Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2008
Co-synthesis of multiple processor embedded
systems for real time applications

Anika Awwal
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Awwal, Anika, "Co-synthesis of multiple processor embedded systems for real time applications” (2008). Theses and dissertations.
Paper 167.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/167?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

s
P

oA
o\L

CO-SYNTHESIS OF MULTIPLE PROCESSOR EMBEDDED SYSTEMS
FOR REAL TIME APPLICATIONS

Anika Awwal
BASc, University of Toronto, 2004

A thesis presented to Ryerson University
in partial fulfilment of the requirements
for the degree of

Masterl{ of Applied Science

Graduate Program in Electrical and Computer Engineering
Toronto, Ontario, Canada, 2008
©Anika Awwal 2008

PROPERTY OF
RYERSON UNIVERSITY LIBRARY

Declaration

I hereby declare that I am the sole author of this thesis. I authorize Ryerson Univer-
sity to lend this thesis to other institutions or individuals for the purpose of scholarly

research.

I further authorize Ryerson University to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

Anika Awwal

ii

Abstract

Co-synthesis of Multiple Processor Embedded Systems for Real Time Applications
Masters of Applied Science, 2008

Anika Awwal

Electrical and Computer Engineering

Ryerson University

This thesis presents the methods for automating the synthesis of multiprocessor real-
time embedded systems. It describes an evolutionary technique of finding an afford-
able architecture for a multi-mode multi-task system while meeting the real-time con-
straints imposed by designers.

First the synthesis problem is introduced and previous co-synthesis approaches to
handle this problem are discussed. Then the description of the proposed co-synthesis

framework foe real time systems is presented. The co-synthesis framework consists of

iii

four main steps, namely processing element allocation, process assignment, scheduling
and evaluation. The method determines a set of feasible solutions with optimized parti-
tioning and real-time schedules for processes and data communication. The framework
is capable of producing acceptable solutions for critical systems with hard real-time
deadlines by employing process level prioritization and by meeting the process level
deadlines. Moreover, the proposed scheduling methodology achieves better PE uti-
lization as compared to the conventional non-preemptive scheduling technique. The
co-synthesis method is demonstrated by applying it to examples ffom the literature and
to industrial benchmarks, such as auto industry, telecommunication, networking and

office automation.

iv

Acknowledgements

First, I would like to express my gratitude to my supervisor, Gul N. Khan, for his close
supervision on all the work presented in this thesis. He is methodical, imaginative and
an excellent research advisor. I would like to thank NSERC and Ryerson University
for providing financial support. The equipments provided by the Canadian Micro-
electronics Corporation were valuable and important for implementing the proposed
algorithm. Finally, I would like to thank Robert P. Dick (Northwestern University) for

discussions on E3S benchmarks implementation.

Table of Contents

Declaration
Abstract
Acknowledgements
Table of Contents
List of Figures

1 Introduction

L1 OVEIVIEW . . . o o v e e e e e e e e e e
1.2 Motivation v .o e e e e e e e
1.3 Objectives e
1.4 Contribution
1.5 Thesis Organization v i

vi

ii

iii

vi

2 Co-synthesis of Real-time Embedded Systems 6

2.1

2.2

23

Definitions. 7
2.1.1 Constraint Specification: Task Set, Tasks and Processes 7
2.1.2 Processing Flements and Communication Resources 10
2.1.3 Utilization, Load and Laxity factor of a Processor 11
2.1.4 Scheduling Algorithms Taxonomy 12

Optimization Techniques for Scheduling and Assignment

Methods e 14
2.2.1 Optimization Algorithms for Scheduling Methods 15
2.2.2 Optimization Algorithms for Assignment/Allocation 19
Co-synthesis Approaches 23
2.3.1 Pioneering Work in Co-synthesis 23

2.3.2 Synthesis of Distributed Embedded Systems and Multiproces-
SOrSyStems 27
2.3.3 Co-synhesis of Multiprocessor Real- time Embedded Systems 30

2.3.4 Co-synthesis of Multi-mode Embedded Systems 33

3 Co-synthesis of Heterogeneous Multi-task Embedded Systems with Real

Time Constraints 36

3.1

Introduction 36

vii

3.1.1 System Architectureo 37

3.1.2 Optimization Algorithm Requirements 38
3.2 System Specification and Solution Representation 39
3.3 Optimization Algorithm for Proposed Co-synthesis Method 42
3.4 [Initialization of PE and Communication Resource Allocation 44
3.5 Deadline Assignment oo 47
3.6 Scheduling 48
3.6.1 Process Prioritization 49
3.6.2 Scheduling of Communication Events 55
3.6.3 Scheduling of Processes, 56

3.6.4 Verification of Schedule List by Utilization Factor Computation 58

3.7 Solution Evaluation 61

3.8 Evolution of New Solutions by Genetic Algorithm 63
3.8.1 Solutions Ranking 64

382 Halt e 64

3.8.3 Solutions Selection and Reproduction 65

3.8.4 Crossover and Mutation 66

4 Experimental Results 69
41 MPEGEncoder 69

viii

4.2 SOS: Synthesis of Application-specific Heterogeneous Multiprocessor

Systems e 73

43 Houand Wolf’sGraph 77
44 E3SBenchmarks 80
4.5 Multi-mode Applications 95

5 Conclusions and Future Work 97

ix

List of Figures

2.1 Tasks Set Representing a System Specification. 9
2.2 Crossoverfor GA. e 22
3.1 PE and Communication Resource Allocation. 39
3.2 PE and Communication Resource Assignment. 40
3.3 Communication Resource Connectivity Array. 41
3.4 The Co-synthesis Framework. 42
3.5 Solutions for A Generation. 43
3.6 Deadlines and Periods of the Tasks. 48
3.7 Task Graph, PEs, Communication Resources. 50
3.8 Process and Edge Assignment. | 52
3.9 Example of PE and Communication Resource Schedule. 54
3.10 Schedule for Conventional Non-Preemptive Method. 61
3.11 Schedule for Proposed Method. 62

4.1 MPEG Encoder Task Graph. 70
4.2 Initial and Final Generation Solutions for MPEG2 Encoder. 72
4.3 SOS Example 1 and Example2. e 73
44 Houand Wolf Task Graphs. 78
4.5 Telecommunication E3S Benchmark. 81
4.6 Generation 1 and Final Generation Soft Deadline Violation. 87
4.7 Example of Sch‘edule List. 89
4.8 Networking E3S Benchmark. 90
4.9 Office-Automation E3S Benchmark. 91
4.10 Auto-industry E3S Benchmark., 92

X1

Chapter 1

Introduction

In this chapter we give an overview of embedded systems and co-synthesis method.
Here we state the motivation behind our proposed work. We also state our objective,
and we present our contribution in the co-synthesis research field. Finally we discuss

the thesis organization.

1.1 Overview

A large number of modern electronic devices around us are embedded systems. Aver-
age modern cars consist of 10-20 embedded computer systems and these systems are
responsible for a major portion of the cost of a car. The microwave oven we use to
warm our food, the cell phone we use to communicate, printers, almost every mod-

ern device around us are built around embedded systems. Recent implementations of

embedded systems consist of multiple general purpose processors (software processing
elements) and dedicated hardware blocks (hardware processing elements), such as Ap-
plication Specific Integrated Circuit (ASIC) and/or Field Programmable Gate Arrays
(FPGAs) [14, 39]. Co-synthesis automates the process of design space exploration for

multiple processing element embedded systems.

1.2 Motivation

Designing an embedded computer system, especially the ones with the real-time con-
straints, is a challenging job. Hard real-time systems are designed to minimize (if
not completely eliminate all) possible errors and to produce results that are on time.
Life-supporting medical equipments, nuclear power plants, flight control systems are
examples of such embedded systems. Many of these systems have task level, as well
as explicit process level deadlines. The designer can ensure real-time deadlines are
met by using more expensive faster processors. However, they also have to design and
develop affordable low cost systems.

To explore the embedded systems design space, the designer needs to design and
prototype numerous different embedded systems. Manual design space exploration
for embedded system is time consuming and expensive. Though embedded systems

containing multiple processing elements are gaining popularity, design automation of

these systems poses a number of challenges. In this thesis, we propose a new design
automation method that is capable of producing optimized partitioned solutions for
large-scale multiprocessor multi-task embedded systems in finite time.

Initial design automation has been for the low-level stages of design processes and
later design automation moved toward the automation of the high-level (architectural)
design processes. The problem definition of high level designs is more ambiguous
than that of low level ones. As the embedded system synthesis problems become
increasingly well defined and solved, embedded system designers will have to spend

less time to explore design space.

1.3 Objectives

We wanted to design a heuristic optimization algorithm for our co-synthesis method
that can guarantee sub-optimal solutions. The objective of the co-synthesis method
was to determine feasible solutions with optimized partitioning and real-time valid
schedules for processes and communication events. These solutions should have low
resource cost, and they should meet the real-time deadlines as well as schedulability

conditions.

1.4 Contribution

The proposed method is fast and efficient to design large scale high performance em-
bedded system . The presented framework is multiobjective: while meeting the real-
time constraints it also tries to optimize the resource usage. It supports process level
resource sharing, and therefore, it is more flexible than other co-synthesis methods
that use task level resource sharing. We consider process level deadline assignment
and prioritization method. This prioritization method helps the proposed method to
meet the deadlines of critical hard real-time systems.

Unlike many other proposed co-synthesis methods our method does not ignore
communication resource allocation and scheduling. It supports both processing ele-
ments and communication resource allocation and scheduling. It is also capable of
producing efficient solutions for practical modern embedded systems. Moreover, the
proposed scheduling methodology achieves better PE utilization as compared to the

conventional non-preemptive scheduling technique.

1.5 Thesis Organization

The thesis is organized into five chapters. Chapter 2 provides definitions that are use-

ful when discussing hardware-software co-synthesis, formalizes the basic hardware-

software co-synthesis problem, discusses various optimization methods for scheduling
and co-synthesis, and finally surveys the work of other co-design and co-synthesis re-
search groups. In chapter 3, we describe all phases of the proposed co-synthesis algo-
rithm. These include algorithms for initialization of processing elements and commu-
nication resources allocation, scheduling of the processes on the allocated processing
elements, and evolution method for a new generation of solutions. Chapter 4 presents
experimental results. The proposed algorithm is tested with different random graphs
from the literature and industrial benchmarks. Results for these systems are discussed
here. Moreover these results are compared with previous work. We summarize our
contributions, present conclusions, and state some directions for future work in chap-

ter 5.

Chapter 2

Co-synthesis of Real-time Embedded Systems

This chapter provides definitions that will be useful when discussing the proposed co-
synthesis method. Here we also discuss general optimization algorithms used in the
area of scheduling and partitioning. And finally we provide a survey of previous work
in the co-synthesis field.

Hardware-software co-synthesis automates the process of design space exploration
for multiple processing element embedded systems. The problem of mapping func-
tionalities into one of the available dedicated hardware processing elements (hardwére
modules) or implement them as processes on one of the available software processing
elements (traditional CPUs) can be viewed as an optimization problem. The goal of
this problem is to optimize the implementation cost and the performance while meeting

the schedulability condition and real-time constraints imposed on the system. There

are four main steps that are carried out by a co-synthesis CAD tool, namely allocation,

assignment, scheduling and evaluation.

Allocation selects various types of processing elements (PEs) and communica-

tion links that can be used in the system.

e Assignment, determines the mapping of processes to PEs and communication

events to links. Binding or mapping has been used as synonyms for assignment.

e Scheduling determines the order in which processes will be executed on the PEs

they are assigned to.

o Evaluation determines the cost, performance, and amount of deadline violation

of the solution.

To achieve optimal solutions it is important to have feedback from one step of co-

synthesis to others, because each of the steps affects others.

2.1 Definitions

2.1.1 Constraint Specification: Task Set, Tasks and Processes

The proposed co-synthesis method is intended to design multi-task embedded systems.

A multi-task embedded system supports applications with multiple independent exe-

cutable tasks. For our co-synthesis method the behavior, functional requirements and
constraints of a system are represented by a task set. Each of the tasks of the task set
consists of multiple function modules. Fixed Point Bit Allocation (FPBA) and Convo-
lutional Encoder (CE) [43] are examples of function modules of a telecom application.
Functional modules for a system are presented as processes in this thesis. A task can
have multiple processes of the same ﬁlnctior;;llity and different tasks can have pro-
cesses of the same functionality. We assume the processes are coarse grained, which
means a process may be complicated enough to require numerous microprocessor in-
structions.

A directed acyclic graph (DAG) represents a task of a system and the nodes of a
DAG represent the processes of a task. A simple example of a system with two tasks
and the processes is shown in Figure 2.1. The volume of data transferred between
a source and a destination node is associated with the edge (arc) between the two
nodes. There are two tasks for this system. First task has four processes, and second
task has three processes. A dependant process may start executing after all of its data
dependencies have been satisfied. Process P4 of first task in figure 2.1, may begin
execution after both process P2 and process P3 complete execution and required data to

process P4 (3kbits from process P2 and 1kbits from process P3) have been transferred.

Period=5 Period=3

Deadline=2

Deadline=5 Deadline=3

Figure 2.1: Tasks Set Representing a System Specification.

The period of a task is the time between one copy of task ready time and consecu-
tive copy of the same task ready time. A system with multiple tasks may have different
periods for different tasks. The hyperperiod of a task set is the least common multiple
of the periods of the tasks. A node without any incoming edges is called a source node
and a node with no outgoing edges is called a sink node. The deadline of a process
(or task) is the time by when the process (or task) must complete its execution. A
deadlgne can be either soft deadline or hard deadline. If for a synthesis solution, one or
more multiple processes violate the hard deadline, then that solution will be an invalid

solution. It is not desirable that a process misses its soft deadline, but meeting the soft

deadline is not mandatory.

