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    This thesis introduces a novel approach to rapid Design Space Exploration (DSE) and presents 

a formalized High Level Synthesis (HLS) design flow with multi parametric optimization 

objective using the same design space exploration approach. The proposed approach resolves 

issues related to DSE such as the precision of evaluation, time exhausted during evaluation and 

also automation of the exploration process. During DSE a conflicting situation always exists for 

the designer to concurrently maximize the accuracy of the exploration process and minimize the 

time spent during DSE analysis. This technique is capable of drastically reducing the number of 

architectural variants to be analyzed for accurate selection of the optimal design point in a short 

time. The DSE results for many benchmarks are presented along with a comparison to an 

existing DSE approach that uses the hierarchal structure method for architecture evaluation. 

Results indicated significant improvement in speedup compared to the current existing approach. 
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Chapter 1    

Introduction 

 1.1 Overview 

The design and development of systems with heterogeneous performance optimization 

objective requires extensive analysis and assessment of the design space, not only due to the 

assorted nature of the parameters, but also due to the diversity in architecture for implementation. 

Given the specifications and the system requirements, the aim of designers is to reduce the large 

and complex design space into a set of feasible design solutions meeting performance objectives 

and functionality.  

 

As the design complexity factor increases in leaps and bounds by the addition of more 

silicon per unit area, the design method for modular systems with multi-parametric optimization 

objectives must be formalized. Simultaneously optimizing multiple performance parameters with 

conflicting objectives, such as hardware area (or power consumed) and time of execution is 

becoming more complex and significant for successful design of these systems. Designs 

decisions at the Electronic System Level (ESL) have more impact on the design quality than the 
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decisions made at low level i.e. logic level. For superior design quality the assessment and 

selection should be comprehensive and accurate [1] [6]. 

 

For most modular systems and systems based on strict operational constraints, the 

selection of the optimal architecture is the most important step in the development process. 

Design space architecture can have innumerable design options for selection and implementation 

based on the parameters of optimization. Hence, selection of the optimal architecture from the 

design space, which satisfies all the performance objectives, is crucial for the present generation 

of System-on-Chip (SoC) designs [1]. Furthermore, the striking increase in demand for portable 

embedded computing devices has led to new System-on-Chip (SoC) architectures intended for 

embedded systems. To be economically sensible these SoC architectures should nurture a broad 

suite of different applications, leading to the recent focus on parameterized SoC. The embedded 

computing devices, on the other hand, have varying design objectives such as execution time and 

hardware area. Hence these parameterized SoC architectures must be configured in such a way 

so that the system concurrently satisfies the varied performance objectives for a class of 

applications. As a result, multi objective design space exploration approaches have emerged for 

resolving this heterogeneous problem [31]. As it is always possible to implement different 

functions of a system on different hardware components, the architecture design space has 

become more complex to analyze [2].  

 

In the case of high level synthesis, performing design space exploration to choose the 

best candidate architecture by concurrently satisfying many operating constraints is generally 

considered to be the most important stage in the whole design flow. Since the design space is 
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huge, there needs to be an efficient way to explore the best candidate architecture for the system 

design based on the target application. The method for exploration of the best candidate micro-

architecture should not only be less in terms of complexity factor and time, but should also 

explore the variant in an efficient way meeting all the specifications provided. The process of 

high level synthesis design is very complicated and descriptive and is usually performed by 

system architects. Depending on the application, the process of defining the problem, performing 

design space exploration and the other steps required for its successful accomplishment are very 

time consuming. The modern high level synthesis design flow should be multi-parametric 

optimized in terms of area occupied, execution time and power consumption. Furthermore, 

recent advancements in areas of communications and multimedia have led to the growth of a 

wide array of applications requiring huge data processing at minimal power expense. Such data 

hungry applications demand satisfactory performance with power efficient hardware solutions. 

Hardware solutions should satisfy multiple contradictory performance parameters such as power 

consumption and time of execution. Since the selection process for the best design architecture is 

quite complex, an efficient approach to explore the design space for selecting the best design 

option is needed. 

 

A novel approach for finding the best design architecture with multi-parametric 

optimization objective, useful for accelerating design space exploration in high level synthesis, is 

presented in this thesis. Until now, no published works have explicitly concentrated on 

formalizing the design steps of a multi-parametric optimized high level design flow useful for the 

current generation of high data processing applications and complex SoC design. This work 

introduces a new formalized high level synthesis design flow to radically reduce the number of 
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architectural variants to be analyzed for finding the pareto-optimized design point. The 

introduction of the proposed approach for multi-parameter optimization and design space 

exploration in high level synthesis design flow allows total automation of the proposed high level 

design for the current high level synthesis tools.  

 

1.2 Related Works  

An engineering problem can generally be described as a phenomenon of analyzing and 

managing the tradeoffs between contradictory design objectives. The problem of obtaining a 

comprehensive Pareto optimal set has been addressed by many researchers. In [1] the researchers 

proposed an approach for synthesis of heterogeneous embedded systems by using Pareto Front 

Arithmetic (PFA) to explore the giant search spaces. Their method utilized the hierarchical 

problem structure for exploring the set of Pareto optimal solutions. The problem was also 

addressed in [3] by suggesting order of efficiency, which assists in deciding preferences amongst 

the different Pareto optimal points. Work in [4] suggested the identification of a few superior 

design points from the Pareto set is enough for an excellent design process. In [5] evolutionary 

algorithms such as the Genetic Algorithm (GA) had been suggested to yield better results for the 

design space exploration process. The use of GA had also been suggested as a framework for 

DSE of data paths in high level synthesis in [6]. Another approach was introduced by researchers 

in [2] which were based on Pareto optimal analysis. According to their work, the design space 

was arranged in the form of an Architecture Configuration Graph (ACG) for architecture variant 

analysis and optimization of performance parameters. Their results proved quite promising for 

architectural synthesis of digital systems. Furthermore in [7] and [8], authors described another 

approach for DSE in high level systems based on binary encoding of the chromosomes. Work 
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shown in [9] for DSE suggests that authors used an evolutionary algorithm for successful 

evaluation of the design for an application specific SoC. The work shown in [10] discusses the 

optimization of area, delay and power in behavioral synthesis, but does not focus on the high 

level design flow with multi parametric optimization objective. Authors in [11] introduce a tool 

called SystemCoDesigner that offers rapid design space exploration with rapid prototyping of 

behavioral systemC models. In [11] an automated integration was done by integrating behavioral 

synthesis into the proposed design flow. Additionally, authors in [12] describe current state of 

the art high-level synthesis techniques for dynamically reconfigurable system. The proposed 

method avoids constructing hierarchical structures such as in [2] for architecture evaluation and 

thereby minimizes time overhead. Further evolutionary algorithms such as GA used in [5] [7] 

[8], although efficient, are very slow in finding the global optimum solution. Moreover it does 

not always guarantee the selection of global optimum and might eventually end up in finding the 

local minima. The method proposed in this thesis is capable of evaluation the design space for 

finding the optimal design solution accurately and rapidly. It can thereby assist the designer in 

finding the best architecture for the design with increased acceleration. 

 

 1.3 Summary of Contribution 

This thesis contributes to the following areas: 

• Introduces a mathematical structure for Design Space Exploration of the performance 

parameter hardware area.  

• Presents a mathematical framework for Design Space Exploration of the performance 

parameter power consumption. 
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• Presents a mathematical framework for Design Space Exploration of the performance 

parameter Execution time. 

• Proposes a new algorithm for arranging the architecture design space in 

increasing/decreasing order. 

• Presents a novel approach for finding the best design architecture with multi-parametric 

optimization objectives, which is useful for accelerating design space exploration in high 

level synthesis. 

