WEB SERVICE-BASED GRID RESOURCE DISCOVERY

by

Saadat Bokhari, Syed

M. Sc. Computer Science University of Karachi, 1989

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2010
© Saadat Bokhari, Syed 2010

PROPERTY OF
RYERSON UiVBASITY Lt

26+)

. (K8

S»3
oolo

Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the »nurpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by
other means, in total or in parts, at the request of other institutions or individuals for the

purpose of scholarly research.

1

WEB SERVICE-BASED GRID RESOURCE DISCOVERY
M. Sc. Computer Science, 2010
Saadat Bokhari, Syed

Department of Computer Science

Ryerson University

ABSTRACT

This thesis proposes a simple and scalable web-based model for grid resource
discovery for the Internet. The proposed resource discovery model contains the metadata
and resource finder web services. The information of resource finder web services is kept
in the repositories that are distributed in the application layer of Internet. The resource
finder web services will be discovered by sending queries to the repositories in a similar
way as the DNS protocol. The underlying technology for implementation of the two

architectures of this model is introduced.

These architectures are Direct and Centralized Web-Based Grid Resource
Discovery Applications. The resource discovery time of adding each of these two models

on the top of GridSim is computed.

By doing the scalability test, we found that when increasing the load of grid with
more users and resources the cost of our model in comparison to the grid resource

discovery time is marginal.

111

ACKNOWLEDGEMENTS

I have a deep feeling of being indebted to my dedicated, consistent, innovative
and hardworking supervisor, Dr. Abdolreza Abhari, for his guidance with patience and
encouragement on my research. It was indeed extremely hard to accomplish my task

without his support and positive criticism.

I feel grateful to my co-supervisor Dr. Alexander Ferwomn for his constant

supervision, prompt decisions and supports that led me to success.

I am also grateful to Dr. Alireza Sadeghian for his timely help and support during
my study and research. I am thankful to Dr. Marcos Escobar for his help and guidance in
the field of statistical analysis and Ms. Carol Sevitt for her help in English editing.

I am thankful to all advisory committee members for their criticism and guidance.

I also want to acknowledge my colleagues in the Distributed Systems and

Multimedia Processing Laboratory especially Mr. Yijun Chen for all his help.

I would also like to thank my wife and all of my children who helped me in their

own way to achieve my goal.

iv

TABLE OF CONTENTS

Chapter 1
1. Motivations and Objectivescceeiveiiiiiiniiiennenieineeannnes 1
1.1. Rationale and Problem Statement 1
1.2 Hypothesis ...ooeiuiiiieiiiiiiiie e e, 4
1.3. Scopeand Goalccooiviiiiiiiiiiiii 6
14, Importanceccoeveevuiniiiiiiiiii e e eaes 7
Chapter
2. Related WOrKS .oeuvviiiiiiiiiiiiiiiiinriiieriserionnrocsensrsonsssassesese 9
2.1. Grid Computing-Related Worksccoeiiiiiiiiianin. 9
2.1.1. Scheduling in Grid Systemscc.ceeveieiinennn. 9
2.1.2. Replica Management in Data Grids 10
2.1.3. Integration and Sharing of Resources 11
2.1.4. Desktop Grid Applicationsc.ecevnvervnnnnnnn. 12
2.1.5. Instruments Control in Gridccooeniiiiiiinen 12
2.2. Resource Discovery Related Workscccoovviivienennnn 13
2.2.1. Layered Architecture-Based Resource Discovery 14
2.2.2. The Grid Resource Discovery Method Based On
Hierarchical Modelccoooviiiiiiiiiiiiininennas 15
2.2.3. Tree Structure-Based Resource Discovery 15
2.2.4. Grid Resource Discovery Based on Semantic Information 16

2.2.5. UDDI-Based Resource DiSCOVery 18

2.3. Grid Simulating Packagesocooviiiiiiiiiieiia 19
2.4. Comparison of Our Work with Other Grid Architectures for Resource
DISCOVEIY..ooeiiniiiii e e e 20
Chapter 3
3. Proposed Model and Implementing Strategy ceererans 23
3.1. Proposed Web-Based Architecture for Grid Resource Discovery 23
3.2. Underlying Technologies for Implementation of Proposed
ATChIteCtlre ... ovvi i 27
3.2.1. Direct Web Service-Based Grid Resource Discovery
Implementationo.veiiveiiienieriieineeeaeene 28
3.2.2. Centralized Web Service-Based Grid Resource Discovery
Implementationc.ooevevviiiiiiie i 29
3.3, ConcluSIONS «.euenuiin it 31
Chapter 4
4. Simulation and Resultscccovvivniiiniinieiinneninnnn, ceeresnenas 32
4.1, Grid SImulationco.oiiiiiuieie e aaas 32
4.2. Simulation of Direct Web Service-Based Grid Resource
DHSCOVETY «ouieieiiii et 33
4.3, Simulation of Centralized Web Service-Based Grid Resource
DS COVETY ettt e e 37
4.4. Discussion of Scalability ... 39

vi

4.5.

Statistical Analysis

..

4.6. ConcluSiONScvveiiuiriiie e
Chapter 5
S. Conclusions and Future Workcccocveeviiiiiiininiiiniiiiinecnnen
5.1 ConCIUSIONS ..vevvititinieriiirieeereeteee et reeeanans
5.2, Future WOorks ..oooueueriiniiiiiiiiieir e
References

..

vii

45
49

50

50
52

54

Table 4.1

Table 4.2

B.1

Table A

Table B

B.2

Table A

Table B

B.3

Table A

Table B

B.4

Table A

Table B

LIST OF TABLES

Mean Difference between GridSim and DWGRD

Confidence Interval and Unpaired T-test

Mean Difference between GridSim and CWGRD

Confidence Interval and Unpaired T-test

Raw Data Obtained Using GridSim when GIS Node=2,

Users=20 and Resources=20veeeeiireemrraiinneeererannnns

Summary Statistics Obtained Using GridSim
when GIS Node=2, Users=20 and Resources=20

.............

Raw Data Obtained Using GridSim when GIS Node=2,

Users=40 and Resources=40ooevvevennn..

Summary Statistics Obtained Using GridSim
when GIS Node=2, Users=40 and Resources=40

.............

Raw Data Obtained Using GridSim when GIS Node=2,

Users=60 and Resources=60cccvevvveenen..

Summary Statistics Obtained Using GridSim
when GIS Node=2, Users=60 and Resources=60

Raw Data Obtained Using GridSim when GIS Node=2,

Users=80 and Resources=80ccovvveveennnt.

Summary Statistics Obtained Using GridSim
when GIS Node=2, Users=80 and Resources=80

viii

..............

47

48

61

61

62

62

63

63

64

64

B.5
Table A

Table B

B.6

Table A

Table B

B.7

Table A

Table B

B.8

Table A

Table B

B.9

Table A

Table B

Raw Data Obtained Using GridSim when GIS Node=2,

Users=100 and Resources=100ccoovvveiiiviiinirannnnn...

Summary Statistics Obtained Using GridSim

when GIS Node=2, Users=100 and Resources=100

Raw Data Obtained Using DWGRD when GIS Node=2,

Users=20 and Resources=20coveiruurnmiiinereranereereenins

Summary Statistics Obtained Using DWGRD

when GIS Node=2, Users=20 and Resources=20

Raw Data Obtained Using DWGRD when GIS Node=2,

Users=40 and Resources=40coveemuriiiiiiiiianninnannn.

Summary Statistics Obtained Using DWGRD

when GIS Node=2, Users=40 and Resources=40

Raw Data Obtained Using DWGRD when GIS Node=2,

Users=60 and Resources=600coveeireriiiriiiiinnnnns

Summary Statistics Obtained Using DWGRD

when GIS Node=2, Users=60 and Resources=60

Raw Data Obtained Using DWGRD when GIS Node=2,

Users=80 and Resources=80cviiiiiiiiiiiiiiiiiineeenan

Summary Statistics Obtained Using DWGRD

when GIS Node=2, Users=80 and Resources=80

iX

65

65

66

66

67

67

68

68

69

69

B.10
Table A

Table B

B.11

Table A

Table B

B.12

Table A

Table B

B.13

Table A

Table B

B.14

Table A

Table B

Raw Data Obtained Using DWGRD when GIS Node=2,
Users=100 and Resources=100cceeviiiininiinnn.n,
Summary Statistics Obtained Using DWGRD

when GIS Node=2, Users=100 and Resources=100

Raw Data Obtained Using CWGRD when GIS Node=2,
Users=20 and Resources=20cccovevrivireenrnrninnnnnnnn
Summary Statistics Obtained Using CWGRD

when GIS Node=2, Users=20 and Resources=20

Raw Data Obtained Using CWGRD when GIS Node=2,
Users=40 and Resources=40cccoveieiviiniiiinnennnnnnn
Summary Statistics Obtained Using CWGRD

when GIS Node=2, Users=40 and Resources=40

Raw Data Obtained Using CWGRD when GIS Node=2,
Users=60 and Resources=60ccccvviuiiiiiiiniinnnenn.
Summary Statistics Obtained Using CWGRD

when GIS Node=2, Users=60 and Resources=60

Raw Data Obtained Using CWGRD when GIS Node=2,
Users=80 and Resources=80ccoiiiiiiiiiiiiiiieiiannne
Summary Statistics Obtained Using CWGRD

when GIS Node=2, Users=80 and Resources=80

70

70

71

71

72

72

73

73

74

74

B.15

Table A

Table B

Table C.1

Table C.2

Table D

Raw Data Obtained Using CWGRD when GIS Node=2,
Users=100 and Resources=100c..ocoieiiiiiiniiinnn.
Summary Statistics Obtained Using CWGRD

when GIS Node=2, Users=100 and Resources=100

Mean Difference between GridSim and DWGRD

Confidence Interval and Unpaired T-test

Mean Difference between GridSim and CWGRD

Confidence Interval and Unpaired T-testc..........

Critical values of t in distribution tablecooevveiinit...

Xi

75

75

76

76

77

Figure 2.1
Figure 2.2
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10

Figure 4.11
Figure A.1

LIST OF FIGURES

Layered Architecturecovvviiivniiiiniieieanen..s,
Galaxy Protocol Layercoooviiiiiiiiiiiiiiiiin,
Proposed Modelcovviiiniiiiiiiiicic e
Implementation Flow of DWGRD model
Implementation Flow of CWGRD model
Average User Resource Discovery Time of GridSim
Average User Time of Direct Web Based Grid Resource
DISCOVETY +entntintineee ettt e e e eanaanans
Average User Time of Centralized Web Based Grid Resource
DISCOVETY «oneniiii e e e
Average User Time of GridSim, DWGRD and CWGRD with
USETST20 ottt et

Average User Time of GridSim, DWGRD and CWGRD with

Average User Time of GridSim, DWGRD and CWGRD with
USers=100 ...oeiiii e
Average User Time of GridSim, DWGRD and CWGRD with
TESOUTCEST20 . outiiane ettt e eeear e
Average User Time of GridSim, DWGRD and CWGRD with
TESOUTCESTO00 . .iiititiitii it
Average User Time of GridSim, DWGRD and CWGRD with
resources=100ot
Comparison of increase in means of DWGRD and GridSim
Comparison of increase in means of CWGRD and GridSim

Connecting juddi-derby-db database using Java DB (Network)

Xii

14

18

24

28

30

35

36

38

40

40

41

42

42

43

44

45

59

Appendix

Appendix

Appendix

Appendix

LIST OF APPENDICES

...

...

...

...

x1ii

59

61

76

77

ACRONYMS

ASL
BOINC

CE
CM
CWGRD

DNS Protocol
DWGRD
ETC

GIS

GIS Node
GPU

HTTP

IP

IE

jUDDI

Metadata
OGSA
P2P model

RCT

Resource Finder

SE

LIST OF ACRONYMS

DEFINITIONS

Average Search Length

Berkeley Open Infrastructure for Network
Computing

Compute Element (Processing Computer)
Control Manager

Centralized Web-Based Grid Resource Discovery
model

Domain Name Server Protocol

Direct Web-Based Grid Resource Discovery model
Expected Time to Compute

Grid Information Service

Node Managing Resources

Graphics Processing Unit

Hypertext Transfer Protocol

Internet Protocol

Instrument Element

Java based Universal Description, Discovery, and
Integration Registry

Administrative data used for indexing

Open Grid Services Architecture

Peer to Peer Computers Network model without
using central server

Resource Category Tree

A web service focusing on resource discovery in
our model

Storage Elements

X1v

SOAP
TCP/TP
UDDI
URL
VCM
VCR
VO
VEGA

VIG
WSRF
WGridSP
XML

Simple Object Access Protocal

Transmission Control Protocol/Internet Protocol
Universal Description, Discovery and Integration
Uniform Resource Locator (web address)

Virtual Consistency Manager

Virtual Control Room

Virtual Organization

Versatile services with Enabling intelligence based
on knowledge, Global uniformity and Autonomous
control

VEGA Information Grid

Web Service Resource Framework

Web-based Grid Scheduling Platform

Extensible Markup Language

XV

CHAPTER 1

1. MOTIVATIONS AND OBJECTIVES

In this chapter, we explain the motivations and objectives of our research in terms of
rationale and problem statement, hypothesis, scope/goal and importance of the topic of this
thesis. The rationale and problem statement are given in subsection 1.1. The hypothesis and
assumptions are described in subsection 1.2. The scope and goals of research are mentioned in

subsection 1.3. The importance of the research is elaborated upon in subsection 1.4.

