measure is much more robust than the L2 distance measure though

the L2 distance measure may be more appropriate for some tasks. Similarly, the

loss functional, L(), lends itself to a multitude of optimization techniques. Each

such method can be assessed by the trade off between computational complexity

and its appropriateness for the nature of the problem.

The selection of the most appropriate discriminative method for a given prob-
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lem may be assessed in terms of the risk loss functional[68], R(α),

R(α) = Remp +Φ

(

l

hk

)

(4.14)

where, the empirical risk, Remp can be construed as minimizing the loss and

Φ
(

l
hk

)

the confidence measure. Together these control the accuracy and complex-

ity of the decision function. This relation describes the generalization capability

of the decision functions. Generalization in the sense of describing, or classifying

observations that were not used in the formation of the decision boundaries. The

accuracy and the generalization capability of the decision functions is described,

in Equation 4.14, as a trade off between minimizing the error whilst ensuring that

the structure, or complexity of the decision functions, is not bound to the empiri-

cal data used to form the boundaries. Likewise, the variance bias[39] relationship

may also provide insight to the relationship between the error and generalization

behavior of decision functions. For decision functions formed from linear combi-

nations, this view of the boundaries describes the complexity of the model through

both the loss and the deviation between the true and estimated boundary.

Discriminant analysis, therefore, can be considered as a problem of separating

data with decision boundaries formed from the joint space f (x,y). Through both

the indicator responses, y, and the inputs, x, decision functions are formed as an

estimate of f (y = k|x). This problem expressed through the loss functional can

then be approached as an optimization problem to minimize the loss. With this

established, a discriminant ML estimator, Equation 4.6, may be determined in a

number of different manners. The following subsections describe and analyze

some common techniques and describe each in terms of the speech inference, or

rather, the ML estimator problem.

Logit Regression

Decision boundaries are commonly formed using regression techniques. One may

consider this technique as one that distinguishes between inputs, x, through deci-

sion functions that minimize the squared error between the true boundary and the

estimated boundary. This boundary is formed as a linear combination. Thus the

solution is the general form of the hyperplane, Equation 4.9. As such, the loss op-

timization problem can be expressed in terms of the L2 loss, Equation 4.12, with
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a solution that follows that of,

min L2 (y − f (x))2
(4.15)

≡ d

dx
(y − Ax)T (y − Ax)

= AT y − AAT x = 0

=⇒ x∗ =
(

AT A
)−1

AT y

A : a ∈ R
n, x ∈ R

m, y ∈ R
n

and,

ŷ = Ax∗

ŷ ∈ R
n

This expression describes the estimate of best fit of the model. The decision func-

tion formed in this fashion can be used to classify a given input x into one of

k classes. Each component of the coefficient matrix, y, in this case, represents

f (y) and thus correspond to Equation 4.10. The decision boundary formed in

this fashion can be viewed, in the case of a two class problem, as one where

f (x̂k1
) = f (x̂k2

)4, or in general, ŷ = 0.

Through the relation of Equation 4.15 the ML estimator can be determined as

in Equation 4.6 where the conditional expression is f (y |x) = ŷ. The probabilistic

form of f (y = k |x) is typically determined using a logit transformation, where

for a binary probabilistic space, log
(

p
1−p

)

,

p(y = k |x) =
e f (x)

1+ e f (x)
(4.16)

and,

p(y 6= k |x) =
1

1+ e f (x)

Training the model parameters, θ , for the logit regression discriminative clas-

4inputs that belong to class k1 are equivalent to those that belong to k2
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sifier is commonly done using the maximum likelihood technique,

∑ log(Pθ ) (4.17)

with optimization based techniques such as steepest ascent[57], conjugate gradient[57]

and iterative techniques[25]. This realization of decision boundaries does have its

challenges. Finding the best fit of the model to the data may not be possible if the

input space is not suitable to find a global maximum. In this case, data smoothing

may be required or some sort of feature selection. Moreover, controlling the trade

off between the error rate and the complexity of the model may be difficult due to

the underlying L2 distance measure used to fit the model. Furthermore, the model

may also require a substantial number of training inputs, x, to increase the models’

generalization capability.

Linear Discriminant Analysis

Linear discriminant analysis is another discriminative technique that may be con-

sidered. It, like regression analysis, forms its decision boundaries by satisfying

the relation, f (x̂k1
) = f (x̂k2

). Though, unlike regression, the decision function

is forged from Gaussian distributions. As such, the density describing the class, k

can be written as,

p(x) =∼ N (x |µ Σ) , x ∈ k (4.18)

where, µ and Σ are the mean and covariance of the distribution respectively. The

input space then can be represented as a mixture model with mixture weights, π ,

and a common covariance matrix Σ,

p(x) =∼ ∑
k

πk N (x |µk Σ) (4.19)

The indicator responses of this discriminative technique can serve to select a given

mixture from the input distribution. Thus f (y) can be a function that results in a

binary value, for example y = 1 if x ∈ Sk = {x : f (y = k|x)}. From the joint

space formed with the marginal distribution of x and the indicator conditional

distribution, estimates of the outcome,

p(y = k |x) =
πk N (x |µk Σ)

p(x)
(4.20)
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can be made.

Training such discriminative models is a problem of density estimation and

thus is ill posed. Commonly they are trained with the maximum likelihood tech-

nique to determine the parameters of Equation 4.17. Typically these models are

formed with a common covariance, Σ, parameter, though are not limited to it.

Though training the model with a shared covariance reduces its complexity, the

maximization of the objective function may not lead to a global maximum. Fur-

thermore a sufficient number of input samples, x may be necessary to accurately

model the parameters.

