
WHOLE PROGRAM ANALYSIS OF JAVA PROGRAMS

FOR VIRTUAL CALLS AND EXCEPTION HANDLING

by

Simrandeep Nagra

Bachelors of Technology, Dr. B.R.Ambedkar NIT, Jalandhar, 2011

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2014

c© Simrandeep Nagra 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying

or by other means, in total or in part, at the request of other institutions or

individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public for

the purpose of scholarly research only.

ii

Abstract

Whole Program Analysis of Java Programs for Virtual Calls

and Exception Handling

Simrandeep Nagra

Master of Science, Computer Science

Ryerson University, 2014

Java Programs suffer performance degradation due to the presence of virtual calls

and the lack of an efficient exception handling mechanism. In this dissertation, we

show how virtual calls can be statically resolved to one or two target methods. The

resolved calls can then be potentially inlined and hence improve the performance

of the program. Analyzing the whole program (including the Java runtime library)

instead of only user code has a positive effect on the performance of the program.

We present two exception handling mechanisms, Direct Path Analysis and Dis-

play Catch Exception Handling, that improve the performance of programs as

compared to the existing popular techniques, Stack Unwinding and Stack Cutting.

The first analysis shows that the number of the stack frames needed to be un-

wound is lower in our analysis than Stack Unwinding. In the second analysis, we

propose the Display Catch Exception Handling mechanism which is better than

Stack Cutting in terms of operations required to catch exceptions.

iii

Table of Contents

1 Introduction 1

1.1 My Thesis . 1

1.2 Problem Background . 1

1.3 Objectives and Proposed Methodology 3

1.4 Contribution . 3

1.5 Dissertation Outline . 4

2 Related Work 5

2.1 Compiler and Optimization Terms 5

2.2 Resolving Virtual Calls . 6

2.2.1 Overview . 6

2.2.2 Hardware Implication of Virtual Call Resolution 7

2.2.3 Virtual Call Resolution Techniques 8

2.3 Exception Handling Analysis . 13

2.3.1 Stack Unwinding . 13

2.3.2 Stack Cutting . 14

2.3.3 Exception-Directed Optimization 14

2.3.4 Exceptional Flow Analysis 15

iv

3 Materials and Methods 17

3.1 Our Compiler . 17

3.2 Virtual Call Analysis . 19

3.2.1 Constructing Data Structures 19

3.2.2 Removing Dead Instances and Resolving Calls 23

3.3 Exception Handling Analysis . 25

3.3.1 Exception handling in JVM 25

3.3.2 Stack Unwinding and Stack Cutting Approaches 26

3.3.3 Static Exception Handling Analysis 27

3.4 Instrumenting Java Code for Run-Time Analysis 32

3.5 Display Catch Exception Handling 35

3.5.1 Display Catch Exception Approach 38

3.6 Benchmarks . 39

4 Results 40

4.1 Virtual Call Analysis Results . 40

4.1.1 Summary of Virtual Call Analysis Results 45

4.2 Exception Handling Analysis Results 46

4.2.1 Direct Path Analysis . 46

4.2.2 Analyzing catch categories 49

4.2.3 Summary of Exception Handling Results 52

5 Conclusions 53

5.1 Future Work . 54

v

List of Tables

4.1 Static numbers for virtual call analysis 41
4.2 Number of resolved run-time call sites 43
4.3 Number of resolved run-time call events 44
4.4 Number of Stack Frames Unwound in Stack Unwinding Technique . 47
4.5 Number of Stack Frames Unwound in Direct Path Analysis 47
4.6 Number of Exception Classes in the Program 49
4.7 Number of Catch Blocks in the Program 50

vi

List of Figures

2.1 Code for an example program . 7
2.2 Figure showing effective code including inlining 8

3.1 Class hierarchy and methods example code 18
3.2 Figure showing catch environment needed for our analysis 30
3.3 Code showing how to get instruction list using BCEL 33
3.4 Code showing how to instrument a call site 34
3.5 Code showing how to instrument exception handling process 35
3.6 Figure showing Display Catch Table 36

4.1 % statically resolved call sites . 41
4.2 % Dynamic Monomorphic and Bimorphic Call Sites 43
4.3 % Dynamic Monomorphic and Bimorphic Call Events 44
4.4 Total Stack Frames Unwound in Whole Program 48

vii

List of Algorithms

1 Algorithm to BuildCHG (C,M,D) (as in [3]) 20
2 Algorithm to BuildFrontier (C,D, V) (as in [3]) 21
3 Algorithm to BuildPVG (

∑
D,

∑
V) (as in [3]) 22

4 Algorithm to RemoveNonLiveInstances (I) (derived from[3]) 23
5 Algorithm to ResolveCalls (SV , I) (derived from[3]) 24

viii

Chapter 1

Introduction

1.1 My Thesis

Java programs can be simplified by resolving virtual calls statically to monomor-

phic or bi-morphic calls. Exception handling can also be implemented efficiently

by studying patterns obtained from both static and dynamic analysis.

1.2 Problem Background

Java is a popular language used for writing various applications. Java programs

with few method calls performs well but Java programs having a large number of

method calls run slowly. One of the major advantages of object oriented languages

over traditional languages is the feature of abstraction. This feature is supported

by dynamic method dispatch, which is defined as the calling of a method on the

basis of the run time type of the object. However, this advantage has turned out

to be a factor in performance degradation as most of the calls in Java are dynami-

cally dispatched. Therefore, if we can resolve the method call to one or two target

methods, we can eliminate the dynamic dispatch for that call. This will result in

a decrease in execution time and performance improvement.

Java suffers more from this run time dispatching than C++ or other similar

languages. Therefore, resolving some of these virtual calls at compile time gives

1

CHAPTER 1. INTRODUCTION

more leeway for performance improvement in Java programs. Other advantages of

resolving virtual calls are reduced code size and potential for code inlining.

We are doing whole-program (including the Java runtime library) code gener-

ation in our compiler which allows us to access more information than traditional

compilers. This helps us in resolving virtual calls for the whole program instead

of only user code.

This work resolves the virtual calls using a conservative call graph. A call graph

is a conservative call graph only if it has all the edges which we cannot definitely

prove to be dead in a program. The virtual call resolution analysis will look for

methods in the class hierarchy of a declared type of the call and its subclasses. If

we find only one or two possible methods in the hierarchy, the call is deemed to

be resolvable.

An application does not always exhibit the expected behavior while running. To

make this application robust, there needs to be a mechanism in place to deal with

these anomalies. This mechanism to deal with exceptions is called exception han-

dling. Exceptions in programming languages are considered low-frequency events,

however there are certain applications where they are used to implement short-

circuit evaluation. Java is probably the most widespread language with exceptions

as part of the language definition. The Java language provides programmers with

a try-catch-finally construct to catch exceptions thrown while running an applica-

tion. .

Although exception handling improves the performance of programs as com-

pared to previous mechanisms of checking flags or return codes, it still has con-

siderable room for improvement. In conventional Java compilers, exceptions are

handled by unwinding stack frames until a matching handler for the thrown excep-

tion is encountered. For applications with a large number of exceptions, unwinding

stack frames one-by-one can result in performance degradation. Thus, a mechanism

which doesn’t unwind stack frames one-by-one will make the exception handling

process more efficient.

Our work analyzes exception handling. In our static analysis, we find excep-

tion catch blocks at compile time and then look for a direct path through the

call graph from the exception throw code to the catch block. We also analyzed

dynamic patterns of exceptions in the program leading to a new mechanism that

2

CHAPTER 1. INTRODUCTION

further short-circuits stack cutting.

1.3 Objectives and Proposed Methodology

In this work, we analyze Java programs at static time as well as at run time to ob-

tain statistics about resolved virtual calls. We use the Rapid Type Analysis (RTA)

[3] algorithm to resolve virtual calls at static time. We extend the RTA algorithm

to analyze whole-program virtual calls. We also look for potential bi-morphic calls

using the algorithm. We compare the number of resolved calls including the library

with the number of resolved calls without the library.

We analyze exception handling by creating a catch environment around each

call site of the program. The catch environment consists of a list of exception han-

dlers having a direct path from the call site. Whenever an exception is thrown, we

find the matching handler from the list of the current method’s call site, in order

to directly unwind the existing stack frame to the stack frame of the matching

handler. If no matching handler is found in the catch environment for the current

call site, we unwind one stack frame and reinstate the invoking method’s stack

frame. In this way, we will unwind the stack frame only when there is no direct

path available from the call site. We also analyze the number of catch blocks and

the exception classes in the program. We propose a new mechanism based on the

patterns obtained from these results.

The Java program is then instrumented with suitable code using the Byte Code

Engineering Library (BCEL) [4] to obtain the run-time statistics. We use these

run-time statistics to compare the results of the static analysis with actual run of

a program.

1.4 Contribution

We have extended RTA to resolve virtual calls to monomorphic (one target) or bi-

morphic (two targets) calls. We have also extended RTA to include library calls in

the analysis, i.e, to analyze the whole program. We have determined the number of

unrolls needed to catch a particular exception throw using our catch environment

3

CHAPTER 1. INTRODUCTION

at static time. We have instrumented the code to generate the run-time statistics

of virtual calls, try-catch blocks and the stack depth of the exception handler.

We have also proposed a new exception handling mechanism based on statistics

gathered by instrumenting the code.

1.5 Dissertation Outline

This dissertation has the following structure:

• Chapter 2 presents some background and related work. This includes dis-

cussion of previous work in areas of resolving virtual calls and exception

handling.

• Chapter 3 discusses the methodology used for analyzing virtual calls and ex-

ception throw-catch patterns statically. This chapter also includes method-

ology to instrument Java code to enable comparison of static analysis results

with an actual run of program.

• Chapter 4 compares results obtained from static analysis with works of other

researchers as well as with the run-time statistics.

• The dissertation closes with a chapter on future direction and conclusions.

4

Chapter 2

Related Work

In this chapter, we first review some virtual call resolution techniques. Then, we

review some literature related to exception handling.

2.1 Compiler and Optimization Terms

Some of the compiler and optimization terms we use in our work are defined below:

• Inlining is a process of replacing a call site with the called method’s body.

This results in improving a program’s performance as overhead associated

with the method calling such as saving registers, instruction pipelining etc.

is reduced [18].

• Short-circuit evaluation is defined as a process of stopping further evaluation

of an expression as soon as we determine its value [28]. It is implemented by

exceptions in some applications. In these type of applications, an exception

is thrown as soon we determine an expression’s value. Therefore, the expres-

sion’s further evaluation is stopped and the exception is caught in the stack

frame where this expression’s evaluation started.

• Monomorphic calls are the calls having only one possible target method.

Bi-morphic calls are the calls having two possible target methods. Polymorphic

calls are the calls having more than two possible target methods.

5

CHAPTER 2. RELATED WORK

• Benchmark code, also called user code, it refers to the part of the code of a

program excluding the library.

• In our work, the termDirect Path refers to the path in which we can directly

unwind a stack frame to a matching exception handler in case of an exception

thrown.

2.2 Resolving Virtual Calls

2.2.1 Overview

Virtual Method Call, also called Dynamic Dispatch, is defined as calling a method

of a class type which is determined at run time. The polymorphism feature of

Object Oriented Programming enables an object to refer to an instance of any of

multiple classes. The object, on which a method is called, is either an object of

the declared type or an object of a subclass of the declared type. The process of

selecting the correct method for the object at run time is called dynamic dispatch.

The process of determining the correct method consists of vectoring through the

Virtual Call Table at run time which results in performance degradation as com-

pared to knowing statically which code to be called.