2.1.2 Processing Elements and Communication Resources

A processing element (PE) execute processes. A PE can be a general-purpose pro-
cessor, an application specific integrated circuits (ASICs), a field programmable gate
array (FPGA), or of any other processor type. A PE library is available as an input
to our co-synthesis tool. A PE library for a system describes some characteristics of
the PEs, such as price, power consumption etc. It also contains information about the
relationships between processes and PEs, such as worst-case execution time for each
task-PE pair.

If for a particular system architecture solution, dependent and parent processes are
assigned to different PEs, the edge connecting these two processes must be assigned to
a communication resource. When there is no communication resource connecting the
PEs, then the architecture is invalid. The main attributes of a communication resource
are communication controller price, transmission time per bit, the number of contacts,
power consumption during operation etc. A communication resource can connect a
number of PEs that are equal or less than its number of contacts. A point-to-point
communication resource has two contacts and a bus can have more than two contacts.
The worst-case communication time for an edge can be calculated from various param-
eters, such as the amount of data need to be transferred for the edge and transmission

time per bit for the communication resource.

10

2.1.3 Utilization, Load and Laxity factor of a Processor

The Utilization factor of a processor is the fraction of time the processor is busy exe-
cuting the application processes. Utilization factor, U can be expressed with equation

2.1. Load factor, CH of a processor can be calculated with equation (2.2).

U= ZC,-/T,- 2.1)

i=1 '

CH= Y C/D 2.2)
i=1

wehere,

n is total number of processes,

C; is the execution time of the processor for a specific process i,
T; is the period of process i, and

D; is the deadline of process i.

The laxity factor of a processor at any time ¢ is the maximal time the processor
may remain idle after ¢ without causing a process to miss its deadline. The conditional
laxity factor, LC;(¢) can be presented by equation (2.3) where the sum in j presents
the pending execution time of all the processes (including process i) that are ready to

execute at ¢ and have a higher priority than process i. The laxity factor LP(¢) is the

11

smallest value of all LC;(?).
LCi(t) = Di=) Ci(0) 2.3)
J
2.1.4 Scheduling Algorithms Taxonomy

Off-Line scheduling algorithms are executed on the processors before the processes are
activated. The schedule list is then used by the dispatcher. The run-time overhead of
these algorithms is assumed to be low. However, these algorithms are not appropriate
for real-time systems, as process activation for real-time systems is difficult to calculate
off-line.

On-Line scheduling algorithms are executed online, during the run-time, and schedul-
ing decision are taken every time a process is ready to execute or a process com-
pletes its execution. Each process is prioritized based on its temporal parameters.
Processes can be assigned to a fixed priority or a dynamic priority. Fixed priority
is assigned based on fixed parameters, before a process is activated. Dynamic pri-
ority is assigned based on the dynamic parameters that may change during system
evolution. Among the basic on-line algorithms with static prioritization methods,
rate monotonic scheduling (RM) and deadline monotonic scheduling (DM) algo-
rithms are the most known ones. For RM scheduling, priority is assigned based on

the period of a process. A process with the shortest period is assigned the highest pri-

12

ority. If the condition presented in equation (2.4) is satisfied for a PE, then » number
of processes are schedulable on that PE using RM scheduling. This is a sufficient

schedulability condition.

U=) CiITi<n2""-1) 2.4)

i=1

For DM scheduling, pribrity is assigned based on the deadline of a processes, the
shorter the deadline of a process, the higher its priority is. If the condition presented
in equation (2.5) is satisfied for a PE, then » number of processes are schedulable on

that PE using DM scheduling. This is a sufficient schedulability condition.
U= Y Ci/Di<n""~1) 2.5)
i=1

Earliest deadline first (EDF) algorithms and least laxity first (LLF) algorithms
are the most important dynamic priority assignment algorithms. For EDF algorithms,
processes are prioritized based on their absolute deadlines. A process with the earliest
deadline will be prioritized the highest. LLF' algorithm assigns the highest priority to
the process with the smallest laxity (difference between deadline and execution time
of a process). A necessary and sufficient schedulability condition for EDF algorithm

and LLF algorithm is

U=) C/D;<1 (2.6)
i=1

13

Dynamic prioritization methods can achieve higher PE utilization comparing to static
prioritization methods, but they have a higher run-time overhead. Whereas static prior-
itization methods are more predictable and low priority processes have chances to miss
their deadlines, dynamic prioritization methods are unpredictable, and a large number

of processes may miss deadlines.

2.2 Optimization Techniques for Scheduling and Assignment

Methods

Allocation/assignment and scheduling are known to be NP-complete problems [1, 38].
An algorithm that can find guaranteed-optimal solution to an NP-complete problem
usually takes an amount of time exponentially dependent on the problem size. There-
fore heuristic algorithms have been used in the literature to solve co-synthesis prob-
lems for large systems,

Optimization algorithms attempt to minimize a value, the roptirnized cost of a sys-
tem. The optimization cost of a system depends on some parameters of a system that
are called optimization parameters. The set of solutions around a solution is called
the neighborhood of the solution, if they can be reached in one discrete step of the
optimization algorithm. A local minima is a solution that has the lowest optimized

cost in the neighborhood. A global minima is a solution that has the lowest optimized

14

cost in the whole problem space. In general optimization algorithms try to avoid get-
ting stuck in the local minima, and attempt to find the .global minima. Some of the
heuristic algorithms are iterative improvement algorithms. For an iterative algorithm,
greediness is the tendency or probability to choose a cost-decreasing change over a
cost-increasing change. Greedy algorithms are one of the simplest and the most com-
monly used heuristic approaches. For greedy algorithms, at a given stage, only the
best choice at the present stage is considered, without taking into account any previous
and later decisions. Greedy algorithms have a tendency to get trapped in local min-
ima or local maxima. In the following sections we discuss some popular optimization

algorithms that can be used to solve scheduling and assignment/allocation problems.

2.2.1 Optimization Algorithms for Scheduling Methods

Scheduling is a very important phase of co-synthesis. Scheduling of a system deter-
mines the start time and completion time of the processes. As discussed in the previous
section, the start time of a process must satisfy the dependencies of the DAG. This de-
pendency constraint limits the amount of process execution parallelism. Scheduling
affects the performance (completion time of a task) of a system for a co-synthesis
solution, because it determines the order and concurrency of the process execution.

There are scheduling methods for systems without resource constraints and there are

15

scheduling methods for systems with resource constraints. Our co-synthesis algorithm
focuses on systems with resource constraints. If resource constraints are imposed, the
number of processes that can execute in parallel depends on the number of available
processors. The solution of scheduling problem under resource constraints provides
the trade-off points of the design space.

To achieve exact solutions for resource constrained scheduling problems, Integer
Linear Programming (ILP) method can be used. To formulate scheduling problems
as linear problems, the objectives and constraints need to be defined as linear equa-
tions. The objective is to minimize the schedule length under the imposed resource

constraints, and the following additional constraints :

The start time of each process is unique

The earliest possible start time for a process is when all its parent processes have

finished execution and completed required data transfer

The number of processes executing in parallel depends on the number of avail-

able processors

Maximum schedule length has to be smaller than a specified upper bound.

The advantage of ILP formulation is that it provides an exact solution to scheduling

problems. The disadvantage of this method is that ILP formulation is computationally

16

complex. For medium scale examples ILP schedulers are efficient, but for large scale
examples, when the number of variables or constraints of the linear equations become
more than several hundreds, ILP schedulers fail to solve the problems.

To simplify the scheduling problem many researchers have reduced the number of
variables and made simplified assumptions of less numbers of constraints. It can be
assumed that all the processes can be executed by the same type of processors and it
takes one unit execution delay to execute all the processes. Under these assumptions,
to find the minimum number of processors required to schedule processes with latency
constraint, researchers have used Hu’s algorithm [18]. If it is also assumed that the
DAG as a tree (single paths from each vertex to sink), the problem can be solved in
polynomial time. Hu’s algorithm applies greedy strategy. At each scheduling step it
schedules as many ready-to-execute prbcesses as possible.

The above simplified assumptions are impractical for real multiprocessor embed-
ded systems. Without making these assumptions, minimum-latency resource-constrained
scheduling problems and minimum-resource latency-constrained problems are known
to be intractable. Therefore, to solve the scheduling problems heuristic algorithms
have gained popularity. Among heuristic algorithms, list scheduling has been widely
used [27]. For this algorithm a priority list of the processes (based on some heuristic

urgency measure) is used to select among the processes. The priority list can be mod-

17

ified to support the timing constraints, by reflecting t‘he proximity of an unscheduled
process to a deadline. Using this technique, it is possible to meet the timing constraints,
but due to the heuristic nature of list scheduling, there is no guarantee in finding the op-
timal solution. The list scheduling method can be applied to find a scheduling solution
to minimum resource with latency constrained problems. At the beginning the least
numbers of processors aré allocated and to meet the latency constraints. If required
additional processors are allocated. The processes are prioritized based on a slack
based prioritization method [9]. S/ack for a process is calculated based on the differ-
ence between the latest possible start time of the process and the index of the schedule
step under consideration. The low computational complexity of the list scheduling
method made the algorithm very popular for large systems. For smaller system this
method is capable of finding optimal solutions. Among other scheduling algorithms
force-directed scheduling [30], trace scheduling [12] and percolation scheduling [32]
methods are most well known.

Genetic algorithms, tabu search and dynamic programming algorithms can be used
for scheduling methods. We discuss these optimization methods in the following sec-

tions, as these methods have been used for assignment/allocation.

18

2.2.2 Optimization Algorithms for Assignment/Allocation

Different optimal approaches and heuristic approaches have been used to solve assign-
ment/allocation problems. The simplest approach is to try out all possible solutions
and then select the best option. However, this approach is not feasible, because design
space can be very large. Even for the lowest number of possible PEs (i.e. two PEs) of
a system with N processes, there are 2" number of possible solutions. Hence there is
no guarantee to find the best optimal solution manually in a finite amount of time.

Among optimal approaches, integer linear programming (ILP) and dynamic pro-
gramming have been used widely to solve the partitioning problem [33, 26]. Using
ILP for assignment (partitioning) is similar to the use of ILP for scheduling (discussed
earlier in this section).

Dynamic Programming approach has also been known as an efficient approach for
hardware-software partitioning. In this method, the optimization problem is decom-
posed into a sequence of stages. The optimal solution to each stage must belong to the
optimal solutions of the original problem. The success of this approach depends on
how efficiently the problem is divided and complexity to reach an optimal solution at
every stage of the problem.

The discussed optimal approaches are suitable for only small assignment problems.

For large systems, these methods become computationally too expensive, because of

19

the exact nature of the solutions. Therefore, heuristic approaches, like simulated an-
nealing, genetic algorithms, tabu search techniques have been widely researched to
solve the process assignment problem for co-synthesis algorithms (see section 2.3).
These heuristic approaches provide good-quality solutions, but they cannot guarantee
the optimality of the solution.

Simulated annealing techniques are iterative improvement algorithms. Greediness
in simulated annealing increases during the run of the algorithm [8]. During a simu-
lated annealing algorithm run, probability P of a modified solution fo get accepted can

be represented with the following equation
P =1/ +N-DITy 2.7)

where,

T is the global temperature parameter,

P is the cost of the old solution,

N is the cost of the modified solution.

The temperature parameter begins at a high value (infinity) and decreasés as the sys-
tem stabilizes. Beginning of a simulated annealing algorithm run, changes that in-
crease the cost of a solution are selected with the same probability as changes that
decrease the cost, and the algorithm can escape local minima. But this stage does

not help to reach the goal of reducing optimized cost. Towards the end of the run

20

cost-decreasing changes have higher probaBility to be preferred comparing to the cost-
increasing changes and thus the algorithm degrades to a greedy iterative algorithm.

Tabu search algorithms are another type of powerful heuristic algorithms that can
be used for efficient hardware-software partitioning. Tabu search uses a local search
method to escape a local minima. It maintains a tabu list that keeps track of all the
recently visited solutions. The iterative improvement procedure prohibits the solutions
on the tabu list to be revisited for the next it¢ration and thus tries to avoid getting
trapped in one neighborhood of the solution space. The tabu condition might be over-
ruled if it results in an overall low cost. After a specified number of iterations, the
search is restarted from the initial system state to expand the search of the design
space.

Genetic algorithms maintain a set of solutions. During the run of the algorithm,
for each generation these solutions evolve in parallel over time. For each genera-
tion, solutions from the current generation are improved by randomized local changes
performed by genetic operators and exchange of information between solutions. The
lowest quality solutions of a generation are then removed from the solutions set by
ranking and selection process [13]. In genetic algorithm, the term chromosome typ-
ically refers to a candidate solution to a problem. All changes to chromosomes are

made with two operators that are mutation and crossover. Mutation operation ran-

21

Figure 2.2: Crossover for GA.

domly picks a location on the solution array and changes the entry of the location with
a new value. crossover randomly picks two solutions and two locations on these solu-
tions, and swaps portions of solutions between these two location. Figure 2.2 shows an
example of crossover. For two randomly chosen solutions presented in the figure, the
randomly chosen positions are position 1 and 3. After crossover portions of solutions
between position 1 and 3 are swapped and one new pair of solutions are evolved.
Genetic algorithms are capable of handling difficult problems composed of multi-
ple NP-hard problems, even if each of these problems has huge solution spaces. But
it is difficult to design and implement genetic algorithms. Genetic algorithms can be
claimed to be better heuristic comparing to simulated annealing algorithms and tabu
search algorithms based on the argument that only GA has the ability to share infor-

mation between solutions.

22

2.3 Co-synthesis Approaches

In this section we discuss some of the past co-synthesis approaches. A lot of research
has been done in the area of hardware-software co-design. Some related research
on hardware-software co-synthesis with real time constraints have also been reported.
Some recent work on multi-mode multi-task embedded systems has also been reported.
Unfortunately, most of the techniques found in the literature suffer from some prob-
lems — either they are computationally intensive, or do not account for real-time con-

straints, process level deadlines, communication link scheduling, etc.

