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Abstract

Generative Modelling and Machine Learning Methods
for Behaviour Analysis

by
Melvin Wong

PhD in Civil Engineering - Department of Civil
Engineering

Ryerson University
2019

The dissertation outlines novel analytical and experimental methods for discrete

choice modelling using generative modelling and information theory. It explores the

in�uence of information heterogeneity on large scale datasets using generative mod-

elling. The behaviourally subjective psychometric indicators are replaced with a

learning process in an arti�cial neural network architecture. Part of the disserta-

tion establishes new tools and techniques to model aspects of travel demand and

behavioural analysis for the emerging transport and mobility markets. Speci�cally,

we consider: (i) What are the strengths, weaknesses and role of generative learning

algorithms for behaviour analysis in travel demand modelling? (ii) How to monitor

and analyze the identi�ability and validity of the generative model using Bayesian

inference methods? (iii) How to ensure that the methodology is behaviourally con-

sistent? (iv) What is the relationship between the generative learning process and

realistic representation of decision making as well as its usefulness in choice mod-

elling? and (v) What are the limitations and assumptions that have needed to

develop the generative model systems?

This thesis is based on four articles introduced in Chapters 3 to 6. Chap-

ters 3 and 4 introduces a restricted Boltzmann machine learning algorithm for travel

behaviour that includes an analysis of modelling discrete choice with and without

psychometric indicators. Chapter 5 provides an analysis of information heterogene-

ity from the perspective of a generative model and how it can extract population

taste variation using a Bayesian inference based learning process. One of the most

promising applications for generative modelling is for modelling the multiple discrete-

continuous data. In Chapter 6, a generative modelling framework is developed to

show the process and methodology of capturing higher-order correlation in the data

and deriving a process of sampling that can account for the interdependencies be-
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tween multiple outputs and inputs. A brief background on machine learning prin-

ciples for discrete choice modelling and newly developed mathematical models and

equations related to generative modelling for travel behaviour analysis are provided

in the appendices.
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Chapter 1

Overview

The transport and mobility market is currently undergoing a fundamental transfor-

mation, driven by three domains of disruptive technologies: Mobility-as-a-Service

(MaaS), Connected and Automated Vehicles (CAV) and Arti�cial Intelligence (AI)

[1, 2, 3]. These three domains o�er new challenges for travel behaviour analysts and

choice modelling practitioners. These challenges would demand a greater under-

standing of how the current mobility transformation will have an impact on society.

Most notably, new consumer travel options such as ride-hailing services, on-demand

car sharing and bike sharing are now ubiquitous in cities worldwide and are rapidly

becoming the mainstay of transportation and mobility systems [4, 5, 6]. These new

trends in the emerging disruptive mobility market can be attributed to the evolving

socio-demographics, consumer behaviour and demand for more dynamic modes of

travel [7]. In the European Union, the market for these mobility systems is expected

to reach $700 billion by 2025 [8]. By 2030, the worldwide disruptive mobility ecosys-

tem is projected to reach $1 trillion [9]. From a value-added perspective, there would

be a signi�cant impact on the global transport market through the development of

new behavioural modelling techniques that would be able to exploit data-driven

technologies, while also providing econometric interpretability for new policy deci-

sions. This dissertation focuses on the third domain: Arti�cial Intelligence � through

the development of novel behaviour modelling techniques that integrates generative

modelling and information theory.

As we move towards a more data-driven and connected society, these new dis-
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ruptive mobility services and systems will generate more data than ever [10]. Despite

the increasing amount of information being collected from passive online services,

sensors and other Big Data sources, gaps remain in existing travel behaviour mod-

elling literature as to how these new data-driven technologies can provide signi�cant

and bene�cial improvements to behaviour modelling [10]. This dissertation seeks to

connect aspects of data-driven applications with travel behaviour analysis by inves-

tigating the potential of machine learning and generative modelling.

Traditionally, travel behaviour modelling uses hypothesis-driven models derived

from discrete choice theory. Hypothesis-driven models allow simple model inter-

pretability, provide insight into behavioural patterns and o�er a direct method to

identify changes in consumer preferences based on observed characteristics of the

choice or individual [11]. These (mostly) linear in parameter yet robust descriptive

models are generally suited for small data samples with a relatively small popula-

tion and decision heterogeneity. However, they do not tend to scale well to large

datasets. As the number of observations in the data increase over time, statistical

or measurement indicators may give a misleading perspective of model �t, if not

corrected for variations in the data as the data grow. Conventional discrete choice

analysis methods are beginning to encounter the limits of their usefulness in the

data-driven and connected transportation landscape.

Meanwhile, with the increase in data availability, computing resources and new

algorithms, we are now able to train complex and deep learning models e�ciently.

At the same time, the development of deep learning data-driven models have been

progressing at a rapid rate and are considered the benchmark for building predictive

models1. These data-driven modelling techniques are increasingly being used in

other �elds of research and for real-world applications to great success, for example in

computer vision recognition, healthcare and recommendation systems [12, 13]. They

di�er from discrete choice analysis in their model structure, and ability to capture

non-linear correlations using multiple layers. However, data-driven models have

recently been questioned on their interpretability, and the "black-box" structure and

the primary limitations of deep learning models have been its di�culty in explaining

1Industry-wide Data Science and Machine Learning Survey conducted by Kaggle (n =
16, 000): Kaggle, 2017. The State of ML and Data Science. Retrieved from:
https://www.kaggle.com/surveys/2017, June 2019.
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1.1. Contributions

the estimation process and how the model connects with behavioural and policy

changes [14, 15].

This dissertation makes the case that deep learning and neuroscience are sig-

ni�cant for behavioural analysis and choice modelling. Machine learning systems

operate similarly to human behaviour � by minimizing a cost function that learns an

optimal strategy while shaping the internal representation of the machine learning

system. This strategy is in contrast to discrete choice models, which is are rooted in

the theory of utility maximization. It suggests that choice selection behaviour can

encompass an internal choice mechanism hidden from the observer that minimizes

energy and risk, while at the same time maximizing utility and reward [16]. This

dissertation also explores the concept of information heterogeneity and how we can

develop Bayesian-based inference models that capture the underlying unobserved

variations in a behaviourally plausible way through machine learning algorithms.

Lastly, this dissertation highlights the implementation of welfare analysis in machine

learning models, speci�cally, by calculating the elasticities of model parameters and

deriving statistical interpretability.

1.1 Contributions

The work in this dissertation will contribute to the following aspects:

Travel behaviour theory. New experimental and analytical methods for be-

haviour modelling are investigated using semi-supervised generative models while

exploring their underlying connections to behaviour theory. Recent methodologies

and frameworks from neuroscience, statistics, optimization and machine learning are

speci�cally into behavioural models for travel behaviour analysis and applications.

Data-driven applications. Experiments were devised to test the proposed frame-

work using Big Data sources as well as traditional stated/revealed preference surveys.

Our experiments and results show how forecasting and simulation can be imple-

mented using a generative model framework. In model interpretation and analysis,

several techniques for evaluating generative models are shown using statistical and

functional properties that are compatible with discrete choice analysis.

Model development and statistical analysis. An end-to-end travel behaviour

analysis framework is developed using a generative model that performs estimation,

4



1.2. Dissertation Outline

statistical analysis, forecasting and simulation. A new behaviour choice model spec-

i�cation is de�ned that can incorporate latent constructs from a generative learning

process while retaining econometric features that are essential to behavioural anal-

ysis. In the development of new estimation methods, this dissertation outlines the

use of variational Bayesian inference techniques to train generative models. Finally,

this dissertation provides a blueprint for future research and data-driven model de-

velopment as well as advancing the state-of-the-art in travel behaviour analysis.

1.2 Dissertation Outline

The main contributions of the dissertation are divided into four articles/chapters,

each focusing on integrating di�erent aspects of generative modelling and machine

learning methods into behaviour analysis. In model development, we bridge the

gap between hypothesis-driven, random utility models with data-driven, information

theory-based machine learning algorithms. An overview of the dissertation is shown

in Fig. 1.1.

Chapter 2 presents a background on the fundamental theory of travel behaviour

modelling and generative modelling. This chapter discusses the recent developments

in discrete choice modelling and how it can be enhanced through machine learning.

The proposed methods in this dissertation based on these data-driven approaches

enable the use of deep learning algorithms to model behaviour heterogeneity more

accurately and realistically. This chapter also addresses the drawbacks and disadvan-

tages of current modelling methods, and emphasizes the importance of econometric

interpretation in machine learning-based models.

Chapter 3 introduces a novel generative modelling framework seeking to analyze

latent travel behaviour characteristics. A variant of the conditional restricted Boltz-

mann machine framework (a type of generative model) is proposed to incorporate

the information relationship between observed and latent variables. The properties

of the model framework are highlighted, and the identi�ability of these latent be-

haviour characteristics are explored. Finally, an experiment provides an empirical

comparison against the conventional structured equation modelling method.

Chapter 4 extends the �exibility of the generative modelling framework to

advanced discrete choice modelling strategies, allowing for the estimation of be-

5



1.2. Dissertation Outline

havioural heterogeneities without the disadvantages of conventional hypothesis based

model speci�cation. The proposed method combines the e�ciency of machine learn-

ing algorithms and exploits the parallelization gains from the generative modelling

approach to identify useful representation in the data. At the same time, the pro-

posed method does not pre-de�ne any semantic meanings to each latent variable,

eliminating the reliance on subjective measurement indicators used in integrated

choice and latent variable (ICLV) models. In the case study, this work devises ex-

periment and statistical analysis is presented using a Hinton diagram [17] to show

how generative modelling can characterize latent variables with semantic meanings

without additional psychometric data.

Chapter 5 proposes a data-driven generative machine learning version of ra-

tional inattention model [18]. Rational inattention frames the choice problem as a

communication channel with �nite Shannon capacity, which stems from the similar

principles of neuroscience where information theory explains behaviour learning and

inference. The methodology of the generative model and the associated learning

process is outlined. The principles demonstrated in this chapter can be formulated

as a generalized entropy and utility-based multinomial logit model. The e�ects of

information heterogeneity on a travel choice are demonstrated, and the econometric

interpretation of the properties of the generative model is analyzed. The �ndings

suggest that individuals may ignore certain exogenous variables and rely on prior in-

formation for evaluating decisions under uncertainty and information heterogeneity.

Chapter 6 presents a practical application of generative modelling in the anal-

ysis of travel behaviour data. The theoretical background that supports generative

machine learning methods provides a simple intuition and a plausible explanation

as to how the model emulates a learning behaviour and how individuals account for

their information processing cost. A bi-partite, multiple discrete-continuous (MDC)

framework extension is proposed to estimate MDC behaviour data and investigate

how the generative model can produce accurate data reconstruction. Analytical

methods speci�cally for generative models are developed to show the econometric

behaviour compatibility, elasticities and correlation analysis.

Chapter 7 summarizes the �ndings from the previous four chapters and the lim-

itations of the developed methodologies. Finally, it provides new research questions

for future work and possible extensions to incorporate generative modelling in travel

6



1.2. Dissertation Outline

behaviour analysis.
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1.2. Dissertation Outline
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Chapter 2

Background

2.1 Discrete Choice Models for Behaviour Analysis

The fundamental theory of analyzing discrete choices that linked economic utility

theory and choice behaviour was developed in the early 1960s [19, 20]. Since then,

discrete choice models have been the primary tool for travel behaviour modelling

and analysis.

The standard multinomial logit (MNL) model used in travel behaviour mod-

elling relies on deterministic decision rules � utilities are operationalized by random

variables and it is assumed that unobserved heterogeneities are independent and

identically distributed (i.i.d.) [21]. This assumption on the MNL model implies that

there are no common unobserved factors that a�ect the utilities. However, not all

random utility models follow this strict rule. Flexible error component structural

models have been developed to relax the independence of irrelevant alternatives

(i.i.a.) assumption by parameterizing an appropriate error variance as a function of

individual attributes.

Recent developments in discrete choice modelling have devised new ways for

integrating sensitivity e�ects, latent behaviour constructs and behaviour theory (e.g.

Prospect Theory, reference dependence and loss aversion) [22, 23, 24]. Notably, these

approaches extend non-deterministic methods (i.e. MNL models) to include e�ects

from preference deviations, the bias in perspectives and evaluation of gains and losses

from a reference point.

9



2.1. Discrete Choice Models for Behaviour Analysis

The presence of endogenous behaviour has a direct in�uence on the estimation

of discrete choice models. In particular, studies have shown that economic values

such as willingness-to-pay (WTA) or travel time variability that incorporate choice

under risk and uncertainty result in more realistic behaviour models [24, 25].

MNL models assume that the decision-makers have perfect information avail-

ability, but from the perspective of the analyst, they have incomplete information

about the individual's behaviour [11]. Therefore, behavioural uncertainty has to be

taken into account from various sources unknown to the observer, for instance: de-

cision protocols, choice sets, unobserved state variation and unobserved attributes

[26]. The utility Ui, is modelled based on a function that associates some linear com-

bination of explanatory variables as the deterministic utility Vi and an unobserved

utility term εi in an MNL model:

Ui = Vi + εi (2.1)

The decision maker's selected alternative is one with the highest utility from a

choice set C:

P (i|C) = p(Ui ≥ Uj ∀ j ∈ C, j 6= i) (2.2)

Choice preferences are measured through a weighted sum of the individuals'

utilities: Vi = βi0 +
∑

m βimxim, where m denotes the explanatory variables and

βi0 is the alternative speci�c constant. The evaluation of the utility is based on

a speci�c set of perceived values of choice attributes and socio-economic factors.

These early behaviour models have traditionally assumed a rational decision-maker,

in which the decision-maker maximizes their utility given some constraints, e.g. time,

budget, location. The choice selection behaviour has always been de�ned as a strict

utility speci�cation in which optimization solutions are developed to maximize a

log-likelihood objective function [27].

Despite its simplicity, hypothesis-driven discrete choice models are often rigid

and may not capture higher-order interactions between individuals, habits and choices.

The underlying assumptions are often violated in decision making experiments, and

the complexity of human behaviour cannot be adequately represented by utility

alone since the analyst does not have access to the underlying behaviour. However,

10



2.1. Discrete Choice Models for Behaviour Analysis

performing model selection based on simplicity is not necessarily detrimental, but it

provides an intuitive way of model interpretation.

A generalization of the MNL model is the well-known Mixed MNL model [28]. It

involves integrating the MNL probability function over the distribution of unobserved

random terms:

P (i|C; θ) =

∫
P (i|C;β)f(β|θ)dβ (2.3)

where θ is a vector of unobserved variance parameters specifying the underlying

correlation characteristics, β are the model parameters, and f is a density function

that the random realizations of β are drawn. The Mixed MNL model allows a �exible

substitution method across alternatives in an error components structure [21, 29].

The error components structure divides the utility into two components: one which

is speci�ed to be i.i.d. distributed, and another which is endogenous across the

alternatives. The structure of the latter term arises because private information

(psychometric values, attitudes, habits, etc.) are not fully observed in the data [30].

The choice outcome is often a result of a series of planned or unplanned processes

(dynamics), for example, a link-based choice model or choices made repeatedly over

a duration [31]. This underlying e�ect plays a crucial role in developing accurate

and realistic choice models. A large number of decisions also involve comparison

and evaluating risk between alternatives, for example, Prospect Theory, regret min-

imization and context processing [20, 32, 33].

Many choice models have been developed recently to capture di�erent e�ects

of these unobserved behaviours. Studies on the impact of psychological factors, e.g.

attitudes, perceptions, lifestyle preferences on the systematic utility have paved the

way for latent constructs being an integral part of the choice model speci�cation

[34, 35]. These classes of models include Latent Class Models (LCM) and Integrated

Choice and Latent Variable Models (ICLV) [11].

The LCM is designed to capture taste heterogeneity across population segments

or when choice sets vary across individuals [36]. The population segment heterogene-

ity is de�ned as latent constructs represented by a class probability:

(p(i|C) =
∑
s∈S

p(i|C, s)p(s) (2.4)
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2.1. Discrete Choice Models for Behaviour Analysis

where s de�nes the class segment, and p(s) is the probability that the decision-

maker is in the class segment. The ICLV model addresses the latent constructs

by incorporating psychological and attitudinal factors into an integrated structural

equation model (see Chapter 4 for ICLV formulations). However, two key drawbacks

have made the ICLV model limited in their uses in policymaking: First, measurement

indicators have to be available, which is often not de�ned in most data collection �

especially in revealed preference surveys. Second, in order for the latent constructs

to have a signi�cant e�ect on the choice model, explanatory variables need to be

poor indicators of choice � which means that ICLV models have no added value if

the original data structure re�ects the population behaviour well enough [35].

2.1.1 Limitations of Random Utility Maximization

While discrete choice modelling has been the cornerstone of behaviour modelling,

they can be poorly speci�ed if the observed attributes are highly heterogeneous and

individual-speci�c [37]. A signi�cant limitation is that there are inconsistencies (i.e.

irrational behaviour, choice paradoxes, missing data, repeated choices, noisy data)

that are usually not considered within the model estimation process. Irrational

behaviour re�ects the cognitive biases in the decision process that require decision-

makers to learn about their environment to minimize the uncertainty of the choices

presented to them. Ultimately, the aim is not just to maximize some reward or

utility, as in classical economic models, but also to minimize the uncertainty from

information-processing costs.

Random utility-based choice models depend not only on the observed attributes

of the choice and individuals but also on the unobserved attributes such as psycho-

logical factors, irrational behaviour and habits which cannot be easily quanti�ed.

As such, the decision maker's internal processes during preference formation are not

directly observed and remain unexplained in the choice models and are assumed

to be implicitly captured by the error terms [38]. From an information-theoretic

perspective, this implies that some internal decisions cannot be observed (latent be-

haviour), but can be estimated through Bayesian inference methods, i.e. negative

log-evidence as the equivalence to model uncertainty [39].
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2.1. Discrete Choice Models for Behaviour Analysis

2.1.2 The motivation for information theory

The upper bounds for model evidence of the data are provided by laws of conservation

in physics to make sure that the behaviour models are identi�able and can converge

to a steady state. This concept is known as the free energy principle that comprises

of two terms: the expected utility and the entropy and we borrow this same concept

which allows us to model the human behaviour more realistically. Free energy in

this context refers to the energy consumption in the human brain during decision

making. It posits that the human brain are �computationally� e�cient systems. For

example, in choice set sampling of alternatives, not all alternatives will be chosen in

the choice set, analogous to how human decision making disregard certain options

because it might be too energy ine�cent to consider all options. The utility term is

the standard econometric utility that re�ects reward maximization, while the latter

term is the average uncertainty sampled from a probability density. It represents

an ergodic process that converges the long term average, and it rests upon the

fact that self-organizing agents resist a tendency for disorder [16]. This free energy

principle has been suggested to provide a uni�ed theory of behaviour, perception and

implementation of machine learning which combines insights from the Boltzmann

machine for perceptual learning [40, 41, 42]. In particular, the logit model derived

by McFadden was also based on the Boltzmann distributions [43, 41].

It can be easily shown that minimizing the free energy can be expressed as a

Kullback-Leibler divergence between the recognition model and the generator. By

measuring and optimizing for minimum free energy, learning becomes very e�ective

and e�cient. Because the divergence is always positive, minimizing the free energy

implicitly means that the model converges to minimum uncertainty. This minimiza-

tion process is performed over time in human behaviour, i.e. formation of habits,

increasing knowledge about a decision. Theoretically, this process can also be ap-

plied to travel behaviour adaptation and dynamics by applying a stochastic gradient

descent on the free energy objective function.

Endogeneity is a core and challenging issue in travel behaviour, as highlighted

in [44]. In conventional discrete choice modelling, i.e. MNL, it helps to reason (and

to simplify the model) that decision-makers process information rationally, that is

to say, that decision-makers do not try to `discover' underlying biases and change
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2.1. Discrete Choice Models for Behaviour Analysis

their habits over time. However, information processing cost plays a vital role in an

endogenous choice decision, and the behaviour of informed and uninformed decision-

makers are very di�erent from each other. In particular, the free energy principle

explains the information di�erence between the two types of decision-makers, leading

to stochastic behaviour. Learning from data improves the knowledge about the

choice, resulting in more `deterministic' choices of informed decision-makers.

This dissertation relates to this concept by introducing a generative model that

encapsulates the learning process of the individual through a deep learning algorithm

known as a restricted Boltzmann machine.

2.1.3 Data-driven Travel Behaviour Analysis

The purpose of travel behaviour analysis is to explain the cause-and-e�ects of certain

constraints and attributes on individuals' choice preferences, which are grounded in

neoclassical welfare economics [11]. For example, to measure the bene�t of time

and cost of a travel mode, choice models use willingness-to-pay (WTP) or level-of-

service (LoS) metrics. Measuring WTP or LoS is a common practice for analysts

and policymakers to decide on improvements or changes to transport systems.

With the emergence of data-driven analytics and new mobility technologies

and services, understanding the underlying properties of the data concerning travel

behaviour becomes an essential concept for accurate demand forecasting. In recent

years, these new services and technologies have changed the way we analyze and

evaluate travel behaviour. For example, on-demand ride-hailing services require

frequent or even instantaneous information of where and when vehicles are needed

to be deployed. App-based travel planners need real-time tra�c data which may

change by the minute and static model estimated on historical data may not be

su�cient. In order to be operationally successful, transport service providers need

access to a constant stream of data and a method to transform these data into

useful, predictive models in real-time. Furthermore, these models also need to be

able to forecast unforeseen events and able to adapt to new modes of travel and

evolving travel behaviour. A data-driven machine learning models can be used to

complement or replace conventional choice modelling since the underlying learning

process emulates the choice behaviour and forms a mechanical representation of the
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human brain [45].

2.2 A New Approach to Behavioural Modelling

The assumption of "rational decision-maker" is often a convenient way of represent-

ing travel behaviour. However, this assumption is often violated in choice situations.

The inconsistency may arise due to unknown factors involved that are not captured

in the observed data. This is re�ected under the term decision under uncertainty

[22]. In contrast, if the underlying subjective factors are known for all events, then

this distribution generates a probability distribution over the choices, which is identi-

�ed by the utility value. Even then, some decision-makers may not always be utility

maximizers, and there has been empirical evidence to suggest that other decision

rules or protocols may in�uence decision making [46]. From the perspective of the

analyst � assuming that there is signi�cant enough source of data and a computa-

tionally feasible method of model estimation � it is theoretically possible to fully

represent an irrational (and a more realistic representation of) decision-maker. The

hypothesis posits that machine learning and data-driven modelling can account for

these constraints and variations arising from data heterogeneity. Data-driven models

inspired by neuroscience that form the basis of arti�cial neural network models can

achieve a more realistic representation of human decision-making behaviour. De-

spite the widespread belief that neural networks are black-boxes and challenging to

interpret [15], we argue otherwise: The main reason being is that with new tools and

algorithms that allow e�cient computation of deep learning models, the goal of devel-

oping an explainable model of an (ir)rational decision-maker using massive datasets

is no longer unreachable.

2.2.1 Machine learning based travel behaviour and decision

making

Machine learning is broadly de�ned as the task of development and analysis of

algorithms that can learn from the observed data [47]. Learning corresponds to

adjusting and �ne-tuning parameters to model certain aspects of the underlying

data. There are two primary types of learning methods: supervised and unsupervised

15



2.2. A New Approach to Behavioural Modelling

[47]. In supervised learning such as discrete choice models, the problem is given as

�nding the conditional probability distribution of a dependent output variable given

some independent input variables p(y|x). The learning task is to model the relation

between the input(s) and the output(s). The learned model can then be used to

forecast new output(s) given some new and unseen input value(s).

In unsupervised learning, the learning task is to generate some representation

that summarizes and explains the principal features given some inputs x1, x2, ..., xn.

This category of models may include clustering, principal component analysis or deep

generative models [48, 45]. The learned model is used as a generator to synthesize

new data that have similar probability distribution as the inputs or as an encoding

function to transform data into higher dimension space. To leverage the value of

passively collected data with few to no labels, we consider semi-supervised learning

which lies between supervised and unsupervised learning. Semi-supervised learning

has been used in the past to improve model accuracy in discrete classi�cation tasks

with a mixture of labelled and unlabelled data which uses the underlying structure

of the data and higher-order correlation to identify important latent features [49,

50].

Deep Learning

Deep learning in neural networks that we know today was initially inspired by neu-

roscience and sought to represent a human brain by a learning algorithm consisting

of neurons, connections and weights. Neurons receive information from input data

and manipulate the information to produce an output. When more than one layer

of neurons is used, it is generally known as a multi-layer perceptron [45].

Advances in deep learning have enabled neural networks to learn from vast

amounts of data and stored in its hundreds, if not thousands of model parameters, by

providing a means to compute the gradient of the network e�ciently. Deep learning

typically uses backpropagation to learn functional parameters from a constant stream

of input data. Backpropagation is simply an optimal control problem that solves a

complex evaluation function by dividing it into several elementary steps that exploit

the derivative used at each step [51]. Also, layers within the neural network employ

non-linear transform functions on the input or intermediate layers. There are various
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types of transform functions used in deep learning. The most common types are (a)

linear, (b) logistic (or sigmoid), (c) Recti�er Linear Units (ReLu) and (d) Softplus

shown in Fig. 2.1.

Figure 2.1: Common transform functions used in deep learning

The output y of the neural network is a series of non-linear transformation

function applied consecutively with weights and biases. An example of a single-

hidden-layer MLP would be the following:

h = f(W (1)x+ b(1)) (2.5)

p(y) = g(W (2)h+ b(2)) (2.6)

where f and g are the transform functions, h is the intermediate layer output/in-

put andW, b are the weights and biases respectively. The output of Section 2.2.1 is a

probability if the �nal non-linearity is a binary or multinomial logit transformation,

for example:

g =
e(W

(2)h+b(2))∑
j e

(W
(2)
j h+b

(2)
j )

(2.7)
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Figure 2.2: Example MLP topology with 1 hidden layer, 3 neurons, 5 inputs and 4
outputs.

As we increase the number of layers in the neural network, the model will rec-

ognize more complex decision patterns and thus, increasing the predictive potential.

However, too many hidden layers can lead to a reduction in prediction accuracy as

the network begins to over�t, and the noise becomes a major factor in deep neural

networks [52]. Fig. 2.2 shows a topology of a simple 1 layer MLP. Multiple layers

can be stacked within the MLP to increase model complexity.

While simple neural networks such as MLPs are powerful machine learning

models, they cannot take advantage of unlabelled training data [45]. There are

several methods to account for unlabelled data, including unsupervised and semi-

supervised learning. Generative modelling is a form of unsupervised learning that is

free from the restriction of having to rely on labelled data. An underlying model is

trained to produce samples that are similar in distribution to the training samples.
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Generative modelling

Generative machine learning can be de�ned as a problem where an agent learns to

mimic the provided demonstration in the form of sensory data in a neural network

[53]. Generative models are particularly appealing in deep learning because they can

learn smooth transitions in the latent space, in contrast to �xed decision boundaries

[54]. When an unknown probability distribution is placed on the inputs, a latent

variable generative model can be de�ned to discover the underlying correlation in

the data. Besides, each latent variable can represent a complex distribution that

would otherwise require many discrete components [54]. In estimation, similar to

MLPs, a backpropagation learning function can be applied to tweak the structure

of the generative model in small steps with each observation of the data.

Estimating a generative model can be performed using simulation, Bayesian

inference methods or reinforcement learning [45]. In particular, with Bayesian Infer-

ence, a product of learning models (ensemble of possible distributions) is obtained

by multiplying the likelihood with this product. Bayesian inference allows the cre-

ation of a class of density models that have components rather than categories (as

in discrete choice models) as their latent variable. The model generates a prob-

ability distribution over the parameter space, in contrast to traditional statistical

approaches (e.g. discrete choice analysis) where a single point estimate is obtained.

The Bayesian approach has several advantages: First, by having a probability den-

sity, we can take uncertainty into account during the simulation and forecasting,

thus improving the quality and realism of the predictions. Viewing the generative

model as a "regularizer" by de�ning a prior over the input data, we can control

the complexity or uncertainty of the parameters, thereby reducing the problem of

over�tting [55].

One popular class of generative model is the restricted Boltzmann machine

(RBM) and the deep Boltzmann machine (DBM) [56] Both models typically involve

estimating a joint probability distribution, assuming a {0, 1}-Bernoulli function over

the latent variables. Fig. 2.3 is an example of an RBM topology with �ve observed

variables and four latent variables. The RBM is an undirected graphical model con-

taining a set of observed (visible layer) and a set of latent (hidden layer) variables.

The two layers are interconnected, and there are no connections between each vari-
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able in the visible or hidden layer. The layers are associated with a weight matrix

and an optional bias unit.

h1 h2 h3 h4

Observed variables

Latent variables

Wi,j

bi

x1 x2 x3 x4 x5

cj

bias

weights

Figure 2.3: Example RBM topology.

Early methods of training RBMs included the use of Markov Chain Monte Carlo

(MCMC) methods which is computationally expensive. The recent emergence of

variational methods, including Bayesian variational inference, have made generative

models much easier to optimize, albeit with a slight increase in bias tradeo�. Training

is performed by using a variational lower bound on the free-energy term. It is one

of the most e�cient methods of learning the underlying structure of data [45].

The RBM can also be extended to model conditional or categorical distribu-

tions while keeping the same model structure [57]. For prediction, we are interested

in the conditional distribution. Discriminative RBM has been developed to carry

out prediction tasks by assuming one subset of observed variables as behavioural

attributes and another set as dependent variables (either as continuous or discrete

variables are possible). Fig. 2.4 shows various ways to con�gure an RBM for density

estimation, prediction or behaviour modelling.
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Figure 2.4: RBM framework which models di�erent con�gurations of input and
outputs, (a) generic RBM with 1 hidden and 1 observed layer, (b) the observed layer
is divided into input and conditional output, (c) the output is de�ned as a function
of input directly with the hidden layer acting as a regularizer.

2.2.2 Relationship between generative modelling and economic

behavioural theory

Generative models explicitly allow learning of relevant features that represent the

correlation and unobserved decision process in the data. Understanding and gener-

alizing the underlying structure of the data is of fundamental importance in travel

behaviour analysis. Hence, developing generative models and associated learning al-

gorithms could potentially provide rich information and expand the scope of discrete

choice modelling further.

Recent advancements in neural processing systems have established the link be-

tween utilitarian behaviour with information theory [41]. Speci�cally, a preference

selection can be framed as an information processing constraint that accounts for

the natural deviations in econometric behaviour theory [58, 18]. Generative models

have the potential to combine individual entropy with a utility that forms the basis

for economic interpretation. In simple terms, entropy refers to the underlying un-

certainty that accounts for the natural deviations in econometric behaviour [18, 58].

The concept of entropy stems from information theory and can be explained through

the same foundations as physical thermodynamics. In thermodynamics, the utility

(expected energy) and entropy are related through the Hop�eld energy function [59]:

F = U + TS (2.8)
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where U is the expected utility and T is a constant "temperature" term. F is

the free energy term that de�nes how (biological or arti�cial) systems maintain non-

equilibrium steady state within a limited number of system states. It was introduced

as an explanation for variational free energy in machine learning by minimizing un-

certainty [60]. Under the free energy principle, it has been suggested that human

behaviour tends toward entropy � minimizing long term uncertainty [39]. In partic-

ular, the multinomial logit model is analogous to the Boltzmann distribution of free

energy states:

pi =
e−Fi∑
j e
−Fj

(2.9)

McFadden has shown that this distribution arises in decision making rules, with

an additive noise that follows an extreme value distribution [43].

Individuals pursue a choice task that minimizes the di�erence between the likely

and preferred action, the former represents what the analyst observes, and the latter

represents the internal decision of the individual. These two states are often termed

as "exploitative" (utility maximizing) and "explorative" (uncertainty minimizing)

behaviour in neuroscience [16]. In some cases, individuals seek to minimize uncer-

tainty, while in other cases, they would maximize utility. For example, in a route

choice model, an individual traveller may choose a path that satis�es some internal

constraints (i.e. habits) over routes that maximize utility (i.e. least travel time)

[25]. Satisfying the decision maker's internal constraints reduces the perception of

loss over taking an alternative route. Kahneman and Tversky formulated this choice

behaviour as Prospect Theory [20]. Another example would be decision regret, de-

scribed as the inconsistency being brought on by mental shortcuts [61]. Chorus et al.

make the same analysis of this decision paradox and term the problem in discrete

choice modelling as random regret minimization [32].

In the discrete choice framework, observed utility represents explicit actions

while the unobserved component re�ects the decision maker's holistic appraisal of

the preferred action (which are hidden from the analyst) [20]. RUM theory is often

criticized because it assumes a perfectly rational decision-maker and fails to predict

behaviour between speci�c responses that are inconsistent with rational behaviour

[61]. A radical idea that was introduced by Sims was to treat behaviour analysis in

22



2.2. A New Approach to Behavioural Modelling

macroeconomic models as a type of dynamic programming problem with information

processing constraints [58]. Sims suggested using information theory to measure

information �ow as the rate of uncertainty reduction. The substantial similarity

between information theory in decision making and discrete choice models has been

known for some time [62], but there have not been attempts to combine modern

deep learning methods with behaviour modelling in a way such that it o�ers more

convincing solutions for handling noisy, large-scale data-driven applications. Perhaps

the most crucial question is, how do we formulate behaviour models that adapt to

these constraints that would make sense in a data-driven environment?

The core hypothesis of this dissertation is that by framing the optimization

between the observed value of choice and preferred (prior) action within a Bayesian

framework, we can relate the process of learning through behavioural responses

back to the conventional econometric theory of utility. The generative learning

algorithm functions by modelling the joint distribution over the observed and latent

constructs to describe how an ideal decision maker processes information [63]. In

brief, generative modelling allows us to build a model of the internal decision states

as representing some unobserved beliefs about the choices, expressed as the self-

information associated with the choice, plus a divergence between the variational

and posterior density.

Furthermore, in scenarios where the objective choice process is motivation driven

(i.e. non-utility maximizing behaviour), by a need to satisfy or minimize uncertain-

ties about the task. The computational approach will be as if individuals are actively

minimizing uncertainty concerning prior beliefs about future outcomes while still

acting on utility-maximizing behaviour. This is characterized as goal-independent

autonomous behaviour [64]. This dissertation aims to take the classical methods of

evaluating discrete choice models and incorporate a learning mechanism through a

generative process, improving the consistency of the model estimates that represent

autonomous behaviour [64].
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2.2.3 How discrete choice analysis can bene�t from using a

generative modelling framework?

Modelling choice behaviour with latent variables

The use of psychometric data such as perception and attitudinal questions provides

the basis for latent behavioural representation. Ben-Akiva et al. emphasized this

importance a�ecting decision making, which leads to a more behaviourally realistic

representation of the choice process [38]. Similar to [61], latent variables provide a

means to synthesize models with the cognitive workings within the decision maker by

including perceptual factors. These perceptual factors may take di�erent forms. For

example, in Mixed Logit, this takes the form of an adjustable variance parameter. In

Random Regret Minimization, a regret factor is used, which incorporates value loss

between competing alternatives [32]. In rational inattention models, time variability

constraint that accounts for decision under limited information channel [25].

Even with the prevalence of advanced choice modelling methods such as the

ICLV model, the consequences of behaviour modelling remain questionable [35].

Generative modelling provides a goal-driven method of extracting the underlying

behaviour from the data observations and without explicitly using psychometric

measurement indicators or using structured equation modelling [65]. Furthermore,

we can use a generative model to characterize latent variables (alternative as well as

individual speci�c) with semantic meanings and perform sensitivity analysis on the

model parameters.