NN

Neural networks[49], NN, form decision boundaries in a manner akin to the synapses

and neurons in the brain. Its typical topology consists of multiple layers that con-

nect the base layer, inputs, x, to the top layer, outputs, y. Each layer, within this

construct, can be considered to be made up of a linear combination of the layer

beneath it. As such, inputs that form the base layer feed into the layer above it. A

linear combination of these inputs make up each node, z, of the upper layer. This

process may be expressed as,

z = h(bo + Ax) (4.21)

z ∈ R
n,bo ∈ R

n, A : a ∈ R
n, x ∈ R

m

where, h(), is a basis function. Each element of z is commonly referred to as a

hidden unit. The outputs, y, are formed, subsequently, as a linear combination of

the hidden units and can be expressed as,

z′ = b′
o + A′ z (4.22)

y = σ(z′)

z′,b′
o,y ∈ R

K, z ∈ R
n, A′ : a′ ∈ R

K,

where, σ() is the activation function and, K, the number of outputs of the model.

Typically the activation function is a sigmoid function, though a radial basis net-

work can be formed using a Gaussian basis function.

Therefore the NN discriminative method derives decision functions from a

linear combination of basis functions that form nonlinear decision boundaries.

Moreover, the topology of the model is not limited in the number of layers nor the

number of hidden units within it. This multiple layer perceptron, MLP, model may
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consist of multiple layers of hidden units that together further refine the decision

functions. As a result, powerful discriminant functions can be devised with this

technique.

Like the previously discussed discriminative models, the ML estimator of

Equation 4.6 is determined from the estimated outcome of a given input x. In

this case, the estimate comes from the expression, Equation 4.22, the output of

the NN topology. As such, f (y = k |x) = σ (z′).
The model parameters for NNs are inferred from the data. This inference is

commonly done by using the L2 distance measure, Equation 4.12, or rather min-

imizing the squared error in the backpropagation[75] method. More specifically,

the coefficient matrices, of Equation 4.21 and Equation 4.22, or weights, are deter-

mined by minimizing the error and inferred from the maximizing the likelihood.

Though the NN topology is capable of describing complex decision boundaries, it

may be difficult to find an appropriate trade off between minimizing the error and

maintaining the models’ complexity. Satisfying this trade off, the risk loss func-

tional, Equation 4.14, may be further hindered due to the number of parameters

necessary to model the decision functions and the optimization technique chosen

to determine the parameters.

Large Margin

The large, or maximum, margin[68] discriminant function is formulated to de-

termine the optimal decision surface. Unlike other discriminative methods, the

hyperplane formed optimally separates the data. Similar to how the previously

discussed techniques devised decision boundaries that minimized the error be-

tween the true boundary and its estimate. The maximum margin technique is

derived with the same intent, but does so in a manner that ensures the resultant

hyperplane also maximizes the distance, (the margin), between the set of data

points on one side of the hyperplane and the other. The hyperplane that satisfies

these criteria is a unique or optimal decision boundary.

Finding the optimal hyperplane can be expressed as the quadratic optimization

problem. The solution to the minimization is a hyperplane with the following

constraints,

Ax + b ≥ 1, y = 1 (4.23)

Ax + b ≤ −1, y = −1

and A the normal vector. As such the problem may be cast as one of minimiz-
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ing a quadratic surface subject to constraints. This representation lends itself to

minimizing with Lagrangian multipliers as in,

L = C(x) + α (A(x) − b) (4.24)

where C(x) is a quadratic and α is the Lagrange multiplier that is applied to the

linear constraint. Rewriting Equation 4.24 in terms of the Equation 4.23 and the

vector A, results in,

L =
1

2
AT A ∑

i

αi (y (Ax + b) − 1) , α ≥ 0 (4.25)

A, x ∈ R
m, y ∈ {−1,1}, i ∈ I

Minimizing with respect to A and b yields the dual form of this expression,

W = ∑
i

α − 1

2
∑
i, j

yi y j αi α j

(

xi · x j

)

, α ≥ 0, ∑
i

yi αi = 0 (4.26)

j ∈ I

that is the objective function to be maximized. The expression of Equation 4.26

may be considered as a convex optimization problem and is subject to the Kuhn

Tucker conditions.

The Lagrange multipliers play a crucial role in determining the optimal hyper-

plane. The multipliers resulting from the maximization of the objective function

determine the location, or rather, the composition of the hyperplane. Each nonzero

value corresponds to the input, x, within the linear constraint (Equation 4.25) that

possess the greatest value. The inputs associated with those multipliers are known

as support vectors. The optimal hyperplane is formed from a linear combination

of these support vectors and can be expressed as,

ŷ = Ax + b, A = ∑
i

yi αi xi (4.27)

A remarkable property of the optimization problem, Equation 4.26, is that it

only requires the inner product between inputs. This not only reduces the com-

plexity of the problem, but also lends itself to kernel techniques[24] in the event

the inputs are transformed with basis functions, h(x). In this case, the objective

function is modified, replacing the inner product with a kernel function, K(xi · x j).
Through this technique, nonlinear decision boundaries can be determined in high
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dimensional spaces.

Classification with large margin, support vector machine, SVM, classifiers can

expressed in terms of the weights, α of the model, the indicator responses, y,

Equation 4.10, and the inputs, x,

f (x̂) = ∑
i

yi αi (xi · x) (4.28)

Rewritten as the estimate of an outcome due to an event, x from the joint space,

f (x,y), the conditional outcome with respect to class k may be expressed as,

f (y = k |x) = sign f (x̂) (4.29)

Through this relation the ML estimator can be determined as in Equation 4.6.

The model parameters for the support vector classifiers are inferred from the

data through the relation of Equation 4.26. The objective function in this form is

presented as a quadratic convex optimization problem. As such, a global maxi-

mum can be found. This discriminative method is capable of not only minimizing

the error between the true decision boundary and its estimate but also of control-

ling the complexity of the model. This is due to the make up of the hyperplane.

The derivation of the objective function is composed of a quadratic, the normal

vector, A and a linear constraint. The solution to the problem can be construed as

a saddle point. Thus, the hyperplane that results from the solution is one that has

the minimum structural risk[69] with the largest margin.