• Explicitly concentrates on formalizing the design steps of a multi-parametric optimized 

high level design flow useful for the current generation of high data processing 

applications and complex SoC design. 

• Lays the platform for complete automation of the proposed Design Space Exploration for 

the current Exploration tools as well as automation of the complete HLS designing. 

• Develops the complete system of the application at the Register Transfer Level (RTL). 

 

1.4 Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 provides some background 

information related to Design Space Exploration (DSE) and High Level Synthesis (HLS). 

Chapter 3 describes the proposed frameworks behind Design Space Exploration in High Level 

Synthesis. Chapter 4 elaborates the High Level Synthesis design flow for Multi Parametric 

Optimization objective. The exploration process of Architectural Design Space for Power 

Consumption parameter is described in Chapter 5 while in Chapter 6, the exploration process of 

Architectural Design Space for execution time parameter is discussed. Chapter 7 provides the 

detailed insight into the determination of Pareto optimal set of architecture and the selection 
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methodology for the optimal design variant of architecture. The development of the whole 

system based on the proposed design flow and the implementation of the same is described in 

Chapter 8. The results of the proposed DSE approach for various well known High Level 

Synthesis benchmarks and the speedup obtained when compared to the current existing DSE 

approach are both provided in Chapter 9.  Chapter 10 is dedicated to the conclusion and the 

future scope of work in this area. The list of publications related to this field of research study 

and the total list of citations are also provided. 
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Chapter 2 

Background Information   

2.1 Theoretical Background on High Level Synthesis 

Interdependent tasks such as scheduling, allocation and module selection are important 

ingredients of the high level synthesis design process. High level synthesis is a methodology of 

transforming an algorithmic behavioral description into an actual Register Transfer Level (RTL) 

structure. Therefore high level synthesis methodology contains a sequence of tasks to convert the 

abstract behavioral description of the algorithm into its respective structural block at RT level. 

The design at the RT level comprises of functional units such as ALU, storage elements, 

registers, busses and interconnections. The algorithmic description specifies the inputs and 

outputs of the behavior of the algorithm in terms of operations to be preformed and data flow 

[13]. A description of the algorithm is usually represented in the form of an acyclic directed 

graph known as a sequencing graph [14]. These graphs specify the input/output relation of the 

algorithm and the data dependency present in the data flow. The graph is defined in terms of its 

vertices and edges, where the vertices signify the operations and the edges indicate the data 

dependency present in the function. High level synthesis is therefore a conversion from the 
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abstract behavioral description to its respective hardware description in the form of memory 

elements, storage units, multiplexers/demultiplexers and the necessary interconnections. The 

transformed algorithm at the RT level is comprised of a control unit and the data path unit [15]. 

High level synthesis offers many advantages, such as productivity gains and efficient design 

space exploration. Performing DSE at a higher level of abstraction provides more dividend than 

at lower levels of abstraction, i.e. transistor level or logic level. Traditional high level synthesis 

design methodology is much simpler than modern design techniques. In general, the initial step 

of synthesis is to compile the behavioral specification into an internal representation. The next 

step is to apply high level transformation techniques with the aim of optimizing the behavior as 

per the desired performance. In order to realize the structure, the final step is to perform 

scheduling to determine the time at which each operation is executed and the allocation, which is 

synthesizing the necessary hardware to perform the operations.  

 

Scheduling can be of two different classes: time constrained scheduling and resource 

constrained scheduling. Time constrained scheduling refers to finding the minimum cost 

schedule that satisfies the given set of constraints with the given maximum number of control 

steps. Resource constraint scheduling, on the other hand, refers to finding the fastest possible 

schedule that satisfies the given set of constraints with the given maximum number of resources. 

Resource constraints are generally specified by the area occupied by the functional units like 

adders/subtractors, multipliers, dividers and ALUs. Although the data path of the system consists 

of registers and interconnections, they are not considered to be included as resource constrained 

because they are difficult to specify. High level synthesis can be broadly divided into the 

following steps: input description, internal representation, design space exploration, allocation, 
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scheduling and binding. Therefore the final structure at the RT level consists of data path and the 

control path. Traditional high level synthesis design flow falls short for the modern generation of 

complex VLSI and SoC designs, because the conventional design flow just takes into account the 

optimization of two parameters, namely area and latency. But the new generation of system 

designs requires multi parametric optimization strategies in HLS while simultaneously utilizing 

rapid and efficient DSE approaches for finding the best suitable architecture. 

 

2.1 Theoretical Background on Design Space Exploration 

For the present generation of VLSI designs with multi objective nature, the cost of 

simultaneously solving the problem of scheduling, allocation and module selection by exhaustive 

search is strictly prohibitive. Multi objective VLSI designs are used in low end Application 

Specific Integrated Circuits (ASICs) with low power dissipation and acceptable performance, as 

well as in high end ASICs with high performance requirements and satisfactory power 

expenditure. Hence, efficient design space exploration techniques are needed to make efficient 

use of time, due to time to market pressure [6]. Design space exploration is a procedure for 

analyzing the various design architectures in the design space to obtain the optimum architecture 

for the behavioral description according to the predefined user specifications. Design space 

exploration has always been a challenge for researchers due to the heterogeneity of the objectives 

and parameters involved. Typical design space exploration is a multi objective search problem, 

where the optimization parameters are generally hardware area, execution time and power 

consumption. Although several recent works have focused on the optimization of reliability as a 

performance metric, it is still in its nascent stage of development. The current trend towards 

design space exploration has been the reduction of the design space into a set of Pareto optimal 
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points by Pareto optimal analysis. Sometimes even the Pareto optimal set can be very large for 

analysis and selection of the design for system implementation [4]. In order to assist the decision 

maker in exploring the design space better, an accurate approach efficient in terms of time is 

very significant for high level synthesis design of hardware systems. 

 

2.3 Overview on the Abstraction Level of Optimization 

Today's electronic systems are designed starting from specifications given at a very high 

level of abstraction. This is because many EDA tools accept a design expressed in a high-level 

language as input and can automatically produce the corresponding transistor-level 

implementation with very limited human intervention. All hardware systems can be classified 

into various levels of abstraction such as System level, Architecture level, Register Transfer 

Level (RTL), Layout level and Transistor level. This abstraction level provides an insight into 

the hierarchy that a system can be classified into. Optimization performed at the higher levels of 

abstraction provides more flexibility and productivity than performing at the lower levels of 

abstraction. In order to make the search for the optimal solution as effective as possible, the 

design decision taken at a very early stage (architecture level) of the development process 

obviously provides more benefit in terms of the development time and also accuracy in system 

development. Therefore, the focus for researchers has shifted towards optimization of multi 

parameters due to time to market pressure.  
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2.4 Reasons for Studying High Level Synthesis 

In recent years there has been a trend towards automating synthesis at higher levels of the 

design hierarchy. Logic synthesis has gained acceptance in industry and there has been 

substantial interest shown in Register Transfer Level (RTL) synthesis. The reasons are the 

following [30]: 

Reduced design time and high acceleration: If more of the design process is automated, a 

company can complete a design faster, and thus have a better chance of hitting the market 

window for that design. Additionally, since much of the cost of the chip is in design 

development, automating more of that process can lower the cost significantly. 

Decreased error probability: If the synthesis process can be verified to be correct, then there is 

a greater guarantee that the final design will correspond to the initial specification. This means 

fewer errors and less debugging time for new chips. 

The ability to search the design space: A good synthesis system can produce several designs 

from the same specification in a reasonable amount of time. This allows the developer to explore 

different tradeoffs between cost, speed, power etc., or to take an existing design and produce a 

functionally equivalent one that is faster or less expensive. Even if the design is ultimately 

produced manually, automatically synthesized designs can suggest tradeoffs to the designer. 