Latent variables in generative models are random variables that are learned

from the data through a non-linear transformation function and a stochastic gradient

based algorithm. Bayesian inference is used to derive the posterior distribution of

the dependent variable, given some observed and latent variables. The generative

model learns the underlying joint distribution of the observed and latent variables

and optimizes a divergence objective function. This divergence objective function is

used because of its plausibility to behaviour learning in a human brain [17, 16].
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Modelling multiple discrete continuous outputs

The classical framework of discrete choice modelling assumes an individual selecting

one or more alternatives from a slate of choices. In travel behaviour modelling, these

alternatives might be mode (train, bus, car etc.), activity (education, employment,

leisure, etc.) or location (home, school, work, etc.). The available alternatives may

di�er over time, and di�erent subsets may or may not have all possible alternatives

available to the individual; for example, transit options may not be available to

individuals living in areas without access to transit. For example, travel distances

are determined by the type of mode of transportation, and it is not plausible that a

person chooses walking as their mode while having a long travel distance.

Often, the choice is a subset of available alternatives and not a single choice.

A naïve way to consider modelling a subset of choices is to consider each subset

as an alternative. However, this would exponentially increase the size of the model

and estimation of such models becomes infeasible. Alternatively, one could model

each output as an independent selection of choice sets, for example, using a sigmoid

function. The downside of this method is that the model loses all correlation between

each choice in the subset and does not capture any higher order correlation within

the data. Higher-order interactions between observed data are well known to have

a signi�cant e�ect on the decision model. These problems have been addressed in

machine learning literature by two approaches: First, by assuming only a restricted

set of dependencies between variables [66]. This approach is mainly taken with

graphical models such as RBMs. This allows individual tractable partitions and

simplifying the estimation process [66]. The second approach is to approximate

the form of the joint distribution that takes into account some of the dependencies

between the variables, e.g. variational Bayesian inference [67].

Capturing information heterogeneity

The classical assumption about modelling travel behaviour data is that individuals

have varying unobserved heterogeneity in their choice preference [68]. However,

travel decisions tend to exhibit sensitivity to uncertainty and information processing

constraints. Consider a case where an individual is faced with two route options

in a choice set when the expected utilities are identical for both options. In utility
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theory, both options will be chosen at equal probabilities, where in practice, there

is a constant stream of evaluations and changes to potential choice strategies as

decision-makers' perception and choice process evolve [38].

In the context of data-driven models, behavioural heterogeneity describes the

correlation between observed choice attributes and unobserved socio-economic fac-

tors using a �exible and tractable model speci�cation. These variations include

decision-protocols, choice sets, unobserved taste variations and unobserved attributes

[26]. Recent studies on travel behaviour analysis have so far primarily focused on

representing heterogeneity in the error correction function and incorporating it into

utility based multinomial logit (MNL) models, for instance, mixed MNL models,

Latent Class models or the Integrated Choice and Latent Variable (ICLV) model

[28]. The use of psychological and perceptual factors in discrete choice modelling

has been suggested to complement and extend, rather than replace a choice based

perspective of economic theory [38]. A generative model can be developed in the

same fashion that complements economic choice by extracting the correlation from

observed data. However, the main di�erence is that it can be performed without an

explicit de�nition of psychometric indicators. These latent behavioural constructs

cannot be directly observed; however, by using Bayesian inference, we can quickly

approximate the joint distribution through Gibbs sampling.

2.3 Summary

Research on travel behaviour under deep learning and neural networks in the era of

Big Data is becoming an important aspect of understanding and anticipating the ef-

fects of disruptive mobility as it o�ers more �exibility and computational e�ciencies

in handling complex data structures. The supporting hypothesis of this disserta-

tion is that generative modelling provides a new perspective on how analysts can

obtain insights into behavioural heterogeneity manifestations by accounting for vari-

ous heterogeneities from information processing cost, multiple variable dependencies

and higher-order correlations. This chapter outlined the background theory and ex-

isting research in the context of this thesis. A proposed concept of using generative

modelling, in particular, a generative model is developed to able to incorporate latent

constructs while retaining economic features that are essential to behavioural anal-
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ysis. While variational Bayesian inference addresses the shortcomings of MCMC

methods, generative modelling methods can also be used to extend Mixed Logit

through estimating a �exible underlying latent behaviour model without relying on

pre-speci�ed distributions.
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Chapter 3

Modelling Latent Travel

Behaviour Characteristics: A

Generative Machine Learning

Approach

Preamble

This chapter introduces a RBM model on a stated/revealed preference survey study.

We compare the e�ectiveness of the generative modelling approach against a con-

ventional ICLV approach and analyzed the model parameter stability.

This research article appeared in IEEExplore:

Wong, M., Farooq, B., 2018. Modelling latent travel behaviour characteristics

with generative machine learning, In: Proceedings of the 21st International Con-

ference on Intelligent Transportation Systems (ITSC), Maui HI, 2018, pp. 749-754.

doi:10.1109/ITSC.2018.8569581

and was presented at the 21st IEEE International Conference on Intelligent Trans-

portation Systems in November 2018.



Abstract

An information-theoretic approach to travel behaviour analysis is proposed using

a generative modelling framework to identify informative latent characteristics in

travel decision making. It involves developing a joint tri-partite Bayesian graphical

network model using a Restricted Boltzmann Machine (RBM) generative modelling

framework. We apply this framework on a mode choice survey data to identify ab-

stract latent variables and compare the performance with a traditional latent variable

model with speci�c latent preferences � safety, comfort, and environmental. Data

collected from a joint stated and revealed preference mode choice survey in Québec,

Canada were used to calibrate the RBM model. Results show that a signi�cant

impact on model likelihood statistics and suggests that machine learning tools are

highly suitable for modelling complex networks of conditional independent behaviour

interactions.
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3.1 Introduction

The increased use of psychological and perceptual variables in travel choice survey

has motivated several studies that investigated the explicit e�ects of latent behaviour

in decision-making. Analysis of travel mode choice has focused on the e�ects of

modal travel cost, time or reliability and many recent studies have attributed la-

tent behaviour variables to account for unobservable e�ects [34, 69]. The Integrated

Choice and Latent Variable (ICLV) model is a recent development in structural

equation modelling (SEM) to handle hybrid endogenous and exogenous variables

in decision-making [38]. The ICLV model has been shown � in some situations �

to produce consistent estimates of model parameters, leading to better explanatory

solutions [35]. The history of structural modelling dates back to the 1970s and has

been initially used in psychology, sociology and market research, and recently it has

seen growing applications in travel behaviour involving latent preference �attitudi-

nal� variables and measurement �indicators�. The fundamental methodology of SEM

assumes prior statistical relevance and prior hypothesis about the subjective vari-

ables. Errors in measurement and model structure can be independently estimated,

and psychological e�ects can be directed using measurement indicators. One of the

characteristics of latent variable models is that the estimated model parameters are

not always unique. The information quality of the underlying data also poses a sig-

ni�cant identi�cation problem in SEM. Theoretical analysis of how latent variables

can be identi�ed practically is a vital consideration, speci�cally in the domain of

travel behaviour analysis.

Recent studies into some of the insights of the decision-making process with

latent variables have investigated the use of machine learning algorithms to enrich

limited endogenous variables by learning a generative statistical model explicitly

designed to avoid the problems with non-unique parameter estimates. E�cient gen-

erative modelling algorithms, e.g., RBMs or Variational Autoencoders, developed

for machine learning applications, can be applied to latent travel behaviour models

without the need for measurement indicators nor through SEM by incorporating

choice posteriors to learn latent variable interactions [70].

In this paper, we aim to develop a novel conditional RBM (C-RBM) for travel

survey data that can leverage attitudinal and causal information of choice preference
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simultaneously. The main contributions of this paper are:

� Propose a C-RBM framework for travel behaviour modelling to incorporate

the conditional relationship between observed and latent information.

� Explore the capability and identi�ability of the framework for latent behaviour

characteristics.

� An empirical comparison with traditional SEM-based discrete choice model.

3.2 Literature Review

3.2.1 Structured Equation Modelling (SEM)

The use of attitudes and perceptions in latent variable modelling have been used in

various implementations and approaches in travel behaviour models [71, 72]. The

ICLV model is a particularly useful SEM method that incorporates psychometric

indicators by constructing a model in terms of a system of unidirectional e�ects

of one variable to another [73]. Within this domain, ICLV models estimate either

sequentially or simultaneously on latent variables and indicator manifestation to

explain the utility of each alternative. The ICLV model combines consideration for

unknown variables with the choice model, o�ering better explanatory e�ect.

Early developments of latent behavioural framework are a response to the

need for interactions between psychometric data and choice preferences, treating

behaviour as an �open black-box� [74]. A distinction in SEM is in the e�ects be-

tween observed and target perceptual variables that are pre-speci�ed graphically.

The direct e�ects of indicator measurements on latent variables are expected to be

available. For instance, survey collection does not take into account psychometric

factors; latent variables cannot be estimated using the ICLV method. Even when

measurement indicators are available, they may be weak predictors of latent vari-

ables if the respondents do not understand or inaccurately answer those questions.

Indicators may also not provide further useful information and might cause mis-

speci�cation of the choice model [35]. ICLV explicitly models unobserved (latent)

behaviour factors through measurement equations.
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3.2.2 General speci�cation of the ICLV model

The ICLV choice model is composed of 3 sub-parts: The choice model, the measure-

ment model and the latent variable model [35]. A maximum likelihood estimation

(MLE) function is used to estimate the parameter values. The observable variables

consist of generic and alternative speci�c inputs where all the respondents n gives

their stated choice preference i. The set of inputs are referred to as xm and xim′ re-

spectively. In a standard RUM-based multinomial logit utility, the utility is de�ned

by:

Ui = Vi + εi =
∑
m

βmxim′ +
∑
m

βimxm + εi, (3.1)

where βm and βim are the parameters of the alternative speci�c and generic variables

respectively. These parameters de�ne the sensitivity of each variable: xim′ and xm.

Finally, εi is the extreme valued error term that represents the unobservable part

of the utility and Vi represents the observed part of the utility. For simplicity, we

assume that the alternatives are homogeneous across the population and parameters

are estimated without a variance parameter.

The ICLV model extends the utility by adding a latent variable term x∗h where

h notation represents the number of latent variables used. An equation is de�ned for

each latent variable. Random utility with latent variables can be de�ned as follows:

Ui = Vi +
∑
h

βihx
∗
h + εi. (3.2)

Typically, the functions for latent variables are not explicitly de�ned beforehand.

Here we provide several possible ways of how the latent variable can be formulated in

terms of observable variables. The measurement model decouples the latent under-

lying factors from the observed variables and separate representations into discrete,

measurable points, e.g. latent attributes such as `attitude towards owning a car'.

Indicators I de�ne the response of the individual to perceptual questions. For in-

stance, one can ask the question `What is the importance of safety when choosing to

travel by train?' A Likert scale usually de�nes the response, and we assume that all

indicators are con�gured as binary-valued [0, 1] (e.g. not important or important).

Similarly, in latent variables, each indicator is de�ned with one equation. Each equa-
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tion measures the distribution of indicators conditional on the values of the latent

variables, f(x∗h). For example, indicators can be de�ned as a conditional probability

distribution of latent variables:

Ij =
∑
h

βjhx
∗
h + ςj , (3.3)

where ςj represents the error terms of the indicators and βjh is the parameters

de�ning the weight of the latent variable on the speci�ed indicator. The parameters

βjh can be estimated by the probability that the indicator is I = 1, using a binary

logit model:

p(Ij = 1|x∗h) =
e
∑
h βjhx

∗
h∑

j′∈[0,1] e
∑
h βj′hx

∗
h

(3.4)

In principle, any function for I is possible (including linear when the indicator

is a scale, hence a Probit model), but we consider a logit function for simple general-

ization. Providing indicators may help to capture the systematic response bias not

found in observed variables. However, this method cannot be used if psychometric

indicators are not available.

3.2.3 Modelling Non-linearity in Latent Variables

Non-linear interaction terms between latent and observed variables allow for cases

where latent variables are not monotonically related to observed variables. The

di�culty in computing the covariance or correlation matrices among non-linear terms

of exogenous latent variables limits the use of non-linear functions, thus requiring

non-linear constraints which increases the complexity of the model speci�cation and

identi�cation. The linear function used in [35] is described in ICLV models [69]:

x∗h = f(xm; β̂) =
∑
m

β̂hmxm + ϑh, (3.5)

where β̂hm is the parameter describing the linear relation between observed and

latent variables, and ϑh is a random stochastic term. This form is selected because

the function will be linear and continuous and can be easily inferred from. However,

there is a risk of overestimation as the value of x∗h is not bounded (x ∈ [−∞,∞]).
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There would be potential numerical instability in the gradient estimation procedure

(when taking the exponential of a large number of input). A common practice in

discrete choice modelling to stabilize parameter identi�cation is to scale the input

values to a small (<1.0) number or include a scale estimator [75].

A non-linear formulation is the sigmoid or inverse logit function

f(x) = sigmoid(x) =
1

1 + e−x
. (3.6)

This is common for latent variables in discrete choice models since the output

is continuous and bounded between 0 and 1. Intuitively, the value of the latent

variable will represent a probability that the latent variable is included in the choice

selection behaviour. The formula is as follows:

x∗h = sigmoid(βhmxm) =
1

1 + e−
∑
m βhmxm

(3.7)

Other possible functions of f(xm) include the recti�er model (commonly referred

to as Relu(x) in machine learning literature) is a threshold version of the linear func-

tion with f(x) = Relu(x) = max(0, x) and the soft recti�er f(x) = softplus(x) =

ln(1 + ex) where x =
∑

m βhmxm + ϑh (Glorot et al. 2011). When x = xm1 − xm2 ,

the resulting output becomes a measure of alternative regret.

3.3 Framework and Estimation of Latent Variable

Models

Generative models learn the underlying choice distribution p(y) and latent variable

distribution p(x∗|y) given some input variables x. A Bayesian inference method is

used to derive the posterior distribution of y given some observed and/or latent vari-

able, e.g. p(y|x∗) = p(x∗|y)p(y)
p(x∗) . Latent variables are features that perform non-linear

generalization of the highly heterogeneous observed data. Intuitively, in terms of

econometric analysis, latent variables in generative models are arbitrary variables

that depend on observed data, including response choices. In ICLV models mea-

surement functions may be prone to errors. This is not so in the case of generative

models, as latent information is inferred from choice data (through a Markov net-

work, for example). The C-RBM is a variant of a Boltzmann machine inference
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model with an undirected energy-based model (from the basis of information theory

and relative entropy) and a tri-partite of variables having symmetric connections.

The RBM framework estimates the amount of information `bits' required to map

the data onto the set of latent variables. Also, each group is conditioned on another

set of inputs; in the case of an ICLV, the observed variables can be used as conditional

inputs. The latent variables are assumed to be independent of each other and the

model has stochastic visible variables y ∈ {0, 1}∀Y and latent variables h ∈ {0, 1}J

conditioned on some known prior distribution x. In discrete choice modelling, one

of each constant or alternative speci�c parameters is �xed to zero. This can be

performed in stochastic gradient learning by setting the gradient update to zero of

the associated parameter in the computational graph.

The joint distribution of visible and latent variables is given by the Hop�eld

energy function:

Energy(y, x∗, x) =
∑
i∈I

yici −
∑
j∈J

x∗jcj −
∑
i,j

x∗jDijyi

−
∑
i∈I

ximBi −
∑
j∈J

xmGhm (3.8)

where ci and cj are the constant values associated with the alternatives and la-

tent variables respectively. Dij is the parameter covariance matrix representing the

relation between the latent and alternatives. Bi is the parameter vector of the con-

ditional alternative speci�c inputs xim. Ghm is the parameter matrix expressing

the relation between latent and observed generic variables. Likewise, one parameter

vector row is �xed to zero for model identi�ability. We can express the Boltzmann

distribution as an energy model with energy function which relates the entropy of

the model to a speci�c state of the machine F (y):

p(y) =
1

Z

∑
x∗

exp(−F (y)) (3.9)

where Z is the partition function Z =
∑

i,j exp(−Energy(y, x∗, x)) over all

possible latent vector combinations. F (y) is de�ned as the free-energy function:
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F (y) = − ln
∑
x∗

exp(−Energy(y, x∗, x)) (3.10)

F (y) = −yici −
∑
j∈J

ln(1 + exp(D.,jy + cj)) (3.11)

3.3.1 Objective function and likelihood estimation

To estimate an ICLV model, maximum likelihood (ML) is used most often. ML

maximizes the probability that the structural model parameters generate the implied

output, and the measurement model maximizes the probability that the underlying

latent variables generate the associated indicators. To perform estimation of RBM

type models, we need to de�ne the objective that is robust and stable in the biases

of the standard errors. A stochastic graph is constructed that incorporates both

conditional dependence and the choice model. The C-RBM model learns aspects

of an unknown probability distribution based on samples from that distribution. A

stochastic gradient descent algorithm iterates across all observations and updates the

parameter vectors such that the model best represents the distribution of the choice

data (Algorithm 1). To generate latent variables, it is necessary to compute the log-

likelihood of the joint distribution p(y, x∗, x). E�cient Markov Chain Monte Carlo

algorithm has been developed to deal with such problems using Gibbs chain sampling

methods and contrastive divergence (CD). Assuming that individual responses are

known, we can model the joint distribution of the responses and latent variables

using the Bayesian estimation rule:

p(y) =

∫
x∗
p(y, x∗, x)dx∗ =

∫
x∗
p(y|x∗, x)p(x∗|x)dx∗ (3.12)

The probability that the C-RBM model estimates are based on comparing the

Kullback-Leibler divergence of the initial probability distribution p(y) and another,

�nal distribution p(ŷ), where p(ŷ) is the probability of the reconstructed representa-

tion after Gibbs sampling. To �nd the gradient derivative for the gradient descent

training algorithm, we take the derivative of the log probability of the training vector

with respect to the model parameters:
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δ log p(y)

δθ
=< yix

∗
j >data − < yix

∗
j >model

= φ+ − φ− (3.13)

where the components of 〈yix∗j 〉 correspond to the expected value under the speci�ed
distribution (data or model). The �rst and second terms are the positive and negative

phases of the Gibbs sampling procedure. The update rule from the model parameters

can be performed with stochastic gradient descent (SGD) at each iteration t:

∆θ = Φ(< yix
∗
j >data − < yix

∗
j >model) (3.14)

θt = θt−1 −∆θ (3.15)

We incorporate a learning factor Φ in the objective function which controls the

magnitude of the update parameters. The objective assumes that the marginal

p(x∗|x) has a closed form solution and the function generate output samples ŷ ∼
p(ŷ = 1|x∗, x).

3.3.2 Construction of the latent behaviour choice model

The generated parameter vectors of the C-RBM model are then used to estimate

a latent behaviour model that contains the utility-maximizing estimator for each

observed and latent variables with an indicator model for the latent variable com-

ponent:

� For the choice model y, the estimator simply calculates the likelihood L(θ)

under the RUM theory, that is L(θ) = 1
n

∑
n p(y|x∗, x; θ). Here θ are the

parameters of the generic (βim), alternative speci�c (βi) and latent (βhi) vari-

ables.

� For the latent variable x∗, we calculate the conditional probability p(x∗|x).

A reparameterization boundary condition is placed on latent variables [0, 1].

The identi�ed parameter represents the probability that the latent variable is

present in the individual.
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Algorithm 1: Conditional RBM Gibbs sampling procedure using Con-
trastive Divergence

Input : Data sample D, batch sample Si ⊂ D, i = 1, ..., s, iteration steps
T

Output: Model parameters θ.

initialize: θ = 0;
forall Si ∈ D, τ = 1, ..., T do

forall (y, x∗, x) ∈ Si do
for n = 1 to N do

iterate over Gibbs chain, CDn
< y, x∗ >data← p(yn, x

∗
n, xn)

Sample: ŷ ∼ p(y|x∗, x)
< y, x∗ >model← p(ŷn, x

∗
n, xn)

end

end

parameter update:
∆θ ← Φ(< y, x∗ >data − < y, x∗ >model)
forall θ do

θτ ← θτ−1 −∆θ;
end

end

� For the indicator component, statistically signi�cant latent variables are ex-

tracted from our C-RBM model estimation.

The choice model be can of any form, e.g. multinomial logit, mixed logit, nested

logit, or a combination of di�erent choice mechanisms (for simplicity, we use an MNL

in our experiment). Once the choice and measurement model is formulated, the

likelihood function is derived to estimate the parameters of the model. The likelihood

function is de�ned as the mixed logit integral of the choice model conditional on the

indicator measurement model:

P (y|x, x∗h, I) =

∫
P (y|x, x∗)P (I|x∗)dx∗ (3.16)

Assuming that the measurement model follows the logistic sigmoid function

with scale and/or translation factor, the integral can be estimated by maximum
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log-likelihood (MLE), and terms of the resulting densities are:

L(θ) = log(P (y|x, x∗h, I))

=
∑
n

(log(P (y|x, x∗)) +
∑
j

log(P (I|x∗))) (3.17)

The �rst term is the log-likelihood of the choice model. The second term can be

substituted with cross-entropy (CE) maximization:

log(P (I|x∗)) = I ∗ log(f(x∗|x)) + (1− I) ∗ log(1− f(x∗|x)) (3.18)

The CE approach for multinomial logit models is equivalent to the standard

log-likelihood for standard discrete-continuous choice models when more than one

alternative is selected. In the case of the latent variable and indicator function, the

probability of Ij = 1 is independent of other Ij′ . This CE expectation-maximization

procedure on a multi-attribute logistic function recovers the likelihood of the indi-

cator model e�ciently and directly evaluate P (I|x∗) simultaneously with the choice

model.

3.4 Case Study: Train Hôtel Mode Choice Dataset

A combined revealed and stated preference travel survey from commuters along the

Northeastern USA rail corridor with Montreal in Canada (Montreal, NYC, Maine,

Boston) is conducted (see Table D.1 for data description). A sleeper train between

these cities and tourist destinations (Train Hôtel) was proposed to provide an alter-

native to the regular rail travel mode. The proposed Train Hôtel provides overnight

sleeper amenities and entertainment for round-trip journeys shown in Fig. 3.1. A

joint RP-SP survey design provides multi-attributed and generic variables, resulting

in more accurate outcomes. The survey analyses mode choice preference of passen-

gers who travelled between select Canada and USA destinations within 12 months

prior from the day of the survey. The data statistics and collection procedure are

described in [76].

In the SP choice survey, each respondent was presented with up to 6 alterna-

tives yi ∈ {Bus, Car Rental, Car, Plane, Train Hôtel, Train}. Each mode alternative
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Figure 3.1: Origin Destination nodes modelled for computational experiments.

was characterized by trip duration, trip reliability and trip cost. Each attribute was

sampled on di�erent levels for each respondent (e.g. multiple price levels) de�ned

relative to the origin and destination pairs. The level of each quantity was random-

ized across variables to control for potential ordering bias. However, the choice order

between respondents was not varied. The second part of the survey data collected

socio-economic and household characteristics of the respondents. The survey data

consisted of continuous (e.g. income, age, number of vehicles) and categorical vari-

ables (e.g. education, household type). For consistency, all generic variables related

to the respondents' characteristics were binary coded (continuous variables are �rst

categorized). The model structure used in the analysis is shown in Fig. 3.2.

For the measurement model, three qualitative indicators were considered for

each mode: environmental, comfort, safety, (e.g. safety of car, safety of plane).

Respondents indicated their perception of these indicators by the level of importance

on a 5-point Likert scale.
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Figure 3.2: A joint tri-partite RBM structure for travel analysis with latent be-
haviour variables.

3.5 Results

The performance for the mode choice was compared as follows: First, we initialize

a set of parameter values using the C-RBM method. Next, we constructed an ICLV

model with interaction terms (ICLV) using the signi�cant parameters. By initializing

from an optimal non-zero point, we can avoid identi�ability problems by having

a higher probability of �nding the global optima through the gradient estimation

parameter search. For estimation using a stochastic gradient method, we �x the

gradient for the reference parameter to zero, so updates are not backpropagated

to the parameters; therefore, a reference value could be found. Table 3.1 shows the

estimated parameters from the model estimation. Table 3.2 shows the optimal ICLV

and C-RBM indicator estimates.
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3.5.1 Latent Behaviour Model Formulation

We measure the reliability of the latent variable parameters by quantifying percep-

tual meaning (e.g. quality measure, attitudes towards a particular habit) to each

latent variable that could be used as an additional explanatory variable in order to

obtain a better �t on the choice model. The latent variables were then evaluated on

their consistency through the measurement indicator model. Through this process,

latent variables were hypothesized less subjectively since they were learned through

the C-RBM model framework. We use signi�cant latent variables as a guide for the

construction of the ICLV model, assuming that there should be a relation between

the posterior choice and prior distributions. Using the observed distribution of choice

data instead of pre-de�ned latent variables in our estimated model removes assumed

causal relation with subjective indicators.

The equations of the ICLV model follows a 6 alternative mode choice model

(i) with three latent variables (x∗1, x
∗
2, x
∗
3), the three latent variables were measured

by speci�c mode indicator variable (e.g. Ij∀J ∈ { bus, car, train, plane }). The

measurement indicators Ij were binary coded from a 5-point Likert scale (1, 2, 3

= not important (1), 4, 5 = important (0)) [76]. Latent variable interaction terms,

denoted by the observed variables are formulated as:

� Environmental

Variables: Driving Licence, Age 25-45, FT workers, HS Education, 0 HH Ve-

hicles, 0 or 2 Children, Income ≥60K

� Safety

Variables: Public Transit Pass, Age 25-45, 1 HH Vehicle, 0 or 1 Children,

20K< Income ≤60K

� Comfort

Variables: Age ≥45, Male, Tertiary Education, 1 or more HH Vehicles, Income

≤20K, Income ≥60K

Measurement equation of the ICLV model:

Ij = f(x∗h;βjh) (3.19)
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Structural equation of the ICLV model:

Ui =
∑
m

βixim +
∑
h

βihx
∗
h + ci (3.20)

3.5.2 Model analysis

The results of the two-stage approach showed that three attitudinal variables could

be included for estimating latent behavioural aspects for travel mode between Mon-

treal and Northeastern USA destinations. The signs of the indicator parameters

are as expected in the C-RBM model, and the t-tests show that most parameters

are signi�cant. In the ICLV model, the high positive values of the latent variable

parameters indicate that individuals are most sensitive to the comfortability of train

mode, likewise for environmentally conscious behaviour, improving the environmen-

tal impact of train mode also have the highest impact on perception, while car and

plane mode had the least e�ect. For C-RBM, experiments on a di�erent number of

latent variables also showed convergence and identi�cation problems as some latent

variables were found to be identical or very similar. The results for the estimation

of SP variables (cost, time and reliability) are shown in Table 3.3. Both models are

consistent in cost, travel time and reliability parameter values.

Assuming similar parameter estimates, the latent constructs observed in the

C-RBM models indicated that the e�ects of choice on latent variables lead to a more

accurate representation of behaviour. Comparing the standard ICLV and C-RBM

method, there is a higher model �t when the parameters are initialized well before

model estimation. Our case study reveals the feasibility of the C-RBM framework

on mixed RP and SP data which could account for perception e�ects related to

SP values and attitudinal questions. An essential advantage of this is to be able

to estimate the values from the data instead of postulating them. However, we

should mention that neither method is su�ciently reliable, but provides a di�erent

perspective that is representative of the underlying latent variables. The statistical

results show that our method has superior performance in terms of estimated log-

likelihood (-1946.872 vs. -2013.685). This shows that alternative speci�c variables do

not have any signi�cant variance when incorporating latent variables; Estimating the
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Table 3.1: Optimal Parameters for ICLV and C-RBM Choice Model

ICLV model C-RBM latent behavior model

parameters comfort env. safety comfort env. safety

DrvLicens - 1.576
(5.27)

- -0.054
(-0.24)

-0.387
(-2.37)

2.014
(3.64)

PblcTrst - - -2.327
(-3.10)

0.331
(1.278)

0.561
(2.53)

1.597
(3.44)

Ag1825 - - 0.462
(0.23)

-2.087
(-3.47)

-2.199
(-5.36)

-0.039
(-0.05)

Ag2545 0.691
(1.96)

-1.345
(-4.41)

3.976
(3.00)

-1.329
(-4.64)

-0.641
(-3.02)

2.242
(3.28)

Ag4565 - - - 3.618
(6.97)

1.868
(4.44)

1.463
(2.20)

Ag65M - - - 0.535
(1.06)

0.07
(0.185)

1.511
(1.55)

Male -1.493(-
4.53)

- - -2.453
(-7.79)

-1.509
(-7.04)

-2.584
(-6.00)

Fulltime - -0.413
(-1.29)

- -0.756
(-2.85)

-0.468
(-2.38)

-0.512
(-1.05)

EduHighschl - 1.614
(2.02)

0.701
(0.36)

-0.492
(-0.93)

0.613
(1.634)

-0.930
(-1.49)

EduBSc 1.298
(3.82)

2.062
(5.76)

- 1.683
(6.45)

1.397
(6.90)

-1.470
(-3.02)

EduMscPhD - - - 0.189
(0.39)

0.788
(2.37)

2.861
(0.47)

HHVeh0 1.966
(1.67)

1.101
(1.36)

- -2.392
(-4.36)

0.462
(0.73)

-0.404
(-0.91)

HHVeh1 -0.531
(-1.83)

- 4.648
(2.66)

2.494
(8.53)

0.513
(2.54)

1.786
(2.34)

HHVeh2M 1.783
(2.04)

- -1.129
(-1.21)

2.55
(7.01)

0.685
(2.52)

4.237
(1.26)

HHChld0 - 2.941
(7.94)

3.514
(1.27)

-0.794
(-3.26)

0.534
(3.04)

2.933
(5.842)

HHChld1 - 0.219
(0.45)

-4.078
(-5.75)

-1.288
(-2.81)

-0.056
(-0.16)

1.594
(1.77)

HHChld2M - 2.508
(3.23)

- 2.786
(2.78)

3.09
(2.26)

-0.184
(-0.24)

HHInc020K 3.468
(2.66)

- - 0.312
(0.61)

2.15
(2.57)

-1.852
(-4.03)

HHInc2060K - - -1.364
(-1.17)

3.486
(6.67)

2.701
(4.52)

4.297
(1.38)

HHInc60KM -0.878
(-2.75)

-1.562
(-3.73)

- -1.045
(-3.681)

-0.384
(-1.99)

-0.846
(-1.164)

note: for ICLV model, non-signi�cant parameters were removed and re-estimated
∗ values in brackets are t-test values at >95% statistical signi�cance
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Table 3.2: Optimal ICLV and C-RBM indicators

ICLV model C-RBM latent behavior model

parameters comfort env. safety comfort env. safety

Bus 1.281
(7.65)

-0.802
(-3.35)

0.509
(2.44)

-1.638
(-5.72)

2.521
(10.83)

-1.479
(-6.53)

Car Rental 1.778
(6.08)

-2.236
(-5.37)

0.597
(1.78)

-2.474
(-5.24)

2.686
(6.96)

-3.900
(-10.84)

Car -1.861
(-17.53)

1.627
(12.79)

-0.01
(-0.09)

2.904
(21.05)

-4.017
(-29.93)

-0.161
(-1.34)

Plane -1.635
(-7.87)

0.683
(2.80)

0.921
(4.35)

-1.905
(-6.13)

0.504
(1.91)

2.655
(12.39)

Train Hôtel 0.646
(5.83)

0.147
(1.34)

1.420
(14.35)

-1.376
(-11.17)

1.823
(16.30)

2.448
(24.27)

Train 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.)

LV1_Comf_Car 0.533
(4.98)

- -

LV1_Comf_Train 2.16
(13.29)

- -

LV1_Comf_Bus -0.88
(-7.08)

- -

LV1_Comf_Plane -0.241
(-2.28)

- -

LV2_Envrn_Car - -1.711
(-11.83)

-

LV2_Envrn_Train - 1.083
(8.94)

-

LV2_Envrn_Bus - -0.657
(-7.81)

-

LV2_Envrn_Plane - -1.78
(-12.04)

-

LV3_Safe_Car - - 0.619
(6.14)

LV3_Safe_Train - - 2.215
(13.79)

LV3_Safe_Bus - - 0.575
(5.74)

LV3_Safe_Plane - - 0.611
(6.06)

note: for ICLV model, non-signi�cant parameters were removed and re-estimated
∗ values in brackets are t-test values at >95% statistical signi�cance

46



3.5. Results

Table 3.3: Alternative Speci�c Variables and Constants Estimated Within the ICLV
and C-RBM Models

ICLV C-RBM

Parameters value std. err. t-test value std. err. t-test

ASC_Bus -2.485 0.204 -12.179 0.266 0.209 1.273
ASC_CarRental -2.243 0.33 -6.802 1.319 0.335 3.934
ASC_Car 0.643 0.115 5.619 1.236 0.118 10.507
ASC_Plane -0.318 0.208 -1.531 -0.779 0.209 -3.732
ASC_TrH -0.386 0.097 -3.967 -0.452 0.098 -4.609
ASC_Train 0 (ref.) - - 0 (ref.) - -
cost -0.609 0.112 -5.447 -0.595 0.114 -5.217
travel time -0.127 0.023 -5.477 -0.131 0.024 -5.541
reliability 0.249 0.684 0.364 0.42 0.692 0.606

Model

statistics
Null Loglike-
lihood

-
2917.752

-
2917.752

Final Log-
likelihood

-
2013.685

-
1946.872

rho square 0.310∗ 0.332∗

AIC 4273.371 4139.744
BIC 4948.5 4814.873
∗ note that the functions governing the relationship between y and x, x∗ are di�erent,

so we cannot compare rho square values directly

model through a joint estimation method does not generally in�uence the underlying

factors of alternative dependent cost, time and reliability variables.

Under the assumption that the latent behaviour function is non-linear and com-

plex, there may be multiple locally optimal solutions, and we did not consider scale

and translation e�ects of the underlying variables and di�erent decision rules in this

study. We are currently investigating these e�ects in our future work. Furthermore,

these are important considerations when the structure of the latent variable model

changes from a conditional to a joint model.
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3.6 Conclusion

In this paper, we develop a new approach to the problem of modelling latent be-

haviour through the estimation of a joint distribution from its associated choice and

auxiliary information. This approach has been studied in di�erent contexts in ma-

chine learning models recently. Our C-RBM approach is the �rst fully developed

solution to latent behaviour models. This approach is comparable with previously

developed ICLV methods in terms of model �t and does not require additional pa-

rameters. The estimation process is straightforward, and convergence is fast for large

parameter vectors using stochastic gradient descent with CD objective function.

In a sample of a new travel mode choice, survey respondents were asked to

indicate their preference of travel mode given that a hypothetical intercity train

service Train Hôtel is o�ered. Train Hôtel provides overnight sleeper amenities as

an alternative to day trains and other modes such as cars, planes and buses. Results

obtained from the C-RBM parameter estimation are compared with results from the

ICLV model.