Consider the code in Figure 2.1, in the a.foo() method call, the declared type

of the object is class A. But due to polymorphism, the actual type of the object

can be A or B or C (subclass of A). Similarly for the b.foo(), the object can be

of class type B or C and for c.foo, the object can only be of class type C.

The Virtual Call analysis will try to determine the possible method(s) that can

be called. This analysis must be conservative, i.e. every remotely possible method

has to be considered as a possible target method. If a method call can be resolved

to a monomorphic call (one target), then it can be turned into a direct call or

possibly inlined in the program . A method call resolved to a bi-morphic call (two

targets) can be implemented using conditionals. If a method call is not resolved

to one or two targets, then we do the dynamic dispatch for this method call. The

effective code including inlining for the main method after the virtual call analysis

is shown in Figure 2.2.

As a result of virtual call resolution, we have simplified the code so it has

6

CHAPTER 2. RELATED WORK

1 public class A{

2 void foo(){

3 System.out.println ("A’s foo method ");

4 }

5 }

6 public class B extends A{

7 void foo(){

8 System.out.println ("B’s foo method ");

9 }

10 }

11 public class C extends B{

12 void foo(){

13 System.out.println ("C’s foo method ");

14 }

15 }

16 public class Resolve{

17 public static void main(String [] args){

18 A a = new B();

19 B b = new B();

20 C c = new C();

21 a.foo();

22 b.foo();

23 c.foo();

24 }

25 }

Figure 2.1: Code for an example program

fewer method calls. Virtual call resolution also results in more efficient hardware

implementation of the call as explained in the following section.

2.2.2 Hardware Implication of Virtual Call Resolution

The compiler implements a method call by either an indirect jump or a direct

jump. All virtual calls are implemented by an indirect jump while all other calls are

implemented by a direct jump since we know the target method of the non-virtual

calls at static time. When the compiler encounters a virtual call, it implements

the indirect jump by vectoring through the Virtual Call Table for the class of the

7

CHAPTER 2. RELATED WORK

1 public static void main(String [] args){

2 A a = new B();

3 B b = new B();

4 C c = new C();

5 a.foo();

6 if(b instanceof B)

7 System.out.println ("B’s foo method ");

8 else

9 System.out.println ("C’s foo method ");

10 System.out.println ("C’s foo method ");

11 }

Figure 2.2: Figure showing effective code including inlining

object. The compiler gets the called method’s address from the table and then

jumps to the first instruction of the method.

However, if we resolve the call at static time, the compiler can implement a

direct jump. The calls that are resolved to one target can be implemented by a

direct jump while the calls that are resolved to two targets can be implemented by

a conditional jump. These direct and conditional jumps are friendly to instruction

look-ahead. An instruction look-ahead improves the performance of the program

as compared to an indirect jump. This will result in a decrease in the execution

time of the program.

2.2.3 Virtual Call Resolution Techniques

In this section, we review some of the popular techniques available. The basic

requirement of all these virtual call resolution techniques is the construction of

a best possible call graph [2][1]. Constructed call graphs must be conservative

i.e. the graph must include an edge even if there is only a remote possibility of a

program taking that path. Some of these techniques are described in the next few

subsections

8

CHAPTER 2. RELATED WORK

2.2.3.1 Unique Name Analysis

Calder and Grunwald came up with the first technique to resolve virtual calls [5].

This technique was implemented and tested on C++ programs. They got the idea

from the fact that in many cases, there is only one definition for a particular method

signature in the whole program. Therefore, any possible call to this method has

only one possible target. This enables us to possibly inline that definition in the

code body and eliminate the virtual call. The biggest advantage of this technique

is that it can even be implemented on bytecode and does not need a flow analysis.

But there is also a disadvantage of not using flow analysis. There can be a case in

which there are multiple definitions of a method but these definitions are not in

the same class hierarchy. In that case, we should be able to resolve the call, but

this technique does not facilitate this.

2.2.3.2 Class Hierarchy Analysis

Craig Chambers et al. worked on the idea of Unique Name analyis and modified it

to give rise to the analysis called Class Hierarchy Analysis(CHA) [10]. They used

the concept of using class hierarchy to determine whether the classes in a hierarchy

have only one definition of the method called. They estimated the run time type

of an object by rules given below.

• The possible run time types of an object, having a declared class type, are

this class plus all subclasses of that class.

• The possible run time types of an object, having a declared inteface type, are

the classes implementing this interface or its subinterface and all subclasses

of these implementing classes.

To implement this analysis, they construct a call graph based on the class inher-

itance relationship. Each class has a set of methods defined in that class. The

possible run time types are inferred statically using the rules given above. Of the

possible run time types inferred, if there is only one definition of the method called,

then the method can be statically inlined in the program and the virtual call can

be eliminated. They showed that results obtained from this approach were fairly

satisfying when compared to other approaches available at that time although this

9

CHAPTER 2. RELATED WORK

approach was applied only on C++ programs which have a fairly small number of

virtual calls.

2.2.3.3 Rapid Type Analysis

Bacon and Sweeney extended Class Hierarchy Analysis to give rise to a new analysis

called Rapid Type Analysis(RTA) [3]. They used the fact that to have a method of

a class as a receiver, that class must be instantiated. It can be either instantiated

through its subclass constructor or by its own constructor. They refined the call

graph by eliminating those classes in the call graph which are not instantiated.

This analysis uses a pessimistic approach to construct a call graph. It takes in a

more conservative call graph from CHA and then removes non-instantiated classes.

The methodology used to implement RTA starts with the construction of a call

graph similar to the one constructed in CHA. Using this graph, visible methods

in each class are found. These methods can be those that this class defines or

are inherited from the base class. After this step, override and inherit sets are

computed. An override set is the set of classes that override a particular class’s

method while an inherit set is the set of classes that inherit a particular class’s

method. Then, a program virtual graph is constructed which records method

calling. This graph shows calls of both virtual as well as non-virtual type. If a

call is virtual, each edge has an extra label which contains possible run time types

with which this edge can be executed. In the last step, we will eliminate those

possible-class types from the labels which are not instantiated. If there is a virtual

edge with only one possible type in its label, we will statically inline that method

and erase the edge.

This approach performed better than Class Hierarchy Analysis. They showed

by doing experiments using seven benchmarks that Rapid Type Analysis is better

than CHA on most occasions. However,they did not analyze the whole application

i.e. including the library calls which makes this analysis incomplete as we will

show in our work.

10

CHAPTER 2. RELATED WORK

2.2.3.4 Variable Type Analysis and Declared Type Analysis

A main aim of designing virtual call resolution is that it should be simple but

still should only scale linearly to the size of the program. Sundaresan developed a

Variable Type Analysis(VTA) technique [31] which fulfilled this aim and was more

precise than Class Hierarchy Analysis and Rapid Type Analysis . In Variable

Type Analysis, each variable of object type represents a node.They implemented

this technique on the SOOT framework which is an intermediate representation

of the code similar to Java bytecode [32]. Intermediate representation of code is

converted from source code by compiling it to a class file.

This technique is a flow insensitive technique in the sense that it does not

worry about the order of the statements. VTA uses a flow graph where nodes

are variables of object type. Each node has its reaching type information with it.

Reaching type information is the set of possible types this object may represent.

A flow graph is constructed by first adding nodes to it. Every field in a class that

has an object reference will be added as a node. Then for every method in a class

add to the graph as nodes: every formal paramater and every local variable having

object type . For methods having return type, a node labeled return will be added.

Once all nodes are created, we add directed edges to this graph. A directed edge is

added from right hand side to left hand side whenever an assignment statement is

found in the program. Directed edges are also added with every method call. After

the flow graph is created, they initialize types for nodes. For intializing types, we

track statements of the type lhs= new C(). In this case, the C type is added to

the reaching type information of the node labeled lhs. When initializing process

ends, we propagate these types along the directed edges. In the end, we will have

the type information for every variable.

Another variation of this analysis is Directed Type Analysis(DTA) [31]. This

analysis is much simpler than Variable Type Analysis but is less precise than

VTA. In DTA, we use declared type of a variable as the node instead of using the

variable as the node. This puts every variable having the same declared type into

one node. Although DTA constructs smaller graph than VTA, its final output is

not as precise.

Both of these analyses have benefits when compared with RTA. These analyses

were able to reduce the size of the call graph by removing some methods. When

11

CHAPTER 2. RELATED WORK

compared with RTA in resolution of virtual calls, VTA is way ahead. In some

cases, VTA removes almost twice as many virtual calls.

2.2.3.5 Iterative Type Analysis and Extended Message Splitting

Chambers and Ungar proposed these techniques to compute the type of a variable

in a loop by repeatedly compiling them until a fixed point is reached [7]. They

implemented the techniques on their compiler called SELF [6]. Extended Message

Splitting is used to preserve the type information, which otherwise would have

been lost in the control flow merge, by duplicating all code between merge and

places that use the type information.

The compiler builds a mapping from variables names to types at each point in

the program. This mapping is changed or computed at each node in a control flow

merge. In a merge node, type information is constructed from the type mappings

for the incoming branch. The merge type is formed by merging incoming types

for this node. The merge type records identities of its constituent types instead

of just recording union of types. Whenever a message send is encountered in the

loop, if the type of the receiver of this message is a merge type then the message

is split across two copies of node from send node back to the merge point. The

receiver of each copy of split message send node has a more specific type allowing

the compiler to do message inlining.

In Iterative Type Analysis, type binding is used at the head of a loop. We

compare binding at the end of the loop to the head. If both of them matches, then

we have got to the fix-point. Otherwise, we will recompile the node with new type

information received from the end of the loop. If there is a message send inside a

loop, then both of these techniques are employed at the same time.

2.2.3.6 Type Feedback

The basic idea of type feedback is to get type information about a variable from

previous executions [12]. This information is fed back to the compiler. The type

feedback technique adds some code to a program to record the program’s type

profile for each call site. Based on information received from the feedback, the

compiler can easily estimate the type of a variable. This technique is more precise

12

CHAPTER 2. RELATED WORK

than earlier techniques discussed beacuse we get all the information by running a

program instead of only statically guessing it. Type feedback does not need any

data flow analysis.

When and what to recompile are the main questions in type feedback tech-

nique. To choose when to recompile, every method has its own counter. If the

counter value is larger than a certain limit, we will recompile the method. Besides

the counter value, some other factors in choosing what to recompile are increase in

information about the method we wish to recompile, how much more we want to

optimize the code. The results obtained from this technique shows huge improve-

ment in resolution of virtual calls as compared to other techniques but speed of

analysis still remains a big issue.

2.3 Exception Handling Analysis

This section reviews the work done by other researchers in the area of exception

handling. We review popular exception handling techniques and the work done to

handle exceptions using control flow analysis.

Ramsey and Jones[24] implemented four of the best known techniques for ex-

ception handling in a single framework using an intermediate language C--. They

categorized these techniques into two groups, Stack Unwinding and Stack Cutting.

2.3.1 Stack Unwinding

This technique walks through the stack method [11]. In this technique, when an

exception is raised, the compiler looks for a matching exception handler in the

current stack frame. If the matching exception handler is not found, the current

stack frame is cleared and the invoking method’s stack frame is restored. This

process continues until we find the matching exception handler or bottom of the

stack is reached. In case of the compiler reaching the bottom of the stack without

finding the matching handler, compiler’s default exception handler will catch that

exception. In this technique, when a method call is made, the compiler saves all

non-volatile registers for the calling method. When an exception is thrown and

13

CHAPTER 2. RELATED WORK

if we do not find the match handler in the current method, the compiler restores

these saved non-volatile registers or callee-saved registers of the invoking method

and releases any lock on the objects locked in the current frame. This technique

is also known as walking through the stack as it unwinds stack frames one by one

to find the matching exception handler.