Documenting the design process: An automated system can keep track of what design 

decisions were made and what the consequences of those decisions were. 

Easy availability of IC technology: As more design expertise is moved into the synthesis 

system, it becomes easier for non-expert designers to manufacture a chip that meets a given set 

of specifications and operating constraints. 
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Chapter 3  

Proposed Framework behind Design Space   

Exploration in High Level Synthesis 

 

3.1 Mathematical Derivation for Area Model 

Let the area of the resources be given as ‘A’. Ri denotes the resources available for system 

designing; where 1<i<n. 

Rclk refers to the clock oscillator used as a resource providing the necessary clock frequency 

to the system. The total area can be represented as the sum of all the resources used for designing 

the system. Hence total area is given in equation (1): 

∑= )( RiAA                                                                               (1) 

Area can be expressed as the sum of the resources i.e. adder/subtractor, multiplier, divider etc 

and also the clock frequency oscillator. Therefore for a system with ‘n’ functional resources 

equation (1) can also be represented as shown in equation (2): 

)()...( 2211 clkRnRnRRRR RAKNKNKNA +⋅++⋅+⋅=                                   (2) 
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Where NRi represents the number of resource Ri and ‘KRi’ represents the area occupied per 

unit resource ‘Ri’ (1<=i<=n); Applying partial derivatives to equation (2) with respect to NR1, 

NR2….NRn yields equation (3), equation (4) and equation (5) respectively as shown below:  
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According to the theory of approximation by differentials [17] the change in the total area can 

be approximated by equation (6): 
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where symbol ‘∆’ is called the delta operator. 

Substituting equation (3), (4) and (5) into equation (6) yields equation (7) shown below: 

)(....2211 clkRnRnRRRR RAKNKNKNdA ∆+⋅∆++⋅∆+⋅∆=                              (7) 

)( 11 RR KNdA ⋅∆=   + )( 22 RR KN ⋅∆    + … +  
RnRn KN ⋅∆   + )( clkRA∆                        (8) 

 

The equation above indicates the rate of change of area with respect to resource R1, R2 ….Rn. 

Here the clock oscillator has been considered a resource, which contributes to the area occupied 

by the hardware resources.  

The change 
of area 

contributed 
by resource 

R1 

The change 
of area 

contributed 
by resource 

R2 

The change 
of area 

contributed 
by resource 

Rn 

The change 
of area 

contributed 
by resource 

clock 
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The term Priority Factor (PF) will be used often when exploring the design space in the 

proposed approach. The PF is a determining factor for determining the influence of a particular 

resource on the variation of the optimization parameters such as area, time of execution and 

power consumption. This PF will be used later to organize the architecture design space 

consisting of variants in increasing or decreasing order of magnitude The PF for the resource R1, 

R2 …..Rn is given as: 

1

11)1(
R
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2

22)2(
R

RR

N

KN
RPF

⋅∆
=                                                               (10)                                     

Rn

RnRn

N

KN
RnPF

⋅∆
=)(                                                               (11) 

RclkN

RclkA
RclkPF

)(
)(

∆
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The factor defined above determines how the variation in area is affected by the change of 

number of that certain resource. Hence, the PF is the rate of change of area with respect to the 

change in number of resources.  

 

3.2 Mathematical Derivation for Execution Time Model      

For a system with ‘n’ functional resources the time of execution can be represented by the 

following formula: 

])1([ cexe TNLT ⋅−+=                                                                  (13) 

where ‘L’ represents latency of execution, ‘Tc’ represents the cycle time of execution , ‘N’ 

denotes the number of data elements to be processed. 
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Since the number of data elements to be processed is large for real life applications, ‘L’ can 

be ignored and cycle time (Tc) becomes a primary factor. The maximum cycle time under 

maximum resource constraint can be given as equation (14): 

pRnRnRRRRc TTNTNTNT ⋅⋅++⋅+⋅= )....( 2211
                (14) 

NRi represents the number of resource of Ri and ‘TRi’ represents the number of clock cycles 

needed by resource ‘Ri’ (1<=i<=n) to finish each operation and ‘Tp’ is the time period of the 

clock. From the theory of approximation of differentials, the change in the total cycle time can be 

approximated as in equation (15). 
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Applying partial derivatives to equation (14) with respect to NR1, NR2…..NRn and Tp will 

produce the following set of equations:  
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RnRnRRRR TNTNTN ⋅++⋅+⋅= ⋅ ...2211

                               (20) 

Now substituting equations (16), (17), (18) and (20) in equation (15). The substitution yields 

the following equation (21): 

pRnRnpRRpRRc TTNTTNTTNdT ⋅∆++⋅⋅∆+⋅⋅∆= ....2211
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          )...( 2211 RnRnRRRRp NTNTNTT ⋅++⋅+⋅⋅∆+                     (21) 

Equation (21) represents the change in total cycle time with the change in the number of 

resources and the clock period (clock frequency).  

pRR TTN ⋅⋅∆ 11
= The change of ‘Tc’ caused by the change in the number of resource R1; Similarly, 

pRnRn TTN ⋅⋅∆ =The change of ‘Tc’ caused by the change in the number of resource Rn.  

 Finally, )...( 2211 RnRnRRRRp NTNTNTT ⋅++⋅+⋅⋅∆ = The change of ‘Tc’ caused by the change in clock 

period (clock frequency) and the change in the number of all resources available.  

The priority factor (PF) can be defined for the ‘time of execution’ parameter. The (PF) for the 

resource R1, R2 …..Rn is given as:  
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The factors defined above indicate the rate of change of cycle time (Tc) with the change in 

number of resources at minimum clock frequency. For example, equation (22) indicates the rate 

of change of cycle time with a change in the number of that particular resource (e.g. change in 

number of adders/subtractors from one to three adders/subtractors) at minimum clock frequency.  

Minimum clock frequency is considered because the clock period is the maximum at this 

frequency. Hence, the change in the number of a specific resource at maximum clock period 

influences the change in the cycle time the most, compared to the change in cycle time at other 
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clock periods. The PF yields a real number, which suggests the extent to which the change in 

number of that particular resource contributes to the change in cycle time.  

3.3 Mathematical Derivation for Power Consumption Model 

Therefore for a system with ‘n’ functional resources, the total power consumption (P) of the 

resources in a system can be represented by the following equation (26): 

∑
=

⋅⋅=
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cRiRi pKNP
1

)(                                                            (26) 

cRnRnRRRR pKNKNKNP )...( 2211 ⋅++⋅+⋅=                (27) 

 ‘NRi’ represents the number of resource of resource Ri as mentioned before. ‘KRi’ represents 

the area occupied per unit resource Ri and ‘pc’ denotes the power consumed per area unit 

resource at a particular frequency of operation.  