The support vector machine classifier is capable of determining an optimal ML

estimator. The support vector classifier has many merits. The decision boundaries

formed from this discriminative technique are optimal in the sense of both gener-

alization capability and classification error rate. Furthermore, decision functions,

f (y = k |x) = sign( f (x̂)) formed from the large margin technique may be more

flexible than the rigid boundaries, f (x̂k) = f (x̂l) found in both the regression and

linear discriminant technique. Unlike the other discriminative methods discussed,

the large margin technique infers its decision functions from only partial data.

Whereas the other techniques discussed formulate decision functions from linear

combinations of all inputs, the support vector machine assesses the value of each

data point. Only those inputs that result in nonzero weights, Equation 4.26, form

the resultant hyperplane. This property implies the training method is robust to

outliers and may negate the need for data smoothing and feature selection. The

same cannot be stated for the others discussed. Thus, the merits of the large mar-

gin technique make it an appropriate choice to form the discriminative acoustic
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model ML estimator.

This section established the appropriateness of the large margin classifier for

devising a discriminant ML estimator. The ML estimator, taken in its posterior

form, Equation 4.6, can be modeled using discriminative training methods. These

discriminant estimates pose an alternative to ML estimators inferred with gen-

erative techniques. As such, a speech recognition acoustic model such as that

described in Equation 2.10 may consist of these discriminant ML estimators. Fur-

thermore, an optimal ML estimator, as the large margin trained posterior is posed,

is capable of modeling the observation distribution of the speech process with-

out loss, Equation 4.1. The proceeding section describes other efforts to model

speech with discriminative learning methods and discusses the novelty of the ap-

proach presented in this methodology.

4.3 Discriminative Speech Modeling: Past and

Present

There have been numerous efforts to use discriminatively trained acoustic models

for speech recognition. Neural networks, for instance, have been commonly used

to model the speech process. Using a connectionist hybrid architecture[10], NN

discriminant functions are used to model the observation distribution of the speech

process. Radial basis networks have also been applied using this connectionist

structure[64]. The discriminative model observation distribution is used within an

HMM topology, thus the term hybrid, for speech recognition. The resultant mod-

els have been successfully applied to the continuous speech recognition[41][10]

problem though typically perform best when classifying inputs, x, that span over

multiple speech frames. More specifically, the discriminative classifiers perform

best with inputs that are composed of a concatenation of several samples. In terms

of the parameterized signal, this implies the information contained within a given

sample may not be sufficient to form a decision boundary and to accurately clas-

sify. As is described in Chapter 2, the mutual information, or correlation, between

successive speech samples is high, and thus concatenating several adjacent sam-

ples may provide a richer representation of the signal to classify from.

Recently, support vector machines have been applied to the speech model-

ing problem. In these works, the discriminative method has typically been used

to model and classify speech patterns. It has been noted that SVMs are very

powerful classifiers. In some published articles the SVM classifier was implied

to be not suitable for modeling time series[16]. The SVM discriminative tech-
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nique has been, though, applied in several works that model the speech process

in a similar fashion to that of the connectionist hybrid structure[34][65]. Like the

NN connectionist models, some of the research efforts have used windowed sam-

ples, concatenated inputs, to both form the discriminant decision boundaries and

to classify. Issues generally associated with these discriminatively trained speech

models include speech frame alignment problems and the need to reduce the com-

putational complexity. As a result several different methods have been proposed

to segment the acoustic space and heuristics have been introduced to reduce the

computational requirements.

Like the discriminative techniques discussed in the previous section, mutual

information models[44][54] are also discriminative models, as mentioned in Chapter 2,

that minimize the KL divergence between the conditional and the observation dis-

tribution, KL
(

P(O |θi) ‖ ∑ j P(O |θ j)P(θ j)
)

, though they do not minimize the

classification error. Due to this they are not investigated any further in this method-

ology.

This methodology presents a method to model the speech process using dis-

criminative techniques. Specifically the ML estimators within the HMM topology

with SVM discriminative classifiers. Unlike other research efforts, the method

presented here encodes the speech process at the speech frame level. In other

words, this work models the speech process as that of an HMM topology, Equation 2.10.

In this model, the correlation within the time series is encoded within the 1st order

Markov chain represented by the hidden variables of the model. The relationship

between hidden units, together with the ML estimators can represent the time se-

ries’ properties without loss. This is unlike those works that found it necessary

or beneficial to model the mutual information between successive samples within

the discriminative classifiers, (use concatenated samples to train and test the dis-

criminative models). The motivation of this work is to use discriminative tech-

niques to model an optimal ML estimator that is capable of satisfying the relation,

Equation 4.1 and thus capable to model the speech process without loss.

The following sections describe the proposed method to form an optimal ML

estimator to model the speech process. Specifically, using SVM classifiers to

model the ML estimator. The proceeding section describes mapping the speech

acoustic space into segments suitable for discriminative models to encode the

speech process. The process of deriving SVM decision boundaries from these

resultant acoustic segments is then explained. This entails devising an appropriate

classifier training and classification strategy for this task. The developed tech-

niques to model the ML estimator are then tested experimentally. The description

of those tests and their results are detailed in the experiments subchapter section
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of this chapter.

4.4 Large Margin Discriminant ML Estimator

Modeling the speech process with discriminative techniques requires the acoustic

space to be segmented into speech units that can be used to train the discrimi-

native classifiers. These segments of speech should be capable to represent, or

encode, the unique properties of the speech unit that make it distinguishable from

all other units. Furthermore, these segments should be formed in a manner that

can represent the speech signal without loss. One such segmentation is described

in Section 4.1. As described in that section, the acoustic space is represented

within the HMM topology, Equation 2.10. Through encoding the transient quali-

ties of the time series within the hidden variables and the observation distribution

within the ML estimators, this topology is capable of modeling the speech process

without loss. As is discussed in Section 4.1 and implied from Equation 4.1, the

capacity of the representation to encode this process is related to the strength of

the ML estimator. Moreover, this representation lends itself to represent a choice

of word or sub word units such as phonemes[53]. Therefore the focus of this

methodology is to devise an optimal discriminant ML estimator. This estimator is

formed with discriminant functions defined with the large margin discriminative

learning method. Each decision boundary represents a segment of the acoustic

space that is segmented by the number of states in the hidden variable topology.