2.3.2 Stack Cutting

This technique does not unwind the stack frames one by one. It uses a list of try-

catch block to find the matching exception handler and therefore directly restores

the stack frame of that handler. In this technique, a list is created which records all

the try-catch blocks. When an exception is raised, the compiler searches this list

to find the matching exception handler. After that, the compiler clears the current

stack frame, restores the callee-saved register of that handler and releases locks in

the current stack frame. This technique can be faster than the Stack Unwinding

if the distance between exception catch and exception thrown point is large. As

the Stack Cutting technique doesn’t walk through the stack, we do not need to

restore the callee-saved registers of every stack frame and can directly jump to the

matching exception handler’s stack frame. However, in applications throwing few

exceptions, Stack Unwinding performs better due to the increased overhead in the

Stack Cutting technique owing to creating the list of try-catch blocks.

2.3.3 Exception-Directed Optimization

Ogasawara et al.[22] observed that Stack Cutting is better when exceptions are

frequently thrown while Stack Unwinding is better when exceptions are rare and

there is no single technique available which is better in both the cases. They pro-

posed a new technique, called Exception-Directed Optimization (EDO),based on

profiling the program. EDO starts by profiling the program to find exception paths

that are hot. An exception path is the stack trace from the exception throwing

method to the exception catching method. All the exception paths are recorded

in a list.

14

CHAPTER 2. RELATED WORK

When an exception is caught by a path already in the list, the counter for that

path is incremented by 1. Otherwise we add the path to the list. After the program

has finished its execution, all the hot exception paths are analyzed and a decision

is taken about inlining the exception path into the code. Therefore, in the next

run of the program, the exception thrown will be caught without unwinding the

stack frames. They showed that their technique optimized the exception handling

process by a considerable amount.

2.3.4 Exceptional Flow Analysis

Choi et al.[9] implemented a variant of traditional control flow graph, factored con-

trol flow graph (FCFG), which is more compact and contains larger basic blocks.

In traditional flow graph, a basic block ends when an instruction throwing excep-

tion is encountered. But in FCFG, the basic block can contain multiple exception

throwing instructions and a control flow edge from this basic block is factored to

an appropriate block. As a result, basic blocks are larger and there is more scope

for local analysis. They performed local and global analysis using factored con-

trol flow graph to find reaching definitions and live variables to handle exceptions.

They have incorporated standard data flow analysis into their representation.

Jo and Chang[16] separated the exceptional flow analysis from the normal flow

analysis. They reasoned that the programs having mutual dependency between

normal flow and exceptional flow are rare and as a result, we can decouple both

these flows. They created an exception propagation graph which is similar to the

traditional control flow graph. In the exception propagation graph, nodes repre-

sents the methods. Edges are labeled with the exception thrown and there is edge

from the exception throwing method to the exception catching method. After cre-

ating this exception propagation separately, they merged the graph into standard

control flow graph. Therefore, if a method throws an exception, the exception

propagation graph is used, otherwise the standard control flow graph is used for

the analysis.

However, Robillard and Murphy[25] argued that that separating these flows

may have consequences. To improve robustness of a program, the developers need

15

CHAPTER 2. RELATED WORK

to know which exceptions can flow to a point in the program which is difficult for

large programs and the presence of unchecked exceptions in some languages. They

described a static analysis tool, called Jex, that provides a view of all exception

types and the handlers present at different points in the program. The input of Jex

is a java file and it outputs a .jex file which is easily readable. The tools determines

the point where an exception is generated, the points to which it is propagated

and the point where it is raised. Hence, using this tool we can easily analyze the

exception raising and the corresponding try-catch blocks in the program.

Chatterjee and Ryder[8] also proposed an approach to do points-to analysis

for programs containing exceptions. They also gave an algorithm that calculates

the definition-use pairs for all variables in the program incorporating exceptional

control flow path. The complexity of their algorithm is computed to be a polyno-

mial time with worst case complexity as O(n5). They proved that their analysis is

precise when the exceptions do not contain subtyping.

Shelekhov and Kuksenko[27] proposed an approach to make exception struc-

tures such as exception blocks at run time while doing data flow analysis. Prior

to their paper, all the researchers were either ignoring exceptional data flow or

were roughly merging data flow for exceptions with normal data flow. In their ap-

proach, implicit control flow for raised exceptions is represented explicitly in data

flow analysis.

Sinha and Harold[29] discussed the importance of control flow analysis for var-

ious application development related tasks and how an analysis can produce in-

correct results if the exceptions are not considered. They presented a technique

to construct representations for programs with explicitly thrown exceptions and

exception handling constructs. They presented an algorithm to use these represen-

tations to perform control flow analysis. They have included the exceptions in the

standard control flow graph. This is done by creating an outgoing edge from the

exception throwing node and then creating exceptional-exit nodes for the exception

types computed using type inference. They proved that the control dependence

analysis is affected by the presence of the exception handling constructs. Hence,

the control flow analysis must consider the exceptions to produce correct results.

16

Chapter 3

Materials and Methods

We covered two areas of Java programs in our work: Virtual Call Resolution and

Exception Handling. In virtual call resolution, we extended a popular existing

algorithm named Rapid Type Analysis to analyze all calls in the programs. We

also researched patterns in the programs regarding exception handling. Based on

those results, a new mechanism to handle exceptions is formally proposed.

In our work, we analyzed the programs statically to simplify them by resolving

virtual calls to monomorphic or bi-morphic calls. We also analyzed programs to

implement the exception handling mechanism more efficiently than the existing

mechanisms.

In the following section, we give an overview of the compiler we worked on.

Then we explain about how we have extended Rapid Type Analysis algorithm

in Section 3.2. After that we describe our setup to analyze exception handling

statically in Section 3.3. In Section 3.4, we explain the process of instrumenting

code to get run time statistics of programs. This chapter closes by proposing a

formal mechanism to handle exceptions.

3.1 Our Compiler

We are working on a compiler called OptiJava. OptiJava is an upfront compiler

that reads .class files and then compiles them to native executable code. It uses

code coagulation technique for compilation [20][17]. It is currently under active

development.

17

CHAPTER 3. MATERIALS AND METHODS

1 public class A{

2 void foo(){

3

4 }

5 }

6 public class B extends A{

7 void foo(){

8

9 }

10 }

11 public class C extends A{

12 void foo(){

13

14 }

15 }

Figure 3.1: Class hierarchy and methods example code

OptiJava first loads in the .class file and converts the code into basic blocks.

A basic block is a sequence of instructions in which the first instruction is an

entry point while the last instruction is an exit point. The compiler will not

load any method which is not reachable during some possible run of the program,

i.e., a method in source code having no call to a method similar to its name or

outside the hierarchy logic explained in the next paragraph will not be loaded. This

loading process is completed before the code coagulation compilation step. Code

coagulation gives us a sequence of compiled instructions which are then converted

into machine code using the code generation step.

While loading a virtual call instruction, every possible method is loaded, i.e.,

the compiler loads methods of all subclasses of the class type referenced by that

instruction. For example, if we have the class hierarchy and methods as shown

in the code in Figure 3.1. Consider an INVOKEVIRTUAL instruction to method

foo with declared type of A. We will load the foo method of class A as well as the

foo methods of classes B and C. The loading of all possible methods is required to

maintain a conservative call graph, which will be used in the virtual call resolution

algorithm. We also record all classes instantiated by NEW instructions. This helps

in determining live call instances in the call graph.

18

CHAPTER 3. MATERIALS AND METHODS

3.2 Virtual Call Analysis

We have used the Rapid Type Analysis(RTA) algorithm to resolve svirtual calls.

RTA looks at class hierarchy and resolves all those calls that have only one or two

definitions of the same method in a single hierarchy. It uses the additional fact

that a call to a method is only possible if that class is instantiated.

One limitation of Rapid Type Analysis, as described in [3], is that it does not

analyze library calls. The reason for the exclusion of library calls is that the authors

of RTA were analyzing source code to create a call graph. This would result in

analyzing huge numbers of methods if they were to include library calls in their

technique. We do not have this problem since we are analyzing using bytecode.

As mentioned in the overview of our compiler, the compiler doesn’t load all the

methods in a class and loads only those methods that are possible to reach in a run

of the program. This has helped us in extending Rapid Type Analysis to analyze

library calls as well. We have also extended the algorithm to resolve calls that

have two possible targets using type intersection.

We will now explain the creation of data structures using steps from the original

RTA algorithm. Then, we explain our extension of the second and third steps of

that algorithm, eliminating non-live instances and resolving calls.

3.2.1 Constructing Data Structures

The first step of virtual call analysis is to create conservative call graph instances.

Algorithms 1, 2 and 3 create the call graph instances. Algorithm 1 creates a set

of visible methods using the class hierarchy. The visible method set is a set of

tuples, < c,m, d >, where m is a method, c is a class in which m is visible and d

is a class in which m is defined. Initially, the visible-methods set is empty. Line

2 of Algorithm 1 assigns topological numbers to all classes in such a way that the

number for a class is greater than number for its parent class. Line 4 adds initial

tuples of visible methods to the visible methods set. It goes through all the meth-

ods of every class creating tuples with visible-class and defining-class referring to

the same class.

Lines 6-16 of the algorithm traverse through every class starting from the root

class and check every parent-child subset represented by elements of D. In the case

19

CHAPTER 3. MATERIALS AND METHODS

Algorithm 1 Algorithm to BuildCHG (C,M,D) (as in [3])

1: V ⇐ φ
2: assignTopologicalNumbers(D)
3: for all m ∈M do
4: V ⇐ V ∪< ClassOf (m),m,ClassOf (m) >
5: end for
6: for i = 1 to NumberofClasses do
7: Let c ⇐ x ∈ C : TopNum(x) = i
8: for all b ∈ C : < b, c > ∈ D do
9: for all m ∈ M , d ∈ C : < b,m, d > ∈ V do
10: if ∃n∈M,e∈C < c, n, e >∈ V andSig(m) = Sig(n) then
11: if TopNum(d) > TopNum(e) then
12: V ⇐ V − {< c, n, e >}
13: V ⇐ V ∪ {< c,m, d >}
14: end if
15: else
16: V ⇐ V ∪ {< c,m, d >}
17: end if
18: end for
19: end for
20: end for

of both child and parent class having a visible method with the same signature but

defined by different classes, we use the topological number assigned to each class

to find out the class which defines the visible method. The class with a greater

number is deemed to be the class with more specific definition, i.e. the method

defined in a class with greater number overrides the method defined in a lower

numbered class and hence tuples are modified as shown in lines 12-16.

The next step in creating virtual call graph instances is to create inherit and

override sets. The inherit set contains all those classes that inherits a particular

method while the override set contains all those methods that overrides a particu-

lar method. These sets define boundaries for a particular method. The inherit set

is used to find out possible types that can invoke a method. The BuildFrontier

algorithm is used to create these sets. Initially, for every visible method tuple

constructed in the previous algorithm, the inherit set contains the visible class of

that tuple and the override set is empty.