Using the theory of approximation of differentials the change in power consumption can be 

formulated as shown in equation (28): 

c

cRn

Rn

R

R

R

R P

P
pN

N

P
N

N

P
N

N

P
dP

∂

∂
⋅∆+∆

∂

∂
++∆⋅

∂

∂
+∆⋅

∂

∂
= )...( 2

2

1

1

               (28) 

Applying partial derivative to equation (27) produces the following equations: 
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cRn pK ⋅=                                  (31) 
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RnRnRRRR KNKNKN ⋅++⋅+⋅= ⋅ ...2211

                             (33) 

Substituting equations (29), (30), (31) and (33) in equation (28) yields equation (34) below: 

)....( 2211 cRnRncRRcRR pKNpKNpKNdP ⋅∆++⋅⋅∆+⋅⋅∆=  

         )...( 2211 RnRnRRRRc NKNKNKp ⋅++⋅+⋅⋅∆+                     (34) 

Equation (34) represents the change in total power consumption with the change in the 

number of all resources and the clock period (or clock frequency).  

cRR pKN ⋅⋅∆ 11
= The change of ‘P’ contributed by the change in the number of resource R1; 

Similarly, 
cRnRn pKN ⋅⋅∆ = The change of ‘P’ contributed by the change in the number of resource 

Rn;  

Finally, )...( 2211 RnRnRRRRc NKNKNKp ⋅++⋅+⋅⋅∆ = The change of ‘P’ contributed by the change in 

clock period (or clock frequency) and the change in the number of all the resources available. 
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The PF defined from equations (35) to (37) indicates the rate of change in the total power 

consumption with the change in number of resources at maximum clock frequency. For example, 
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equation (35) indicates the rate of change of total power consumption of system with the change 

in the number of that particular resource (e.g. change in number of adders from one to three) at 

maximum clock frequency. The PF helps in arranging the architectural variants of the design 

space in increasing or decreasing order of magnitude depending on the parameter of 

optimization. This facilitates the selection of the optimal design point that satisfies all operating 

constraints and optimization requirements specified.  

In the above equations, the maximum clock frequency was considered because the total 

power consumption is at the maximum at this frequency. Hence, the change in the number of a 

specific resource at maximum clock frequency will influence the change in the total power 

consumption (P) the most, compared to the change at other clock frequencies. The PF yields a 

real number, which suggests the extent to which the change in number of that particular resource 

contributes to the change in total power consumption for the system.  

The PF is arranged in such a way that the resource with the minimum PF is chosen first, 

gradually increasing and then ending at the resource with the highest priority factor. The above 

rule applies for all three parameters described in this chapter. 

 

 

 

 

 

 

 

 



21 

 

 

 

 

 

 

Chapter 4  

High Level Synthesis Design Flow with Multi 

Parametric Optimization Objective 

4.1 Proposed High Level Synthesis Design Flow using the Priority Factor 

Method for Design Space Exploration 

 

The priority factor is used to organize the design space in increasing order (or decreasing) 

based on a proposed algorithm. The next section focuses entirely on design flow starting with the 

real specification and formulation, and eventually obtaining the register transfer level structure,  

by performing design space exploration. Three parameters are optimized during the 

demonstration of design flow for high level synthesis: power consumption, time of execution and 

hardware area of the resources. Fig. 1 shows the entire design flow for high level synthesis using  
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the proposed methodology for DSE.  The details of the design flow are discussed in the next 

chapters. 

 

 

4.2 Design Flow Initiation 

 

This stage marks the beginning of the high level synthesis design flow starting with the 

technical specifications. The application should be properly defined with its associated data 

structure. This phase of the design stage is critical for the designer because the operational 
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Figure1. The proposed high level design flow for multi-parametric optimization requirement 
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constraints must be clearly defined along with the parameters to be optimized. These 

specifications act as the input information for the high level synthesis tools. For the 

demonstration of design flow the following real specifications are assumed.  

1) Maximum power consumption:  8 watts (W) 

2) Maximum resources available for the system design: 

a) 3 Adder/subtractor units. 

b) 4 Multiplier units 

c) 2 clock frequency oscillators: 50 MHz and 200 MHz 

3) Maximum time of execution:   140 µs (For 1000 sets of data) 

4) Hardware area of resources: minimum while satisfying the above constraints.  

The following specifications are also assumed as an example for each resource available for 

system design.  

a) No of clock cycles needed for multiplier to finish each operation: 4 cc 

b) No of clock cycles needed by the Adder/subtractor: 2 cc 

c) Area occupied by each adder/subtractor: 20 a.u. on the chip. (e.g. 20 CLB on an FPGA) 

d) Area occupied by each multiplier: 100 a.u. on the chip. (e.g. 100 CLB on an FPGA) 

e) Area occupied by the 50MHz clock oscillator: 4 area units (a.u.) 

f) Area occupied by the 200 MHz clock oscillator: 10 area units (a.u.) 

g) Power consumed at 50 MHz: 10mW/area unit. 

h) Power consumed at 200 MHz: 40mW/area unit. 

 

4.3 Problem Description 

During the problem formulation stage for high level synthesis, the mathematical model of the 

application is used to define the behavior of the algorithm. The model suggests the input/ output 
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relation of the system and the data dependency present in the function. In this work, a transfer 

function of an IIR Butterworth filter is used to demonstrate the high level synthesis design flow. 

The choice of IIR Butterworth filter is arbitrary and any other filter can also be used for 

demonstration. In this work, the selected filter has just been used as an example benchmark 

application. The conversion of the analog filter to its digital counterpart is not shown in the thesis 

because there are well known methods to obtain it, such as Bilinear Transformation, impulse 

invariant [18] etc. The transfer function of a second order IIR digital Butterworth filter function 

can be given as [18]: 
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Where H (z) denotes the transfer function of the filter in the frequency domain and x(n), x(n-1), 

x(n-2), x(n-3) represent the input variables for the filter in time domain. y(n) and y(n-2) represent 

the present output of the filter and the previous output of the filter in the time domain. ‘z’ 

represents the unit delay operator. For simplicity in explanation, constants 0.167, 0.5 and 0.33 

are denoted with ‘A’, ‘B’ and ‘C’ respectively.  
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Chapter 5 

 Exploration of the Architectural Design Space for 

Power Consumption 

5.1 Creation of Random Architecture Design Space for Power consumption 

The architecture design space for hardware area is represented in the form of vectors 

consisting of the resources available for the system. The random organization of the design space 

is used as a method to represent the different combinations of the resources that comprise the 

total design space. This initial arrangement can be made in any order and is simply used for 

visualizing the total architectural variants available in the system. The design space can change 

based on the available resources of a system. The total design space is first created according to 

the specifications mentioned for total available resources for the system design (see Chapter 4). 

The variable Vn = (NR1, NR2, NR3) is used to represent the architecture design space.  The 

variables NR1, NR2 and NR3 indicate the number of adders/subtractors, multipliers and clock 

frequencies. According to the specification in Chapter 4, 1<=NR1<=3, 1<=NR2<=4 and 
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1<=NR3<=2. The design space in Fig.2 shows the different combinations of available resources 

viz. adder/subtractor, multiplier and clock during system design.  

 

   5.2 Calculation of Priority Factor (PF) for each available resource to 

determine the Priority Order (PO)       

For resource adder/subtractor (R1):  
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The above factors are a true measure of the change in power consumption with the change in 

number of a specific resource. For example, according to the above analysis the change in clock 

frequency from 50 MHz to 200 MHz affects the change in power the most, while the change in 
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Figure2. Design space with all possible combinations of resources 
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number of adder/subtractor affects the change in power consumption the least. Similarly, the 

change in number of multipliers influences the change in power consumption more than the 

adder/subtractor, but less than the clock. According to the priority factors calculated, the priority 

order (PO) can be arranged so that the resource with the lowest priority factor is assigned the 

highest priority order while the resource with the highest priority factor is assigned the lowest 

priority order. The priority order of the resources increases with the decrease in priority factor of 

the resources. Therefore the following PO of the resources for arranging the design variants in 

increasing order can be attained: PO (R1) > PO (R2) > PO (Rclk) 

 

Based on the above priority the variants from the design space are chosen so that the design 

space for power consumption can be organized in increasing orders of magnitude. The next 

section shows how to arrange the elements in increasing order using the proposed algorithm. The 

arrangement of the design variants in increasing order helps to prune the design space for 

obtaining the border variant for power consumption.  