2.3.1 Pioneering Work in Co-synthesis

Prakash and Parker used Integer Linear Programming (ILP) for SOS to solve parti-
tioning problems [33]. Input to the algorithm is in the form of data flow graph and the
algorithm synthesizes a multiprocessor architecture. The constraints and objective for
a heterogeneous multiprocessor system are presented with formal mathematical equa-
tions. These equations are then linearized and solved by applying simplex technique
with Bozo program [15]. It is possible to find the best optimal solution for systems
with a limited number of processes by using Prakash and Parker’s method. However
as pointed out earlier; the computation time to find the solution using ILP increases

exponentially with the system size.

23

Gupta and Micheli presented one of the earlier approaches in the area of opti-
mization for hardware-software co-synthesis [14]. The authors proposed the idea of
optimized hardware-software partitioning to meet the constraints imposed by the de-
signer. There are trade-offs between hardware and software implementations while
capturing and making use of a partitions effect on system performance. They proposed
that a partition cost function should be devised to capture these properties. Then this
cost function can be used to direct the partitioning algorithm toward a desired solu-
tion, where the optimum solution is defined by the minimum value of the partition
cost function. Unlike the previous research done in this area that has only focused
on optimizing area and pinout of resulting circuits, the authors emphasized on how
capturing the effect of timing behavior in the partition cost function is very crucial.
The authors suggested that to find a solution that minimizes this cost function, a large
number (exponential to the number of operations under partition) of solutions should
be examined.

Ernst et al. developed a co-synthesis system COSYMA [11]. The system specifi-
cation is represented in C*, a superset of C language. A simplified assumption of only
one software processor and one hardware block was made. Authors used simulated
annealing for the partitioning process. The method starts with infeasible solutions that

violate the timing constraints, and then improves the solutions by migrating function-

24

ality from software to hardware. A cost function was used to estimate the cost and also
to control partitioning process. Hankel and Ernst proposed a co-synthesis method that
dynamically determines the partitioning granularity to achieve better partitioning re-
sults [16]. It is assumed that software and hardware parts execute in mutual exclusion.
This partitioning process was integrated in COSYMA.

Kalavade and Lee presented a constructive partitioning algorithm [19]. First it is
decided whether hardware area is more critical for a system or the time is more critical
for the system. This is selected by the threshold based comparison of a global time-
criticality measure, called global criticality. In the next phase of the algorithm, named
as local phase, each process is mapped to hardware or software based on different cri-
teria of a process. This algorithm works on coarse granularity and partitions a system
by traversing a list of processes.

Liu and Wong integrated partitioning with scheduling algorithm for their iterative
improvement algorithm [25]. Authors made a simplified assumption of fixed number
of PEs for a system, two software PEs and k number of hardware PEs. The algorithm
starts with allocating all the processes to the software PEs. Later appropriate processes
are migrated to hardware based on the feedback provided by the scheduler, to minimize
the completion time and resource cost.

Mooney and Micheli presented a tool that performs real time analysis and priority

25

assignments [26]. To meet hard real time constraints, authors used dynamic program-
ming algorithms to assign the static priorities to that processes. Proposed real-time
scheduler is able to achieve tighter bounds thus squeezing more performance out of
the same components as compared to a traditional RTOS. However, as mentioned ear-
lier due to the exact nature of dynamic programming algorithms, they are only suitable
for small problems.

Eles et al. presented an approach for system level specification and hardware-
software partitioning with VHDL [10]. The authors formulated HW-SW partitioning
as a graph partitioning problem and solved it by implementing two iterative improve-
ment heuristics based on simulated annealing and Tabu search. They mainly focused
on deriving a perfect cost function that should be optimized. The problem of using
a linear weighted sum as the cost function is that the weighing array has to be ap-
propriate for the problem instance, and also for the designer’s desired solution [9].
However, since the co-synthesis problem is too complicated without first exploring all
the possible solutions, it is hard to find an instance’s best weighing array.

Shaha et al. used a genetic algorithm for hardware-software partitioning [36].
Some simplifications are made in their work. For instance, only one software pro-
cessing element is allowed, and thus it cannot handle multiprocessor distributed sys-

tems. Moreover, communication link synthesis is not carried out. The fitness function

26

presented, only considers the violation of constraints, and does not try to find better
solutions among the valid solutions.

Areto et al. provided a formal mathematical analysis of the complexity of the par-
titioning problems. It was proved the partitioning problems are NP — hard in general
case, and the authors presented some efficiently solvable special cases of partitioning
problem [1]. Only one software processor was considered. The authors in this paper
tried to introduce a simplified model for hardware-software partitioning to make algo-
rithms scalable for systems with hundreds or even thousands of components. Prakash
et al., Shaha et al. and Areto et al. did not consider real time constraints in their work

(1,33, 36].

2.3.2 Synthesis of Distributed Embedded Systems and Multiprocessor Systems

Recently, some researchers conducted research on distributed embedded systems. Ax-
elsson compared three heuristic techniques for hardware software co-synthesis of real-
time systems: a tabu search algorithm, a simulated annealing algorithm and a genetic
algorithm [3]. Dave et al. developed a constructive co-synthesis algorithm (COHRA)
to solve the co-synthesis problem for multi-rate hierarchical distributed embedded sys-
tems [6]. COHRA supports pipelining of the task graphs and employs the combination

of preemptive and non-preemptive scheduling algorithm. Karkowoski and Corporall

27

presented a design space exploration method for homogeneous processing elements on
a single chip [20]. This method employs functional pipelining. Oh and Ha designed
an iterative algorithm for the co-synthesis problem targeting system-on-chip [28]. Hou
and Wolf presented a process clustering method to achieve better co-synthesis results
in lower time [17]. Li and Malik worked on analyzing the extreme (best and worst)
case bounds on the running time of a program on a given processor [24].

Some researchers considered real-time constraints for allocation and scheduling
problems in distributed multiprocessor systems [31, 34, 41]. Xu presented a schedul-
ing algorithm that solves the problem of finding non-preemptive schedule for system
with M identical processors [41]. The simplified assumption of all same type PEs is
not realistic for modern multiprocessor systems. Peng et al. also presented a method
that finds an optimal solution to the problem of allocating communicating periodic
tasks to the heterogeneous processing nodes in a distributed real-time system [31].
The authors assumed that all functional modules (processes) from the same task were
assigned to the same PE. Moreover, the presented method does not support systems
with deadline greater than the period. Therefore, the method is not efficient for most
of the real systems. The method presented by Xu and that presented by Peng. et
al. uses a branch-and-bound search algorithm to find the optimal scheduling solu-

tions for a system. The branch-and-bound search method is capable of finding the

28

exact optimal solution. This optimal approach is suitable for small systems with a
limited number of tasks and processes. Due to the exact nature of the solutions, in
the worst case this algorithm may take exponential amount of time to find the optimal
solutions for large systems. Ramamritham presented a static allocation and schedul-
ing algorithm for periodic tasks and distributed systems [34]. Author used latest start
time/maximum immediate successors first (LST/MISF) heuristic to search a feasible
allocation and schedule. The prioritization method for this algorithm assigns priority
of a process based on the latest start time of a process and the number of successor
processes. This priority assignment method is not efficient, because it only considers
the number of successors and does not consider priority levels of the successors. For
the methods discussed above authors considered constant number of PEs for the multi-
processor systems [31, 34, 41]. Therefore, their allocation and scheduling problem has
only one objective that is meeting the time constraints and this makes the optimization
problem much simpler compared to the multiobjective optimization problem for em-
bedded systems. In the rest of this section, we present the previous research work that

is closely related to the work proposed in this thesis.

29

2.3.3 Co-synhesis of Multiprocessor Real- time Embedded Systems

A number of researchers considered hardware-software co-synthesis with real-time
constraints [7, 9, 23, 39]. Dave et al. presented a new technique for hardware-software
co-synthesis algorithm COSYN, for periodic task graphs with real time constraints [7].
COSYN can produce a feasible distributed embedded architecture for real-time sys-
tems. It allows task graphs in which different tasks have different deadlines. Authors
presented a co-synthesis method to optimize the resource cost and another co-synthesis
method (COSYN-LP) to optimize the power. COSYN is efficient for systems where a
large number of processes are executable on the same type of PE, and thus clustering
the processes speeds up the process assignment [7]. Systems for which a large number
- of PEs is available and where tasks are executable on different types of PEs, clustering
of tasks becomes less advantageous.

Wolf presented an iterative architectural co-synthesis algorithm for heterogeneous
multiprocessor embedded systems [39]. The algorithm starts with assigning each pro-
cess to one PE where the process can be executed efficiently. To minimize the resource
cost, processes are re-assigned based on the PE utilization, i.e. by trying to remove less
utilized PE from the architecture. In the next stage of the algorithfn, process reassign-
ment is performed to minimize communication cost between PEs. In the final stage

of the algorithm, communication channels are allocated between PEs. Depending on

30

whether the communication allocation on an existing channel is possible, the channel
is used or a new channel is added. This heuristic algorithm is fast comparing to other
methods.

Among all the co-synthesis aigorithms presented in literature, only MOGAC uses
multiobjective optimization strategy [8, 9]. Dick and Jha presented a hardware-software
co-synthesis method that partitions and schedules embedded specifications consisting
of multiple periodic task graphs [9]. MOGAC synthesizes real-time heterogeneous
distributed architectures, which meets the hard real time constraints. It used a multiob-
jective genetic algorithm (GA) to optimize the conflicting features of price and power
consumption. The requirements of the embedded system are modeled as DAG. The
authors used multiple general-purpose processors and multiple cores as the processing
element (PE) for co-synthesis. MOGAC was designed such that it accepts a database,
which specifies the performance and power consumption of each task on each avail-
able PE type. Each task graph edge is assigned to a communication link for which the
power consumption and communication time is considered.

Xie and Wolf presented an allocation and scheduling algorithm for systems with
control dependencies among the processes [40]. The proposed method handles condi-
tional execution in multirate embedded systems. The authors proposed a new mutual

exclusion technique for the conditional branches of the task graph to exploit the re-

31

source sharing. Author used a scheduling method that is similar to Sih and Lee’s
proposed compile-time scheduling heuristic [37]. Sih and Lee used dynamic level
scheduling that accounts for interprocessor communication overhead when mapping
processes onto heterogeneous processor architecture. The authors used a simplified
non-preemptive scheduling technique in which lower priority processes might hamper
a higher priority process execution.

Chakravarty et al. used a stochastic scheduling algorithm to schedule the processes
for their co—synthesiskmethod ESCORTS [4]. Using this scheduling method, the au-
thors are able to assign non-preemptive stochastic start and completion time to the
processes for a given allocation, with polynomial time complexity. A hierarchical ge-
netic algorithm is used for resource optimization. The GA chromosomes are evaluated
using a cost feasibility function. For this method chromosomes with a fitness value
below a certain threshold are removed immediately, and these invalid solutions do not
get a chance to evolve into better solutions.

Lee and Ha proposed a co-synthesis algorithm applicable for general multiproces-
sor systems with diverse operating policies [23]. The proposed algorithm separates
the partitioning method from schedulability analysis and thus adaptable to various
scheduling and operating policies. The proposed method takes into account the ef-

fect of partitioning results of higher-priority process when partitioning a lower-priority

32

process. This algorithm also adopts the schedule-based schedulability analysis of
timed multiplexing model in the performance evaluation step. The authors proposed
a schedulability analysis technique to schedule all tasks until their hyper-period. A
preemptive scheduling algorithm is used. If any task cannot meet the real-time con-
straints, the framework reports an error message. Lee et al.’s algorithm supports only
task level deadlines and does not support process level deadlines, which can be critical
for hard real-time systems [35]. As explained earlier in section 2.1.1 every task of a

system consists of one or multiple processes.

2.3.4 Co-synthesis of Multi-mode Embedded Systems

Only a few recent work were done in the area of multi-mode embedded systems. Oh
and Ha proposed techniques for multi-mode, multitask embedded systems with real
time constraints [29]. This iterative co-synthesis method has three main steps that
solve the sub problems separately. In the first step of the algorithm a set of processing
elements are allocated. The next step of the algorithm schedules the acyclic graph of
each task to the selected processing elements to minimize the schedule length. In the
final stage of the algorithm, evaluation is performed to check if the design constraints
are satisfied and to compute the utilization factor. The problem with this algorithm is,

each task is scheduled independently and to reduce the schedule length, all tasks use

33

the fastest candidate processor as much as possible. As a result the faster processors
tend to be always over utilized and the slower ones always under utilized. Oh and Ha’s
method assumes that processes in different tasks can not be executed in parallel and
consequently the schedule length becomes unnecessarily longer.

Kim and Kim’s recent work proposes hardware-software partitioning technique for
multi-mode embedded systems [22]. Unlike Oh and Ha, authors considered process-
level resource sharing and parallelism rather than task level resource sharing. Pro-
cesses are scheduled such that tasks can be executed in fully, partially parallel, or
completely nonparallel based on the status of resource sharing between the processes
in the tasks. Finally a global optimization method for PE allocation for all the tasks
and all modes of a system is proposed. Scheduling method used for the proposed al-
gorithm, schedules processes such that a process starts executing as soon as it is ready
to execute. Consequently, a lower priority process may keep executing, while a higher
priority process becomes ready, hampering the higher priority process execution. This
simple scheduling method is not realistic for critical real-time systems.

Process assignment methods for the multi-mode, multi-task co-synthesis methods
discussed above, are not efficient for systems with a large number of candidate PEs
[22, 23, 29]. For each process assignment, every PE is considered and for large number

of PEs the method of repeated re-assignment and re-scheduling can be laborious, and

34

sometimes not feasible. Some of the proposed co-synthesis algorithms discussed here
do not provide allocation or scheduling methods for the communication links [22, 23,
29]. Communication link allocation and scheduling is critical for system optimization,
and for accurate evaluation of target system architecture. Most of these co-synthesis
methods use conventional task level prioritization method for scheduling, which is not

efficient for satisfying real-time process level deadlines [22, 23, 29].