20

CHAPTER 3. MATERIALS AND METHODS

Algorithm 2 Algorithm to BuildFrontier (C,D, V) (as in [3])

1: for all v ∈ V do
2: Let< c,m, d > = v
3: Override(v)⇐ φ
4: Inherit(v)⇐ {c}
5: end for
6: for i = NumberofClasses to 1 do
7: Let c ⇐ x ∈ C : TopNum(x) = i
8: for all m ∈ M , d ∈ C : < c,m, d > ∈ V do
9: Let v =< c,m, d >
10: for all b ∈ C : < b, c > ∈ D do
11: if ∃n∈M,e∈C < b, n, e >∈ V andSig(m) = Sig(n) then
12: Let w =< b, n, e >
13: if d = e then
14: Inherit(w)⇐ Inherit(w) ∪ Inherit(v)
15: Override(w)⇐ Override(w) ∪Override(v)
16: else
17: Override(w)⇐ Override(w) ∪ {v}
18: end if
19: end if
20: end for
21: end for
22: end for

Algorithm 2 starts from a leaf node and goes all the way up to the root node.

Lines 8-13 compare visible method tuples in the parent class with tuples in the

child class and if a pair of tuples is found having the same method signature, we

check the defined-class value of that tuple. If the defined class is the same for both

the tuples, then the inherit set for the parent class is updated by adding the child

class to the set. Otherwise the inherit set remains the same. The override set is

updated in both the scenarios as shown in lines 15 and 17.

After constructing inherit and override sets, we move on to construct a Program

Virtual Graph(PVG). The Program Virtual Graph consists of call-instance edges

which define the characteristics of a particular call. A call instance is a tuple

< s, f, t, P > where

• s is a call site in the program.

21

CHAPTER 3. MATERIALS AND METHODS

Algorithm 3 Algorithm to BuildPVG (
∑

D,
∑

V) (as in [3])

1: I ⇐ φ
2: for all < s, f, g >∈ ∑

D do
3: I ⇐ I ∪ {< s, f, g,⊥}
4: end for
5: for all < s, f, v >∈ ∑

V do
6: addVirtualInstances(s, f, v)
7: end for
8:

9: addVirtualInstances(s ∈ SV , f ∈ F, v ∈ V)
10: Let< c,m, d >= v
11: if < s, f,m, Inherits(v) >∈ I then
12: return
13: end if
14: I ⇐ I ∪ {< s, f,m, Inherits(v) >}
15: for all w ∈ Override(v) do
16: addVirtualInstances(s, f, w)
17: end for

• f is the calling method at call site s.

• t is a target method that can be possibly reached from the call site s.

• P is a list of possible class types upon which this instance can be invoked i.e.

t is a possible target method only if the actual object type is among this list

of classes. P = ⊥ for direct calls.

Algorithm 3 divides calls into two groups: direct calls and virtual calls. Call

Instances of direct calls are easy to make as the target method is already known

for these calls. But for virtual calls, we use inherit and override sets to create call

instances. Lines 9-17 of the algorithm create call instances for all the call sites

that are virtual.

v, in Line 10, is a visible method tuple depending upon the static type of the

call i.e a tuple having visible-class as static-type of the call or its subclass. Line

11 checks whether the call-instances set has the particular call instance or not. If

true then no action is taken, otherwise it adds the particular call instance to the

22

CHAPTER 3. MATERIALS AND METHODS

Algorithm 4 Algorithm to RemoveNonLiveInstances (I) (derived from[3])

1: flag ⇐ false
2: Method⇐ φ
3: for all i ∈ I do
4: Let < s, f, t, P >⇐ i
5: for all p ∈ P do
6: if isInstantiated(p) then
7: flag ⇐ true
8: end if
9: end for
10: if flag = false then
11: I ⇐ I − {i}
12: Method⇐Method ∪ t
13: end if
14: flag ⇐ false
15: end for
16:

17: for all i ∈ I do
18: Let < s, f, t, P >⇐ i
19: if Method ∩ f 6= φ then
20: I ⇐ I − {i}
21: end if
22: end for

set. Line 16 recursively calls addVirtualInstances method for all elements of

the override set corresponding to tuple v.

3.2.2 Removing Dead Instances and Resolving Calls

We have constructed a virtual call-instances set in the previous sub-section. But

this call-instances set contains some instances in which no class (in possible class

types element) is instantiated. A class is said to be instantiated only if new method

is called for that class. Class instantiation due to instantiation of child class is not

deemed as instantiation in our algorithm. In our compiler, whenever we encounter

a new() instruction, we add an instantiated class tag to that class. This tag is

used to remove dead instances in Algorithm 4.

To remove dead instances, we iterate over all the call instances set I. For every

element of that set, we get a list of possible class types, i.e. P. If at least one of

23

CHAPTER 3. MATERIALS AND METHODS

Algorithm 5 Algorithm to ResolveCalls (SV , I) (derived from[3])

1: Let S1 ⇐ φ, S2 ⇐ φ,inferredType⇐ φ,Q⇐ φ
2: for all s ∈ SV do
3: inferredType ⇐ s.DeclaredTargetMethodType().getAllSubClasses()
4: for all s :< s, f, t, P >∈ I do
5: if P∩inferredType 6= φ then
6: Q⇐ Q+ 1
7: end if
8: end for
9: if Q = 1 then
10: S1 ⇐ S1 ∪ {s}
11: else if Q = 2 then
12: S2 ⇐ S2 ∪ {s}
13: end if
14: end for

the classes in P has an instantiated tag, then the call instance element is live. If

we determine that the call instance is dead i.e. no class in P is instantiated, then

we remove that call instance from the set and also add the target-method value of

this instance to the Method set.

After we have iterated over the call-instance set once, we iterate over that set a

second time. This time we check for calling-method value of call instance elements.

If we encounter a calling method value of the call instance that is contained in the

Method set, then we remove that call instance from the original call instance set.

This is because if a method is deemed to be unreachable from the first iteration,

then all the call sites that are in the unreachable method are dead as well.

After we have eliminated dead instances, we implement the final step of virtual

call analysis, i.e. type intersection to find out the resolved call sites. In this step,

we check for intersection between inferred types from declared static type of object

at call sites and list of possible class types for a call instance. Line 3 of Algorithm

5 calculates the inferred types for a virtual call site. Inferred types consist of

declared object type at call site and all subclasses of this declared object type.

The getAllSubClasses method in that line returns subclasses of the declared

type as well as the transitive closure of the subclasses of the declared type.

The call instances set contains multiples call instances with the same call site.

So, for every virtual call site, we first find all the call instances with the same

24

CHAPTER 3. MATERIALS AND METHODS

call site. Then for instances with the same call sites, we intersect inferred types

with the list of possible class types obtained from the call instances individually

as shown in Lines 4 and 5. If we find only 1 instance for a particular call site

with non-empty intersection result, then that call site is recorded as resolved to

one target method. If we find 2 instances for a particular call site with non-empty

intersection result, then that call site is recorded as resolved to bi-morphic call

site i.e two target methods. All the calls sites with more than 2 instances having

non-empty intersection result are not resolved. The resolved call sites can then be

converted to monomorphic or bi-morphic calls (and possibly inlined) to reduce the

number of dynamic method calls in the program, thereby improving performance

and reducing code size of the program.

3.3 Exception Handling Analysis

Java programs do not always behave as they are supposed to. There can be

anomalies while running a Java program. These anomalies are called exceptions.

If exceptions happen in an application, they tend to crash the whole application.

Therefore, it is important to catch these exceptions and do some safe operations

that prevents the application’s crash. This mechanism of catching exceptions is

called exception handling.

Exceptions are considered to be low frequency events in Java programs, but

there are some applications such as searches where exceptions are considered as a

tool to do short circuit evaluations. Hence, there is a need to implement excep-

tion handling more efficiently to improve the performance of programs with large

number of exceptions.

3.3.1 Exception handling in JVM

The Java programming language has try-catch-finally blocks to handle exceptions.

These blocks are placed around the code which is expected to raise exceptions. If

code inside a try block raises an exception, the JVM checks for a matching catch

block. A matching catch block is a catch block whose handling catch type is either

the exception raised or a super class of the exception raised. If a matching block

25

CHAPTER 3. MATERIALS AND METHODS

is not found in the current method, then it searches for matching catch block in

the calling method and so on until it finds a matching catch block. If a matching

catch block is not found in the user written program, then the default catch block

of the runtime environment handles it by printing out the call stack.

According to the JVM specifications[19], if a matching exception handler is not

found in the current method, then JVM clears the current method’s stack frame

and reinstates the invoking method’s frame and the exception is re-thrown in the

reinstated stack frame’s context. If a matching handler is not found even in the

invoking method then its stack frame is also cleared and the stack frame of its

invoking method is restored. This process goes on till we find a matching handler

or bottom stack frame is reached. This process of clearing stack frames one by

one is called stack unwinding. Conventional compilers use this stack unwinding

approach. Stack unwinding is a very inefficient approach if the distance between

the exception raising stack frame and the exception handling stack frame is large.

In the following subsection, we will statically analyze the exception handling.

We have set up experiments to determine the number of times we have to cut the

stack to find a matching exception handler. We have also performed experiments

to find the feasibility for a new mechanism which is proposed in section 3.5.

3.3.2 Stack Unwinding and Stack Cutting Approaches

In this subsection, we give an overview of what happens inside the compiler in both

of the techniques. In the Stack Unwinding technique, during the normal execution:

• If there is a method call, the compiler saves registers and then goes to the

called method.

When an exception is thrown:

• The compiler saves the current register state and searches for a suitable

handler in the current stack frame.

• If a suitable handler is not found in this method, the current stack frame is

cleared and the invoking method’s stack frame is reinstated.

• At each unwind, the saved register state is restored to the state associated

with frame which is being reinstated.

26

CHAPTER 3. MATERIALS AND METHODS

• If the matching handler is found in a stack frame, the compiler starts execu-

tion from the start of the shandler PC.

• If the bottom stack frame is reached and no matching handler is found,

control is passed to the run-time environment to handle the exception using

the default handler.

In the Stack Cutting technique, during normal execution:

• On entry to a try-catch block, the block is added to the list of exception

handlers.

• If there is a method call, the compiler saves registers and then go to the

called method.

When an exception is thrown:

• The compiler saves the current register state and searches in the list for the

matching exception handler starting with most recent try-catch block.

• If try-catch block does not match with the exception thrown, the block is

popped from the list and the next try-catch block in the list is compared for

the matching handler.

• If the matching handler is found in the list, the current stack frame is cleared

and the stack frame associated with that handler is reinstated.

• The saved register state is restored to the state associated with frame having

the handler.

• If no matching handler is found in the list, the control is passed to the run-

time environment to handle the exception using the default handler.

3.3.3 Static Exception Handling Analysis

We have divided this analysis into two categories. The first category analyzes

whether there is a direct path from where the exception is raised to the exception

handler. A direct path is defined as a path where there is only one path available

27

CHAPTER 3. MATERIALS AND METHODS

from the exception point to the catch point and there are no methods in that

path that are recursive (strongly connected components of the call graph). This

analysis helps us in understanding the patterns related to an approach similar to

stack cutting. The second category will analyze the number of catch blocks in a

single program. The patterns obtained from second category analysis is used to

propose a new mechanism.

3.3.3.1 Direct Path Analysis

Direct Path analysis determines if there is a direct path from the exception point

to the exception handler. If there is no direct path, then we find out how many

strongly connected components (SCC)1 of the call graph or methods with multiple

incoming edges there are between the exception handler and the exception raising

point.