1.1. RATIONALE AND PROBLEM STATEMENT

With the popularity of the Internet, there is a strong need for grid computing applications
to share their resources through the Internet. For example as described by Szalay et al. [1], the
World-Wide Telescope application, which is a project for sharing astronomy data, can
accomplish its objectives by using grid computing infrastructure through the Internet. Therefore,
the main motivation of this work is providing an effective method to Internet users for accessing

the grid resources.

For the Internet users who want to access the grid resources, the required resources
should be found through the proper way of contacting grid infrastructures. Considering the
spread of Internet access, the number of users who want grid resources is growing rapidly.
Therefore, it is important for the grid resource discovery model to have the scalability
characteristic for finding and accessing the resources. There have been many solutions for
providing an efficient resource discovery model that will be discussed in detail in Chapter 2.
However, most of these grid resource discovery models are not focused on the scalability issue

when the goal is accessing the grid resources through the Internet.

Coulouris et al. define scalability of a system as "A system is described as scalable if it will
remain effective when there is a significant increase in the number of resources and the number
of users” [2]. According to Nueman [3], the scalability of the system can be discussed in terms of the
three attributes of numeric size (i.e. number of users and resources), geographical size and
administrative capability of that system. Nueman [3] suggests that using caching, replication and
distributing the information of the resources are techniques for providing scalability for the growing
system in any of the three dimensions of size, geographical and administrative information

requirements.

Considering the importance of scalability for accessing grid resources through the
Internet, we have to address two separate problems in this thesis:

1- Providing the scalable solution: A scalable solution should be provided with respect to all
three issues mentioned by Nueman [3]. The scalable solution is required for providing
Internet access to grid resources. This solution should remain effective when the number of
users and resources increase along with geographical expansion of the system. This solution
should also be capable of addressing the administrative information requirements when the
system is growing. Specifically, this scalable information administration means providing
effective methods for searching and storage of the information of the grid with increasing
resources in Internet.

2- Examining the scalability of a proposed solution: Another problem in our work is that we
need to test the scalability of our model by increasing the number of users and resources and
examining the effectiveness of information administration of the proposed model. So we

need to measure the effectiveness with proper performance metrics.

To address the first problem, we believe that using web services can solve the size and
geographical expansion problems and can provide a scalable and reliable interface for Internet
users to access grid resources. Web services are not dependent on any computing platform or
programming language and are using SOAP [4] messages with XML format [5] for
communication. SOAP messages uses HTTP protocol and provide a reliable and secure way of

communication in the application layer of Internet as described by Coulouris et al., in [2]. Our

solution is proposing the architectural model that employs Web services as the user interface to

provide size and geographical scalability for the Internet access to grid resources.

We are presenting distributed information storage together with distributed search
solution for grid resource discovery to address the administrative information requirements of the
scalability problem.

To address the second problem, we found that testing the scalability for the real grid on
the Internet is a hard and expensive task. Thus we need to simulate the grid computing to be able
to examine scalability by increasing the number of users and resources. Grid simulation is also a
difficult task because a grid is not similar to the usual networks. The network simulation tools
such as ns2 [6], which is currently the popular network simulator software that is developed for
the test of networks, is not useful for grid simulation; therefore, we need to find suitable grid

simulation tools.

For testing the scalability of our model, we need to examine the effectiveness of the
information administrative approach that is used by the model. Total grid resource discovery
time is the performance metric that we used to measure this effectiveness. We used a DNS-like
solution for administrative information requirements that is a scalable model under the increasing
load and size of the Internet. The reason of scalability of DNS protocol as described by
Mockapetris [7] is employing distributed storage of information across many geographical
points. This approach avoids a single point access of information that can become a bottleneck as
explained by Tanenbuam et al. in [8]. The distributed search resulting from a DNS-like solution
will be explained in the hypothesis section in more detail in section 1.2 of this chapter. Thus we
narrowed down the examination of the scalability problem in our simulation only to find the
additional time of information administration time of our model (i.e., cost) on grid resource

discovery time under increasing load of the grid.

Also there is another part for addressing the second problem. For measuring the cost of
the model, we have to simulate web service which is the Internet user interface of our solution.
We did research on several network simulation tools, and in particular, we studied ns3 [9] which

is the latest version of network simulation tools after release of ns2. We found that it is not

possible to simulate web services with ns3. To the best of our knowledge, there is no simulation
tool that can be used for simulation of web services together with grid computing. So, one of the
challenges of this work was finding a grid simulation tool that can be used together with the
implementation of the web services in the simulation study of the whole system to test the

scalability of the proposed model.

1.2. HYPOTHESIS

Our goal is providing a scalable access for the user being able to access the grid resources
in the application level of the Internet by using web services interface located on the top of
TCP/IP. The distributed information storage and search employed by the model is very similar to
Domain Name Servers (DNS) protocols described by Mockapetris in [7] and [10]. DNS Protocol

is explained below in more details.

Krishnamurthy et al. [11] has referred to DNS protocol as a one of the application level
protocols underlying HTTP protocol that maps URL to IP addresses. In DNS protocol name
servers keep the zone files that have the distributed information of URLs and IP addresses based
on the domain of the URL of each of the Internet resources. A hierarchical naming schema is
used in DNS for distributed storage of the information of Internet URLs and IP addresses. In this
tree-like structure, each name server has a zone file containing the information of URLs based on
a specific domain that can be geographical, educational or some other category. Name servers
use the queries to perform the distributed search and also perform caching to speed up the
process of mapping URL and IP addresses. Considering the performance of the name servers, if
resolving the queries is performed locally by cache, it is in the hundreds of milliseconds, and if

the requested URL is not in the cache, the queries will be resolved in a couple of seconds.

We assume the proposed model is similar to DNS protocol and uses the same techniques
such as caching and distributed search for providing scalability. Our model uses the queries for
searching the URL of the web services similar to DNS search for URLs. Instead of name servers
our model uses repositories with similar zone files for keeping the information of the URLs of

the resource finder web services and their related grid resources.

To clarify how our model works, consider the following example and assume our model
is implemented in the network of Ryerson University that we referred to as a “region” for a user
who wants to access the grid resources in this network. Suppose this user is in Ryerson
University and knows the URL of a web service of the Lab A. This service allocates user’s
required grid resource which is the server B in Lab A.

Assuming the URL of the Lab A is “www.LabA. ryerson.ca” Calling this URL the web
service of Lab A i1s triggered and the user can access the required resource by negotiation with

this service.

In the second scenario, the user does not know the URL of the web service of Lab A but
knows the URL of central repository (UDDI) of Ryerson University. Assume the URL of this
repository is “www.RyersonUDDIL.ryerson.ca” and that it has the information of the services and
related resources of all the labs in Ryerson University region. In this case the user contacts the
repository and gets the URL for calling the web service of Lab A. In the third scenario, the
repository of Ryerson University region does not have any service that provides the required grid
resource. Therefore, this repository sends DNS-like queries and uses distributed search by
communicating with other repositories to find the required resource from other universities or

other regions.

We assume the grid resource finder service is able to access the grid infrastructure. We
also assume it has all the standards for Open Grid Service Architecture (OGSA) described by
Foster et al. in [12] for performing the grid tasks. It can find the resources from its list referred to
as metadata, which is assumed to have the latest information on grid resources. We also assumed
after finding the URL of the grid resource finder, then that service will act as a resource broker
and allocate grid resources upon request. Also we assume a UDDI technology, such as the one

presented by Benson et al. [13], exists and that it can be used for grid service discovery.

To deploy distributed search efficiently, we assume the UDDI repositories have a caching
mechanism to speed up the distributed search process. We assume in the worst case scenarios
similar to a DNS search, that if the requested URL is not available in the cache, it can be found

in a matter of seconds. To test whether our model is scalable or not, we should show that similar

to a DNS search, the information administration time, which is the searching time that is added
by our model (because of using web services), is negligible compared to the grid resource

discovery time when the numbers of users and resources of the grid are increasing in the Internet.

1.3. SCOPE AND GOAL

The main goal of our research is to provide a scalable solution for Internet users to
discover and access resources in the grid environment. At the end of this section, we will explain

if we reached to this goal or not, but first we will discuss the scope of the work.

Although our model uses the same mechanism as DNS protocol in the Internet
application level, we do not focus on the lower layers of the grid in the proposed model. For
example, we do not provide any ways to update the information of grid resources when they are
changing. We assume the resources information is updated periodically by grid providers or

regional resource managers.

We do not implement the architectural model in the real physical grid environment, but
we use it together with the simulated grid environment. We will only implement the best case
scenarios of our model for regional searches because of the complexity of DNS-based distributed
search that we proposed in the model. Our architectural model is using caching technique in its
repositories similar to DNS protocol, and that is why searching time in our model after the first
time will be equal to the best case scenarios in the second search for the resource finder web
service. Our model will first search for resources from the regional repository, and if the required
resource is not there, then another repository outside of the regional domain will be contacted by

using a distributed search approach.

According to the assumptions, we do not discuss the structure of resource finder web
services and we do not discuss the internal structure of UDDI in this work. We also assume a
tree structure of repositories with a hierarchy similar to the domain name services in DNS

protocol is also available for our model. We will introduce the underlying technology to

implement our model for the resource discovery scenarios, but we will not go into the details of

the whole hierarchical model of repositories.

Finally simulation of the grid together with the prototype of the proposed architecture on
top of that is the methodology to estimate the cost of our model in terms of addition to grid
resource discovery time while increasing the load of grid resources and users to test the
scalability. The statistical analysis with the required assumptions will also be used to analyze the
simulation result to show the differences between the average resource discovery times of our

model in comparison to the average resource discovery times of the grid itself.

We found that when increasing the load of the grid, the cost of our model decreases, and
finally with the grid load of 100 users and 100 resources and more, the cost of our model in
comparison to grid resource discovery time is marginal. Based on this result, we conclude that if
our model were implemented on the Internet with thousands of grid resources and users, it would
be scalable. Even if we add the couple of seconds for DNS-like distributed search to include the
worst-case scenarios to the cost of our model, still this time that is the time for administration of
information when the system is expanding, will be negligible compared to resource discovery
time of grid in the Internet. These results support the scalability of our model based on the

assumptions that we have made.

14. IMPORTANCE

The popularity of the Internet has motivated the grid providers to move their current grid
projects such as Word-Wide telescope [1] under the TCP/IP network. Similar to the electricity
grid, in the near future these grid resources will be available for everybody. The standards for
building the new concept of grid services released for OGSA that is presented by Foster et al. in
[12] and promising technologies such as UDDI version 3.0 that is capable of discovering grid
services as mentioned by Benson et al. in [13] show the future direction of grid computing is

based on the Internet.

For Internet access to the grid resources having scalable resource discovery methods is
required. There are limited works that discuss the scalability of the rﬁethods for Internet-based
grid computing. Regarding scalability in this work, we presented an approach for effective
administration of the information of the grid resources that is capable of handling increasing
numbers of Internet users and grid resources. So we have summarized the problems and our
solutions for providing the scalable method for grid access by Internet.

Now the question is: why do we need scalability for Internet-based grid computing? As
discussed before, for providing Internet access to grid resources which is the motivation of this
work, we need to provide scalable distributed resource discovery. Otherwise, if the solution will
be based on central approach for resource discovery (for example by having a central database
registry of all resources), whenever the number of users and resources in the grid increases, this
central database registry become a bottleneck in the system as mentioned in [8]. Therefore, using
non-scalable solutions is not possible for grid computing when we want the grid resources to be

accessible through the Internet.
The rest of our thesis is structured as outlined below:

Chapter 2 introduces recent and past research works done on the grid and especially on
grid resource discovery. Chapter 3 discusses the web-based architectural model and
implementation strategy for a direct and centralized web-based architecture. Chapter 4 elaborates
on the simulation package GridSim, including the simulation results of direct and centralized
web-based architecture. The discussion of scalability and statistical analysis are also given in
Chapter 4. The conclusions are drawn, our contributions are reiterated and potential future work

is discussed in Chapter 5.

CHAPTER 2

2. RELATED WORKS

This chapter discusses works related to general grid computing and grid resource
discovery. It mentions one sample for each work on general grid computing but focuses more on
resource discovery-related works. Chapter 2 is further divided into section 2.1, section 2.2,
section 2.3 and section 2.4. The general grid computing-related works are mentioned in section
2.1. Section 2.1 comprises five different related works in the area of general grid computing.
Section 2.2 also contains different resource discovery-related works. The layered architecture of
resource discovery is presented in subsection 2.2.1. Subsections 2.2.2 and 2.2.3 discussed
hierarchical and tree based model discoveries. Subsection 2.2.4 presents Grid Resource
Discovery based on Semantic Information that describes P2P and Galaxy models. Finally UDDI-
based Resource Discovery is given in subsection 2.2.5. The numbers of grid simulation packages
are mentioned in section 2.3. The comparison of our work with other architectures designed for

resource discovery is given in section 2.4.