In this chapter we provided some definitions that will be useful when discussing
the proposed co-synthesis method. Here we discussed general optimization algorithms
used in the area of scheduling and partitioning. This chapter also provides a survey of

previous work in the co-synthesis field.

35

Chapter 3

Co-synthesis of Heterogeneous Multi-task Embedded

Systems with Real Time Constraints

In this chapter we describe our co-synthesis framework, and the software implemen-
tation associated with it for hardware software partitioning and process scheduling of
a real-time system. First we present the main steps of the proposed method, and then

we describe these steps in detail.

3.1 Introduction

The co-synthesis problem is formulated to optimize the system cost and performance,
while satisfying the schedulability conditions: The proposed co-synthesis algorithm

can produce valid system architectures meeting real time deadlines and area con-

36

straints. Optimized system partitioning (mapping/assignment) is achieved using a
genetic algorithm (GA) that can avoid becoming trapped in the local minima. The
proposed co-synthesis method employs a new static priority list scheduling technique
to schedule the tasks on their assigned PEs and the data communication on the com-
munication resources [2]. It can handle multi-rate systems containing tasks with hy-
perperiods that are large relative to their periods. A single co-synthesis run of this
algorithm produces multiple designs that present the trade-offs points of a multiple PE
architectural design space.

In this chapter we explain how we represent the solutions and system specifica-
tions. Here we provide detailed description of our co-synthesis steps, such as alloca-

tion, assignment, scheduling, initialization and evolution techniques.

3.1.1 System Architecture

The proposed method does not place any limit on the number of PEs (software or
hardware) in the architecture. It supports the use of multiple types of communication
resource (bus or point to point) in the target architecture. The following assumptions

are made for the target multi-processor embedded architecture:

o The target system can consist of multiple software and hardware PEs that can

work in parallel.

37

e A communication resource can support communication for multiple PEs based

on the number of contacts available on the link.

e PEs can perform computation concurrently while transferring data to other PEs.

3.1.2 Optimization Algorithm Requirements

The goal of our co-synthesis algorithm is to produce a sub-optimal embedded real-
time architecture by allocating PEs, finding process assignment to the allocated PEs,
and by finding a scheduling order for the architecture. This architecture should have
low cost and must meet the real time constraints. The algorithm requires the appli-
cation specifications in the form of DAGs and a PE library describing types of PEs
and communication resources (see sections 2.1.1 and 2.1.2). As mentioned in section
2.2, partitioning and scheduling problems are NP-complete, and in the worst case they
may optimally require an amount of time exponential in the size of problem instance.
Hence we were forced to resort to a heuristic optimization algorithm that can guarantee
sub-optimal solutions. This algorithm should be able to avoid becoming trapped in the
local minima, and it should assimilate problem-specific heuristic into the optimization

framework easily.

38

()

e2 |
a e3 Processors Communication
Resources

DAG
PEO | PE2 PEO | PE1 | PE2
Processors that can execute P1 Processors that can execute P3
PEO | PE1 | PE2 PE1
Processors that can execute P2 Processors that can execute P4

Figure 3.1: PE and Communication Resource Allocation.

3.2 System Specification and Solution Representation

The proposed co-synthesis algorithm accepts a PE library that specifies the execution
time of each process on each available PE, a list of processes that are not executable on
each PE and cost of each PE. The types of PEs available for a process are represented
by an array of integers, and the types of communication resources are represented by

another similar array of integers. For example for a system presented in Figure 3.1,

39

three PEs are available, and a communication resource with three contacts is available.
There are two PEs, PEO and PE2 that can execute process 1, three PEs are suitable for

process 2 and 3, and process 4 is executable only on PE1.

PEO %

|

t

!

Link 0 i

7
PE2 &

| PE2 | PEl | PEOI PEI l | Link0 l Link0 | Link0 |
Pl P2 P3 P4 el 2 €3

Process assignment array Edge assignment array

Figure 3.2: PE and Communication Resource Assignment.

Process assignment is presented with a one dimensional array. The offset in this
array corresponds to the process. The integer at each offset represents the PE the
process is assigned to. For example, for the DAG and PE allocation presented in Figure
3.1, one possible PE assignment and communication resource assignment solution is
presented in Figure 3.2. Every process is assigned to one of the available PEs and Link

0 connects all the three PEs that need to be connected for data transfer.

40

For every communication resource an array of PEs specifies which PEs the com-
munication resource is connected to. In Figure 3.3, Link 0 has two contacts and it
connects PEO and PE1, Link 1 has three contacts and it connects PEO, PE2 and PE3,

Link 2 has two contacts that connect PE2 and PE3.

Link 0 Link 1 Link 2
(2 Contacts) (3 Contacts) (2 Contacts)

PEO l l PEI I | PE2

Figure 3.3: Communication Resource Connectivity Array.

For our software implementation of the co-synthesis algorithm, there are four
main structures that model the system. The Node structure represents processes, the
Edge structure represents the data communication between processes, the PE struc-
ture represents processing elements, and the Link structure represents communication
resources. Some fields of these structures are specified by the user. The user provides
the system specification, e.g. available PEs, DAG, and system constraints in the form

of cost (hardware area), real-time process deadlines etc.

41

3.3 Optimization Algorithm for Proposed Co-synthesis Method

The main steps of our co-synthesis algorithm are given in Figure 3.4. The shaded
rectangles and diamonds present the genetic algorithm steps. At the first step of the
algorithm, the solution pool for the genetic algorithm is initialized with a randomized
solution. After this step the algorithm enters the main loop of the algorithm and the

next steps of the algorithm are repeated until the halting condition reaches.

. Initialization-
PE Library oo »| First Generation PE allocation and process assignment
» Task prioritization and scheduling l
...... » *
DAG

Performance Evaluation |

v

GA input-
Present generation PE allocation and process assignment

Final generation of optimized solutions

GA output-

PE Library —— Next generation PE allocation and process assignment

Figure 3.4: The Co-synthesis Framework.

42

The PE assignment solutions for the generations of the genetic algorithm are pre-
sented with a two dimensional array in which the first dimension corresponds to the
solution index, and the second dimension corresponds to the process index. For our
co-synthesis algorithm the GA chromosome is encoded as an array and the genes in
terms of integers (see Figure 3.5). For a specific run of this system, process assignment

arrays for the first, second, and nth solution of a generation are presented in Figure 3.5.

Proc 1 Proc 2 Proc 3 Proc 4

[pEr [Pe2 [PE1 [PE3 |
o] Solution- 0 Process Assignment
1 3 1
[pE2 [PE3 [PE2 [PE3 |
Q ° —— Solution- 1 Process Assignment
' | |PEl |PE2 |PE3 |PE1 |
n
Solution- n Process Assignment
(a) I (b)

Solution array for
a generation

Figure 3.5: Solutions for A Generation.

43

3.4 Initialization of PE and Communication Resource Allocation

Initial solutions are generated by the initialization method of PE allocation and com-
munication resource allocation. The initialization method is presented below. The first
process of the system is assigned to a PE by a randomized selection mechanism. One
of the available PEs, capable of executing the first process is chosen randomly. For
other processes, first it is checked if one of the already allocated PEs is capable of
executing the process. When none of the allocated PEs is suitable for executing the
process, the process is assigned to a new PE by the randomized selection procedure. If
already allocated multiple PEs are suitable for executing the process, then a random-
ized selection method is used to choose one of these PEs to execute the process. This
initialization procedure, confirms the assignment of all the processes to valid PEs, for

a minimum resource cost.

1 for each process P;
2 for every allocated PE

3 if the PE is capable of executing P;

4 The PE is entered in the suitablePElist

5 endif;

6 endFor;

7 if suitablePElist is not empty

8 Randomly choose one of the PE from suitablePElist

9 else

10 randomly choose one of the PE that is capable to execute P,
11 endIf;

12 endFor;

44

Every communication event is assigned to a communication resource. A com-
munication resource can support communication between a limited numbers of PEs,
depending on the number of the contacts of the communication resource. Communi-
cation between any two PEs can use at most two contacts of a resource. The first com-
munication event that need to be assigned to a resource is assigned by a randomized
selection method. For other communication event assignments, first already allocated
resources are considered. If one (two) of the contacts of one of the available allocated
resources has (have) been used for one (or both) of the PEs under consideration, there
is no need to allocate a new contact for the PE. Communication event assignment is
performed in such a way that the least number of new communication resource con-
tacts are added to the architecture. This assignment technique avoids the addition of
extra communication resource contacts to system resource and minimizes the total re-
source cost. If none of the already used communication resources are economical for
the communication event, a new resource is randomly selected to perform the com-
munication event. Communication resource (CR) allocation algorithm is presented

below.

1 for each edge e;

45

2 while number o f available allocated CR, that have not been checked yet > 0
3 randomly choose one of the allocated communication resource CR;
4 if the source process of e; is one of the contacts of CR;

5 if the sink process of e; is one of the contacts of CR;

6 assign e; to CR;

7 break

8 else

9 use one of the available contact of CR; for e; sink process
10 assign e; to CR;

11 endif;

12 else

13 if the sink process of e; is one of the contacts of CR;

14 use one of the available contact of CR; for e; source process
15 assign e; to CR;

16 endif;

17 endif;

18 if e; is assigned to CR;

19 break;

20 else

21 check another randomly chosen already allocated CR

22 endWhile;

23 if e; is not assigned to any one of the allocated CR

24 Randomly choose a CR for e; from PE library

25 endIF

26 endFor;

46

PROPERTY OF
RYERSON UIVERSITY LIBRARY

3.5 Deadline Assignment

The hyperperiod of the system is calculated as the least common multiple (LCM) of
the periods of the tasks. Each task has a hyperperiod/period number of copies for
the duration of the hyperperiod. It is assumed that, for a particular system architecture
solution, if all the copies of all the tasks of a system are schedulable within the hy-
perperiod, then the system is schedulable for the solution [23]. The proposed method
supports a deadline longer than the period, which means multiple copies of the same
task can be ready to execute simultaneously. Deadlines for the first copy of each task
are specified by the user. The proposed method also supports process level deadlines.

Deadlines for the copies of a process are calculated as given in equation (3.1):

Deadline of nth copy of a process = Process_period * (n — 1) + Deadline of the 1st copy (3.1)

For example consider a system presented in Figure 3.6 , with a hyperperiod of 6.
Task 0 has a period of 3 and there are two copies of task 0 within the hyperperiod.
Task 1 has a period of 2 and there are three copies of task 1 within the hyperperiod.
The first copy of the sink node of task 0 has a deadline of 4. The second copy of task
0 is ready to execute at time unit 3, while the first copy might be still executing. The

second copy of task 0 has a deadline of 7 time unit. The first copy of the sink node of

47

TaskO Taskl1

Period=3, DL=4 Period=2, DL=2
®) O Q
\O/ Q O O/ \O
20N N oo O
O O O 7N\
O/ \O O O
Copy0 Copy!l /O\
Copyl O O
Copy2

Figure 3.6: Deadlines and Periods of the Tasks.

task 1 has a deadline of 2. The second copy of task 1 is ready to execute at time unit
2, and it has a deadline of 4 time units. The third copy of task 1 is ready at time unit 4

and has a deadline of 6 time units.

3.6 Scheduling

For a co-synthesis algorithm run, scheduling is carried out during each solution eval-
uation. Our static scheduling method is non-preemptive and allows preemption only
for the special cases where preemption time is smaller than the schedule length saved
by preemption. This results in a lower context switch overhead delay as compared to
traditional preemptive scheduling techniques. In our scheduling algorithm, processes
of an input task is scheduled on their assigned PEs in the order of priority. The static

prioritization method makes it possible that hard real-time constraints are met. Note

48

that, data transfer time is added to the parent process end time, to calculate the ready
time of a process, when the parent and dependent processes are allocated to different

PEs.

3.6.1 Process Prioritization

For each generation and each solution, all the copies of every process are relatively
prioritized based on their deadline, execution time, and children priority after these
processes are assigned to PEs. If a process does not have a deadline, for the priority
assignment purposes, the shortest of the deadlines of the children processes is taken as
the deadline. Unlike many other conventional prioritization methods [22, 23, 29], our
technique assigns priorities at the process level, as compared to task level, even when
the deadlines are not specified at the process level. It guarantees that the ancestors of
the sink process complete execution in time and the sink process can meet its dead-
line. The priority assignment methodology used in our co-synthesis procedure is an
improved vérsion of the priority assignmént method employed in COSYN [7].

We will use the task graph, PEs and communication resources presented in Figure
3.7 to explain the prioritization method. PE library for the application is presented in

Table 3.1, and communication resource library is presented in Table 3.2.

Let us assume a solution is generated by the co-synthesis algorithm, for which pro-

49

Figure 3.7: Task Graph, PEs, Communication Resources.

cess assignment and communication events (edges) assignment is presented in Figure
3.8. Below the process assignment array for each process, execution time on the as-
signed PE is presented in parentheses, and below the communication event assignment
array for each edge, data transfer time on the assigned communication resource is pre-
sented in parentheses. Data transfer time for a communication event is calculated as

given in equation (3.2).

Data Transfer Time of an edge = Communication_resource_rate x Amount_of data, 3.2)

According to equation (3.2) data transfer time between a source and destination pro-
cess is calculated based on the data transfer rate (time/bit) of the communication re-
source the event is assigned to, and the amount of data (in bits) needs to be transferred
between the processes.