The first step of this analysis is to construct a directed call graph. This call

graph has its root at main() and method calls represented as edges. If there are

multiple calls from a single method, then that method will have multiple outgoing

edges. Once the call graph is constructed, we identify SCC’s in the graph. The

reason for identifying SCC’s is that since methods in a strongly connected com-

ponent are recursive, we can not be sure about the number of stack frames in the

SCC and cannot trace a definite path to the catching environment. Therefore, we

need to unwind the stack frames one by one until we find a matching handler or

we get out of the SCC. We have used the Depth First Search (DFS) algorithm to

identify SCC’s. Firstly, we do the depth first search in reverse order. We reverse

the edges of the graph and perform DFS on the reversed path. In the second

pass, we do the DFS on the original graph with decreasing post number for nodes

obtained from DFS on the reversed graph. The post number is a number given to

every node in the DFS. The post number follows a property that “if C and D are

strongly connected components, and there is an edge from a node in C to a node

in D , then the highest post number in C is bigger than the highest post number

in D”. The strongly connected component algorithm is summarized as follows:

1A strongly connected component of a directed graph G is a maximal set of vertices C ⊆ V
such that for every pair of vertices u and v, there is a directed path from u to v and a directed
path from v to u”[21].

28

CHAPTER 3. MATERIALS AND METHODS

• Perform DFS(GR) ,where GR is reversed graph, to find ordering of nodes.

• Perform DFS(G) on graph G by considering vertices in decreasing order of

the post numbers obtained from previous step.

• A set having number of vertices greater than 1, obtained from each tree after

DFS in previous step, is an SCC for our analysis.

The next step in our analysis is to create a catch environment around each method

node. Fig. 3.1 shows an example of catch environment created for the call graph.

A, B, C, D etc. are nodes representing the methods. C1, C2, C3 etc. are call sites

while ce1, ce2, ce3 etc. are the exception handlers for these call sites respectively.

In the graph there are 3 categories of lists:

• Catch Classes: is a list of all exception handlers to which a call site have a

direct path .

• Union Classes: is a list of exception handlers for a node having multiple

incoming edges out of which at least one edge is not from the node contained

in the same SCC as this node.

• SCC Catch Classes: is a list of exception handlers available in a SCC

corresponding to a particular node.

The process to create these lists are as follows:

• Add an exception handler object for a call site to the Catch Classes list of

that call site.

• Starting from main method, for every call, if the called method doesn’t have

multiple incoming edges and is not a part of a SCC, add all elements of the

catch classes list of the calling site to the catch classes list of all the call sites

of called method.

• But if the called method has multiple incoming edges and the called method

is not in the same SCC as the calling method, then add the exception handler

of the calling site only to the union classes of the called method’s call sites.

29

CHAPTER 3. MATERIALS AND METHODS

Figure 3.2: Figure showing catch environment needed for our analysis

30

CHAPTER 3. MATERIALS AND METHODS

• Else if both the calling method and the called method are in same SCC, then

add all the elements of scc catch classes of calling method to the scc catch

classes list of all the call sites of called method.

• Traversing of call edges should be breadth first to maintain the order of the

exception handler’s occurence.

Suppose we have an exception raised in method D and we have a matching handler

in the main method. As D is a part of a SCC, it will check for SCC catch classes

i.e. whether any of the exception handlers ce4,ce5 or ce6 is a matching exception

handler. As a matching handler is not found, we unwind one stack frame and

move to call site C4 of method C. Now as it is a node having multiple incoming

edges out of which at least one edge is not from the node contained in same SCC

as this node, we check for Union Classes recorded at this node for a matching

exception handler. As a matching handler is still not found, we unwind another

stack frame. We clear the current stack frame and move on to the stack frame of

handlers recorded in Union Classes of that method. This means we now have a

stack frame of either ce3 or ce5. Suppose we have unwound to ce3, then we have a

direct path to the matching handler in main method as found in Catch Classes

of call site C3.

For the above example, the stack unwinding approach would have unwound

through 1 SCC and 4 other simple unwindings. The Stack Cutting would have

unwound 6 stack frames to find a matching handler. Our analysis shows we need

to unwind stack frames through 1 SCC and 2 other simple unwinds. Thus, our

approach would have saved some time to unwind to the matching handler even in

this example with atypically many try-catch handlers.

3.3.3.2 Analyzing catch categories

Analyzing catch categories determines the number of catch blocks initialized in a

program. We have proposed an exception handling mechanism described in Section

3.5 based on patterns obtained from this analysis.

The analysis starts with recording catch block characteristics as we encounter

a catch block while traversing the call graph. The characteristics recorded are the

catching class for that block and the number of similar catch blocks already in the

31

CHAPTER 3. MATERIALS AND METHODS

program. After we have recorded all the catch blocks in the program into our data

structures, we analyze the patterns in these characteristics. The analysis finds the

following patterns in the program:

• How many categories of exception classes are there in the whole program.

• How many catch blocks are there for a particular exception class in the whole

program.

• How many catch blocks of the subclasses are there for a particular exception

class in the whole program.

We will describe the point of finding these patterns in Section 3.5, where we explain

our proposed exception handling mechanism.

3.4 Instrumenting Java Code for Run-Time Anal-

ysis

We have described our approaches to the static analysis in the previous sections.

But we need to compare our static analysis statistics with run time statistics to

prove the actual usefulness of our static analysis2. For this purpose, we have in-

strumented the code to get the run time analysis. We have added extra code to the

actual code in a java program. This extra injected code gives us statistics when

the program runs. We have used the Byte Code Engineering Library (BCEL)[4]

to instrument the code. The instrumentation process for our code is divided into

two parts: instrumenting for virtual calls analysis and instrumenting for exception

analysis.

We have made our own class, StatRecord, to record the information from

the instrumentation process. The StatRecord class has five static methods namely

recordCatchInitialize, recordCatch, recordThrow, VirtualCallsRecord and

print. The recordCatchInitialize method is called whenever a try-catch block is

encountered. The recordCatch method records the call stack at the point of ex-

ception catch while the recordThrow method records the call stack at the point

2Our compiler is not yet generating code

32

CHAPTER 3. MATERIALS AND METHODS

of exception thrown. The VirtualCallsRecord method is called whenever a virtual

method call happens and records the information as to whether the call is resolved

or not. The print method is called at the end of a program execution to print out

statistics about the analysis.

Firstly, we have instrumented code to get the virtual call analysis results at

run time. We get a list of call sites resolved to one target, two targets or more

than two targets from our static analysis of virtual calls. To instrument the code

we need to go through the instruction list of the calling method and wherever we

find INVOKEVIRTUAL or INVOKEINTERFACE instruction, we add code

before the instruction.

BCEL provides us with ClassGen and MethodGen classes to manipulate a

class or a method of a given program. The MethodGen class has a method called

getInstructionList() which gives the instruction list of that method. Now, we

go through our static analysis result and instrument the code into the calling

method of each call site which is statically analyzed. The code snippet for making

a MethodGen object and getting instruction list is shown in Figure 3.3.

After getting the instruction list of the method, we iterate through the instruc-

1 MethodGen theMethod = new MethodGen(method , className

,constantpoolgen);

2 InstructionList ilist= theMethod.getInstructionList ()

;

Figure 3.3: Code showing how to get instruction list using BCEL

tion list. When we find an instruction that is equal to the instruction representing

our analyzed call site, we add an instruction which calls the VirtualCallsRecord

of class StatRecord. The VirtualCallsRecord method has an argument which rep-

resents whether the call site has been resolved to one, two or more than two targets.

The code showing the instructions added is shown in Figure 3.4:

In the above code, the LDC instruction pushes a resolvedCount variable to

the stack which is then used by INVOKESTATIC instruction as its argument. If

a call site has been statically resolved to one target, then resolvedCount = 1 or

if a call site has been resolved to two targets, then resolvedCount = 2. Resolved

Count = 3 for more than 2 targets possible for a call site. The VirtualCallsRecord

33

CHAPTER 3. MATERIALS AND METHODS

1 Iterator iterator= ilist.iterator ();

2 while(iterator.hasNext ()){

3 InstructionHandle ih = (InstructionHandle)iterator.

next();

4 if(ih.getInstruction ()== callSite.getInstruction ()){

5 ilist.append(new LDC(pgen.addInteger(resolvedCount)

));

6 ilist.append(new INVOKESTATIC(pgen.addMethodref ("

StatRecord "," virtualCallsRecord ","(I)V")));

7 }

8 }

Figure 3.4: Code showing how to instrument a call site

method keeps a counter which keeps track of number of calls resolved to one, two

or more than two targets and we print out these numbers when the program has

finished its execution.

After instrumenting the code for the virtual call analysis, we then instrument

the code for exception handling analysis. For instrumenting exception handling, we

extract the exception table for a method using the MethodGen class. MethodGen

class has a getExceptionHandlers method, which gives a starting instruction

handle and an ending instruction handle for a try block. When going through the

instruction list if we find an instruction handle equal to the starting instruction

handle of an exception handler of that exception table, we instrument the code at

that point to indicate an initialization of the catch block. The code instrumented is

an instruction calling recordCatchInitialize of our analysis code . This method

has one argument, which is the type of exception class handled by the catch block

initialized.

After instrumenting the catch block initialization, we instrument the code at

the point where the exception is thrown and at the point where exception is caught.

The code for that is shown in Figure 3.5.

In the first if statement, we record the thrown exception object in our code

while in the next if statement, we have made a new exception object at every

catch block with the same exception catch type as this block can handle. We then

record this newly created exception object in our analysis code. To get the number

34

CHAPTER 3. MATERIALS AND METHODS

1 if(ih.getInstruction () instanceof org.apache.bcel.

generic.ATHROW){

2 ilistNew.append(new DUP());

3 ilistNew.append(new INVOKESTATIC(pgen.addMethodref ("

analysis.StatRecord", "recordThrow", "(Ljava/lang

/Throwable ;)V")));

4 }

5 if(ih==ceg.getHandlerPC ()){

6 ilist.append(new NEW(pgen.addClass ("java.lang.

Throwable ")));

7 ilist.append(new DUP());

8 ilist.append(new INVOKESPECIAL(pgen.addMethodref ("

java.lang.Throwable", "<init >","()V")));

9 ilist.append(new INVOKESTATIC(pgen.addMethodref ("

analysis.StatRecord", "recordCatch", "(Ljava/lang

/Throwable ;)V")));

10 }

Figure 3.5: Code showing how to instrument exception handling process

of stack frames unwound in the actual program while handling an exception, we

subtract the length of call stack for the newly created exception object from the

call stack length of the object thrown by instruction ATHROW.

We do not need to do any extra instrumentation to get run time results of our

‘direct path’ static analysis. We have used the call stack obtained from the above

recorded throw and catch objects to do the direct path analysis.

3.5 Display Catch Exception Handling

In this section, we discuss our proposed mechanism the aim of which is to make

exception catch cheaper. Our mechanism uses a table containing an entry for each

catch category. This entry is a pointer that points to Catch Save Block(CSB) on

the stack. The CSB contains information about the stack to be used on a throw.

The table used by our mechanism is shown in Figure 3.2.

Our mechanism starts with reserving a space on the display catch table for every

exception class which has a specified catch block in the program. In a run of the

35

CHAPTER 3. MATERIALS AND METHODS

........

.........

java.io.EOFException

java.lang.Error

java.io.IOException

java.lang.Throwable

java.lang.Exception

Display Catch Table

Link to CSB

Exception Handler

Restore Stack

Catch Save Block

Figure 3.6: Figure showing Display Catch Table

program, whenever we execute a try-catch block, we initialize a CSB on the stack.

The CSB contains the stack pointer for restore, an exception handler address and

a link to the previous CSB which is the current entry in the display catch table

for the particular class handled by this catch block. Then, we store the address of

the Catch Save Block into the class’s spot in the table.

Now, when we encounter an exception throw, we reference the display catch

table entry for the exception thrown. The address pointed to by the entry is then

compared with the address pointed to by the Display Catch Table entry for all

super-classes of the thrown exception class. The address which is highest on the

stack i.e. nearest catch block of the class or its super-class is determined to be the

exception handling block.