2.1. GRID COMPUTING-RELATED WORKS

2.1.1. Scheduling in Grid Systems

As mentioned by Xhafa et al. [14], the inefficient scheduler system in middleware makes
it difficult to bring real-world applications such as search, education, e-commerce, collaborative
work, file storage and high performance computing for efficient utilization in a grid
environment. The five classical batch job scheduling is evaluated by Xhafa et al. in [14] for grid
computing. The scheduling system maintains a vector (n, m) where n stand for number of jobs

and m means number of machines. The Expected Time to Compute (ETC) for each job is

calculated by a batch job scheduling system. The batch methods are evaluated by computing the
concluding time of the latest job and the sum of the concluding t-imes of the jobs already
performed. The batch job methods are also evaluated by measuring the quality of schedule with
respect to the utilization of resources and allocation of the jobs to the best resources in terms of
speed.

The benchmark simulation model is used for testing the implementation of batch methods
and described in [14]. The programs for batch job methods are written in C++. The 512 jobs on
12 computers are used to simulate a grid environment. The information of resources is given in
advance to the simulation model. The computational results reported in [14] show that the
presented batch methods do not perform well. The performance of batch job methods depends on
high or low diversity in the nature of jobs and the grid scenarios. The performance also depends
upon the volume of different kinds of resources. The performance further depends upon
consistency level of the computing resources that may be consistent, semi-consistent or
inconsistent. The final conclusion in [14] is for designing an efficient batch job scheduler for a

grid, the grid characteristics should be known in advanced.

2.1.2. Replica Management in Data Grids

Belalem et al. [15] extended the idea of providing efficient access to the data without
conflicts in a large-scaled grid by use of replication technique. Replication is a technique for
producing the exact copy of the original file. The consistency of replica is an important issue in
data replication. The consistency of replica is the degree of similarity with the master file after
updating the replica from a master file. There are two approaches to manage the consistency of
replicas. The first approach is pessimistic replication that updates all replicas synchronously. The
second approach is optimistic replication that updates single replica at a time. Belalem et al. [15]
have proposed a third approach named hybrid method by joining the pessimistic and optimistic
approaches. The hybrid approach consisting of a tree-based hierarchical model, manages a large-
scaled grid into two levels for the consistency management of replicas. The whole grid
comprises sites defined at level 0. Each site has a computer or a network of computers. Any site

selected for replication is defined at level 1. The level 1 is divided into Intrasite and Intersites

10

tasks. The management of replica consistency using optimistic approach by Virtual Consistency
Manager (VCM) within a site at level 1 is called Intrasite. The VCM iﬂtroduced in the paper [15]
is software to manage replica consistency at each site. Each VCM for a site cooperates with other
VCMs of other sites in the whole grid. The management of replica consistency using a
pessimistic approach among different sites in the grid through their respective VCMs is named

Intersites.

The OptorSim presented by Bell et al. [16] is used for simulation of a hybrid approach
and its components. The simulation parameters used by Belalem et al. [15] are number of sites,
replicas and requests. The results indicate that the quality of service is better in a hybrid than in
an optimistic approach. Also the response time is better in a hybrid than in a pessimistic

approach.

2.1.3. Integration and Sharing of Resources

For integration and sharing of resources, Li et al. [17] introduce an information-based
grid consisting of a database called VIG. VIG stands for VEGA Information Grid while VEGA
stands for Versatile services with Enabling intelligence based on knowledge, Global uniformity
and Autonomous control. VIG structure consists of virtualization-based relation schema, virtual

database and loosely coupled interface architecture. These are explained as the follows:

J Relation Schema: Contains information of physical resources such as computers in the
networks (defined by resource providers), a data model for business requirements and a

personalized environment for user requirements (defined by user).

o Virtual Database Engine: Is designed to investigate the result of user queries sent to
multiple resources.
. Interface Architecture: Takes care of interaction between relation scheme and virtual

database engine.

11

To test the performance of the database four queries were tested that resulted in an

average user time of 1.8 minutes.

2.1.4. Desktop Grid Applications

Desktop computers are used all over the world. Schmidt [18] recommended the formation
of a grid consisting of desktop computers to provide immense computing power for scientific
applications at very low cost. The volunteer desktop computers in the grid can be effectively
used by applications with no or very little cost. Schmidt [18] discusses the example of Desktop
Grid is based on the middleware platform known as Berkeley Open Infrastructure for Network
Computing (BOINC). The BOINC middleware is the open source software consisting of servers,
clients, databases and modules. The server middleware consists of data and scheduler software.
The server uses a HTTP-based protocol. The different units of software communicate with each
other to distribute, process, and return jobs. The author argues that Desktop Grid Application

will benefit research and user groups.

The computing power of a desktop grid described by Schmidt [18] is enhanced by using
GPU-based desktop computers instead of CPU-based desktop computers. GPU stands for
Graphics Processing Unit. The GPU has been developed for computer games, which are lively in
nature and extremely competitive. It is shown by integrating GPU into BOINC project that the
speed of GPU-based dedicated desktop grid computers becomes significantly faster than that of
CPU-based dedicated desktop computers.

2.1.5. Instruments Control in Grid

A grid infrastructure as mentioned by Lelli et al. [19] may consist of the data acquiring
instruments like sensors that can be heterogeneous devices and geologically distributed. These
instruments should be remotely operated and monitored by the teams at different locations using

a grid. The goal of the work presented by Lelli et al. [19] is providing the software tools for

12

interaction of data acquisition instruments and other parts of the grid. The classification of data
acquiring instruments is taken into account in the design of new software that can be used as the
grid component to control these instruments. A general model called uniform model consisting
of generic instruments is presented by Lelli et al. [19]). The software component called
Instrument Element (IE) consisting of different services is also introduced in [19]. It enhances
the existing grid to control real scientific instruments remotely. The services in Instrument
Element provide functionalities for monitoring, configuring, controlling and accessing of

instruments remotely.

The first release of IEs is implemented in Java language and Java-based components. The
scalability and flexibility of the first release of Instrument Element is tested through the
“command reception” and “distribution performances” experiments. The command reception is
testing the receiving capability of the Control Manager (a component of IE). The command
distribution is the capability of distribution of command inside IE internal components. Two tests
have been performed to check the receiving capability of IE middleware. The Control Manger
receives a request from a client. The Control Manager replies 50 responses per second on
average to the requests received from clients. The second test is concerned with command
distribution by measuring message handling. These results of the tests show scalability and
flexibility of IE. The first release of IEs software is currently employed in several grid projects

that are mentioned by Lelli et al. in [19].

2.2. RESOURCE DISCOVERY-RELATED WORKS

The sharing and integration of heterogeneous resources for computational and data
storage projects has become an important area of grid research. The resources on the grid
systems are more widely distributed and heterogeneous than that on traditional and cluster
systems. The resource discovery is a key grid management tool for extraction of resource
information in the grid environment. The resource discovery management tool in the grid is
based on resources organization. Most approaches of resource discovery for grid computing treat

resources equally. These approaches are facing problems in terms of efficiency in response time

13

and the need to generate complex queries. Therefore resource discovery architecture is needed
that should be simple and scalable to discover resources. Some of the works already done on the

subject of resource discovery models are discussed next.

2.2.1. Layered Architecture-Based Resource Discovery

The layered architecture of grid computing was proposed by Foster et al. [20] in 2001. It
includes five layers as shown in Figure 2.1: Fabric, Connectivity, Resource, Collective and
Application layers. The Fabric layer is the first layer, handling local resources at a particular site.
The Connectivity layer uses network communication protocols for data transfer between
resources. The Resource layer uses protocols of the connectivity layer and interfaces provided by
the fabric layer to manage a single resource. The collective layer holds the information of
multiple resources and manages resource discovery, task scheduling and the allocation of
service. The collective layer discovers resources based on the information from lower layers.
Finally, the application layer is the closet layer to the user and provides applications within the

virtual organization to access the grid computing.

Application layer

1

Collective layer

Resource layer

Connectivity layer

Fabric layer

Figure 2.1 Layered Architecture from [20]

14

2.2.2. The Grid Resource Discovery Method Based On Hierarchical Model

Yin et al. [21] has proposed a new model called the Hierarchical Resource Organizational
Model. The model consists of the three layers to keep the information of a grid. These three
layers are Physical Network, Resource Information and Index Information. The Physical
Network Layer is lowest level containing the physical resources linked with each other on the
Internet. For each resource there is an information node called resource node that is placed in the
middle layer named Resource Information layer. Therefore the middle layer contains virtual
organizations (VO) information which is the group of resource nodes with star topology that has
a super node in the center. The Super Node keeps all the information regarding the resources of
VO as the adjacent lists. These Super Nodes are used in the Index Information Layer which is the
highest level for resource discovery. This layer contains information of all Super Nodes of the
middle layer which is constructed in a ring topology structure and will be used for hierarchical

resource discovery as presented in [21].

Three simulation tests performed by Yin et al. [21] are using 100, 500 and 1000 resource
nodes on the three kinds of discovery models. They compared their model against two other
models that they called Exhaustive and Lumped models. The exhaustive model searches all the
resource information nodes and Lumped model uses only a single point for resource discovery.
As explained in [21], Hierarchical model not only outperforms the two other models regarding
the resource discovery time but also does not have the performance problems of the two other
models. The single point based resource discovery used in the Lumped Model can be a
bottleneck and source of failure. Also blindly search discovery model used in Exhaustive Model

does not scale when the resources are increasing.

2.2.3. Tree Structure-Based Resource Discovery

Sun et al. [22] proposed Resource Category Tree (RCT) that organizes the resources
using hierarchical model but this time as the AVL tree. AVL tree is a self balanced tree structure
that is balanced regarding the height when the nodes added dynamically to the tree which is

15

described by Horowitz et al. in [23]. With this method authors argue they provide more
scalability and flexibility for grid resource discovery. The RCT using resource characteristics
that are usually needed to know to be able to satisfy the queries. The important characteristics
that represent the resources are called primary attributes (PA) in [22]. These attributes are
organized as the tree nodes to be able to answer the queries based on the ranges. A query is
called a range query when it searches the resources of a specific range on a primary attribute (for
example available memories > 1 GB). A query that required multiple attributes is called a multi-

attribute query.

The RCT proposed by Sun et al. [22] is simulated by using Java programming language
and compared with hierarchical structure. The simulated RCT and hierarchical model consist of
100 nodes. The query load per node and average search length (ASL) are performance metrics
for this simulation. The RCT is found to be 50% more efficient in terms of the number of queries
reaching to each node than the Hierarchical model. The average search length is the average
number of nodes that a request is passed for query processing. Regarding the comparison of
average search length the result shows that RCT searches between 8.5 to 9 nodes and the
hierarchical scheme searches all 100 nodes. It is concluded that the Resource Category Tree is an

efficient and complete solution for resource discovery.

2.2.4. Grid Resource Discovery Based on Semantic Information

A Peer-to-Peer (P2P) network consists of computers that share their resources with each
other without using a server computer. The Peer-to-Peer grid model is similar to the P2P network
that consists of a set of super nodes also called grid peers as described by Xiong et al. in [24]. A
super node or grid peer manages a set of nodes. A node is a computer managing a group of local
grid resources. When a user searches for resources, the super node or grid peer domain of local
resources is queried first. If no query result is found from a local grid peer, the local grid peer
directs the query to the closest grid peers using the random-walks-based method. The P2P
system consists of autonomous agents that are able to accomplish unsupervised actions. These
are the Request Agent and the Broker Agent. The Request Agent is responsible for the query and

result from a grid peer. If it cannot find the information, it sends a request for information to the

16

Broker Agent of the same grid peer. The Broker Agent contains a database of resource

information to be discovered from other grid peers, called the Global Knowledge Database.

As mentioned by Seyed et al. [25] a grid computing architecture is required to discover
the resources because most of the time of the grid computing is spent on resource discovery. This
time can be minimized by adding the architectural layers. These layers will manage all resources
of the grid. Resource discovery is becoming more complex because the number of nodes and

users are increasing day by day in grids such as Universal Grid.

The Galaxy architecture model proposed by Seyed et al. [25] is the hypothetical
semantic-based grid architectural model, with the idea of creating a universal grid. It consists of
four levels of grid computing in which different forms of indexing called metadata and meta-
metadata are employed for resource discovery. These metadata, together with agent programs,
are distributed in all layers of the grid. The metadata in Galaxy contains semantic information
about the availability of resources that are updated by smart agent programs. In Galaxy, it is
assumed that service-oriented programs are available at all levels of the grid and are used by
agents when a resource change event is triggered. The metadata contains the latest resource
information in XML based format. The important part of Galaxy is the agent and software
services, which update semantic information and assist with resource discovery. The semantic
information includes ontology (i.e. the meaning and interpretation of information) that is needed
for communication between different services. In Galaxy, the administrative information of the
resources of any node is created and updated by agent programs and kept in metadata. The
Galaxy layer for resource management is on top of the data link layer and under the network
layer that has to add additional information into IP packets. The location of the Galaxy layer for

resource management is shown in Figure 2.2 on next page.

The use of web services with semantic information, multi-agent systems and metadata as
declared by Seyed et al. [25] will provide up-to-date resource information to the end user.
Although no simulation work is done, it is predicted that resource access will be much faster

using Galaxy architecture.

17

Application layer

Transport layer

Network layer

Grid Resource Management layer (Galaxy Protocol)

Data link layer

Physical layer

Figure 2.2 Galaxy Protocol layer from [25]

2.2.5. UDDI-Based Resource Discovery

As described by Foster et al. [12], the Open Grid Service Architecture (OGSA) is the
standard for integration of web services and grid computing. It is introducing the concept of grid
services and all the mechanism required for using grid services such as naming, grid service
description and grid service discovery. OGSA is the result of Globus toolkit that was introduced
by Foster et al. in [26]. The Globus toolkit is developed to use the grid services in practice.
OGSA is evolving middleware that uses specifications of Web Service Resource Framework to

build a web service-based grid.