Priority level assignment for the processes can be represented by the following

equations (3.3) and (3.4):

50

Table 3.1: PE library.

process | PEO (cost:40) | PE1 (cost:20) | PE2 (cost:35)
Exec. Time Exec. Time Exec. Time
1 0.7 1.5 1
2 0.5 1.7 1.3
3 - 1 -
4 1 - 0.7
5 1.3 - 0.5
Table 3.2: CR library.
link | cost per contact | contacts | rate
0 6 2 1
1 10 2 0.8

Priority Level of a sink process = Proc_time — Deadline;

51

(3.3)

Priority Level of a nonsink process = Proc_time + Max o f(child_Priority_level, —Deadline); (3.4)

The priority of a process is assigned by employing priority level equations (3.3) and

(3.4). For process and communication event assignment presented in Figure 3.8, prior-

€3 e4
(0.0006) (0.0005) __
DL=4—> a DL=3
| PEO I PEO l PEI | PE2 | PE2 | | Linkl I Linkl | Link0 l Link0 |
Pl P2 P3 P4 Ps el €2 e3 e4
07 05 O 07 (035 (0.0016) (0.0008) (0.0006) (0.0005)

Figure 3.8: Process and Edge Assignment.

ity levels and priorities of all the process are presented in Table 3.3. Proc_Time is the
execution time for a process on the PE it is assigned to, including the data communi-
cation time (maximum of the data transfer time for all incoming edges). For example,
for calculating the proc_time for process P3, maximum data transfer time (0.00016)
for edge el is added to the execution of P3. The proc_time of a process differs from
solution to solution depending on which PE the process is assigned to, and on which
communication resource the incoming edges are assigned to. Child process priority for
a process is taken as the maximum priority of all the dependent processes. For exam-
ple child priority for P3 in Table 3.3 is taken as the maximum of P4 priority (-3.2994)

and PS5 priority (-2.4995). DL in fourth column of Table 3.3 refers to the deadlines of

52

processes. Priority levels of the processes are calculated by employing equations (3.3)

and (3.4). Here P1 has the highest priority, and P4 has the lowest priority.

Table 3.3: Priority assignment.

process | Proc. | child priority | DL | Priority | Priority
(no.) Time (no.) Level
P1 0.7 -1.4979 3 | -0.7979 5
P2 0.5 -1.4979 3 | -0.9979 4
P3 1.0016 -2.495 3 | -1.4979 3
P4 0.70006 - 4 | -3.2994 1
P5 0.5005 - 3 | -2.4995 2

This prioritization method helps to meet the real-time constraints, and achieves
better results comparing to prioritization methods used in rate monotonic and deadline
monotonic scheduling methods [2, 5]. In the deadline monotonic method, priority
assignment is based on the process deadline alone. If there is a situation, where a
process has two times longer deadline as compared to a 2nd process, but also has an
execution time three times longer than that of the 2nd process, then the first process
has a higher probability to miss the deadline. For deadline monotonic scheduling,

the first process will have a lower priority than the second process. However, in our

53

prioritization method, the 2nd process will be prioritized higher. The priorities of
the processes with children, depend on the children priority as well. The priority of a
process differs from one solution to other, because the priority depends on the process’s
execution time. Data communication events on the communication links are prioritized
as follows. Data communication for a higher priority destination process is assigned a
higher priority as compared to the data communication for a lower priority destination
process.

The schedule lists for the PEs and communication resources based on the priorities

in Table 3.3 are demonstrated in Figure 3.9.

PEO

Link1

PE1

LinkO

PE2

Figure 3.9: Example of PE and Communication Resource Schedule.

54

3.6.2 Scheduling of Communication Events

The scheduling algorithm of communication events is given in the following pseudo

code (HP stands for higher priority, and CR; stands for the assigned communication

resource for the edge):

Communication Event Scheduling

1 for each process in the order of priority

2 for each incoming edge

3 EdgeReadyTime = SourceProcessEndTime;

4 PresentTime = EdgeReadyTime;

5 for each HP edge in the order of scheduling sequence of CR;

6 if PresentTime < HP EdgeStartT ime

7 if PresentTime + DataTrans ferTime <= HP EdgeStartTime;
8 The Edge is scheduled in this empty slot;

9 break;

10 else

11 PresentTime = HP EdgeEndTime;

12 if HP EdgeStartTime < PresentTime < HP EdgeEndTime
13 PresentTime = HP EdgeEndTime;

15 endFor;

16 EdgeStartTime = PresentTime;

17 ParentDataS entTime = EdgeS tartTime + DataTrans ferTime;
18 endFor;

19 endFor;

Communication events for the incoming edges of the process are scheduled on the

assigned communication resources. After the source process of an edge finishes exe-

55

cuting, communication event for the edge can take place on the assigned resource. To
schedule a communication event on a communication resource, data transfer start and
end times for all the already scheduled communication events on that communication
resource are checked. If the communication event can start and finish data transfer
before one of the scheduled communication is ready for transfer, then the communica-
tion is scheduled on that empty slot (lines 6,7 and 8). If there is no suitable empty slot
among the higher priority edges, then the edge has to wait until all the higher priority
edges finish data transfer on the communication resource. Destination process of an

edge receives the required data from the source process at ParentDataS entT ime.

3.6.3 Scheduling of Processes

Process scheduling algorithm for the PEs is presented below. HP stands for higher
priority and PE; stands for the PE on which the process is being scheduled. A process
is ready to execute when required data from its parent processes have been received
(line 2). Process execution can take place on the assigned PE, when the PE has an
available time slot to execute the process. To schedule a process on a PE, execution
start and end times for all other already scheduled processes on that PE are checked. If
the process can complete execution before one of the scheduled processes is ready to

execute, then the process is scheduled on that empty slot of the PE (lines 6 and 7). For

56

the case of preemptive scheduling option, a portion of a process execution is allowed
in an empty slot, only if the preemption time is smaller than the empty slot (lines 12
and 13). The finish time of a process is the process start time added to the execution

time for that process.

Process scheduling :

1 for each process in the order of priority

2 ProcessReadyTime = max of all ParentDataS entT ime;

3 for each scheduled HP process in the order of scheduling sequence of the PE;
4 EmptyTimeS lot = HP ProcessS tartTime — ProcessReadyTime

5 if EmptyTimeS lot > 0

6 if ProcessExecutionTime <= EmptyTimeS lot;

7 The Process is scheduled in this empty slot

8 break; / * No need to check other HP processes * [

9 else

10 if Preemption is allowed

12 if ProcessPreemptionTime < EmptyTimeS lot

13 A portion of the Process is scheduled in the empty slot;
14 ProcessStartTime = ProcessReadyTime

15 ProcessExecituiomTime — = EmptyTimeS lot;

16 ProcessExecituiomTime + = ProcessPreemptionTime;
17 ProcessReadyTime = HP ProcessFinishTime;

18 else/ * no empty slot be fore the HP process * |

19 ProcessReadyTime = HP ProcessFinishT ime;

20 endFor;

21 if the process was not preempted
22 ProcessStartTime = ProcessReadyTime;

23 ProcessFinishTime = ProcessReadyTime + ProcessExecutionT ime;
24 endFor;

57

3.6.4 Verification of Schedule List by Utilization Factor Computation

In this section, we will demonstrate that the proposed scheduling methodology makes
it possible to achieve better PE utilization as compared to the conventional non-preemptive
scheduling technique. We assume that if all copies of all the tasks are schedulable
within the hyperperiod, then the schedulability condition is satisfied [23]. Our method
has a better chance of satisfying the schedulability condition‘. For conventional meth-
ods, process sequencing is based on priority, which means higher priority processes
are always scheduled on a PE before the lower priority processes. As a result, many
empty time slots on PEs are wasted, which could be used to execute lower priority
processes, which are ready. Our scheduling algorithm allows a lower priority pro-
cess execution before the higher priority processes, if some conditions (see previous
section) are met. In this way, higher priority process execution is not hampered by
executing a lower priority process.

We compare the utilization factor for both methods by following equations (3.5),
(3.6) and (3.7). Assume that the processes under consideration are assigned to PE,,.
The priority of the highest prioritized process is denoted by » and the priority of the

process that is the last to be ready for executing within the hyperperiod (due to data

58

dependency) is denoted by » — y. Let us assume, there exist another process, which
has priority n — z. Please note that y,z are integers where z is greater than y. The
process with priority » — z, has a lower priority than the process with priority n — y.
Let us also assume that the process with priority n — z is ready to execute before some
higher priority processes (which is often a common case). The process execution time
for the processes with priority » is denoted by ¢, and processes execution time for
the processes with priority less than n, is denoted by c,-1, cy—2.. and so on. Let us
also assume that, between process with priority # finish time and process with priority
n — 1 ready time, there is an empty slot large enough to execute a process with priority
n — z. Equation (3.5) presents utilization for the conventional method and equation

(3.6) presents utilization for our scheduling technique.

PE, utilization(conv.) = (¢, + Cp-1 + Cp—z + .. + C»y) hyperperiod 3.5
PE, utilization(prop.) = (¢y + Cpz + Cp-1 + Cnz + .. + Cuy)/ hyperperiod 3.6)

PE, utilization(prop.) — PE, utilization(conv. method) = c,_,/hyperperiod (3.7)

From equation (3.7) it can be observed that the proposed method achieves better uti-
lization as compared to conventional methods by c,-./hyperperiod. We use the E3S

benchmark for telecom to compare PE utilization for our scheduling with the conven-

59

tional method. The DAG, PE library (Table 4.7) and communication resource library
(Table 4.8) for this benchmark are presented in section 4.4.

Consider a solution with three PEs (PE1, PE5 and PE13) for a resource cost of
297 (including the communication resource cost). The hyperperiod for this system is
0.001 time units. Figure 3.10 presents the schedule for the processes of the system that
are assigned to PE13, by using the conventional non-preemptive scheduling. One can
observe from Figure 3.10 plbt that there is a large empty slot on this PE between the
processes with priority 35 and 34. All the lower prioritized processes , are waiting for
process with priority 34 to finish executing first. As a result of this waiting of the lower
priority processes, the schedule length for the processes is extended to 0.00152 time
units. PE13 utilization for the hyperperiod in this case is 0.398. The toial schedule
length is greater than the hyperperiod indicating that the processes assigned to PE13
are not schedulable and this architecture is not a valid solution. If we explore the
design space with all other options of process assignment on these three PEs, it can be
observed that no valid solution can be produced for the low cost of 297 by using the
conventional scheduling.

Figure 3.11 presents the schedule for the system processes that are assigned to
PE13, based on our scheduling method. As we can observe from Figure 3.11 that by

allowing lower priority processes execute before the higher priority process, the empty

60

Conventional scheduling method

40
35 -
30 A -
25 , . S,
20 -
15 -
10 A
5 i T i
0 : : . ;
0.0000 0.0002 0.0004 00006 0.0008 0.0010 00012 0.0014

Scheduling slots

Priority

Figure 3.10: Schedule for Conventional Non-Preemptive Method.

slots for PE13 processor have been filled out. In this way PE13 utilization for the
hyperperiod is increased to 0.926. Using this technique it has been possible to provide

a valid schedule (schedule length less than hyperperiod 0.001) for lower resource cost.

3.7 Solution Evaluation

Solution evaluation is performed by calculating system’s cost, total resource (hardware
area) used for the system, process graph completion time, and the amount of deadline
violation. The completion time of each process is recorded during scheduling. Sched-

ule for every process spans the system’s hyperperiod. Therefore, it can be verified

61

Our Scheduling Method

40
3/ — -
30 -

25 - —
20 - B
15
10 A

5 s —e—

Priority

0 T T T T T T T
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

Scheduling Slots

Figure 3.11: Schedule for Proposed Method.

whether a process has missed its deadline by inspecting its completion time. Every
task of a system has one or more processes with specified deadlines. Hard real time
constraint violation for a system is the sum of the deadline violations of all such pro-
cess in all task copies in the system. Resource cost for a solution is determined by the
sum of the cost of all the PEs and communication resources allocated for the solution.

A solution is invalid if it follows any of the following conclusions:
e it violates the resource constraints
e it cannot meet the specified deadline

e it does not have the required communication links available for the specified

62

architecture
e it cannot satisfy schedulability conditions

These invalid solutions are not terminated immediately. It might be possible to repair
the invalid solutions. However, it is also difficult to formulate a repair operation that
will guarantee producing all valid repaired solutions [8]. Therefore the invalid solu-
tions are treated the same way as the valid solutions during evolution. These solutions
are given a chance to reproduce for the next generations and evolve into high-quality
valid solutions by mutation and crossover.

Valid solutions may violate their soft constraints, although it is desirable to reduce
a cost or schedule length until it is lower than its soft constraint (section 2.1.1). For a
co-synthesis algorithm run, evaluation method is carried out for every solution of each

generation.

3.8 Evolution of New Solutions by Genetic Algorithm

In this section we discuss the solutions selection and evolution techniques. The number
of solutions for every generation of a co-synthesis algorithm is constant during a par-
ticular run of the algorithm. This number is chosen at the start of the run. For our co-

synthesis algorithm this number varies depending on the system size and complexity.

63

During selection and reproduction for every solution created for the new generation,

another solution is terminated.

3.8.1 Solutions Ranking

The invalid solutions are ranked based on the amount by which they violate the hard
constraints (section 2.1.1). For valid solutions, ranking is performed based on the
resource cost of the solutions. The lower the resource cost for a solution, the higher it is
ranked. If two valid solutions have the same resource cost, ranking is performed based
on the soft deadline violation proportion and schedule length, where solutions with
better (smaller) deadline violation proportion and shorter schedule length are ranked

higher.

3.8.2 Halt

After ranking, if the halting conditions have not yet reached, the selection process is
performed on these solutions for next generation evolution. These steps are repeat-
edly performed until one of the halting conditions reaches. The halting condition oc-
curs when a number of generations pass without any change in the solution pool. At
the end of a run, the feasible solutions of the final generation that meet the imposed

constraints, are presented to the user. These solutions present the design space with

64

trade-off points.

3.8.3 Solutions Selection and Reproduction

During the solution selection process, some solutions in the present generation are
selected for reproduction. The higher the rank of a solution, the more likely it is to
be selected for reproduction. Once a good solution is produced for a generation, the
solution may be lost in the next generation by random selection, mutation or crossover.
That is why if the best solution for a generation meets all the constraints, it is passed
on to the next generation without any changes. In this way, the best ranked solution
is preserved until a better solution is evolved in another generation and ranked as the

best solution. Our solution selection algorithm is presented below.