The previous CSB link saved in the Display Catch Table is used to reconstruct

the display catch table once we have restored the stack to the matching exception

handler. We update the entry in the table for the current exception thrown class to

the address found at the back link portion of the saved address. All other entries

in the table are also updated using back link of their respective entries, until we get

all entries in the table pointing to an address lower than the current stack address.

36

CHAPTER 3. MATERIALS AND METHODS

This mechanism aims to make catch handling more efficient than both stack

cutting and stack unwinding. As we can go straight to the matching exception

handler’s stack frame without unwinding the stack frames in between, it makes

this approach more efficient for exception catching. Although it results in more

overhead due to registering of catch blocks than the stack unwinding approach, will

be faster due to less stack unwinding. When compared with stack cutting, overhead

for registering catch blocks is the same because stack cutting also registers a list

of all catch blocks. But our approach will result in fewer stack frames unwound

resulting in performance improvement. We can analyze the resulting overhead

using a static analysis of catch categories.

As mentioned in section 3.3.2.2, we look for the following information:

• Number of the exception classes in the program for which a catch block

exists.

• Number of the catch blocks for a particular exception class.

• Number of the super classes for each exception class.

The number of the exception classes determines the size of the display catch table.

A small number of exception classes will indicate that we have to reserve less mem-

ory for the table. The dynamic number of catch blocks for a particular exception

class indicates the maximum number of times we will have to update the entry

for a particular class in the table. The overhead will remain low if the number of

catch blocks is small as we then have to update the entries less frequently. The

last part of catch categories analysis is establishing the number of super classes for

each exception class. This gives an estimate of how many comparisons we have to

do to get a matching handler. As discussed earlier, when an exception is thrown,

we compare the address found at a particular exception class Display Catch Table

entry with the addresses at the entry of super classes to find the address nearest

the top of stack. So, a small number of super classes for the entry class will result

in fewer comparisons.

37

CHAPTER 3. MATERIALS AND METHODS

3.5.1 Display Catch Exception Approach

In section 3.3.2, we discussed what the compiler does in the Stack Unwinding and

Stack Cutting techniques. Now, we will discuss what the compiler will do in our

proposed mechanism.

In our proposed mechanism, during normal execution:

• If the execution enters a try-catch block, the address of the Catch Save Block

created for this try-catch block is stored in the Display Catch Table at the

spot of the exception class handled by this block.

• If there is a method call, the compiler saves registers and then goes to the

called method.

If an exception is thrown, our mechanism handles the exception by the following

steps:

• The compiler saves the current register state and references the Display Catch

Table for the thrown exception class.

• The address at the entry of the thrown exception class is compared with the

address at the entry of its super classes and the handler having address closer

to the current top of stack address is deemed to be the matching handler.

• The Display Catch Table is restored to the state associated with the re-

instated frame by using the back link of the Catch Save Block for every

exception class in the Table.

• The address of the back link is compared with the target stack frame address

and the back links are traversed recursively until all the entries in the Display

Catch Table have lower address than the target stack frame address.

• After that the current stack frame is cleared and the stack frame at the target

address is reinstated.

• If no matching handler is found in the table, control is passed to the run-time

environment to handle the exception using the default handler.

38

CHAPTER 3. MATERIALS AND METHODS

3.6 Benchmarks

We have experimented on the following Java applications to obtain results dis-

cussed in the next chapter:

• JavaCC is a Java parser generator [14], previously known as jack.

• Pizza is a compiler which compiles Java programs [23].

• SableCC is a compiler front end written in Java[26].

• Compress is a compression method based on Lempel-Ziv method and is

part of the specJVM2008 benchmark [30].

• Jlex is a lexical analyzer generator written in Java [15].

• JavaBinHex is a binhex decompressor in Java [13].

• Javac is also a compiler which compiles Java programs. It is a part of

specJVM98 benchmark set.

We have used the first six benchmarks to experiment with the virtual call analysis.

The reason for not experimenting with Javac in the virtual call analysis is that

Javac is a part of the library in Java programming. Therefore, it is not possible

to get the comparison of only the benchmark code v/s the whole application.

We have ignored the JavaBinHex and JLex benchmarks for the experiments

with Direct Path Analysis as these benchmarks throw no exceptions. We have

ignored only the JavaBinHex benchmark for the analyzing catch categories analysis

due to the lack of a sufficient number of catch blocks needed to analyze in the

benchmark.

39

Chapter 4

Results

In this chapter, we discuss results of the analysis described in chapter 3. This

chapter is divided into two sections; the first section discusses the results of virtual

call resolution analysis while the second section discusses the results of exception

handling analysis.

4.1 Virtual Call Analysis Results

In this section, we discuss the results obtained after experimenting with the virtual

call analysis on the benchmarks discussed in Section 3.6.

Table 4.1 summarizes the static results of the virtual call analysis. The ‘Bench-

mark Code Only’ column contains the statistics for analysis without including li-

brary calls while the ‘Whole Application’ column has the analysis results including

the library calls. The JavaBinHex and Compress programs after analyzing only

the benchmark code have all their call sites, except one, resolved to one target

statically. With the inclusion of library calls in the analysis, the call sites resolved

to one target drops to about 80% of the total call sites.

All other programs exhibited behavior similar to each other. The number of

call sites resolved to one target ranges between 80-90% without including the li-

brary calls. The static analysis including the library calls experiences a drop in

resolving to one target percentage but still the percentage remains in the 80’s even

after the drop. This means that libraries are little more polymorphic statically

than the benchmark’s code.

40

CHAPTER 4. RESULTS

Name
Benchmark Code Only Library Whole Program
mono bi poly mono bi poly mono bi poly

JavaBinHex 118 0 1 10383 615 2130 10501 615 2131
Compress 100 0 1 10632 618 2125 10732 618 2126
JavaCC 8831 135 1177 10481 617 2147 19312 752 3324
Pizza 4790 200 450 14247 691 2674 19037 891 3124
SableCC 7761 124 1182 10255 770 2168 18016 894 3350
Jlex 855 32 25 10399 615 2131 11254 647 2156

Table 4.1: Static numbers for virtual call analysis

Figure 4.1: % statically resolved call sites

Another interesting statistic that needs to be observed in the static analysis is

the number of bi-morphic call sites in the program. The bi-morphic call sites in

the benchmark code only ranges from being about half the number of call sites not

found to be monomorphic in Jlex to being about 10% of the total call sites not

found to be monomorphic in JavaCC and SableCC. When we include the library

calls in the analysis, the bi-morphic calls sites are about 20% of the polymorphic

calls for all the benchmarks. This means that a considerable number of call sites

not found to be monomorphic can be resolved to two targets. Figure 4.1 visualizes

the numbers in Table 4.1.

41

CHAPTER 4. RESULTS

Figure 4.2 shows the number of monomorphic or bi-morphic call sites during

a run of the program. This figure shows the percentage of call sites resolved in

the program. In the figure 4.2, we see that the analysis resolves all of the call

sites to one target in JavaBinHex and Compress and about 94% of the call sites

to one target in Jlex, when analyzing only the benchmark code. The percentage

of call sites resolved to one target is between low to mid 80’s for all the other

benchmarks. The figure 4.2 also shows that there are 7% call sites out of the 18%

non-monomorphic call sites in the Pizza benchmark, for only the benchmark code,

that are bi-morphic in nature. For Jlex, the percentage of bimorphic call sites is

about 4% out of the total 7% non-monomorphic call sites.

Figure 4.2 shows less variance in the percentage of resolved call sites in the

benchmarks after including the library calls. All the benchmarks including the

library have the percentage of the monomorphic call sites in the 80’s. For JavaCC,

the percentage of resolved call sites is same for both the library included and the

library excluded analysis. For JavaBinHex, Compress and Jlex, analyzing the

whole application results in a decrease in the percentage of resolved to one or two

targets call sites. However, this behavior is expected as they have a very high

percentage of resolved call sites when library calls are not included. So, even if

some of the call sites in the library are bi-morphic in nature, the percentage will

go down. However, even after the inclusion of the library call sites, the percentage

still doesn’t go down under 80% for any of the benchmark.

Figure 4.2 also shows that for all the benchmarks except Pizza and JavaCC,

there exists more number of bi-morphic call sites when library is included as com-

pared to when library is excluded. Hence, we can deduce from it that there exists

more bi-morphic call sites in the library than in the benchmark .

Figure 4.3 shows how many truly monomomorphic and bi-morphic calls exist

in the program . The number of calls resolved to one target in the benchmark code

only ranges from 100% in JavaBinHex and Compress to 74% in Pizza. The Jlex

benchmark has the highest number of bi-morphic calls in the benchmark code only

among all the analyzed benchmarks. Figure 4.3 shows that the resolution algorithm

is doing well in resolving virtual calls when analyzing only the benchmark code.

We have also analyzed the performance of the virtual calls resolution analysis

after including the library calls as well. Figure 4.3 also gives the percentage of

42

CHAPTER 4. RESULTS

Name
Benchmark Code Only Library Whole Program
mono bi poly mono bi poly mono bi poly

JavaBinHex 50 0 0 477 19 64 527 19 64
Compress 37 0 0 915 31 129 952 31 129
JavaCC 1609 38 378 866 35 145 2475 73 523
Pizza 438 39 58 487 16 66 925 55 124
SableCC 3400 90 712 769 30 120 4169 120 832
Jlex 575 26 13 493 19 78 1068 45 91

Table 4.2: Number of resolved run-time call sites

Figure 4.2: % Dynamic Monomorphic and Bimorphic Call Sites

43

CHAPTER 4. RESULTS

Name
Benchmark Code Only Library Whole Program
mono bi poly mono bi poly mono bi poly

JavaBinHex 14414 0 0 6146 317 1691 20560 317 1691
Compress 592 0 0 15242 815 7875 15834 815 7875
JavaCC 36155 78 3227 76235 2493 24586 112390 2571 27813
Pizza 245597 1330 84182 330876 821 55719 576473 2151 139901
SableCC 719303 21306 135721 291846 3877 153039 1011149 25183 288760
Jlex 10029 373 479 13896 408 4434 23925 781 4913

Table 4.3: Number of resolved run-time call events

Figure 4.3: % Dynamic Monomorphic and Bimorphic Call Events

monomorphic and bimorphic calls that are made during a run of the program

after including the library. The Compress benchmark has the highest drop in the

percentage of monomorphic calls when compared to the analysis without including

the library. The figure shows that the calls in the included library for Pizza are

more bi-morphic. We notice that the percentage for all the benchmarks except

Compress is more than 80% even after including the library calls. This proves that

virtual call analysis algorithm is effective even after analyzing the whole application

.

After comparing the three graphs, we notice that the percentage of bi-morphic

calls are highest in the static analysis, to a lesser degree in the dynamic call events

and least in the dynamic call sites. This means that the static analysis resolves

44

CHAPTER 4. RESULTS

more percentage of calls to bi-morphic calls that are never called in a run of the

program as compared to resolving calls to monomorphic or polymorphic calls.

Tables 4.1, 4.2 and 4.3 lists the number of call sites or events resolved in the

benchmark code and the library code. We observe from the tables that the call sites

or events in the libraries are more than the call sites or events in the benchmark

code. This leads us to the conclusion that the if we analyze only the benchmark

code, more than half of the calls in the whole program are not analyzed. This will

result in the dynamic dispatch of the calls that are not analyzed. Therefore, it

becomes important to analyze the whole program to improve the performance of

the program. The authors of the original Rapid Type Analysis did the analysis

only on the benchmark code due to their limitation of analyzing the source code.