With this choice of segmenting the acoustic space, the number of hidden vari-

ables, U , within the HMM topology represents the number of distinct discrim-

inative classifiers per word or sub word unit. As such, each SVM classifier can

represent a given ML estimator, f (O |U) as depicted in Figure 4.3. The total num-

ber of classifiers necessary to model the speech process in this fashion would be

dependent upon the number of symbols within the acoustic space. For instance, an

HMM acoustic space consisting of N distinct word or subword units, each com-

posed of M states, would need at least NM distinct classifiers. The total number of

classifiers necessary to model the acoustic space is dependent upon the decision

strategy employed. Consider the set, S, of distinct Q = NM units to be classified.

In the case of the one versus one training strategy, each unit, i, i ∈ S, is trained

against each unit of S. This results in Q(Q− 1) distinct classifiers to model the

acoustic space. The one against all strategy, though, requires only Q distinct clas-

sifiers. With this strategy, decision boundaries represent the separation of one

class, i, of S from all other classes, j 6= i. For the purposes of this methodology,
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Figure 4.3: Discriminant ML Estimator: Large Margin classifiers are used

to model the ML estimator, or emission densities in the HMM topol-

ogy. Figure depicts the relation between the likelihood, f (O |U) and

its discriminative posterior estimate
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it can be assumed that the number of classifiers necessary to model the speech

process is Q.

The mapping of the HMM structure to large margin classifiers provides a con-

venient method to bootstrap the discriminatively trained classifiers. Existing gen-

eratively trained HMM based acoustic models can be used to form the training in-

puts, x, and indicator responses, y, for the discriminative models. In other words,

the generatively trained models can time align and label parameterized input vec-

tors to form the pairs (xi, yi). The set of input and indicator response pairs can

then be used to form the joint space f (x, y), Figure 4.2, from which discrimina-

tive classifiers infer their decision functions.

Support vector discriminative classifiers can be used to model the ML esti-

mators within the HMM topology. Given the input space, f (x), and the indicator

responses, f (y), the optimal hyperplane can be devised that separates inputs that

belong to one class, ki from those of other classes, k j j 6= i.. The optimal decision

boundaries are formed from the joint space f (x, y) that is composed of n input

output pairs,

(x1, y1), (x2, y2), . . . (xn, yn)

In the case of modeling the ML estimators with Q discriminant functions, the

indicator responses within each of the l pairs are

f (y j) =

{

1 , x j ∈ Si = {x j : f
(

y j = ki|x j

)

}
−1 , x j /∈ Si

(4.30)

for a given classifier i, i ∈ S.

From the training joint space an optimal hyperplane can be formed as a linear

combination of support vectors. The decision functions described in the relations

of Section 4.2 are general forms of constructing a boundary for linear separable

data. Speech, though, is a highly variable signal. Parameterized forms of this

speech signal, Figure 1.2, create piecewise stationary representations of the sig-

nal. Modeling this signal with discriminative methods requires classifiers with

complex decision boundaries. In other words, to effectively distinguish between

one set of parameterized speech patterns and another, complex decision bound-

aries are necessary. As described in Section 4.2, such decision boundaries are

easily formed by constructing the optimal hyperplane with a linear combination

of basis functions. Since the convex optimization problem of Equation 4.26 re-

quires only the inner product of the inputs, kernel, K(), methods can be used in
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the basis transformation. The polynomial and Gaussian kernels with a variance

parameter, γ2,

K
(

xi, x j

)

= exp
(

−γ2 (xi − x j)
2
)

(4.31)

x ∈ R
m

are commonly used to construct support vector machines to form decision bound-

aries for non linear separable data. Using the kernel function of Equation 4.31,

the optimization problem, Equation 4.26 can be expressed as,

W = ∑
i

α − 1

2
∑
i, j

yi y j αi α j K
(

xi · x j

)

, 0 ≤ αi ≤ C, ∑
i

yi = 0, (4.32)

x ∈ R
m, y ∈ {−1,1}, i, j ∈ I

where C is a penalization parameter and α , Lagrange multipliers.

From the expression of Equation 4.32, decision functions for each discrim-

inative classifier in the set of S can be determined. The posterior expression,

f (y = k |x) is determined from Equation 4.29 and Equation 4.28, and is rewritten

here,

f (y = k |x) = sign f (x̂)

f (x̂) = ∑
i

yi αi (xi · x)

The classification outputs, f (y = k |x), though, are not probabilistic measures. To

model the ML estimators with the resultant discriminative classifiers, the outputs

need to be transformed into relative confidence measures so as to form probabilis-

tic posteriors. This can be done with a post processing non linear transformation[56]

P(y = 1 | f ) =
1

1 + exp(1+A f + B)
(4.33)

where, A and B are trainable parameters of a fitted sigmoid function. In using

the relation of Equation 4.33, the support vector models are capable of modeling

the ML estimators of the HMM topology. Moreover, these discriminative models

through forming its decision functions with a hyperplane that minimizes the error

and the structural risk, can be considered to be optimal. This hyperplane and

resultant decision function may also be considered to be one that minimizes the

expected error between the true separable boundary and its estimate. Consider the
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loss function between the true hyperplane, y, and its estimate, ŷ, Equation 4.11,

L = (y − ŷ)

Its expected value is,

E[L] = E (y − ŷ) (4.34)

= ∑ E [(y − ŷ) |x] P(x)

= E E [(y − ŷ) |x]

conditional on the input, x. Minimizing this loss can be expressed in terms of min-

imizing E [(y − ŷ) |x] which is the optimal hyperplane. Furthermore, the proba-

bilistic support vector machine based ML estimator can be expressed in terms this

expression. As the expected value of logP(Y |X) is the conditional entropy, it im-

plies that the large margin ML estimator satisfies Equation 4.1 and so is capable

of modeling the observation distribution.