 

5.3 Arrangement of Architectural Design Space in increasing order using 

Algorithm 

Since the design space is large for the present generation of complex multi objective 

VLSI designs, analyzing the design space exhaustively to find the architecture that best meets the 

user specified objectives is strictly prohibited. Due to increased complexity in VLSI and SoC 

designs, the major problem has been the examination of the design variants in the large design 

space for selecting the optimal design option, which is acceptable in terms of all the user 

constraints and predefined specifications [6]. Hence, obtaining a superior quality design for the 
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user specified specification requires a structured methodology for exploring the large design 

spaces. Design space exploration when performed at the higher level of abstraction is more 

beneficial than performing it at the lower level of abstraction such as the logic or the transistor 

level. The job of design space exploration is a battle between optimizing the following two 

contradictory conditions: selecting the optimum design option and efficiently searching the space 

in a short time. Hence, there is always a tradeoff not only between the contradictory parameters 

of optimization during high level synthesis design, but also between the above mentioned 

conditions during design space exploration in high level synthesis. To proficiently analyze the 

complex design spaces, a fast but efficient means of arriving at the best result is needed. 

Analyzing the design to obtain the best architecture according to the requirements specified, 

requires an efficient design space exploration technique. This section presents an algorithm for 

arranging the random design space in an organized increasing order for the power consumption 

parameter. The algorithm is based on priority order sequencing. The elements are placed in such 

a way, so that the element on the top has the least power consumption and the element on the 

bottom has the highest power consumption. A flow chart model of this algorithm is shown in 

Fig.3 which describes the steps involved in organizing the elements. The arranged design space 

for power consumption is shown in Fig.4.  

 

5.4 Determination of Border Variant for Power Consumption using Binary 

Search  

After the elements are arranged in increasing order, the design space is pruned to obtain 

the border variant for power consumption. Binary search is applied to the design space shown in 

Fig.4.  
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Binary search is preferred to the other search techniques because it is extremely fast. It uses 

the principle of ‘divide and conquer’ to rule out half of the elements in each comparison. Hence, 

the border variant can be determined very soon. Furthermore, since binary search works well for 

large size sorted elements, binary search can find the border variant in the large sorted design 

space with a complexity of log N (see chapter 9 for more explanations). The binary search 

algorithm yields the design variants shown in Table 1. The obtained variants are further analyzed 

for power consumption according to equation (26).  ‘P optimal’ is the value of power consumed 

that is specified as a constraint at the beginning of the design flow. ‘P
i
’ is the value of power 

consumption for the variant#i.  When the value of P
i 
is less than the value of specified P optimal, 
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Figure3. Flow chart model of the proposed algorithm 
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then the southern portion (down) of the design space with respect to the calculated value of P
i
, is 

searched. On the contrary, if the value of the P
i 
is more than the value of specified P optimal, then 

the northern portion (up) of the design space with respect to the calculated value of P
i
 is 

searched. After four comparisons it is evident that variant 21 (‘V21’) is the last variant which 

satisfies the P optimal.  

 

 

Table 1. Variants obtained after pruning the design space for power consumption 

 

Variants Power Consumption in watts (W) 
Decision based on the 

Poptimal 

V20 

 
[(3*20)+(4*100)]*10mw = 4.6 W 
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V22 
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P
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search up in the space 

V21 

 
[(3*20)+(1*100)]*40mw = 6.4 W 

P
7

 <  Poptimal, 

search down in the space 

V6 

 
[(1*20)+(2*100)]*40mw = 8.8 W Stop 
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This variant is referred to as the border variant for power. The significance of this border 

variant lies in the fact that all variants to the top of the border variant satisfy the condition of P 

optimal, while any variant to the bottom fails to meet the constraint.  
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Chapter 6  

Exploration of the Architectural Design Space for 

Execution Time 

6.1 Creation of Random Architecture Design Space for Execution time 

The architecture design space for execution time is also represented in the form of vectors 

consisting of the resources available for the system. The random organization of the design space 

is used as a way to represent the different combinations of the resources that comprise the total 

design space. This initial arrangement can be made in any order and is simply used for 

visualizing the total architectural variants available in the system. The design space can change 

based on the available resources of a system. The total design space is first created according to 

the specifications mentioned for total available resources for the system design (see chapter 4). 

The variable Vn = (NR1, NR2, NR3) is used to represent the architecture design space.  The 
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variables NR1, NR2 and NR3 indicate the number of adders/subtractors, multipliers and clock 

frequencies. According to the specification in Chapter 4, 1<=NR1<=3, 1<=NR2<=4 and 

1<=NR3<=2. The design space in Fig.2 shows the different combinations of available resources 

viz. adder/subtractor, multiplier and clock during system design. 

 

6.2 Calculation of Priority Factor (PF) for each available resource for 

Execution Time parameter to determine the Priority Order (PO) 

 

For resource adder/subtractor (R1): 
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For resource clock oscillator (Rclk): 
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The factors determined above measure the change in time of execution with a corresponding 

change in the number of a specific resource. For instance, according to the above analysis the 

change in number of adder/subtractor affects the change in time of execution the least, while the 

change in clock frequency from 50 MHz to 200 MHz affects the change in time of execution the 

most. Similarly, the change in multiplier influences the change in execution time lesser than the 

change in clock frequencies. As explained before in Chapter 5, the following priority order (PO) 
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for arranging the design variants in increasing order can be organized according to the above 

priority factors calculated: 

PO(R1) > PO(R2) > PO(Rclk) 

 

6.3 Arrange of Architectural Design Space in decreasing order using the 

Proposed Algorithm 

 

This approach is based on the multi-parametric optimization requirement for efficient DSE. 

The arrangement of the design space in decreasing order with the proposed algorithm in Chapter 

5 enables the designer to rapidly determine the border variant for execution time. But before the 
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Figure5. The arranged design vector space in decreasing order for time of execution 
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border variant for execution time can be determined, setting pairs of the performance parameters 

contradictory to each other must be done by a designer. Setting the performance parameters 

contradictory to each other facilitates in the reduction of the large design space into a small size, 

which can be easily evaluated for exploration. After the design space is arranged in decreasing 

orders of magnitude, then selecting the border variant becomes very easy. The organized design 

space for time of execution in decreasing order based on the proposed algorithm using the 

priority factor method is shown in Fig.5.  

 

6.4 Determination of Border Variant for Execution Time using Binary Search 

 

The arrangement of the design space in decreasing order allows the design space to be 

pruned for finding the border variant of time of execution. As discussed in Chapter 5, binary 

search algorithm is beneficial compared to the other search techniques when it comes to the 

question of searching a large size sorted list like a large design space. This is because it is 

Table 2. Variants obtained after pruning of the design space for execution time 

Variants 
Execution time (in 

µs) 

Decision based on 
the T optimal 

V20 
T exe

 20
= 12 +(1000-

1)*8 *0.02 = 160.08 
µs 

T exe
20 

> T optimal  
search down in the 

space 

V22 
T exe

22 
= 16 +(1000-

1)*12 *0.005 = 
60.02 µs 

T exe
22 

< T optimal, 

search up in the 
space 

V21 
T exe

21 
= 22 +(1000-

1)*20 *0.005 = 
100.01 µs 

T exe
21 

< T optimal    
search up in the 

space 

V5 
T exe

5 
= 22 +(1000-

1)*20 *0.005 = 
100.01 µs 

stop 

. 
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extremely fast and works well for large size sorted lists of elements. Since the design space for 

real applications is always large, binary search finds the border variant at a complexity of log N 

(see chapter 9 for more explanation) in the sorted design space. The binary search algorithm is 

applied to the design space shown in Fig5 and the variants are analyzed according to equation 