However ,as we are using bytecode, we do not have that limitation and after an-

alyzing the whole application found that the algorithm is equally effective when

analyzing the whole program.

4.1.1 Summary of Virtual Call Analysis Results

The results of analysis on the benchmarks shows that the Rapid Type Analysis

Algorithm works effectively to resolve virtual calls in a program as reported in [3].

The results also shows that a considerable number of non-monomorphic calls

can be resolved to bi-morphic calls. Thus, implementing them using conditionals

can improve the performance of the program. The bi-morphic calls can be im-

plemented using the conditional jump instead of the indirect jump as in the case

of polymorhic calls. Therefore, resolving calls to two targets also improves the

performance of the program.

The analysis also works well even when the libraries are included in the analy-

sis. The analysis shows that if the libraries are not analyzed, we are considering all

the calls in the libraries to be polymorphic which in fact are mostly monomorphic

as the whole program analysis shows.

45

CHAPTER 4. RESULTS

4.2 Exception Handling Analysis Results

This section is divided into two subsections. The first subsection discusses the re-

sults of the Direct Path Analysis while the second subsection discusses the results

after analyzing catch categories. The benchmarks used for experimenting with

the Exception Handling Analysis is discussed in Section 3.6. JavaCC and SableCC

throw a large number of exceptions i.e. more than 400 exceptions; Pizza and Javac

throw exceptions in the range of 30-60 exceptions while compress throws less than

10 exceptions. This variable number of exception thrown is used to understand

the behavior of analysis for different number of exceptions.

4.2.1 Direct Path Analysis

In this analysis, we set up experiments to count the number of stack frames that

needs to be unwound to find a matching handler. As discussed in section in Sec-

tion 3.3.3.1, we have set up a catch environment around each call site. The catch

environment consists a list of exception handlers to which a particular call site

has a direct path. We need to unwind a stack frame only when the current stack

frame’s method is a part of a strongly connected component (SCC) of the call

graph or has multiple incoming edges. As methods in a strongly connected com-

ponent are recursive, we can not be sure about the number of stack frames in the

SCC. Therefore, we need to unwind the stack frames one by one until we find a

matching handler or we get out of the SCC. Similarly for methods with multiple

incoming edges, we need to unwind the stack frame to get the invoking method’s

stack frame.

Table 4.4 and Table 4.5 shows the number of stack frames that needs to be

unwound to find a matching handler for the stack unwinding technique and our

analysis. In the case of having more than 5 values for the number of stack frames

unwound, the table lists the top five stack frames unwound values.

As evident from tables 4.4 and 4.5, the number of stack frames unwound dur-

ing exception handling is lower for the Direct Path Analysis. We observed from

the tables that the Direct Path Analysis has an advantage in cases where the stack

unwinding technique has to unwind more than 3 stack frames as an in the case of

46

CHAPTER 4. RESULTS

Stack Frames Number Javacc SableCC Pizza Javac Compress

0 Stack Frames 52 0 2 0 0
1 Stack Frames 108 4 6 10 4
2 Stack Frames 4 1862 33 0 0
3 Stack Frames 210 0 0 11 0
4 Stack Frames 63 0 0 0 0
5 Stack Frames 6 2 4 0 2
More than 5 23 0 8 0 0
Total 466 1868 53 21 6

Table 4.4: Number of Stack Frames Unwound in Stack Unwinding Technique

Stack Frames Number Javacc SableCC Pizza Javac Compress

0 Stack Frames 52 0 2 0 0
1 Stack Frames 110 6 37 10 6
2 Stack Frames 165 1862 2 3 0
3 Stack Frames 112 0 0 8 0
4 Stack Frames 0 0 12 0 0
5 Stack Frames 4 0 0 0 0
More than 5 23 0 0 0 0
Total 466 1868 53 21 6

Table 4.5: Number of Stack Frames Unwound in Direct Path Analysis

47

CHAPTER 4. RESULTS

Figure 4.4: Total Stack Frames Unwound in Whole Program

JavaCC and Pizza. The total number of stack frames unwound for the exceptions

in the whole application for stack unwinding technique and direct path analysis

is shown in figure 4.4. The figure compares the total number of stack frames un-

wound in the whole application for the two techniques i.e. if an application needs

to unwind 5 stack frames to catch every exception and 3 exceptions are thrown,

the total number of stack frames unwound in the whole application is 5 ∗ 3 = 15.

Figure 4.4 clearly shows that the total number of stack frames that are un-

wound in a full run of the program is lower for the Direct Path Analysis than

the stack unwinding technique in all the benchmarks. The difference between the

stack frames unwound is highest for JavaCC benchmark while Javac has the least

difference among all the benchmarks we have experimented upon. The Direct

Path Analysis reduces the number of stack frames unwound by more than half

in Compress while in Pizza, the number is reduced by about 40%. Hence, from

the evidence from above data, we can say that the Direct Path Analysis performs

better than the Stack Unwinding technique in terms of number of stack frames

needed to unwind.

48

CHAPTER 4. RESULTS

Benchmark Number of Exception Classes
JavaCC 32
SableCC 24
Pizza 22
Javac 30
Compress 28
JLex 15

Table 4.6: Number of Exception Classes in the Program

4.2.2 Analyzing catch categories

We have analyzed catch block characteristics to support the exception handling

mechanism proposed in section 3.5. We have set up experiments to get the infor-

mation regarding the following points:

• Number of the exception classes in the program.

• Number of the catch blocks for a particular exception class in the program.

• Number of the superclasses for a particular exception class in the program.

Table 4.6 shows the number of exception classes in the program while Table 4.7

shows the number of the catch blocks for a particular exception and the superclasses

for that class.

Table 4.6 shows that the exception classes in an application are small in num-

ber. This means that the memory that needs to be reserved for the Display Catch

Table is very small.

The next part of analysis is to find the number of the catch blocks for a par-

ticular class in the application. Table 4.6 shows the dynamic number of the catch

blocks for a particular exception class for every benchmark. The number of catch

blocks is the number written in parenthesis besides every exception class. As evi-

dent from the table, the number of the catch blocks is high for about 2 or 3 classes

in every benchmark. Apart from those 2 or 3 classes, try-catch blocks for other ex-

ception classes are small in number. This number determines the number of times

we have to update each entry in the Display Catch Table. So, we need to update

the entry for those 2 or 3 classes frequently while we need to update the entry for

other classes not so frequently. The number of times we need to update the entry

49

CHAPTER 4. RESULTS

JavaCC

java.io.Exception (34482)
finally (18171)
java.io.InterruptedIOException (3213)
org.javacc.parser.JavaCCParser$LookaheadSuccess (3092)
java.lang.Exception (206)
java.nio.BufferUnderflowException(190)
All Other Exceptions(896)

SableCC

finally (147620)
java.lang.Exception (13819)
java.nio.BufferUnderflowException (3905)
java.nio.BufferOverflowException (3905)
java.lang.IllegalArgumentException (3827)
java.io.IOException (1161)
All Other Exceptions (1184)

Pizza

finally (79780)
java.io.IOException (469)
pizza.support.ExceptionWrapper (36)
java.lang.RuntimeException (34)
java.lang.ClassNotFoundException (11)
java.lang.reflect.InvocationTargetException (9)
All Other Exceptions (78)

Javac

finally (48743)
java.io.IOException (130)
java.lang.IllegalArgumentException (67)
java.security.PrivilegedActionException (49)
java.nio.BufferUnderflowException (38)
java.nio.BufferOverflowException (38)
All Other Exceptions (168)

Compress

finally (853)
java.io.IOException (83)
java.nio.BufferUnderflowException (58)
java.nio.BufferOverflowException (58)
java.io.InterruptedIOException (52)
java.lang.IllegalArgumentException (40)
All Other Exceptions (179)

JLex

finally (2585)
java.io.IOException (818)
java.io.InterruptedIOException (799)
java.lang.IllegalArgumentException (61)
java.nio.BufferUnderflowException (61)
java.nio.BufferOverflowException (61)
All Other Exceptions (56)

Table 4.7: Number of Catch Blocks in the Program

50

CHAPTER 4. RESULTS

is equal to the number of times the Stack Cutting technique needs to register a

try-catch block. So, we do not have any advantage over the Stack Cutting in this

part of analysis.

The last part of the analysis is to find the number of superclasses for a particu-

lar class in the program. As discussed in section 3.5, when an exception is thrown,

we reference the entry for that exception class in the Display Catch Table. After

that we compare the address stored at that entry with the address stored at the

superclasses of that entry to find the nearest exception handler. Therefore, this

number determines the number of comparisons we have to do to find a match-

ing handler. In the analysis we find that the class hierarchy is very shallow for

the exception classes. The number of superclasses for the exception classes in the

benchmarks ranges from 0-3 . Therefore, the number of comparisons we have to do

find a matching handler is very few for the Display Exception Catch mechanism.

When an exception is thrown, Stack Cutting will go through every try-catch

block registered and check whether the exception thrown is an instance of the

catch block’s handling class. This requires the compiler to invoke an instanceof

method. In comparison, our mechanism has an advantage during the exception

handling process as we only have to compare the address, at the most 3 times, for a

particular thrown exception instead of checking through the instanceof method.

After we have caught the exception, we need to reconstruct the Display Catch

Table. For this purpose, we will check the back link of Catch Save Block (CSB)

saved at each entry. We will check if the address pointed by back link is lower than

the current address or not. In case of the address being higher than the target

address, we will recursively go through CSB’s back link to find a CSB lower than

the current address. The number of comparisons needed to reconstruct the Display

Catch Table is equal to the number of stack frames unwound by Stack Cutting.

Hence, our mechanism does not have an advantage in the number of comparison

needed to reconstruct the Display Catch Table. However, it has an advantage in

the number of instructions required to catch a thrown exception because it uses

an address comparison instead of using the instanceof method.

51

CHAPTER 4. RESULTS

4.2.3 Summary of Exception Handling Results

The Direct Path Analysis shows that the number of stack frames needing to be

unwound is lower compared to the number of stack frames needing to be unwound

in the Stack Unwinding Technique.

After analyzing the catch categories, we have determined that the Direct Catch

Exception Handling mechanism is better than Stack Cutting in terms of the num-

ber of instructions required when catching an exception thrown.

The Stack Unwinding works better than the Stack Cutting in the programs

throwing few exceptions and vice versa as argued in [22]. Therefore, our Direct

Path Analysis works better when the exceptions are thrown rarely as it is better

than the Stack Unwinding technique. However, in the programs throwing frequent

exceptions, the Display Catch Exception handling mechanism will perform better

as it is proved to be better than the Stack Cutting technique.

52

Chapter 5

Conclusions

In this dissertation, our focus has been to analyze Java programs to improve their

performance, by examining their virtual calls and exception handling. The virtual

calls analysis showed that the number of calls resolved to the monomorphic calls

was more than 80% for almost all the benchmarks. The analysis also showed that

the bi-morphic calls represents a considerable number of the non-monomorphic

calls. The results also showed that the analysis of solely the benchmark code re-

solves less than half of the calls in the whole program. Therefore, analysis of the

whole program is important to improve performance.

The performance of the programs throwing exceptions partially depends upon

the exception handling mechanism. Thus, implementing an efficient mechanism

improves the performance of these programs. Our work gave two ways to handle

the exceptions efficiently. In the programs throwing fewer exceptions, the Di-

rect Path Analysis improves performance by lowering the number of stack frames

needed to be unwound to catch an exception. For the programs throwing frequent

exceptions, the Display Catch Exception Mechanism works better as we can handle

the exceptions by unwinding directly to the specific stack frame. However, as some

overhead is associated with the Display Catch Exception Mechanism for creating

and reconstructing the Display Catch Table, it may not be better than Direct Path

Analysis in programs that rarely throw exceptions.