4.5 Findings and Summary

Problem :

To devise and develop effective stochastic models for modeling the speech pro-

cess.

Dissertation Contributions :

• Development of objective function relating true observation distribution to

an estimate in terms of the directly observable measurements and latent

hidden variables.

• Formulation and development of an optimal stochastic model for the speech

with noise problem. Proposal of a combination of recognizers that through

a simple system fusion, combines multiple speech processes at the decision

level. This is a novel stochastic method devised to combine a parameter-

ized spectral missing data, MD, theory based and a cepstral based speech

process using a coupled hidden variable topology. In using a fused coupled

hidden Markov model, HMM, topology, an optimal stochastic model is pro-

posed that is inherently more robust than single process models under noisy

conditions.
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• A novel analysis and comparison of the capabilities of coupled hidden vari-

able topologies to model the speech process.

• Through the maximization of the devised objective function, Equation 2.16,

it is shown that the resultant optimal combined acoustic space contains

greater information content of the true observation distribution. Thus is

capable of improved recognition accuracies.

• Segmentation of the speech acoustic space in a manner that can represent the

speech process effectively and can be modeled with discriminative learning

methods.

• Devising an optimal discriminant ML estimator to model the speech obser-

vation distribution.

In this chapter an optimal discriminant ML estimator is proposed that satisfies

the objective function, Equation 2.16, devised to effectively model the speech pro-

cess. This is formulated with the large margin discriminant function. Specifically,

the methodology presented poses the speech modeling problem as that of,

• segmenting the acoustic space in a manner such that the stochastic model

can encode the speech process without loss

• to effectively model the true observation distribution of the speech process

The first is formulated as a time series modeling problem. As is detailed in

Section 4.1, the speech process can be modeled effectively through factorizing the

acoustic space over multiple states. The hidden variable topology that represents

this stochastic construct consists of a 1st order chain of latent rvs, U , generat-

ing observations, O. The temporal aspect of the speech signal is captured within

the hidden variables, U , (Section 2.1). A segmentation of the speech observation

process, or acoustic space that is necessary to encode the process is expressed

in terms of the number of hidden variables. This devised relation, Equation 4.5,

relates the number of hidden states to the accuracy of the observation distribu-

tion modeled. This observation distribution is represented by the hidden variable

generative process that is modeled as ML estimators.

The second involves modeling these ML estimators. Through using the seg-

mentation of the acoustic space, as proposed in this chapter, the observation dis-

tribution can be modeled with ML estimators that are formulated as discrimina-

tively trained estimators of the speech process. By accurately modeling the speech
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observation distribution with the ML estimators, the speech process may be ef-

fectively encoded. The estimators are typically a problem of generative density

estimation. Such a problem may be construed as ill posed. Discriminative tech-

niques, Section 2.2, however, provide methods to model these estimators with

powerful classifiers, or decision functions, that distinguish between separate clus-

ters of data. Such techniques may form discriminant functions with effective op-

timization techniques. This chapter devises a large margin discriminant ML esti-

mator. Such an estimator is not only formed with optimal decision functions but

is also shown to effectively model the speech process. Unlike previous research

efforts that have proposed discriminatively trained acoustic models, this work is

presented as that of optimizing the objective function of Equation 2.16 and thus

capable of effectively modeling the speech process without loss(Section 4.3).

Several discriminative methods are compared and contrasted in Section 4.2.

From this comparison it is reasoned that the discriminant functions formed with

support vector machines, SVMs, using the large margin training method are the

most suitable for this proposed model. Not only are the discriminant functions op-

timal in the sense of minimizing the classification error, but also have strong gen-

eralization ability. Formed with the large training method, the resultant proposed

ML estimators are shown to have increased information content of the true obser-

vation distribution. Moreover the formulation is shown to maximize the entropy

of the observation distribution and thus satisfies the devised objective function of

Chapter 2, Equation 2.16.

• The proposed acoustic model is optimal,

The ML estimators are modeled with the large margin discriminative learn-

ing method. The decision boundaries form a unique hyperplane that sepa-

rate data[68] with the largest margin between classes of data. This is for-

mulated as the optimization problem of minimizing a quadratic functional

subject to a linear constraint. Solved with Lagrangian multipliers, its dual

form is used to determine the parameters for the resultant hyperplane. This

dual form (Equation 4.26), W , is maximized:

W = ∑
i

α − 1

2
∑
i, j

yi y j αi α j

(

xi · x j

)

, α ≥ 0, ∑
i

yi αi = 0

i, j ∈ I , y ∈ {−1,1}

where, xi,x j are learning examples, yi,y j are the corresponding classifica-

tion results(-1,1), and αi,α j are Lagrangian multipliers. It is a convex opti-
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mization problem that is subject to the Kuhn Tucker conditions. It therefore

has a global maximum. The resultant determined parameters for this hyper-

plane are a linear combination of support vectors and Lagrange multiplier

weights, Section 4.2. The hyperplane through its construction is optimal

both in the sense of minimizing the classification error and it having the

largest margin, or distance, between classes of data. Therefore the proposed

discriminant ML estimator is optimal in this sense.

The acoustic model proposed in this chapter is composed of ML estimators

Section 4.1. The discriminant ML estimators are optimal. Therefore the

acoustic model is optimal in that sense.

• The proposed model is capable of effectively modeling the speech pro-

cess,

The proposed model is an acoustic space modeled with optimal discrim-

inatively trained ML estimators. Specifically discriminant ML estimators

formed using the large margin learning method. The capability of the pro-

posed methodology to model the speech process can be described in the

following.