(13) to determine the best variants (Table 2).  Analysis reveals that variant number ‘V5’ is the 

border variant for the ‘time of execution’ parameter. Hence all the design variants to the south of 

the design space must satisfy the constraint imposed by the user.  
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Chapter 7  

Pareto optimal set of architecture 

7.1 Determination of Pareto optimal set for the design variants 

Once the border variants for the parameters of optimization have been successfully 

derived, the next phase of the high level synthesis flow is to find the Pareto optimal set of 

architecture. This set contains all those architectural variants that equally satisfy the constraints 

imposed by the user. Hence the process of analyzing the initial large design space is reduced to 

analyzing only the architectural variants in the Pareto-optimal set. After investigation it is found 

that just three architectural variants from the each satisfying set of optimization parameters, 

power consumption and time of execution, simultaneously satisfy both power consumed and 

execution time. The variants are V5, V13 and V21 (see fig4 and Fig5). The priority factor for 

area is determined using equations (9)-(12) to arrange the variants of the Pareto optimal set in 

increasing order, similarly to the way it was determined for power and execution time. After 
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calculation of the PF the priority order is determined. The obtained priority order is: PO (Rclk) > 

PO (R1) > PO (R2). Using the algorithm described in chapter 5, the variants V5, V13, V21 of the 

Pareto set are arranged in increasing orders of magnitude. Since the design specification in 

chapter 4 demanded minimum area overhead with simultaneous satisfaction of the constraints 

imposed by user, hence the aim is to find the variant with minimum area overhead. After the 

arrangement of the variants of Pareto optimal set the variant number ‘V5’ is found to be the only 

variant among twenty four variants that concurrently optimizes hardware area, power 

consumption and time of execution while meeting all the specifications provided.  

 

7.2 Verification of the optimal design variant 

Performing the analysis for the verification of the optimality of the design variant 

obtained through the proposed method, is a very important step in the development process. 

Verifying the optimality of the best design variant obtained ensures that the variant found strictly 

obeys all the operating constraints provided for power consumption, execution time and 

hardware area. Further verification plays an important role in the development process because it 

can easily detect any mistakes made during any design space exploration process. For example, 

the results of the design space exploration suggested that variant ‘x’, is the optimal variant which 

satisfies the entire optimization requirement specified. But that optimal variant ‘x’ obtained 

might have resulted due to the mistake done by the designer during manually evaluating the 

design variants during the design space exploration. Hence verification of the design variant later 

surely detects the erroneous step performed by the designer earlier. The proposed DSE approach 

is highly compatible for automation and therefore does not require the manual effort for 

evaluating the design variants for selecting the best option. Nevertheless, the addition of the 
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verification stage provides the extra confidence in the early decisions made regarding the 

selection of best design architecture (variant).  

The verification of the best variant obtained in Chapter 7 (Section 7.1), is verified as 

explained above for all the three optimization parameters. Investigations indicate that the variant 

obtained is in compliance with all the operating constraints and optimization requisites provided 

in the design specification. 
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Chapter 8 

 Implementation of the Proposed High Level Synthesis 

Design Flow  

8.1 Scheduling and Binding of operations  

Representation of the resources in temporal and spatial domain is performed with the aid of a 

sequencing and binding graph. These structures represent a class of acyclic graphs generally 

represented using vertices and edges. The vertices indicate the resources used for the system 

design and the edges denote the dependency of data flow among those used resources. The flow 

of data elements through different operators in the data path can be visualized with the help of 

sequencing graphs [11]. Sequencing graphs are used to specify the nature of operation i.e. at 

which time what resources are subjected to which operation. This graphical representation of the 

application (algorithm) distinctly underlines the operations in discrete time steps while 

maintaining the precedence constraints specified in the algorithmic description.  

A scheduling problem can be classified into three different categories. Time constrained 

scheduling must find the cheapest possible schedule that satisfies the constraint with the given 
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maximum number of time steps. Resource constrained scheduling is used to determine the fastest 

schedule satisfying the constraints imposed with the given maximum number of resources. 

Finally, feasible constrained scheduling, whose objective is to schedule an output if it exists, by 

simultaneously satisfying the constraints for the resource and time. Most of the practical 

formulations of the scheduling problem are NP-complete in nature [29]. The scheduling problem 

in general is three fold. It is a combination of timing, dependency and resource constraints. 

 

Scheduling is a process that states the time slot for every operation while fixing the timing 

length (latency) in such a manner so that the synthesized hardware structure meets the timing 

restriction specified [6]. A classical example of time constraint scheduling where the scheduler 

must achieve the goal with a minimum number of functional units possible to realize the 

behavior is shown here. The scheduling of operations is performed based on the As Soon As 

Possible (ASAP) algorithm [16] [17]. Though many algorithms are used for scheduling 

operations such as the As Late as Possible (ALAP), List scheduling, Force Directed scheduling, 

ASAP, etc., ASAP scheduling algorithm was selected because in the proposed work, the 

operations should be done as soon as the resources become free. As the processed data is ready, 

the prepared data from the previous stage is used for the next operation. The sequencing and 

binding graph for the sample benchmark used in this work is shown in Fig.6.  

 

The concept of binding graph is used in further design stages to realize the function used as a 

benchmark application for demonstration of the optimized high level synthesis design flow.   
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8.2 Scheduling and Binding of operations with Data Registers 

In terms of architectural synthesis and optimization a circuit is generally specified by the 

following three dimensions. First, a sequencing graph, second, a set of functional resources 

described in the form of area and latency, and finally, the operating constraints. The function of 

registers is to perform data storage and the wires interconnect the different discrete components 

[11]. In the sequencing graph of the design, Register P has been added in time slot T2 because 

the results of the adder/subtractor at time slot T1 are not used until time slot T3. The sequencing 

graph with data registers is shown in Fig.7 (see next page). The latency for the function is 

calculated as 11 clock cycles. Fig.8 shows the cycle time calculation for the best architectural 

variant obtained.  

 

 

 

 

 

 

 

 

 

 

 

 C 

+ 

Latency = 22 c.c. 

T0 

T1 (4c.c.) 

T2 (4.c.c.) 

T3 (4c.c.) 

T4 (4c.c.) 

R2 

R1 

X 

X 

- 
 

y(n-2) A x(n) B x(n-1) x(n-2) x(n-3) 

 

X 

+ X 

+ X       T5 (4c.c.) 

  T6 (4c.c.) 

y (n) 
 

Figure6. The sequencing and binding graph for the best variant obtained 
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8.3 Determination of Multiplexing Scheme. 

The binding of the resources performed in Fig.7, enables a methodology to be formalized 

that incorporates the multiplexers and demultiplexers into the data path circuit of the system. The 

multiplexing scheme is one of the most important stages in high level synthesis design flow. 

Multiplexing scheme is a procedure for representing each system resource with respective inputs, 

outputs, operations and the necessary interconnections. This scheme highlights the actual usage 
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Figure7.  Sequencing graph with data registers  
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of resources by the operands at different times while strictly adhering to the data dependency 

present. The illustration acts as an important guide for the designer to develop system block 

diagrams before developing the control unit structure for the data path. This scheme prevents any 

errors in the final hardware structure that could have eventually resulted in catastrophic 

consequences later during functioning. The control unit is responsible for the coordination of the 

data path of the system. Multiplexers and demultiplexers can be easily constructed and assigned 

to their respective inputs and outputs based on the multiplexing scheme, keeping in mind the 

dependency of the data. In this work, two functional resources viz. one adder/subtractor and one 

multiplier, perform different functions for the circuit. A multiplexing scheme for each of the 

above mentioned resources was developed as shown in Tables 3 and 4 respectively. 