The ICLV approach analytically derives each latent variable under assumptions

on the measurement functions. This method is useful when indicators are available,

but assumptions may be hard to verify as we are unsure about the interactions of the

underlying latent variable generating process. In some cases, theoretical result only

gives asymptotic guidance in �nite observations. It is likely that the stated indicators

may not be re�ective of real attitudes and perceptions and heavily in�uenced by the

survey conditions, geographic area, socio-demographics or other revealed informa-

tion. While these model design choices are data-reliant, having a reliable estimate

is a requirement for strong econometric plausibility. In our case study, inference on

model performance is a straightforward task of analyzing parameter validity.
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Chapter 4

Discriminative Conditional

Restricted Boltzmann Machines

for Discrete Choice and Latent

Variable Models



Preamble

This chapter broadens the idea of RBM based generative modelling towards incor-

porating behavioural semantics in choice modelling without using subjective psy-

chometric indicators. Rather than using perceptual or attitudinal factors in the

measurement equations, we let the generative model automatically tweak and adapt

the latent structure to observed variables. The examples we provide in this chap-

ter illustrate the estimation and model development process on a consumer choice

preference panel dataset using a Conditional-RBM model that seeks to explain and

forecast consumer motivations.

This research article appeared as:

Wong, M., Farooq, B., Bilodeau, G.-A., 2018. Discriminative conditional restricted

Boltzmann machine for discrete choice and latent variable modelling, Journal of

Choice Modelling, 42, pp. 152-168. doi:10.1016/j.jocm.2017.11.003
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Abstract

Conventional methods of estimating latent behaviour generally use attitudinal ques-

tions which are subjective and these survey questions may not always be available.

We hypothesize that an alternative approach such as non-parametric arti�cial neural

networks can be used for latent variable estimation through an undirected graphical

models. In this study, we explore the use of generative non-parametric modelling

methods to estimate latent variables from prior choice distribution without the con-

ventional use of measurement indicators. A restricted Boltzmann machine is used

to represent latent behaviour factors by analyzing the relationship information be-

tween the observed choices and explanatory variables. The algorithm is adapted for

latent behaviour analysis in discrete choice scenario and we use a graphical approach

to evaluate and understand the semantic meaning from estimated parameter vector

values. We illustrate our methodology on a �nancial instrument choice dataset and

perform statistical analysis on parameter sensitivity and stability. Our �ndings show

that through non-parametric statistical tests, we can extract useful latent informa-

tion on the behaviour of latent constructs through machine learning methods and

present strong and signi�cant in�uence on the choice process. Furthermore, our

modelling framework shows robustness in input variability through sampling and

validation.

51



4.1. Introduction

4.1 Introduction

Complex theories of decision-making process provide the basis for latent behaviour

representation in statistical models. These processes focus on the use of psychometric

data, such as choice perception and attitudinal questions. Although it can provide

essential insights into the choice process and underlying heterogeneity, studies have

shown limited �exibility and bene�ts of statistical latent behaviour models, i.e. In-

tegrated Choice and Latent Variable (ICLV) models [46, 35]. Three disadvantages

are well known in ICLV models: First, datasets are required to have attitudinal

responses, for example, Likert scale questions in product choice surveys. Second,

model misspeci�cation may occur when latent variable model equations are poorly

de�ned. Lastly, attitudinal questions are subjective and may change over time.

The objective of this study is to use advanced machine learning (ML) methods

to analyze underlying latent behaviour in decision-making based on a set of synthetic

ML considerations and hyperparameters without explicitly using attitudinal or per-

ception attributes. A growing body of choice modelling behaviour research focuses

on patterns and clusters of behaviour characteristics such as latent attitudes and

choice perceptions. Even with the prevalence of advanced choice modelling strate-

gies such as ICLV models, our knowledge of the consequences of latent behaviour

in the choice model remains limited [35]. Studies on hidden representations using

neural network models may provide more nuanced and potentially new perspectives

of latent variables in discrete choice experiments and choice behaviour theory [77].

Given many possible latent variable combinations, it is necessary to use advanced

ML techniques to segment the population into groups with similar attitudinal pro-

�les. For this study, we have chosen to use restricted Boltzmann machines (RBM).

RBM is a non-parametric generative modelling approach that seeks to �nd latent

representations within a homogeneous group by hypothesizing that posterior outputs

can be explained with a reduced number of hidden units [78]. Besides, identifying

useful latent variable representations may enable policymakers to better understand

the sensitivity and stability of latent behaviour models in surveyed and revealed

preference data. We decouple the latent behaviour model underlying the data distri-

bution by estimation on a �nancial instrument choice behaviour dataset without the

need for subjective measurement indicators. The proposed method does not prede-
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�ne semantic meanings for each latent variable. Instead, we construct a restricted

Boltzmann machine to learn the latent relationships and approximate the posterior

probability.

We show in our �ndings that our RBM model approach can characterize latent

variables with semantic meaning without additional psychometric data. The param-

eters estimated through our RBM model present a strong and signi�cant in�uence in

the decision-making process. Furthermore, sensitivity analysis has shown that this

method is robust to input data variance and the use of generated latent variables

improves sampling stability.

The remainder of the paper is organized as follows: Section 4.2, provides a

background literature review on latent behaviour models. Section 4.3 describes the

conditional RBM modelling approach and model training methodology, given only

observed variables without attitudinal questions. Section 4.4 explains the data and

the experimental procedure. Section 4.5 presents the results and performance tests

and analyzes the model sensitivity and stability. Finally, Section 4.6 provides a

conclusion and future research directions.

4.2 Literature Review

Current practice in choice modelling is targeted at drawing a conclusion on the

mechanism of the stochastic model and not so much about the nature of the data

itself. This leads to simple assumptions of data relevance and statistical proper-

ties of explanatory variables [79]. Several parametric and non-parametric modelling

methods are available. Parametric models are regression-based and random util-

ity maximization structural models. Examples of non-parametric methods include

latent class and variable models, k-means or hierarchical clustering. These non-

parametric methods are often criticized for being too descriptive, theoretical, may

result in inconsistent estimates and often not possible to make generalizations [11,

80, 81]. Analysis of data through the statistical properties is generally applied for ex-

tracting information about the evolution of the responses associated with stochastic

input variables rather than having good prediction capabilities. On the other hand,

algorithmic modelling approaches such as arti�cial neural networks (ANN), deci-

sion trees, clustering and factor analysis are based on the ability to predict future
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Figure 4.1: Classical structural framework for (a) latent class model and (b) inte-
grated choice and latent variables model

responses accurately given future input variables within a `black-box' framework

[15]. Econometric choice models can be estimated by using both parametric and

non-parametric methods that incorporate machine learning algorithms into discrete

choice analysis to learn mappings from latent variables to posterior distribution [82].

Several di�erent approaches that implement the use of attitudinal variables

have been used in existing literature [72, 83, 84]. The �rst approach relies on a

top-down modelling framework which makes prior assumptions that individuals are

divided into multiple market segments, and each segment has its own utility function

of underlying attributes. In the most generic form, these assumptions are based

on multiple sources of unobserved heterogeneity in�uencing decisions, e.g. inter-

and intra-class variance and `agent e�ect' [85]. Fig. 4.1 illustrates the Latent Class

and ICLV model framework, which shows the process of deriving latent classes or

variables and how it integrates into the structural choice model.

The Latent Class model (LCM) is one such form that assumes a discrete dis-

tribution among market segments [86]. LCM derive clusters using a probabilistic

model that describes the distribution of the data. Based on this assumption, simi-

larities within a heterogeneous population are identi�ed through the assignment of

latent class probabilities. Individuals in the same class share a common joint prob-
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ability distribution among the observed variables. Under the assumption of class

independence, the utilities are generated with a prior hypothesis from several sub-

populations, and each subpopulation is modelled separately. The resulting classes

are often meaningful and easily interpretable. The unobserved heterogeneity in the

population is captured by the latent classes, each of which is associated with dif-

ferent utility vector in the sub-model (Fig. 4.1). Another similar class of top-down

models are �nite mixture models, e.g. Mixed Logit, which allows the parameters to

vary with a variance component and that behaviour is dependent on the observable

attributes and on the latent heterogeneity which varies with the unobserved factors

[28].

The use of attitudes and perception latent variables are also particularly attrac-

tive and popular in past work [87, 80]. Choice models with measurement indicator

functions treat correlated indicators into multiple latent variables. This factor anal-

ysis method is similar to principal component analysis, where the latent variables

are used as principal components [87]. The approach involves the analysis of the

relationship between indicators and the choice model. Within this domain, there is

the sequential and simultaneous estimation process. The sequential approach esti-

mates a measurement model that derives the relationship between latent variables

and indicators. Then, a choice model is estimated, integrating over the distribution

of the latent variables. The main disadvantage of this approach is that the param-

eters may contain measurement errors from the indicator function, which were not

taken into account during the initial choice model.

To solve this issue, another approach uses a simultaneous estimation of the

structural and measurement model, which includes the latent variable in the choice

model framework. This is so called the Integrated Choice and Latent Variable (ICLV)

model (Fig. 4.1). The ICLV model explicitly uses information from measurement

indicators and explanatory variables to derive latent constructs. This combined

structural model framework has led to many interesting results, e.g. environmental

attitudes in rail travel [88], image, stress and safety attitudes towards cycling [89],

and social attitudes towards electric cars [90]. However, the simultaneous approach

still relies on a separate measurement model (latent variable model) that describes

the relationship to indicators.

Despite the direct bene�ts of the ICLV model combining factor analysis with
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traditional discrete choice models, the only advantage to using such an approach is

when attitudinal measurement indicators are expected to be available to the mod-

eller, and the observed explanatory variables are weak predictors of the choice model

[35]. Even when measurement indicators are available, they may not provide any

further information that directly in�uences the choice than through explanatory

variables [46]. Consequently, misspeci�cation and other measurement errors may

occur when the criteria are not associated with the choice model.

Without measurement indicators to guide the selection of latent variables, we

can alternatively use ML for latent variables through data mining. This can be im-

plemented through generative modelling methods used in ML. Generative modelling

is a method in ML that uses underlying data to generate latent features or classes

through supervised (labelled) or semi-supervised (partially or unlabelled) learning.

In our process, generative models estimate the underlying choice distribution p(y)

and the latent inference p(h|y), where h is the latent variable. Following which, we

implement a Bayesian network that represent a probabilistic conditional relationship

between random variables and dependencies to derive the posterior distribution of

y given h using p(y|h) = p(h|y)p(y)
p(h) . Therefore, e�cient algorithms that perform ML

and inference, such as RBMs can be used in this method. The denominator is given

by p(h) =
∑

y p(h|y = 1) indicating choice y is chosen. The rapid advancement of

machine learning research has led to the development of e�cient semi-supervised

training algorithms such as the conditional restricted Boltzmann machine (C-RBM)

[49, 57], a hybrid discriminative-generative model, capable of simultaneously es-

timating a latent variable model using a priori choice distribution with an latent

inference model (Fig. 4.2).

To date, econometric and machine learning models are often studied for its

contrasting purposes in decision forecasting by behavioural researchers [15]. Econo-

metric models are based on the classical decision theory that an individual's decisions

can be modelled rationally based on utility maximization. These models assume that

the population will adhere to the strict formulation of the choice model, but may not

always represent the actual decisions. The generative modelling based approach uses

clustering and factor analysis developed through algorithmic modelling of the data.

Associations between decision factors can be classi�ed in this method, obtaining la-

tent information without explicit de�nition of latent constructs [91]. Thus, machine
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Figure 4.2: Framework for a C-RBM choice model conditional on explanatory vari-
ables and choice distribution.

learning algorithms such as ANN that decouple latent information from `true' distri-

bution generally outperform traditional regression-based models in multidimensional

problems [92]. Recent works on latent behaviour modelling on choice analysis agree

on the potential of improving behaviour models with machine learning. Examples

include combining machine learning to improve complex psychological models [93],

representing the phenomena of similarity, attraction and compromise in choice mod-

els [94] and inference of priorities and attitudinal characteristics [95].

Despite the many bene�ts, the interpretation of results is still challenging due

to the complexity and number of parameters in ML analysis. As a result, ML

models are not often used for general purpose behaviour understanding but created

exclusively for a speci�c purpose for prediction accuracy. Furthermore, with the

emphasis on applications and theoretical studies in today's massive data-driven in-

dustry, improving analytical techniques with ML is very relevant, although structural

modelling, statistical and probability theory will remain the cornerstone of discrete

choice analysis.

4.2.1 The basis of latent class and latent variable models

The latent class model shown in Fig. 4.1 is a simple top-down model that imparts

generalization properties to the choice model that prede�nes a discrete number of

classes, allowing the parameters to vary with the �xed distribution. Formally, the
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LCM choice probability can be expressed as:

P (y) =
∑
n

P (sn)P (y|x, sn) (4.1)

where S = [s1, s2, ..., sn] are the set of classes and P (sn) is the probability that

an individual belongs to class s. P (y|x, sn) is the conditional probability of choice

y selected given the class sn and input variable x.

The ICLV model extends the choice model by describing how perceptions and

attitudes a�ect real choices as well as using separate indicators to estimate latent

variables [96]. Latent variables can be classi�ed as either attitudinal (individual

characteristics) or perceived (personal beliefs towards responses) [11]. The latent

variable model (measurement model) forms a sub-part of the structural framework

which captures the relationship between the latent variables and indicators and the

observed explanatory variables which in�uence the latent variables. This speci�ca-

tion can be used to identify useful parameters and predict accurate decision outcomes

when there is a lack of a strong signi�cant correlation between explanatory variables

and choice outcomes. The functions of the structural and measurement model can

be explained in these four equations [35]:

x∗ = Ax+ ν (4.2)

I∗ = Dx∗ + η (4.3)

u = Bx+Gx∗ + ε (4.4)

yi =

1 if ui > u′i for i ∈ {1, ..., I}

0 otherwise
(4.5)

where ui is the utility of selecting alternative i. A is a (k×j) matrix representing
the relationship between the kth input explanatory variable in x and the jth latent

variable in x∗. D is a (j × l) matrix representing the relationship between the jth

latent variable in x∗ and the lth indicator output in I∗. I∗ is the psychometric

indicators of the respondent, I∗ =: [0, 1]. For instance: �Reliability is important in

my travel decision, 0: no, 1: yes�. B andG represents the model parameter matrices

int the utility with sizes (k × i) and (j × i) respectively.
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ν, η and ε are the stochastic error terms of the model, assumed to be mu-

tually independent and Gumbel distributed. In a generative model, there are no

measurement indicators, however, the indicator parameters D can still be estimated

by setting G = D, and l = i (Fig. 4.2). Therefore, instead of optimizing the latent

variables w.r.t. the indicators, the generative model generates latent variable sam-

ples h and optimizes the latent variables distribution w.r.t. the joint distribution

p(y, h).

4.2.2 Modelling through generative machine learning methods

In generative machine learning models, hidden units h are the learned features

(Fig. 4.2) which performs non-redundant generalization of the data to reduce high

dimensional input data [97]. Intuitively, in terms of econometric analysis, hidden

units are latent variables that depend on some observed data, for instance, socio-

economic attributes such as weather or price information or direct choices such as

location and choice of purchase. We can construct a generative model as a function of

these dependent and independent variables. In the case of factor analysis approach,

a typical process is to perform feature extraction based on statistical hypothesis

testing to determine whether the values of the two classes are distinct, for example,

using Support Vector Machines (SVMs) or Principal Component Analysis (PCA)

to learn low-dimensional classes by capturing only signi�cant statistical variances in

the data [91, 98]. The learned classes (or clusters) can then be introduced directly

into the model via parameterization. In a generative modelling approach, we use

the priors directly to learn the distribution of the hidden units. In this process, we

extract latent information directly from the observed choice data instead of using

measurement functions which may be prone to common misspeci�cation errors.

4.2.3 Balancing model inference and accuracy

One common problem that researchers face when constructing latent behaviour mod-

els is specifying the optimal size of latent factors [99]. Since the hypothesis on the

number of latent sizes cannot be tested directly, typical statistical evaluation meth-

ods such as AIC and BIC are used to guide class selection [99], in the case of ICLV

models, through prede�nition of measurement functions [77]. However, since the
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number of latent factors determines the ability of the model to represent the vari-

ous heterogeneity in the data. It is likely that as we increase h, the choice model

becomes more e�cient in capturing complex behaviour e�ects from individual and

latent attributes. On the other hand, if we increase the number of latent segments,

the number of parameters will also increase at an exponential rate [99]. Therefore,

we may gain model accuracy, but we would lose model interpretability.

The trade-o� between inference and accuracy is a challenge when dealing with

complex data [15]. If the goal of latent behaviour modelling is to leverage data to un-

derstand underlying statistical problems, we have to incorporate implicit modelling

methods in addition to describing explicit structural utility formulations.

4.3 Methodology

In this section, we provide a summary of restricted Boltzmann machines and how

it can be used to generate conditional priors from the choice distributions. We refer

readers to [45] for background and details on generative models and deep learning.

4.3.1 Restricted Boltzmann machines

The Restricted Boltzmann Machine (RBM) formalizes the energy-based modelling

principle for the development of a computational representation to describe a set of

abstract descriptions about the data to its fundamental exogenous properties [49].

The development of RBM models is based on two primary methods: 1) describing a

joint probability distribution as an energy function where random variables in this

distribution interact with each other, and 2) iterative stochastic search algorithm

that minimizes the global energy of the system.

The units of a Boltzmann Machine are divided into two groups: a set of ob-

servable variables and a set of latent representational features. The two groups are

connected to form a symbolic interaction (Fig. 4.2). Observed variables describe

the characteristics of the data and the latent variables describe the undetermined

cognitive behaviour(s). The states of the RBM can be viewed as an accept-reject

hypothesis of each latent-observable unit pair in the system. The weights of the

links describe a pairwise constraint between the accept-reject hypothesis, whereby
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a positive weight indicates that the connected units support each other. Likewise,

assuming all other factors remain the same, a negative weight suggests that the con-

nection pair is not accepted. Therefore, the energy of the RBM is the sum of all the

terms weighted by the strength of the connections.

The Boltzmann energy function has mathematical properties that are closely

related to probabilistic decision theory, which makes it plausible to represent the

systematic connections between latent and observed behaviour. The learning algo-

rithm searches for an optimal solution to the model structure by iteratively updating

states of the RBM to represent all possible combinations of individual pairwise hy-

potheses until it settles to a stationary equilibrium state representing a model of the

data. The model has stochastic visible variables y ∈ {0, 1}I and stochastic hidden

variables h ∈ {0, 1}J . The joint con�guration y,h) of visible and hidden variables

is given by the Hop�eld energy [59]:

E(y,h) = −
∑
i∈vis

yici −
∑
j∈hid

hjdj −
∑
i,j

hjDijyi, (4.6)

where dj and ci represent the vector biases (constants) for the hidden and visible

vectors respectively. Dij is the matrix of parameters representing an undirected

connection between the hidden and visible variables. We can express the Boltzmann

distribution as an energy model with energy function F (y):

p(y,h) =
1

Z
exp(−F (y)), (4.7)

where the partition function Z =
∑
i,j

exp(−Energy(y,h)) is the normalization

function over all possible vector combinations. F (y) is de�ned as the free energy

F (y) = − ln
∑

h exp(−Energy(y,h)) and further simpli�ed to

F (y) = −yici −
∑
j∈hid

ln(1 + exp(D.,jy + dj)). (4.8)

The probability of assigning a visible vector y is given by the sum of all possible

hidden vector states:

p(y) =
1

Z

∑
h

exp(−F (y)). (4.9)
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The RBM model is used to learn the features of an unknown probability dis-

tribution based on samples from that distribution. Given some observation, the

RBM makes updates to the model weights such that the model best represents the

distribution of the observation. To generate data with this method, it is necessary

to compute the log-likelihood gradient for all visible and hidden units. Hinton in-

troduced a fast greedy algorithm to learn model parameters e�ciently using the

Contrastive Divergence (CD) method that starts a sampling chain (Gibbs sampling)

from real data points instead of random initialization [100].

4.3.2 Model estimation and inference

The probability that the RBM network learns a training sample can be raised by

adjusting the weights to lower the energy of that training sample and raise the energy

of other non-training samples. In order to minimize the negative log-likelihood of the

probability distribution p(y), we take its gradient derivative of the log probability

of a training vector with respect to the model parameters as follows:

∂ log p(y)

∂θ
= 〈yihj〉train − 〈yihj〉model = φ+ − φ−, (4.10)

where the components in the angle brackets correspond to the expectations

under the speci�ed distribution. The �rst and second terms are the positive φ+ and

negative φ− phases, respectively. This function updates the model parameters using

a simple learning rule with a learning rate Φ:

∆θ = Φ(〈yihj〉train − 〈yihj〉model). (4.11)

The updates for parameters θ = {Dij , dj , ci} can be performed using simple

stochastic gradient descent at each iteration of t:

θt = θt−1 −∆θ. (4.12)

To obtain a sample of a hidden unit from 〈yihj〉train, we take a random training

sample y and sample the state in the hidden layer given by the following function:

p(hj = 1|y) =
edj+

∑
iDijyi

1 + edj+
∑
iWijyi

= σ(dj +
∑
i

Dijyi), (4.13)
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where σ(x) = ex/(1 + ex). Similarly, we can obtain a visible state, given a

vector of sampled hidden units, via a logistic function:

p(yi|h) =
eci+

∑
j Dijhj∑

i e
ci′+

∑
j Di′jhj

. (4.14)

Since weights are shared between D and G and they de�ne the distributions

of p(y), p(h), p(y, h), p(y|h) and p(h|y), we can express the posterior distribution

as p(y) =
∑

h p(h)p(y|h) [101]. Due to its bidirectional structure, this framework

possesses functional generalization capabilities. The visible layer represents the data

(in the case of choice modelling, data represent selected choices), and the hidden

layer represents the capacity of the model as class distributions.

The model can be inferred from 〈yihj〉model by setting the states of the visi-

ble variables to a training sample, and then the states of the hidden variables are

computed using Eq. (4.13). Once a �state� is chosen for the hidden variables, a �re-

construction� phase produces a new vector ỹ with a probability given by Eq. (4.14)

and the gradient update rule is given by:

∆θ = Φ(〈yihj〉train − 〈yihj〉reconstruction). (4.15)

We approximate the gradient function by using a CD Gibbs sampler minimizing

the divergence between the expected and estimated probability distribution, known

as the Kullback-Leibler (KL) divergence [101]. A divergence ratio of 0 indicates that

the distributions are entirely similar. The training algorithm ran for a total number

of N chain steps and was initialized from a �xed point from the data distribution

and then averaged across all examples [102].

4.3.3 Modelling approach

In this paper, the proposed method uses a conditional RBM (C-RBM) training

algorithm to include input-output connections that allows for discriminative learning

[103]. C-RBM expands the model to include �context input variables�, i.e. p(y|x, h).

k input explanatory variables are introduced as context variables so that they can be

used to in�uence the latent variables, even though Eq. (4.14) does not reconstruct

these explanatory variables. The in�uence factor is represented by a weight matrix
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4.4. Case Study: Consumer Choice Preference Dataset

Bik. The intuition is that for each latent variable, it acts as a function of the observed

choice y, conditional on x (4.2). In the choice prediction stage, a vector of new input

samples x generate latent variables h. Conditional on the explanatory and latent

variables, a probability function describing the choice behaviour is given as:

p(yi|h,x) =
e
∑
k Bikxk+

∑
j Dijhj+ci∑

i′ e
∑
k Bi′kxk+

∑
j Di′jhj+ci′

. (4.16)

Likewise, sampling of the hidden state is extended to incorporate x:

p(hj = 1|y) = σ(dj +
∑
i

Dijyi +
∑
k

Ajkxk), (4.17)

where the update parameters are θ = {Dij , Bik, Ajk, dj , ci}. During the recon-

struction phase, the condition probability (Eq. (4.16)) is equivalent to an MNL model

with latent variables (where h and x represents the latent and observed variables

respectively). Good latent variables h best capture information along the orthogonal

direction where choices y and observed inputs x vary the most. The training and

choice estimation phase are illustrated in Fig. 4.3 and Fig. 4.4. In the positive phase,

parameter vectors are adjusted decided by the learning rate σ to learn the trans-

formed latent representation of the training set. In the negative phase, the latent

variables are �clamped� or realized, and the parameter vectors are adjusted again by

reconstructing the observed variables. From Fig. 4.2, the multinomial (MNL) model

estimates the conditional parameter vector B and bias vector c, while the C-RBM

model includes vectors D, A and d.

4.4 Case Study: Consumer Choice Preference Dataset

In this section, we develop a product choice scenario with explanatory variables

using the C-RBM model. The latent variables representing the latent attitudinal

variables are simultaneously estimated in conjunction with the interaction with the

choice model. First, we construct a structured choice subset from a �nancial prod-

uct transaction dataset from the Kaggle database1. The data shows a monthly basis

record of each �nancial product purchase by customers of Santander. The period of

1Dataset: https://www.kaggle.com/c/santander-product-recommendation/data
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4.4. Case Study: Consumer Choice Preference Dataset

Figure 4.3: C-RBM (a) positive φ+ and (b) negative φ− phases during semi-
supervised discriminative training. Weights (connections) are learned to reduce
reconstruction ỹ error.

Figure 4.4: During the choice prediction phase, (a) latent variables are sampled
using explanatory variables, and (b) the choice model is estimated with variables x
and h.

the data ranges from January 2015 to June 2016. Next, we reduced the complexity

of the dataset by removing transaction data that contain multiple product choices.

To ensure consistency, inputs were scaled and normalized. Overall, the constructed

dataset has a total of 13 alternatives (product choice) and 20 explanatory variables.

Table 4.1 lists the alternatives and distribution across the dataset. Given the above

conditions, a total of 253,803 valid responses were recorded, representing the total

population sample with 13 available choices. A descriptive list of mean and standard

deviation values of the explanatory variables are shown in Table 4.2. The experimen-

tal question is straightforward: �Given a set of examples with explanatory variables,

what product is the individual most likely to purchase in the given month?� In a

typical situation, the decision-maker chooses an alternative that yields the maxi-
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4.4. Case Study: Consumer Choice Preference Dataset

Table 4.1: List of choice alternatives (y)

Choice index Choice Label Total sample distrib.

1 Guarantees 0.002%
2 Short-term deposits 0.83%
3 Medium-term deposits 0.07%
4 Long-term deposits 3.79%
5 Funds 0.98%
6 Mortgage 0.02%
7 Pensions 0.15%
8 Loans 0.035%
9 Taxes 2.68%
10 Cards 21.93%
11 Securities 1.42%
12 Payroll 22.04%
13 Direct debit 46.05%

mum utility, making an inference about the behaviour of the decision-maker using

the predictive model.

4.4.1 Method for assessing C-RBM model performance

We can estimate the weights of the latent inference model Bik and Dij by optimizing

the lower bound of the KL-divergence using gradient backpropagation. Intuitively

Dij represents the parameters for the explanatory variables, and Bik represents

the parameters for the latent variables. We selected models with 2, 4, 16 and 32

latent variables to observe the e�ects of increasing model complexity. One disad-

vantage of this step is that it results in a large number of estimated parameters:

(Nparams ∈ R(I×J)+(K×I)+(K×J)+K+I). With J = 4, we ended up with 409 parame-

ters. To counteract over�tting due to this problem, we trained on 70% of our data

and validated the model on the other 30% with a 2-fold bootstrap validation to verify

generalization. When the validation error stops decreasing, the optimal estimation

is reached [45]. A baseline comparison is set up using a standard multinomial logistic

regression model with all explanatory variables and compared to the discriminative

C-RBM modelling approach, followed by comparing the log-likelihood, ρ2 model �t
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4.4. Case Study: Consumer Choice Preference Dataset

Table 4.2: Explanatory variable descriptive statistics (x)

Explanatory
variable

Description mean std. dev.

age Customer age 42.9 13.0
loyalty Customer seniority (in

years)
8.03 6.0

income Customer income 141,838 262,748
sex Customer sex (1=male) 0.387 0.487
employee Employee index, 1 if

employee
0.0006 0.024

active Active customer index 0.95 0.199
new_cust 1 if customer loyalty < 6

mo.
0.045 0.207

resident Resident index (Spain) 0.999 0.007
foreigner Foreign citizen index 0.045 0.21
european EU citizen index 0.995 0.006
vip VIP customer index 0.116 0.32
savings Savings Account type 0.0002 0.012
current Current Account type 0.572 0.495
derivada Derivada Account type 0.0009 0.03
payroll_acc Payroll Account type 0.416 0.493
junior Junior Account type 0.0001 0.0098
masparti Mas Particular Account

type
0.017 0.128

particular Particular Account type 0.168 0.373
partiplus Particular Plus Account

type
0.113 0.316

e_acc e-Account type 0.255 0.436

and predictive accuracy across all data models. The criteria for measuring the per-

formance of a categorical based model include ρ2 model �t and prediction error. The

ρ2 �t denotes the predictive ability between the trained model and a model without

covariates. In the prediction error evaluation, the elements in the diagonal cells of

a confusion matrix over the total number of examples denote the accuracy of the

model in predicting the correct choice, and the error is
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4.5. Results

Errorvalid = 1−
∑
i

P (ypred = 1|x, h, yi = 1). (4.18)

yi is the actual choice, and Errorvalid is the sum of all the error probabilities for

correct assessment for each choice. We �t the model on the training set and evaluate

on the validation set.

4.5 Results

We compare the di�erent models based on their generalization performance on the

test set. A total of 76,141 observations were used in the test. For this study, we

tested both normalized and non-normalized data and found that both data produce

a similar result. Model estimation and validation were performed with Theano ML

Python libraries2. Optimization parameters used were stochastic gradient descent

(SGD) on mini-batches of 64 samples for 400 epochs with input normalization. We

used an adaptive momentum-based learning rate with an initial rate of 1e−3 [104].

Training time was approximately 30 minutes for each model, including validation

running on an Intel Core i5 workstation. At the given time, computational demand

may not be signi�cant to justify the small number of hidden units. However, speed

could become a more critical consideration when model estimation and validation

increase in data size or using huge parameter vectors with higher dimensionality. The

statistical results of the model comparison across the same validation set are shown

in Table 4.3. We found that additional latent information about the relationship

between explanatory variables and observed decisions was useful and increases model

accuracy. Bayesian Information Criterion (BIC) values indicate that 8 hidden units

may be the optimal number of latent variables and higher BIC values above 8 hidden

units might suggest over�tting. However, when generating semantic class meanings,

a smaller number of latent variables may be simpler, therefore, in our example, we

use only 2 latent variables for analysis.

To evaluate the e�ciency of the models, we used a Hinton diagram [17] to ana-

lyze the parameter strengths between independent and dependent variables. We plot

the parameter values and signi�cance with the choice on the y-axis and independent

2Theano Python library: http://github.com/Theano/Theano
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Table 4.3: Model training results

Model latent
variables

Validation
error

log-
likelihood

ρ2 no. of
params

BIC

MNL J = 0 0.4454 -206808 0.546 273 416915

CRBM J = 2 0.4360 -203558 0.553 341 411237
J = 4 0.4338 -202066 0.556 409 409075
J = 8 0.4323 -200846 0.559 545 408279
J = 16 0.4318 -200223 0.560 817 410321

variables on the x-axis. A Hinton diagram is often used in the model analysis where

the dimensionality of the model is high and provides a simple visual way of analyzing

each vector. Figs. 4.5 to 4.9 shows the parameter estimates of the completed train-

ing stage of the di�erent models. The Hinton matrix shows the in�uence of each

independent variable on each alternative or latent variable. Statistically signi�cant

(>95% con�dence bound) parameters are highlighted in blue. The values along the

x-axis are normalized with zero mean and unit variance. The 13 �nancial product

choices are listed on the y-axis. The estimated parameters and bias of the C-RBM

prediction model B, D and c are projected onto the Hinton diagram (Fig. 4.6a,

Fig. 4.7a, Fig. 4.8a and Fig. 4.9a) while parameters A and d representing the pa-

rameters and bias for the latent variable with respect to the alternatives shown in

Fig. 4.6b, Fig. 4.7b, Fig. 4.8b and Fig. 4.9b. c and d are the constants with respect

to the observed and hidden layer respectively. The signs and value of each parameter

correspond to the size and colour of the patches in the matrix, with white and black

representing positive and negative signs, respectively. Statistical signi�cance (t-test)

of each parameter is calculated using θ√
σ
, where σ is the inverse of the Hessian of

the log-likelihood with sample size adjustment with respect to the parameters.

4.5.1 Analysis of latent variables

We can characterize each hidden unit with the explained signi�cance and strengths

represented by the weightsD>. D> is the parameter matrix that indicates the linear

contribution of each latent variable and a constant d, such that each alternative can
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Figure 4.5: MNL model parameters. White: +ve values, Black: -ve values, Blue:
>95% signi�cant
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Figure 4.6: (a) C-RBM model with 2 latent variables. (b) Latent variable relation-
ship parameters. White: +ve values, Black: -ve values, Blue: >95% signi�cant

be described as a utility function of latent variables: y = Dh+ d.

For example, C-RBM-2 latent variable hidden1 is characterized by individuals

who are of working age, non-EU foreign citizens with non-VIP status, and do not

own any special accounts. We can infer this latent variable that indicates a `sav-

ings driven attitude' (Fig. 4.6b). From the model results, the population with such

characteristics has a favourable preference for purchasing a payroll product and a

low motivation of purchasing a (credit/debit) card product as indicated in Fig. 4.6b.

Likewise, in latent variable hidden2, it is represented by older, loyal customers who
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(b)

Figure 4.7: (a) C-RBM model with 4 latent variables. (b) Latent variable relation-
ship parameters. White: +ve values, Black: -ve values, Blue: >95% signi�cant

(a)

ag
e

lo
ya

lty
in

co
m

e
se

x
em

pl
oy

ee
ac

tiv
e

ne
w_

cu
st

re
sid

en
t

fo
re

ig
ne

r
eu

ro
pe

an vi
p

sa
vi

ng
s

cu
rre

nt
de

riv
ad

a
pa

yr
ol

l_a
cc

ju
ni

or
m

as
pa

rti
pa

rti
cu

la
r

pa
rti

pl
us

e_
ac

c
co

ns
ta

nt

hidden1
hidden2
hidden3
hidden4
hidden5
hidden6
hidden7
hidden8

C-RBM-8 latent variables

(b)

Figure 4.8: (a) C-RBM model with 8 latent variables. (b) Latent variable relation-
ship parameters. White: +ve values, Black: -ve values, Blue: >95% signi�cant

are VIP and have held various account types over their lifetime. This latent variable

can be inferred as `self-reliance attitude' and are an indication of the population

who are less likely to purchase long term deposits, funds, securities and card prod-

ucts. The C-RBM with latent variables outperforms the MNL model. However, the

performance increase from increasing the number of latent variables past 4 LV, is

small. This would suggest that the upper bound of latent representative capacity is

reached with just a small number of latent variables. Using 2 or 4 latent variables
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Figure 4.9: (a) C-RBM model with 16 latent variables. (b) Latent variable relation-
ship parameters. White: +ve values, Black: -ve values, Blue: >95% signi�cant

would be su�cient for signi�cant improvement over an MNL structure.

From the presented results, it is clear that the C-RBM models di�er signi�cantly

from the MNL model in terms of parameters that are reliable and signi�cant. The

result seems to be broad-based in the sense that the number of hidden units does not

dictate it, and it signi�es that the observed distribution has some latent factors that

can be further explored. However, we should mention that the training parameter

initialization factor may have a small random e�ect on the model. Note that in

the estimate plots, the signs and strength contribution to the choice model di�er

from model to model, which may indicate that model training may be stuck in some

local optima. This also suggests that the hidden and observed layers have di�erent

scale [53]. What was suggested in [12] was to increase the learning rate to improve

convergence, but that would result in overgeneralization and loss of expressive power

in the hidden units. We posit a middle-of-the-road solution should have adequate

model accuracy and generalization over a large population.