The ML estimators model the acoustic space segmented by the number of

hidden states within the hidden variable topology. If this model is capable

of modeling the speech it should, as described in Chapter 2, have sufficient

hidden states, U and accurate observation distributions that are modeled

with ML estimators. The necessary number of these states is expressed in

Section 4.1, in the final expression of Equation 4.5 that defines this number,

mU , in terms of the upper bound of the entropy of the observation distribu-

tion that is modeled, H(ϑ),

mU ≥ 2H(ϑ )

This relation is a result of the mutual information, I(), or temporal, relation

between successive observation measurements. Here expressed as rvs, O

and U that represent the observations and latent variables of the hidden

variable topology,

I
(

OnU (n)
)

≥ I
(

On O(n−1)
)

This expression indicates that the mutual information between an observa-

tion at time, or stage, n, On and the process information that is encoded in n

112



realizations of U , U (n), is stronger than that of O at n and the previous n−1

observations. The relation can be further related to the devised objective

function, Equation 2.16, in terms of ML estimators. Thus, mU ≥ 2H(ϑ ), ex-

presses the relationship between the number of hidden states and the quality

of the model of the observation distribution.

As the effectiveness of encoding the observation process is dependent upon

both the ML estimator and the number of hidden states that is also depen-

dent upon the former. By optimizing the ML estimator and using the pro-

posed segmentation of the acoustic space, the resultant model is capable of

effectively modeling the speech process.

• The proposed model increases the accuracy, or information content of

the true speech process in the resultant models,

The proposed model maximizes the entropy of the observation distribution.

The speech process, in this proposed acoustic model, is modeled with dis-

criminant ML estimators. Each estimator is a decision boundary that is

formed with the large margin discriminative method. This decision func-

tion may be expressed in terms of the loss function, L(), Equation 4.11,

L = (y − ŷ) ,

where y is the true decision function and ŷ its estimate. The optimal deci-

sion boundary, y∗, is the boundary the minimizes the expected value of the

error between the true decision boundary and its estimate conditional on the

learning examples, x,

E [(y − ŷ) |x]

The expected value of the log value of the conditional is the conditional

entropy. Maximizing this function maximizes the devised objective func-

tion of Equation 2.16. Since the proposed discriminant ML estimator max-

imizes this conditional, the resultant estimator satisfies the objective func-

tion, Equation 2.16. In doing so it maximizes the information content of the

true speech process in its resultant models.
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Book IV

Experiments
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Table 4.1: Sample Corpus Vocabulary

Grammar Type Grid Dictionary Word

verb bin lay place set

color blue green red white

prep at by in with

letter a-v, y-z

number zero one two three four five six

seven eight nine

adv again now please soon

4.6 Large Margin Discriminant ML Estimator:

Experimental Results

Experiments have been conducted to ascertain the validity of the methodology

presented in the previous section. This was achieved though analyzing the task of

recognizing words from sentences derived from the Grid Corpus [18]. The corpus

used consisted of 33000 unique sentences generated from 33 different speakers.

Each sentence or utterance is derived from the following grammar,

$verb sp $color sp $prep sp $letter sp $number sp $adv,

where sp is a silence marker. The vocabulary is illustrated in Table 4.1.

HMM word models were constructed and trained using half of the corpus com-

posed of utterances from 17 different speakers. Each HMM model consists of 32

Gaussian Mixtures, diagonal covariance matrices, with the number of states cor-

responding to its word phoneme representation as per the CMU dictionary5. Each

utterance of the training set are transformed to a cepstral, MFCC, format consist-

ing of 39 dimensions with energy, delta and acceleration coefficients. A test set

was formed using the unused half of the corpus composed of utterances from 16

speakers differing from the training set. The HTK toolkit [77] was used for creat-

ing the HMM models, cepstral features and for determining the time alignment of

5www. speech. cs. cmu. edu/cgi-bin/cmudict
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Table 4.2: Average Number of Training Examples for SVMs and corre-

sponding number of SVMs per Learning Machine Partitioned by Num-

ber of States per Word

No. States Training Examples SVMs

2 33197.4 3754

4 33856.6 3102

6 38239.4 3047

8 39642.3 2870

10 33991.3 2848

the features. The baseline recognizer produced recognition accuracies of 95.15%

over a subset of the test set.

SVM classifiers were constructed using the HMM word models to provide the

initial segmentation and alignment of the utterances. Each state of the HMM mod-

els were mapped to form a separate SVM classifier creating 256 distinct learning

machines. The HMM models provided the time alignment of each utterance of

the training set to a corresponding state. This time alignment was within a sam-

pling of 10ms corresponding to a frame. Each frame of the training set served as

the generator set with the target labeling derived from the corresponding state la-

bel. The training strategy adopted was one versus all so as the supervisor formed

target responses to each frame of the training set corresponding to Equation 4.30.

Each learning machine was constructed with Gaussian, or Radial Basis Function,

RBF, kernels. The parameters of the model and the parameters of the sigmoid

function of Equation 4.33 were determined using a cross validation procedure,

N-fold, composed of three sets. In this parameter determination scheme, each tar-

get generator training set was split into three parts. Permutations of two out of

three served as training examples with the third part used for testing the perfor-

mance of the resultant SVM. The training examples for each SVM classifier were

formed from the training set of the HMM models. Each frame was inserted into a

database and labeled with its corresponding word model state. From this database,

each SVM training set was formed using all of the features for the target class to-

gether with a fixed number from each other class including examples from every

speaker within the training development set. All SVM classifiers were constructed

using the Torch3 machine learning development suite [17]. The average number

116



Table 4.3: SVM Classifier Error Rates over Training Database and Test

Database Test Sets, Partitioned by Number of States per Word

No. States Train Db Test Set (55512 ex-

amples), Error Rate (x100) %

Test Db Test Set (46260 ex-

amples), Error Rate (x100)

%

2 0.0135 0.0292

4 0.0104 0.0240

6 0.0101 0.0258

8 0.0090 0.0228

10 0.0099 0.0230

of training examples and the resultant number of SVMs per classifier partitioned

by the number of states per word are illustrated in Table 4.2.

A test database was formed with MFCC features that were time aligned to

word state labels using the HMM acoustic models by the discriminative space

mapping technique described in the methodology. This database consisted of

frames from 16 different speakers taken from the test set formed from the cor-

pus.