Benson et al. [13] focusing on internal structure of Universal Description, Discovery and
Integration (UDDI) for discovering grid services. UDDI is used for resource discovery
mechanism of OGSA based grid for grid services. However using UDDI for grid service has

some problems because it is designed to be used for business services.
According to Benson et al. [13] UDDI registry keeps track of a resource through a string

reference key. The UDDI has three basic design issues as the following that make it difficult to

be used for grid services.

18

1. Missing of explicit data type for UDDI directory.
2. Difficulties in handling regularly updating dynamic information such as continuous
numeric type of CPU load which changes at instances.

3. The limited query capability.

Benson et al. [13] proposed a new UDDI centralized model of grid resource discovery

with following modifications:

1. The issue of explicit data type, which does not exist in UDDI registry, is resolved by
proposing the continuous variables of numeric type in UDDI registry.

2. The issue of dynamic information is resolved by introducing a new variable called
lastUpdateTime in the UDDI registry for storing periodic update from resource
providers.

3. The issue of limited query model is resolved by associating performance data like

CPU load or machine attributes with a reference key.

Therefore UDDI can be used for grid service discovery but with the above modifications.
In this work the experiments are done to find out the performance of modified jUDDI under the
system load measured by the update frequency of grid resources. It is mentioned by Benson et al.

[13] that the implementation of UDDI version 3 will match the requirement for grid services.

2.3. GRID SIMULATING PACKAGES

As mentioned by Buyya et al. [27], there may be individuals or organizations who own
different grid resources. Each of them might have their own resource management, access and

cost policies in the grid environment that makes resource management a complicated issue.

Resource discovery policy is part of the resource management and is also a complicated
task. In the future, the number of resources and users in a grid may grow rapidly. Therefore, a
grid resource discovery model should meet the scalability issue. To evaluate a scalable grid

resource discovery model, we need a grid simulating platform. In the next paragraph we have

19

mentioned the names and brief explanation of the functions of some the grid platforms or

simulation packages that can be used for grid simulation.

There are many implemented grids such as DAS3, Grid'5000 as mentioned by Cappello
et al. in [28]. There are also simulation packages to simulate a grid environment. For example
the Bricks defined by Takefusa et al. [29] simulates the behavior of resource scheduling
algorithms for global networks. The SimGrid elaborated by Casanova et al. [30] is a grid
simulation toolkit to simulate scheduling of distributed and parallel applications on network and
distributed computing platforms. The GridSim explained by Buyya et al. [31] is a simulation
toolkit for modeling and simulation of grid entities. These entities may be resources,
applications, users and resource brokers/schedulers in parallel and distributed computing
systems. The GangSim described by Dumitrescu et al. [32] is a tool developed for grid
scheduling studies and control of resource sharing. The OptorSim described by Bell et al. [16] is
a grid simulator toolkit that is developed to examine different replication approach. The
WGridSP elaborated by Kang et al. [33] is a grid scheduling toolkit for stimulation in a Java
environment that performance evaluation of a grid in Internet. The WGridSP is based on

GridSim.

There are many types of simulation packages as mentioned in the previous paragraph to
simulate different resource discovery models. The commercial success of grid computing
depends on the right choice of resource discovery model. Therefore we need to select a
simulating package that would be used to evaluate the scalability of our grid resource discovery

architectural model.

24. COMPARISON OF OUR WORK WITH OTHER GRID
ARCHITECTURES FOR RESOURCE DISCOVERY

Our work is based upon web services and the simulation package named GridSim that is

simulating a layered architecture for grid resource discovery. The GridSim simulates resources,

20

users, jobs and etc. The GridSim is mentioned in section 2.3 and will be discussed more in

Chapter 4. Comparison of our work and similar works are given next.

Regarding to the use of central approach of discovering web services for grid computing,
our work is similar to that is presented by Benson et al. [13]. We use UDDI but we don’t focus
on the internal structure of UDDIs for discovering grid services. However we assume a required
UDDI technology exists according to that proposed by Benson et al. [13]. Therefore we are able
to use UDDIs for discovering resource finder web services. We also assume the resource finder
web service proposed by our work has the requirements of a grid service that suggested by Foster

et al. [12] for OGSA but we do not focus on its internal structure.

Our proposed model is the simplification of upper two layers of the layered architecture
model discussed in section 2.2.1. This simplification is done only for the application and
collective layers of the layered architectural grid computing presented by Foster ez al. [20]. The
application layer of our model provides web interface for the user and the collective layer of our
model is a web service focusing on resource discovery. They are therefore referred to as Web
Interface and Resource Finder Web Service layers respectively, as shown in Figure 3.1. We do
not address the rest of the three lowest layers of the layered architectural model presented by
Foster et al. [20], but a combination of all of them is shown as the Grid Computing
Resources/Nodes layer in Figure 3.1. The Web Service in our model receives the client’s request
for a resource and finds an appropriate resource finder that returns a list of requested resources
and their contact addresses. The Middleware is used for communicating between the layers of
the model. Metadata shown in Figure 3.1 is the information on the resources that is handled by
the resource finder. Metadata is in XML format because it will be sent to the requesting client
through the web. Using web services and XML-based metadata for grid computing are also
proposed by Seyed et al. [25] in Galaxy architecture that is outlined below.

Similar to Galaxy, our model uses web services, but they have been used for web
interface and resource finder layers. We do not assume web services in the lower layers of the
grid exist. We also use metadata in XML format that contains the information of the resources.

However, in our proposed architecture, we assumed metadata would be maintained and updated

21

by a resource finder through the information passed on by regional/local managers, grid resource
providers or other event-based programs. In our model we did not focus on the required
mechanisms in the lower layers required for updating metadata. Moreover, our proposed
architecture does not use any semantic layers or agents that are required at all levels of the grid,

as in the Galaxy model.

Another major difference between implementation of our model and implementation of
the Galaxy model is considering TCP/IP stack protocols. The location of the Galaxy layer (for
grid resource management) is suggested to be placed on top of the Data Link Layer and under
the Network layer as described by Seyed et al. [25]. This means that to implement Galaxy after
the IP protocol assembled the packets, the information generated by the Galaxy layer should be
added to each packet. However, considering the implementation of our model regarding TCP/IP,
our model can be implemented in a way that is similar to the DNS protocol presented by
Giordano [34]. The additional layer for our proposed model could be placed in the application
layer as Web Interface, and the SOAP messages would transfer between the resource finder and
client web services. There can be many resource finder repositories in our model similar to Name
Servers in DNS that can also be used for sending queries to other resource finder repositories to

find requested resources.

We believe that by limiting the web services for communication between user and
resource finder components and simplifying the metadata, our model can be implemented on top
of an application layer of TCP/IP. Therefore, we have solved the main drawback of Galaxy that
is impracticality. In implementation of the Galaxy model not only it is required to change the
lower layers of TCP/IP protocol, but it is also assumed that software services are available in all

layers of grid computing platforms.

22

CHAPTER 3

3. PROPOSED MODEL AND IMPLEMENTING STRATEGY

This chapter discusses our proposed model. The discussion about the proposed web-
based architecture will be presented in section 3.1. This chapter also elaborates on the
implementation strategy for our proposed web-based layered architectures in section 3.2. Finally

conclusions are presented in section 3.3.

Section 3.2.1 explains the implementation of a Direct Web-Based Grid Resource
Discovery model. Section 3.2.2 describes the employment of jUDDI registry for implementing a

Centralized Web-Based Grid Resource Discovery model.

3.1. PROPOSED WEB-BASED ARCHITECTURE FOR GRID
RESOURCE DISCOVERY

Resource discovery is a time-consuming part of grid computing. To implement more
effective resource discovery, we propose a model to employ web services on the upper layers of
grid computing. Although our model may be considered to be the simplification of some of the
previous proposed models presented by Foster ef al. [20] and Seyed et al. [25], the structure and
function of our model differ significantly from these models. This is explained in further detail in

this section. The structure and function of our proposed model is shown in Figure 3.1 on the next

page.

In our proposed model, a user will access web services through the highest layer of the
grid to locate the resources with the help of a resource finder (or resource broker) and metadata.

The web services will then contact the resource finder to obtain the address of a resource. If the

23

requested resource(s) are available within the metadata, the resource finder will send the
metadata related to that resource through the web service to the user: Metadata is the highest
level of resource information, including addresses, in the grid. To discover the resource finder
service on the Internet, the client can send queries to repositories similar to Name Servers in
Domain Name Service (DNS) protocol [7] as proposed by Giordano [34]. Metadata contains the
highest level of information of the group of resources available within the local network, or
within the same region containing special criteria. The user who requests the resource may know
the URL of the resource finder (for example by using a search engine or being in the same
region) or may be redirected to send DNS queries to the repositories (UDDI) of the resource
finder services to find the URL of the related resource finder. Once the URL of the resource
finder that has that resource/s on its list has been found, it can be accessed by the user through a
related web service. Thus in our model, end users will use web services in both of the above
mentioned cases only to communicate with a resource finder that has the list of the group of the

requested resources in its metadata.

Client Web Interface

< Middleware >

[

Resource Finder Web Service

F

< Middleware >

Metadata

- A

Grid Computing Resources/ Nodes

Figure 3.1 Proposed Model

24

We have submitted paper discussing the implementation of the proposed model [35]. The
modified layers in our model are client web interface and resource finder web services. The
resource finder service searches metadata and returns a list of the available resources of the grid
to the user by using common protocols within the application level of TCP/IP such as HTTP.
Our model proposes XML format for metadata to be used by web services. As mentioned in
section 2.4, our proposed model could be considered a simplified form of application and
collective layers of grid Layered Architecture presented in [20]. Similar to the Galaxy model
presented by Seyed et al. [25], our model uses web services to find grid resources. However, our
model does not use any semantic components or smart agents because we are concern with

practicality and simplicity of the proposed model.

The search for the resource finder and metadata components of our proposed model can
be considered similar to the distributed search model in Name Service (DNS) protocol presented

by Mockapetris [7], with slight modification that is explained next.

By using a web interface, the user sends a request to access the grid resources from a
regional resource finder web service. The resource finder searches its metadata that contains the
latest information on the resources, including their location in the grid. We assumed the
information on grid resources that can be provided by grid resource providers, local regional
managers or special programs can be fed to metadata and updated periodically. The simplest
scenario is a regional resource finder that is known to the user in advance that has the resources
requested by the user and acts as the broker to allocate these resources within the grid network.

However, there are the situations that are not that simple, and they are explained next.

First, we consider a scenario in which the resource finder realizes there are many
resources eligible to satisfy users search criteria. In that case a resource finder communicates
with the user through a client web interface to ask the user to select the required resources from
the list. Second, we consider a scenario where the resource finder, by searching metadata,
realizes there is no resource or a low number of resources available for the user. In that case, the
user’s search query will be sent to a regional registry service that contains the list of resource

finders and high level information on their metadata. The search for finding a resource finder that

25

has the resources required by the client may continue in a similar manner to the distributed
search model performed by name servers for mapping URLs to IP addresses in DNS protocol.
The final result of this search in our model is the URL of the appropriate resource finder service
that has the requested resources. The result of this search will be returned to the client. This

approach described by Giordano [34] and suggested in our model is called “a distributed search”.

Since resource finders are web services, we assumed that similar to the approach
proposed by Giordano [34], DNS queries are used to discover the URL of the appropriate
resource finder service by contacting central registries of each region in which web services are
registered. This is a traditional method of using UDDI to find web services. The UDDI registries
and the high-level information of the resource finder services, and their metadata are similar to

name servers and Zone files, respectively in the DNS protocol.

We used the distributed search method in the proposed model not only because of the
scalability of this approach, but also because this method is used in the model to update the
information of resource finders registries based on the latest information on the grid. When the
distributed search for resource finders is in progress, each resource finder registry in the path
finally receives the information of the appropriate resource finder that has the requested
resources. Each of these resource finder registries in the path adds this new information to its list
of registered services, similar to the DNS name servers when they cached the recently resolved
URL and IP address. Thus by employing this approach, not only do resource finder’s metadata
contain the latest information of the resources in their own region, but the resource finder
registries in the long run can also cache the recent information of other registered resource

finders and their resources.

After finding the URL of the appropriate resource finder that has the list of required
resources, the resource finder performs the duties of a resource broker by allocating the resources
within the grid. It will submit the jobs to these resources, and after a job executes, it will deliver

the results to the user.

26

3.2. UNDERLYING TECHNOLOGY FOR IMPLEMENTATION OF THE
PROPOSED ARCHITECTURE ’

Our main goal throughout the implementation of the model is to develop a prototype that
can be used together with grid simulator software to estimate any changes in grid resource
discovery time as a result of adding our model to the top of the grid. For implementation of the
resource finder, we used a web service. For a client web interface that calls for a resource finder
service by the user, we implemented a web application. For simplicity we assumed that the
scenarios given next are within the regional search for a resource finder service. Because of the
complexity of a DNS-based search, we have not implemented the whole model of a distributed
search proposed by our model in this work. The implementation for two scenarios of regional

search is as follows:

1. First, we implemented a model in which the resource finder service end point (URL) is
known to the client and the resource finder has all the resources. Since in this approach
there is no need to discover a resource finder service, and a client can call the resource
finder service directly, this approach is called Direct Web-Based Grid Resource
Discovery Model (DWGRD). The implementation of DWGRD is elaborated upon in

section 3.2.1.