Selection Algorithm
1 for Total_ Number_of _solutions
2 Generate a random number between 0 and Total_rank;

| * Total_rank = sum o f ranks of all the processes * |

3 for Each solution s;

4 NextRank = PreviousRank + The_solution_rank;
5 if PreviousRank <= random number < NextRank
6 The solution s; is selected,

7 break;

8 else

9 PreviousRank = NextRank;

10 endFor;

11 endFor;

65

3.8.4 Crossover and Mutation

Mutation and crossover operations are performed on the selected PE assignment ar-
rays. During the mutation operation , for a randomly selected process, the PE assign-
ment is changed by énother PE that is capable to execute the process. During crossover
operation on a randomly selected pair of PE assignment arrays, two offsets on the ar-
rays are chosen randomly. Integer presenting PE types for the offsets between these
two randomly selected offsets are exchanged between the selected arrays.

For example, consider the assignment arrays shown in Figure 3.5. We assume
assignment arrays for solution 0 and 1 are randomly selected for crossover. The ran-
domly chosen offsets on these arrays are offset 2 and 3. Therefore PE assignments are
exchanged for offset 2 and offset 3 between PE assignment array 0 and 1. For the new
solution 1, process 2 will be assigned to PE2 and process 3 will be assigned to PE1.

To preserve the locality of the solutions towards the end of a run, the probability
of crossover and mutation is lowered for the later generations of a run. After these
crossover and mutation operations, a new generation of solutions consisting of new
system partition is evolved. The solutions of the newly evolved generation are pri-

oritized, scheduled, evaluated, and ranked as described in the earlier sections. The

66

algorithms for crossover and mutation are presented below.

Crossover Algorithm
1 for every generation g;

2 fori=0toi= TotalNumberofsS olutions/2

3 randomly choose one pair of solutions(PE assignment Arrays)
4 if g; < TotalNumbero fGenerations|2

5 probability of crossover is 1/2

6 else

7 probability of crossover is 1/5

8 endIF;

9 if the pair is selected for crossover

10 Randomly choose two of fsets(processes) of the solutions
11 swap the integers(PEs) at each of fset between these of fsets
12 endIf;

13 endFor;

14 endFor;

Mutation Algorithm

1 for every generation g;
2 for every solution(PE Assignment Array)

2 for every of fset(process) of the solution

4 if g; < TotalNumbero fGenerations|2

5 probability of mutation is 1/2

6 else

7 probability of mutation is 1/5

8 endIF;

9 if the of fset(process) is selected for mutation

10 Randomly choose a PE that can execute the process
11 change the integer(old PE) at the of fset with the new PE
12 endlIf;

13 endFor;

13 endFor;

14 endFor;

67

In this chapter we described our co-synthesis framework, and the software implemen-
tation associated with it. We described the allocation and assignment technique for the
method. Here we presented the initialization, scheduling, prioritization and evolution

algorithms for the co-synthesis method in detail.

68

Chapter 4

Experimental Results

We have implemented the co-synthesis algorithm using C language and results are ob-
tained by executing on a shared 450 MHZ 4 X UltraSPARC-11 CPU with 4 Gigabytes
of memory under Linux environment. The method has been tested with different ran-
dom graphs and benchmarks. In this chapter we present the results for MPEG encoder,
SOS, Hou and wolf’s graphs and E3s benchmarks. We compare our results with the

results presented for various real-time co-synthesis techniques in the literature.

4.1 MPEG Encoder

For the experimental purpose, MPEG encoder application was fed as an input to the

co-synthesis algorithm.

69

Initialization
1

o
D o
]S

Motion
Vector 14

DCACcoding
19

Entropy

Encode 20

Figure 4.1: MPEG Encoder Task Graph.

70

The MPEG encoder DAG (Figure 4.1) with 21 coarse-grained processes and PE
library used for the system are adapted from a recent co-synthesis research by Khan
and Ahmed [21]. The comparison between the first generation of random solutions
and the final generation of optimized sQlutions, for a co-synthesis run of the MPEG
encoder system, are plotted in Figure 4.2. Here, the schedule length (performance) of
the MPEG2 encoder system is in clock cycles. From these results, it can be observed
that our co-synthesis algorithm is able to produce an optimized solution with 85%
better performance (shorter task finish time) compared to the first generation random
solution with the same area cost (8963 logic block units). For the same schedule length
(30000000 time units), the method is able to produce an optimized architecture with

18% better area cost as shown in Table 4.1.

Table 4.1: MPEG?2 first and final generation.

Generation | Resource Cost (Schedule Length of 30000000)

1 10591 unit

Final 8963 unit

The co-synthesis method running time for this 21 nodes graph was 4.08 seconds.
If we compare this time with the results presented by Wolf for a 15 process system

[39], we can observe that our synthesis method required almost half of the running

71

120000000

8 Generation 1 Performance
100000000 B Final Generation Performance
80000000
60000000
40000000
20000000 -

0
Area

™M B o W
O © N~ M
n v ©O© O
o o o O

—

8963

Figure 4.2: Initial and Final Generation Solutions for MPEG2 Encoder.

time for a more complex system consisting of 21 processes. While different computer
systems have been used for Wolf’s and our example, significant improvement in our
algorithm execution time demonstrates that the proposed algorithm is efficient in terms

of algorithm execution time.

72

4.2 SOS: Synthesis of Application-specific Heterogeneous Multi-

processor Systems

We used Prakash and Parker’s example to verify the efficiency of our proposed co-
synthesis algorithm [33]. Figure 4.3 demonstrates the DAGs for SOS example 1 and
SOS example 2. Table 4.2 presents PE library for example 1 while Table 4.3 shows PE
library for example 2. These libraries list the execution time for every process on the

PEs. The value in parentheses associated with each PE is the cost of that PE.

fr(i)=0.25 fa(o,,)=0.50

fri,)=0.25 fa(,,)=0.75

fr(i,)=0.25 fa(o,)=0.50 SOS example 2
fr(i;,)=0.50 fa(oq,)=0.75 .
fr(iq)=0.25 fa(os,)=0.75

fr(i4,)=0.50 fa(os)=0.75

SOS example 1

Figure 4.3: SOS Example 1 and Example 2.

73

Table 4.2: PE library: SOS example 1.

Process | PE1(4) | PE2(5) | PE3(2)
1 1 3 -
2 1 1 3
3 - 2 1
4 3 1 -

Table 4.3: PE library: SOS example 2.

Process | PE1(4) | PE2(5) | PE3(2)
1 2 3 1
2 2 1 1
3 1 1 2
4 1 3 -
5 1 1 3
6 1 2 1
7 3 1 4
8 - 2 1
9 1 1 3

74

For these DAGs, the authors assumed that the process may begin execution before
all of its input data has arrived [33]. Their model implies that part of each process is
independent of the process’s input data. As presented in Figure 4.3, each input has a
parameter fz associated with it, which is the fraction of the destination process (code)
that can proceed without requiring that particular input. Each output has a parameter
/4 associated with it. The output is available when f; fraction of the source process
is completed. For the second example Prakash and Parkar assumed the processes are
fully dependent on the processes’s input data. Unlike Dick et al.’s work, where this
model is changed to a conventional one [9], our algorithm does not make any change
to the original Prakash and Parker’s graphs. Like Prakash and Parker, we support
fraction input or output options for the processes.

Table 4.4 provides the comparison of our algorithm’s performance with SOS [33]
and MOGAC [9] when they are applied to Prakash and Parker’s process graphs. The
cost number shown by each process graph is the total PE and communication link
cost. For instance, “P&P1.2(13)” refers to Prakash and Parker’s first process graph,
design 2, with a resource usage of cost 13. Our algorithm does not guarantee the best
optimal solution, but only feasible solutions. However, it can. be observed from Table
4.4 that like SOS, in each case the set of solutions also contains the optimal results.

Moreover for two of the designs (namely 2.1 and 2.3), our algorithm achieved better

75

results compared to the other heuristic algorithms presented in literature [9]. Table 4.4
also’lists the CPU running time of our algorithm for each case. If we compare the CPU
running time of our algorithm, with the ones reported in the literature [7, 9, 33, 39], it

is evident that our algorithm requires considerably less CPU running time.

Table 4.4: Results - Prakash&Parker’s example.

No. of Performance(time units)
Example(cost)

Proc. | SOS | MOGAC | Proposed | CPU time(s)
P&P1.1(14) 4 2.5 2.5 2.5 0.048
P&P1.2(13) 4 3 3 3 0.054
P&P1.3(7) 4 4 4 4 0.054
P&P1.4(5) 4 7 7 7 0.035
P&P2.1(15) 9 5 7 5 1.164
P&P2.2(12) 9 6 6 6 1.179
P&P2.3(8) 9 7 8 7 0.139
P&P2.4(7) 9 8 8 8 0.144
P&P2.5(5) 9 15 15 15 0.144

76

4.3 Hou and Wolf’s Graph

We have also tested our method using Hou and Wolf’s examples [17]. Figure 4.4
presents the DAGs for the Hou and Wolf four tasks, and Table 4.5 presents the PE
library for the tasks. The library demonstrates execution time for every process on the
PEs. The value in parentheses associated with each PE is the cost of that PE. The cost

for a point to point communication link for this system is 20.

Table 4.5: PE library: Hou and Wolf’s example.

Process | PEX(100) | PEY(50) | PEZ(20)
a 5 12 18
b 10 18 40
c 5 12 18
d 35 85 95
e 15 22 80
f 30 75 180
g 15 25 85
h 15 35 47
i 7 10 30
j 10 28 35

77

Period=240

TASK 3
Period=200

DL=250

Figure 4.4: Hou and Wolf Task Graphs.

78

Table 4.6 compares the results produced by our co-synthesis algorithm for Hou
and Wolf’s examples [17] with those presented in the literature. The first column lists
Hou and Wolf’s examples. For example, H&W 1,2 refers to a multi-task system that
consists of task 1 and task 2 from Figure 4.4. The second column shows the prices of
the solutions produced by our algorithm when Hou and Wolf’s original task deadlines
are used. The third column shows the prices for system solutions produced by our
algorithm when deadlines are assumed to be the same as the periods of the tasks. The
fourth column provides the results produced by Yen’s iterative improvement algorithm
[42], fifth column for COSYN [7], sixth column for EMOGAC [8] and seventh for Lee
et al.’s algorithm [23]. Lee et al. assumed the deadlines of the tasks are same as the
periods of the tasks [23]. When the deadline is relaxed to be the same as the period of
the task, our algorithm produces better solutions with prices lower than those produced
by previous co-synthesis work. When the deadline is tightened, our algorithm has
determined solutions with prices that are equal or lower than those presented in the

literature.

79

Table 4.6: Results - Hou& Wolf’s examples.

Proposed Proposed Yen | COSYN | EMOGAC Lee
Example
(Hou’s DL) | (DL=Period) (Hou’s DL) | (DL=Period)
H&W1,2 100 100 170 170 140 150
H&W1,3 170 140 170 170 - 170 170
H&W3,4 140 100 170 - 140 170

4.4 E3S Benchmarks

In this section we discuss the experimental results for E3S benchmarks of four in-
dustrial systems : telecommunication, networking, office automation and automotive
[43]. Figure 4.5 demonstrates E3S benchmark for the telecommunication system. The
main functional modules (processes) for this system are autocorrelation (ac), convolu-
tional encoder (ce), fixed-point bit allocation (fpba), fixed point complex fast Fourier
transformation (fft) and global system for mobile communications (gsm). The system
consists of nine tasks, which share these functional modules. Table 4.7 presents PE
library for the telecommunication system. It lists execution time for every process on
the PEs. In the first row of the table the value in parentheses associated with each PE is

the cost of that PE. For example PE1 has a cost of 77 and process ac has execution time

80

Period=0.001 Period=0.001 Period=0.001

Task0 Taskl Task2

Hard DL:0.001 Hard DL:0.001 Hard DL:0.001

Soft DL: 0.0001 Soft DL: 0.0001 Soft DL: 0.0001
Period=0.001 Period=0.00033 Period=0.0005 Period=0.0005

<. <
1E3 1E3 1E3
Casmsttn D

Task4 TaskS Task6 Task7
Hard DL:0.001 Hard DL:0.0004 Hard DL:0.0004 Hard DL:0.0004
Soft DL: 0.0001 Soft DL: 0.0001 Soft DL: 0.0001 Soft DL: 0.0001

Figure 4.5: Telecommunication E3S Benchmark.

81

Period=0.001

Coean D

3E3

>
3E3

Task3
Hard DL:0.001
Soft DL: 0.0001

Period=0.0005
1E3

Task8
Hard DL:0.0004
Soft DL: 0.0001

of 2.86e-6 time units on PE1. The process fpba 2,3 is not executable on PE7 or PE9,
and the process fft is not executable on PE9. PEQ is an AMD ElanSC520-133MHz,
PE1 is an AMD K6-2E 400 MHz/ACR, PE2 an AMD K6-2E+ 500Mhz/ACR, PE3 is
an AMD K6-IIIE+ 550Mhz/ACR, PE4 is an Analog Devices 21065L-60 MHz, PES
is an IBM PowerPC 405GP-266Mhz, PE6 is an IBM PowerPC 750CX-500MHz, PE7

is an IDR32334-100MHz, PES8 is an IDT79RC32364, PE9 is an IDT79RC32V334,

PE10 is an IDT79RC64575, PE11 is a NEC VR5432-167MHz, PE12 is a ST20C2 50
MHz, and PE13 is a TI TMS320C6203-30MHz. The communication resource library

is demonstrated in Table 4.8.

82

Table 4.7: PE library for the Telecom system.