Two sets of test examples were constructed to ascertain the performance of

the speech classifiers. The first, a set composed of features or frames from the

training database. This set of examples consisted of a small sample of features

representative of each class and each speaker within the training database. The

distribution of frames taken from each class and speaker to form the set of exam-

ples was uniformly distributed. Similarly, a test set of examples was constructed

from the database of test features indicative of unknown speaker examples to the

learning machines. Table 4.3 reflects the average error rates of each classifier with

outputs subjected to Equation 4.33 grouped by the number of states within the re-

spective word models. A positive classification is associated with p > 0.5. The

error rates are with respect to the classifier performance over the sampling of the

features from speakers and features the classifiers were presented and over com-

pletely unseen examples. A lower rate corresponds to fewer misclassifications.

As such, a 0% classification error rate would correspond to a perfect classifier.

The constructed classifiers possess the ability to differentiate between the

speech patterns presented. This is evident from the results of the classification
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exercises conducted over the entire set of SVMs. The strength and flexibility of

the classifiers are reflected in the classification error rates determined in Table 4.3.

The number of SVMs per classifier depicted in Table 4.2 demonstrate the com-

pactness of the learning machines. Only a small fraction of the examples pre-

sented are required to form the decision functions reflecting the distribution of

f (x, y). In the case of the methodology and corresponding experiment setup, the

SVMs are formulated with approximately 10% of the examples presented.

The results of Table 4.3 demonstrate the strong generalization and differentiat-

ing capabilities of the constructed learning machines. The classification error rate

results of the SVMs subjected to the test set derived from the training database

provide evidence that the models do not suffer from overfitting. Furthermore,

they are able to generalize well over unseen examples generated by known speak-

ers. With respect to the test set formed from the training database, a majority of

the examples chosen were not used to train the classifiers but do originate from

speakers of which examples were presented. The classification error rates from the

experiments conducted with the test database set provides empirical evidence that

the constructed learning machines possess powerful distinguishing characteristics.

This can be stated as all of the examples presented are generated by speakers other

than were used to train the classifiers. Each separate speaker and corresponding

utterance provides a significant variation to the speech pattern presented to the

classifier. Relative to the baseline error rate established by the training test set, the

classification of these unseen, significantly variant, examples experience only a

small increase in classification error rate. Inferred in the results of the experiments

conducted is the ability to overcome the problems which hinder other established

discriminative techniques. Those problems being, controlling the complexity of

the learning machine while maintaining a low error rate, as in Equation 4.14, over

known and unknown data points.

As specified in the methodology, the outputs of each classifier are subjected to

post-processing with a sigmoid function to obtain a probabilistic representation.

It had been observed that with the use of this technique, classification error rates

were lower in comparison to unaltered classifier error rates. This is an additional

benefit to the original intention of creating probabilistic measures to aid in ana-

lyzing the performance of the classifiers. The probabilistic measures derived from

the SVM outputs served as a measure of confidence in the classification ability of

a given SVM classifier for a speech pattern. It had been observed that the prob-

abilistic measures were calibrated across all classifiers. This quality makes them

appropriate for discerning sequences of speech patterns for speech recognition.
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Chapter 5

Conclusions and Future Directions

Engineering a solution to the speech recognition problem has inspired many re-

search efforts. It was anticipated that the problem would be solved in its entirety

shortly after the first speech recognizer was devised. The complexity of the prob-

lem, though, has prevented that realization. Over past few decades a rich and

vibrant research community has been formulating innovative solutions to solve

various facets of the problem. Many of these techniques have been subsequently

applied in other scientific fields. Arguably, the speech research community’s most

significant contributions to the scientific process has been its work on stochas-

tic modeling. Stochastic modeling of the speech process is fundamental to the

speech recognition problem. This thesis investigates this problem. It formulates

and presents methodologies to effectively model the observation process with op-

timal stochastic acoustic models. Two such models are proposed. The first, uses

a coupled time series topology that is capable of effectively encoding the speech

process for robust speech recognition. The second models the observation process

with discriminatively trained ML estimators.

The speech process time series can be modeled with a hidden variable stochas-

tic model. This model is capable of effectively representing the speech process.

In its manner of encoding the mutual information, or the correlation between suc-

cessive samples, with a first order Markov chain, the hidden variables capture

the temporal aspect of the signal. It can be shown through information theoretic

concepts that the observation distribution of the input parameterized samples can

be represented within its ML estimators, or, emission densities without loss of

information.

This thesis investigated optimal stochastic models for the speech recognition

problem. Using the time series analysis techniques shown in this thesis, a cou-
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pled time series topology was proposed to increase the information content of the

acoustic space encoded within it for robust speech recognition. It was shown that

the resultant model optimized a derived relation1 that described the statistical pro-

cess. In doing so, it increased the true speech acoustic content of the model. Simi-

larly, a model based on this relation was formed in terms of discriminately trained

ML estimators. Specifically ML estimators that are devised in terms of discrim-

inant decision boundaries formed with the large margin discriminative method.

It was also shown that in formulating the problem in this manner, the resultant

models are capable of modeling the observation process without loss.

The combination of recognizers was shown to be an effective approach to

the speech with noise problem. This method used an optimal coupled stochastic

model to represent the joint space of two representations, or two parameterized

streams of the speech signal. This combined classifier technique utilized both

missing data, MD, techniques for noise robust recognition and combined it with

cepstral based techniques at the decision level. Through an optimal stochastic

coupled time series acoustic model, the joint space of both processes was cap-

tured. Representing the combined classifiers in this manner allowed the statistical

dependencies between both processes to be inferred from the coupled topology.

Moreover, the combined space increased the models’ capacity to capture and rep-

resent the true speech process. This became evident during a series of speech

recognition experiments. Under all tested conditions, recognition results from the

combined joint space fused model outperformed those from all other single pro-

cess acoustic model recognizers tested.

The joint space itself is currently implemented with Gaussian densities that

represent the observation space. The effectiveness of this fused model can be

related to how well it captures the information content of the true speech process.