53

CHAPTER 5. CONCLUSIONS

5.1 Future Work

Although the results of our analysis are really encouraging, we can improve the

analysis to get even better results.

For Virtual Call Analysis, we can incorporate full data flow analysis in the

call graph. Incorporating data flow analysis will help in understanding the type

propagation through the call graph. This will make the virtual call analysis more

effective. To simplify the analysis, we have not analyzed calls where the declared

type of an object is an interface. Therefore, in future, we need to include these

calls as well to make our virtual call analysis complete.

We have gathered statistics about exception handling mechanisms by instru-

menting the code. In future, we need to implement these mechanisms in our

compiler, which is currently not generating code, and measure the performance

improvement these mechanisms give.

We have ignored synchronized methods while analyzing the programs for the

exception handling. In future, we need to include these methods as well in our

analysis to make the analysis complete.

We also need to gather statistics after comparing the Direct Path Analysis with

the Display Catch Exception Handling to determine the conditions in which either

of them is better than the other. In future, we will also measure tradeoffs between

the cost of analysis and the actual performance improvement.

54

Bibliography

[1] Alfred V Aho and Jeffrey D Ullman. Principles of compiler design. Addision-

Wesley Pub. Co., 1977.

[2] R Allen et al. “Advanced Compiler Design and Implementation”. In: ().

[3] David F Bacon and Peter F Sweeney. “Fast static analysis of C++ virtual

function calls”. In: ACM Sigplan Notices 31.10 (1996), pp. 324–341.

[4] Byte Code Engineering Library. http://commons.apache.org/proper/

commons-bcel/manual.html.

[5] Brad Calder and Dirk Grunwald. “Reducing Indirect Function Call Overhead

in C++ Programs”. In: Proceedings of the 21st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL ’94. Portland,

Oregon, USA: ACM, 1994, pp. 397–408. isbn: 0-89791-636-0. doi: 10.1145/

174675.177973. url: http://doi.acm.org/10.1145/174675.177973.

[6] C. Chambers and D. Ungar. “Customization: Optimizing Compiler Tech-

nology for SELF, a Dynamically-typed Object-oriented Programming Lan-

guage”. In: Proceedings of the ACM SIGPLAN 1989 Conference on Program-

ming Language Design and Implementation. PLDI ’89. Portland, Oregon,

USA: ACM, 1989, pp. 146–160. isbn: 0-89791-306-X. doi: 10.1145/73141.

74831. url: http://doi.acm.org/10.1145/73141.74831.

[7] Craig Chambers and David Ungar. “Interactive Type Analysis and Extended

Message Splitting; Optimizing Dynamically-typed Object-oriented Programs”.

In: SIGPLAN Not. 25.6 (June 1990), pp. 150–164. issn: 0362-1340. doi:

10.1145/93548.93562. url: http://doi.acm.org/10.1145/93548.93562.

55

http://commons.apache.org/proper/commons-bcel/manual.html
http://commons.apache.org/proper/commons-bcel/manual.html
http://dx.doi.org/10.1145/174675.177973
http://dx.doi.org/10.1145/174675.177973
http://doi.acm.org/10.1145/174675.177973
http://dx.doi.org/10.1145/73141.74831
http://dx.doi.org/10.1145/73141.74831
http://doi.acm.org/10.1145/73141.74831
http://dx.doi.org/10.1145/93548.93562
http://doi.acm.org/10.1145/93548.93562

BIBLIOGRAPHY

[8] Ramkrishna Chatterjee, Barbara G. Ryder, and William Landi. “Complexity

of Concrete Type-Inference in the Presence of Exceptions”. In: ESOP. Ed.

by Chris Hankin. Vol. 1381. Lecture Notes in Computer Science. Springer,

1998, pp. 57–74. isbn: 3-540-64302-8.

[9] Jong-Deok Choi et al. “Efficient and Precise Modeling of Exceptions for the

Analysis of Java Programs”. In: PASTE. Ed. by William G. Griswold and

Susan Horwitz. ACM, 1999, pp. 21–31. isbn: 1-58113-137-2.

[10] Jeffrey Dean, David Grove, and Craig Chambers. “Optimization of Object-

Oriented Programs Using Static Class Hierarchy Analysis”. In: Proceedings of

the 9th European Conference on Object-Oriented Programming. ECOOP ’95.

London, UK, UK: Springer-Verlag, 1995, pp. 77–101. isbn: 3-540-60160-0.

url: http://dl.acm.org/citation.cfm?id=646153.679523.

[11] S Drew, K John Gough, and J Ledermann. “Implementing zero overhead ex-

ception handling”. In: Faculty of Information Technology, Queensland Uni-

versity of Technology, Australia, Tech. Rep (1995), pp. 95–12.

[12] Urs Hölzle and David Ungar. “Optimizing Dynamically-dispatched Calls

with Run-time Type Feedback”. In: SIGPLAN Not. 29.6 (June 1994), pp. 326–

336. issn: 0362-1340. doi: 10.1145/773473.178478. url: http://doi.acm.

org/10.1145/773473.178478.

[13] JavaBinHex. http://www.zrenard.com/javabinhex/.

[14] JavaCC Version 5.0. https://java.net/projects/javacc/downloads.

[15] Jlex. https://www.cs.princeton.edu/~appel/modern/java/JLex/.

[16] Jang-Wu Jo and Byeong-Mo Chang. “Constructing control flow graph that

accounts for exception induced control flows for Java”. In: The 7th Korea-

Russia International Symposium on Science and Technology, Volume 2. Vol. 2.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1222596. July 2003,

pp. 160–165. isbn: 89-7868-617-6.

[17] Michael Karr. “Code Generation by Coagulation”. In: SIGPLAN Not. 19.6

(June 1984), pp. 1–12. issn: 0362-1340. doi: 10.1145/502949.502875. url:

http://doi.acm.org/10.1145/502949.502875.

56

http://dl.acm.org/citation.cfm?id=646153.679523
http://dx.doi.org/10.1145/773473.178478
http://doi.acm.org/10.1145/773473.178478
http://doi.acm.org/10.1145/773473.178478
http://www.zrenard.com/javabinhex/
https://java.net/projects/javacc/downloads
https://www.cs.princeton.edu/~appel/modern/java/JLex/
http://dx.doi.org/10.1145/502949.502875
http://doi.acm.org/10.1145/502949.502875

BIBLIOGRAPHY

[18] R. Leupers and P. Marwedel. “Function inlining under code size constraints

for embedded processors”. In: Computer-Aided Design, 1999. Digest of Tech-

nical Papers. 1999 IEEE/ACM International Conference on. 1999, pp. 253–

256. doi: 10.1109/ICCAD.1999.810657.

[19] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. 2nd.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

isbn: 0201432943.

[20] W. G. Morris. “CCG: A Prototype Coagulating Code Generator”. In: Pro-

ceedings of the ACM SIGPLAN 1991 Conference on Programming Language

Design and Implementation. PLDI ’91. Toronto, Ontario, Canada: ACM,

1991, pp. 45–58. isbn: 0-89791-428-7. doi: 10.1145/113445.113450. url:

http://doi.acm.org/10.1145/113445.113450.

[21] Esko Nuutila and Eljas Soisalon-Soininen. “On finding the strongly con-

nected components in a directed graph”. In: Information Processing Letters

49.1 (1994), pp. 9–14.

[22] Takeshi Ogasawara, Hideaki Komatsu, and Toshio Nakatani. “EDO: Exception-

directed optimization in java”. In: ACM Transactions on Programming Lan-

guages and Systems (TOPLAS) 28.1 (2006), pp. 70–105.

[23] Pizza Compiler. http://wwwipd.ira.uka.de/~pizza/.

[24] Norman Ramsey and Simon Peyton Jones. “A single intermediate language

that supports multiple implementations of exceptions”. In: ACM SIGPLAN

Notices. Vol. 35. 5. ACM. 2000, pp. 285–298.

[25] Martin P. Robillard and Gail C. Murphy. “Static analysis to support the

evolution of exception structure in object-oriented systems”. In: ACM Trans.

Softw. Eng. Methodol. 12.2 (Apr. 2003), pp. 191–221. issn: 1049-331X. doi:

10.1145/941566.941569. url: http://doi.acm.org/10.1145/941566.

941569.

[26] SableCC. http://www.sable.mcgill.ca/sablecc/.

57

http://dx.doi.org/10.1109/ICCAD.1999.810657
http://dx.doi.org/10.1145/113445.113450
http://doi.acm.org/10.1145/113445.113450
 http://wwwipd.ira.uka.de/~pizza/
http://dx.doi.org/10.1145/941566.941569
http://doi.acm.org/10.1145/941566.941569
http://doi.acm.org/10.1145/941566.941569
http://www.sable.mcgill.ca/sablecc/

BIBLIOGRAPHY

[27] Vladimir I. Shelekhov and Sergey V. Kuksenko. “Data flow analysis of Java

programs in the presence of exceptions”. In: In Proceedings of the third In-

ternational Andrei Ershov Memorial Conference on Perspectives of System

Informatics. Lecture Notes in Computer Science. SpringerVerlag, 1999.

[28] Short-Circuit Evaluation. http://www.open-std.org/jtc1/sc22/wg14/

www/docs/n1256.pdf.

[29] Saurabh Sinha and Mary Jean Harrold. “Analysis and Testing of Programs

with Exception Handling Constructs”. In: IEEE Trans. Softw. Eng. 26.9

(Sept. 2000), pp. 849–871. issn: 0098-5589. doi: 10.1109/32.877846. url:

http://dx.doi.org/10.1109/32.877846.

[30] SpecJVM Benchmarks. https://www.spec.org/benchmarks.html.

[31] Vijay Sundaresan et al. “Practical virtual method call resolution for Java”.

In: ACM SIGPLAN Notices 35.10 (2000), pp. 264–280.

[32] Raja Vallée-Rai et al. “Soot - a Java Bytecode Optimization Framework”.

In: Proceedings of the 1999 Conference of the Centre for Advanced Studies on

Collaborative Research. CASCON ’99. Mississauga, Ontario, Canada: IBM

Press, 1999, pp. 13–. url: http://dl.acm.org/citation.cfm?id=781995.

782008.

58

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://dx.doi.org/10.1109/32.877846
http://dx.doi.org/10.1109/32.877846
https://www.spec.org/benchmarks.html
http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008

	Introduction
	My Thesis
	Problem Background
	Objectives and Proposed Methodology
	Contribution
	Dissertation Outline

	Related Work
	Compiler and Optimization Terms
	Resolving Virtual Calls
	Overview
	Hardware Implication of Virtual Call Resolution
	Virtual Call Resolution Techniques

	Exception Handling Analysis
	Stack Unwinding
	Stack Cutting
	Exception-Directed Optimization
	Exceptional Flow Analysis

	Materials and Methods
	Our Compiler
	Virtual Call Analysis
	Constructing Data Structures
	Removing Dead Instances and Resolving Calls

	Exception Handling Analysis
	Exception handling in JVM
	Stack Unwinding and Stack Cutting Approaches
	Static Exception Handling Analysis

	Instrumenting Java Code for Run-Time Analysis
	Display Catch Exception Handling
	Display Catch Exception Approach

	Benchmarks

	Results
	Virtual Call Analysis Results
	Summary of Virtual Call Analysis Results

	Exception Handling Analysis Results
	Direct Path Analysis
	Analyzing catch categories
	Summary of Exception Handling Results

	Conclusions
	Future Work