PEO PE1 PE2 PE3 PE4 PES5 PE6
Process 33) 7 99) (125.6) (10) (65) (210)
sre/sink le-5 le-5 le-5 le-5 le-5 le-5 le-5
ac 3.1e-5 2.8e-6 2.2e-6 2e-6 7.7e-6 | 1.5e-6 1.2e-5
ce 0.00068 | 0.0001 8.3e-5 7.6e-5 | 0.0012 | 0.00012 | 0.0012
fpba 2,3 | 0.0061 | 0.00083 | 0.00066 | 0.0006 | 0.0063 | 0.00049 | 0.004
fit 0.00013 | 0.00014 | 0.00011 | 0.0001 | 0.0007 | 6.7e-5 | 0.0008
fpba 0.004 | 0.00056 | 0.00044 | 0.0004 | 0.0035 | 0.00029 | 0.0027
gsm 0.0031 | 0.00061 | 0.0005 | 0.00046 | 0.0036 | 0.00031 | 0.0049
PE7 PES8 PE9 PE10 PE11 PE12 PE13
Process (16) (12.5) (24) (52.1) 30) (15) (111.2)
src/sink le-5 le-5 le-5 le-5 le-5 le-5 le-5
ac 1.5e-5 8.3e-6 6.5¢-6 2.7e-6 | l.le-5 1.1e-6 7.6e-7
ce 0.0015 | 0.00073 | 0.00058 | 0.00036 | 0.0011 | 0.00017 | 3.8e-6
fpba 2,3 - 0.0038 - 0.00014 | 0.0043 | 0.0015 | 0.00018
fft 150e-6 | 0.00018 - 0.00039 | 0.0027 | 0.001 | 0.00011
fpba 0.004 | 0.00056 | 0.00044 | 0.0004 | 0.0035 | 0.00029 | 0.0027
gsm 0.0027 0.002 0.001 0.0012 | 0.003 | 0.00082 | 6.3e-5

83

Table 4.8: Communication resource library.

Communication Resource | Contact Price | rate(time per bit) | No. of contacts
VME 180 2.27e-9 4
USB 2.0 14.19 2.08e-3 4
USB 6.38 83.3e-3 4
PCI-32-33 10.56 | 947e-12 4
CAN 6.05 le-6 4
Fire wire 14.81 2.5e-9 4

84

Table 4.9 and Figure 4.6 demonstrate solution quality improvement by genetic al-
gorithm evolution for a particular co-synthesis algorithm run. For this specific run of
the co-synthesis algorithm there are 100 generations (iterations) and every generation

has a pool of solution, which consists of 1000 solutions. Here 722nd solution is ranked

Table 4.9: Solution quality improvement by GA evolution.

1st Generation 999th Generation
Rank
Solution | Area | Soft DL viol | Solution | Area | Soft DL viol

10 722 297 0.0692 976 297 0.0272
100 369 297 0.0365 356 297 0.0170
200 406 297 0.0297 381 297 0.0115
300 530 284 0.0326 | 803 284 0.0163
400 813 297 0.0261 814 297 0.0177
500 903 297 0.0252 972 297 0.0093
600 892 297 0.0194 832 297 0.0119
700 102 297 0.0131 190 297 0.0108
800 356 297 0.0158 795 297 0.0072
900 643 297 0.0175 - 181 297 0.0064
970 211 297 0.0058 536 297 0.0057
990 63 284 0.0055 510 284 0.0049
1000 290 284 0.0052 0 284 0.0029

85

as lth for the first generation, this solution requires resource cost of 297 , and it vio-
lates the soft deadlines by 0.0692. The amount of soft deadline violation is calculated
as the sum of the times by which every copy of each task misses its soft deadline. For
the final (999th) generation, the solution (solution 976) that is ranked 10th requires the
same area cost, but it has a smaller deadline violation of 0.0272 time units. The best
ranked solution for generation 1 requires resource cost of 297, and violates the soft
deadlines by 0.0052 time units. By GA evolution technique, quality of the solutions
improves a lot. It can be observed that for the same resource cost as generation 1, best
solution for the final generation misses the soft deadlines only by 0.0029 time units.
The solution quality improvement by GA evolution for this co-synthesis run is plotted
in Figure 4.6. We can observe from the periods of tasks presented in Figure 4.5 that
each of the task 0, task 1, task 2, task 3 and task 4 have one copy, task 5 has three
copies‘ and each of the task 6, task 7 and task 8 have two copies within the hyperperiod
0f 0.001 time units. Priority list for the best ranked solution of a co-synthesis algorithm
run, for the telecom system is presented in Table 4.10. The order of the processes in
this list is decided based on the priority levels of the processes. The calculation of
priority level is already explained in section 3.6.1. For this particular solution process
6, 1st copy has the highest priority, process 7, 1st copy has the second highest so on

and so forth .

86

Solution Quality improvement by GA evolution

@ Generation 1 DL violation
@ Final Generation DL violation]

DL violation
o
o
s
o
(e}
1

10 100 200 300 400 500 600 700 800 900 970 990 1000

rank

Figure 4.6: Generation 1 and Final Generation Soft Deadline Violation.

Based on this priority list, processes are scheduled on three allocated PEs, PEI,
PE5 and PE13. The schedule lists for these PEs are provided in Figure 4.7. The
processes are ready to execute only after required data from all the parent processes
have been received. Therefore, earliest possible start time of a process depends on
the completion time of the parent processes. It also depends on the availability of the
communication resource. For example in Figure 4.5, the parent process of process
3, Ist copy (process 2, 1st copy) completes execution by 1.15e-5 time units, but the
assigned communication resource to transfer data from the parent process is not avail-
able until 4.5 e-5 time units. The required data is transferred between 4.5e-5 time units

and 5.25e-5 time units, and finally process 3, 1st copy is ready to execute at 5.25e-5

87

Table 4.10: Priority list.

60 | 70 | 80 | 9,0 | 27,0 | 28,0 | 29,0 | 14,0

15,0 | 16,0 | 17,0 | 32,0 | 33,0 | 34,0 | 0,0 1,0

2,0 | 3,0 | 32,1 | 33,1 | 35,0 | 40,0 | 41,0 | 44,0

45,0 | 36,0 | 37,0 | 34,1 | 42,0 | 46,0 | 38,0 | 11,0

19,0 | 22,0 | 23,0 | 10,0 | 24,0 | 18,0 | 4,0 | 12,0

20,0 | 25,0 | 30,0 | 32,2 | 33,2 | 35,1 | 36,1 | 37,1

39,0 | 40,1 | 41,1 | 43,0 | 44,1 | 45,1 | 47,0 | 5,0

13,0 | 21,0 | 26,0 | 31,0 | 42,1 | 46,1 | 38,1 | 39,1

43,1 | 47,1 | 34,2 | 35,2

time units. A ready process can start execution on the PE when the PE is available
to execute that process. A ready process may need to wait while other higher prior-
ity processes are being executed on the PE. As discussed earlier in section 3, a lower
priority process may execute before a higher priority process if the higher priority pro-
cess is not ready to execute. For example, we can observe process 41, 1st copy and
process 45, 1st copy are ready to execute at 0 time unit, because these processes are
not dependent on any other processes. These two processes are assigned on the same
PE (PE1), higher priority process 3, 1st copy is assigned to. However, these processes
are ready to execute before process 3, 1st copy, and they are allowed to be executed

before the higher priority processes.

88

PE1

7.0 0->le-5

28.0 le-5->2e-5

33.0 2e-5->3e-5

41,0 3e-5->4e-5

45,0 4e-5->5e-5

3.0 5.25e-5->1.525e-4

23,0 1.525e-4->1.625e-4

24,0 1.625e-4->1.765e-4

25,0 1.765e~-4->1.865e-4

19.0 1.987e-4->2.122e-4

33.1 3.333e-4->3.433e-4

20,0 3.558e-4->3.658e-4

41.1 5e-4->5.1e-4

45,1 5.1le-4->5.2e-4

11,0 5.34e-4->5.48e-4

12,0 5.48e-4->5.558e-4

332 6.666e-4->6.766e-4
PES

1.0 | 0->1e-5

2,0 | le-5->1.15e-5

370 1.15e-5->2.15e-5

80 | 3.5e-5->3.65e-5

90 | 3.65e-5->0.0005265

29,0 0.0005265->0.0008165

30,0 0.0008165->0.0008265

37,11 0.0008265->0.0008365

PE13
15,0 0->1e-5
16,0 1le-5->1.077e-5
17,0 1.077e-5->0.00019077
34,0/ 0.00019077->0.000253
38,0/ 0.000253->0.00031677
10,0/ 0.0003167->0.00032057
34,1 0.0003458->0.00040883
42,00 0.0004088->0.00047183
46,0 0.0004718->0.00053483
11,0 0.0005348-0.00054383
42,1 0.0005348->0.0006068
46,11 0.0006068->0.0006698
342| 0.0006792->0.0007422
38,1 0.000839->0.000902

Figure 4.7: Example of Schedule List.

89

The E3S benchmark for networking is demonstrated in Figure 4.8 and the PE
library for this system is presented in Table 4.11. The E3S benchmark for office-
automation is demonstrated in Figure 4.9 and the PE library for this system is pre-
sented in Table 4.12. The E3S benchmark for auto-industry is demonstrated in Figure

4.10 and the PE library for this system is presented in Table 4.13.

Period=0.0009 Period=0.00135 Period=0.0009 Period=0.00135

Haed DL=0.013

8388608 16777216

4194304 8388608 16777216

Haed DL=0.0018 Haed DL=0.002 Haed DL=0.0014
Soft DL=0.0001 Soft DL=0.0001

Figure 4.8: Networking E3S Benchmark.

90

Table 4.11

: PE library for the Networking system.

PEO PE1 PE2 PE3 PE4 PES PE6 PE7

Process (33) (88) () 99) (125.6) (65) 1e6) (250)

src/sink le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5
ospf 0.0012 | 0.00014 | 0.00014 | 0.00011 | 9.8e-5 | 0.0018 | 0.0016 0.0013
patricia | 0.0032 | 0.00059 | 0.00064 | 0.0005 | 0.00046 | 0.0045 | 0.0044 | 0.0036
pf512 | 0.00097 | 0.00044 | 0.00024 | 0.00012 | 0.00011 | 0.0012 | 0.0013 | 0.00065
pflm 0.002 | 0.00086 | 0.00058 | 0.00024 | 0.00022 | 0.0023 | 0.0034-6 | 0.0012
pf2m 0.004 0.0018 | 0.0012 | 0.00069 | 0.00044 | 0.0046 | 0.0048 0.0025

period=0.03

Hard DL=0.4

Figure 4.9: Office-Automation E3S Benchmark.

91

Table 4.12: PE library for the Office Automation system.

PEO PE1 PE2 PE3 PE4 PES | PE6
Process 33) () 99 (65) 19) 30) | (15
src/sink le-5 le-5 le-5 le-5 le-5 le-5 le-5
dith 0.029 | 0.0051 | 0.0039 | 0.0035 | 0.59 | 0.031 | 2.4
rotate | 0.00061 | 0.0021 | 0.0012 | 0.0007 | 0.045 | 0.0083 | 0.27
text 0.0091 | 0.0028 | 0.0016 | 0.0016 | 0.29 | 0.017 | 1.1
Period=0.009 Period=0.00045 Period=0.0009 Period=0.009

Haed DL=0.0003

Haed DL=0.0007
Soft DL=0

92

Haed DL=0.0000
Soft DL=0.00005

Figure 4.10: Auto-industry E3S Benchmark.

Haed DL=0.0001
Soft DL=0.00001

Table 4.13: PE library for the Auto-industry system.

PEO PE1 PE2 PE3 PE4 PES5 PE6 PE7
Process 33) 7 99) (126) (65) (216) (45) - 30
src/sink le-5 le-5 le-5 le-5 le-5 le-5 le-5 le-5
can/angle 9e-6 1.5e-6 | 1.2e-6 l1.1e-6 9.2e-7 le-5 5.3e-7 2.8e-5
fp 2.3e-5 | 2.9e-6 | 2.3e-6 2.1e-6 1.8e-6 | 0.00013 | 8.9e-7 | 0.00016
pulse 4.5e-6 | 6.7e-7 | 4.8¢-7 | 4.4e-7 3.2e-7 3.5¢-6 2.1e-7 3.9e-6
iir 8e-5 1.2e-6 | 9.2e-6 | 8.4e-6 8.5e-6 Se-5 1.5e-6 8.3e-6
idct 0.00091 | 8.5e-5 | 6.7e-5 6.1e-5 5.7e-5 | 0.00076 | 2.6e-5 | 0.00084
fir 6.9¢-5 | 9.7e-6 | 7.7e-6 Te-6 4.1e-6 4.8e-5 1.7e-6 3.8e-5
fft 0.014 | 0.0016 | 0.0011 0.001 | 0.00081 | 0.0084 | 0.00033 | 0.018
matrix | 0.00067 | 0.0009 | 0.00064 | 0.00058 | 0.00031 | 0.022 | 0.00016 | 0.036
ifft 0.013 | 0.0015 | 0.001 | 0.00093 | 0.0007 | 0.0075 | 0.00032 | 0.016
road 3.2e-6 Se-7 3.6e-7 3.3e-7 4.1e-6 Se-5 1.4e-7 3.1e-6
table 3e-5 3.6e-6 | 2.8e-6 2.6e-6 2.9¢-6 4.8e-5 1.9¢-6 | 0.00013
ptr 0.00033 | 4.9¢-5 | 3.9e-5 3.5e-5 3.7¢-5 | 0.0004 1.6e-5 | 0.00049
cache 3.5e-6 | 4.8¢-7 | 3.4e-7 3.1e-7 2.4e-7 2.7e-6 1.5e-7 3.8e-6
tooth 7.4e-5 | 8.5e-6 | 6.7e-6 6e-6 7.7e-6 5.3e-5 3.4e-4 8.4e-5

93 -

Table 4.14 compares the results produced by our algorithm for E3S benchmarks
[43] with EMOGAC [8]. The soft deadline violation proportion is defined as the sum
of the times by which every copy of each task misses its soft deadline, divided by the
hyperperiod. The first column lists E3S benchmark examples for automotive, telecom,
networking and office automation application. The second and third columns list the
prices and deadline violation proportion presented by Dick [8]. The fourth and fifth
columns show the prices of the solutions produced by our algorithm. It can be observed
that our proposed method is able to achieve better deadline violation proportion for

lower resource cost, as compared to the solutions produced by EMOGAC [8].