In an attempt to verify the above discussed C-RBM model, we constructed two

latent classes using the obtained latent variables. First, a Latent Class model using

BIOGEME was estimated with only the signi�cant variables found in the C-RBM

model. Then a (reduced) model was estimated with the signi�cant variables found in

the �rst LC estimate. However, in both cases, we could not identify any signi�cant

parameters other than alternative speci�c constants.
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We performed a 2-fold bootstrap validation analysis and determined that the

residual from the model �t is not signi�cant. Therefore the model is robust to changes

in input data � this is further con�rmed with a sensitivity analysis presented in the

following section. In the parameter plots, we can see the values and signs correspond

to the strength of each variable. For instance, the parameters for Guarantees choice

are not signi�cant, since the distribution is very low (0.002%). The latent models

show similar results. For C-RBM with 2 and 4 hidden units, almost all of the

parameters are signi�cant, except for income, employee, savings, derivada and junior

variables. This can be attributed to the small mean values (and high deviation).

4.5.2 Sensitivity of parameter estimates

The versatility and e�ectiveness of parameter estimates were determined by a sensi-

tivity analysis of the model output. Methods of sensitivity analysis include variance-

based estimator, sampling-based and di�erential analysis [105, 106]. �Sensitive� pa-

rameters are those whose uncertainty contributes substantially to the test results

[105]. The model is sensitive to input parameters in the variability associated with

the input variable resulting in a large output variability. Sensitivity ranking sorts

the input parameters by the amount of in�uence it has on the model output and the

disagreement between rankings measures the parameter sensitivity to changes to the

input.

First, we de�ne a list of parameters used in the model by their standard errors

calculated over the full dataset. In a large dataset sensitivity analysis, a key con-

cern was the computational cost needed to complete the analysis. Hence we used

a sampling-based approach as a cheap estimator to the output percentage di�er-

ence of the parameter minimum and maximum value. Random sampling (e.g.simple

random sample, Monte Carlo, etc.) generates a distribution of inputs and outputs

to assess the model under uncertainties [105]. Analyzing the sampling e�ects may

provide information about the overall model performance since parameter sensitivity

depends on all parameters in which the model is sensitive and therefore indicating

the importance of each parameter [106].

Consider that the C-RBM model is represented by y = f(x, h), where x and h

are the input vectors of observed and latent variables respectively, and y is the model
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Table 4.4: Parameter sensitivity rank and standard error di�erence for estimated
parameters B for sampling-based sensitivity analysis

RBM 2 LV C-RBM 4 LV C-RBM 8 LV C-RBM 16 LV
sample
size

n ns std.
err.

n ns std.
err.

n ns std.
err.

n ns std.
err.

parameter rank di�. rank di�. rank di�. rank di�.

βage 15 15 49.30 15 12 0.52 11 11 0.99 11 12 0.64
βloyalty 18 14 59.36 14 15 0.38 15 15 0.82 15 17 0.48
βincome 3 3 3712.99 3 3 26.67 3 3 43.00 3 2 35.82
βsex 12 13 67.51 13 14 0.41 14 13 0.91 14 15 0.52
βemployee 5 2 4267.79 2 4 13.74 5 5 21.27 4 4 33.74
βactive 21 16 47.92 16 19 0.20 19 19 0.34 19 19 0.26
βnew_cust6 12 53.93 12 7 1.49 8 8 1.34 8 9 0.91
βresident 16 20 16.61 20 20 0.19 20 20 0.31 20 20 0.23
βforeigner 8 17 29.15 17 8 1.43 9 10 0.76 7 7 1.35
βeuropean17 20 16.62 20 20 0.19 21 20 0.31 21 20 0.23
βvip 20 10 122.66 10 16 0.33 16 12 0.99 16 13 0.68
βsavings 1 1 34177.13 1 1 258.41 2 1 255.12 2 1 181.81
βcurrent 7 11 64.19 11 13 0.41 12 18 0.38 12 16 0.39
βderivada 4 4 3112.38 4 5 4.70 4 4 19.67 5 5 2.82
βpayroll_acc9 18 24.91 18 18 0.29 18 17 0.52 18 18 0.41
βjunior 2 5 1759.26 5 2 58.29 1 2 45.32 1 3 22.43
βmasparti11 7 185.94 7 9 1.41 7 6 4.99 9 6 2.29
βparticular14 8 166.56 8 11 0.61 13 14 0.83 13 14 0.53
βpartiplus10 6 189.75 6 10 0.65 10 9 1.51 10 10 0.86
βe_acc 19 9 159.38 9 17 0.33 17 16 0.82 17 11 0.91
bias 13 19 19.07 19 6 3.17 6 7 3.35 6 8 0.48

output. We suppose that the model f(·) is a complex, highly non-linear function

such that we cannot wholly de�ne the way the C-RBM model responds to changes in

input variables. Also, h is dependent on x through a submodel previously shown in

Fig. 4.2. Our analysis involves independently and randomly generated sample with

size nS = 0.1n (10% random sample draw), where n = 76, 141 is the total number

of observations. The model performance was considered by sampling stability of

the variable parameters. Sensitivities were also assessed for the size of hidden units

used in generating the C-RBM models and indicated the number of latent variables
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(hyperparameter) is required for model identi�ability. Since the model was applied

using a multinomial logit approach instead of a conditional logit, this resulted in a

vast number of parameters. Thus the e�ect of relative changes to the number of

distributed parameters gave the range of variance across each explanatory variable

and number of hidden units used. Table 4.4 shows the e�ects of sampling on the

sensitivity and stability of the model observed parameters on the theoretical values

and size of latent variables. Notice that the relative di�erence in standard error

between the full and sampled model decreases when the number of latent variables

increases. This reveals that the C-RBM models with a high number of synthetic

latent variables are robust to changes to input values through sampling. Additionally,

the parameter sensitivity rank across variables also becomes more consistent. Hence,

the results show that RBM models are e�cient in obtaining suitable latent variables

with low generalization error. The signi�cant decrease in standard error di�erence

from 2 LV to 4 LV may indicate that the number of latent variables used in the

models has a lower bound on the generalization error, which implies that we need

careful consideration on h for obtaining e�cient but yet accurate exact values of β

without losing model interpretability.

4.6 Conclusion

This paper analyzes an alternative method of latent behaviour modelling in the

absence of attitudinal indicators. In ICLV models, specialized surveys have to be

constructed with attitudinal questions to model latent e�ects on the decisions. While

it has been one of the more popular methods in discrete choice analysis, there are

several disadvantages to it. First, attitudinal questions are subjective, and the be-

haviours are subjected to changes over time. Next, existing datasets that have no

attitudinal questions cannot leverage on the ICLV model. Thus latent e�ects cannot

be utilized. Lastly, it can be challenging to collect psychometric indicators from

thousands of respondents e�ciently. We explore generative modelling of the choice

distribution to uncover latent variables using machine learning methods, without

measurement indicators. We hypothesized that latent e�ects could be obtained not

only from attitudinal questions but also from the posterior choice distribution. In

e�ect, we are modelling latent components that �t the real choice distribution rather
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than achieving good statistics on subjective models. For example, there could be

some mean behaviour that dictates a more probable in�uence on purchases given

some latent variables.

For this method to be e�ective, certain conditions have to be present: First,

di�cultly to get a good discriminative prediction result using only the provided ex-

planatory variables. In this scenario, the C-RBM models were able to learn good

latent variable representation and improve the model �t and prediction accuracy

while providing latent variable inferrability. Next, when the data lacks attitudi-

nal survey data, this method can �nd latent e�ects without the use of subjective

measurement indicators.

The current limitations of this study are the absence of choice dynamics or

explanatory variable dynamics, i.e. changes over time or multiple choices for the

same individual was not considered, but can be brought in. The underlying RBM is

capable of dynamics. We hypothesize that this may improve the model signi�cantly,

but we are still looking for ways to incorporate dynamics into our C-RBM model. In

recent studies, we have seen dynamic frameworks such as recurrent neural networks

used in modelling temporal data [107, 103]. Finally, it is worth noting that as the

number of latent variables increases, the number of estimated parameters increases

exponentially. This will pose problems in large datasets, and the ability to reduce

dimensionality will give a signi�cant bene�t to the e�cient use of model parameters.

In our observation, performing bootstrap cross-validation and model selection with

the lowest validation error was a proper method to prevent over�tting using all the

parameters. In the future, we would also look at the possibility of introducing deep

learning architecture to choice modelling by stacking RBMs [94].

While the ICLV model is optimized to predict the e�ects of latent constructs on

decision-making behaviour using measurement indicators to guide latent parameters

selection, our method uses observed decisions as an information source for optimizing

latent variables through machine learning. This is not to say that we do not agree

with using measurement indicators which may often be subjective and may raise

misspeci�cation problems and when explanatory variables are poor predictors, ICLV

models can improve latent e�ects on choice models [35]. Instead, we show that

latent e�ects may not only be present in attitudes and perceptions, but also the

direct observation of choices. Our current work explores the use of posterior choice
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distribution for latent behaviour modelling. Generative modelling in DCA is inspired

by state-of-the-art machine learning algorithms that perform unsupervised feature

extraction from unlabelled data used in classi�cation problems [59]. In circumstances

when attitudinal variables are not available, we have a strong reason to believe that

the generation of latent factors is essential and useful in building a discrete choice

model.

A future study that would be of interest is to extend this method to datasets

with attitudinal questions and surveys. For example, inter-city rail survey [76], and

perform an analysis on both RBM and ICLV methods to obtain the generalization

error of attitudinal survey models. A comparative study would provide a foundation

for analysis of various latent behaviour models through graphical and algorithmic

methods and provide guidance not only in selecting the appropriate latent variables,

but also direct research e�ect to more promising directions.
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Information Processing

Constraints in Travel Behaviour

Modelling: A Generative Learning

Approach



Preamble

This chapter provides a theoretical background understanding and interpretation of

a generative model with respect to behaviour analysis and choice process. We frame

the process of decision making as a learning algorithm that makes use of concepts

related to thermodynamics (energy), Prospect Theory (uncertainty) and economic

theory (utility). Instead of looking at the model as a �black box�, we explain how

behaviour patterns emerge through a stochastic learning process. The key idea

in this study is describing the implication of information processing cost and how

entropy plays a role in building a model of choice behaviour.

This research article is under �rst review in Transportation Research Part B: Method-

ological.
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Abstract

Travel decisions tend to exhibit sensitivity to uncertainty and information process-

ing constraints. These behavioural conditions can be characterized by a generative

learning process. We propose a data-driven generative model version of rational

inattention theory to emulate these behavioural representations. We outline the

methodology of the generative model and the associated learning process as well as

provide an intuitive explanation of how this process captures the value of prior infor-

mation in the choice utility speci�cation. We demonstrate the e�ects of information

heterogeneity on a travel choice, analyze the econometric interpretation, and explore

the properties of our generative model. Our �ndings indicate a strong correlation

with rational inattention behaviour theory, which suggest correlation to prior infor-

mation in decision making under uncertainty. The principles demonstrated in this

study can be formulated as a generalized entropy and utility based multinomial logit

model.
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5.1 Introduction

The classical assumption about modelling travel behaviour data is that individu-

als have varying unobserved heterogeneity in their choice preferences [68]. In recent

years, the use of data-driven modelling and integration of behavioural and psycholog-

ical factors in discrete choice and travel behaviour analysis have become active areas

of research [37, 108, 109]. In the context of data-driven models, behavioural vari-

ations describe the correlation between observed choice attributes and unobserved

socio-economic factors using a �exible and tractable model speci�cation. These

variations include: decision-protocols, choice sets, unobserved taste variations and

unobserved attributes [26]. Under these considerations, recent studies on travel be-

haviour analysis have so far primarily focused on representing heterogeneity in the

error correction function and incorporating it into utility based multinomial logit

(MNL) models [108]. Models such as mixed multinomial logit (MMNL) or latent

class (LC) model o�ers �exibility in representing heterogeneity and substitution pat-

terns. Also, recent conceptual frameworks such as the integrated choice and latent

variable (ICLV) use individuals' psychometric indicators to represent unobserved be-

havioural and perception heterogeneity [110]. It is also possible to apply a generative

machine learning to identify informative latent constructs in travel decision making

without subjective behaviour indicators (see Chapters 3 and 4). However, the true

underlying behavioural patterns are often unknown and usually approximated by

some pre-determined exogenous indicator variables that would often lead to model

misspeci�cation due to lack of complete information, or error in data collection [111].

Furthermore, accurate speci�cation of the underlying distribution assumes individ-

uals have access to all available information regarding the travel activity (e.g. travel

times of each mode, knowledge of exact tra�c status, etc.). This information will

not always be available to the individual, and they might also choose not to consider

these variables in their decision-making process. Therefore, statistical variations

in the observed data may not exhibit the same underlying properties as with the

individuals' behaviour.

A di�erent perspective to explain these heterogeneity manifestations is to con-

sider the element of information processing costs based on rational inattention theory

[58, 30]. Rational inattention theory is de�ned as individuals choosing their optimal
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preference, at the same time considering incomplete information about the choice

attributes and relying on their prior beliefs about the choice set. A typical example

would be route choice selection: Individuals tend to ignore most path choices and

consider only a few prioritized routes in their choice set [112]. These manifesta-

tions occur through repeated choice process and prior experiences about the travel

routes. As described in [30], information-theoretic approaches do not impose any

particular assumptions on what is learned or how they are learned�the structure

of the model is estimated through the minimization of decision uncertainty. Under

this interpretation, a rational inattention model captures the systematic utility and

adjusts for prior knowledge and individuals' internal information processing strategy

using an entropy term. Individuals perceive route choices with heterogeneous prior

beliefs and allocate di�erent levels of attention to each alternative. Consequently,

misspeci�cation in classical econometric model estimation can be interpreted as the

systematic error between the data observed by the analyst and the true underlying

heterogeneous beliefs of the decision-makers (which are hidden to the analyst).

The objective of this research is to model unobserved variations in travel be-

haviour data by emulating decisions under uncertainty and information processing

constraints as a data-driven generative learning process. We develop a choice model

estimation framework with latent constructs that capture information heterogeneity

within the data. The key di�erence between our work and previous literature is

that we show how rational inattention can be framed as a �exible and extendable

generative learning model that emulates the cognitive processes in human behaviour

[113, 25]. We postulate that realistic behavioural patterns can be modelled using a

data-driven generative learning process, and we estimate a model to represent the

underlying heterogeneity of the data. Lastly, we provide a quanti�able economic in-

terpretation using latent variables by analyzing the model properties and systematic

e�ects from the latent variable parameters. This will provide valuable insights into

how modern data-driven and deep learning techniques can be exploited to improve

travel behaviour modelling.

The main contributions of this paper are summarized as follows:

� A novel framework for capturing and extracting properties of information het-

erogeneity in travel behaviour models (Fig. 5.1).
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Figure 5.1: Framework for generative modelling.

� We show that generative modelling can be framed as an abstraction of rational

inattention theory. Speci�cally, the learning and optimization process of a

generative model emulates the internal information processing constraints of

decision making.

� Demonstration of a data-driven modelling approach that exploits start-of-the-

art deep learning techniques. A generative model architecture is described in

the methodology.

� Discussion on the interpretation of generative learning on discrete choice anal-

ysis.

� We provide new insights into the sensitivity analysis of econometric parameters

through a travel behaviour case study.

The remainder of the paper is organized as follows: Section 5.2 introduces pre-

liminary concepts related to information theory in choice modelling and discusses

existing literature on rational inattention behaviour theory. Section 5.3 describes

the generative model framework and estimation methodology. In Section 5.4, a case

study example on a trip-based travel behaviour analysis is shown, and we demon-

strate how the results explain information heterogeneity in the data. Section 5.5

provides a brief discussion on the results, conclusion and suggestions for future re-

search.
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5.2 Information Theory in Behaviour Models

In this section, we introduce several preliminary concepts that relate to our work by

beginning with the connection between rational inattention behaviour and informa-

tion theory in the context of generative modelling.

5.2.1 Rational inattention behaviour

Rational inattention presents a behavioural scenario where individuals' choice in-

�uences are based on Shannon's mutual information that measures uncertainties

between an exploitative and exploratory choice process. Speci�cally, it frames the

choice problem on observations as well as information processing constraints similar

to that of a commutation channel with �nite Shannon capacity [18]. By repre-

senting information processing constraints, it accounts for the natural deviations

in econometric behaviour [18, 58]. This concept stems from the same principles of

neuroscience, where behaviour learning and perceptual inference can be explained

through information theory and statistical physics [60]. Using modern deep learning

techniques, one can construct a rational inattentive learning model using an arti�cial

neural network to provide a principled way of analyzing travel behaviour patterns

from large scale datasets.

As a simple generalization, information processing constraints across choice pref-

erences can be represented by an unknown distribution of random utility shocks ac-

cording to Ellsberg's paradox which showed that individuals systematically violate

utility theory by being averse to ambiguity [114]. Consider a case where an individ-

ual is faced with two options in a choice set when the expected utilities are identical

for both options. In utility theory, both options will be chosen at equal probabilities,

whereas in rational inattention, the individual chooses the option that maximizes

entropy (attention). This decomposition accounts for the prediction error under dif-

ferent protocols as well as it resembles exploratory choice behaviour (i.e. prospect

theory) [20]. For instance, when the di�erences in utility between two travel modes

do not di�er, travellers would try new options, with increased risk.

Existing studies on rational inattention in choice modelling research stems from

the �ndings that this behaviour can be generalized in an MNL model [30]. How-

ever, they have mostly focused on static models, as dynamic rational inattention
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models are challenging to solve and may be intractable using conventional methods

[115]. The value of adding information processing constraints have suggested well-

de�ned similarities with macroeconomic behaviour theory [18]. Recently, rational

inattention has become a particularly appealing approach to modelling choice be-

haviour. For instance, [30] described the implication of information availability on

consumer choice selection behaviour using a rational inattention model. In a com-

bined location and mode choice model, [116] used a method of entropy maximization

in a non-linear mixed-integer program subject to available information constraints.

[117] investigated consumer inattention correlation with willingness-to-pay for fuel

consumption. Recently, rational inattention has been found to work well in time

variability problems in travel demand forecasting [25]. The theory of rational inat-

tention seeks to endogenize the imperfect awareness about the circumstances [58].

The decision-maker selects pieces of information that are most relevant for his or her

utility and ignores the rest, so long as the information cost can be accounted for in

the model.

5.2.2 Information theory

In this section, we explore some key properties of information theory in the context

of behavioural modelling. Information theory has been used to provide insights into

the non-rational behavioural choice, and it was shown to be equivalent to random

utility maximization MNL model [62]. An information-theoretic model can also be

used as a tool for generating new predictions beyond MNL restrictions, subject to

available information [62]. Recent studies have also shown that this is also func-

tionally equivalent to an additive random utility maximization problem in rational

inattention behaviour models and several well-known decision problems can be rea-

sonably represented, e.g. Prospect Theory and Regret Theory [20, 30]. The measure

of information heterogeneity is closely related to non-normative representation, in-

volving Shannon entropy [113]. Expected utility representation may not be su�cient

in providing the proper speci�cation for these decision problems as individuals may

perceive choice probabilities with di�erent levels of uncertainty. Decisions under

uncertainty can be interpreted simply by correcting for information processing con-

straints in the utility speci�cation.
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Energy

Assuming a bi-directional system with an observed and an unobserved (latent) states,

the level of uncertainty of a state con�guration of the system with observed X and

latent S random variable is a function of energy E(x, s) of the state proportional to

the joint probability p(X = x, S = s) or p(x, s):

p(X = x, S = s) =
1

Z
e−E(x,s), (5.1)

where Z =
∑

x,s e
−E(x,s) is the normalization function so that

∑
x,s p(x, s) = 1.

Due to the logarithmic function, energy decreases monotonically as the probability

increases. Imposing monotonicity allows model estimates to be more interpretable

and tractable. An event with high energy will have a lower probability of occurrence

(individuals will tend to avoid this state). An event with low energy will always be

within the expectation of the individual, thus having higher probability [118].

Mutual information

Mutual information allows us to identify general non-linear dependencies by measur-

ing the amount of information processed by the individual, i.e. how far two random

variables are from being independent. Given two random variables X and S, let

(X,S) ∼ p(x, s), the mutual information I(X,S) can be written in the form:

I(X,S) =
∑
x,s

p(x, s) log
p(x, s)

p(x)p(s)
=
∑
x,s

p(x, s) log
p(x|s)
p(x)

= H(X)−H(X|S) (5.2)

It can be interpreted as the decrease in uncertainty of X given S, where H(X)

and H(X|S) are the entropy and the conditional entropy, respectively:

H(X) = −
∑
s

∑
x

p(x, s) log p(x) = −
∑
s

p(s|x)
∑
x

p(x) log p(x) = −
∑
x

p(x) log p(x)

(5.3)

Mutual information is symmetric I(X,S) = I(S,X) and it is non-negative,

I(X,S) ≥ 0 and it is zero if and only if X and S are independent (with respect to

the model identi�cation process). Hence, the mutual information shown in Eq. (5.2)
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is equivalent to �nding the expected energy di�erence between the data generating

distribution and the exact distribution obtained from the data.

Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence or the relative entropy measures the `distance'

between two distribution, p and q [118]. The KL divergence of q from p is DKL(q||p),
when q = p thenDKL = 0. The mutual information, using the example above, can be

interpreted as the divergence of the joint distribution from the product of marginals:

I(X,S) = DKL(p(x, s)||p(x)p(s)) ≥ 0 (5.4)

Thus in practice, we can consider the hypothesis H0 : DKL = 0 against H1 :

DKL 6= 0 as a test for independence between two random variables [118]. To put it

in a di�erent perspective, if we can de�ne a framework where the latent variables

interact with the observed variables by a correlation matrix, then the mean and

variance of the matrices indicate how much information heterogeneity is present in

the data representing the population.

5.3 Methodology

We propose a generative model framework that extends rational inattentive be-

haviour in discrete choice, interpreting it as an optimization process rather than a

structural model speci�cation. We di�erentiate our work from the generalized en-

tropy function described in [113] by framing non-normative behaviour as a learning

model � allowing for random perturbations to be data-driven. Under this framework,

the estimation of a generative model assumes to emulate information processing con-

straints in rational inattention behaviour and identi�es observed and latent variable

interactions through a neural network interface. The estimated latent variable pa-

rameters re�ect the correlation between random decision and information priors. We

use a Restricted Boltzmann Machine (RBM) learning algorithm as an example to

estimate the generative model parameters. Other forms of generative model algo-
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rithms (e.g. Autoencoders, GANs1, DBNs2 [45]) can similarly be used. Another

more straightforward form of generative modelling is principal component analysis

(PCA). However, PCA has severe limitations as it cannot handle complex non-linear

relations in the data [97]. We focus on the RBM learning algorithm as we would

show that it is an approximation to a rational inattention information processing

with similarities to an error components model. The error components control for

the heterogeneity in the observed utility and variances in the unobserved utility,

where an entropy function represents the unobserved utility.

5.3.1 Proposed generative model framework

The generative model framework is a tri-partite RBM with a data layer D represent-

ing the set of observed variables D = {x1, x2, ...xm, y} including a dependent variable
y and a hidden layer S representing the set latent variables S = {s1, s2, ..., sh} (see
Fig. 5.1). The generative model can be framed as a fully connected tri-partite graph

G = (V, E) where D,S ∈ V is the set of graph nodes and E are the graph edges.

The nodes from Vx = {x1, x2, ..., xM} are connected to Vy = {y} by edge subset Exy,
representing the choice model explanatory variable coe�cients. The edges between

S and D are the correlation matrix between the latent and observed variables. The

edge subset Ehy represents the decision level heterogeneity. The algorithm focuses

on generating synthetic data using a blocked Gibbs sampling protocol, alternating

between observed and latent variable samples from the joint distribution conditioned

on the previous step. A non-zero valued covariance matrix represents the level of

information heterogeneity captured in the data. A zero covariance matrix indicates

that the observed explanatory variables captures all the taste variations and assumes

a su�ciently homogeneous population. The observed data can be inferred by sam-

pling from the generative model probability distribution. By minimizing the KL

divergence between the observed and generated data, we learn the parameters of the

correlation matrix between the observed and latent variables. When the generated

data have matched the observations, the underlying priors are assumed to have en-

coded the information heterogeneity of the population and can be represented in the

1GAN: Generative Adversarial Networks
2DBN: Deep Belief Nets
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choice model.

5.3.2 Model speci�cation

The RBM architecture was designed as an e�cient feature descriptor that progres-

sively trains a fully connected non-linear model structure [104]. The interactions be-

tween the two parallel components capture the information about the heterogeneity

present between hypotheses. Each latent variable represents a speci�c state encoded

as distributed binary patterns.3 The di�erent combinations of latent variables form

the intricate behavioural activity patterns and are inferred through sampling from

the posterior. Similar to a random utility speci�cation, we start with a scalar energy

value describing the joint con�guration of observed explanatory variables, dependent

choice variable and latent variables:

E(x, s, y) = −xβy − xWs− sW′y − dx− cy −αs (5.5)

The energy function is parameterized by a set of coe�cients φ = {β,d, c,α,W,

W′}, where β are the choice model coe�cients and d, c,α are the constants of the ob-

served explanatory, dependent and latent variables respectively. W and W′ are the

parameters matrices representing the information heterogeneity captured by the la-

tent variables given the observed explanatory and dependent variables. y is a discrete

dependent variable representing the choice alternatives, e.g. y = {1, 0, 0}>, {0, 1, 0}>

or {0, 0, 1}> representing a selected alternative. x is a vector of observed explanatory

variables either as discrete or continuous values. Multiple discrete and continuous

dependent values can also be used as the output (see Chapter 6). s is a vector of

stochastic binary variables. Given that the non-latent variable terms can be factor-

ized out, the posterior over the latent variables is as follows:

3Distributed binary patterns are commonly used in digital signal encoding. For example of a
pattern: s = {0, 1, 0, 0} or {1, 1, 0, 1}. We make the analogy to digital encoding to refer to choice
behaviour perceptions. A latent variable model with N elements can represent up to 2N−1 di�erent
behaviour perceptions. The Boltzmann architecture uses this representation with a stochastic
sampling algorithm to learn the model parameters. Other forms such as multinomial discrete
vectors or multivariate normal can also be used as possible encoding patterns, but binary encodings
are the most straightforward method to simplify model inference.
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p(s|x, y) ∝
∏
h

p(sh|x, y) =
∏
h

exp(xWhsh + shW
′
hy + αhsh) (5.6)

Using the aforementioned energy function E(x, s, y) allows the conditional to

be factorized. De�ning the normalizing constant as the sum of the binary con�gura-

tions, we obtain the normalized probability density function for each latent variable

sh:

p(sh = 1|x, y) =
p̃(sh = 1|x)

p̃(sh = 0|x) + p̃(sh = 1|x)
(5.7)

=
1

1 + exp(−((xW)h + W′
hy + αh))

(5.8)

The objective is to optimize the model parameters such that a sample D̃ =

{x̃2, x̃2, ..., x̃m, ỹ} is generated with a distribution as close to the data distribution

D. Computing the energy over the data layer E(D) corresponds to the expected

energy of the model minus the entropy:

E(D) =
∑
s

p(s|D)E(x, s, y)−H(S) (5.9)

which can be simpli�ed into the form:

E(D) = − log
∑
s

e−E(x,s,y) (5.10)

= −xβy − dx− cy − log

(∑
s

(
exp(xWs + sVy + αs)

))
(5.11)

= −xβy − dx− cy − log

(∏
h

( ∑
sh∈{0,1}

(exp((xW)hsh + shW
′
hy + αhsh))

))
(5.12)

= −(βy + d)x− cy −
∑
h

log

(
1 + exp((xW)h + W′

hy + α)

)
(5.13)

Eq. (5.13) is a direct interpretation of the generalized entropy formulation for

discrete choice [62, 113]. The coe�cients (βy+d) stand for the unknown parameters
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of the explanatory variables for each alternative y and for the generative model

respectively. Increasing β decreases the energy over the data generating distribution

conditioned on a choice alternative, while increasing d decreasing the energy over all

data generating con�gurations. c represents the alternative speci�c constants and∑
h log(1 + exp(xWh + W′

hy + α)) is the �exible error component generator given

a speci�c input con�guration of observed x and y with a constant α. If this term

is near zero, The expected energy function is equivalent to a utility function in a

random utility-maximizing (RUM) model. By de�nition, the probability of D̃ being

generated is the Boltzmann distribution with energy E(D):

p(D̃) =
1

Z ′
e−E(D) (5.14)

The computation of the marginal Z ′ =
∑
D′ e
−E(D′), which sums over an expo-

nential number of possible con�gurations of the data vector, becomes di�cult as we

increase the number of explanatory variables.

5.3.3 Objective function formulation

Our proposed framework addresses the estimation problem for a highly non-linear

and non-closed form function using variational inference. We select from a family

of distributions that produce an approximate posterior distribution. The speci�ca-

tion of the posterior distributions is obtained from data accumulation during the

learning phase. If we restrict the family of distributions that are tractable and can

be factorized over each variable in Z, the problem of simulation-based estimation

becomes signi�cantly simpler. For the sake of clarity, we omit the parameter terms

φ in the equations below. First, we consider p(D̃) in terms of energy and the joint

probability as follows:

p(D̃) =
∑
s

p(D, s) =
e−E(D)∑
D′ e
−E(D′)

(5.15)

We can map the energy of the observed part as a function of the total system

energy in a formulation similar to Eq. (5.1) by de�ning E(D) = − log
∑

s e
−E(D,s).

The posterior over the latent variables as a function of energy using Bayes rule,
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p(a|b) = p(a, b)/p(b) results in a Boltzmann probability function over the joint dis-

tribution, which reveals the similarities to an MNL model:

p(s|D) =
p(D, s)∑
s′ p(D, s′)

=
e−E(D,s)∑
s′ e
−E(D,s′) (5.16)

If we take the expected values with respect to the posterior on (Eq. 5.15),

the uncertainty of choice can be expressed in terms of expected energy and entropy

denoted as the evidence lower bound L:

L = −

[∑
s

p(s|D)

]
︸ ︷︷ ︸

=1

log p(D̃)

︸ ︷︷ ︸
uncertainty

=
∑
s

p(s|D)E(D)︸ ︷︷ ︸
expected energy

−

(
−
∑
s

p(s|D) log p(s|D)

)
︸ ︷︷ ︸

entropy gain

(5.17)

In Eq. (5.17), a rational inattentive based choice can be framed as the informa-

tion di�erence between the expected energy and the entropy gain. The �rst term on

the right of Eq. (5.17) denotes the individuals' behaviour towards prior expectations

about the choice. The second term is the entropy, and it can be viewed as the in-

formation processing constraints in a rational inattentive model or a penalty for low

energies. It ensures that the generative model produces low uncertainty values for

inputs with high probability in the actual data distribution and high uncertainties

for all other inputs [119]. Minimizing uncertainty implies both utility-maximizing

and entropy seeking behaviour. Computing the evidence log p(D̃) is intractable, but

we can use the posterior p(s|D) to evaluate the marginal log likelihood [120].

In many cases, computing the posterior p(s|D) may be di�cult when the distri-

bution is complex, as we require an integral over all con�gurations of latent variables

to �nd the marginal or denominator in Eq. (5.16). The primary motivation of de�n-

ing the problem as variational inference is that we can approximate the posterior

distribution using a tractable arbitrary distribution q(s) [67]. In the estimation pro-

cedure, we �nd the parameters that make q as close as possible to the posterior by

minimizing L where q is the approximating distribution, then we have:

− log p(D̃) = Eq(s) [E(D)− (− log p(s|D))] (5.18)
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To show that the proposed distribution q(s) can be used to approximate p(s|D),

we compute the marginal loglikelihood over q(s) to minimize the KL divergence of

q(s) from p(s|D):

−

[∑
s

q(s)

]
log p(D̃) = Eq(s) [E(D)]− (−Eq(s) [log p(s|D)]) (5.19)

=
∑
s

q(s)E(D) +
∑
s

q(s)

(
log p(s|D) + log

q(s)

q(s)

)
(5.20)

=
∑
s

q(s)E(D) +
∑
s

q(s) log q(s)−
∑
s

q(s) log
q(s)

p(s|D)

(5.21)

=
∑
s

q(s)E(D)−Hq(S)︸ ︷︷ ︸
variational free energy Fq(D)

−DKL(q(s)||p(s|D)) (5.22)

Using the fact that the KL divergence cannot be negative, we get the lower

bound on the model evidence, and we de�ne the variational free energy Fq(D) as:

Fq(D) = L+DKL(q(s)||p(s|D)) ≥ L (5.23)

The intuition from Eq. (5.23) is that minimizing the variational energy has the

same outcome as minimizingDKL(q(s)||p(s|D)). The bound is exact ifDKL(q(s)||p(s|D))

term is zero, which would happen if q(s) matches p(s|x) perfectly. Therefore, follow-

ing the gradient of Fq(D) yields the optimal solution for q(s). Another equivalent

form of variational free energy can be derived by transforming the marginal into the

conditional likelihood:

Fq(D) = − log p(D|s) +DKL(q(s)||p(s)) (5.24)

In Eq. (5.24), the objective function can be optimized through assigning speci�c

priors over the generative model, then measuring how well the priors represent the

observations. More generally, minimizing Fq(D) together with the KL divergence is

a good substitute for minimizing the log-likelihood function [119]. The �rst and sec-

ond terms on the right-hand side are known as the �t and complexity respectively
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in Bayesian statistics. The �rst term de�nes the accuracy of the data generating

model. If we presume that p(s) is a complex model (real-world representation, intri-

cate correlation between behaviour and choices, etc.), then the complexity tells us

how much capacity is required for the (non-trivial) approximator q(s) to match the

empirical distribution. The variational energy can be used to determine the strength

of non-linear interactions between components in a model. The minimization of vari-

ational energy provides consistent and reproducible models, equivalent to maximum

likelihood estimation. We can establish the choice model by interpreting the data

generating probabilities of a given data vector as the individuals' information het-

erogeneity by minimizing the variational lower bound. The objective cost function

now becomes selecting the model parameters such that:

θ∗ = arg min
θ
{DKL(q(s)||p(s|D))} (5.25)

In the proposed generative model, we are interested in evaluating large numbers

of non-linear latent variables which belongs to a family of extreme valued distribu-

tions parameterized by latent variable parameters θ = {d,α,W, W′}. The primary
assumption is that the approximating distribution q(s) can be factorized, such that

it gives a tractable form:

q(s) =
∏
h

q(sh; θ) ≈
∏
h

p(sh|D) (5.26)

This form allows the generative model to produce distributions with sharper

boundaries over conventional mixture models. Using this speci�cation, the model

variance can be increased or decreased with the number of activated latent variables.