2. In the second implementation approach, the resource finder web services are registered in
the regional central registry, which is a part of our web application. In this approach the
user knows the address of a registry location such as UDDI, by which he or she can find
the URL of resource finder service that has the required resources. The discovery of a
proper resource finder by using UDDI is added to the DWGRD model and the resulting
architecture, is called the Centralized Web-Based Grid Resource Discovery (CWGRD)
model. Once the service is found, the client then sends the request of requirements to the

service, and the result is returned to the client. CWGRD is discussed in section 3.2.2.

27

3.2.1. Direct Web Service-Based Grid Resource Discovery Implementation

For implementation of the DWGRD model, NetBeans IDE version 6.5.1 is used because
of its strength in the implementation of web service applications [36]. The resource finder web
service is accessed by a web application called client web application. The resource finder web

service calls GridSim to simulate accessing the resources in the grid environment.

The messages are then exchanged between the web service and client web application
using Simple Object Access Protocol (SOAP). The web service and client web application are
executed on the same server. The implementation flow of Direct Web-Based Grid Resource
Discovery model in NetBeans IDE 6.5.1 is shown in Figure 3.2 and simulation results are given

in Chapter 4.

Client Web A pplication
Modulc

L

Web Sexrvice Miodule J

ASs
Resource Finder

[Metadata

1

Grid Computing Resources

Figure 3.2 Implementation Flow of DWGRD

28

The implemented software has two parts:

1. The client web application has a JSP page as an interface that sends user’s entered
parameters to the web service application. The web service module acts as a grid resource
finder. The client web application receives timing results from the grid resource finder

after the next step.

2. The grid resource finder web service calls the Grid Information Service class of GridSim,

which simulates grid entities such as users, resources and jobs in the grid environment.

3.2.2. Centralized Web Service-Based Grid Resource Discovery Implementation

The CWGRD model is also implemented as a web application in NetBeans IDE Version
6.5.1. The UDDI registry technology used is called jUDDI. The detailed explanation of
installation of jUDDI in Apache Tomcat Server is given in [37] and specific implementing detail

is given in Appendix A.

We are using UDDI and jUDDI registries while assuming, they have been enhanced by the
solution provided in [13] and are capable of discovering grid resources. The jUUDI server is
used for our model for the following reasons:

1. 1t keeps the information in XML format and it compatible with web service technology.

2. Tt keeps all the details required for discovering resource finder web services.

3. We use multiple UDDIs distributed in Internet instead on the central UDDL. It means we
will use multiple jUDDI servers at many regional bases similar to DNS servers. These
JUDDI servers will be communicating with each other using distributed search for
resource discovery similar to DNS servers. Using multiple jUDDI servers, we will not

have the problem of a central bottleneck when having only one repository.

29

Once the service is registered into the jUDDI database that is connected to the databases
server, the service can be accessed from the registry using web application. The CWGRD model

is implemented as shown in Figure 3.3.

Client Web Application
Module

’__Iil Web Scervice Query I

JUDDI Web Application As
Service Resource Finder

No (New Search)

Web Service Module As
Grid Resource Finder

I

Metadata

-

!

Grid Computing Resources

Figure 3.3 Implementation Flow of CWGRD

A client web application is constructed in such a way that it sends the inquiry to find
service from the jUDDI registry. The result of the service query is returned and the time in
milliseconds that it took to satisfying the query from the jUDDI registry is recorded. This time
will be added to the time reported by DWGRD (details will be explained in the next chapter) that

is determined by the resource finder service.

30

3.3. CONCLUSIONS

In this Chapter we have proposed a web service-based layered architecture that is a
scalable solution for resource discovery in grid computing. This model uses DNS-like queries to
find the URLs of required services by contacting the central repositories that are distributed
throughout the Internet. The underlying technologies for implementation of the architectures

according to two common scenarios of this model are introduced.

31

CHAPTER 4

4. SIMULATION AND RESULTS

Many grid simulation toolkits have been developed for simulation of grid environment.
Buyya et al. [31] presented the discrete-event-based grid simulation toolkit designed in java
called GridSim. The GridSim toolkit is designed to support modeling and simulation of grid
entities. The heterogeneous resource(s) (both time- and space-shared), user(s), resource broker(s)
and application(s) are generated using GridSim as grid entities. The GridSim simulation package

is described in section 4.1.

Section 4.2 discusses the simulation results of the GridSim (i.e. no architecture) and Direct
Web-Based Grid Resource Discovery (DWGRD) model. Section 4.3 discusses the simulation
results of the Centralized Web-Based Grid Resource Discovery (CWGRD) model. The
discussion of scalability is presented by comparing GridSim, DWGRD and CWGRD under
increasing the grid load is in section 4.4. The statistical analysis of the results obtained from this
test that we called scalability test is presented in section 4.5. The conclusions are given in section

4.6.

4.1. GRID SIMULATION

The major challenge of this work was finding a grid simulator toolkit suitable for our
work. Firstly, grid simulation is different from network simulation and, secondly, we needed to
find a simulator capable of estimating resource discovery time. GridSim is a java-based discrete

event-based simulator that we found suitable for our work.

GridSim simulates entities in the heterogeneous grid environment. These entities are

user(s), application(s), resource(s) and resource brokers/schedulers in parallel and distributed

32

computing systems as described by Buyya et al. [31]. The GridSim v4.1 consists of 161 classes,
among them Grid Information Service, that is used for resource discovery in the grid, indexing
and registration. Availability of this class that can be used for our grid resource discovery
simulation plus modular architecture for modeling a layered based grid are the main reasons that

we selected GridSim for our simulation.

Within the simulation for each of the architecture, the grid simulation is triggered by the
resource finder web service of our model. There is a call to GridSim.init() that initialized the
object of Grid Information Service (GIS) class, that as explained before is used for grid resource
management simulation. We averaged the round trip time of a packet reported by GridSim for all
users and used it as the estimation of the time that is required for grid resource discovery by a

user in our experiments.

Since GridSim is a discrete event-based simulator, as suggested by Law et al. [38] we
performed the complete standalone simulation test for all three models to make sure that the
achieved results have steady-state behavior. It means we performed simulation for all the
combination of resources and users (i.e., 36 points for each model) for the three models
(explained in section 4.2) to make sure the achieved resource discovery times are non-transient
and stable. After that we compared the results of the models for the selected points to be able to

test the scalability of the system.

4.2, SIMULATION OF DIRECT WEB SERVICE-BASED GRID
RESOURCE DISCOVERY

For both DWGRD and CWGRD approaches, the resource finder service calls and
executes GridSim (that is run on a same server) which is responsible for generation of grid
entities such as resources, GIS nodes and users. GIS node is a managing computer that registers

and keeps the information of resources within its region.

33

To implement both DWGRD and CWGRD, the one client and one server architecture is
used. The reason is that we simulate a grid on one machine. Therefore, for providing comparable
timing results with GirdSim, we ignored the network latency involved in calling the resource
finder services in DWGRD or communicating with UDDI in CWGRD. For real systems, this
architecture can be extended to multiple clients with multiple servers, when the resources of the

grid are located all over the grid network.

The resource discovery times of GridSim (for simulating the grid network with no
architecture on top), Direct Web-Based Grid Resource Discovery (DWGRD) and Centralized
Web-Based Grid Resource Discovery (CWGRD) models are produced by simulation.

The DWGRD model is developed and executed in. NetBeans IDE 6.5.1 as explained
before in section 3.2.1. The client web service application communicates with the relevant
resource finder web service application. The grid resource finder web service and client web
service applications are deployed and executed many times on an Apache Tomcat version 5.5.23
server. The number of grid users and number of resources are simulation parameters that are
passed to GridSim to observe the difference of resource discovery by using the Direct Web-
Based Grid Resource Discovery model as compared to no architecture (i.e., when running only

GridSim).

The number of resources is used as a first variable parameter in simulation with
increasing numbers of users as the second parameter, while the number of GIS nodes is kept
constant throughout simulation to 2. The Direct Web-Based Grid Resource Discovery model is
for the first scenario that is added on top of GridSim. The proposed model and GridSim (no
architecture) both are executed for ten times for each pair of the number of users and resources.

First we did a complete test for GridSim as the following:

The average resource discovery time of a user for GridSim (no Architecture) is computed
after ten times of data collections for each number (1, 20, 40, 60, 80 and 100) of users while
keeping the number of resources constant to 1, 20, 40, 60, 80 and 100. This process was repeated

for the constant users and variable resources for the same numbers. The complete graph is

34

shown in Figure 4.1 below. The resource discovery time for each user increases consistently as
the number of users and resources are increased in GridSim. The resource discovery time for
each user increases as the number of users and resources are increased because GridSim
simulates more users and resources. The average time of resource discovery for an average of

100 users with 100 resources in GridSim is found to be 12.012 seconds.

——— Number of Resources

18
T — o — AR 20
(o]
(§ 16 ; - 40
.5 14 60
=
= m 80
12
g 100
§ 10
2
() 8
2
3
2 6
&
B4 jl0o
z) 60

40
0 L ~120
g 20 T 5 ~ Number of Resources

40 60 A
100

Number Of Users

Figure 4.1 Average User Resource Discovery Time of GridSim (i.e. no architecture)

Now we perform a complete test (i.e., the combination of resources and users) for
DWGRD as the following:

35

The resource discovery time of the Direct Web-Based Grid Resource Discovery model is
the resource discovery time reported by GridSim when 1s triggered by the resource finder web
service plus the time ot calling the web service, The data for each user of the Direct Web-Based
Grid Resource Discovery model 1s also collected ten times for each number (1, 20, 40, 60, 80
and 100) of users while keeping the number of resources constant to [, 20, 40, 60, 80 and 100

and vice versa simtlar to the method used for GridSim as shown in Figure 4.2 below.

Number of Resources

" 1
2

£ 18

o 20
) 16

E

g 14 40
> 12 60
[¢3)

>

§ 10 w80
[a) 8

3 100
5 6

2

8 4

(]

? 2

2 0

Number Of Users

Figure 4.2 Average User Time of Direct Web Based Grid Resource Discovery (DWGRD)

The resource discovery time for each user also increases slowly as the number of users
and resources are increased in the Direct Web-Based Grid Resource Discovery model, as shown
in Figure 4.2. The resource discovery time for cach user increases as the number of users and

resources are increased because GridSim simulates more users and resources. The average time

PROPERIY OF
36 RYERGON WVERSITY LIBRARY

of resource discovery for an average of 100 users with 100 resources in the Direct Web-Based

Grid Resources Discovery model is found to be 13.902 seconds.

The average user times of the GridSim and Direct Web-Based Resource Discovery model
will be compared in section 4.4. The slightly higher average time for resource discovery by
increasing the number of users and resources in the Direct Web-Based Grid Resource Discovery

model indicates the additional time for using web services to send the parameters to GridSim.

4.3. SIMULATION OF CENTRALIZED WEB SERVICE-BASED GRID
RESOURCE DISCOVERY

The Centralized Web-Based Grid Resource Discovery model is also developed and
executed in NetBeans IDE 6.5.1 as explained in section 3.2.2. The Centralized Web-Based Grid

Resource Discovery model consists of three applications:

1. juddi: A java based UDDI web application that is a centralized registry.

2. GridArchitectureTomcatWebClientjuddi: A client web service that calls juddi to

discover the URL of the resource finder and to collect the resource discovery time.

3. The same application that was used for DWGRD to be able to call grid resource
finder to execute Grid Information Service (GIS) class of the GridSim, as explained

before GIS class generates indexes and registers grid entities.

The service discovery parameters are entered similar to DWGRD and information flow is
as shown in Figure 3.3. The timing result together with the discovery time of the URL is returned
by the program. The discovery time of the URL is recorded and control is returned to the client
web service application, where a web interface is given to enter the URL of the discovered grid
resource finder web service. Thereafter the web service application works similar to Direct Web-

Based Grid Resource Discovery model as described in the previous section. The Centralized

37

Wweb-Based Grid Resource Discovery model is a set of apphcations that are deployed and
executed many times on the Apache Tomeat verston 5.5.23 server to rcéord the discovery time of
the URL. The discovery time of the URL rccorded in this approach 1s the sum of the jJUDDI
scarch time and running time of the application. For each point this time (t.¢., resource finder
discovery time) was added to the average resource discovery time of the Direct Web-Based Grid
Resource Discovery that was computed in Section 4.2 to get the total resource discovery time of
the Centralized Web-Based Grid Resource Discovery application (CWGRD) under the
increasing number of users and resources. The average resource discovery time for number of
users=100, number of GIS node=2 and number of resources=100 of Centralized Web-Based Grid
Resource Discovery application (CWGRD) 1s found to be 15.618 scconds, as shown in Figure

4.3 below.

Number of Resources

Average Simulated Resource Discovery Time in Seconds

20 10 8 : g Number of Resources

60
B0 100
Number Of Users

Figure 4.3 Average User Time of Centralized Web Based Grid Resource Discovery (CWGRD)

38

As mentioned in section 4.2 the average resource discovery time of the Direct Web-
Based Grid Resource Discovery application (DWGRD) for the same parameters is found to be
13.902 seconds, and the average resource discovery time of GridSim for same criteria is found to

be 12.012 seconds, as given in section 4.2.