Table 4.14: Results - E3S benchmarks.

EMOGAC OUR
Example
price | Soft DL viol. prop. | price | Soft DL viol. prop.
169 2.08 139 1.17
Automotive
530 1.05 301 0.53
291 4.58 228 3.70
Telecom
378 3.18 284 3.07
57 1.31 52 0.726
Networking
70 1.23 76 0.64
Office Auto. 66 0.02 65 0.02

94

4.5 Multi-mode Applications

To test the multi-mode feature of our algorithm, we used Hou and Wolf examples from
section 4.3 [17]. We considered a multi-mode system that has three possible modes,
first mode is for an application with Hou and Wolf task 1 and task 2, second mode is
for an application with Hou and Wolf task 1 and task 3, third mode is for an application
with Hou and Wolf task 3 and task 4. The goal of the multi-mode feature is to find
an architecture which is globally optimized for all three applications. To achieve this
goal, while PE allocation and process assignment to PEs are performed for a particular
mode, all other modes of the system are considered as well. The results for this multi-
mode system are listed in Table 4.15 fourth column. The results for Oh and Ha’s
algorithm for the same system are listed in second column [29], and third column lists
the results for Kim and Kim’s algorithm [22]. From Table 4.15 we can conclude that
our method has been able to achieve better or same quality results as compared to the

other multi-mode algorithms presented in literature [22, 29].

Table 4.15: Results for the multi-mode feature.

Example Oh and Ha | Kim and Kim | Proposed Method
H&W1,2 and H&W1,3 220 170 170
and H&W 3,4 (X,X,Link) (X,Y,Link) (X,Y,Link)

95

In thisvchapter we presented the experimental results for the propbsed method. Ex-
periments were conducted on random graphs from the literature [17, 33] and different
industrial benchmarks [21, 43]. MPEG encoder application, telecommunication appli-
cation, networking application, office automation application and automotive applica-
tion have been used for co-synthesis [21, 43]. We compared the results with the results
presented for various previous real-time co-synthesis techniques. The results for theses

systems had better or same quality compared to those presented in the literature.

96

Chaptér 5

Conclusions and Future Work

In this thesis, we presented a co-;ynthesis methodology for multiprocessor multi-task
systems with real-time constraints. The proposed method determines a set of feasible
solutions with optimized partitioning and real-time schedules for processes and data
communication. The method is capable of producing acceptable solutions for critical
systems with hard real-time deadlines, by employing process level prioritization and
by meeting the process level deadlines.

A data flow graph was used to represent each of the tasks of a system. PE libraries
of heterogeneous processing elements along with the imposed constraints for the tar-
get system are provided to the co-synthesis algorithm. A genetic algorithm was used
for PE and communication resource allocation and assignment. The solutions for the

first generation were produced by randomized allocation and assignment procedure.

97

Evolution of a new generation is performed by ranking, selection, crossover and mu-
tation operation on the previous generation. Every sofution of each generation of a co-
synthesis run is scheduled and evaluated before the evolution of the next generation.
The presented methodology employs efficient scheduling mechanism and allocation
technique for PEs as well as for communication links. At the end of a run, the feasible
solutions of the final generation that meet the imposed constraints are presented to the
user. These solutions present the design space with trade-off points.

Experiments were conducted on random graphs from the literature [17, 33] and
different industrial benchmarks [21, 43]. MPEG encoder application, telecommunica-
tion application, networking application, office automation application and automotive
application have been used for co-synthesis [21, 43]. Timing and area constraints were
imposed on these applications. Our algorithm produced low cost architectures for these
fairly large and complex embedded systems, satisfying the schedulability condition in
practical times. Moreover, the proposed scheduling methodology achieved better PE
utilization as compared to the conventional non-preemptive scheduling technique. The
results for theses systems had better or same quality compared to those presented in
the literature. Moreover, previous co-synthesis algorithms presented in the literature
do not provide allocation techniques and scheduling methods for the communication

events [9, 23, 39], which is crucial for system optimization and accurate solution eval-

98

uation.

Our proposed co-synthesis method is accurate and efficient for finding a feasible
optimized architecture. However, it can be improved in a number of ways. One of the
enhancements in this approach could be for system-on-chip co-synthesis. It is pbyssible
to implement some embedded systems using a single integrated circuit (IC). This may
reduce the cost and improve the performance.

Ano.ther interesting direction could be the co-synthesis of dynamically reconfig-
urable embedded systems. Dynamic reconfiguration of FPGAs may reduce the amount
of hardware required in an embedded system. Recently the flexibility and reconfigu-
ration speed of FPGAs have been improved. Therefore, option of reconfiguring the
FPGAs while the embedded system is operating has become more practical.

Finally more non-functional requirements could be considered in addition to area
and real time constraints. Reliability is a very critical metric for fault-tolerant systems.
Reliability could be considered as one of the multi-objective optimization goal for the
co-synthesis algorithm. Low power consumption can also be considered as a non-

functional requirement.

99

Bibliography

[1] P. Areto, S. Juhasz, Z. Mann, A. Orban, and D. Papp, “Hardware-software parti-
tioning in embedded system design”. Proceedings of the IEEE Int. Symposium on

Intelligent Signal Processing, pp. 197-202, Sept. 2003.

[2] A.N. Audsley, A. Burns, M. Richardson, and K. Tindell, “Applying new schedul-

ing theory to static priority pre-emptive scheduling”. Software Engineering Journal,

Vol. 8, pp. 284-292, 1993.

[3] J. Axelsson, “Architecture synthesis and partitioning of real-time systems: acom-
parison of three heuristic search strategies”. Proceedings of the Fifth International
Workshop on Hardware/Software Codesign. (CODES/CASHE '97), Braunschweig,

Germany, pp. 161-165, March 1997.

[4] S. Chakraverty, C. Ravikumar, and D. Choudhuri, “An evolutionary scheme for
cosynthesis of real-time systems”. Design Automation Conference, pp. 251 -256,

Jan 2002, Bangalore, India.

100

[5] C. L. Liuand J. W. Layland, “Scheduling algorithms for multiprogramming in a

hard-real-time environment”. Journal of the ACM, Vol. 20, pp. 46 —61, 1973.

[6] B. Dave and N. Jha, “Cohra: Hardware-software co-synthesis of hierarchical dis-
tributed embedded system architectures”. Proceedings of the 11th International
Conference on VLSI Design: VLSI for Signal Processing, pp. 347, 1998, Chennai,

India.

[7] B. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-software co-
synthesis of embedded systems”. Proceedings of the 34th Annual Conference on

Design Automation, pp. 703—708, June 1997, California.

[8] R. P. Dick. Multiobjective Synthesis of Low-Power Real-Time Distributed Embed-

ded Systems. PhD thesis, Princton University, Nov. 2002.

[9] R.P. Dick and N. K. Jha, “MOGAC: A multiobjective genetic algorithm for the co-
synthesis of hardware-software embedded systems”. IEEE Transactions Computer-

Aided Design, Vol. 17, pp. 920-935, Oct. 1998.

[10] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “Hardware software partitioning
of VHDL system specifications”. Proceedings of European Design Automation

Conference, , pp. 434-439, 1996, Geneva, Switzerland.

101

[11] R. Ernst, J. Henkel, and T. Benner, “Hardware software cosynthesis for micro-

controllers”. IEEE Design and Test of Computers, Vol.10, pp. 64-75, Dec. 1993.

[12] J. Fisher, “Trace scheduling: A technique for global microcode compaction”.

IEEE transaction on Computers, Vol. C3, No. 7, pp. 478 —490, July 1981.

[13] D. E. Goldberg. Genetic algorithms in search, optimization, and machine learn-

ing. Addison-Wesley, Reading, MA, 1989,

[14] R. K. Gupta and G. D. Micheli, “Hardware-software cosynthesis for digital sys-

tems”. IEEE Design and Test of Computers, Vol. 10, pp. 2941, Sept. 1993.

[15] L. Hafer and E. Hutchings, “Bringing up bozo”. IEEE Design and Test of Com-

puters, March 1990.

[16] H. Henkel and R. Ernst, “A hardware/software partitioner using a dynamically
determined granularity”. Proceedings of the 34th Conference Design Automation,

page 691-696, 1997.

[17] J. Hou and W. Wolf, “Process partitioning for distributed embedded systems”.
Fourth International Workshop on Hardware/Software Co-Design, pp. 70-76, Mar.

1996, Pittsburgh.

102

[18] T. Hu, “Parallel sequencing and assembly line problems”. Operation Research,

Vol. 9, No. 6, pp. 841-848, 1961.

[19] A.Kalavade and E. Lee, “The extended partitioning problem: hardware/software
mapping and implementation-bin selection”. Proceedings of the 34th 34th Design

Automation Conference, pp. 12—-18, June 1997, Chapel Hill, NC.

[20] I. Karkowski and H. Corporaal, “Design space exploration algorithm for hetero-
geneous multi-processor embedded system design”. Design Automation Confer-

ence, pp. 82—87, June 1998.

[21] G. N. Khan and U. Ahmed, “Hardware-software cosynthesis of multiprocessor
embedded architectures”. Proceedings of the 4th IEEE Int. Symp. Embedded Com-

puting, (AINA-07 workshops), pp. 804 — 810, May 2007.

[22] Y. Kim and T. Kim, “HW/SW partitioning techniques for multi-mode multi-task
embedded applications”. Proceedings of the 16th ACM Great Lakes symposium on

VLSI, pp. 25 =30, 2006, Philadelphia, PA, USA .

[23] C. Lee and S. Ha, “Hardware-software cosynthesis of multitask MPSoCs with
real-time constraints”. Proceedings of the 6th International Conference On ASIC,

Vol. 2, pp. 919 — 924, Oct. 2005.

103

[24] Y. Li and S. Malik, “Performance analysis of embedded software using implicit
path enumeration”. 32nd ACMJIEEE conference on Design Automation, pp. 456—

461, 1995.

[25] H. Liu and D. Wong, “Integrated partitioning and scheduling for hard-
ware/software co-design”. In Proceedings of the International Conference on Com-
puter Design: VLSI in Computers and Processors, pp. 609614, Oct 1998, Austin,

TX.

[26] V. Mooney, III, and G. D. Micheli, “Real time analysis and priority scheduler
generation for hardware-software systems with a synthesized run-time system”.

Computer-Aided Design. Digest of Technical Papers, Nov 1997, San Jose.

[27] J. Nestor and D. Thomas, “Behavioral synthesis with interfaces”. Design Au-

tomation Conference, pp. 461-466, 1986.

[28] H. Oh and S. Ha, “A hardware-software cosynthesis technique based on het-
erogeneous multiprocessor scheduling”. 7th international workshop on Hard-

ware/software codesign, pp. 183-187, 1999.

[29] H. Oh and S. Ha, “Hardware-software cosynthesis of multi-mode multi-task em-
bedded systems with real-time constraints. Proceedings of the 10h Int. Symposium

on Hardware/Software Codesign, pp. 133-138, 2002.

104

[30] P. Paulin and J. Knight, “Force-directed scheduling for the behavioral synthesis

of ASIC’s”. IEEE transaction on CAD/CAS, Vol. 8, No. 6, pp. 661 —679, July 1989.

[31] D.-T. Peng, K. Shin, and T. Abdelzaher, “Assignment and scheduling commu-
nicating periodic tasks in distributed real-time systems”. IEEE Transactions on

Software Engineering, Vol. 23, No. 12, pp. 745 — 758, December 1997.

[32] R. Postman, J. Lis, A. Nicolau, and D. Gajski. “Percolation based scheduling”,

Design Automation Conference, pp. 444—449, 1990, Orlando.

[33] S. Prakash and A. Parker, “SOS: Synthesis of application-specific heterogeneous
multiprocessor systems”. Journal of Parallel and Distributed Computing, Vol. 16,

pp. 338-351, Dec. 1992.

[34] K. Ramamritham, “Allocation and scheduling of precedence-related periodic
tasks”. IEEE Transactions on Parallel and Distributed Systems, Vol. 6, No. 4, pp.

412-420, April 1995.

[35] K. Ramamritham and J. A. Stankovic, “Efficient scheduling algorithms for real-
time multiprocessor systems”. [EEE Transactions on of Parallel and Distributed

Systems, Vol. 1, pp. 184—-194, 1990.

105

[36] D. Shaha, R. S. Mitra, and A. Basu, “Hardware software partitioning using ge-
netic algorithm”. Tenth Int. Conference on VLSI Design-97, pp. 155-160, Jan. 1997,

Hyderabad, India.

[371 G. C. Sih and E. A. Lee, “A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor architectures”. IEEE Trans-

actions on Parallel and Distributed Systems, Vol. 4, No. 2, pp. 175-187, Feb 1993.

[38] J. D. Ullman, “NP-Complete scheduling problems”. J. Comput. Syst. Sci., Vol.

10, pp. 384393, 1975.

[39] W. Wolf, “An architectural co-synthesis algorithm for distributed, embedded

computing systems”. IEEE Transactions on Very Large Scale Integration Systems,

Vol. 5, pp. 218-229, June 1997.

[40] Y. Xie and W. Wolf, “Allocation and scheduling of conditional task graph inhard-
ware/software co-synthesis”. Design, Automation and Test in Europe, pp. 620-625,

March 2001, Munich, Germany.

[41] J. Xu, “Multiprocessor scheduling of processes with release times, deadlines,
precedences, and exclusion relations”. IEEE Transactions on Software Engineering,

Vol. 19, No. 2, pp. 139-154, 1993.

106

[42] T. Y. Yen and W. H. Wolf, “Communication synthesis for distributed embedded
systems”. Proceedings of the Int. Conf. Computer-Aided Design, pp. 288—294, Nov.

1995, San Jose, California .

[43] E3S: The Embedded System Synthesis Benchmarks Suite. http://

ziyang.eecs.northwestern.edu/dickrp/ tools.html.

107

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2008

	Co-synthesis of multiple processor embedded systems for real time applications
	Anika Awwal
	Recommended Citation