5.3.4 Parameter estimation

We formalize the model learning as minimizing KL divergence given some observed

data {Dn}∞1 . The important advantage of this is that we can incorporate the dif-

ferences between an individual's actual behaviour and mean population behaviour

e�ectively in the objective function. The parameter update rule for a generative

model is obtained by implementing a stochastic gradient descent on the variational
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free energy function, updating the weights of the coe�cients between latent and ob-

served variables according to the sampling states. Consequently, the gradients with

respect to the parameters are as follows:

Eq
[
∂

∂θ
log p(D̃)

]
=
∞∑
n=1

∂DKL(q(s)||p(s|Dn))

∂θ
≈ ∂

∂θ
E(D(1), s)− E[

∂

∂θ
E(Dn, s)],

(5.27)

where the expectation is over D̃ ∼ p(D̃). The learning algorithm is based on

a Gibbs chain starting at an initial sample D(1) from the data distribution and

converging to the RBM data generating distribution after performing alternating

blocked Gibbs sampling between the latent and observed variables. A naive imple-

mentation of this learning algorithm would require simulating the Gibbs sampler to

equilibrium after every model update before drawing a new set of observations from

the data. Sampling from the generative model to produce D(1), ...,Dn with n ≤ 10

and updating the model parameters between each iteration has been suggested as

an optimal tradeo� between fast estimation without loss in generality or stability

[104]. The �rst term on the right-hand side of Eq. (5.27) is the derivative of the

energy function w.r.t the initial Gibbs samples and the second term corresponds to

the gradient of the energy function after n steps.

Our proposed modi�cation to the RBM learning algorithm uses a hybrid gener-

ative learning and maximum utility estimation. Rather than focusing solely on the

optimization of the generative component, we also try to maximize the accuracy of

our choice model given the data and generative samples. After each generative learn-

ing step, we update the choice model coe�cients by performing maximum likelihood

on the conditional using the choice alternative as the dependent variable. Next, we

sample latent variables from the generative model using the observed explanatory

variables as inputs. These latent variables are assumed to represent the information

heterogeneity that is not captured by the explanatory variables. Our modi�cation

provides integration with discrete choice modelling methods and allows for other

hybrid choice model use cases that can be explored in the future. We specify the

conditional logit model using observed and latent variables as follows:
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p(yj = 1|x, s′;βj , cj) (5.28)

=
exp

(
(βj + d)x + cj +

∑
h log(1 + exp((xW)h + W′

hj + αh))
)

∑
j′ exp

(
(βj + d)x + cj′ +

∑
h log(1 + exp((xW)h + W′

hj′ + αh))
) ,∀{x, y} ⊆ D,

(5.29)

where there are j alternatives in the choice variable y. In this step, only the β

coe�cient and cj alternative speci�c constants are updated (by maximum likelihood)

while keeping the parameters from the generative model unchanged. Given that

parameters W′
hj and αh are estimated from the generative model learning algorithm

providing model error correction, the coe�cients of the choice model is expected to

converge to a non-biased, homogeneous value. This means that as we improve the

precision of the data generation protocol, the choice model can be estimated without

systematic errors.

5.3.5 Economic interpretation

The basis for the economic interpretation of a generative model is through a com-

bination of individual utility and entropy. Suppose that an individual will be in

one of S latent decision states, each state has associated with it a con�guration of

latent variables: {s1, ..., sh}. These latent variables are related to choice selection

strategies, complexity and in�uence of repeated nature of travel activity choices.

Thus they are interpreted as potential decision strategies. If in a particular state

S contains all zero elements, then the choice strategy is a pure utility-driven one

(since latent variable attributes are ignored). If by contrast, the latent variables are

non-zero, then one might argue that the individuals used their internal information

processing constraints to develop a choice strategy. These interpretations are sim-

ilar to the rational inattention model, which were identi�ed as decision strategies

characterized by continuously optimizing agents [18].

We assume some distribution function to describe Gj , an error generating den-

sity function that depends on {s1, ..., sh} for all j alternatives. The density Gj is the
distribution of the unobserved heterogeneity on the individuals with similar utilities
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for each alternative. It represents the idealistic subjective perception of a particu-

lar individual in a speci�c choice context. We assume that {s1, ..., sh} ∈ [0, 1] are

extreme value distributed across individuals and decisions:

Gj(s1, ..., sh) =
∏
h

(1 + exp((xW)h + W′
hj + αh))−1 (5.30)

This speci�cation allows a form of energy-based models to be generated using

entropy as a measure without relying entirely on hypothesis-driven utility speci�-

cations [27]. As such, from Eq. (5.29), the generative model speci�cation under a

generalized extreme valued function can be derived as follows:

P (yj) =
YjGj
µG

, (5.31)

where Yj = eνj , νj = (βj +d)x+ cj and G(s1, ..., sh) =
∑

j′ Yj′Gj′ . G(s1, ..., sh)

is non-negative, homogeneous of degree µ and function (s1, ..., sh) is ≥ 0, G = ∞
when sκ → ∞ for κ = 1, ..., h and ∂rG/∂(s1, ..., sh) ≥ 0 if r is odd and ≤ 0 if r is

even. Thus, the level of uncertainty in a choice due to information heterogeneity is

described using a function calculated on a set of prior weights and latent variables.

The resulting approximate entropy is given as the negative log of the error generating

function:

Hj = − logGj(s1, ..., sh) =
∑
h

log(1 + exp((xW)h + W′
hj + αh)) (5.32)

We can expand the model from an MNL speci�cation by substituting Vj =

νj +Hj :

P (yj) =
eVj∑
j′ e

Vj′
=

eνj+Hj∑
j′ e

νj′+Hj′
(5.33)

where the arguments in Vj are linearly separated into the observed utility νj

and entropy Hj . Thus the probability of choosing an alternative is a function of the

observed utility, corrected by the information processing cost of the set of alterna-

tives and its explanatory variables observed by the decision-maker. An interesting

consequence is that Hj changes at every instance in the variable space, i.e. individ-

uals with similar utilities may have di�erent choice distributions. Furthermore we
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can conclude that the changes in the decision making policy are in�uenced in two

ways: �rst, through the direct correlation with the observed attributes and second,

indirectly through the information processing capacity of the decision-maker. As a

result, even though it is impossible to directly measure the result of economic policy

changes on the latent variables, we can obtain the mean and variance of the latent

parameter distribution to evaluate the information sensitivity with respect to each

explanatory variable.

5.3.6 Statistics for model evaluation and validation

One of the ways to obtain statistics for model evaluation and validation is through

simulation and hyperparameter search. Model evaluation can be performed on out-

of-sample simulations using adjusted R2 serves as an equivalent to KL divergence

to determine distribution accuracy. For evaluation, we �xed some of the input data

and used the generative model to produce new data and compare their distribution

accuracy.

There are no exact solutions to the number of latent variables required to create

an optimal model. The most commonly used approach is to validate the model by

iterative tests on the various number of latent variables. We note that validation is

only a crude test of performance, and there are generally no accepted methods to

adequately determine the optimal number of variables. Several studies in literature

have provided the so-called `rule of thumb' regarding the number of inputs and

layer sizes [121]. However, the optimal number of latent variables used can di�er

largely between datasets. Too few latent variables and the model cannot capture

the intricate structure in the data, too many latent variables may cause over�tting

and increases estimation time.

Evaluating the sensitivity of parameters associated with the explanatory vari-

ables can be more challenging. In our experiment, we found that monitoring changes

to β-parameters as we increase the number of latent variables work well for sensi-

tivity analysis. Theoretically, for variables not in�uenced by information processing

constraints, β-parameters should remain consistent. Otherwise, for variables that are

sensitive to information processing constraints, β-parameters would vanish or shrink

to a small value as we increase the number of latent variables so that the choice
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response could not have been derived from that source [18]. From a macroeconomic

perspective, the decision making actions should respond smoothly to external factors

and any disturbances or randomness should be distinctive and manifest only from

an individual's internal information-processing constraints [18].

5.3.7 Comparison with supervised neural networks

The probability distribution in Eq. (5.29) might seem to be equivalent to a single

layer neural network (e.g. DNN) with a softmax output, we argue that this is not the

case. In a DNN, model parameters are optimized to maximize a predictive output

p(y|x, s), which may result in signi�cant over�tting if model is mis-speci�ed or too

many hidden units are used. Using multiple hidden layers may also potentially

degrade the model and result in worse performance [122]. However, in our approach

of using generative modelling, parameters are optimized to reduce information loss by

minimizing DKL(q||p) in the mapping process between observed and latent states,

allowing as much of the original data to be reconstructed. A generative model

provides some form of model generalization such that the parameters stay within

the range of values that are realistically representative of the underlying behaviour,

reducing the probability that the model over�ts the choice variable.

Since latent variables are stochastic, D̃ may not always be generated by the

same underlying con�guration. Likewise, each sample of observed data vector may

produce many di�erent con�gurations of latent variables. The advantage of using

unsupervised learning over supervised likelihood learning methods in discrete choice

modelling is that it provides a �exible, high-level distributed representation and

minimizes optimization ine�ciencies caused by random initialization [123]. Model

optimization uses a greedy learning algorithm to determine the underlying struc-

ture that captures the unobserved heterogeneities without dependency on aggregate

choice samples. Similar to rational inattention models, entropy in the variational

free energy function is the cost of information from sampling from the generative

model.
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Figure 5.2: Visualization of number of trip trajectory origin points by city district
from the dataset.

5.4 Case Study: Montreal Trajet Dataset

5.4.1 Data preparation

We consider a dataset collected from trip trajectories recorded by respondents from

the Greater Montreal Metropolitan Area (Fig. 5.2). The data is available as an

open dataset provided by the City of Montreal [124] (see Table D.3 for data de-

scription). A total of 293,330 trips observations are available in the dataset, and

58,034 trips within these observations have complete travel mode information, pur-

pose and trip characteristics. We divide the data into two partitions: The �rst

dataset (Dlab, ND = 58, 034) contains complete (labelled) trip data and is used for

model training and validation. The second dataset, (Dunlab, ND = 235, 296) con-

tains incomplete data (unlabelled) and is used for model training, validation, model

simulation and analysis.

For model evaluation, we train a generative model using Dunlab and Dlab then
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we compute the mode choice log likelihood on Dlab for validation. The samples are
randomly shu�ed and split 70:30 for training and validation. We assume a multino-

mial extreme valued distribution for categorical observed variables and log-normal

distribution for continuous variables. Log-normal is used as the approximation dis-

tribution since the continuous data types (speed, distance and duration) follow a

positive, right-tailed distribution characteristic. Respective trips of individuals were

recorded by self-imputation of their activity for each instance. Routes of individuals

are sampled by GPS traces from their smartphones at frequent intervals. Speed, dis-

tance, activity type, trip duration and trip start location were used as explanatory

variables in the estimation. The alternatives are 1: cycling, 2: driving, 3: driving +

transit, 4: transit and 5: walk. Continuous valued variables were normalized to unit

standard deviation before model estimation. A one-of-j dummy variable encoding

was applied to categorical variables. A sine/cosine 2D transformation was applied

to cyclical continuous values, e.g. time information.

5.4.2 Choice model validation

We present the results of our model validation by assessing the model training per-

formance and analyze the properties of the estimated parameters. We report the

results of our training and validation on model instances with di�erent latent vari-

able sizes: S = 0 (standard MNL), S = 5, S = 20, S = 35 and S = 50. In our

experiments, we did not notice any signi�cant improvement over 50 latent variables

in our model. To minimize the probability of over�tting in the generative model

training, we validate the generative model by monitoring the likelihood loss on the

labelled data and select the model parameters at minimum likelihood validation loss.

We used a standard batch stochastic gradient descent (SGD) learning algorithm

divided into k data batches and iterate over n blocked-Gibbs sampling steps. We

�xed the hyperparameters for all our experiments to be k = 16, n = 10, and a

learning rate of λ = 0.01 is used, and model parameters are updated in parallel

every batch cycle4.

4The problem of identifying optimal hyperparameters is still not fully understood, and it does
not provide any useful information with respect to econometric interpretation. In light of this, we
selected these hyperparameters as our baseline for the ease of reproducibility in future work.
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Figure 5.3: Learning curve of the sample negative loglikelihood from the choice
model.

We monitor validation error by computing the total negative log-likelihood of the

validation data over the choice model at each iteration. As observed in the learning

curves (Fig. 5.3), the model estimation process is stable and converges gradually

without over�tting. At S = 50, the model achieved the best overall performance

in terms of the validation log-likelihood. However, the relative gain in performance

decreases as we increase the number of latent variables. We hypothesize that there

is a maximum bound to the e�ective possible number of latent variables to represent

unobserved variations in the data. This limit can be raised if a more considerable

variation in data is used, i.e., data from di�erent sources or over a more extended

collection time frame. Note that this analysis is not a test for the `best' mode �

our primary objective is to understand the sensitivity of econometric parameters

when a generative learning model is used to account for information heterogeneity.

The loglikelihood decreases rapidly for the �rst 20 iterations, then plateaued as it

reached 100 iterations. Estimation time for each model instance was less than a 1

hour running our code on a GPU hardware.

Model performance is evaluated by comparing the adjusted squared correlation

R̄2 statistical �t. Fig. 5.4 shows the mode share distribution of the model validation.
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Figure 5.4: Mode share forecast.

For the baseline model, we obtained a R̄2 value of 0.807 We obtained a R̄2 value of

0.940, representing a 15% increase in relative predictive performance. The nominal

trend shows that distribution accuracy increases with an increase in the number

of latent variables. At S = 50, performance drops slightly compared to S = 35

indicating that the performance does not increase asymptotically with the number

of latent variables. Nevertheless, the results show that the model can be estimated

with high accuracy, using KL divergence over maximum likelihood as the objective

function. In this example, the models do not consistently predict the driving+transit

and walking alternatives probabilities. One explanation can be attributed to the

low observation counts of these two alternatives. Another possible explanation is

that driving+transit and walking trips have a low correlation with the observed

explanatory variables.

5.4.3 Latent variable analysis

To understand the representational value of latent variables, we analyze their sparse-

overcomplete properties [119]. Sparse-overcomplete representation a situation when

a large number of latent variables are estimated while only a small number of them
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are non-zero [119]. It is a practical constraint that allows for more e�cient use of

latent variables and more �exibility in handling complex correlations which results

in a better approximation of the statistical distribution of the data. Sparse rep-

resentation has two main advantages in generative modelling [125, 52]. The �rst

advantage is that the model will be able to control the dimensionality of representa-

tion, given a set of inputs, avoiding the over�tting problem. The second advantage

in the context of travel behaviour model inference is that the resulting representation

is more likely to be linearly separable, decreasing the complexity in the model even

though more parameters are estimated. This means that even with a large number

of latent variables, sparse distribution of parameters would constraint the model to

learn distributions which are most statistically signi�cant in reproducing the original

data.

The plots in Fig. 5.5 show the mean and variance of estimated latent variable

parameters W′
hj given the choice outputs. Since we use binary coding for latent

variables, the parameters o�er insights into how many latent variables are utilized

at any one time. Parameter vectors with mean values close to zero and low vari-

ance indicate that the latent components are sparsely distributed. We assume that

overcomplete representation (S ≥ X) does not cause model over�tting as not all

latent variables are active. The �gure shown below illustrates that our generative

modelling approach is an e�cient method of capturing the underlying heterogeneity

across di�erent mode choice decisions. The mean converges to zero, and standard

deviation decreases as the number of latent variables increase, indicating that the

generative model `suppresses' the in�uence of less relevant latent variables on the

behaviour model.

The results suggest that the RBM learning algorithm inhibits weight connections

between the observed and latent variables in order to produce sparse representation.

At (S = 50), the mean parameter activation is near zero with small standard de-

viation (µ ≤ 0.02, σ ≤ 0.17) for cycling, driving, driving + transit modes with an

average latent variable activation rate of 85.4%, 84.4% and 87.7% respectively. For

transit and walk modes, the average activation rates are 90.6% and 92.6% respec-

tively, indicating that these modes have a higher level of information heterogeneity

and less correlated with the observed explanatory variables.
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Figure 5.5: Distribution of data generating parameters.

5.4.4 Generative model evaluation

To evaluate generative model performance, we measure the statistical �t of the re-

constructed distribution. Simulated reproduction of population data has been used

previously to analyze the e�ciency of model-based �tting [126]. Simulation experi-

ments allow evaluation of the model on limited data knowledge, reproducing accurate

data distribution while having partial information shows �exibility in capturing de-

cision heterogeneity due to information constraints. Therefore, the performance re-
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Figure 5.6: Comparison of data generating output on activity type data.

sults of these simulation experiments can be used to calibrate large scale data-driven

models where complex data correlation is present and accounts for the presumption

that individuals have limited information processing capacity in choice selection. We

use Gibbs sampling to obtain data from the generative model. First, evaluate the

data generating distribution accuracy using the unlabelled dataset Dunlab. Fig. 5.6,
Fig. 5.7 and Fig. 5.8 shows the data generation results for activity, distance and trip

duration variables respectively.

Next, for the data generating process, we draw an initial sample from the dataset

and �x the observed variable to that data vector and perform Gibbs sampling, alter-

nating between the latent and observed sample conditional probabilities. Lastly, we

clamp the non-target variables to the data vector and update the simulated values

of the target observed variable. For instance, we generate activity type data using

the following steps:

{s̃1, ..., s̃h} ∼ p(s1, ..., sh|speed,duration,dist,origin,destination),

x̃ ∼ p(activity|{s̃1, ..., s̃h})

The simulation results show the e�ects of increasing latent variables on the
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performance of the data generating model. S = 35 and S = 50 achieved high

similarities in recovering the original data distribution with R̄2 value well above

0.9. At S = 5, there was an insu�cient number of latent variables to capture the
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structure of the data, shown by the low R̄2 value. Increasing to S = 20 signi�cantly

improves the result as it increases the non-linear information capacity.

5.4.5 Sensitivity analysis of model parameters

Finally, in this section, we investigate the systematic e�ects if the generative frame-

work on β-parameters in the mode choice model. In practice, bias and variances are

subject to independent processes. As such, each individual may have vastly di�er-

ent underlying error correction function for the same utility and each con�guration

of explanatory variables. Mixed Logit speci�cation has been used previously to ac-

count for this problem, but unfortunately, any variability or noise in the dataset (e.g.

through di�erent collection techniques, missing information etc.) will be added to

the β-parameter model predictors. This is less of a problem if one is only interested

in the relative variance given the model parameters. To account for the systematic

e�ects of information heterogeneity, the net utility of each alternative should re-

main homogeneous across the population (e.g. zero noise level), such that the latent

constructs can compensate for the degree of uncertainty.

Fig. 5.9 shows the estimated β-parameters of the choice models with di�erent

number of latent variables. The β-parameters identify the systematic e�ects of each

explanatory variable on each choice alternative. The values on the left edge of each

plot show the β-parameters estimated with a standard MNL model. As we increase

the generative model capacity (by increasing the number of latent variables), β-

parameters converge to a stable predictor. This is an interesting �nding as it may

indicate that an ordinary utility-based choice model may not take into account the

systematic e�ect of information heterogeneity.

We perform a test on the identi�cation of the β-parameters by computing the

maximum entropy (maxent) estimate on the observed choice probability in the

dataset shown in Table 5.1. The maxent estimate value quanti�es the degree of

uncertainty within the underlying model accounting for the complexity as well as

to determine whether the variance can be attributed to information heterogeneity.

Analysis of the maxent can provide information about the uncertainty of the pre-

dictors across choice probabilities [127]. We compute maxent of the explanatory

variable parameters using the formula:
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Figure 5.9: β-parameter estimates using mode choice as the dependent variable,
horizontal axis represent number of latent variables.

maxent(βj) = −
∑
j

p(yj) log ˆp(yj) = −
∑
j

p(yj) log
( eβj∑

j′ e
βj′

)
(5.34)

where the population class share for each alternatives p(yj) are: cycling=0.068,

driving=0.613, driving + transit=0.028, transit=0.222 and walking=0.069 from the

labelled dataset. The resulting maxent(βj) may, therefore, be interpreted as the

maxent estimate of βj as the proportion of the sample population in alternative j.

Likewise, a high maxent value indicates a high degree of stochasticity in the decision-

making process. We �nd ˆp(yj) by computing (eβj/
∑

j′ e
βj′ ). As the negative entropy

increases, e.g. maxent(βj)→ 0, the correlation between the β-parameter and choice

probability converges to the true value, e.g. ˆp(yj)→ p(yj).

The maxent estimate indicates the level of correlation between the set of β-

parameters and the output dependent choice variable. Table 5.1 shows that the

β-parameters for distance (2.833) and education activity (2.234) variables in the
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Table 5.1: Result of maxent estimates on β-parameters.

Parameters βj maxent(βj)

S=0 S=5 S=20 S=35 S=50

Distance 2.833 1.721 1.511 1.518 1.568
Trip duration 1.706 1.600 1.591 1.807 1.847
Speed 1.532 1.456 1.513 1.503 1.538
Activity: Edu. 2.234 2.038 1.781 1.834 1.756
Activity: Work 1.640 1.619 1.693 1.696 1.584
Activity: Leisure 1.677 1.596 1.538 1.517 1.512

mean (std. dev.) 1.94
(0.502)

1.67
(0.199)

1.61
(0.11)

1.65
(0.153)

1.63
(0.135)

benchmark model are less likely to in�uence decisions relative to the other predictors

and becomes an indicator of model misspeci�cation. However, as we increase the

number of latent variables in the generative model, maxent decreases, and as such,

the β-parameters becomes a better predictor of the behaviour. This suggests that

the mode choice decision behaviour of individuals is less sensitive trip distance and

education-related activities.

The econometric interpretation of this result implies that individuals seek to

use their prior information (e.g. past experiences, habits, choice dynamics) for mode

choice decisions rather than driven by exogenous variables. The signi�cance of the

distortion e�ect of information heterogeneity on the β-parameters decreases as we in-

clude a larger correction in the utility function. This apparent correlation provides

evidence that in order to maximize utility and therefore better model prediction

accuracy, latent variables can be incorporated in the framework to model informa-

tion heterogeneity � The generative model accounts for the variational e�ects from

information heterogeneity, increasing regularity in the utility speci�cation.

Consequently, the estimated β-parameters would re�ect the true underlying pre-

dictors. As observed earlier that expected utility can be modelled by the individual's

decision strategy shown by evaluating entropy (by a function of latent state vectors)

of the choice model.
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5.5 Discussions and Conclusion

5.5.1 Discussions

Our �ndings have several important policy implications. First, we have shown that

by optimizing a set of internal latent variables to represent distinctive decision strate-

gies of each individual, we can emulate information processing and learning-based

decision-making behaviour incorporated into a choice model. We tested the frame-

work and learning algorithm on the dataset to emulate information processing con-

straints in travel behaviour and decision making. Our methodology consists of ap-

plying an entropy-based error component that used latent constructs in a generative

learning model to optimize a set of parameters that minimizes a divergence between

the observed and simulated data.

Second, following behaviour theory in discrete choice analysis, our generative

model showed that individuals may not always be utility maximizers and therefore

MNL models alone may not be su�cient in modelling travel behaviour in large scale

datasets. We have shown that maxent estimates of β-parameters can be reduced by

having a learning model component that captures information heterogeneity, popu-

lation and decision level variance and incorporating the entropy function into choice

utilities. Our analysis and simulating experiments have shown that β-parameter

estimates in Fig. 5.9 scales according to the number of latent variables in the model

and it shows signi�cant improvements to choice probability predictions. The learn-

ing framework was able to extract useful information from the dataset, with the

assumption that information heterogeneity is present in the data. The changes in

maxent shown in Table 5.1 indicated that the β-parameter has a high level of infor-

mation heterogeneity, and the misspeci�cation is minimized by incorporating latent

variables through a learning process emulated by a generative model. Information

theory motivates the explanation for this phenomenon: breaking down the process-

ing costs of information related to the choice into a linearly separable component

serves as a regularization term in the utility speci�cation.

Lastly, it would suggest that distance-based trip planning is more strongly cor-

related to long term individual habits and perception of the travel route and less

likely due to speci�c change in trip distance. Our experiments showed how some
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explanatory variables could contain a more signi�cant source of information hetero-

geneity and increasing the generative model capacity increases the choice probability

accuracy more robustly. The results indicated that the improved model �t could

be attributed to more e�cient use of the generative model, which suggests that

stochastic choice selection in decision making can be associated with the availability

individual's prior information.

5.5.2 Conclusion

Generative modelling presents a new perspective on how analysts can obtain in-

sights into behavioural heterogeneity manifestations by accounting for information

processing constraints in the model learning process. Based on rational inattention

behaviour and information theory, we develop a systematic approach to identify in-

formation heterogeneity, and we propose a data-driven generative learning process to

emulate decision making under uncertainty and information processing constraints.

It explains why not all exogenous information is used in the decision-making process,

as discussed in [58].

The impact of this study on travel demand modelling is that we can take ad-

vantage of noisy data (e.g. GPS, Wi-Fi, cellular networks) to develop a �exible, op-

erational, and adaptive model framework. Our underlying assumption is that large

and unstructured data from passive information sources that contain behavioural

information not captured in explanatory variables can be exploited with the proper

learning models and optimization algorithms. This study demonstrates the proper-

ties and expressive power of the generative modelling framework to emulate decisions

under uncertainty and information processing constraints. We de�ne the source of

heterogeneity to be the inherent nature of the data itself, and by updating the model

using an iterative KL divergence minimization process, we can synthetically repro-

duce the unobserved variations using latent constructs in a generative model. The

latent constructs provide additional error correction for information heterogeneity in

the utility speci�cation, allowing the model to simulate decision making and choice

actions with internal information processing components. It also allows a conve-

nient representation of entropy by incorporating an error generating function into

the framework. Our results indicate a strong correlation with rational inattention
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behaviour theory, which shows that individuals may tend to ignore certain explana-

tory variables or rely on prior information for discrete choice decision making. The

experiments identify several vital components of the generative model, which are

more sensitive to information heterogeneity and apply an automatic correction for

this variation by representing the heterogeneity as an entropy measure in the utility

speci�cation. More generally, principles from generative modelling demonstrated in

this paper can be applied to existing travel behaviour analysis to bene�t from using

large data sources, where latent behaviour information are not directly captured in

the explanatory variables.

5.5.3 Future work

The scope of this paper focuses on the implementation and basic methodology of

developing a machine learning-based generative model for discrete choice analysis.

There are several extensions to this study which can be addressed in future work:

(i) Exploring the use of variation inference techniques in Mixed Logit models to

address estimation tractability, allowing for a comparative analysis between

discrete choice and machine learning-based methods.

(ii) Several other variants of generative model learning algorithms (e.g. GANs,

Autoencoders) could be tested to obtain insights into how they would emulate

distinctive social and cognitive behavioural concepts. Additionally, generative

modelling can be extended to other constraints beyond information processing

costs, for example, budget and time constraints.
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A Bi-partite Generative Model

Framework for Analyzing and

Simulating Large Scale Multiple

Discrete-Continuous Travel

Behaviour Data



Preamble

This chapter features an application of generative machine learning in multiple

discrete-continuous data modelling. It shows how forecasting and simulation can

be implemented using a RBM framework. In addition, evaluation is performed us-

ing conventional methods of behaviour analysis � elasticities of model parameters,

parameter stability and moment analysis. Finally, the experiment and methodology

highlighted in this chapter connects to the broader scope of the transport an mobility

market by enabling the use of interpretable machine learning in demand forecasting

systems.

This research article is under review in Transportation Research Part C: Emerging

Technologies, special issue on Emerging Methods for Data-driven Urban Transporta-

tion and Mobility Modelling: Machine Learning and Complexity Approaches.
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Abstract

The emergence of data-driven demand analysis have led to the increased use of

generative modelling to learn the probabilistic dependencies between random vari-

ables. Although their apparent use has largely been limited to image recognition

and classi�cation in recent years, generative machine learning algorithms can be a

powerful tool for travel behaviour research by replicating travel behaviour by the

underlying properties of data structures. In this paper, we examine the use of gener-

ative machine learning approach for analyzing multiple discrete-continuous (MDC)

travel behaviour data. We provide a plausible perspective of how we can exploit

the use of machine learning techniques to interpret the underlying heterogeneities

in the data. We show that generative models are conceptually similar to choice

selection behaviour process through information entropy and variational Bayesian

inference. Without loss of generality, we consider a restricted Boltzmann machine

(RBM) based algorithm with multiple discrete-continuous layer, formulated as a

variational Bayesian inference optimization problem. We systematically describe

the proposed machine learning algorithm and develop a process of analyzing travel

behaviour data from a generative learning perspective. We show parameter stability

from model analysis and simulation tests on an open dataset with multiple discrete-

continuous dimensions from a data size of 293,330 observations. For interpretability,

we derive the conditional probabilities, elasticities and perform statistical analysis on

the latent variables. We show that our model can generate statistically similar data

distributions for travel forecasting and prediction and performs better than purely

discriminative methods in validation. Our results indicate that latent constructs

in generative models can accurately represent the joint distribution consistently on

MDC data.
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6.1 Introduction

Large scale ubiquitous multidimensional travel data sources such as smartcard data

or on-demand ride-sharing services provide enormous potential for travel behaviour

analysts to implement new and innovative methods and algorithms for travel be-

haviour pattern forecasting [128, 129]. In addition to size, these abstract data are

also increasing in complexity, which necessitates data pruning or sub-sampling tech-

niques to extract useful information and to improve estimation time at the cost of

model accuracy. Until recently, the most popular approach for travel behaviour mod-

elling applications was hypothesis-driven discrete choice models (DCM). At the core,

DCMs consist of de�ning a set of rules for Random Utility Maximization (RUM)

[27]. For instance, RUM have been been used in estimating route choice models

with tra�c network and socio-demographic information, including regret minimiza-

tion [32], prospect theory [23] and the rational inattention model [113]. Generative

modelling proposes an alternative approach to analyzing travel behaviour data by

constructing a model of the underlying distribution using unsupervised learning to

generate new data with similar stochastic variations as the population. In contrast,

DCM is optimized from the maximum utility by estimating conditional probabil-

ity distributions through a hypothesis-driven process with assumptions on the prior

distributions. Generative modelling also relates to classical statistical methods, i.e.

Information Theory and Shannon entropy [130]. When applied to travel behaviour

datasets, the generative model behaves as an information processing constraint of the

individuals as part of their decision process. Individuals may weigh the information

cost of changing travel habits, e.g. mode choice or route choice, given some known

characteristics of the competing alternatives and this decision process is assumed to

be continuous and simultaneous.

The bene�ts of using generative modelling are tied to behaviour theory and

information processing cost in macroeconomic problems � generative models pro-

vide a more plausible framework for understanding selective and dynamic responses

[60]. Previous work has provided a theoretical explanation to these interactions using

arti�cial neural networks and how sensory information is reconstructed through gen-

erative modelling [60, 39]. The goal of this study is to present generative models as a

behaviourally intuitive representation of travel decision making with an endogenous
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learning process. We argue that the main advantage of generative machine learning

is that we can rely less on hypothesis-driven behaviour assumptions and representing

decision perturbations beyond unobserved utility terms [131]. Recent developments

in arti�cial neural network and learning algorithms have made it possible to esti-

mate complex and non-rational behaviour (relaxation of IID assumptions) models

that generalize better to various decision-making strategies [30]. This paper o�ers

a plausible perspective of how we can exploit the use of emerging machine learning

techniques to model the behavioural processes prior to decision making actions.

We propose an extension for generative machine learning to accurately model

multiple discrete-continuous (MDC) large-scale travel behaviour data. We show

that our proposed model can generate reasonably accurate data reconstructions,

given suitable data observations and capacity for training. Our proposed generative

model provides a simple and intuitive mechanism for understanding the trade-o�s

between entropy and utility-maximizing behaviour by resolving uncertainty using

variational Bayesian inference methods.

The main contributions of this paper are summarized as follows:

� We propose a bi-partite generative model to handle large travel behaviour

datasets with MDC data types using an RBM learning algorithm;

� Systematically describe the machine learning framework used to train the gen-

erative model using a variational Bayesian inference objective function;

� Show how an information-theoretic model leads to economic behaviour com-

patibility that can be understood as: (a) lower evidence bound that depends

on a variational free energy function, and (b) a measure of risk minimization

that approximates the posterior distribution;

� Develop analytical methods to generate conditional probabilities, elasticities

and latent variable distributions that can be used for interpretation and eco-

nomic analysis.

With the emergence of data-driven demand and services that use abstract forms

of data, for example, social media data, there is a need to understand the under-

lying properties and correlation between `Big Data' sources and choice actions to
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model travel behaviour using the potential of modern generative and deep learning

techniques. This paper aims to bridge the gap between traditional means of travel

behaviour analysis dependent on identi�able variables and using abstract data that

require machine learning techniques to extract useful information. The novel ap-

proach tackles the problem of representing information heterogeneity in data-driven

behaviour models using a joint distribution of discrete and continuous data.

This paper is organized as follows: In Section 6.2, we explain the background of

the generative model and the variational Bayesian inference method. In Section 6.3,

we describe our adaptations of generative machine learning methods, implementa-

tion on discrete and continuous travel behaviour datasets and optimization using

variational Bayesian inference. In Section 6.4, we present the case study. Results on

large scale travel data are in Section 6.5. Finally, discussions and conclusions are in

Section 6.6.

6.2 Literature Review

Conventional DCM are used to estimate travel behaviour models from large scale

multidimensional geospatial datasets e.g. GPS systems [132, 133]. However, missing

or noisy data could lead to inaccuracy in model estimation and may require the in-

corporation of latent variables. In transportation, obtaining useful information from

these datasets may be di�cult because important trip details (mode choice, pricing,

number of passengers, etc.) cannot be recorded directly from GPS data points [134].

Another obstacle is de�ning a generalized framework for incorporating latent vari-

ables or missing data points into multidimensional choice models. Latent variables

are essential in travel behaviour modelling as they capture behavioural perceptions

related to uncertainty and describes the underlying mechanism of the choice selection

process [72]. However, model speci�cations with complex distributions may not pro-

duce an identi�able closed-form solution for maximum likelihood estimation. For the

above reasons, researchers have implemented Monte Carlo methods and variational

Bayesian inference for analytical approximations to incorporate mixed distributions

and choice dynamics into the model estimation process [135, 136].

Variational Bayesian inference combines prior knowledge and empirical evidence

to resolve uncertainty and adapt to noisy datasets through data-driven algorithms

119



6.2. Literature Review

such as neural networks and generative models [137]. Variational Bayesian inference

methods are widely used in machine learning with successful applications in data

mining and sentiment analysis [47, 138]. In classical Bayesian modelling, the pos-

terior distributions are usually estimated by simulation or sampling-based methods.

A commonly employed sampling-based algorithm for travel behaviour datasets is

the Markov Chain Monte Carlo (MCMC) algorithm where the posterior distribution

is simulated by drawing repeated samples from a Markov Chain until convergence

[139]. The stationary distribution of the Markov chain represents the posterior dis-

tribution.

In recent years, MCMC algorithm has played an important role in travel be-

haviour modelling problems in transportation, with successful applications in agent-

based simulations [140], hybrid choice models [141, 142], and population synthesis

[126, 143, 144]. However, in order to match the asymptotic e�ciency of maximum

likelihood, MCMC draws must grow at a rate faster than the square root of the

number of agents [27, 145]. With complex mixing distributions, convergence may

not be guaranteed in a reasonable time, resulting in poor estimation. This makes

sampling-based estimation methods infeasible beyond relatively simple models and

small datasets for obtaining accurate results. This challenge has led to the develop-

ment of convergence testing methods to assess model precision [145]. Another viable

approach is the iterative Expectation-Maximization (EM) algorithm for posterior

estimation [146]. Although the EM algorithm may be useful in small datasets and

for incomplete data, the rate of mixing is also known to be extremely slow in some

cases [147, 148].