The average user time of GridSim, DWGRD and CWGRD will be compared in more
detail in section 4.4, The higher average resource discovery time (as shown in Figure 4.3) by
increasing the number of users and resources in the Centralized Web-Based Grid Resource
Discovery model indicates that this architecture is adding additional time to the Direct Web-
Based Grid Resource Discovery application because it searches the URL of web service from a
database. By doing complete simulation for the models, we could not find any abnormality in the

system and we conclude all models have steady-state behavior.

4.4. DISCUSSION OF SCALABILITY

As expressed in the previous sections, some of the Grid parameters that change resource
discovery time are simulated by GridSim. Other factors are part of our model and depend on
whether resource discovery is done through direct or centralized architecture. To be able to
~ compare all three models in this part, first we looked at the effect of increasing resources with
fixed numbers of users 20, 60, and 100 with ail the same conditions as in the above sections. We
also used the same data as given in the above sections for each model. The two dimensional

graphs that demonstrate the results are shown next in Figures 4.4, 4.5 and 4.6 respectively.

39

§ 16]
S iy CWGRD
A 14 -
£
v 12
;.g. —f=DWGRD
> 10
8]
3 8 1
o e (1A ST
5 6
3 - ./f—’-/‘
= Y -/"/.
o _+ ‘—‘“
0 e ’ , : : —_—
1 20 40 60 80 100

Number of Resources

Figure 4.4 Average User Time of GridSim, DWGRD and CWGRD with users=20

w18 -
8 s CWGRD
S 16 |
3
T 144
@ n
g 12 ~f=DWGRD
2 10 -
)
g 87
a 6 —a—GridSim
03
o 4 -
3
2 2 -
o
0 , : . : , —

ey
N
[

40 60 80 100

Number of Resources

Figure 4.5 Average User Time of GridSim, DWGRD and CWGRD with users=60

5 =t CWGRD
c 16 -

8

3 14 4

C

é 12+ ~f—DWGRD
= 10 1

S 8

g 6 - == GridSim
2

g 47

s 2

€ 0

Number of Resources

Figure 4.6 Average User Time of GridSim, DWGRD and CWGRD with users=100

The reason for the increase of resource discovery timing is generation of more simulated
resources in GridSim (No Architecture), DWGRD and CWGRD. The Direct Web-Based Grid
Resource Discovery time includes the web service execution time and the time to discover
resources through the resource finder web service plus GridSim resource registering time. The
Centralized Web-Based Grid Resource Discovery Architecture time includes the time to discover
the URL of web service from jUDDI registry that is the time to search the registry and running
the application plus the time of DWGRD that includes the time of calling web service plus

GridSim resource registering time.
Since we want to test the scalability, increasing the number of users with the fixed
number of resources set to 20, 60 and 100 is the other criteria that we considered to observe for

analyzing the effects of increasing users on resource discovery time.

A constant increase in resource discovery timing is found as the number of users is

increased with constant resources=20, 60 and 100 in the Centralized Web-Based Grid Resource

41

Discovery, Direct Web-Based Grid Resource Discovery and GridSim models as shown next in

Figures 4.7, 4.8 and 4.9.

18
16
14
12
10

Resouce Discovery Time in Seconds

we=CWGRD
vl DWGRD

e GricdSim

o N OB O @

1 20

—

40

60

Number of Users

80

Figure 4.7 Average User Time of GridSim, DWGRD and CWGRD with resources=20

(71 18“
©

5 16
(v

& 14 -
=

@ 12
£

= 10 1
g 8
3 |
bt 6 -
2

@ 4 -
8

2 2
o o

e CWGRD
i DWGRD

—pme GridSirm

20

40

60

Number of Users

80

100

Figure 4.8 Average User Time of GridSim, DWGRD and CWGRD with resources=60

42

'g 16 - oy CWWGRD
g 14 -
£
o 12 -
=
= 10 A =&~ DWGRD
g g
(o]
b
8 61
p” e
§ 4 == GridSim
io

0 h 4 T T R T L)

1 20 40 60 80 100

Number of Users

Figure 4.9 Average User Time of GridSim, DWGRD and CWGRD with resource=100

As these graphs show, the average time of resource discovery of an average of 100 users
with 100 resources in the Centralized Web-Based Grid Resource Discovery model is found to be
15.618 seconds. The average time of resource discovery of an average of 100 users with 100
resources in Direct Web Based Grid Resource Discovery model is found to be 13.902 seconds,
while that of GridSim is found to be 12.012 seconds. As we can see in Figures 4.6 and 4.9, the
difference between resource discovery time of GridSim, DWGRD and CWGRD are the same for
a fixed 100 users and 100 resources. We also want to see the difference between resource

discovery times of three models when increased number of users and resources are equal.

The GridSim simulates grid entities such as users and resources with their registering
time. The GridSim (No Architecture) is a simple java application that executes in NetBeans IDE
6.5.1 without any use of web services. It is a base for Direct Web-Based Grid Resource
Discovery and Centralized Web-Based Grid Resource Discovery models. The Grid Resource
Discovery Time found in GridSim is less than both DWGRD and CWGRD. However when the

43

number of resources and users increased the discovery time of GridSim become closer to the

discovery times of two models

The main goal of performing these tests is to test the scalability of the system. We want
to see after which number of resources and users the difference between the cost of the models
and GridSim become negligible. Although there 1s a differences between the average resource
discovery times of threc models but we can obscrve that this difference decreases under more
load of grid. In the other words the mean resource discovery time increases less in DWGRD and
CWGRD compared to GridSim. We used bar graphs for the same points 20/20, 40/40. 60/60,
80/80. 100/100 users and resources to observe the increase in means of resource discovery times
of DWGRD and GridSim models and CWGRD and GridSim models. These comparisons are

presented in the next two graphs 1n Figures 4.10 and 4.1 1.

I8
g
o 16
3
- 5
2 12 o
T
B .
g 8 ; # DWGRD
A 6 GridSim
Q
° 4
g ;
g B g

0 } : .

20,20 40,40 60,60 80,80 100,100

Number of Users and Resources

Figure 4.10 Comparison of increase in means of DWGRD and GridSim

44

>

'_é
5 16
8 -....
14 l:l:l
8 e
o (2 o I:l:l
) E |... | || ..l
= ;:::E. :E:::
5 S 20
e o = T OWORD
A S s - - = KridSim
5 4 hm et P e
3 o] e '-':. .':.:
2 2] e " . :- "
D] " e " l.:.l
o o = et s
20,20 40,40 60,60 80,80 100,100

Number ot Users and Resources

Figure 4.11 Comparison of increase in means of CWGRD and GridSim

After visual comparison we need to do statistical test to see the difference between these
means. Considering the low number of the raw data selected for each sample we sclected t-test

for statistical analysis that is explained below.

4.5. Statistical Analysis

To find the significance of the differences between the means of the resource discovery
times of our model (DWGRD and CWGRD) and the resources discovery times achieved by
GridSim, we calculated confidence intervals using the t-student distribution and pertormed t-test
for five points shown in the previous graphs. These points show the lincar increase in resource
discovery time for 20, 40, 60, 80 and 100 users and resources. Please note that users and
resources are equal in the number for each point 20, 40, 60, 80 and [00 users and resources. The

t-student distribution is used with the following assumptions:

- Samples of two populations arc independent on each other.

45

2- Samples are drawn from normal populations.

3- The populations have the same variance.

Appendix B shows raw data and the summary of statistics for each point 20, 40, 60, 80
and 100 users and resources in the GridSim, DWGRD and CWGRD models. Since the results of
the experiments of CWGRD and DWGRD are independent of GridSim, we did the t-test for
unpaired observations and the p-value is recorded that are shown in Tables 4.1 and 4.2. To
perform the test, we followed the instructions given by Jain [39] and calculated the required
statistics for the 10 observations for GridSim, DWGRD and CWGRD. The statistical results

shown in Tables 4.1 and 4.2 are provided by using the equations given below:

1 Na/b
Mean X, = Z Xia/b 4.1
a/ Nayp £ taf
Na np
1 1
Mean Dif ference X, — Xp =—) Xjq — —2 Xip 4.2
n, 4 np 4
i=1 i=1
1
Zr-l-?/b ia 2)- —a_z 2
Standard Deviation S,;, = {(=1 X/)T 4.3
ng/p—1
~ Standard Deviation of the Mean Dif ference S = — +T 4.4
a b
Degree of Freedom for two sample populations=(n, +np) — 2 4.5

46

Confidence Interval = (X; — %) £ £ ((1-0/2), (ng +n, — 2)*S

4.6

Where a stands for first raw data population and b stands for second raw data population

As it is shown in the tables we used these formulas to calculate mean differences,
standard deviation of mean differences for finding t-scores, p-values and the confidence intervals
by hand using Excel sheet. The confidence intervals are calculated based on t distribution table
given in [40] and presented in Appendix D. The results of our hand calculation are shown on the

in Tables 4.1 and 4.2. The similar calculation results obtained from web site offered in [41] are

presented in tables C.1 and C.2 of Appendix C.

Table 4.1 Mean Difference between GridSim and DWGRD
Confidence Interval and Unpaired T-test
| Users and Mean Standard Confidence p-Value | Difference of
Resources difference | Deviation Interval means.
of Mean 95%
difference(s)
120,20 1.573 0.118 (1.326, 1.820) <0.0001 | Different
40,40 1.227 0.478 (0.221, 2.232) 0.0196 Different
760,60 1.744 0.980 (-0314,3.802) | 0.0918 | Not significant
|
80,80 1.025 1.864 (-2.891, 4.941) 0.5891 | Not significant
100,100 1.890 3.721 (-5.927, 9.707) 0.6176 | Not significant

47

Table 4.2

Mean Difference between GridSim and CWGRD

Confidence Interval and Unpaired T-test

Users and ‘ Mean | Standard Confidence p-Value | Difference of |
Resources | difference | Deviation Interval means.
of Mean 95%
difference(s)
20,20 3.289 0.121 (3.036, 3.542) <0.0001 | Different
40,40 2.946 0.475 (1.948, 3.944) <0.0001 | Different
60,60 3.462 0.977 (1.410, 5.513) 0.0023 | Different
80,80 2.742 1.865 (-1.176, 6.660) 0.1587 | Not significant
100,100 3.606 3.719 (-4.208,11.421) 0.3451 | Not significant

Following the Jain [39] we calculated the confidence interval for each comparison.

According to these tests, if the calculated interval includes zero or the p-value is greater than

0.05, the difference between two means is not significant.

For calculating p-value we used the instruction given by Mendenhall et al. [40] and
verified the result with the online statistical service offered in [41]. As shown in the Tables 4.1

and 4.2, 95% confidence interval which is (1-p value) and considering the p-values, we can

conclude the following:

1. The difference between the means of resource discovery time of DWGRD and
GridSim is significant only when there are equal or fewer than 40 resources and 40
users in the grid.

2. When the number of resources and users are increased to more than 40, the difference

between GridSim and DWGRD is not significant.

3. The difference between the means of resource discovery time of CWGRD and
GridSim is significant when the numbers of resources and users are 20, 20 and 40, 40

and 60,60. This is an expected result when considering the greater value of the mean

48

of CWGRD resource discovery time compared to the mean of DWGRD resource
discovery time. We expect to see more difference between CWGRD to the GridSim
than DWGRD to GridSim.

4. When we increase the numbers of resources and users, the differences between the

means are not significant.

Finally, the results of the t-test support the scalability of our proposed model. In the
simulation the scalability can be tested when we load the grid with more resources and users.
Therefore, we expect that the cost (i.e., the resource discovery time) of adding our model
compared to the resource discovery time of grid to be marginal when accessing the resource

grids through the Internet.

4.6. CONCLUSIONS

In this chapter, the Direct Web-Based Grid Resource Discovery model including user
interface is implemented in NetBeans IDE 6.5.1. We performed the simulation for all three
models and did not find any abnormality in the simulation results. All three models show the
_stability in the results. After that we look at the cost of models as increase on grid resource
discovery when the number of resources and users increases in the grid. We found that when
increasing the load on the grid, the cost of our model decreases and finally with the grid load of
80 users and 80 resources and more than that, the cost of our model in comparison to grid

resource discovery time is marginal. This result supports the scalability of proposed model.

49

CHAPTER 5

5. CONCLUSIONS AND FUTURE WORK

This chapter concludes our thesis by explaining our contributions in section 5.1. Future

work is mentioned in section 5.2.

5.1. CONCLUSIONS

In this work a web service-based layered model that proposed a distributed search for
resource discovery in grid computing is proposed. This model provides a scalable solution for
information administrative requirements when the grid system expands through the Internet.
Distributed search in this model is based on sending DNS queries to the repositories that are
distributed in the Internet. Two architectures required for regional grid resource discovery in the
proposed model are implemented. We called them Direct and Centralized Web-Based Grid
Resource Discovery architectures. The underlying technologies for these architectures are also

introduced.