Table 3.Multiplexing scheme for Adder/subtractor resource (R1) 

 

Time 

 

Operation Input 1 Input 2 Output 

0 ------ ------- ------- ------- 

1 ------ ------- ------- ------- 

2 ------ R2out RegP ------- 

3 + R2out R1out R1in 

4 + R2out R1out R1in 

5 + R2out R1out R1in 

6 - ------ ------ RegY 

7 ------ ------ ------ ------ 

 

Table 4. Multiplexing scheme for Multiplier resource (R2) 

 

Time 

 

Operation Input 1 Input 2 Output 

0 ------ RegA Regx(n) ------- 

1 * Regx(n-1) RegB RegP 

2 * Regx(n-2) RegB R1in 

3 * RegA Regx(n-3) R1in 

4 * RegC Regy(n-2) R1in 

5 * ------ ------ R1in 

6 ------ ------ ------ ------ 

7 ------ ------ ------ ------ 
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8.4 Determination of Block Diagram of the Data Path unit of the system 

After the multiplexing scheme has been successfully performed, the next phase of the 

design flow is the development of the system block diagram. The system block diagram consists 

of two divisions, data path and the control path. The data path is responsible for the flow of data 

through the buses and wires after the operations have been performed by the components present 

in the data path circuit. Thus, the data path provides the sequence of operations to be performed 

on the arriving data, based on the intended functionality. The data path consists of registers for 

storage of data, memory elements such as latches for sinking of data in the next stage, as well as 

multiplexers and demultiplexers for preparation of data at run time by change of configuration. 

Last but not least, the data path unit also consists of functional resources which perform the 

operations on the incoming data. The block diagram for the benchmark application consists of 

two resources (an adder/subtractor and a multiplier) for executing their respective assigned 

operations. Another component of the system block diagram is the control unit or the controller. 

A centralized control unit controls the entire data path and provides the necessary timing and 

synchronization required by data traversing through the data path structure. The control unit acts 

as a finite state machine that changes its state according to the requirement of activating and 

deactivating the various elements of the data path at different instances of time. Based on the 

multiplexing scheme, the block diagram of the data path circuit was constructed to demonstrate 

design flow for the benchmark application as shown in Fig. 9.  

 

8.5 Determination of Timing specification and Development of Control Unit  

The next design stage is the development of the control unit structure, which is accountable 

for any mis-coordination in timing among the various elements of the data path. The function of 
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the controller is to activate and deactivate the different elements of the data path based on the 

timing specification determined for the objective function. This major unit prepares the data path 

units for the incoming data by changing the configuration to perform the next assigned function. 

For synchronous functioning of all data elements in the system the controller must respond to the 

requirement exactly at the right moment. Failure to activate or deactivate any functional block in 

the data path will result in fatal consequences in the system output. The determination of the 

timing specification from the control unit helps to create an error free structure of the controller. 

VHDL [18] was used here as the hardware description language for designing the control unit. 
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Figure9. Block diagram of the data circuit  
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The timing specifications data shown in Table 5A and Table 5B are developed with clock cycles 

placed in the Y-axis and the control signals placed in the X-axis. At every count the transition of 

the different control signals can be clearly observed. This facilitates in the description of the 

control structure in a hardware description language.  

 

8.6 Development of the whole system at the RT-Level in Synthesis tool 

After all the above steps have been completed successfully, the schematic structure of the 

device is ready for development in any of the synthesis tools available. All the components in the 

data path were described and implemented in VHDL before verification. Then the schematic 
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Timing specification for the data path circuit 
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structure of the whole device was designed and implemented in Xilinx Integrated Software 

Environment (ISE) version 9.2i [19]. The schematic structure of the whole device as designed in 

Xilinx ISE 9.2i is shown in Fig. 10.   

 

 

Figure10. Schematic view of the system (Xilinx ISE 9.2i) 
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Chapter 9  

Results, Analysis and Implementation  

 9.1 Simulation Results 

Using the proposed DSE method, the next step is to verify the device, designed through 

the proposed high level synthesis design flow, for its accurate functionality. The design was 

checked for a wide array of input vectors and results indicated that the design was successfully 

implemented in the Spartan 3E FPGA [20] [21]. Investigations suggested that the device was 

working perfectly. The successful result of the simulation shown in Fig.11 (see next page) 

suggested that the designed system was producing the expected output. After its successful 

implementation the design was imported in Synopsys tool [22] for flattening of the circuit. After 

flattening, the steps needed for floorplanning, power planning, placement and routing were 

executed in Cadence Encounter SoC [23]. Fig.12 shows the routing of the chip.  
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9.2 Comparative study of the Proposed Multi parametric optimized Design 

Space Exploration methodology with the current existing approach 

 

For determination of the optimal architecture, design space exploration requires elaborate 

analysis and evaluation of the architectural variants (design points). Before selecting the optimal 

architecture, the border variant of architecture for both the performance (execution time and area/ 

 

Figure11. Simulation result for the benchmark application 

 

Figure12. Final routing of the chip (Cadence encounter SoC) 
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power) parameters needs to be found separately. Binary search conducted on the arranged design 

space (increasing or decreasing) leads to the border variant by taking into account the operating 

constraints for that parameter (such as constraint for execution time or constraint for area/power.) 

The proposed DSE approach uses binary search after the arrangement of the design space using 

the priority factor method. The search of the optimal architecture requires only
∏

=

n

i

Riv
1

2log

.Where 

‘n’ = number of type of resources and ‘vRi’ is the number of variants of resource ‘Ri’. On the 

contrary, the exhaustive search checks for 
∏

=

n

i

Riv
1 architectural variants during optimal 

architecture selection while satisfying all operating constraints. In this design space exploration 

approach and in the design flow three performance parameters have been used for optimization. 

The execution time and power are the parametric constraints and area is the optimization 

parameter. Hence, the searching has to be repeated for both the parameters to determine the 

border variant.  

 Therefore the total number of architecture evaluations using exhaustive search is given as:  

 ∏
=

n

i

RivM
1

*  . 

And total number of architecture evaluations using the proposed method is given as: 

 ∏
=

n

i

RivM
1

2log* .  

 

Here, ‘M’ denotes each performance parameter. In this case the value of ‘M’ is two because 

there are two performance parametric constraints.  
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9.3 Experimental Results of the Proposed Exploration process for High Level                  

Synthesis Benchmarks 

 

The proposed approach was applied on various benchmarks to check the acceleration 

obtained through this DSE method. Results indicated massive acceleration in the speedup 

compared to the exhaustive approach. The results of proposed design space exploration 

framework for the benchmarks are illustrated in Table 6. Fig.13 illustrates the speedup results 

when using the proposed approach for DSE compared to the exhaustive variant analysis. Table 7 

and Table 8 shows the comparative study of the proposed approach with the approach in [2] that 

utilizes hierarchical structure for evaluation of design space, for many realistic HLS benchmarks. 