6.2.1 Conventional MDC model estimation approaches

The conventional hypothesis-driven approach for MDC modelling is primarily by the

multiple discrete-continuous extreme value (MDCEV) model [149]. It incorporates

a non-linear function in the utility structure to account for choice substitutions,

continuous consumption and multiple alternatives. In the MDCEV model, multiple

constraints are pre-de�ned, hypothesis-driven based utility function. There is the

assumption on MDCEV that a single baseline utility in�uences both discrete and

continuous consumption. Although this has been expanded recently by incorporating
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di�erent utility functions for discrete and continuous options [29]. Other models for

estimating MDC include the translated quadratic non-linear additive model which

provides corner solutions and diminishing marginal utility. This has been used in

modelling consumer choices with multiple purchase variety [150].

Large sources of travel behaviour datasets are becoming available via new sources

like social media, smartphone apps, and communication networks. There is a need

for new approaches that are speci�cally designed for these large datasets. Our cur-

rent work di�ers from hypothesis-driven approaches in which we develop a genera-

tive model with a joint distribution accounting for latent correlation e�ects in large

datasets. The result is a data-driven generative model described by the underlying

latent behavioural distribution, and the solution entails �nding the model parame-

ters that best replicate the outcomes. We develop the estimation procedure using a

Gibbs sampling based gradient descent method, typically used in machine learning.

6.2.2 Existing developments of generative modelling in

transportation

One of the key issues in discrete choice model design is the assumption that obser-

vations are drawn independently, although this assumption of often always violated

in real-world problems. Alternatively, this problem can be handled by considering a

more �exible model with a richer set of random variables with data-driven distribu-

tions that allow practitioners to describe a model that best represents the behaviour

of the population.

In transport modelling, several studies have been conducted that investigate

how probabilistic models can be e�ectively leveraged to model spatial-temporal data

through Bayesian inference techniques. Probabilistic models have been described to

be a form of `transfer learning scheme' instead of traditional learning where cali-

bration is done on a single source of labelled data [151]. Transfer learning enables

relaxation of various assumptions in the modelling process and being able to recon-

struct new and unseen observations from the joint probability which is useful for

exploiting and extracting non-survey based data, e.g. social media data, that has

little direct correlation with travel behaviour. In transport studies, model-based

machine learning approaches such as generative modelling are primarily used for
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classi�cation of unseen observation by identifying the latent variables that describe

some contextual information not captured in the data [152]. Latent Dirichlet Al-

location (LDA) [153] is another popular variation of generative modelling that is

commonly used to analyze structure in the data without prior labels, for example,

the discovery of activity patterns in trip modelling [154, 155].

Probabilistic Graphical Models (PGMs) describes the representation and struc-

ture of probability distributions compactly and intuitively by encoding the indepen-

dence assumptions and causality between random variables in the factorized graph

edges [156]. Each edge connection corresponds to the strength of direct dependence

between the random variables, and each random variable can be constructed as a

conditional model given the other variables and the corresponding edges. PGMs have

been used for tra�c simulation by representing tra�c links as the graph edges and

estimating the model using a �rst-order spatial Markov model [157]. [158] developed

a PGM for realistic highway scenes by modelling vehicles as nodes and interactions

between vehicles as factor graph edges. By generating novel `path' probabilities be-

tween random variables, PGMs can model all types of interactions and correlations

that can best represent the underlying properties of discrete and continuous data.

6.2.3 Generative modelling using arti�cial neural networks

Generative models are used to learn a representation of a dataset as a joint distri-

bution over the observed variables. The joint distribution analyzes the extracted

information without relating it to the observers' prior knowledge, and these subjec-

tive measures are based on so-called information criteria, e.g., Akaike's information

criterion or Shannon entropy [130]. Subjective measures consider additional knowl-

edge about the observation such as novelty, counter-intuitive behaviour or familiar-

ity. Existing discrete choice models are based on such measures to represent latent

behavioural information about the traveller's behaviour such as latent class (LC)

models, Mixed logit (ML) and integrated choice and latent variable (ICLV) models

[36].

Early statistical methods used generative modelling for dimensional reduction

such as principal component analysis (PCA), k-means clustering and linear discrim-

inant analysis (LDA). PCA can be used as a simple dimensional reduction tool that
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relies on linear assumptions where each dimension (PCA latent variable) is highly

correlated to each other. However, abstract data sources may not possess these

properties and are more likely to be noisy, complex, and have multiple non-linear

correlations. In order to su�ciently capture non-linear variations in the data, deep

learning techniques can be applied.

Recently, more powerful forms of generative models are based on neural net-

works and have been widely used in applications such as population synthesis, se-

mantic analysis and recommendation systems. Some of these generative models

include restricted Boltzmann machines (RBM), generative adversarial nets (GAN)

and variational autoencoders (VAE) [45].

RBMs are the earliest and most simple form of parametric generative mod-

els that perform representation learning by �tting the neural network model to the

data. RBMs are utilized as building blocks for constructing deep arti�cial neural

nets such as Deep Belief Nets (DBN) [50]. Inference in RBM generative models is

di�cult. Thus e�cient training algorithms were introduced to approximate the infer-

ence procedure [100]. The general training process for RBM is a pairwise contrastive

divergence algorithm which is bi-directional to allow up and downstream propaga-

tion of network weights. Synthetic data can be sampled from the trained generative

model that have similar statistical properties as the input dataset. Compared with

PCA or clustering based modelling approaches, RBMs have shown a strong ca-

pacity to model joint distributions and have been successfully applied to capture

spatial-temporal patterns [107]. The RBM generative model restricts lateral con-

nections within layers, which provides independent and identically distributed (IID)

assumptions about the observed and latent variables. For prediction and forecasting,

RBMs are typically used for learning latent features followed by either a generative

simulation-based classi�er or directly as a multi-layer neural network classi�er [65].

Other generative models such as VAEs are used to perform non-linear mapping

of the input variables to `encodings' by compression and marginalizing out noisy

data as part of the training process [159]. The `encodings' capture the most mean-

ingful information of the data, similar to a clustering algorithm. Estimation of VAE

requires layer-wise training by optimizing the lower bound of a variational Bayesian

inference objective function by applying a gradient-based updating rule. GANs are

another type of generative model that trains a generator and discriminator in the
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neural network simultaneously. The discriminator attempts to distinguish between

the real data and the generated data and minimizes the error of di�erentiating real

from synthetic data. This method is designed to be used for semi-supervised learning

and was commonly implemented on computer vision and image classi�cation tasks

[45].

6.2.4 Model optimization algorithms

The approach to solving the optimization problem in neural networks is to apply

gradient descent via a backpropagation learning algorithm to calculate the gradients

w.r.t. the likelihood function [56]. This formula for gradient descent is applied to

the variational inference algorithm in a generative model based on the principle of

energy minimization [160]. A symmetric parameterized model such as the RBM uses

a Gibbs sampler starting at some random data point that would allow the neural

network to update the parameters until convergence is reached. The procedure is

known as blocked Gibbs sampling by alternating updates between `visible' and `hid-

den' neurons. However, the sampling approach requires running a Markov chain

until convergence. An approach using contrastive divergence approximates the opti-

mization problem by replacing the energy minimization gradient function by a fast

approximate [100].

The objective of generative models is to learn meaningful ways to represent

the input data through a subset of underlying latent variables. This information

processing architecture was suggested as a representation of behavioural stimuli [60].

It treats choice behaviour the same way as the rational inattention model, which

depends on the context formed by prior beliefs [30]. Several studies have shown the

superior performance of the generative model in solving challenging decision-making

problems over typical discrete choice and discriminative neural networks. To the

best of our knowledge, the use of generative learning is limited to image and video

data to capture motion and dynamics. Here, we extend our previous work on RBM

based single discrete choice and latent variable models [65] to incorporate multiple

discrete-continuous choices. We also propose a generic algorithm for estimating MDC

models using generative machine learning. The trained model is used to generate

conditional samples and then used to perform classi�cation tasks as well as travel
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behaviour prediction.

6.3 Proposed generative machine learning approach

In this section, we describe our adaptations of current machine learning methods,

introduce our generative bi-partite framework for modelling MDC data and the

associated model optimization algorithm. A list of notations used throughout this

paper is given in Table 6.1.

Table 6.1: Notations.

Notations Description

x set of input variables x1, x2, ..., xK
s set of latent variables s1, s2, ..., sJ
H[x] entropy of x

DKL[a||b] Kullback-Leibler divergence of a from b
F variational free energy

E(x) energy of x
〈x〉q expected value of x over distribution q
σ(x) sigmoid function operator (1 + e−x)−1

N (W,Σ2) Gaussian distribution with mean W and variance Σ2

∇θ(f) gradient of function f w.r.t. θ
η stochastic gradient descent rate. Note: η < 1

6.3.1 Generative bi-partite model

Conventional DCM methods often face di�culties in estimating large datasets with

MDC choice outputs due to exponentially increasing choice set selection [161]. Fur-

thermore, the complexity of estimating DCM increases when incorporating hidden

variables, requiring additional variational parameters while making model inference

intractable and impractical. One approach we can use is to approximate each unob-

served component with a point estimate. However, we cannot quantify the uncer-

tainty or con�dence interval of these hidden variables. The other approach is to �nd

a joint distribution of the hidden and observed components and perform Bayesian

analysis � this usually results in an intractable integral. The core function of gener-
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ative machine learning solves the two problems by computing the integral through

optimization of a variational free energy objective function and uses probabilistic

Bayesian techniques to obtain the parameters of the model.

Our proposed solution is a generative bi-partite graph framework that models

the underlying processes that are likely to generate the data. The assumption is

that large amounts of data are available that can represent the true population

behaviour. See Fig. 6.1 for an illustration of the model. First, we consider the joint

distribution given as p(x, s) over the set of binary hidden random s = s1:J ∈ {0, 1}
and observed x = x1:K ∈ RD variables. We specify a prior distribution p(s) about

the hidden variables and quantify how x relates to s with the likelihood function

p(x|s). Applying the Bayes' rule, we obtain the posterior distribution:

p(s|x) =
p(x, s)

p(x)
∝ p(x|s)p(s) (6.1)

where p(s) is the hidden layer distribution, e.g., Bernoulli, multinomial or nor-

mal, that are the latent priors, and conditional densities p(x|s) are the likelihood

components of the Bayesian model. If the latent priors are tractable, the likelihood

component may have Dcont continuous and Dcat discrete categorical components

such that x can take the following dimensions:

xD = (x1, ..., xDcont︸ ︷︷ ︸
continuous

, xDcont+1 , ..., xDcont+Dcat︸ ︷︷ ︸
discrete

) (6.2)

For categorical dimensions, we can apply a multinomial logistic distribution of

k possible alternatives represented by the vector xDcat
= (xDcat1

, ..., xDcatk
) with

xDcatk
= 1 if the k alternative for variable xDcat

is chosen. The multinomial distri-

bution is de�ned by:

p(xDcatk
= 1) =

efk(s;θ)∑
k′ e

fk′ (s;θ)
(6.3)

The continuous multivariate component of this vector can be modelled with a

normal distribution where xDcont
is drawn from a Gaussian N (W,Σ2). If W is not

lower bound, the resulting function may generate negative values. To distinguish

between positive only values in travel behaviour data, e.g. speed, distance, a stepped

sigmoidal function can be used for generating positive real valued data:
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Figure 6.1: The generative bi-partite framework. The visible layer represents the
input discrete and continuous data. The hidden layer represents the stochastic latent
variables derived from the RBM learning algorithm. Bi-directional arrows indicate
information passing in both directions. The hidden layer can be used to generate
new data with similar statistical properties as the input.

∞∑
i=1

σ(s− i) ≈ ln(1 + es) (6.4)

The sum of σ(s − i) components represents an in�nite set of binary logistic

models with shared weights and �xed constant o�sets. Applying this formulation

increases the capacity of the logistic model to express a broader range of positive

linear values but retains the same closed-form derivative and the same number of

parameters. It can also be further approximated with the function ln(1 + es). This

method has been used in the past to develop models such as the In�nite RBM and

Rate-coded RBM in generative machine learning [162, 163].

As the hidden layer represents a fully distributed mixture model, the model can

be considered a mixture model with 2J components with K + J +KJ parameters.

This representation of travel behaviour data makes it attractive because the complex

correlations between observed variables and events as a result of interaction can be

captured by a one or combination of multiple latent variables in the least number of

additional parameters, as opposed to conventional mixed logit or latent class model.

127



6.3. Proposed generative machine learning approach

We refer readers to Appendix B.1 for detailed mathematical explanation on variable

correlations among MDC choices and conditional probability generation.

6.3.2 Variational Bayesian inference

The marginal distribution of x can be obtained by integrating the joint distribu-

tion: p(x) =
∫
s p(x|s)p(s)ds. We are interested in obtaining the posterior belief

p(s|x) that depends on the data to know how p(x) are distributed. Assuming that

the data are conditional upon the hidden variables, the maximum likelihood of the

data, i.e. arg maxθ ln p(x) may be di�cult as we require the integral to be tractable.

In most cases, it is di�cult to compute in closed form and approximations are re-

quired. A popular method of approximating the posterior is through the MCMC

algorithms [164]. However, such algorithms have a high computational cost and

are more suited for well-structured small samples. By starting from some arbitrary

initial distribution q(s0), a stochastic transitional distribution st ∼ q(st|st−1,x) is

applied iteratively and the outcome sT converges asymptotically to the exact poste-

rior p(s|x) ≈ q(s0|x)
∏T
t=1 q(st|st−1,x). The downside of this is that with MCMC,

we do not know how many iterations are su�cient and �nding the right posterior

approximation may be di�cult with large datasets and complex distributions.

Alternatively, it has been shown that the contrastive divergence algorithm works

well on large datasets that may not be well-structured (see Section 6.2.4). Variational

Bayesian inference provides a better alternative to such problems by optimizing a

more straightforward function that approximates the posterior faster than conven-

tional sampling methods. It has also been shown that for random utility based

choice models, the variational error is negligible and variational inference shows

asymptotic behaviour [165]. First, we posit that there is a tractable distribution

q(s) that approximates the exact posterior p(s|x). To �nd q(s), we search over the

set of distributions that minimizes the Kullback-Leibler (KL) divergence objective

function:

arg min DKL[q(s)||p(s|x)]

s.t.
p(s|x)

q(s)
> 0,

DKL[q(s)||p(s|x)] = 0 ⇐⇒ q(s) = p(s|x)

(6.5)
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where DKL[q(s)||p(s|x)] = −
∫
s q(s) ln p(s|x)

q(s) ds. If no assumptions are made,

then the equation is minimized when q(s) = p(s|x). The key bene�t for variational

Bayesian inference is that we can choose a restricted class of density distributions

(partitions) for q(s) which are simple enough for computational e�ciency but �exible

enough to capture the posterior distribution.

A simplifying assumption of q(s) is that each of the partitions is independent

and we can �nd a formula that computes q(s1, s2, ..., sJ) using the values of the ob-

served input data. This assumption means that the probabilities form an intersection

of densities, which is an e�cient way of modelling high-dimensional data while sat-

isfying low-dimensional constraints [166]. In comparison to latent class models, this

translates adding contributions in the log domain, rather than in the probability

domain. The model can accommodate for a `no option' edge case in the probability

density where a component has zero contribution (negative in�nite energy) [100].

We factorize q(s) by taking the product over independent latent variable densities:

q(s) =

J∏
j=1

q(sj) ≈
J∏
j=1

p(sj |x), s = {s1, s2, ..., sJ} (6.6)

Each latent variable density p(sj |x) is a product of expert (PoE) model. The

PoE distribution produces a model with marginal independent hidden states by

specifying independent expert priors [56]. If we assume each expert is a tractable

distribution with a closed form solution (e.g., logit or exponential), the generative

model can be computed e�ciently. However, the objective function in Eq. (6.5)

requires the computation of the partition function p(x) and lnZ = ln p(x). By

applying a change-of-measure technique to the objective function and using Bayesian

inference, we obtain:

DKL[q(s)||p(s|x)] =

∫
q(s) ln q(s)ds−

∫
q(s) ln p(s|x)ds (6.7)

=

∫
q(s) ln q(s)ds−

∫
q(s) ln p(x, s)ds + ln p(x)

∫
q(s)ds(6.8)

= −F + ln p(x) (6.9)

where
∫
q(s)ds = 1, the expectation 〈f(x)〉q =

∫
f(x)q(x)dx and F is the variational

free energy and can be expressed as:
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F = 〈ln p(x, s)〉q − 〈ln q(s)〉q = 〈ln p(x, s)〉q +H[q] (6.10)

In practice, the variational free energy is used to optimize the solution by a

Gibbs sampling algorithm. The variational free energy lower bounds the partition

function lnZ ≥ F for any q(z). This bound is true since DKL ≥ 0 holds, which can

be derived through Jensen's inequality [167]. We also note that −〈ln q(s)〉q = H[q]

is the entropy of the approximating distribution q and 〈ln p(x, s)〉q is the expected
energy of the joint distribution. Therefore, minimizing the KL divergence implies

maximizing the variational free energy: arg minDKL[q(s)||p(s|x)] = arg maxF .

The variational free energy implies that decision makers are compelled to max-

imize both expected utility and information (entropy) gain. In purely econometric

(utilitarian) choice models, independence of irrelevant alternatives holds and a ra-

tional decision maker would always choose the alternative with the highest utility.

However, it is generally known that irrational behaviour plays a signi�cant role in

choice selection [30, 113]. In this context, incorporating KL divergence as a general-

ized measure of uncertainty in the model accounts for the variance over the utilities

of the choices. This is also known in some literature as risk-seeking or risk-avoiding

behaviour [32, 39]. Next, we develop the parameter estimation procedure for the

proposed generative model.

6.3.3 Learning algorithm

Standard learning algorithms for generative models utilize a stochastic gradient de-

scent method for optimizing the objective function. Assume that an arbitrary Gibbs-

Boltzmann energy function is given by E(x, s; θ) where θ represents the model pa-

rameters. The energy in this context describes a value that is assigned to a state of

the system. The energy curve is continuous, and the state(s) with the lowest energy

corresponds to the highest probability. We relate the RBM energy function to utility,

where the inverse of utility is the energy, but states have both independent observed

and latent variables. Then the generative model is a joint probability distribution

over the observed and latent variables in a con�guration given by the Boltzmann

probability distribution:
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Figure 6.2: Graphical illustration of an RBM with connections represented by W
between hidden s = (s1, s2, ..., sJ) and visible layer x = (x1, x2, .., xK). The connec-
tions are undirected, and the weights are the strength of the connections. Weight
updates are performed bi-directionally in every batch step.

p(x, s) =
e−E(x,s)∑
x,s e

−E(x,s)
(6.11)

Illustrated in Fig. 6.2, we express the RBM as a bipartite graph of a visible and

a hidden layer connected by a weight matrix. These are considered as unsupervised

learning methods, whereby there are no category labels or output values for model

optimization. RBM models are stochastic rather than deterministic: latent variables

are randomly sampled according to a joint distribution speci�ed by the model. Let

W ∈ RK×J be the weight matrix connecting the hidden layer s = (s1, s2, ..., sJ) and

visible layer x = (x1, x2, .., xK). The magnitude of W measures the strength of the

connection between two units. The interaction between the two layers de�nes the

energy function:

E(x, s) = −x>Ws− b>x− c>s (6.12)

The marginal of the visible layer is p(x) =
∑

s p(x, s). b and c are the pa-

rameters for the visible and hidden layer respectively towards the joint distribution

density (Appendix B.1). The variational free energy objective is the lower bound

approximation to the marginal log likelihood since the KL divergence is always pos-

itive:
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ln p(x) ≥ F +DKL[q(s)||p(s|x)] (6.13)

The objective is to compute q(s) that maximizes F with respect to q, yielding

the variational density as an approximate to the posterior q(s) ≈ p(s|x):

q(s) := max
q(s)

F ⇐⇒

∇q(s;θ)F = 0, for any θ∗ ∈ arg max
x∈D

ln p(x; θ∗)
(6.14)

at which point, (-F ) is equivalent to the log likelihood ln p(x) of the RBMmodel.

Using the de�nition of thermodynamic free energy in bounded rational decision

making process F = U − TH, where U is the expected utility (energy), T is the

temperature constant (T = 1) and H is the entropy [168, 41], we obtain the following

derivative of (−F ):

∇q(s;θ)(−F ) = ∇q(s;θ) ln
∑
s

p(x, s; θ) (6.15)

= ∇q(s;θ) ln

∑
s e
−E(x,s;θ)∑

x,s e
−E(x,sθ)

(6.16)

= ∇q(s;θ)
(

ln
∑
s

e−E(x,s;θ)

︸ ︷︷ ︸
utility U

− ln
∑
x,s

e−E(x,s;θ)

︸ ︷︷ ︸
entropy H

)
(6.17)

To �nd q(s), we take the derivative of negative F w.r.t. the RBM parameters

θ = (W,b, c). We arrive at the stochastic gradient descent (SGD) learning update

on the negative variational energy objective function:

θt ← θt−1 −
1

Aτ
η
∑
Aτ

∇q(s;θ)(−F)Aτ ∀Aτ ∈ D, τ = 1, ...T (6.18)

where η is the learning rate and derivative of (−F) represents the convergence

step towards a locally optimal variational approximation: q(s) =
∏
j q(sj). De-

pending on the form of the distribution (we used binary logistic distribution, i.e.

q(sj) = (1 + e−Wx−c)−1 in our example), the optimization can be solved analyti-

cally. Since the derivative can be inferred as the average energy change over Aτ , the
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gradient yields the di�erence between the expected utility ln
∑

s e
−E(x,s;θ) = U and

the entropy ln
∑

x,s e
−E(x,sθ) = H gradients.

The utility ln
∑

s e
−E(x,s;θ) is expressed as the energy Eq. (6.12) over all possible

con�gurations of s. We can associate the �rst and second term as the expected energy

value obtained from the conditional p(s|x) and joint distribution p(x, s) respectively

(Appendix A.4), using the gradient W as an example:

∇q(s;W)U = 〈xs〉p(s|x)
∇q(s;W)H = 〈xs〉p(x,s)

(6.19)

The contrastive divergence (CD) algorithm takes a point estimate from one or

more Gibbs sampling steps drawn to approximate the equilibrium energy:

〈xs〉p(s|x) ∼ 〈x0s0〉

〈xs〉p(x,s) ∼ 〈xtst〉
(6.20)

where 〈xtst〉 is the average over product of the generated input samples multi-

plied and the generated latent variable samples from the Gibbs chain and 〈x0s0〉 is
the initial sample (see pseudocode in Appendix A.4). Typically, a 1-step Gibbs sam-

ple chain (CDN ;N = 1) is su�cient for fast learning gradient estimation [102]. The

gradient estimators can be used to minimize the objective function using a suitable

learning rate. The free energy is representative of the relative �t of the generative

model with respect to the data distribution. If the gap between the utility and

entropy increases, it represents model over�tting [100].

6.4 Case Study: Montreal Trajet Dataset

In this section, we describe the generative modelling process focusing on the data

generation and inferring from the estimated latent variable component. We describe

how we pre-process the data and how the learning algorithm is used to optimize and

generate statistically similar synthetic data for comparison.
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6.4.1 Case study

We evaluate our proposed methodology on a trip trajectory dataset: the MTL Tra-

jet GPS data from the Greater Montréal Region [124]. The open dataset consists

of a total of 293,330 trip observations. The data were collected from respondents

living in the Greater Montréal region (Fig. 6.3). Trip trajectories were recorded in

an application that runs in the background of participants' smartphones. Partic-

ipants were also prompted to report their travel mode and trip characteristics in

addition to the GPS trajectories. We consider the following revealed characteristics

for our model: mode choice, trip purpose, trip distance, origin-destination point and

departure/arrival time.

6.4.2 Data pre-processing

The GPS data from the mobile app are sampled at 4 to 10 second intervals. From

multiple users' GPS trajectories, we detect points at the origin and destination and

matched to one of 34 boroughs of Greater Montréal. First, we veri�ed each observa-

tion Dn contains valid trajectory points, and we removed all corrupted data points

outside the city boundary. Next, we calculated the total trip distance between the

start point and end point by the total sum of all point-to-point raw GPS coordinates.

Alternatively, open map data can also be used to �nd map matched travel distances.

Travel time was calculated by taking the time di�erential between the �rst and last

coordinates. Input time data xt were reparameterized into linear cyclic encoding

features using sin/cosine transform: xtsin = sin(2πxt), xtcos = cos(2πxt). Cyclic

encoding features allow time data to be represented consistently and can be used

as linear input. Continuous data (trip distance, trip time) were normalized to unit

variance. Discrete categorical data (mode choice, purpose, origin-destination) were

encoded as one-of-k vector: xmode = 2 ∈ R4 → xmodev = {0, 0, 1, 0}. We selected

trip candidates with a simple constraint of minimum 10-minute travel time and users

had reported their travel mode and trip purpose. Once all the valid trip observations

were selected, we used this processed dataset for training and validation. Since our

methodology is an unsupervised learning algorithm, we did not consider any output

data for cross-validation. For model validation and data generation, we used the full

training dataset to compare our results.
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Figure 6.3: Visualization of the trip trajectories across the Greater Montréal Region
from the pilot study.

6.4.3 Training

We used a standard batch stochastic gradient descent learning algorithm for model

estimation implemented using Theano Python machine learning libraries1. The

model parameters were updated after every batch sample. We bootstrap iterations

over mini-batches of observations, randomly sampled from the input data xD. We

de�ned a decaying learning rate η, starting at 10e−2 at the �rst iteration and decay

at a rate of 0.1% per batch. The objective function is calculated as the di�erence

in the �rst-order derivative of expected free energy of the input and the sampled

1Theano Python library: http://github.com/Theano/Theano
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data. In this paper, we did not explore other novelty regularization methods such

as dropout or model ensemble, which could be future work for implementation.

6.4.4 Data validation

A typical estimation procedure would be to divide the data into training and val-

idation sets. The full dataset consists of a labelled subset (N = 58, 034) and an

unlabelled subset (N = 235, 296). The labelled subset consists of trips with full

information availability and the unlabelled subset consist of trips with missing vari-

ables. Using the labelled subset, we divide training and validation in a 70:30 ratio

for model benchmarking against a comparable feedforward neural network (NN).

Accuracy validation is often misleading when a model is tested on a biased or im-

balanced dataset. In our case study, the dataset we obtained cannot fully represent

the whole population of the area due to physical limitations, e.g. availability of all

transport modes, the use of smartphone applications, etc. Therefore, we address

this shortcoming by implementing a likelihood validation as a proxy to determine

the model predictive accuracy.

For evaluating generative model performance, we simulate the model on the

unlabelled data (with missing data) and compare the statistical properties of the

generated output against the labelled dataset. This is equivalent to testing the

`unsupervised' learning performance. The accuracy of these predictive probability

distributions depends on whether the `correct' priors lead to reasonable predictive

accuracy. We estimated a series of models with di�erent latent variable sizes and

reported the model �t. Ideally, increasing the size of latent variables would improve

the �t for each variable dimension if input variables are assumed to be independent

and identically distributed. Our proposed method of variational Bayesian inference

satis�es the likelihood principle where the inference depends on the distribution of

the data [63].

Next, we analyze the mean and variance e�ects of latent variables on the gener-

ative model. Deep learning NN models are prone to over�tting when model param-

eters have a large bias and low variance, which results in poor predictors beyond the

training data. Such networks are naturally viewed as black-box functions and chal-

lenging to analyze. By contrast, variational Bayesian inference allows the analyst to
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infer how �exible a model is warranted by the data [169]. Likewise, when parameters

have low bias and high variance, it will result in low statistical con�dence and makes

the model harder to �t the data. The consequence of the parameter uncertainty

is that we cannot di�erentiate between good predictors and sampling error in our

model. Well-calibrated models should have �exibility in accounting for sampling

error as well as robustness to avoid misspeci�cation.

We also performed analysis over the elasticity of the choice probabilities w.r.t.

to changes in the independent variables. In our result, we show the direct elasticity

of mode choice with respect to travel distance. which can be calculated directly from

the optimization step using the Jacobian function.

6.4.5 Benchmarking

We benchmark our results against a comparable single hidden layer feedforward

NN with the number number of latent variables and mode choice as the output.

This is equivalent to partitioning the generative model into a hidden layer h(x) and

computing the conditional output of the mode choice probability f(h(x)). The NN

hidden and output layer equations are given by the following:

h(x) = (1 + e−(−xW−c))−1 = σ(−xW − c) (6.21)

f(h(x)) =
eWkh(x)+bk∑
k′ e

Wk′h(x)+bk′
(6.22)

The �rst di�erence between this approach and a discriminative-generative mod-

elling approach (Appendix B.1) is the direct estimation of the likelihood given the

inputs, rather than an auxiliary step in generating latent variable samples, then

using these samples to generate the output mode choice data. The second di�er-

ence in the feedforward NN model is that the individual's observed utility is drawn

from a non-linear deterministic component. In contrast, the observed utility in the

generative model is drawn from a linearly separable entropy term as described in

Appendix B.1.

We benchmark our model against the NN and compared the normalized log

likelihood shown in Figs. 6.4 to 6.6. As expected, the training curves converge

asymptotically, which indicates that the gradient estimation reached a local op-

timum. The validation curves show the model �t on the validation data subset.
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Figure 6.4: Training and validation likelihood curve (H=5)
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Figure 6.5: Training and validation likelihood curve (H=25)

While the supervised NN training curve shows better model �t than the generative

model in all 3 model instances (which is normal as the supervised NN model opti-

mizes the model likelihood), it also points to higher over�tting shown by the more

signi�cant disparity between the training and validation likelihood. Even though the

generative model produces a weaker model �t on the training curve, the validation

curve is better than the supervised NN and less likely to be over�tting.

138



6.5. Results

0 20 40 60 80 100
iteration #

0.4

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

. l
og

 li
ke

lih
oo

d

sup. NN training
gen. model training
sup. NN validation
gen. model validation

Figure 6.6: Training and validation likelihood curve (H=100)

6.5 Results

6.5.1 Latent constructs parameter analysis

For model analysis, we trained the model on a single layer fully connected network

with H = 5, 25 and 100 latent variables for 100 iterations over the dataset using

our generative learning algorithm. To verify if generative modelling provides better

model generalization, we plot the distribution of the model parameters connecting

the latent variables and mode choice data and compute the magnitude of mean and

variance of the weight matrix. The results are shown in Fig. 6.7. We observed

that with 5 latent variables H5, the model parameters do not �t well to the input

data. The mean and variance parameter values are H5 = N (5.237, 9.33). Increasing

the number of latent variables substantially improves the model, where the mean

and variance converges to zero mean and unit variance at H25 and increasing to

H100 improve the model further. The estimated mean and variance are H25 =

N (0.45, 7.603) and H100 = N (−0.102, 1.624).

One reason for the improvement is the concept of sparse overcomplete represen-

tation of weights and activations in deep learning. It has been shown that sparsity

can be an important factor in explaining and capturing the variations in the data by

reducing the number of activated parameters [52]. The parameter distribution indi-

cates the mean activation and utilization rate of latent variables. When estimated

parameters have low mean and variance, we can determine which subset of latent
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Figure 6.7: Histogram of parameter value distribution by mode choice and number
of latent variables. Vertical dashed line represent distribution mean.

variables are `activated' and which are `inhibited' � when parameters are zero or

near zero, their contributions in the log domain is negative across the distribution.

This result suggests that the latent variables provide a strong indication of model

identi�ability by producing sparse parameter representation.
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6.5.2 Interpretation of latent constructs

In conventional choice modelling latent variable interpretation are justi�ed by explic-

itly introducing indicator variables to correspond to di�erent latent variable states

[72]. For example, a useful indicator might allocate attitudinal variables: safety,

comfortability or eco-friendliness [35]. However, for this method of latent variable

classi�cation to be e�ective, the indicators must be free from outliers and assumed

to be uncorrelated to other events or error terms. In generative modelling, we can

emulate the travel decision process as a learning algorithm, to provide an underlying

explanation for sensory information inputs. We can think of the latent variables as

an interpretation of the observed data (e.g. how individuals consider their distance,

mode choice, location choice, etc., simultaneously).

The earlier models that did not explicitly use psychometric indicators to cap-

ture the latent variables were alternative speci�c only and did not vary over the

individual market segments [38]. Our proposed model has no restrictions on latent

variables being alternative speci�c. It imposes a generalized logical structure (prob-

abilistic graphical model) and accounts for uncertainty and variance from observed

data (explanatory variables and observed choices) through Bayesian probability the-

ory. However, it is �exible enough that it can also be formulated as a model structure

that only captures alternative speci�c variations by removing the connections be-

tween the latent constructs and the explanatory variables and any other setup is

also possible. We modify the estimation step so that the connection strength condi-

tions on the between the observed and latent variables. This representation can be

more useful when attitudinal variables are not IID and have a high correlation with

each other and thus, require knowledge of the underlying distribution. The latent

variable parameters de�ne an entropy term which can be interpreted as a structure

for capturing unobserved correlations between variables. This can be framed as an

entropy generalization to the linear MNL model structure where the latent variables

form an error correction function. This structure also represents a simplistic model

of how decisions are simulated not just by random utility, but also the dynamical

e�ects of information availability, habits and perceptions. This re�ects the role and

importance of neural networks in capturing realistic behavioural responses beyond

direct cause-and-e�ect maximum utility-based observations.

141



6.5. Results

6.5.3 Model elasticity

In econometric analysis, elasticity is an important metric to measure the e�ects of

changes in the value of the explanatory variables (e.g. cost, distance) on choice

probabilities. This test is an indicator of the variation in elasticities of the unob-

served heterogeneity of the population w.r.t to the choice decision. In the context of

generative models, we can use the Jacobian determinant to compute the elasticity

(Appendix B.2). The direct elasticities of mode choice with respect to travel distance

are shown in Fig. 6.8. As expected, the elasticities are all negative. Distance is most

strongly correlated with driving with an average elasticity of -0.635 and a standard

deviation of 0.535. Since walking trips are for relatively short distances, our results

show that walking mode choice is inelastic w.r.t. distance with an average and stan-

dard deviation of -0.084 and 0.336 respectively. Moreover, the average elasticity for

driving mode is larger than transit or driving+transit mode, meaning that as the

distance increases, the probability of driving decreases faster. This is veri�ed by the

collected GPS data, where individuals used public transit (commuter trains) more

for long-distance trips � especially for commuting.

Elasticity and latent variable parameter inspection can be regarded as measures

of posterior and prior heterogeneity, respectively. It puts forward a plausible model

that assumes the generative model emulates an individual's prior information about

the choice with respect to the latent variables, and the elasticity of demand for each

mode choice in this context quanti�es how much the individual would react to the

decision having formed some prior beliefs generated from the model.

6.5.4 Data simulation

Generative models can be used to represent the underlying distribution of the data;

thus, they can be bene�cial in forecasting. We used the trained model to generate

samples from p(x), which have similar statistical properties as the input data. First,

we consider a single observation where we observed only part of the data vector and

the other part of the vector is unknown. The unknown vector can be a single or

multi-variable vector. We denote this as xD = (x1, ..., xD−1, xDunk), where xDunk is

�xed as the unknown variable. The objective is to predict xDunk using the remainder

of the `known' data vector by sampling from the distribution p(xDunk |x1, ..., xD−1).
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Figure 6.8: Distance elasticities on mode choice

We should note that conventional likelihood tests are not suitable in this instance

because the outputs of the generative model are stochastic data-driven probability

distributions, rather than a deterministic probability distribution of a dependent

variable. Appendix B.1 describes how these distributions can be computed.

Next, we clamp the known variables to the input data and then sample the

states of the hidden layer. We use the sampled states of the hidden layer to generate

the remaining state of the unknown variable, completing a full Gibbs sampling step.