This can be shown in relation to the objective function of Equation 2.16. Since

this objective function is not dependent upon modeling with Gaussian densities

(as is demonstrated with the discriminant ML estimators), the effectiveness of the

fused model in not dependent on the use of Gaussian densities.

This methodology may be further enhanced by investigating improvements

to the MD mixture model. Further refinements to the MD acoustic models can

only improve the combination of recognizers’ capability to represent the speech

process. Currently the MD mixture model has some modeling limitations due

to some necessary assumptions. These conditions can be potentially overcome

through the use of variational methods.

1The relation is the objection function ≈ H (O|U), Equation 2.16
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Discriminative models of ML estimators within a hidden variable topology

have the potential to effectively capture the speech process. Discriminatively

trained ML estimators can be devised from a segmentation of the acoustic space

that permits the speech process to be captured and segmented into unique seg-

ments suitable to form discriminant decision boundaries. An ML estimator formed

with a large margin decision boundary was shown to be both the optimal ML esti-

mator and one that maximizes the entropy of the speech acoustic model. Through

non linear decision functions formed from parameterized speech frames, these

classifiers were shown theoretically and empirically to be capable of representing

the observation distribution of the speech process without loss. Empirically this

was evident with the strong classification performance (2-3% error rate) of the

classifiers over a test set of cepstral based speech frames. This set of research

may be further enhanced though introducing either regressive large margin dis-

criminant methods or relevance vector machines into the methodology. These

discriminative techniques may offer further refinements to modeling the ML esti-

mators.

5.1 Contributions

The presented thesis contributes to stochastic modeling for speech recognition

research in the following manner. Contributions:

• Development of objective function relating true observation distribution to

an estimate in terms of the directly observable measurements and latent

hidden variables.

• Formulation and development of an optimal stochastic model for the speech

with noise problem. Proposal of a combination of recognizers that through

a simple system fusion, combines multiple speech processes at the decision

level. This is a novel stochastic method devised to combine a parameter-

ized spectral missing data, MD, theory based and a cepstral based speech

process using a coupled hidden variable topology. In using a fused coupled

hidden Markov model, HMM, topology, an optimal stochastic model is pro-

posed that is inherently more robust than single process models under noisy

conditions.

• A novel analysis and comparison of the capabilities of coupled hidden vari-

able topologies to model the speech process.
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• Through the maximization of the devised objective function, Equation 2.16,

it is shown that the resultant optimal combined acoustic space contains

greater information content of the true observation distribution. Thus is

capable of improved recognition accuracies.

• Segmentation of the speech acoustic space in a manner that can represent

the speech process effectively and can be modeled

• Devising an optimal discriminant ML estimator to model the speech obser-

vation distribution.

The contributions are directly related to effectively modeling the speech pro-

cess with stochastic acoustic models. These contributions form stochastic models

for the speech recognition problem. An objective function is devised, that relates

the observation distribution to its estimate. This objective function, formulated

in this manner, represents both the transient properties of the signal and its infor-

mation content. In maximizing the estimate term of this expression, the resultant

model is capable of representing the observation process without loss of informa-

tion.

A novel acoustic model is devised to model the speech process for the speech

with noise problem. Here, an effective robust model is formed through a simple

system fusion of multiple speech processes at the decision level. Its contribution to

speech recognition stochastic modeling is in the approach that is taken for robust

speech recognition. This approach combines two speech processes at the decision

level. By inferring the statistical dependencies between a missing data, MD, ASR

process, and a conventional cepstal process, the resultant acoustic model is robust

under both stationary and non stationary noise conditions. The structure of the

resultant model is formed such that it satisfies the devised objective function. Thus

it effectively models the speech process.

An optimal acoustic model is devised that is composed of optimal discriminant

ML estimators. Its contribution to the stochastic modeling of speech is in that the

resultant model is optimized to effectively encode the speech process without loss.

Such models not only benefits from having discriminant decision boundaries, but

also by directly optimizing the devised objective function.
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Appendix A

Previously Published Work

N. Joshi and L. Guan, “Missing data ASR with fusion of features and

combination of recognizers,” IEEE Spoken Language Technology Workshop, pp.

114–117, 2006.

N. Joshi and L. Guan, “Combination of Recognizers and Fusion of Features

Approach to Missing Data ASR Under Non-Stationary Noise Conditions,” IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP

2007, pp. 1041–1044, 2007.

N. Joshi and L. Guan, “Feature Fusion Applied to Missing Data ASR with the

Combination of Recognizers,” Journal of Signal Processing Systems, pp. 1–12,

2009.
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Appendix B

Abbreviations

ASR Automatic speech recognition.

CMN Cepstral mean normalization.

COR Combination of recognizers.

HMM Hidden markov model.

KL Kullback-Leibler.

MD Missing data.

MF Mel-frequency.

MFCC Mel-frequency cepstral coefficients.

ML Maximum likelihood.

NN Neural network.

SVM Support vector machine.

Acronyms in order of appearance:

IBM International Business Machines

HMM Hidden Markov Model

NN Neural Network

DARPA Defense Advanced Research Projects Agency

CMU Carnegie Mellon University

BBN Bolt, Beranek and Newman

SRI Stanford Research Institute

MIT Massachusetts Institute of Technology

RASTA Relative Spectra

MD Missing Data

WWW World Wide Web
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HLT Human Language Technology

NP Noun Phrase

ML Maximum Likelihood

MF Mel Frequency

MFCC Mel Frequency Cepstral Coefficient

CMN Cepstral Mean Normalization

PMC Parallel Model Combination

KL Kullback Leibler

SVM Support Vector Machine

EM Expectation Maximization

ASR Automatic Speech Recognition

CASA Computational Auditory Scene Analysis

CDHMM Continuous Density Hidden Markov Model

MAP Maximum Aposterior Probability

COR Combination of Recognizers

HTK Hidden Markov Model Toolkit

CTK Computational Auditory Scene Analysis Toolkit

SNR Signal to Noise Ratio

SFD Segment Fragment Decoder

MLP Multilayer Perceptron

RBF Radial Basis Function
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