Fig.14 shows the comparison of the number of architectural variants analyzed between the 

current existing approach and the proposed approach, while Fig.15 represents the speedup 

attained by the proposed method compared to the hierarchy tree structure approach using ACG 

[2]. Investigations of the results reveal that the proposed approach is capable of drastically 

improving the acceleration time for finding the optimal architecture compared to the current 

approach shown in [2].  
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For example, in the case of edge detector 1, when the types of resources are less than the 

other benchmark applications, then the proposed approach provides a percentage speedup up to 

30% compared to the existing approach described in [2]. Further for large well known high level 

synthesis benchmarks such as Discrete Wavelet Transformation (DWT) [25], Differential 

Equation Solver (HAL) [24], Elliptic Wave Filter (EWF) [24], Auto Regressive Filter [26][27] 

and MPEG Motion Vector [28], the speedup results compared to the current approach [2] is over 

30 %. Hence based on the experiments performed on the benchmarks it can be concluded that the 

proposed approach for DSE is able to provide increased acceleration when compared to existing 

DSE approaches.  
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Figure15. Representation of the speedup attained by the proposed DSE 
compared to a current approach that uses hierarchical structure  

 
Table 6. The results of the proposed DSE approach for the Benchmarks 

 

Benchmark 
Type of 

resources 

Number of 

variants of 

each 

resource 

Total 

possible 

architecture 

for 

exhausted 

search 

Evaluated 

architectures 

using the 

proposed 

DSE 

strategy 

Speedup 

obtained 
Log10(speedup) 

Edge Detector 1 7 8 4.2x10
6 

42 9.9 x10
4
 4.995635 

Edge Detector 2 14 8 8.8 x10
12

 84 1.05 x10
11

 11.02119 

2D Image 

Combiner 
32 16 6.81 x10

38
 

256 
2.66 x10

36
 36.42488 

3D Image 

Combiner 
32 32 2.92 x10

48
 

320 
9.13 x10

45
 45.96047 
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Table 8. Comparative study of the proposed DSE approach with one of the current approaches [2] for 5
th
 order  

WDF benchmark 

Benchmark Type of 

resources 

Number of 

variants of each 

resource  

Total 

possible 

architecture 

for 

exhausted 

search 

Architecture 

evaluation 

using 

Hierarchical 

arrangement-

ACG [2] 

(Number of 

total 

architecture)  

Proposed 

Priority 

Factor 

method 

(Number of 

architecture) 

Speed up 

of the 

proposed 

approach 

compared 

to the 

existing 

approach  

5
th

 order Wave 

Digital Filter (WDF) 
2 

Adder Multiplier 
416 24 16 33.33 % 

26 8 

 

Table 7. Comparative study of the proposed DSE approach with one of the current approaches [2] 

 

Benchmark 

Architecture evaluation using 

Hierarchical arrangement of the ACG 

(Number of total architecture) 

Proposed Priority Factor 

method (Number of 

architecture) 

Speed up of the 

proposed approach 

compared to the 

existing approach (%) 

Edge Detector 1 
60 42 

30 

Edge Detector 2 
116 84 

27.58621 

2D Image Combiner 
324 256 

20.98765 

3D Image Combiner 
388 320 

17.52577 

 

Table 9. Experimental results of comparison between the proposed DSE approach with the current approach [2] for 

large benchmarks  

Benchmarks  

Total possible 

architecture in 

the design 

space for 

exhaustive 

search 

Architecture evaluation 

using Hierarchical 

arrangement of the 

ACG with binary 

search [2] (Number of 

variants analyzed) 

Architecture evaluation 

using Proposed Priority 

Factor method 

(Number of 

architecture) 

Percentage 

speed up 

compared 

to current 

DSE 

approach 

[2]  

Speedup 

using 

proposed 

approach 

compared 

to  the 

exhaustive 

search  

 

Discrete Wavelet 

Transformation 

(DWT) [25] 

432 26 18 30.76 % 95.88 % 

Differential Equation 

Solver (HAL) [24] 
180 26 14 46.15 % 92.22% 

Elliptic Wave Filter 

(EWF) [24] 
156 20 14 30 % 91.02 % 

Auto Regressive Filter 

(EWF) [26][27] 
288 24 16 33 % 94.44 % 

MPEG Motion Vector 

(MMV) [28] 
756 28 20 28.57 % 97.35 % 

 

 



55 

 

 

 

 

 

Chapter 10 

Conclusion and Future Work 

 The thesis has presented a new framework for rapid and accurate design space exploration. 

The approach was successful in laying the foundation for exploring the design points from the 

architecture design space according to the performance objective and intended functionality. The 

presented method determines the priority factor of each resource for system designing. After the 

architectural design points were organized in increasing and decreasing order based on the 

priority factor calculated, the procedure for applying the search algorithm became very simple. 

As a result the proposed approach was able to drastically reduce the number of architectural 

variants to be analyzed for selection of the system architecture. The proposed mechanism for 

DSE was able to resolve conflicting objectives in DSE, by concurrently maximizing the accuracy 

needed in the evaluation of the design point as well as minimizing the time expended in design 

space assessment. This approach is applicable to all system architectures based on modules with 

known performance requirements and system specifications. The priority factor functions for the 

DSE framework were first deduced mathematically and then used in the proposed high level 



56 

 

synthesis design flow to highlight its success in finding the best architecture.. Formalizing the 

design methodology for multi parametric HLS is useful for many industrial projects and modern 

automated high level synthesis tools. Based on the experiments performed on the benchmarks, it 

can be concluded that the proposed approach for DSE is able to provide increased acceleration 

compared to the current existing approaches for DSE in HLS.  

Due to the enormous growth of the design complexity, the gap between the electronic system 

level and the register transfer level must be filled. A complete design methodology is described 

in this thesis, which allows automation of the high level synthesis design flow. This design flow 

can provide the foundation for a fully automated high level synthesis tool that performs not just 

design space exploration but also synthesis. This is the first work known to the author that 

elaborates the design steps and exclusively concentrates on the design flow methodology useful 

for multi parametric optimization requirement using a fast DSE method. Compared to the 

traditional high level design flow, the modern high level flow must be more efficient, and multi 

parameter optimized. The design flow should have formalized steps to be followed for designing 

the system without making errors.  The design approach for high level synthesis considering 

multi parametric optimization shown here in this thesis contributes significantly for designing 

Application Specific Integrated Circuits (ASIC) and Application Specific Processors (ASP) used 

in system-on-chip design. Any computing core developed through this method could be 

efficiently used in real time systems where the time of execution is the major decisive factor for 

successful functioning of the system.  

New standards in the area of communications, signal processing and multimedia have led to a 

wide array of applications demanding high performance at minimal power consumption. The 

modern generations of massive power hungry portable devices like Mp3 and Mp4 players are 



57 

 

required to provide high performance at low power. High performance output means performing 

more operations per clock cycle, i.e. more power usage. However, this demand is in total 

contradiction to the current trend of portable devices which should operate on low power. 

Although parameters like execution time and power are contradictory, both are equally vital for 

system design. In such cases, this high level design flow for multi parametric optimization 

requisite will work wonders for the designer. While describing the design flow all these factors 

were taken into account when designing the system. Investigations revealed that the designed 

system met all the specified stringent operational constraints for execution time, hardware area, 

power dissipation. The results were in accordance with the technical specifications provided. 

Thus the flow successfully bridged the gap from the ESL to the RTL. 

 

Scope of Future Work 

There is much potential in the area of design space exploration and high level synthesis to 

improve the search time for finding the optimal design architecture, and thereby accelerate the 

speedup of the exploration process.  The developed design space exploration approach for high 

level synthesis can be improved further by decreasing the number of architectural variants to be 

analyzed during the exploration process.  Reducing the analysis of the architectural variants 

directly reduces the search time and hence will help in fast marketing of the product. Another 

aspect of high level synthesis, which also has significant potential for improvement, is the 

optimization of many other parameters such as reliability, temperature etc., which stills lies in 

the nascent stage of development. 
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APPENDIX 

1. The Control Unit Simulation Results 
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2. The RTL Schematic Generated in Xilinx Integrated Software 

Environment (v9.2i) 
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3. The Routing information for Spartan 3E FPGA generated in Xilinx 

Integrated Software Environment (v9.2i) 

 

 