This process is not limited to a single unknown variable. If more unknown variables

are used, it reduces the ability of the model to capture the data representation (this

is analogous to adding noise to the input, we can �x xDunk = 0 for the variables we

want to forecast). Therefore, the robustness of the model can be quanti�ed by the

information loss when adding noise to the input and how well it recovers this lost

information.

We show that as we increase the model capacity and complexity, the model can

generate synthetic samples that emulate the original distribution of the data. The

output generated samples are evaluated against the inputs, and we compute the R2

distribution �t. The results are shown in Fig. 6.9. In particular, we observed that

discrete categorical variables (trip mode and trip purpose) are easily represented

with small model capacity (R2 > 0.937), but continuous variables, e.g. trip distance

(H25 : R2 = 0.759) and time (H100 : R2 = 0.639) require more latent variables to
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Figure 6.9: Discrete and continuous data generated from the model.

capture the underlying distribution accurately.

The generative model is also able to learn the multi-modal cyclical nature of

trip arrivals, which is signi�cantly challenging for a standard logit model to estimate.

In our simulation, the latent variables can generate a statistical distribution with

modes in the morning and evening peak hours as well as a smaller peak around mid-

afternoon. Surprisingly, even with no indication of how the distribution is supposed

to be or using any pre-de�ned measurement indicators, the generative model can

capture the underlying properties of a complex distribution, demonstrating a level of

understanding of the semantic variations in the dataset. Finally, multiple discrete-

continuous data can be generated from the conditional probability densities � an

example would be combining mode choice with distance, as shown in Fig. 6.10.

We analyze the model results using the Kruskal-Wallis statistical test and report

the k-th central moments up to k=4 shown in Tables 6.2 to 6.5. The results indicate

that the samples generated fromH = 100 are similar to the original data based on the
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Figure 6.10: Data generation for a joint MDC output

test statistics and the p-values. The k-th moments of the generated data converge

to the k-th moments of the original data indicating that the generative model is

well representative of the underlying behaviour. We also report the variable pair

correlation shown in Table 6.6. The correlation pair also con�rms that the higher-

order generative models can emulate the distribution of the original data with high

accuracy.

The sample statistics of the generative model are shown in Table 6.7. For each

of these models, we report the two-way likelihood Chi-square test, mean squared

distance and p-value of the generative models on discrete variables mode and trip

purpose. For trip distance and trip arrival counts, we report the RMSE of the

samples against the original data. RMSE for trip distance are (H5 : 4.171, H25 :

4.721 and H100 : 1.852). RMSE for trip arrival counts are (H5 : 128.7, H25 :

26.8 and H100 : 23.5) Model signi�cance is computed as the p-values for χ2 at 5%

sample size. The analysis shows that the models with a larger number of latent vari-

ables are more consistent and statistically signi�cant (H = 100 : χ2 = 2.3308, p ≤
0.115), even though R2 values indicate that the generative model well represents the

data.
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Table 6.2: k-th central moment of the original data samples

Moment mode purpose distance time

1 0 0 0 0
2 1.56 6.28 109.62 2.518e+05
3 1.78 5.32 2961.60 9.848e+07
4 6.80 70.23 1.62e+05 1.923e+11

Kruskal-
Wallis

- - - -

p-value - - - -

As shown in the results, the generative model can represent both discrete and

continuous data types simultaneously. This relates to the sparsity concept mentioned

in the previous subsection � the model is robust to corrupted data and information

retrieval from truncated data is possible. This experiment shows how we can use

a generative model for model prediction and forecasting for various input variable

types. In terms of latent variables, this is not an exhaustive analysis, and we can

increase the size of latent variables to increase the representational power, but with

diminishing returns. However, it has been shown that for a neural network with T

input dimensions and T − 1 latent variables, it is globally stable and satis�es the

necessary conditions for optimality with no local minima in the error surface [170].

While these tests may serve as useful benchmarks, we note that the choice of

latent variable size is still arbitrary and dependent on many various factors including

data size, number of variables, complexity and amount of `missing' information in

the data collection. However, as we have shown that in general, generative modelling

may serve as a useful additional tool for travel behaviour analysts to estimate MDC

data using variational Bayesian inference techniques. Collectively our analysis of the

generative modelling provides empirical support that unobserved information in the

data plays an important role in the model estimation, which has previously shown

to be plausible in discrete choice theory [30].
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Table 6.3: k-th central moment of the generated data samples (H=5)

Moment mode purpose distance time

1 0 0 0 0
2 1.23 6.21 47.35 4.931e+06
3 0.95 12.13 642.88 4.497e+10
4 2.70 86.86 1.598e+04 4.702e+14

Kruskal-
Wallis

513.94 1165.31 510.98 85.13

p-value ≤ 0.05 ≤ 0.05 ≤ 0.05 ≤ 0.05

Table 6.4: k-th central moment of the generated data samples (H=25)

Moment mode purpose distance time

1 0 0 0 0
2 1.62 6.23 152.98 7.058e+05
3 1.84 5.25 2765.74 9.100e+08
4 7.25 68.85 1.019e+05 2.435e+12

Kruskal-
Wallis

1.01 1.31 326.58 6.74

p-value ≤ 0.315 ≤ 0.253 ≤ 0.05 ≤ 0.05

Table 6.5: k-th central moment of the generated data samples (H=100)

Moment mode purpose distance time

1 0 0 0 0
2 1.58 6.28 131.94 5.983e+05
3 1.81 5.33 3280.01 7.743e+08
4 6.94 70.02 1.356e+05 1.767e+12

Kruskal-
Wallis

0.393 0.092 20.88 1.63

p-value ≤ 0.53 ≤ 0.76 ≤ 0.05 ≤ 0.2
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Table 6.6: Variable pair correlation

Variable pair Original
data

H=5 H=25 H=100

mode-purpose -0.0961 -0.1149 -0.1002 -0.0954
mode-distance -0.1884 -0.4439 -0.2269 -0.1919
mode-time 0.0349 -0.0244 0.0667 0.0382
purpose-distance -0.1396 -0.2846 -0.1549 -0.1453
purpose-time -0.1039 -0.3866 -0.1504 -0.1052
distance-time 0.4777 0.8247 0.5715 0.4907

mean di�erence - 0.07 -0.004 -0.001

Table 6.7: 5% sample size analysis of the generative choice model outputs

Model χ2 dist. R2 p-value

mode choice
H=5 23.658 4.6791 0.9989 1.0
H=25 33.8029 6.1074 0.9984 1.0
H=100 2.3308 1.5569 0.9993 p ≤ 0.115

trip purpose

H=5 55.535 7.5163 0.937 1.0
H=25 6.041 2.499 0.9994 p ≤ 0.36
H=100 0.334 0.582 0.9997 p ≤ 0.01
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6.6 Conclusion

As the use of machine learning models and algorithms becomes increasingly sig-

ni�cant and essential in travel behaviour research, more emphasis has to be put

on model interpretability rather than pure forecast accuracy. Our work focuses on

methods and tools for analyzing and interpreting complex travel behaviour data

and the estimation of MDC models. Notably, we introduced a generative machine

learning approach for analyzing and estimating large scale MDC travel behaviour

model that uses variational Bayesian inference for model training. We proposed an

RBM-based learning algorithm to model behaviour data, accounting for heterogene-

ity and variable correlations. The estimation results indicated that while supervised

learning performed better on the training set, it performed worse than the genera-

tive model on validation. This makes generative models less prone to over�tting and

more relevant in the context of accurate travel behaviour modelling and forecast-

ing. We showed how the proposed model could be used to compute the conditional

probability distribution of the dependent variables as well as the associated elastic-

ities. This concept can be expressed in terms of information gain to quantify their

contribution to utilitarian behaviour by measuring the KL divergence between the

observed and simulated data.

For the case study, we implemented the algorithm on an open large travel be-

haviour dataset. We were able to estimate model parameters to �t the underlying

distribution of the data while retaining identi�ability and sparsity. The sparse distri-

bution of parameters enabled the generative model to capture the correlation e�ects

between input variables for both discrete and continuous variable types. To ensure

that latent variables capture data heterogeneity, we perform simulation tests, and

we showed that the generative model was able to recover the original data with a

similar statistical distribution. For model interpretability, we show that elasticities

can be obtained for economic analysis. Also, we report model statistics, correlation

and sample analysis, which indicate that the shape of the distribution converges to

the original data samples.

We note that the additional complexity due to an increase in the number of

hidden units is minimal when using the �rst-order stochastic gradient optimization.

The increased size of model parameters did not constitute a signi�cant increase in
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computational time, due to fast and e�cient tensor-based operations using Theano

machine learning libraries. We also observed that increasing the number of hidden

units of an order of magnitude does not correspond to the same increase in com-

putational time. On the other hand, increasing the number of observations in the

training data will be the main bottleneck in each iteration of the dataset. In future

work, we can also look at regularization, e.g. L1/L2 penalty or drop out techniques,

to reduce over�tting from the e�ects of using latent variables.

With the development of ubiquitous data collection methods for travel behaviour

analysis, there are potentials for generative machine learning to be used for modelling

these large multidimensional travel information datasets. Overall, integrating prob-

abilistic variational Bayesian inference methods can improve model tractability and

interpretability. Adopting this framework into dynamic road pricing, route choice

recommendation and tra�c network simulation are some interesting applications for

future work.
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Chapter 7

Conclusion

This dissertation presents a series of interconnected research works that address

behaviour modelling under the new data-driven paradigm of machine learning and

generative modelling. This work is highly applicable to emerging use of machine

learning in econometric welfare analysis, understanding value of time through deep

learning models and interpretability of neural networks. The �rst work concerns

the use of machine learning in discrete choice modelling. A generative model-based

behaviour analysis concept is put forward as a new class of tractable and fully inter-

pretable form of choice model. Chapter 2 presents the fundamental theory behind

the use of generative modelling in discrete choice analysis and how it relates back

to the original Boltzmann distribution derived by McFadden [43, 41]. The chapter

highlights the strengths and weaknesses of current and proposed methods of travel

behaviour modelling. Chapter 3 introduces the Conditional Restricted Boltzmann

Machine (RBM) algorithm and its use on a stated as well as revealed preference

travel survey with measurement indicators.

The second work concerns the methodological development of behaviour mod-

els by framing the choice process as an optimization algorithm that conforms to

behaviour theory in literature, in particular, the notion of information processing

in decision making and disentangling unobserved behaviour through modelling the

higher-order correlation. Chapter 5 analyzed the properties of generative modelling,

estimation process and statistical analysis of information processing costs.

The third work focuses on the applications to discrete choice modelling and
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travel behaviour research. Chapter 6 addresses the complexity of modelling choice

behaviour with multiple, varied outputs that have hidden correlation which is not

speci�ed in the observed data. Furthermore, the experiments shown in Chapter 4

highlights how behaviour modelling is not restricted to subjective psychometric in-

dicators, and machine learning can be exploited to uncover processes and contexts

in choice modelling.

7.1 Research Contributions

This dissertation put together four research articles, each making a di�erent contri-

bution to the state-of-the-art in behaviour modelling. The following summarizes the

main results from the articles based chapters of Part II:

Modelling Latent Travel Behaviour Characteristics: A Generative

Machine Learning Approach

The third chapter of this dissertation opens with the concept of RBM generative

modelling algorithm for modelling latent travel behaviour characteristics. We devel-

oped a novel framework by estimating the joint distribution of the choice variable

and auxiliary information. This approach is useful when indicators are available, but

assumptions may be hard to verify as we are unsure about the interactions of the

latent variable generating process. This method is the �rst fully developed solution

in the context of travel behaviour modelling research. Comparable with previously

developed ICLV methods in terms of model �t, the generative learning algorithm

does not require any additional parameters over the ICLV model with an equivalent

number of latent variables. The estimation process is performed using stochastic

gradient descent with a contrastive divergence optimizer. The experiment showed

that it is possible to derive latent variables analytically when indicators are available,

but assumptions are di�cult to verify. It is most e�ective when the explanatory data

are noisy and have little direct correlation with the choice output, while there is a

strong underlying correlation between unobserved variables. It shows that stated in-

dicators may not be re�ective of behavioural attitudes and may be highly in�uenced

by survey conditions, geographic region and socio-demographic variables.
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Discriminative Conditional Restricted Boltzmann Machines for Discrete

Choice and Latent Variable Models

The fourth chapter begins with a hypothesis that latent e�ects can be obtained not

only from attitudinal questions but also from the data distribution of the observed

preference. We consider that not all datasets can capture psychometric indicator

data. Furthermore, when psychometric data are available, they may be subjective,

and they may change over time. We provide an adaptation of an existing class of

generative models known as Conditional Restricted Boltzmann Machines that are

used to learn a latent representation from the data. We performed a bootstrap cross-

validation and model selection for estimation consistency to account for over�tting

in our estimation. We found that the generative learning algorithm has substantial

improvement in model �t without the use of subjective measurement indicators.

Thus increasing model accuracy in predicting choice behaviour.

Information Processing Constraints in Travel Behaviour Modelling: A

Generative Learning Approach

In the �fth chapter, we posit that generative models can be used to emulate infor-

mation processing and learning-based decision-making behaviour in a discrete choice

model. Our methodology consists of applying an entropy error component using la-

tent constructs in a generative model based on rational inattention behaviour and

information theory since decision-making rules are not always consistent with ratio-

nal behaviour and this methodology accounts for behaviour learning and unobserved

decision motivations. We optimize the model parameters using a Kullback�Leibler

(KL) divergence minimization between observed and simulated data.

The study demonstrated the theoretical and practical properties of the gener-

ative model in three ways: First, the latent constructs provide error correction for

information heterogeneity in the utility speci�cation, which allows the model to sim-

ulate decision making with information processing constraints. Next, the experiment

uncovered a strong correlation with rational inattention behaviour theory through a

generative model. It shows that individuals may ignore certain explanatory variables

and rely on prior (latent) information in their decision-making process. We looked

at the changes to the econometric parameters and showed how latent constructs
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could change the model speci�cation. Finally, estimating maximum entropy reveals

that decision uncertainty is reduced by incorporating latent constructs accounting

for information processing costs. The impact of this study is that we can use noisy

data that contains latent behavioural information to improve our model analytical

properties.

A Bi-partite Generative Model Framework for Analyzing and Simulating

Large Scale Multiple Discrete-Continuous Travel Behaviour Data

In the sixth chapter, a generative model solution is developed to model discrete-

continuous travel behaviour from a large scale dataset. This study connects to the

broader scope of the transport an mobility market by enabling the use of inter-

pretable machine learning in demand forecasting systems. With the development of

ubiquitous data collection methods for travel behaviour analysis, there is a bene�t for

generative machine learning to be used for modelling these large multidimensional

travel information datasets.

This methodological framework allows for the interpretation of complex travel

data by analyzing its underlying data structure and unobserved heterogeneity. The

incorporation of an RBM-based learning algorithm to model travel behaviour data

captures the underlying correlation e�ectively through latent variables. In addition

to that, the learning algorithm is robust to data over�tting it also allows for the

interpretation of latent variables and elasticities, which enables it to be work with

discrete choice analysis. The model is analyzed through the inspection of model

sparsity and correlation e�ects of model parameters. The results showed that it

retains parameter stability which o�ers better interpretability over MLP models.

For model interpretability, elasticities can be obtained for the econometric analysis,

thus providing a novel way for the analyst to look into the "black-box."

7.2 Limitations

Every modelling approach has its own set of advantages and drawbacks, and it

is the analyst's job to be aware of them and choose the right model in the right

situation. A linear in utility, a discrete choice model can focus on highly informative
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explanatory variables, but it may not be able to model complex and noisy data easily

and may lead to model misspeci�cation when the explanatory variables are noisy

and highly heterogeneous. Generative models, on the other hand, can interpret and

extract latent behavioural information from complex and noisy data without explicit

labels or indicators through unsupervised learning. However, the performance of the

generative model depends signi�cantly on the size and variation of the dataset in

capturing the underlying latent behaviour e�ectively. A way to account for these

problems is by increasing the depth of the network model, but it also comes at

the cost of modelling time complexity. The learning algorithm may also lead to

inconsistencies in parameter estimates if the model is too small and several major

drawbacks in deep learning methods need to be addressed [45]. Another limitation

is the estimation and convergence of the gradient function as there may be multiple

local optima points which require a good initialization point. However, initialization

of parameters can also be tricky and techniques to �nd proper initialization points

are still an open problem in research [53].

Our work has suggested that capturing unobserved heterogeneity using gen-

erative modelling may solve some of the misspeci�cation issues in discrete choice

behaviour modelling, but further investigations into other generative modelling tech-

niques, for instance, GANs, VAE, and Autoencoders can be explored. However, these

novel deep learning methods rely on an algorithmic process to e�ciently train model

and may not have �appropriate� behavioural interpretation. In contrast, the RBM

learning algorithm is inspired by physical systems and thermodynamic processes that

can be interpreted intuitively [59].

While this research can be useful in practice for travel behaviour modelling, it

will require substantial e�ort to recon�gure to di�erent setting when analysts seek

to use this methodology on other types of data, e.g. tra�c network �ow, which have

not been explored in this dissertation.

7.3 Future Work

The research presented in this dissertation focuses on generative machine learning

for travel behaviour analysis. It can be used as a tool to complement discrete choice

modelling. However, there are no speci�c applications that necessitate the use of
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generative modelling if conventional MNL or even regression is su�cient enough.

Generative modelling also can work on a range of data-driven transport services

such as driving sensors or tra�c network signals. More research has to be done on

these applications to determine if it will bene�t from generative modelling.

The concepts and ideas that have been introduced in this dissertation can be

transferred to discrete choice modelling to allow for analyzing a greater range of

unobserved heterogeneity, speci�cally from noisy data. Beyond the comparisons

between discrete choice models and machine learning, the analysis of information

heterogeneity in behaviour modelling indicates that there is a signi�cant common

structure between the contrasting approaches and combining them is a possibility.

To allow more practical application of these new algorithms, for instance, the

use in an activity-based travel demand modelling system, several issues need to

be resolved. There needs to be a standard or structured way of handling data so

that the generative models can be reused on di�erent datasets, in order to simplify

benchmarking and comparative testing. The multiple discrete-continuous processes

need further investigation into model identi�cation as the model parameters are

confounded in the higher-order representation. Another possible approach could

be to look into economic and welfare analysis, for example, value of time factor,

willingness-to-pay considerations, and elasticites of these measures using the pro-

posed analytical form in this dissertation. It can also be a good idea to see how

stacking multiple layers will a�ect the stability of the model parameters as it is

often shown that it may lead to over�tting. This dissertation does not cover the

use or comparison with more recent advanced supervised learning methods such as

Residual Network models that enable very deep model learning and representation

which could be used as a way to increase the depth of the choice model as described

in [171].

Based on the �ndings, the following suggestions are proposed that would im-

prove or integrate deep learning models and algorithms into discrete choice anal-

ysis. First, an investigation into machine learning optimization methods, namely,

the stochastic gradient descent algorithm and its purpose in, and relation to be-

havioural choice theory. Second, another interesting perspective would be to look at

how the estimation of mixed logit models can be improved with variational Bayesian

inference and generative learning techniques that have been recently explored and
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could be expanded upon [172]. While variational Bayesian inference addresses the

shortcomings of MCMC methods, generative modelling methods can also be used to

extend Mixed Logit through estimating a �exible underlying latent behaviour model

without relying on pre-speci�ed distributions.

The �nal area for future work would be to adapt these machine learning algo-

rithms and generative models for real-world deployment, for example, in autonomous

transit, CAVs and MaaS systems. These can be implemented o�ine in data analyt-

ics or online through a cloud service and integrating networked sensors from tra�c

and vehicles. Such applications to emerging and innovative transport systems would

have signi�cant economic and social bene�ts, such as the ability to rapidly adapt to

changes in travel behaviour to reduce rush-hour delay and increase the throughput

capacity of public transit in urban cities.
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Appendices

This chapter is organized as follows:

Appendix A brie�y summarizes the several fundamentals for the generative

modelling and its formulation in discrete choice analysis. This would provide some

background on advanced machine learning from the perspective of a choice modeller

and is divided into 3 sections. In A.1, the main di�erences between a Bayesian

approach to estimation and conventional log-likelihood approach in discrete choice

analysis is compared. In A.2, the basic concepts of stochastic gradient descent

used in machine learning is described and an explanation why it enables "data-

driven" modelling. In A.3, the concept of undirected graphical model and the role

of interactions between observed and unobserved heterogeneity in travel behaviour

analysis is described to represent choice behaviour process.

Appendix B provides additional details on the mathematical models and equa-

tions used in the application of multiple discrete-continuous models in Chapter 6.

Explanation is given as to how the formulation and joint distribution is established.

An example of calculating model elasticity is shown in B.2.

Appendix C provides a short snippet of the machine learning code (in Python)

used to train the generative model. A complete listing can be found in the Github

repository (https://github.com/mwong009/genome). The model �les in this disser-

tation uses Theano deep learning libraries for constructing the computational graph

essential for calculating the gradient functions.

Appendix D provides a list of variables and a brief description for each of the

dataset used in this dissertation.
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Appendix A

Advanced machine learning

principles for discrete choice

modelling

A.1 Bayesian statistical approach

The discrete modelling perspective is based on estimating a set of β values where the

true β values are �xed but unobserved, while the estimates β̂ is a random variable

as a function dependent on the input data set. The variance of the estimated β̂ is

addressed using standard error and t-test statistics. The t-test is an assessment of

how much con�dence the estimation value re�ects the observed data with random

sampling. In a Bayesian approach, a probability p(β) is used to de�ne the degree of

uncertainty of the estimate in di�erent states of the system. E.g., at di�erent values

of β, what are the probability that it will occur given the data? Since the data

set is observed and assuming the data set represents every possible variation of the

population, the true β value is random, and we measure the degree of uncertainty

between our estimates and the random value of β.

The random variable β can be represented using the prior distribution p(β)

using a general but broad distribution (e.g. uniform) with high entropy. Often

it is also easier to use some simpler distribution, i.e. normal or log-normal before

observing the data. After that, samples are drawn from our data sequentially or
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randomly to update the belief of our initial distribution by using the Bayes rule:

posterior =
likelihood× p(β)

marginal

Relative to the conventional log-likelihood estimation of discrete choice mod-

els, the Bayesian statistical approach uses the full distribution over β rather than

a point estimate β̂. The distribution is "learned" by decreasing the density over β

where the data does not generate possible values and increasing the density where

the data generates possible values of β from the prior. The Bayesian approach is

also behaviourally similar to how perception and attitudes (latent constructs) a�ect

the choice outcome. One can associate the Bayesian prior to these latent constructs

as the source of human subjective behaviour in�uencing travel behaviour. In Chap-

ter 5, the uncertainty of the estimates is discussed by analyzing the entropy of the

estimates. E.g. have the parameter estimates moved far enough away from a high

entropy distribution? This approach is simple to justify, but as with the t-test ap-

proach, it is still somewhat ad hoc. The Bayesian approach has its drawbacks and

can be computationally intensive when the marginal distribution is complex. What

is relatively di�cult is expressing the initial Bayesian prior as close as possible to our

naïve beliefs of the underlying behaviour. The prior should re�ect the perceptions

and attitudes, but in practice, a uniform distribution is used with high entropy and

perturb the density slowly until it reaches convergence. For real-valued β param-

eters, it is common to use the Kullback-Leibler divergence (KL divergence) as

an objective function to minimize the uncertainty between the prior and posterior

distribution. In Chapters 3 and 4, the estimation process of an RBM model is shown

using the KL divergence function.

Representation learning is one of the key themes of generative modelling [166].

The Bayesian statistical approach operationalizes representation learning in a be-

haviourally plausible way that re�ects choice behaviour. The distinction between

generative modelling and choice modelling is that it does not require any formal

de�nition of a dependent variable in the objective function. Indeed, generative mod-

elling is often referred to as an attempt to extract information from a distribution,

density estimation, denoising data, clustering or simulation-based prediction. A

classic example is Principal Component Analysis (PCA) that �nds a representation
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that preserves much of the original data as possible. However, there are also multiple

ways where the distribution is de�ned: low-dimension transformation (e.g. PCA),

sparse distribution (RBM, VAE, Autoencoders) or independent representations [45].

PCA is a low-dimension transformation where a large number of parameters are re-

duced to remove redundancies for model estimation. Sparse representation is more

commonly used in machine learning for its properties which allow the information

to be distributed over the latent variable space. Independent representation is much

more di�cult as it tries to transform the original data into the latent variable space

where each latent vector is statistically independent, which might be implausible for

typical travel behaviour with unobserved heterogeneity.

A.2 Optimization algorithm

The next aspect of machine learning for discrete choice analysis is the type of op-

timization algorithm used. Almost all modern machine learning methods and deep

learning models use stochastic gradient descent (SGD) or some variant of it. SGD is

an extension of the gradient descent algorithm where the gradient of the objective

function is used to update the model parameters [45]. Fundamentally, the gradient

of the objective function w.r.t. to the dataset is the average gradient, and by the

law of large numbers, this can be approximated by a small subsample with a similar

value. Rather than iterating through the entire dataset to �nd the average gradient,

the gradient can be approximated by a mini-batch sample randomly drawn from the

dataset. Thus, the e�ciency of SGD increases by the number of observations (large

datasets) � as the dataset grows, the number of iterations remains small relative to

the total data size. Increasing the size of the dataset allows a much broader range of

variability to be modelled without a similar increase in estimation time, hence the

justi�cation for "data-driven" modelling. The gradient in SGD is de�ned as such:

∆
(t)
β ← ∆

(t−1)
β − η 1

m

∂L

∂β

m∑
i=1

L(β)

where m is the batch size, t is the update step and L is the objective function

and η is the adjustable parameter updating rate. The SGD algorithm does not

guarantee optimal model estimates, but due to the properties of the batch update
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steps, a value close to optimal can be reached very fast for the estimation of large

datasets with a large number of parameters.

A.3 Undirected graph model for behavioural

representation

In generative modelling, a way of describing the interaction between observed and

unobserved behaviour is by using an undirected graphical model or also known as

a Markov Network. It encodes the idea that two variables with strong correlation

have a higher magnitude undirected link between them. As opposed to directed

graphical models where the causality is one direction, e.g. price to pro�t relation,

undirected graphical models are much more applicable to behavioural analysis and

travel based applications. For example, the relationship between travel time and

mode choice. Travel time directly in�uences travel mode choice, but the reverse can

also be possible: travel mode choice can increase the overall usage of a particular

mode, leading to congestion and increase travel time. Hence, undirected graphical

models do not di�erentiate between the direction of the causality. The relationship

is modelled between observed and unobserved behaviour and attitudes as an event

in an undirected graphical model. In Chapter 6, an undirected model (RBM) is

used to model the relationship between the observed data and the underlying latent

behaviour. In Chapters 3 to 5, an undirected graphical model is combined with

directional interaction between the observed explanatory variable and the dependent

choice variable. Additionally, in Chapter 3, this to model is further extended to the

measurement indicators from an SP/RP survey experiment. Since the indicators

can be either in�uencing the behaviour or vice versa, using an undirected graphical

model is a plausible way of handling these interactions.

A way of de�ning an undirected graphical model is to use an energy function

E, where:

p(β) = e−E(β)

This would ensure that the probability density remains positive for any state

of β. An example of this function is the Boltzmann distribution. While Boltzmann

machine is historically used to de�ne models with and without latent variables,
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in deep learning, a Boltzmann machine is exclusively used for models with latent

variables [59]. The Boltzmann distribution as a product of models is expressed as

follows:

p(β : {β1, β2, ..., βK}) =
K∏
k=1

e−E(βk)

The most straightforward approach to sampling and training a Boltzmann ma-

chine is by using Gibbs sampling, alternating between random variables. Due to

the separation properties of the graphical model, the draw is conditioned only on

the remaining variables that are connected to the targeted random variable (see

Section 4.3 for details).

Energy function

The energy function E derives from a quantitative property in thermodynamics

that describes the potential energy in a body. The same energy metric can also

be used to de�ne behaviour � the formalization of the concept of utility suggests

the two domains are similar mathematically and the di�erences lie primarily in

their assignment of importance. It has been shown that behaviour theory can be

represented by additive utility gains and an entropic cost involved in processing

information [41]. In statistical physics, the Boltzmann distribution satis�es the free

energy model F = U − TS, which represents the tradeo� between utility U and the

entropy cost S and the temperature term T is the scale term in the discrete choice

model. These two terms have been related to utility and information processing

cost in rational inattention decision making [30, 58]. Sections 5.2 and 5.3 outlines

the key properties of the energy function and how it applies to travel behaviour

analysis. This principle can be seen in two ways: First, a minimum relative entropy

when the expected utility is �xed. This provides a principle for modelling under

uncertainty were utility deviations do not in�uence the choice decisions. Second, a

maximum utility principle when the entropy is �xed. This interpretation leads to a

conventional rational decision-making process where the information processing cost

is assumed to be homogeneous.

Contrastive divergence (CD) provides a way to estimate the gradient of the

energy function. CD gives an approximate idea of the gradient �eld, and by taking
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small steps in the direction of the steepest gradient, the optimization approaches a

local minimum [102]. Even though it may not be possible to evaluate the energy

function (in some cases, the partition function is intractable), CD estimates the

gradient function given a set of model vectors. The algorithm shown in Appendix A.4

establishes a primary training step on a generative model by computing the gradient

term of the variational free energy function and using a stochastic gradient descent

step on the model parameters.
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A.4 Model training algorithm

Algorithm 2: RBM learning algorithm for generative modelling using N-
step Gibbs sample chain (CDN )

Input : RBM data sample D = {x1, ...,xn}, batch sample
Ai ⊂ D, i = 1, ..., d, learning rate η, iteration steps T

Output: gradient approximation θ = (W, c,b).

init: θ = 0, τ = 1;
forall Aτ ∈ D, τ = 1, ..., T do

forall (xn) ∈ Aτ do
for t = 1 to N do

CDt: iterate over Gibbs chain

positive phase
x0 ← xn
s0 ∼

∏H
j=1 p(sj |x0)

negative phase
xt ∼

∏I
i=1 p(xi|s0)

st ∼
∏H
j=1 p(sj |xt)

end

end

% Variational free energy term
∇q(s;θ)(−F)Aτ ≈ (〈xtst〉 − 〈x0s0〉)
% parameter update step
for θ ∈ θ do

θτ+1 ← θτ − η∇q(s;θ)(−F)Aτ ;

end

end

166



Appendix B

Mathematical Models and

Equations

The contents of this appendix chapter are associated with Chapter 6.

B.1 Multiple discrete and continuous conditional

probability generation

Additional details is provided here on how conditional probability generations are

formulated. To apply a generative model to travel behaviour choice problems, �rst,

specify the distribution of our required output variable set conditioned on the other

variables. Then, this can be further extended to other distributions, not just multi-

nomial and Gaussians, e.g. unimodal distribution for ordinal data [173].

Example 1. Given an assumption that the simplest possible example consisting

of two observed variables [x1, y1] connected by a single hidden unit sj (Fig. B.1

(a)). The generative model captures the joint distribution of x, y and s expressed as

P (x, y, s) = 1
Z e
−E(x,y,s) as derived from Eq. (6.11). The functional form that rep-

resents the variables under an RBM energy model is E(x, y, s) = −
∑

sj
x1W1,jsj −∑

sj
y1W1,jsj − b1x1 −

∑
sj
cjsj − d2y1 and the conditional probability of y given x

assuming y is a multinomial output:
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P (y1|x1) =
e−F (x1,y1)∑
y′1
e−F (x1,y′1)

where its variational free energy F (x1, y1) is calculated as:

F (x1, y1) = − ln
∑

sj∈{0,1}

e−E(x1,y1,sj) = −b1x1 − d2y1 − ln
∑

sj∈{0,1}

e−s(x1W1,j+y1W1,j+cj)

= −b1x1 − d2y1 − ln(1 + e−x1W1,j−y1W1,j−cj )

The �rst term b1x1 is the `error-corrected' utility component in the model.

However, unlike in conventional DCM, b1 is the beta of variable x1 contribution

to the full joint probability P (x, y, s). The second term can be interpreted as the

`alternative speci�c constant' (ASC) of y1. For instance, if y1 is a 3-alternative

discrete variable y1 : {y11, y21, y31}, then d2 is a 3-dimension vector representing the

ASCs. In the conditional probability P (y1|x1), if y11 = 1 and 0 otherwise, then the

error-corrected utility of alternative y11 is:

F (x1, y
1
1) = −

(
b1x1 + d12 · (y11 = 1) + d22 · (y21 = 0) + d32 · (y31 = 0)

+ ln(1 + e−x1W1,j−y1W1,j−cj )
)

= −
(
b1x1 + d12 + ln(1 + e−x1W1,j−y1W1,j−cj )︸ ︷︷ ︸

single correction term

)

x1 x2 xi y1

s1 s2 sJ
. . .

. . .x1 y2

s1

x1 y1

s1 s2 sJ
. . .

(a) (b) (c)

yk
. . .

Figure B.1: Generating various multiple discrete-continuous outputs using generative
models. (a) Example 1, (b) Example 2, (c) Example 3.
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If the weights connections to the hidden units are reduced to zero, i.e. W1 =

0,W2 = 0 and cj = 0, then the model collapses into a standard MNL. For such a

con�guration:

F (x1, y
1
1) = −

(
b1x1 + d12 + ln(1 + e0)

)
= − (b1x1 + d12)︸ ︷︷ ︸

MNL utility

Example 2. Consider the same example above, but expanding to j hidden units

s1, ..., sj. With j hidden units, additive terms are added to the error-corrected utility

(Fig. B.1 (b)):

F (x1, y
1
1) = −

(
b1x1 + d12 +

∑
j

ln(1 + e−x1W1,j−y1W1,j−cj )︸ ︷︷ ︸
multiple correction terms

)

Example 3. Lastly, consider multiple inputs and multiple discrete-continuous out-

puts: The joint probability expands to i input variables x1, ...xi (Fig. B.1 (c)). Like-

wise, the error-corrected utility can be derived as:

F (x1, ...xi, y1, ..., yk) = −
(∑

i

bixi + d12 +
∑
j

ln(1 + e−
∑
i xiWi,j−

∑
k ykWk,j−cj )

)
where yk can be any discrete or continuous variable. These examples above can be

extended to multiple discrete-continuous joint distributions, where each yk compo-

nent is a Product of Experts model:

P (y1, ...yk|x1, ...xi) =
∏
k

P (yk|x1, ...xi)

also note here that the correction terms aremarginal decreasing functions for xi →∞
and Wi,j > 0,

lim
xi,...xi→∞

F (x1, ...xi, y1, ..., yk) = −(
∑
i

bixi + d12) =⇒ Wi,j > 0

For continuous variable output with positive only values, the stepped sigmoidal

function is applied to F (x1, ...xi, ycont):
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f(ycont|x1, ...xi) = ln(1 + e−F (x1,...xi,y1,...,yk))

If the output is linear with range −∞ < y1 < ∞, then the output would be the

variational free energy:

f(ylinear|x1, ...xi) = F (x1, ...xi, y1, ..., yk) =
∑
i

(bi − xi)2

2
−d2−

∑
j

ln(1+e−
∑
i xiWi,j−

∑
k ykWk,j−cj )

For discrete choice outputs, a similar method described in Example 1 and 2 is used:

P (ydiscrete|x1, ...xi) =
e−F (x1,...x,ydiscrete)∑

y′
discrete

e−F (x1,...x,y′discrete)

B.2 Model elasticity

Analyzing model elasticity is a way to test functional dependency among a set of

observations n on the conditional probability distribution. For these tests, we ex-

ploit the computational graph used to calculate the backpropagation algorithm in

stochastic gradient descent by substituting the �nal partial derivative ∂ĥ/∂W with

∂ĥ/∂xn. The advantage of using a Jacobian is that it allows discrimination of linear

and non-linear dependence in the model. A Jacobian matrix is generated for each

example of the conditional output on the set of inputs and estimates the density of

elasticities across the data points.