We called these two architectures as the best-case scenarios of the model because they
simulate the successful regional search for the URL of resource finder service which is the used
in the model. The DWGRD architecture implemented in this work is obviously the best-case
scenario of our proposed model. In this implementation the client knows the resource finder’s
URL from the beginning. CWGRD implementation is the second implemented architecture that
is based on contacting central UDDI database registry located in the same region as the client. In
this implementation, the client only needs to find the resource finder’s URL through a regional
UDDI. We consider this case as the second best-case scenario because we assume the URL of
regional UDDI is known by the client and UDDI successfully returns the URL of the required

resource finder web service to the client.

50

The DWGRD structure including user interface is implemented in NetBeans IDE 6.5.1
and used in the simulation together with GridSim as explained in Chapter 4. The slightly higher
average time for resource discovery observed in the DWGRD model compared to the GridSim
when increasing the number of users and resources, is because of the additional time for using
web services to send the simulation parameters and initiating the proper classes to start the

GridSim for grid simulation used with DWGRD architecture.

The CWGRD architecture is also including client interface, which is according to the
proposed model for resource discovery, is implemented with the same technology as DWGRD.
The higher average resource discovery times of CWGRD that are achieved by increasing the
number of users and resources in the comparison to the GridSim and DWGRD, indicates that this
architecture is adding additional time to the GridSim and DWGRD applications. As explained
section 4.4 of chapter 4 it is because CWGRD searches the URL of web service from a central
regional database and then acts as DWGRD model. The simulation for finding the total grid
resource discovery time is conducted in the same environment for both DWGRD and CWGRD

models.

Whenever the URL of the resource finder cannot be found locally that means by
contacting regional UDDI there is no resource finder that satisfies client’s requirements. In this
. case our model uses distributed search. In the distributed search, our model uses caching in
UDDI repositories similar to Domain Name Servers in DNS protocol, which is why searching
time in our model after the first time should be equal to the best-case scenarios (i.e., regional

search) in the rest of the cases.

By doing simulation and performing t-test for analyzing the achieved data, we found that
when increasing the load of the grid, the resource discovery time (i.e., cost) of our model
compared to grid resource discovery time decreases; finally, with the grid load of 100 users and
100 resources, there is no significant difference between the resource discovery time of our

model in comparison to grid resource discovery time.

51

Based on this result, we conclude that if our model were implemented on the Internet
with thousands of grid resources and users, the cost of our model is negligible which means the
proposed model would be scalable. Even if we add the couple of seconds for DNS-like
distributed search to include the worst-case scenarios to the cost of our model, still this time will

be negligible compared to resource discovery time of grid in the Internet.

In summary the contributions of this work are:
1. Introduction of a simple and scalable web service-based model for accessing grid

resources through the Internet.

2. Introduction of the underlying technology for implementation of this model.

3. Implementation of a prototype of the model that can be added on top of a grid computing
simulation tool (e.g., GridSim) for estimation of the total resource discovery time when

using the proposed architectures.

4. Performing a simulation to examine the scalability of the model.

5.2. FUTURE WORKS

The limitation of this work is that both the DWGRD and CWGRD architectures are
implemented by one client and one server on the same machine as the grid simulator. This work
in future can be extended to implement the proposed model with multiple clients and multiple
server nodes examining a variety of scenarios of finding the resources distributed in a real grid

computing environment.
The proposed model is a layered structure for resource discovery in which only the

implementation of a resource finder web service and web service-based user interface in the

upper layers of Internet are discussed. Doing research on the implementation and simulation of

52

the other parts of the grid computing in the lower layers to enhance our model is the future

direction of this work.

53

REFERENCES

[1] A. Szalay and J. Gray, “The World-Wide Telescope”, Science, Vol. 293, No. 553, Pp-
2037 - 2040, September 2001,
http://www.sciencemag.org/cgi/content/abstract/293/5537/2037

[2] G. Coulouris, J. Dollimore and T. Kindberg, “Distributed Systems: Concepts and
Design”, Fourth Edition, p. 19, pp. 783-824, Addison-Wesley Press, 2005

[3] B. C. Neuman, “Scale in Distributed Systems”, Reading in Distributed Computing
Systems, pp. 463-489, Los Alamitos, CA: IEEE Computer Society Press, 1994

[4] W3C, SOAP, http://www.w3.org/TR/soap/, last visited March 14, 2010

[5] W3C, XML, http://www.w3.org/ XML/, last visited March 14, 2010

[6] The Network Simulator 2, http://www.isi.edu/nsnam/ns/, last visited March 14, 2010

[71 P. Mockapetris, “Domain Names — Concepts and Facilities”, Request For Comments
RFC 1034, (An Official Document related to Internet Protocol Standards), Nov. 1987,
http://www.rfc-editor.org/rfc/rfc1034.txt, last visited March 14, 2010

[8] A. S. Tanenbaum and M. V. Steen, “Distributed Systems: Principles and Paradigms”,
Second Edition, pp. 9-15, Pearson Prentice Hall, 2007

[9] The Network Simulator 3, http://www.nsnam.org/index.html, last visited March 14, 2010

[10] P. Mockapetris, “Domain Names-Implementation and Specification”, Request For
Comments RFC 1035, (An Official Document related to Internet Protocol Standards),
Nov. 1987, http://www.rfc-editor.org/rfc/rfc1035.txt, last visited March 14, 2010

54

(11]

[12]

[13]

[14]

[15]

[1e]

[17]

[18]

B. Krishnamurthy and J. Rexford, “Web Protocol and Practice HTTP/1.1, Networking
Protocols, Caching, and Traffic Measurement”, pp.150-159, Addison Wesley Inc., 2001

I. Foster, C. Kesselman, J. Nick and S. Tuecke, “The Physiology of the grid: An Open
Grid Services Architecture for Distributed Systems Integration”, June 22, 2002.
http://www.globus.org/alliance/publications/papers.php, last visited March 14, 2010

E. Benson, G. Wasson, and M. Humphrey, “Evaluation of UDDI as a Provider of
Resource Discovery Services for OGSA-based Grids”, In Proceedings of 2006
International Parallel and Distributed Processing Symposium (IPDPS 2006), Rhodes
Island, Greece, April 25-29, 2006

F. Xhafa, L. Barolli and A. Durresi, “Batch mode scheduling in grid systems”,
International Journal of Web and Grid Services, Vol. 3, No.1, pp. 19-37, 2007

G. Belalem and Y. Slimani, “A hybrid approach to replica management in data grids”,
International Journal of Web and Grid Services, Vol. 3, No. 1, pp.2-18, 2007

W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, and F. Zini,
“OptorSim - A Grid Simulator for Studying Dynamic Data Replication Strategies”,
International Journal of High Performance Computing Applications, Vol. 17, No. 4, pp.
403-416, 2003, http://edg-wp2.web.cern.ch/edg-wp2/optimization/optorsim.html, last
visited March 14, 2010

X. Li, W. Huang, L. Zha, “The architecture and implementation of the Vega Information
Grid™, International Journal of Web and Grid Services, Vol. 3, No. 4, pp.462-479, 2007

B. Schmidt, “A survey of desktop grid applications for e-science”, International Journal
of Web and Grid Services, Vol. 3, No.3, pp.354-368, 2007

55

[19]

[20]

[21)

[22]

[23]

[25]

F. Lelli, E. Frizziero, M. Gulmini, G. Maron, S. Orlando, A. Petrucci and S. Squizzato,
“The many faces of the integration of instruments and the grid”, International Journal of

Web and Grid Services, Vol.3, No.3, pp.239-266, 2007

L. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations”, International Journal Supercomputer Applications, Vol. 15, No.

3, pp. 200-222, 2001, http://www.globus.org/alliance/publications/papers.php, last
visited March 14, 2010

Y. Yin, H. Cui and X. Chen, “The Grid Resource Discovery Method Based on
Hierarchical Model”, Information Technology Journal, Vol. 6, No. 7, pp.1090-1094,
2007

H. Sun, J. Huai, Y. Liu, R. Buyya, “RCT: A distributed tree for supporting efficient range
and multi-attribute queries in grid computing”, Future Generation Computer Systems,
Vol. 24 [ssue 7, pp. 631-643, 2008

E. Horowitz, S. Shahni, “Fundamental of Data Structures”, pp. 442-456,
W H Freeman & Co, 1983

Z. Xiong, Y. Yang, X. Zhang, D. Yu, L. Liu, “Integrated Agent and Semantic P2P Grid
Resource Discovery Model”, Proceedings of the eighth ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel/ Distributed
Computing, Vol. 2, pp. 216-220, 2007

M. Beheshti Seyed, M. Moshkenani Sadighi, “Development of Grid Resource Discovery
Service Based on Semantic Information”, In Proceedings of 10th Communication and
Networking Simulation Symposium (CNS’ 07) of SpringSim’ 07, Norfolk, Virginia, USA,
Vol. 1, pp. 141-148, 2007

56

[26]

[27]

(28]

[29]

[30]

[31]

[32]

I. Foster and C. Kesselman. “Globus: A Toolkit Based Grid Architecture”: The Grid
Blueprint for a New Computing Infrastructure, pp. 259-278, Mofga.n Kaufmann, 1999

R. Buyya, S. Chapin, and D. DiNucci, “Architectural Models for Resource Management
in the Grid”, the First IEEE/ACM International Workshop on Grid Computing, pp. 18-35,
Dec. 17, 2000, Bangalore, India

F. Cappello, H. Bal, Toward an International "Computer Science Grid", Seventh IEEE
International Symposium on Cluster Computing and the Grid (CCGrid'07), pp. 3-12,
May 2007

A. Takefusa, S. Matsuoka, K. Aida, H. Nakada, U. Nagashima, "Overview of a
Performance Evaluation System for Global Computing Scheduling Algorithms,” High-
Performance Distributed Computing, International Symposium on Eighth IEEE
International Symposium on High Performance Distributed Computing (HPDC-8 '99),
pp. 97-104, Aug. 1999, http://ninf.apgrid.org/bricks/, last visited March 14, 2010

H. Casanova, A. Legrand and M. Quinson, “SimGrid: a Generic Framework for Large-
Scale Distributed Experimentations”, Proceedings of the 10th IEEE International
Conference on Computer Modelling and Simulation (UKSIM/EUROSIM'08), pp. 126-
131, 2008, http://simgrid.gforge.inria.fr/, last visited March 14, 2010

R. Buyya and M. Murshed, GridSim: A Toolkit for the Modeling and Simulation of
Distributed Resource Management and Scheduling for Grid Computing, The Journal of
Concurrency and Computation: Practice and Experience (CCPE), Vol. 14, Issue 13-15,
Wiley Press, Nov.-Dec., 2002, http://www.buyya.com/gridsim/, last visited March 14,
2010

C. L. Dumitrescu, I. Foster, “GangSim: A Simulator for Grid Scheduling Studies”,
IEEE/CCGrid, 2005, Cardiff, UK, Vol. 2, pp. 1151 — 1158,
http://people.cs.uchicago.edu/~cldumitr/GangSim/, last visited March 14, 2010

57

[33]

[34]

[33]

[36]

[37]

[38]

[39]

[40]

[41]

O. Kang and S. Kang, “Web-based Dynamic Scheduling Platform for Grid Computing”,
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B,
pp 67-75, 2006

M. Giordano, “DNS-Based Discovery System in Service Oriented Programming”,
Advances in Grid Computing EGC 2003, European Grid Conference, the Netherlands,
Vol. 3470, pp. 840-850, 2005

S. Bokhari Syed, A. Abhari, and A. Ferworn, “Implementation of Web Based Grid
Resources Discovery Architecture™, In Proceedings of 12th Communication and
Networking Simulation Symposium (CNS’ 09) of SpringSim’ 09, 2009, San Diego, USA,

(The revised version was submitted for re-evaluation on November 19, 2009)

Netbeans, Web Services Learning Trail, http://www.netbeans.org/kb/trails/web.htm], last
visited March 14, 2010

Apache jUDDI, http://www.apache.org/dist/ws/juddi/2_ORC6, last visited March 14,
2010

A. M. Law, W. D. Kelton, “Simulation Modeling and Analysis”, Third Edition, pp. 6-7,
496-502, McGraw-Hill, 2000

R. Jain, "The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling”, pp. 209-211, Wilcy-

Interscience, New York, NY, April 1991

W. Mendenhall, R. J. Beaver, B. M. Beaver, "Introduction to Probability and Statistics”,
12th edition, pp.387-410, 691, Thomson Brooks/Cole, 2006

GraphPad Software Inc, http://www.graphpad.com/quickcalcs/ttest].cfm, last visited
March 14, 2010

58

APPENDIX A

jUDDI Tomcat Server Installation Details

The juddi-tomcat-2.0rc6.7zip and juddi-distribution-2.0rc6.zip are downloaded from

http:./www.apache.org/dist'ws, juddi/2_ORC6/. The juddi-tomcat-2.0rc6.21p presented in [37] 1S

«p file consisting of Apache Tomcat Server 5.5.23 server. The zip file is unzipped into juddi-

tomcat-2.0rc6 folder. The juddi version 2.0rc6 is based upon UDDI version 2.0. The folder

juddi-tomcat-2.0rc6 contains Apache Tomcat Server 5.5.23 server. The Apache Tomcat Server

5.5.23 server contains different folders such as bin and webapps. The bin folder contains a Derby

database folder called juddi-derby-db. The webapps folder contains web applications named

juddi and juddi-console. The Apache Tomcat Server 5.5.23 server is installed in NetBeans IDE

Version 6.5.1 environment by adding server. The juddi-distribution-2.0rc6.zip file is unzipped

and 1t contains document regarding how to start juddi. The computer is registered with a key as
an Apache jUDDI Node with Node [d: uddijuddi.apache.org: 1467t09b-8652-4a6e-bcd5s-
b08¢c8b63 1088 using juddi version 3.0.0.beta.