Lemma 1. Given the conditional probability function pn(x), its elasticity ε is de�ned

as:

ε =
Jpn(x)xn
pn(x)

=
∂pn(x)

∂xn
· xn
pn(x)

The Jacobian matrix Jpn(x) of each observation n, for each �xed input vector

x is de�ned as the backpropagation derivative w.r.t pn:
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Let pn(x) = g(W(1) · h(W(0) · xn)), then

Jpn(x) =
∂pn(x)

∂xn
=

∂pn(x)

∂ĥ
· ∂ĥ
∂xn︸ ︷︷ ︸

backpropagation terms

=


∂p(x)1
∂ĥ1

. . . ∂p(x)1
∂ĥs

...
. . .

...
∂p(x)k
∂ĥ1

. . . ∂p(x)k
∂ĥs

 ·

∂ĥ1
∂x1

. . . ∂ĥ1
∂xn

...
. . .

...
∂ĥs
∂x1

. . . ĥs
∂xn


B.3 Example of derivation of the joint probability

For the case study example described in Section 6.4, the derivations of the joint

probability is shown, energy function and estimation steps:

Energy function

The model is de�ned by the following energy function:

E(x, s, y) = −
(
byy +

∑
m,j

xmWm,jsj +
∑
j

yWjsj +
∑
m

bxmxm +
∑
j

cjsj

)
(B.1)

where sj ∈ {0, 1}J and xm, y ∈ RD are referred to as latent and observed

variables respectively in the RBM model. m is the number of explanatory variables

used, xm are the explanatory variables (time, speed, distance, location etc.) and y

is the mode choice dependent variable vector. For 5 latent variables, set j = 5. The

weight parameters are θ = (W, bx, by, c).

Joint probability

The joint probability distribution of the observed and hidden variables follows the

Boltzmann distribution p(x, s, y) = e−E(x,s,y)/Z, where Z is a normalization factor

such that 0 < p(x, s, y) ≤ 1.

Model estimation process

Given a su�cient number of latent variables, the RBM model parameters can be

tuned such that the negative free energy is minimized:
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B.3. Example of derivation of the joint probability

(−F ) = ln
∑

sj∈{0,1}

(
eb
yy+

∑
m,j xmWm,jsj+

∑
j yWjsj+

∑
m bxmxm+

∑
j cjsj

)
− lnZ

(B.2)

The training task is then to minimize the negative free energy term by taking

the derivative w.r.t. the model parameters and updating the parameters using an

SGD training process. The gradient update step is as follows:

1. Draw Gibbs samples x0,y0, s0, ...,xt,yt, st for t steps (Appendix A.4).

2. Compute ∂
∂θ

(
− F (x0,y0, s0, ...,xt,yt, st)

)
and update model parameters θ.

The model can be used to predict new observations by �clamping� the explana-

tory variables, generate latent variable samples from it, and using the generated

samples to compute the choice probability P (y|x, s).
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Appendix C

Code listing for generative model

estimation

Code listing provided in this dissertation is released as open-source code under the

MIT License.

Readers are recommended to be familiar with Python (3.5+) and the Theano

deep learning library.

A complete software package (under development) for writing discrete choice

models with machine learning elements, speci�cally generative models, can be down-

loaded from https://github.com/litrans/genome. The software supports both

conventional discrete choice models (logit, etc.) and neural network-based models

(RBM) using stochastic gradient descent as the primary model optimizer.
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RBM model class de�nition

The model class de�nition initializes the framework of the model and constructs

parameter variables, function to add latent and observed variables and the Gibbs

sampling phases. The following code is used in Chapters 4 to 6.

class RBM(Network ) :
' ' ' d e f i ne the RBM t o p l e v e l ' ' '
def __init__( s e l f , name , hyperparameters=OrderedDict ( ) ) :

Network . __init__( s e l f , name , hyperparameters )
# tensor s
s e l f . l a b e l = [ ] # l a b e l t ensor s
s e l f . input , s e l f . output = [ ] , [ ] # l i s t o f t ensor s
s e l f . in_dtype , s e l f . out_dtype = [ ] , [ ] # l i s t o f s t r d types

# parameters
s e l f .W_params , s e l f . B_params = [ ] , [ ] # xWh, hWy, xBy params
s e l f . V_params , s e l f . U_params = [ ] , [ ] # xWh, hWy params
s e l f . hbias , s e l f . vbias , s e l f . cb i a s = [ ] , [ ] , [ ] # bia s

# f l a t t e n e d ver s ion
s e l f .W_params_f , s e l f . B_params_f = [ ] , [ ] # xWh, hWy, xBy params
s e l f . V_params_f , s e l f . U_params_f = [ ] , [ ] # xWh, hWy params
s e l f . vbias_f , s e l f . cb ias_f = [ ] , [ ]

# sigmas
s e l f . vsigmas , s e l f . cs igmas = [ ] , [ ]
s e l f . vsigmas_f = [ ]

# parameter masks
s e l f .B_params_m, s e l f .U_params_m = [ ] , [ ] # l i s t o f the Uh mask
s e l f . cbias_m = [ ]

def add_latent ( s e l f , name='hbias' ) :
"""
add_latent func

Parameters
−−−−−−−−−−
name : ` s t r ` , op t i ona l

Name of hidden node e . g . ` ' hb ia s ' `
shp_hidden : ` tup l e ` , op t i ona l

S i ze o f the hidden un i t s

Updates
−−−−−−−
s e l f . hb ia s [ ] : sequence o f ` theano . shared ( ) `
s e l f . params [ name ] : OrderedDict o f ` theano . shared ( ) `
"""
try :

shp_hidden = s e l f . hyperparameters [ 'n_hidden ' ]
except KeyError as e :

print ( "hidden unit shape not defined!" )

i f name in s e l f . model_values . keys ( ) :
va lue = s e l f . model_values [ name ]

else :
va lue = np . random . normal ( 0 . , 0 . 01 , shp_hidden )
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hbias = theano . shared ( value , name=name)

s e l f . hb ias . append ( hbias )
s e l f . params [ name ] = hbias
s e l f . params_shp [ name ] = shp_hidden

def add_node ( s e l f , var_dtype , name , shp_v i s ib l e ) :
"""
add_node func

Parameters
−−−−−−−−−−
var_dtype : ` s t r `

Type o f v a r i a b l e s e . g . ' b inary ' , ' ca tegory ' ,
see hyperparameters f o r more informat ion

name : ` s t r `
Name of v i s i b l e node e . g . ' age '

s hp_v i s i b l e : ` tup l e ` , op t i ona l
S i ze o f the v i s i b l e un i t s

Updates
−−−−−−−
s e l f . input [ ] : sequence o f `T. tensor3 () `\n
s e l f . in_dtype [ ] : sequence o f ` s t r `\n
s e l f .W_params [ ] : sequence o f ` theano . shared () `\n
s e l f . v b i a s [ ] : sequence o f ` theano . shared () `\n
s e l f . params [ ' x_'+name ] : OrderedDict o f ` theano . shared () `\n
"""
s e l f . hyperparameters [ 'shapes ' ] [ name ] = shp_vi s ib l e

shp_hidden = s e l f . hyperparameters [ 'n_hidden ' ]
s i z e = shp_vi s ib l e + shp_hidden

# crea te the tensor symbol ic v a r i a b l e s
t s r_var i ab l e = in i t_ten so r ( shp_vis ib le , name)

# crea te the tensor shared v a r i a b l e s
i f 'W_' + name in s e l f . model_values . keys ( ) :

va lue = s e l f . model_values [ 'W_'+name ]
else :

va lue = np . random . normal ( 0 . , 0 . 01 , np . prod ( s i z e ) )

W_f = theano . shared ( va lue . astype (DTYPE_FLOATX) , 'W_'+name)
W = T. reshape (W_f, s i z e )
print ( 'W' , name , s i z e )

i f 'vbias_ ' + name in s e l f . model_values . keys ( ) :
va lue = s e l f . model_values [ 'vbias_ '+name ]

else :
va lue = np . random . normal (0 , 0 . 01 , np . prod ( shp_vi s ib l e ) )

vbias_f = theano . shared ( va lue . astype (DTYPE_FLOATX) , 'vbias_ '+name)
vb ias = T. reshape ( vbias_f , shp_v i s ib l e )

s e l f . input . append ( t s r_var i ab l e )
s e l f . in_dtype . append ( var_dtype )
s e l f .W_params . append (W)
s e l f .W_params_f . append (W_f)
s e l f . V_params . append (W)
s e l f . V_params_f . append (W_f)
s e l f . vb ias . append ( vb ias )
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s e l f . vbias_f . append ( vbias_f )

s e l f . params [ 'W_' + name ] = W_f
s e l f . params [ 'vbias_ ' + name ] = vbias_f
s e l f . params_shp [ 'W_' + name ] = shp_vi s ib l e + shp_hidden
s e l f . params_shp [ 'vbias_ ' + name ] = shp_vi s ib l e

def add_connection_to ( s e l f , var_dtype , name , shp_output ) :
"""
add_connection_to func

Parameters
−−−−−−−−−−
var_dtype : ` s t r `

Type o f v a r i a b l e s e . g . ` ' b inary ' ` , ` ' ca tegory ' ` , see
hyperparameters f o r more informat ion

name : ` s t r `
Name of v i s i b l e node e . g . ` 'mode_prime ' `

shp_output : ` tup l e ` , op t i ona l
S i ze o f the v i s i b l e un i t s

Updates
−−−−−−−
s e l f . output [ ] : sequence o f `T. matrix ( ) `
s e l f .W_params [ ] : sequence o f ` theano . shared ( ) `
s e l f . c b i a s [ ] : sequence o f ` theano . shared ( ) `
s e l f . B_params [ ] : sequence o f ` theano . shared ( ) `
s e l f . params [ ] : sequence o f ` theano . shared ( ) `
"""
s e l f . hyperparameters [ 'shapes ' ] [ name ] = shp_output
shp_hidden = s e l f . hyperparameters [ 'n_hidden ' ]

# crea te the tensor symbol ic v a r i a b l e s
t s r_var i ab l e = in i t_ten so r ( shp_output , name)
t s r_ labe l = T. i v e c t o r (name + '_label ' )

# crea te l o g i t mask f o r W
s i z e = shp_hidden + shp_output
mask = np . ones ( s i z e , DTYPE_FLOATX)
mask [ . . . , −1] = 0 .
mask = (mask .T) . f l a t t e n ( )

# crea te the tensor shared v a r i a b l e s W
w_name = 'W_' + name
s i z e = shp_output + shp_hidden
print ( 'W' , w_name, s i z e )
i f w_name in s e l f . model_values . keys ( ) :

va lue = s e l f . model_values [w_name ]
else :

va lue = np . random . normal ( 0 . , 0 . 01 , np . prod ( s i z e ) ) # * mask

W_f = theano . shared ( va lue . astype (DTYPE_FLOATX) , w_name)
W_m = theano . shared (mask , w_name+'_mask' )
W = T. reshape (W_f, s i z e )

# crea te l o g i t mask f o r H−>cb ia s
mask = np . ones ( shp_output , DTYPE_FLOATX)
mask [ . . . , −1] = 0 .
mask = mask . f l a t t e n ( )

# crea te the tensor shared v a r i a b l e s c b i a s
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c_name = 'cbias_ ' + name
print ( 'cbias' , name , shp_output )
i f c_name in s e l f . model_values . keys ( ) :

va lue = s e l f . model_values [ c_name ]
else :

va lue = np . random . normal (0 , 0 . 01 , np . prod ( shp_output ) )

cb ias_f = theano . shared ( value , c_name)
cbias_m = theano . shared (mask , c_name+'_mask' )
cb i a s = T. reshape ( cbias_f , shp_output )

s e l f . output . append ( t s r_var i ab l e )
s e l f . out_dtype . append ( var_dtype )
s e l f . l a b e l . append ( t s r_ labe l )
s e l f .W_params . append (W)
s e l f . U_params . append (W)
s e l f . cb i a s . append ( cb i a s )
s e l f .W_params_f . append (W_f)
s e l f . U_params_f . append (W_f)
s e l f .U_params_m. append (W_m)
s e l f . cb ias_f . append ( cb ias_f )
s e l f . cbias_m . append ( cbias_m)
s e l f . cs igmas . append (None )

s e l f . params [ 'W_' + name ] = W_f
s e l f . params [ c_name ] = cbias_f
s e l f . params_shp [ 'W_' + name ] = shp_output + shp_hidden
s e l f . params_shp [ c_name ] = shp_output

# condt iona l RBM connect ion (B weigh t s )
for node in s e l f . input :

var_name = node . name
shp_vi s ib l e = s e l f . hyperparameters [ 'shapes ' ] [ var_name ]

# crea te l o g i t mask f o r B
s i z e = shp_vi s ib l e + shp_output
mask = np . ones ( s i z e , DTYPE_FLOATX)
mask [ . . . , −1] = 0 .
mask = mask . f l a t t e n ( )

# crea te the tensor shared v a r i a b l e s B
b_name = 'B_' + var_name + '_' + name
i f b_name in s e l f . model_values . keys ( ) :

va lue = s e l f . model_values [ b_name ]
else :

va lue = np . z e r o s (np . prod ( s i z e ) , DTYPE_FLOATX) # * mask

B_f = theano . shared ( value , b_name)
B_m = theano . shared (mask , b_name+'_mask' )
B = T. reshape (B_f , s i z e )

s e l f . B_params . append (B)
s e l f . B_params_f . append (B_f)
s e l f .B_params_m. append (B_m)

s e l f . params [ b_name ] = B_f
s e l f . params_shp [ b_name ] = shp_vi s ib l e + shp_output

def f ree_energy ( s e l f , input , u t i l i t y =0):
"""
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Free energy func t i on

Parameters
−−−−−−−−−−
s e l f : RBM c l a s s o b j e c t

input : ` [T. t ensor s ] ` , op t i ona l
Used when c a l c u l a t i n g f r e e energy o f g i b b s chain sampling

Returns
−−−−−−−
F(y , x ) :

Sca lar va lue o f the gene ra t i v e model f r e e energy

: math :
`F(y , x , h ) = −(xWh + yWh + vb ia s *x + hb ias *h + cb ia s *y ) `\n
` wx_b = xW + yW + hbias `\n
` F(y , x ) = −{vb i a s *x + cb ia s *y + sum_k [ ln (1+exp (wx_b) ) ] } ` \ n

"""
# c o l l e c t parameters
v i s i b l e s = input
vb i a s e s = s e l f . vb ias
W_params = s e l f .W_params

dtypes = s e l f . in_dtype
hbias = s e l f . hb ias [ 0 ]

# input shapes as ( rows , items , ca t s ) or ( rows , outs )
# weight shapes as ( items , cats , hiddens ) or ( outs , hiddens )
# b ia s shapes as ( items , ca t s ) or ( outs , )
wx_hbias = hbias
for dtype , v , W, vb ias in zip ( dtypes , v i s i b l e s , W_params , vb i a s e s ) :

# vbias_x : ( rows , )
i f dtype == VARIABLE_DTYPE_CATEGORY:

vbias_x = T. tensordot (v , vbias , axes=[
l i s t (range ( v . ndim ) [ 1 : ] ) , l i s t (range ( vb ias . ndim ) [ − 2 : ] ) ] )

u t i l i t y −= vbias_x

wx = T. tensordot (v , W, axes=[
l i s t (range ( v . ndim ) [ 1 : ] ) , l i s t (range (W. ndim ) [ : − 1 ] ) ] )

else :
vbias_x = T.sum( 0 . 5 * T. sqr (v − vb ias [ None , . . . ] ) ,

a x i s=l i s t (range ( v . ndim ) [ 1 : ] ) )
u t i l i t y += vbias_x
wx = T. tensordot (v , W, axes=[

l i s t (range ( v . ndim ) [ 1 : ] ) , l i s t (range (W. ndim ) [ : − 1 ] ) ] )

# wx_hbias : ( rows , hiddens )
wx_hbias += wx

# sums over hidden ax i s −−> ( rows , )
return u t i l i t y − T.sum(T. l og ( 1 . + T. exp (wx_hbias ) ) , ax i s=1)

def sample_h_given_v ( s e l f , v0_samples , vtype='xy' ) :
"""
sample_h_given_v func

Binomial hidden un i t s

Parameters
−−−−−−−−−−
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v0_samples : ` [T. t ensor s ] `
theano Tensor v a r i a b l e

Returns
−−−−−−−
h1_preact iva t ion : ` sca lar ` (− in f , i n f )

p r e a c t i v a t i on func t i on e . g . l o g i t u t i l i t y func
h1_means : ` sca lar ` (0 , 1)

sigmoid a c t i v a t i o n
h1_samples : ` in t eger ` 0 or 1

binary samples
"""
# prop up
W_params = s e l f .W_params
dtypes = s e l f . in_dtype

hbias = s e l f . hb ias
h1_preact ivat ion = s e l f . propup ( v0_samples , W_params , hb ias [ 0 ] , dtypes )

# h ~ p(h | v0_sample )
h1_means = T. nnet . s igmoid ( h1_preact ivat ion )
h1_samples = s e l f . theano_rng . b inomial (

s i z e=h1_means . shape , p=h1_means , dtype=DTYPE_FLOATX)

return h1_preact ivat ion , h1_means , h1_samples

def propup ( s e l f , samples , weights , b ias , dtypes ) :

p r e a c t i v a t i on = b ia s
# (rows , items , ca t s ) , ( items , cats , hiddens )
# ( rows , outs ) , ( outs , hiddens )
for v , W, dtype in zip ( samples , weights , dtypes ) :

p r e a c t i v a t i on += T. tensordot (v , W, axes=[
l i s t (range ( v . ndim ) [ 1 : ] ) , l i s t (range (W. ndim ) [ : − 1 ] ) ] )

return p r e a c t i v a t i on

def sample_v_given_h ( s e l f , h0_samples , vtype='xy' ) :
"""
sample_v_given_h func

Binomial hidden un i t s

Parameters
−−−−−−−−−−
h0_samples : ` [T. t ensor s ] `

theano Tensor v a r i a b l e

Returns
−−−−−−−
v1_preac t iva t ion : ` [ s c a l a r ] ` (− in f , i n f )

sequence o f p r e a c t i v a t i on func t i on e . g . l o g i t u t i l i t y func
v1_means : ` [ s c a l a r ] ` (0 , 1)

sequence o f sigmoid a c t i v a t i o n
v1_samples : ` [ b inary ] ` or ` [ i n t e g e r ] ` or ` [ f l o a t 3 2 ] ` or ` [ array [ j ] ] `

v i s i b l e un i t samples
"""
# prop down
V_params = s e l f .W_params
b ia s = s e l f . vb ias
dtypes = s e l f . in_dtype

v1_preact ivat ions = s e l f . propdown ( h0_samples , V_params , b i a s )
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# v ~ p( v | h0_sample )
v1_means = [ ]
v1_samples = [ ]
for v1 , dtype in zip ( v1_preact ivat ions , dtypes ) :

i f dtype == VARIABLE_DTYPE_BINARY:
v1_mean = T. nnet . s igmoid ( v1 )
v1_sample = s e l f . theano_rng . binomial (

s i z e=v1 . shape , p=v1_mean , dtype=DTYPE_FLOATX)

e l i f dtype == VARIABLE_DTYPE_CATEGORY:
uniform = s e l f . theano_rng . uniform (

s i z e=v1 . shape , low=1e−10, high =1.0 , dtype=DTYPE_FLOATX)

# reshape softmax tensor s to 2D matrix
i f v1 . ndim == 3 :

(d1 , d2 , d3 ) = v1 . shape
v1 = v1 . reshape ( ( d1 * d2 , d3 ) )
reshp_f lag = 1

v1_mean = T. nnet . softmax ( v1 )
v1_sample = s e l f . theano_rng . mult inomial (

pva l s=v1_mean , dtype=DTYPE_FLOATX)

i f reshp_f lag == 1 :
# reshape back in to o r i g i n a l dimensions
v1_mean = v1_mean . reshape ( ( d1 , d2 , d3 ) )
v1_sample = v1_sample . reshape ( ( d1 , d2 , d3 ) )

e l i f dtype == VARIABLE_DTYPE_REAL:
v1_std = T. nnet . s igmoid (T. abs_( v1 ) )
normal_sample = s e l f . theano_rng . normal (

s i z e=v1 . shape , avg=v1 , std=v1_std , dtype=DTYPE_FLOATX)
v1_mean = v1
v1_sample = normal_sample

e l i f dtype == VARIABLE_DTYPE_INTEGER:
v1_std = T. nnet . s igmoid ( v1 )
normal_sample = s e l f . theano_rng . normal (

s i z e=v1 . shape , avg=v1 , std=v1_std , dtype=DTYPE_FLOATX)
v1_mean = T. nnet . s o f t p l u s ( v1 )
v1_sample = T. nnet . s o f t p l u s ( normal_sample )

else :
raise NotImplementedError

v1_means . append (v1_mean)
v1_samples . append ( v1_sample )

return v1_preact ivat ions , v1_means , v1_samples

def propdown ( s e l f , samples , weights , b i a s ) :

p r e a c t i v a t i on = [ ]
for W, b in zip ( weights , b i a s ) :

i f W. ndim == 2 :
W = W. d imshu f f l e (1 , 0)

else :
W = W. d imshu f f l e (0 , 2 , 1)

# add v i s i b l e b i a s
p r e a c t i v a t i on . append (T. dot ( samples , W) + b)
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return p r e a c t i v a t i on

def gibbs_hvh ( s e l f , h0_samples ) :
v1_pre , v1_means , v1_samples = s e l f . sample_v_given_h ( h0_samples )
h1_pre , h1_means , h1_samples = s e l f . sample_h_given_v ( v1_samples )

return v1_pre + v1_means + v1_samples + \
[ h1_pre ] + [ h1_means ] + [ h1_samples ]

def gibbs_vhv ( s e l f , *v0_samples ) :
h1_pre , h1_means , h1_samples = s e l f . sample_h_given_v ( v0_samples )
v1_pre , v1_means , v1_samples = s e l f . sample_v_given_h ( h1_samples )

return [ h1_pre ] + [ h1_means ] + [ h1_samples ] + \
v1_pre + v1_means + v1_samples

def get_generative_cost_updates ( s e l f , k=1):
"""
get_generat ive_cost_updates func

updates we igh t s f o r W^(1) , W^(2) , a , c and d
"""
# prepare v i s i b l e samples from x input and y outputs
v0_samples = s e l f . input
v0_size = len ( v0_samples )

# perform p o s i t i v e Gibbs sampling phase
# one s t ep Gibbs sampling p(h | v1 , v2 , . . . ) = p(h | v1)+p(h | v2 )+ . . .
h0_pre , h0_means , h0_samples = s e l f . sample_h_given_v ( v0_samples )

# s t a r t o f Gibbs sampling chain
# we only want the samples generated from the Gibbs sampling phase
cha in_start = h0_samples
scan_out = 3 * v0_size * [ None ] + [ None , None , cha in_start ]

# theano scan func t ion to loop over a l l Gibbs s t e p s k
# [ v1_pre [ ] , v1_means [ ] , v1_samples [ ] , h1_pre , h1_means , h1_samples ]
# outputs are g iven by outputs_info
# [ [ t , t +1, t +2 , . . . ] , [ t , t +1, t +2 , . . . ] , ] , g ibbs_updates
# NOTE: scan re turns a d i c t i ona ry o f updates
outputs , gibbs_updates = theano . scan (

fn=s e l f . gibbs_hvh , outputs_info=scan_out , n_steps=k ,
name='gibbs_hvh '

)

# note t ha t we only need the v i s i b l e samples at the end o f the chain
chain_end = [ ]
for output in outputs :

chain_end . append ( output [−1])
vn_pre = chain_end [ : v0_size ]
vn_means = chain_end [ v0_size : 2 * v0_size ]
vn_samples = chain_end [ 2 * v0_size : 3 * v0_size ]

# ca l c u l a t e the model co s t
params = s e l f . V_params_f + s e l f . vbias_f + s e l f . hb ias
pos i t ive_phase = T.mean( s e l f . f ree_energy ( v0_samples ) )
negative_phase = T.mean( s e l f . f ree_energy (vn_means ) )
co s t = pos i t ive_phase − negative_phase

# ca l c u l a t e the g rad i en t s
grads = T. grad ( co s t=cost , wrt=params , cons ider_constant=vn_means)
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j a cob i an s = T. grad ( co s t=cost ,
wrt=s e l f . input ,
cons ider_constant=vn_means)

# update Gibbs chain with update expre s s i ons from updates l i s t [ ]
updates = s e l f . update_opt ( params , grads , s e l f . decay* s e l f . l ea rn ing_rate )
for parameter , exp r e s s i on in updates :

gibbs_updates [ parameter ] = expr e s s i on

monitor ing_cost = s e l f . p s eudo_log l i ke l ihood (
inputs=v0_samples , p r e a c t i v a t i on=vn_pre )

return ( monitoring_cost , gibbs_updates , pos i t ive_phase ,
negative_phase , jacob ians , s e l f . input , vn_means)

def get_v_samples ( s e l f , k ) :
# prepare v i s i b l e samples from input
v0_samples = s e l f . input
print ( v0_samples )
v0_size = len ( v0_samples )
h0_pre , h0_means , h0_samples = s e l f . sample_h_given_v ( v0_samples )
scan_out = 3 * v0_size * [ None ] + [ None , None , h0_samples ]

# theano scan func t ion to loop over a l l Gibbs s t e p s k
# [ v1_pre [ ] , v1_means [ ] , v1_samples [ ] , h1_pre , h1_means , h1_samples ]
# outputs are g iven by outputs_info
# [ [ t , t +1, t +2 , . . . ] , [ t , t +1, t +2 , . . . ] , ] , g ibbs_updates
# NOTE: scan re turns a d i c t i ona ry o f updates
gibbs_output , gibbs_updates = theano . scan (

fn=s e l f . gibbs_hvh ,
outputs_info=scan_out ,
n_steps=k ,
name='gibbs_sampling '

)

# # note t ha t we only need the v i s i b l e samples at the end o f the chain
chain_end = [ ]
for output in gibbs_output :

chain_end . append ( output [−1])
vn_pre = chain_end [ : v0_size ]
vn_means = chain_end [ v0_size : 2 * v0_size ]
vn_samples = chain_end [ 2 * v0_size : 3 * v0_size ]

return vn_means , gibbs_updates

def pseudo_log l i ke l ihood ( s e l f , inputs , p r e a c t i v a t i on ) :
"""
pseudo_ log l i k e l i hood func

Function to c a l c u l a t e the ( pseudo ) neg l o g l i k e l i h o o d

Parameters
−−−−−−−−−−
inpu t s : ` [T. t ensor s ] `

l i s t o f input t ensor s
p r e a c t i v a t i on : ` [T. shared ] `

l i s t o f precomputed " l o g i t s "

Returns
−−−−−−−
p l l : ` s ca lar `

va lue o f the pseudo l o g l i k e l i h o o d
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"""
dtypes = s e l f . in_dtype
ep s i l o n = 1e−10 # smal l va lue to prevent l o g ( 0 . )
cross_entropy = 0
l o g l i k e l i h o o d = 0
mse_r = 0
mse_i = 0
for input , v1 , dtype in zip ( inputs , p r eac t i va t i on , dtypes ) :

i f dtype == VARIABLE_DTYPE_BINARY:
cross_entropy −= T.mean(T.sum(

input * T. log (T. nnet . s igmoid ( v1 ) ) ) , ax i s=1
)

e l i f dtype == VARIABLE_DTYPE_CATEGORY:
(d1 , d2 , d3 ) = v1 . shape
v1_mean = T. nnet . softmax ( v1 . reshape ( ( d1 * d2 , d3 ) ) )
# reshape back in to o r i g i n a l dimensions
v1_mean = v1_mean . reshape ( ( d1 , d2 , d3 ) )
l o g l i k e l i h o o d −= T.mean( input * T. log (v1_mean ) )

e l i f dtype == VARIABLE_DTYPE_REAL:
v = v1
mse_r += T. sq r t (T.mean(T. sqr ( input − v ) ) )

e l i f dtype == VARIABLE_DTYPE_INTEGER:
v = T. nnet . s o f t p l u s ( v1 )
mse_i += T. sq r t (T.mean(T. sqr ( input − v ) ) )

else :
raise NotImplementedError

return [ l o g l i k e l i h o od , mse_r , mse_i ]

def generato r ( s e l f , h5pydataset , va r_ l i s t ) :
shared_inputs_val id = [ ]
for var in va r_ l i s t :

shared_inputs_val id . append (
theano . shared ( h5pydataset [ var ] [ 'data' ] [ : ] . astype (DTYPE_FLOATX) ,

borrow=True ) )

gibbs_sampling_steps = T. i s c a l a r ( 'steps' )
vsamples , vsamples_updates = s e l f . get_v_samples ( gibbs_sampling_steps )

tensor_inputs = s e l f . input
s e l f . sample = theano . func t i on (

inputs=[ gibbs_sampling_steps ] ,
outputs=vsamples ,
updates=vsamples_updates ,
g ivens={

key : va l [ : ]
for key , va l in zip ( tensor_inputs , shared_inputs_val id )} ,

name='sample ' ,
allow_input_downcast=True ,
on_unused_input='ignore '

)

def i n i t i a l i z e ( s e l f , x ) :
s e l f . add_latent ( )

for item in x :
print ( 'x' , item . name . s t r i p ( '/' ) , item [ 'data' ] . shape [ 1 : ] )
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s e l f . add_node (
var_dtype=item . a t t r s [ 'dtype' ] ,
name=item . name . s t r i p ( '/' ) ,
shp_v i s ib l e=item [ 'data' ] . shape [ 1 : ]

)

k = s e l f . hyperparameters [ 'gibbs_steps ' ]
batch_size = s e l f . hyperparameters [ 'batch_size ' ]
n_samples = s e l f . hyperparameters [ 'n_samples ' ]

(
monitoring_cost , gibbs_updates , pos i t ive_phase , negative_phase ,
jacob ians , batch_inputs , batch_outputs

) = s e l f . get_generative_cost_updates ( k )

tensor_inputs = s e l f . input
e l a s t i c i t y = [

j a cob i an s [ 0 ] *
batch_inputs [ 4 ] . d imshu f f l e ( ( 0 , 1 , 'x' ) ) /
batch_outputs [ 0 ]

]

tensor_outputs = monitor ing_cost + [ pos i t ive_phase , negative_phase ] +\
e l a s t i c i t y

tensor_updates = gibbs_updates

shared_inputs = [
theano . shared (

item [ 'data' ] [ : ] . astype (DTYPE_FLOATX) ,
borrow=True ) for item in x ]

ind = T. i s c a l a r ( 'index' )
decay_rate = T. s c a l a r ( 'decay_rate ' )
s tart_idx = ind * batch_size
end_idx = ( ind + 1) * batch_size

print ( 'constructing Theano computational graph ...' )
s e l f . t r a i n = theano . func t i on (

inputs=[ ind ] ,
outputs=tensor_outputs ,
updates=tensor_updates ,
g ivens={

key : va l [ s tart_idx : end_idx ]
for key , va l in zip ( tensor_inputs , shared_inputs )} ,

name='train' ,
allow_input_downcast=True

)

s e l f . decay_learning_rate = theano . func t i on (
inputs=[decay_rate ] ,
outputs=s e l f . decay * decay_rate ,
updates=(( s e l f . decay , s e l f . decay * decay_rate ) , ) ,
name='decay_learning_rate '

)
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Appendix D

Dataset description
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Table D.1: Table of descriptive statistics for Train Hôtel dataset

variable description type mean

DrvLicens Driving License binary 0.865
PblcTrst Public transit pass binary 0.639
Ag1825 Age between 18 to 25 binary 0.072
Ag2545 Age between 25 to 45 binary 0.414
Ag4565 Age between 45 to 65 binary 0.376
Ag65M Age above 65 binary 0.137
Male 1: male 0: female binary 0.446
Fulltime Full time employed binary 0.569
Edu_Highschl Highest education high school binary 0.193
Edu_BSc Highest education bachelors binary 0.634
Edu_MscPhD Highest education graduate binary 0.172
HH_Veh0 0 household vehicles binary 0.219
HH_Veh1 1 household vehicle binary 0.552
HH_Veh2M 2+ household vehicles binary 0.228
HH_Chld0 0 children in household binary 0.748
HH_Chld1 1 children in household binary 0.139
HH_Chld2M 2+ children in household binary 0.112
HH_Inc020K Income less than 20K binary 0.204
HH_Inc2060K Income between 20K and 60K binary 0.361
HH_Inc60KM Income more than 60K binary 0.32
Choice 1: Car, 2: Car Rental, 3: Bus, 4:

Plane, 5: Train, 6: Train Hotel
categorical

Dataset can be obtained from the Train Hôtel study [76].

A. Sobhani and B. Farooq. �Innovative Intercity Transport Mode: Application of

Choice Preference Integrated with Attributes Nonattendance and Value Learning�.

In: 21st International Federation of Operational Research Societies, Québéc City.

2017.
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Table D.2: Table of descriptive statistics for Santander dataset

variable description type mean std dev

age Age of customer continuous 42.9 0.02593
loyalty Customer loyalty (years) continuous 8.032 0.01191
income Income (`000s) continuous 0.142 0.000522
sex 1: male 0: female binary 0.388 0.000967
employee Is employee binary 0.001 4.86E-05
active Is active customer binary 0.959 0.000395
new_cust 1: loyalty < 6mos 0: > 6mos binary 0.045 0.000412
resident Is resident binary 1 1.42E-05
foreigner Is foreigner binary 0.045 0.000413
european Is European binary 1 1.11E-05
vip Is VIP customer binary 0.117 0.000637
savings Savings account binary 0.00015 2.43E-05
current Current account binary 0.572 0.000982
derivada Derivada account binary 0.001 5.96E-05
payroll_acc Payroll account binary 0.416 0.000978
junior Junior account binary 9.46E-

05
1.93E-05

masparti Mas Particular account binary 0.017 0.000254
particular Particular account binary 0.168 0.000742
partiplus Particular Plus account binary 0.113 0.000628
e_acc E-Account binary 0.255 0.000866
choice Product codes 1: aval 2: deco 3:

fond 4: hip 5: plan 6: pres 7:
reca 8: tjcr 9: valo 10: nomina

categorical

Dataset obtained from

https://www.kaggle.com/c/santander-product-recommendation/data
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Table D.3: Table of descriptive statistics for Mtltrajet dataset

variable description type mean std dev

avg_speed Average trip speed (km/h) continuous 25.870 0.062
duration Trip duration (mins) continuous 21.072 0.287
n_coord Number of links continuous 91.501 0.232
trip_km Trip distance (km) continuous 6.893 0.017
mode
choice

1: cycling 2: driving 3:
driving+transit 4: transit 5: walk
6: other

categorical

activity
choice

1: education 2: health 3: leisure
4: meal 5: errand 6: shopping 7:
home 8: work 9: meetings 10:
others

categorical

district District ID: 34 neighbourhoods categorical
interval_15 24hr in 15 min intervals categorical

Dataset obtained from

http://donnees.ville.montreal.qc.ca/dataset/mtl-trajet
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