Basic g=ting
Data [nput Mede:
Name:
Host:
Port:
Database:
Liser Nama:

Passyord:

Additonal Props:

< Bhow JOBC URU

i

P I— .
| @) New Databsze Connection

@ Geld Entry Qirect URL Entry
Java D8 (vetwork)

locaihost

1527

juddi-derby b

Remember password
! {(see help for Informaton an securnity risks)

fdbe:darby: /focalhost: 1527 juddi-derby -db

Figure A.] Connecting juddi-derby-db database using Java DB (Network) Driver

59

The derby database juddi-derby-db is copied from bin folder of the Apache Tomcat Server
5.5.23 server which is C:\Users\Saadat Bokhari\Documents\juddi-tornc;at—Z.Orc6\apache—tomcat—
5.5.23\bin into C:\Users\Saadat Bokhari\.netbeans-derby folder. The Databases server Java DB
in Java NetBeans IDE Version 6.5.1 is started. The database file juddi-derby-db is connected
using Java DB (Network) database Driver as shown in Figure A.1 on the previous page. The
database is connected using user juddi and password juddi. The juddi-derby-db database is
relational database which consists of 31 tables to keep business, its services, technical detail of
business services based upon publisher and his authorizing information. All the information in

these tables is linked with each other through some indexing keys.

The Apache Tomcat Server 5.5.23 server is started using service tab of NetBeans IDE
Version 6.5.1. The juddi web application already installed in Apache Tomcat Server 5.5.23
server is opened in the browser by right clicking juddi. The browser displays the Welcome
jUDDI page (index.jsp) contains three options:

e Validate the local installation's configuration

e JjUDDI Console

¢ Visit the Apache-jUDDI Home Page
The Happy jUDDI page is displayed by clicking Validate link if there is no error in the database
configuration otherwise errors are display in the red color. Once the validation is done then it
" goes back to the Welcome jUDDI page again and by clicking jUDDI Console option goes to

juddi-console page.

This page contains a list of three different (Application Programming Interface) APIs
such jUDDI API (proprietary), UDDI Inquiry API and UDDI Publish API. Each API has list
of action links. The jUDDI API (proprietary) has 4 action links such as getregistryinfo. The
UDDI Inquiry API has 10 action links to find or get information about business or its services.
The UDDI Publish API has 16 action links to get authorizing keys or to publish business and its

services.

60

APPENDIX B

Statistical Analysis

B.1 Raw Data and Summary Statistics Obtained Using GridSim when GIS
Node=2, Users=20 and Resources=20

Table A Raw Data in seconds
1 0.892
2 0.872
3 0.803
4 0.537
5 0372
6 0.893 |
7 0.870
8 0.809
9 0.537
10 0.384
Table B Summary Statistics
Mean 0.697
Median 0.806
Standard Deviation 0.215
Sample Variance 0.046
_ Minimum 0.372
| Maximum 0.893
Sum 6.969
Count 10

61

B.2 Raw Data and Summary Statistics Obtained Using GridSim when GIS
Node=2, Users=40 and Resources=40

Table A Raw Data in seconds
1 2.797
2 2.005
3 3.358
4 0.990
5 1.880
6 0.996
7 2.135
8 2.400
9 2.945
10 2.008
Table B Summary Statistics
Mean 2.151
Median 2.072
\ Standard Deviation 0.772
Eample Variance 0.596
\T\/Iinimum 0.990
' Maximum 3.358
Sum 21.514
Count 10

62

B3 Raw Data and Summary Statistics Obtained Using GridSim when GIS
Node=2, Users=60 and Resources=60

Table A Raw Data in seconds

1 6.540

2 2.569

3 5.064

4 4.042

5 5.296

6 6.141

7 3.076

8 2.593

9 3.841

10 4.992

Table B Summary Statistics

Mean 4415
Median 4.517
Standard Deviation 1.415
Sample Variance 2.002
Minimum 2.569
Maximum 6.540
Sum 44,154
Count 10

63

B4 Raw Data and Summary Statistics Obtained Using GridSim when GIS
Node=2, Users=80 and Resources=80

Table A Raw Data in seconds

1 14.398

2 10.059

3 14.066

4 3.174

5 4.623

6 3.200

7 9.595

8 12.762

9 13.741

10 4319

Table B Summary Statistics

Mean 8.994
Median 9.827
Standard Deviation 4.732
Sample Variance 22.396
Minimum 3.174
Maximum 14.398
Sum 89.937
Count 10

64

B.S Raw Data and Summary Statistics Obtained Using GridSim when GIS
Node=2, Users=100 and Resources=100

Table A Raw Data in seconds

1 25.349

2 19.541

3 4.349

4 3.807

5 7.243

6 3.915

7 7.355

8 18.943

9 4.435

10 25.185

Table B Summary Statistics

Mean 12.012
Median 7.299
Standard Deviation 9.126
Sample Variance 83.286
Minimum 3.807
Maximum 25.349
Sum 120.122
Count 10

65

B.6 Raw Data and Summary Statistics Obtained Using DWGRD Model when GIS
Node=2, Users=20 and Resources=20

Table A Raw Data in seconds

1 2.720

2 1.958

3 2.149

4 2.428

5 2.433

6 2.578

7 2.536

8 1.868

9 1.971

10 2.054

Table B Summary Statistics

Mean 2.270
Median 2.289
Standard Deviation 0.304
Sample Variance 0.092
Minimum 1.868
Maximum 2.720
Sum 22.695
Count 10

66

B.7 Raw Data and Summary Statistics Obtained Using DWGRD Model when GIS
Node=2, Users=40 and Resources=40

Table A Raw Data in seconds

1 2.429

2 5.276

3 3.672

4 5.038

5 4.779

6 1.992

7 2.975

8 1.970

9 3.616

10 2.032

Table B Summary Statistics

Mean 3.378
Median 3.296
Standard Deviation 1.301
Sample Variance 1.694
Minimum 1.970
Maximum 5.276
Sum 33.779
Count 10

67

B.8 Raw Data and Summary Statistics Obtained Using DWGRD Model when GIS
Node=2, Users=60 and Resources=60

Table A Raw Data in seconds
1 2.516
2 4.634
3 6.521
4 8.511
5 8.225
6 4.013
7 9.538
8 3.353
9 4.229
10 10.057
Table B Summary Statistics
Mean 6.160
Median 5.578
Standard Deviation 2.756
Sample Variance 7.594
' Minimum 2.516
Maximum 10.057
Sum 61.597
Count 10

68

B.9 Raw Data and Summary Statistics Obtained Using DWGRD Model when GIS
Node=2, Users=80 and Resources=80

Table A Raw Data in seconds

1 16.304

2 6.722

3 10.579

4 10.868

5 14,735

6 7.089

7 9.118

8 8.028

9 11.428

10 5.317

Table B Summary Statistics

Mean 10.019
Median 9.849
Standard Deviation 3.513
Sample Variance 12.345
Minimum 5317
Maximum 16.304
Sum 100.188
Count 10

69

B.10 Raw Data and Summary Statistics Obtained Using DWGRD Model when GIS
Node=2, Users=100 and Resources=100

Table A Raw Data in seconds

1 5.810

2 11.111

3 3.234

4 18.122

5 16.957

6 20.653

7 13.251

8 4.784

9 21.260

10 23.841

Table B Summary Statistics

Mean 13.902
Median 15.104
Standard Deviation 7.426
Sample Variance 55.142
Minimum 3.234
Maximum . 23.841
Sum 139.023
Count 10

B.11 Raw Data and Summary Statistics Obtained Using CWGRD Model when GIS
Node=2, Users=20 and Resources=20

Table A Raw Data in seconds

1 4475

2 3.653

3 3.863

4 4,132

5 4.129

6 4.317

7 4.259

8 3.591

9 3.678

10 3.761

Table B Summary Statistics

Mean 3.986
Median 3.996
Standard Deviation 0.315
Sample Variance 0.099
Minimum 3.591
Maximum 4.475
Sum 39.858
Count 10

71

B.12 Raw Data and Summary Statistics Obtained Using CWGRD Model when GIS
Node=2, Users=40 and Resources=40

Table A Raw Data in seconds

1 4.184

2 6.986

3 5.381

4 6.746

5 6.472

6 3.732

7 4.703

8 3.704

9 5.325

10 3.742

Table B Summary Statistics

Mean 5.098
Median 5.014
Standard Deviation 1.288
Sample Variance 1.660
Minimum 3.704
Maximum 6.986
Sum 50.975
Count 10

72

B.13 Raw Data and Summary Statistics Obtained Using CWGRD Model when GIS
Node=2, Users=60 and Resources=60

Table A Raw Data in seconds
1 4.274
2 6.328
3 8.232
4 10.216
5 9.920
6 5.753
7 11.263
8 5.080
9 5.939
10 11.764
Table B Summary Statistics
Mean 7.877
Median 7.280
Standard Deviation 2.745
Sample Variance 7.535
Minimum 4.274
Maximum 11.764
Sum 78.769
Count 10

73

B.14 Raw Data and Summary Statistics Obtained Using CWGRD Model when GIS
Node=2, Users=80 and Resources=80

Table A Raw Data in seconds
1 18.060
2 8.414
3 12.287
4 12.575
5 16.431
6 8.832
7 10.842
8 9.753
9 13.136
10 7.028
Table B Summary Statistics
Mean 11.736
Median 11.565
| Standard Deviation 3.518
Sample Variance 12.374
Minimum 7.028
Maximum 18.060
Sum 117.358
Count 10

74

B.15 Raw Data and Summary Statistics Obtained Using CWGRD Model when
GIS Node=2, Users=100 and Resources=100

Table A Raw Data in seconds
1 7.566
2 12.803
3 4.942
4 19.827
5 18.651
6 22.391
7 14.977
8 6.511
9 22.968
10 25.548
Table B Summary Statistics
' Mean 15.618
Median 16.814
Standard Deviation 7.420
Sample Variance 55.056
Minimum 4.942
Maximum 25.548
Sum 156.184
Count 10

75

APPENDIX C

Statistical Analysis Tables

Table C.1 Mean Difference between GridSim and DWGRD
Confidence Interval and Unpaired T-test
Users and Mean Standard Confidence p-Value | Difference of
Resources difference | Deviation Interval means,
of Mean 95%
difference(s)
20,20 1.573 0.118 (1.32562, 1.82038) | <0.0001 | Different
40,40 1.227 0.478 (0.22194, 2.23206) | 0.0195 | Different
60,60 1.745 0.980 (-0.31324,3.80324) | 0.0918 | Not significant
80,80 1.025 1.864 (-2.89045, 4.94045) | 0.5891 Not significant
100,100 1.890 3.721 (-5.92671,9.70671) | 0.6176 | Not significant
Table C.2 Mean Difference between GridSim and CWGRD
Confidence Interval and Unpaired T-test
Users and | Mean Standard Confidence p-Value | Difference of
Resources | difference | Deviation Interval means.
of Mean 95%
: difference(s)
| 20,20 3.289 0.121 (3.03562, 3.54238) | <0.0001 | Different
40,40 2.947 0.475 (1.94935, 3.94465) | <0.0001 | Different
60,60 3.462 0.977 (1.41026,5.51374) | 0.0023 | Different
80,80 2.742 1.865 (-1.17543, 6.65943) | 0.1587 | Not significant
100,100 3.6006 3.719 (-4.20820,11.42020) | 0.3451 | Not significant

76

APPENDIX D

Table D Critical values of t from Biometrika appeared in [41]

d.f.| £050| £.025 | 010 | t.0005
1 [6.31412.706|31.821 |63.657
2 |2.920(4.303 [6.965 |9.925
3 |2353(3.182 [4.541 [5.841
4 [2132(2.776 [3.747 |4.604
5 |2.015[2.571 [3.365 [4.032
| o
6 [1.943[2.447 [3.143 |3.707
|7]1.895[2.365 [2.998 [3.499
8

9

1.860 [2.306 [2.896 {3.355 |
1.833 [2.262 [2.821 [3.250
10 [1.812 [2.228 [2.764 [3.169
|
11 [1.796 [2.201 [2.718 [3.106
12 [1.782]2.179 |2.681 [3.055
13 [1.771 [2.160 [2.650 |3.012
14 [1.761 [2.145 |2.624 |2.977
15 [L753 [2.131 [2.602 [2.947
L

116 |1.746(2.120 |2.583 |2.921
17 [1.740 |2.110 [2.567 [2.898
18 [1.734[2.101 |2.552 [2.878
19 (1729 [2.093 (2539 |2.861
120 [1.725|2.086 |2.528 |2.845

- 21 [1.721]2.080 |2.518 [2.831
122 [1.717]2.074 |2.508 |2.819
23 [1.714]2.069 [2.500 [2.807

77

24 [1.711[2.064 [2.492 |2.797

25 |1.708 (2.060 |2.485 |2.787

26 |1.706 [2.056 [2.479 (2.779

[27 |1.703|2.052 [2.473 [2.771

28 [1.701|2.048 [2.467 |2.763

29 11.699 (2.045 |2.462 |2.756

w 1.645(1.960 |2.326 (2.576

78

